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Rochester Institute of Technology  

Abstract 

Dr. Robert Parody 

School of Mathematical Sciences 

Master of Science 

Comparison of Statistical Models for Imputation of Missing Data in Clinical Trials 

By Vaishnavi Purandare 

 

Missing data is an integral part of clinical trials and its analysis. This study discusses the downsides of 

having missing values in clinical data, traditional methods used to resolve this issue and some techniques 

which can be implemented to remedy the same.  

The data used for the study is simulated from Theophylline data from Pinheiro and Bates (1995). The 

simulated data measures the Theophylline drug concentration in the body of 10 Subjects over 24 hours. 

There are three cases considered with increasing number of randomly created missing values for the 

Concentration variable. Subsets are created to fit linear and quadratic linear subject and population 

models. The fitted models are compared using Sums of Squares of Imputation and Imputed R2. These 

comparative techniques indicate that replacing the missing values in clinical data with appropriate 

estimates, while maintaining the authenticity of the data, is feasible. 
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Section 1 

Introduction 

1.1 Background and Motivation 

Missing data is an integral part of clinical trials. It is extremely rare to get clinical trial data without any 

missing values. A variable from data can be considered as missing if the value of the variable, may it be 

the response variable or one of the covariates, for a participant is not recorded.  

The type of the study determines what kind of missing data you can expect. A longitudinal study might 

have points missing from a subject’s repeated measures either at the beginning of the trial due to 

difficulty in measuring the outcome at an early stage or at the end of the trial because of dropouts. 

Omitting the subjects with the missing data from the trial can greatly impact the analysis. Losing 

subjects from a study will result in loss of information. It will also lead to reduced power due to a smaller 

sample size.  

Few instances of what can be considered missing from a certain study are missing mortality rate from a 

survival study; missing blood group, TSH levels etc. in laboratory studies,  diameter, size of a tumor in an 

oncology study, missing efficacy for a pre-clinical trial, missing half-life value for a drug study, etc.     

It is significant that we check the effect of the missing covariate and response data on the analysis of the 

study. The impact of the missing data might vary depending on the objectives of the study.  

There are various methods used to treat these missing points. The methods widely in practice include 

Complete Case Analysis, minimum-maximum substitution, average substitution, missing indicator 

method, (Cohen and Cohen (1983) and Cohen, Cohen, West and Aiken (2003)), etc. The most common 

method to analyze a data with missing points, outcome or co-variate, is to omit the subjects with any 

missing data. This method is known as the Complete Case Analysis. It is a widely used procedure as it is a 

default for quite a lot of analyses in statistical analysis packages such as SAS, STATA and R. For instance, 

SAS will by default ignore the observations with missing values while fitting a general linearized model 

using ‘proc glm’ for a given dataset. 

In a lot of cases, the Complete Case Analysis is not the appropriate method. It may lead to misleading 

conclusions. We would also have less power for assessment of treatment effects and significance of 

covariates.  The degrees of freedom available for prediction of the treatment means also get reduced. 

Other methods include substituting the missing values with average, minimum or maximum values of 

the variable. These methods have their own pros and cons which will be discussed in detail later. 

To remedy this issue of missing data in clinical trials, we can build models to predict the missing values. 

The predicted values of the missing points can be incorporated in the dataset for the analysis. This is 

termed as imputation of missing data. This will give us better insights as a result of increased power and 

sample size. We need statistical measures to compare these models to find the one that is best for data 

imputation. This study incorporates the Sums of Squares of Imputation and the Imputed R2, calculated 

using the Sums of Squares of Imputation, as the measures for assessing the models used for imputation. 
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1.2. Study Objectives 

The objectives of my thesis are as follows: 

1. Choose the best model among the models built for data imputation for simulated clinical trial 

missing data 

2. Compare the Sums of Squares of Imputation for all of the models 

3. Validate that the SSI and the Imputed R2 are measures which can be used for comparison of the 

models 

1.3 Study Layout 

The next section gives a brief introduction of Clinical Trials and the common terms used in Clinical 

Research. It gives a theoretical background of the models used in the study. It also introduces the 

statistical measure used to compare the models to find the best model for prediction. 

Section 3 focuses on the procurement of the simulated data used for this study. It also gives a brief 

summary of the steps taken to incorporate missing points in the data followed by summary of the 

statistical models built for predicting the missing data points. Section 4 includes the literature review 

done for this study. It briefly explains the other strategies used to deal with missing data in clinical trials. 

Section 5 includes the descriptive statistics of the study, the outputs from the models and the in-depth 

comparison of the models using goodness of fit measures to find the best model for imputation. The 

final section provides the final results of the comparative study along with the conclusion of the 

research. It discusses regarding the shortcomings of the methods used and scope for taking this research 

further.  
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Section 2 

Background  

2.1 Clinical Trials Summary 

World Health Organization (WHO) defines a clinical trial as 'any research study that prospectively assigns 

human participants or groups of humans to one or more health related interventions to evaluate the 

effects on health outcomes. Interventions include but are not restricted to drugs, cells and other 

biological products, surgical procedures, radiological procedures, devices, behavioral treatments, 

process-of-care changes, preventive care, etc.' 

In other words, any experiment, involving humans as subjects, conducted to check the safety or efficacy 

of drugs, medical procedures, medical devices, etc. can be considered as a Clinical Trial. 

A clinical trial is conducted over four phases and is closely regulated by the Food and Drug Association 

(FDA). 

Phase I - The scientist introduces an experimental treatment, drug or procedure, to a small group of 

subjects. The objectives of this phase are to check the safety of the treatment, decide the safe dosage, 

and record any side effects observed.  

Phase II - The drug is now given to a larger group of subjects. The objectives of this phase are to 

determine the efficacy of the experimental treatment and monitor the side effects.  

Phase III - The experimental treatment is now given to big groups of subjects. There might be more than 

one group of subjects. Here, the treatment group receives the treatment, while the control group 

receives the placebo (inactive or old treatment). The objectives of this phase are to validate the efficacy 

of the new treatment usually by comparison with old or commonly used treatments, monitor the side 

effects on the wide range of subjects. The crucial part of this Phase is that the results of the trial are 

submitted to FDA for the approval of the experimental treatment. 

Phase IV - Post approval from the FDA, the new treatment is introduced in the market. The objective of 

this phase is to check long term effects of the treatment and monitor any unusual and unprecedented 

side-effects.  

 

2.2 Keywords used in Clinical Trials 

2.2.1. Outcome/ Response 

The response variable or the variable of interest recorded for each subject of the clinical trial is 

called as the Outcome/ Response. 

The responses may defer based on the type of trial. For instance, level of pain will be the 

outcome for an arthritis drug trial, iron concentration in body for a Haemoglobin supplement 

study, Chest X-ray for Tuberculosis Treatment Trial etc. 
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In the simulated data for this study, the observed ‘Concentration of drug Theophylline in the 

body’ will be the response variable. 

 

2.2.2. Fixed Effect 

Fixed effects are variables that are constant across subjects. It means that the effect of these 

variables is going to be the same regardless of the subject. We are usually interested in the 

effect of the fixed effect variable on the response variable. 

 In the simulated data for this study, the variable ‘Time’ will be the fixed effect. 

 

2.2.3. Random Effect 

Random effects are variables that vary across subjects. We are usually interested in the 

variability created in the response variable by the random effect variable rather than the effect 

of the random effect on the response. 

 In the simulated data for this study, the variable ‘Subject’ will be the fixed effect. 

 

2.2.4. Linear Mixed Effect Model 

Linear Mixed effects model is an extension of multiple linear regression where one of the 

independent variables is a random effect. There can be more than one fixed and random effect 

in the data. Typically, in clinical trial analyses, variables such as Drug concentration, Time, 

Weight, Age, Gender, etc. are fixed variables and the Subject or Patient is considered as the 

random effect.  

The subjects are selected randomly from a larger pool of patients. We are interested in the 

whole population of subjects rather than the specific subjects selected for the trial. Each subject 

might react differently to a treatment and each treatment might affect the subject differently. 

We are interested in the variability of response caused by the subjects rather than the effect 

itself.   

The Algebraic Form of Linear Mixed Effect Model is given below: 

Yi = β1Xi1 + β2Xi2 + ... + βpXip (fixed) + u1iZi1 + ... + uqiZiq + i (random) 

where the index, i, is used to index subjects. Note that Zi1, ..., Ziq is associated with the 

random effects u1i, ..., uqi that are specific to subject i. 

Since the LMM can take on one or more fixed or random effects, it is best to use the matrix 

form of this equation. 
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The model can be represented in Matrix form as below: 

Yi = Xiβ (fixed)+Ziui + i (random) 

where ui ∼ N(0, D) and i ∼ N(0, Ri) 

and D represents variance of ui and Ri represents variance of i 

 

2.2.5. Sums of Squares of Imputation 

A summary measure called Sums of Squares of Imputation (SSI) is defined as the sum of squared 

differences of observed and expected response for the non-imputed data points. 

 SSI = ∑ (𝑦′𝑖  −  𝑦′�̂�)
2𝑛

𝑖=1   

Where, y’i are the non-imputed data points. In other words, y’i is the response of subjects 

without any missing data.  

According to the definition given by Richardson-Harman and Parody (2016), the Sums of squares 

of imputation is the sum of the squared differences between the measurements (imputed and 

detectible) and the predicted values from the model fit. 

A low SSI indicates a better data imputation and model fit. 

This will be further discussed in Section 3 and Section 4 

 

2.2.6. Imputed R2  

Imputed R2 is calculated using Sums of Squares of Imputation as the numerator and the Total 

Sums of Squares as the denominator. Here, SSM denotes the Sums of Squares of Model.  

Imputed R2 = 1 - 
SSI

SST
  =   

SSM

SST
  

Imputed R2 is the R2 of the model after imputing the predicted values in the data. 

The value of the measure falls between 0 and 1. The value of the Imputed R2 ideally, should be 

close to 1. 

A higher Imputed R2 value indicated a good model for imputation. 
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Section 3 

Methodology 

3.1 Procurement of data using simulation 

This section discusses how the data used for the comparative techniques has been simulated. The 

foundation of the simulated data is based on Theophylline data from Pinheiro and Bates (1995). The 

original data consists of serum concentrations of the drug Theophylline measured over a 25-hour period 

after oral administration for 12 subjects. Pinheiro and Bates (1995) have considered the first order one-

compartment model for analyzing the data. One-compartment model is the simplest model that can be 

used to explain absorption and elimination of drug in a body. The model assumes that the body is a 

single uniform compartment and the drug is distributed instantaneously in the body. The first order one-

compartment model is given below:  

𝐶𝑖𝑡 =  
𝐷𝑘𝑒𝑖

𝑘𝑎𝑖

𝐶𝑙𝑖(𝑘𝑎𝑖
− 𝑘𝑒𝑖

)
[exp(−𝑘𝑒𝑖

𝑡)  −  exp(−𝑘𝑎𝑖
𝑡)]  + 𝑒𝑖𝑡 

where, 𝐶𝑖𝑡  is the observed concentration of the ith subject at time t, D is the dose of theophylline, 𝑘𝑒𝑖
 is 

the elimination rate constant for subject i, 𝑘𝑎𝑖
 is the absorption rate constant for subject i, 𝐶𝑙𝑖  is the 

clearance for subject i, and 𝑒𝑖𝑡  are normal errors. To allow for random variability between subjects, they 

assume 

𝐶𝑙𝑖  =  𝑒𝑥𝑝(𝛽1  +  𝑏𝑖1 ) 

𝑘𝑎𝑖  =  𝑒𝑥𝑝(𝛽2  +  𝑏𝑖2 ) 
𝑘𝑒𝑖  =  𝑒𝑥𝑝(𝛽3) 

where the βs denote fixed-effects parameters and the bis denote random-effects parameters with an 

unknown covariance matrix. 

 

For the simulated data, we have considered 10 subjects and the dose ‘D’ is fixed at 4.5. We have 

considered the following time stamps for recording the observed concentration of the drug: 

    t = (0, 0.25, 0.5, 1, 2, 3.5, 5, 7, 10, 12, 15, 18, 21, 24). 

(Simulated data can be found in the Appendix as Dataset 1.1) 

For the simulated data, time t will be considered as the fixed variable and subject will be considered as 

the random variable.  

The general model used to build the population and the subject model is: 

𝐶𝑜𝑛𝑐 =  𝛽0  +  𝛽1𝑇𝑖𝑚𝑒𝑖  +  𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑗 

Here, i = 1, 2, 3, …., 14 and j = 1, 2, 3, …., 10 

 

http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/statug_nlmixed_references.htm#statug_nlmixedpinh_j95
http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/statug_nlmixed_references.htm#statug_nlmixedpinh_j95
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3.2 Incorporation of missing data points 

The next step is to create the missing data points in the simulated data. 

The clinical trial measures the serum concentration of the drug Theophylline in the body after oral 

administration to the subject. The observations at the initial and concluding timestamps might be 

missing due to absence of measurable drug concentration in the subject’s body. To maintain the 

authenticity of the data, we are going to create missing points at both ends of the curve. There will be 

missing data in the absorption and the elimination phase.  

Three cases have been considered so far by removing data points randomly from the data. 

1. Two data points missing from the entire dataset. 

2. Ten data points missing from the dataset. 

3. Fourteen data points missing from the dataset. 

Random number of data points missing in the dataset incorporating randomness for number of data 

points, time and subjects. 

    

3.3 Building statistical models for prediction 

Linear mixed models are built to predict the missing data points. 

For the linear mixed modelling the data is spliced till the time stamp 5 to obtain spliced curves that are 

linear to form two subsets. The first subset, Subset 1 represents the absorption phase while the second 

subset, Subset 2 represents the elimination phase. The third subset is created so that the curve of the 

subsetted data represents a quadratic curve.    

Population models using fixed and random effects and subject-specific models are built for each case 

given in the previous section.  

In the population model with Time and Subject we have the response variable as Concentration, Time as 

the fixed factor and Subject as the random factor. In the population model with Time only, we have the 

Concentration as the response variable and Time as the fixed factor. We do not consider the Subject 

variability in this model. For the subject model, we consider each of the Subjects to be individual data 

and we fit a model to each individual subject using Time. Here, we have Concentration as the response 

variable and Time as the fixed variable. 

Each dataset with missing data is There are three models for each of the three datasets with missing 

data. In all there are 27 models for comparison. 

Details of the models are given below: 

1. Population model with time as the fixed effect and subject as the random effect 

2. Population model with time as the fixed effect 

3. Subject-wise models with time as the fixed effect  
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3.4 Computation of Sums of Squares of Imputation and Imputation R2  

To assess the performance of the statistical models for predicting the missing data points, goodness of fit 

measures are computed. 

The Sums of Squares of Imputation for each model and the Imputed R2 derived from the SSI are used for 

comparison.  
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Section 4 

Literature Review 

4.1. Remedies for missing data in clinical Trials 

The missing data in clinical trials can cause various implications during the analysis. As discussed by 
Guan and Yusoff (2011), it can invalidate hypothesis decisions, lead to unwanted bias in data and 
significantly underestimate the variability. 
The most common strategy of removing the subjects from the analysis might not be an appropriate 
solution. We might lose out on significant information if these subjects are removed from the study 
altogether. However, we also maintain the authenticity of the data.   
The other common methods include creating a dummy variable for indication of missing data and 
imputing the missing data points with an arbitrary value. 
 
Some of the traditional approaches practiced widely are discussed below: 
4.1.1 Complete Case Analysis 

In this method, the subjects with the missing data are excluded from the analysis. This is the 
most common method in practice and is a default setting in most of the statistical analysis 
packages. This approach is considered as conservative as the authenticity of the data is 
maintained. 
On the other hand, according to Acock (2005), it might lead to 20%-50% loss of data due to 
deletion. This can significantly impact the level of significance and the power of the tests. If the 
sample of the study is not large enough, it can inflate the standard errors and create bias. The 
complete cases remaining in the study might not be the true representation of the population 
and might lead to underestimation or overestimation of some effects due to the bias. 
If the sample of the study is large enough, the missing points are completely random and power 
is not a concern then Complete Cases Analysis is a reasonable approach.  

 
4.1.2 Mean Substitution 

In this method, the average of the variable is substituted for the missing point in the data.  
One of the main concerns of this method is the potential bias. If we have a normal population 
then substituting the missing point by the mean might be a reasonable strategy. However, if we 
have a growth curve pattern for our response then replacing an initial point or one of the end 
points with the mean is not ideal. 
Secondly, depending on the amount of the missing values in the data, substitution by the mean 
can impact the variance significantly Acock (2005). Say, we have 25% of the data that was 
missing replaced by the average. The deviation of these values from the variable average would 
be 0, deflating the variance of the variable significantly. Depending on number of missing values 
for each variable, the attenuation in the variance of the variables will be different. This might 
result in overestimation or underestimation of effects in analysis resulting in invalid conclusions. 

 
4.1.3 Min-Max Substitution 

In this method, the minimum value of the variable is substituted for a missing point on the lower 
end and the maximum value of the variable is substituted for a missing point on the upper end.  
The Min-Max Substitution is suitable for imputation of missing data points either in the initiation 
or the terminal phase of the trial. This method is also suitable when the response shows a 
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growth curve and has distinct absorption and elimination phases. Substituting the minimum and 
maximum values depending on the position is suitable than substituting by the average which 
would fall in the middle of the curve. This would rectify the attenuation of variance in the 
variables due to substitution of average to some extent.  
However, depending on the number of missing values in the data, this method can still create 
bias as the minimum and the maximum values used for substitution might not represent the 
true population. 

 
4.1.4 Missing Indicator Method 

In this method, a dummy variable is created to indicate a missing data point for a variable. The 
dummy variable is coded as '1' if the response variable is missing. The original missing response 
values are coded as 0 or substituted by an arbitrary value such as the mean. The dummy 
variable is included in the final statistical model.      
The strategy was made popular by Cohen and Cohen (1983) and Cohen, Cohen, West and Aiken 

(2003). The benefit of this method is maintaining the sample size of the study by not eliminating 

the incomplete cases as well as maintaining the authenticity of the study to a certain extent. 

This method with only one dummy variable will have the same regression estimates as the 

Complete Cases Analysis, however the indicator variable will indicate the significance of the 

deviation of the missing points on the average response. Multiple dummy variables for multiple 

predictors can create multi-collinearity issues in the analysis that can result in bias. 

Lastly, the additional dummy variables will utilize some of the degrees of freedom. However, 

this loss in degrees of freedom might still have less impact than having reduced power by 

eliminating the missing cases altogether.   

 

In the following section, we are going to use statistical models to predict the missing data points rather 

than using an arbitrary value. The strategy is start with a basic linear mixed effects model and then 

proceed to more complex statistical models. 
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Section 5 

Research Methods and Outcome 

5.1   Descriptive Statistics 
 

5.1.1 Theophylline Concentration versus Time 

The plot (Figure 5.1) shows the relation between Drug Concentration(mg/L) and Time(hrs). 

Plot of Theophylline Concentration versus Time by Subject 

 

Figure 5.1 

Looking at the above plot we can observe that:  

1. The concentration-time curves have almost the same shape for all the subjects 

2. The rise, peak and decay vary across subjects which might indicate inter-subject variation. In 

other words, the rate of absorption and elimination for the drug is different for each 

subject. 

 

5.1.2 Theophylline Concentration versus Time by Subject 

Figures (5.2 to 5.6) are individual subject plots for Theophylline Concentration versus Time. The separate 

curves for subjects are used to check the variability in the Concentration due to Subjects.  
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Figure 5.2 

Figure 5.2 is the plot of Theophylline Concentration (mg/L) versus Time (hrs) for Subject 1 and Subject 2. 

 

Figure 5.3 

Figure 5.3 is the plot of Theophylline Concentration (mg/L) versus Time (hrs) for Subject 3 and Subject 4. 
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Figure 5.4 

Figure 5.4 is the plot of Theophylline Concentration (mg/L) versus Time (hrs) for Subject 5 and Subject 6. 

Subject 5 curve shows variation during the elimination phase whereas Subject 6 has a smoother and 

sharper slope during the elimination phase. 

 

 

 Figure 5.5 

Figure 5.5 is the plot of Theophylline Concentration (mg/L) versus Time (hrs) for Subject 7 and Subject 8. 
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Figure 5.6 

Figure 5.6 is the plot of Theophylline Concentration (mg/L) versus Time (hrs) for Subject 9 and Subject 

10.  

Subject 9 curve shows a bimodal curve and a slower elimination phase. Subject 10 shows a smoother 

elimination phase. 

Looking at the 12 individual plots for each subject, the overall pattern seems to be similar. The 

concentration of the drug Theophylline in the blood increases during the absorption phase. It decreases 

again in the elimination phase. The individual plots show that there is a clear variance between the 

concentration levels which might not be attributed to random error.  
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5.1.3 Distribution of Theophylline Concentration by Subject 

Boxplots of Theophyllne Concentration for each Subject  

 

Figure 5.7 

Figure 5.7 shows the variability in the Subjects.  

The boxplots for each subject are different in size with unequal whisker lengths. This indicates variability 

in the Theophylline concentration range for each subject. The average Theophylline concentration for 

the subjects ranges between 4 and 6 mg/L. The lowest and the highest concentrations of the drug for 

the subjects shows quite a variability. This indicates significant difference in the response variable for 

each Subject. 

The next step is to build statistical models to impute the missing data points in the data. The models will 

be assessed using various goodness of fit measures. 

 

5.2   Statistical Models, Outcomes and Comparison 
 

There are four cases considered for the imputation and comparison. The data for each of the cases 

is the same but the number and the positions of the missing data points is selected randomly. 

The details of the cases are given below: 

 

• Case 1: Two data points missing from the entire dataset. First missing data point is for Subject 2 

at time 0; subject is selected at random using R. Second missing data point is for Subject 8 at 

time 24; subject is selected at random using R. 
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• Case 2: Missing ten data points are for six subjects. Response for Time 0 is missing for Subjects 

4, 7, 9. Response for Time 0.25 is missing for Subjects 4 and 9. Response for Time 21 is missing 

for Subjects 2 and 5. Response for Time 24 is missing for Subjects 2, 5 and 8; subjects selected 

at random using random number generator in R. 

 

• Case 3: Missing fourteen data points are for six subjects. Response for Time 0 and 0.25 is 

missing for Subjects 2, 6, 10. Response for Time 0.5 is missing for Subject 6. Response for Time 

18 is missing for Subject 4. Response for Time 21 and 24 is missing for Subjects 4, 8 and 9; 

subjects selected at random using random number generator in R. 

 

Each case of the simulated data is spliced to form three subsets.  

The first two subsets divide the data into two parts to obtain approximate linear curves. Observing 

the individual curves of all the subjects given in Fig. 5.2 to Fig. 5.6, we can conclude that the 

absorption phase of most of the subjects ends at 5 hrs and the elimination phase begins and goes 

on till 24 hrs. We splice the data to obtain approximately linear curves for each of the absorption 

phase and elimination phase. The first subset encompasses the absorption phase while the second 

subset encompasses the elimination phase.  

The graphs also indicate a possible quadratic curve with a tail on the right side. If we splice the data 

till the 10 hrs timestamp, we get an approximate quadratic curve. The third subset consists of the 

data spliced till the 10 hrs to fit a linear quadratic model. 

The details of the subsets are given below: 

• Part 1: Subset with variable Time less than equal to 5. (Time <= 5) 

Here, i = 1, 2, 3, …., 7 

• Part 2: Subset with variable Time more than 5. (Time > 5) 

Here, i = 8, 9, 10, …., 14 

• Part 3: Subset with variable Time less than or equal to 10. (Time <= 10) 

Here, i = 1, 2, 3, …., 10 

 

 

Notations and formulae: 

• N: Sample size 

 

• m: Number of missing points in the data 

N* = N – m 

 

• SSI: Sums of Squares of Imputation 

SSI = ∑ (𝑦′𝑖  −  𝑦′�̂�)
2𝑁∗

𝑖=1   

Where, y’i are the non-imputed data points. 
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• SST: Sums of Squares of Total 

SST = ∑ (𝑦′𝑖  −  𝑦′𝑖)
2𝑁∗

𝑖=1   

Where, y’i are the non-imputed data points. 

 

• Degrees of Freedom for SSI and SST = N* - 1 = N – m - 1 

 

• Imputed R2: R2 calculated using SSI as the numerator and the SST as the denominator 

Imputed R2 = 1 - 
SSI

SST
 

 

Assessment of the models for imputation using the goodness of fit measures: 

• Lower the Sums of Squares of Imputation (SSI) of the model, better is the model for 

imputation.  

The SSI indicates the difference between observed value and predicted value of the 

response variable for that particular model. We want this error to be as small as possible. 

 

• The closer the value of Imputed R2 is to 1, better is the model for imputation.  

Higher value of the Imputed R2 indicates that most of the variability in the response is 

explained by the model used for imputation. Having least amount of variability due to 

random noise is better. 

 

Note: The values of SSI, SST and Imputed R2 are going to be same for the Population Models with 

Time and Subject and Population Models with Time only. The random effect Subject is not going to 

change the predicted values and the mean estimates.  

The random effect affects the variance of the population.  

Variance of the Mixed model with the Random effect Subject is 𝜎𝑒𝑟𝑟𝑜𝑟
2  + 𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡

2  whereas, 

Variance for the Model with only the Fixed effect Time is 𝜎𝑒𝑟𝑟𝑜𝑟
2   

 

 

5.2.1. Case 1 – Two data points missing from the entire dataset 
First missing data point is for Subject 2 at time 0; subject is selected at random using R. 
Second missing data point is for Subject 8 at time 24; subject is selected at random using R 

 

The Case 1 dataset is used to obtain the three subsets – Subset 1 has the data for Time less than 

or equal to 5, Subset 2 is the data for Time > 5, Subset 3 has data for Time <=10. Each of the 

Subsets has one missing data point. There are three models built for each Subset.  

The models built for Subset 1 are Linear Population Model with Time & Subject, Linear 

Population Model with Time and Linear Subject Models with Time. The models built for Subset 2 
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are Linear Population Model with Time & Subject, Linear Population Model with Time and Linear 

Subject Models with Time. The models built for Subset 3 are Quadratic Population Model with 

Time & Subject, Quadratic Population Model with Time and Quadratic Subject Models with 

Time. 

The models for each Subset need to be compared for their imputation efficiency. The predicted 

value of the response variable can be compared to the observed value of the response from the 

dataset. The difference between these two values is used to build a statistical measure for 

comparison. The Sums of Squares of Imputation is the Sum of the Squares of the Differences 

between the Predicted and Observed Response for the non-imputed datapoints. This gives an 

inclination of how good the model is at prediction of the existing data points. The lower the SSI 

value, better is the model for imputation. 

The Imputed R2 is the given as the ratio of the Residual Sums of Squares and the Total Sums of 

Squares. It can be obtained by subtracting the ratio of Sums of Squares of Imputation and Total 

Sums of Squares from 1. This value indicates how much variance in the response is explained by 

the imputation model. We want this ratio to be as high as possible. The closer the value is to 1, 

better the model for imputation.  

We use the above-mentioned criterion for selection of the best ft for imputation.  

The values of the goodness of fit measures for each of the 9 models for Case 1 are given below. 

The preferred model for each Subset has been highlighted. 

The inference drawn from the Table 5.1 is given below the table.  

 

 

Table 5.1. Comparison of Linear and Quadratic Population and Subject Models for Case 1: 

 Model 
Description 

M SSI SST D.f. Imputed R2  

Linear 
Models for 
Subset 1 
(Time <= 5) 

Population Model 
with Time and 
Subject 

1 321.3514 486.5986 68 0.339597  

Population Model 
with Time 

1 321.3514 486.5986 68 0.339597  

Subject Models 
with Time 

1 297.2188 486.5986 5,6 0.389191  

        

Linear 
Models for 
Subset 2 
(Time > 5) 

Population Model 
with Time and 
Subject 

1 77.91204 226.0432 68 0.655322  

Population Model 
with Time 

1 77.91204 226.0432 68 
 

0.655322  

Subject Models 
with Time 

1 65.74885 226.0432 5,6 0.709131  
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Quadratic 
Models for 
Subset 3 
(Time <= 
10) 

Population Model 
with Time and 
Subject 

1 237.7521 
 

419.0333 
 

88 0.432618 
 

 

Population Model 
with Time 

1 237.7521 
 

419.0333 
 

88 0.432618 
 

 

Subject Models 
with Time 

1 384.9207 
 

419.0333 
 

7,8 0.081408 
 

 

 

We can use the Table 5.1 to draw inference about the models used for imputation for Case 1. 

For both the linear subsets, Subset 1 and 2, the SSI of the Subject Models is smaller than the SSI of 

the Population Models with Time & Subject and the Population Models with Time only. 

For Subset 1 and 2, the Imputed R2 of the Subject Models is higher than the Population Models 

with Time & Subject and Population Models with Time only. 

This indicates that the Subject Models are better at imputation of the missing data points in Case 1 

than the Population Models. 

For Subset 3, the SSI of the Quadratic Population Models is less than the Quadratic Subject Models. 

The Imputed R2 of the Quadratic Subject Model at 8 % is significantly less than the Quadratic 

Population Models at 43%. 

This indicates that the Quadratic Population Models are better at imputing the missing points than 

the Quadratic Subject Model. 

The goodness of fit measures of both the Population Models for the Subset 3 are same. The best 

model is selected using other criterions of model selection. AIC of both the models is same but BIC 

of the Population Model with Time & Subject is smaller.  

Hence, we will select the Quadratic Population Model with Time & Subject for data imputation. 

Overall, the Linear Models perform better than the Quadratic Models for imputation of missing 

points in Case 1. However, the Imputed R2 is not close to 1. We ideally want a model which has a 

ratio more than 0.80.  

5.2.2. Case 2 – Ten data points missing from the entire dataset 
Missing data points are for six subjects. Response for Time 0 is missing for Subjects 4, 7, 9. 
Response for Time 0.25 is missing for Subjects 4 and 9. Response for Time 21 is missing for 

Subjects 2 and 5. Response for Time 24 is missing for Subjects 2, 5 and 8; subjects selected at 

random using random number generator in R. 

 

The Case 2 dataset is used to obtain the three subsets – Subset 1 has the data for Time less than 

or equal to 5, Subset 2 is the data for Time > 5, Subset 3 has data for Time <=10. Each of the 

Subsets has five missing data points. There are three models built for each Subset.  

The models built for Subset 1 are Linear Population Model with Time & Subject, Linear 

Population Model with Time and Linear Subject Models with Time. The models built for Subset 2 

are Linear Population Model with Time & Subject, Linear Population Model with Time and Linear 

Subject Models with Time. The models built for Subset 3 are Quadratic Population Model with 
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Time & Subject, Quadratic Population Model with Time and Quadratic Subject Models with 

Time. 

The models for each Subset need to be compared for their imputation efficiency. The predicted 

value of the response variable can be compared to the observed value of the response from the 

dataset. The difference between these two values is used to build a statistical measure for 

comparison. The Sums of Squares of Imputation is the Sum of the Squares of the Differences 

between the Predicted and Observed Response for the non-imputed datapoints. This gives an 

inclination of how good the model is at prediction of the existing data points. The lower the SSI 

value, better is the model for imputation. 

The Imputed R2 is the given as the ratio of the Residual Sums of Squares and the Total Sums of 

Squares. It can be obtained by subtracting the ratio of Sums of Squares of Imputation and Total 

Sums of Squares from 1. This value indicates how much variance in the response is explained by 

the imputation model. We want this ratio to be as high as possible. The closer the value is to 1, 

better the model for imputation.  

We use the above-mentioned criterion for selection of the best ft for imputation.  

The values of the goodness of fit measures for each of the 9 models for Case 2 are given below. 

The preferred model for each Subset has been highlighted. 

The inference drawn from the Table 5.2 is given below the table. 

Table 5.2. Comparison of Linear and Quadratic Population and Subject Models for Case 2: 

 Model 
Description 

M SSI SST D.f.  Imputed R2  

Linear 
Models for 
Subset 1 
(Time <= 5) 

Population Model 
with Time and 
Subject 

5 282.6106 
 

404.9194 
 

64 0.302057 
 

 

Population Model 
with Time 

5 282.6106 
 

404.9194 
 

64 0.302057 
 

 

Subject Models 
with Time 

5 253.0196 
 

404.9194 
 

4,5,6 0.375136 
 

 

        

Linear 
Models for 
Subset 2 
(Time > 5) 

Population Model 
with Time and 
Subject 

5 75.00623 
 

204.0997 
 

64 0.632502 
 

 

Population Model 
with Time 

5 75.00623 
 

204.0997 
 

64 0.632502 
 

 

Subject Models 
with Time 

5 61.6037 
 

204.0997 
 

4,5,6 0.698169 
 

 

        

Quadratic 
Models for 
Subset 3 
(Time <= 
10) 

Population Model 
with Time and 
Subject 

5 223.9118 
 

382.9611 
 

84 0.415315 
 

 

Population Model 
with Time 

5 223.9118 
 

382.9611 
 

84 0.415315 
 

 

Subject Models 
with Time 

5 340.2177 
 

382.9611 
 

6,7,8 0.111613 
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We can use the Table 5.1 to draw inference about the models used for imputation for Case 1. 

Case 2 has ten missing data points while Case 1 has two missing data points. Increasing the number 

of missing points in the dataset has not affected the models’ imputation performance significantly. 

For both the linear subsets, Subset 1 and 2, the SSI of the Subject Models is smaller than the SSI of 

the Population Models with Time & Subject and the Population Models with Time only. 

For Subset 1 and 2, the Imputed R2 of the Subject Models is higher than the Population Models with 

Time & Subject and Population Models with Time only. 

This indicates that the Subject Models are better at imputation of the missing data points in Case 1 

than the Population Models. 

For Subset 3, the SSI of the Quadratic Population Models is less than the Quadratic Subject Models. 

The Imputed R2 of the Quadratic Subject Model at 11 % is significantly less than the Quadratic 

Population Models at 42%. 

This indicates that the Quadratic Population Models are better at imputing the missing points than 

the Quadratic Subject Model. 

The goodness of fit measures of both the Population Models for the Subset 3 are same. The best 

model is selected using other criterions of model selection. AIC of both the models is same but BIC 

of the Quadratic Population Model with Time & Subject is smaller.  

Hence, we will select the Quadratic Population Model with Time & Subject for data imputation. 

Overall, the Linear Models perform better than the Quadratic Models for imputation of missing 

points in Case 2. However, the Imputed R2 is not close to 1. We ideally want a model which has a 

ratio more than 0.80. 

 

5.2.3. Case 3 – Fourteen data points missing from the entire dataset 
Missing data points are for six subjects. Response for Time 0 and 0.25 is missing for Subjects 2, 

6, 10. Response for Time 0.5 is missing for Subject 6. Response for Time 18 is missing for Subject 

4. Response for Time 21 and 24 is missing for Subjects 4, 8 and 9; subjects selected at random 

using random number generator in R. 

 

The Case 3 dataset is used to obtain the three subsets – Subset 1 has the data for Time less than 

or equal to 5, Subset 2 is the data for Time > 5, Subset 3 has data for Time <=10. Each of the 

Subsets has seven missing data points. There are three models built for each Subset.  

The models built for Subset 1 are Linear Population Model with Time & Subject, Linear 

Population Model with Time and Linear Subject Models with Time. The models built for Subset 2 

are Linear Population Model with Time & Subject, Linear Population Model with Time and Linear 

Subject Models with Time. The models built for Subset 3 are Quadratic Population Model with 

Time & Subject, Quadratic Population Model with Time and Quadratic Subject Models with 

Time. 

The models for each Subset need to be compared for their imputation efficiency. The predicted 

value of the response variable can be compared to the observed value of the response from the 

dataset. The difference between these two values is used to build a statistical measure for 

comparison. The Sums of Squares of Imputation is the Sum of the Squares of the Differences 
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between the Predicted and Observed Response for the non-imputed datapoints. This gives an 

inclination of how good the model is at prediction of the existing data points. The lower the SSI 

value, better is the model for imputation. 

The Imputed R2 is the given as the ratio of the Residual Sums of Squares and the Total Sums of 

Squares. It can be obtained by subtracting the ratio of Sums of Squares of Imputation and Total 

Sums of Squares from 1. This value indicates how much variance in the response is explained by 

the imputation model. We want this ratio to be as high as possible. The closer the value is to 1, 

better the model for imputation.  

We use the above-mentioned criterion for selection of the best ft for imputation.  

The values of the goodness of fit measures for each of the 9 models for Case 3 are given below. 

The preferred model for each Subset has been highlighted. 

The inference drawn from the Table 5.2 is given below the table. 

 

Table 5.3. Comparison of Linear and Quadratic Population and Subject Models for Case 3: 

 Model 
Description 

M SSI SST D.f. Imputed R2  

Linear 
Models for 
Subset 1 
(Time <= 5) 

Population Model 
with Time and 
Subject 

7 297.4267 
 

429.6015 
 

62 0.307668 
 

 

Population Model 
with Time 

7 297.4267 
 

429.6015 
 

62 0.307668 
 

 

Subject Models 
with Time 

7 240.4443 
 

429.6015 
 

3,4,6 0.440309 
 

 

        

Linear 
Models for 
Subset 2 
(Time > 5) 

Population Model 
with Time and 
Subject 

7 71.76221 
 

209.9604 
 

62 0.658211 
 

 

Population Model 
with Time 

7 71.76221 
 

209.9604 
 

62 0.658211 
 

 

Subject Models 
with Time 

7 56.97727 
 

209.9604 
 

3,4,6 0.728628 
 

 

        

Quadratic 
Models for 
Subset 3 
(Time <= 
10) 

Population Model 
with Time and 
Subject 

7 199.8548 
 

323.2613 
 

82 0.381755 
 

 

Population Model 
with Time 

7 199.8548 
 

323.2613 
 

82 0.381755 
 

 

Subject Models 
with Time 

7 280.5181 
 

323.2613 
 

5,6,8 0.132225 
 

 

 

We can use the Table 5.1 to draw inference about the models used for imputation for Case 3. 
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Case 3 has fourteen missing data points while Case 2 has ten missing data points. Increasing the 

number of missing points in the dataset has not affected the models’ imputation performance 

significantly. 

For both the linear subsets, Subset 1 and 2, the SSI of the Subject Models is smaller than the SSI 

of the Population Models with Time & Subject and the Population Models with Time only. 

For Subset 1 and 2, the Imputed R2 of the Subject Models is higher than the Population Models 

with Time & Subject and Population Models with Time only. 

This indicates that the Subject Models are better at imputation of the missing data points in 

Case 3 than the Population Models. 

 

For Subset 3, the SSI of the Population Models is less than the Subject Models. 

The Imputed R2 of the Subject Model at 13 % is significantly less than the Population Models at 

38%. 

This indicates that the Quadratic Population Models are better at imputing the missing points 

than the Quadratic Subject Models. 

The goodness of fit measures of both the Population Models for the Subset 3 are same. The best 

model is selected using other criterions of model selection. AIC of both the models is same but 

BIC of the Population Model with Time & Subject is smaller.  

Hence, we will select the Quadratic Population Model with Time & Subject for data imputation. 

Overall, the Linear Models perform better than the Quadratic Models for imputation of missing 

points in Case 2. However, the Imputed R2 is not close to 1. We ideally want a model which has a 

ratio more than 0.80. 

 

5.3   Discussion 

From the Theophylline Concentration versus Time plot given in Figure 5.1, it can be concluded that the 

concentration of the drug in the body does not have a linear trend. A polynomial term in the linear 

model will fit the data better than a linear model without any polynomial terms. It is also easier and 

more straightforward than fitting a complicated non-linear model to the data.  

The linear Subject models for Subsets 1 and 2, that is the absorption phase and the elimination phase in 

all the three cases perform better than the Population models with Subject and Population models with 

Time only. The distribution of the Theophylline concentration in the body for the subjects varies 

significantly as seen in the boxplot Figure 5.7. This indicates that each subject has a different rate of 

absorption and elimination of the drug from the body. This suggests that an individual model for each 

Subject might be a better fit than a population model including all the Subjects. This is supported by the 

results from all three cases where the SSI of the subject models is lower than the population models. 

The Subset 3 for all three cases indicate a curve. More the data points in the dataset, better will the fit 

of the curve. Getting a good fit of a subject model for each subject becomes difficult if the subject has 

higher number of missing points. In such a case, it is better to fit a population model. This is supported 

by the analysis as well. The population models for all the three cases perform better than the subject 



24 
 

models. The SSI of the quadratic population models of Subset 3 of the three cases is less the quadratic 

subject models. 

 The subject models will perform better when there are substantial data points to fit a good model for 

each subject. In cases where there are not enough data points for each subject, population models will 

give a better estimate for imputation.  

The imputation process’s primary objective is to enable the use of most of the available data by 

imputing the missing values in the data while maintaining the authenticity. It is crucial that we include 

only the essential covariates in the model used for imputation. This can be decided based on the nature 

of the data and the number of covariates in the data. 

 A subset of core covariates can be considered from all of the available covariates for the model for 

imputation. The significant covariates from this subset can be obtained by model selection techniques 

such as forward, backward selection etc. The level of significance for decision of inclusion or exclusion of 

the covariate in the model of imputation does not need to be as stringent as that while implementing 

model selection for data analysis.  

The additional covariates from the data which were not included in the above-mentioned subset, can be 

included in the model for analysis using the usual model selection techniques. Usually the covariates 

included in the model for imputation will be included in the model for analysis along with other 

significant covariates. 

We do not want the model for imputation to be the same as the model used for the analysis. Having the 

same model for imputing the missing values and analysis will lead to overfitting of the data. Analyzing 

the data which has missing values replaced by the same model will fit better to the data leading to 

incorrect results. It is crucial to choose an appropriate model for imputation to avoid these issues. 

The recommendations and scope of this study for practical applications are discussed in detail in the 

next chapter along with the shortcomings.  
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Section 6 

Conclusion and Scope 

6.1. Conclusion 
First, the performance of the statistical models at imputing the missing data points starts 

decreasing as the number of missing points in the data increase. 

Secondly, the Sums of Squares of Imputation behave as expected. A better model of imputation 

will have smaller Sums of Squares of Imputation. The Imputed R2 goodness of fit measure is a 

simple tool to assess how good the statistical model of imputation is for predicting the missing 

data. It gives a measure of how much of the variability in the response is explained by the model 

of imputation. 

Lastly, the linear models are better than the quadratic models at imputation for the simulated 

data. Among the linear models, the population models with the fixed effect Time and random 

effect Subject included is a better than the population model without the random effect Subject. 

  

6.2. Shortcomings 
We have a simple dataset with one fixed effect and one random effect. Clinical data, in real life, 

is always going to be more complex with multiple covariates and a large sample size.   

The curve of Concentration with Time indicates some type of a growth curve. A non-linear 

model with mixed effects might be a better fit for the data. The linear and quadratic models 

used for imputation for the simulated data are not the best models for the given data. There 

might be better complex models which might predict the missing points better. 

 

6.3. Recommendations 
Few recommendations to improve the study and to make it more applicable to generic cases are 

present.  

Firstly, incorporating multiple covariates such as Age, Gender, Weight, Metabolism Rate, Blood 

Routine observations, etc. in the dataset to assess the performance of the models with multiple 

dimensions. Increasing the sample size of the study to reduce random error. 

Secondly, assessing the performance of the goodness of fit measures, SSI and Imputed R2 when 

they have deal with collinearity of multiple covariates. 

Thirdly, fitting statistical models with higher complexity to fit curve of the data. Non-linear 

mixed effects model such as One-compartment Pharmacokinetic model might be a better fit for 

the data. 

Lastly, increasing the sample size of the study as real-life trial would have a much larger sample 

size.  

 

6.4. Scope 
Incorporating multiple covariates in the data to assess the performance of the goodness of fit 

criterion for imputation for complex models. The Concentration Time curve indicates a growth 

curve patter to the data. Fitting non-linear growth curves to the data will be an ideal approach.  
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Applying this method to a real-life data instead of a simulated data is future goal. 

The goodness of fit measure Imputed R2 might have to be modified when there are multiple 

covariates in the data. The measure might have to be penalized to incorporate the multiple 

variables in the model. 

The Sums of Squares of Imputation theoretically, should follow Chi-square distribution. A test 

statistic based on the Sums of Squares of Imputation and the degrees of freedom can be built. 

This test statistic theoretically should follow F-distribution. This would help in deciding whether 

the model is useful for imputation. Validating this hypothesis is one of the future objectives.   
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Appendix  

Dataset 1.1 

Obs. No. Subject Time Dose Conc 

1 1 0 4.5 0.166926 

2 1 0.25 4.5 1.543568 

3 1 0.5 4.5 4.517274 

4 1 1 4.5 7.381421 

5 1 2 4.5 8.859213 

6 1 3.5 4.5 8.645822 

7 1 5 4.5 7.300276 

8 1 7 4.5 4.579653 

9 1 10 4.5 5.666462 

10 1 12 4.5 6.152977 

11 1 15 4.5 2.963063 

12 1 18 4.5 1.368785 

13 1 21 4.5 1.010404 

14 1 24 4.5 1.150451 

15 2 0 4.5 0.675363 

16 2 0.25 4.5 2.559472 

17 2 0.5 4.5 6.061638 

18 2 1 4.5 7.158622 

19 2 2 4.5 7.865775 

20 2 3.5 4.5 6.048914 

21 2 5 4.5 7.731559 

22 2 7 4.5 5.120209 

23 2 10 4.5 3.474936 

24 2 12 4.5 3.645725 

25 2 15 4.5 4.093258 

26 2 18 4.5 0.26015 

27 2 21 4.5 2.862773 

28 2 24 4.5 0.012882 

29 3 0 4.5 1.227623 

30 3 0.25 4.5 5.699911 

31 3 0.5 4.5 5.141344 

32 3 1 4.5 8.626037 

33 3 2 4.5 10.20318 

34 3 3.5 4.5 7.2956 

35 3 5 4.5 6.446552 

36 3 7 4.5 6.86881 

37 3 10 4.5 4.263719 
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38 3 12 4.5 3.654819 

39 3 15 4.5 3.971287 

40 3 18 4.5 1.11396 

41 3 21 4.5 1.937399 

42 3 24 4.5 3.208905 

43 4 0 4.5 1.168756 

44 4 0.25 4.5 2.283667 

45 4 0.5 4.5 5.206775 

46 4 1 4.5 7.522831 

47 4 2 4.5 7.57764 

48 4 3.5 4.5 8.353213 

49 4 5 4.5 7.809229 

50 4 7 4.5 6.955636 

51 4 10 4.5 3.631474 

52 4 12 4.5 3.732407 

53 4 15 4.5 2.531836 

54 4 18 4.5 1.789414 

55 4 21 4.5 1.492662 

56 4 24 4.5 1.468216 

57 5 0 4.5 0.015852 

58 5 0.25 4.5 4.088644 

59 5 0.5 4.5 6.478556 

60 5 1 4.5 6.995201 

61 5 2 4.5 5.914913 

62 5 3.5 4.5 8.23369 

63 5 5 4.5 7.519846 

64 5 7 4.5 5.268065 

65 5 10 4.5 4.959453 

66 5 12 4.5 3.063056 

67 5 15 4.5 4.982898 

68 5 18 4.5 0.644385 

69 5 21 4.5 1.934162 

70 5 24 4.5 0.076504 

71 6 0 4.5 0.720138 

72 6 0.25 4.5 5.309323 

73 6 0.5 4.5 5.523851 

74 6 1 4.5 6.614434 

75 6 2 4.5 7.715629 

76 6 3.5 4.5 9.055209 

77 6 5 4.5 4.475876 

78 6 7 4.5 4.937212 
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79 6 10 4.5 2.09295 

80 6 12 4.5 4.362354 

81 6 15 4.5 1.22023 

82 6 18 4.5 2.972093 

83 6 21 4.5 2.168738 

84 6 24 4.5 1.098148 

85 7 0 4.5 0.06548 

86 7 0.25 4.5 3.752712 

87 7 0.5 4.5 4.135596 

88 7 1 4.5 7.415654 

89 7 2 4.5 8.923245 

90 7 3.5 4.5 6.687456 

91 7 5 4.5 6.264115 

92 7 7 4.5 5.385699 

93 7 10 4.5 5.20188 

94 7 12 4.5 1.821922 

95 7 15 4.5 2.85194 

96 7 18 4.5 3.313781 

97 7 21 4.5 3.026171 

98 7 24 4.5 0.978879 

99 8 0 4.5 0.391919 

100 8 0.25 4.5 2.160716 

101 8 0.5 4.5 4.527807 

102 8 1 4.5 7.198262 

103 8 2 4.5 8.157101 

104 8 3.5 4.5 6.439462 

105 8 5 4.5 6.425069 

106 8 7 4.5 6.426851 

107 8 10 4.5 5.038696 

108 8 12 4.5 5.333265 

109 8 15 4.5 1.434062 

110 8 18 4.5 2.794701 

111 8 21 4.5 3.8224 

112 8 24 4.5 1.304759 

113 9 0 4.5 0.316705 

114 9 0.25 4.5 2.292128 

115 9 0.5 4.5 4.872779 

116 9 1 4.5 6.819063 

117 9 2 4.5 7.256018 

118 9 3.5 4.5 7.454822 

119 9 5 4.5 8.424974 
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120 9 7 4.5 5.887813 

121 9 10 4.5 4.880832 

122 9 12 4.5 4.024156 

123 9 15 4.5 3.340954 

124 9 18 4.5 1.113572 

125 9 21 4.5 2.122453 

126 9 24 4.5 0.686172 

127 10 0 4.5 1.556844 

128 10 0.25 4.5 3.826569 

129 10 0.5 4.5 4.834146 

130 10 1 4.5 7.261497 

131 10 2 4.5 9.149742 

132 10 3.5 4.5 7.828541 

133 10 5 4.5 5.554357 

134 10 7 4.5 5.554271 

135 10 10 4.5 5.346518 

136 10 12 4.5 3.362648 

137 10 15 4.5 1.403637 

138 10 18 4.5 2.469548 

139 10 21 4.5 1.257984 

140 10 24 4.5 0.460307 
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