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Abstract

DIVIDE AND CONQUER IN NEURAL STYLE TRANSFER FOR VIDEO

Paul Galatic

Supervisor: Dr. M. Mustafa Rafique

Neural Style Transfer is a class of neural algorithms designed to redraw a given image in

the style of another image, traditionally a famous painting, while preserving the underlying

details. Applying this process to a video requires stylizing each of its component frames,

and the stylized frames must have temporal consistency between them to prevent flickering

and other undesirable features. Current algorithms accommodate these constraints at the

expense of speed.

We propose an algorithm called Distributed Artistic Videos and demonstrate its capacity

to produce stylized videos over ten times faster than the current state-of-the-art with no

reduction in output quality. Through the use of an 8-node computing cluster, we reduce

the average time required to stylize a video by 92%—from hours to minutes—compared to

the most recent algorithm of this kind on the same equipment and input. This allows the

stylization of videos that are longer and higher-resolution than previously feasible.
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Chapter 1

Introduction

Neural Style Transfer (NST) [1, 3, 4], also called artistic style transfer, is a category of

neural algorithms designed to redraw a given image in the style of another image. These

algorithms insert characteristics of the style image, e.g. brush strokes and colors, while

preserving the major structural features of the input image. NST has potential commercial

and research applications in the fields of animation [5, 6], image rendering [7] and data

augmentation [8,9,10], among others. Various examples of NST are displayed in Figure 1.1.

NST for images has been extensively studied in the past half-decade. The most recent

algorithms in the field are extremely fast and flexible, able to combine any two images in

nearly real time through the use of feed-forward neural networks [1,11]. However, videos are

currently challenging to stylize in a visually pleasing way for both theoretical and practical

reasons.

1.1 The Essential Nature of Neural Video Stylization

In NST for images, input images are independent of each other, carrying no important

information between them. A common initial approach to NST for video is to stylize every

frame of a video independently of every other frame. This method is fast, yet unsatisfy-

1



Figure 1.1: Various examples of neural style transfer for images. The input images (left

column) are, from top to bottom: An image of the outside of the Golisano building at

RIT, an image of The Sentinel, a sculpture at RIT, and a close-up of the Statue of Liberty.

The style images (center column) are, from top to bottom: The Mona Lisa, an image from

Transistor by Supergiant Games, and a previous version of the RIT Tigers logo. Stylization

was performed with an implementation of the technique described by Ghiasi et al. [1]. The

implementation is called Magenta [2].



ing, because it cannot consider similarities between adjacent frames. This makes stylized

frames differ wildly from each other, producing flickering artifacts and the illusion of frantic

movement in a scene.

This effect is clearly undesirable, and solving it requires the introduction of novel con-

straints that ensure consistency of stylization between related frames. These constraints are

extremely effective, yet they come at a severe cost of speed.

1.2 The Current Available Tools

The best neural video stylization algorithm known at the time of writing is Fast Artistic

Videos (FAV) by Ruder et al. [12]. FAV promises, with a proper setup, to stylize videos nearly

in real time. Despite our best efforts, we were unable to reproduce this rapid stylization

speed. We believe the fault for this lies with auxiliary code on which FAV depends.

Near-real-time stylization with FAV requires advanced equipment and software. First, it

requires a graphics processing unit (GPU). GPUs are used to parallelize certain expensive

computer operations in a process often called “GPU acceleration.” The use of GPUs is a

de-facto standard for improving the efficiency of many neural algorithms, including FAV.

In order for FAV to take full advantage of GPU acceleration, it must use software libraries

that can communicate with the GPU and provide parallelized instructions. Currently, the

most popular of these libraries is the Compute Unified Device Architecture (CUDA) [13]

library, which is built for general-purpose parallelization. Because neural algorithms benefit

so substantially from GPU acceleration, an additional library was developed specifically for

their benefit, called the CUDA Deep Neural Network (cuDNN) library [14]. Both CUDA

3



and cuDNN have various versions, and not all versions are backwards-compatible with each

other, or are compatible with every main version of the Ubuntu operating system. This

matrix of incompatibilities is at least a manageable inconvenience.

FAV also depends on Torch7 [15], an open-source Lua library based on the Torch deep-

learning framework [16]. After FAV was published, several users reported that their GPU-

accelerated FAV installations were generating improperly stylized videos that bore no re-

semblance to either the original video or the style that was supposed to be applied. Despite

following all of the authors’ installation instructions and suggested workarounds, we observed

the same results.

One of the authors proposed that an update to Torch7 or another dependency broke

GPU acceleration in FAV after Ruder et al. published their algorithm in 20181. The last

substantive update to Torch7 was in September 2017, and so the most likely explanation

is a flaw in one of the libraries on which FAV depends. Because FAV has exited active

development, there is little hope of this issue being definitively fixed.

The next best alternative is to use a slower version of FAV that runs on the central pro-

cessing unit (CPU) only, which allows FAV to generate high-quality output at a much slower

pace. However, a major strength of Torch7 is its support of GPU acceleration via CUDA and

cuDNN [15], and without that strength, its weaknesses are glaring and obvious; for example,

sparse documentation made it difficult to determine the purpose of some functions.

To avoid these weaknesses, we base our work on the neural framework pyTorch [17], which

is written in Python, a well-documented language that is easy to read and debug. PyTorch

1See https://github.com/manuelruder/fast-artistic-videos/issues/7
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is considered among the fastest and most straightforward deep-learning libraries currently

available, explaining its popularity in recent research [18].

1.3 Thesis Objectives

Our first objective is to design an algorithm that is functionally equivalent to FAV. A

distributed version of an algorithm and its serial original must both create the same output in

order to ensure that the process of distribution is correct. Because FAV uses Torch7 and our

new algorithm uses pyTorch, we must determine whether or not the underlying differences

in their respective platforms, if any, significantly alter the quality of the stylized videos they

produce—hence, “functional equivalence” rather than equivalence outright.

Our second objective is to find an efficient and consistent algorithm to distribute the

work required by FAV across a computing cluster.

1.4 Thesis Contributions

In this thesis, we introduce a novel algorithm called Distributed Artistic Videos (DAV)

that makes substantial improvements to FAV. We prove that the discrepancies between the

outputs of FAV and DAV are few and trivial.

Our algorithm can intelligently distribute its workload across a cluster of computers and

drastically reduce the amount of time required to stylize a video. Over 8 computers, the

time required to perform stylization is reduced on average by 92%.

We also introduce the standard frames per cut (SFC) metric, a novel measure which

helps quantify the extent to which distribution of labor is possible on some inputs.

5



1.5 Thesis Layout

In Chapter 2, we briefly summarize the important foundational works up to and including

the one that introduced FAV. We also introduce other works on the bleeding edge of NST

that provide hints for future research.

In Chapter 3, we introduce the content and style loss functions that form the foundation

of NST. We then detail how FAV applies these loss functions together with optical flow

data and the temporal loss function. Finally, we describe how DAV distributes the work of

stylization across multiple computers and propose several improvements to DAV based on

what we learned while testing it.

In Chapter 4, we describe the evaluation criteria and experiments we used to determine

to what extent DAV lives up to our objectives. We also introduce the SFC in this chapter.

In Chapter 5, we demonstrate the functional equivalence of FAV and DAV with both

quantitative and qualitative results. We then analyze our dataset using the SFC metric

and afterward measure the speedup we were able to attain with DAV over FAV in our

experiments. At the end of this chapter, we discuss our observations on the process of neural

video stylization and describe potential future research on various unsolved, yet potentially

solvable problems in NST.

In Chapter 6, we conclude this thesis by restating the significance of DAV and highlighting

the key findings of our work.

6



Chapter 2

Background and Literature Review

In this chapter we review NST, starting with some important general concepts, then

moving on to its foundational works, then several important intermediary works, and finally

the bleeding-edge algorithms that define the limits of what NST can currently accomplish.

We cover only the works that we believe are most important to understanding and contextu-

alizing our own. For those seeking a more comprehensive review of NST, especially for still

images, we recommend “Neural Style Transfer: A Review” by Jing et al. [19].

2.1 Topics Related to NST for Video

In the following sections, we describe several topics that we believe are important to

understanding our work, though they are used in a far broader context than just NST.

2.1.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are the most common building blocks for any

neural algorithm that processes images. The first CNN was introduced in 1980 by Kunihiko

Fukushima under the title Neocognitron [20], and its importance cannot be overstated—NST,

among many other powerful neural algorithms, are only possible through the use of CNNs.

7



A CNN is more efficient at recognizing patterns in image data than any other network

known at the time of writing. The vast majority of neural algorithms that are designed to

solve problems with a visual element use at least one convolutional layer. This is because

convolutional layers operate on patches of their input at a time, rather than point-by-point,

and so can perform feature extraction more effectively than its alternatives in identifying

spatial relationships. CNNs are also used in non-visual problems for the same reason.

2.1.2 Optical Flow

Optical flow is an estimate of how pixels move between two images. It is typically used

in the context of object tracking [21] or activity recognition [22, 23]. State-of-the-art video

stylization algorithms, including the one we propose, also rely on optical flow files to operate.

The two main types of optical flow are sparse optical flow and dense optical flow. In sparse

optical flow, for example the popular Lucas-Kanade method [24], only a few “feature” pixels

are tracked. Dense optical flow, on the other hand, tracks every single pixel. In other words,

dense optical flow between two images is an estimate of how pixels in the first image become

pixels in the second image. NST for video requires dense optical flow data, and so we use

methods that can calculate it.

The first algorithm for calculating optical flow was introduced in 1980 by Horn and

Schunck [25]. It computes dense optical flow by searching for differences in image brightness

and tries to generate smooth estimates. This seminal algorithm has inspired many other

optical flow estimators, and so is worth mentioning. However, we will omit for the sake of

brevity many intermediary optical flow algorithms and focus on those that are relevant to

8



our thesis.

In 2003, Farnebäck [26] introduced a simple and efficient method to calculate dense optical

flow between two grayscale images. It is based on his dissertation from the previous year [27]

that describes in detail how to use polynomial expansion to estimate motion between images.

By converting the neighborhood of each pixel of an image into polynomials and comparing

how those polynomials change between images, displacement between images is measured,

and that measurement is refined to estimate optical flow.

The Farnebäck algorithm is far from the most accurate optical flow algorithm currently

available, but it avoids the computational overhead of its modern, neural network-based

alternatives.

An example of such an alternative is the combination of Deepflow2 and DeepMatching

by Weinzaepfel et al. [28]. Computing optical flow is a task particularly suited to CNNs.

Given a large network, high-quality data, powerful equipment, and some time, a model can

be trained to compute crisp, accurate flow files. Moreover, neural networks can handle faster

motion between frames without degradation in the accuracy of its output.

In order to understand how pixels move between images, it is helpful to know which pixels

in each frame refer to the same object. DeepMatching uses a neural architecture similar to a

deep CNN, alternating convolutional layers with maxpooling. It takes a heirarchical, bottom-

up approach, starting with the fine details of both images and working up to assess which

areas exhibit the same features and thus correspond to each other.

Deepflow is a variational approach that uses the output of DeepMatching to improve its

inferences. It is evaluated both by the accuracy of its estimates, the smoothness of the flow

9



it generates, and how well its predictions correspond to a simpler precomputed vector field.

2.1.3 Normalization

There are several different kinds of normalization. Some exist independently of NST and

others were created specifically to improve NST. In this section we describe two important

normalization techniques that are either used by most NST algorithms or form the basis for

later methods.

Ioffe and Szegedy [29] describe a batch normalization (BN) neural layer that has two

learnable parameters, one expressing mean and the other expressing standard deviation.

The network tunes these parameters while training and so learns to normalize the training

dataset in a way that helps it minimize its objective function. BN layers effectively preprocess

the input to the next hidden layer. This improves training stability, allowing networks to

solve previously infeasible problems and improving convergence speed.

Because normalizing across the entire dataset introduces noise, BN is less useful in noise-

sensitive networks [30]. It appears that NST benefits from a slightly different approach.

Instance normalization (IN) by Ulyanov et al. [31] adjusts BN by allowing the layer to

perform normalization over each input independently of the others. Rather than normalizing

across the entire batch, IN has the network normalize over each image, preserving many of

the benefits of BN without introducing much noise.

10



2.2 Research in NST for Images and Video

There are dozens of different approaches to NST, differing primarily in their loss functions

and optimization strategies. The most commonly used loss functions measure, at minimum,

how well the content of the input image matches the content of the output and how well

the network applies the style. An interesting byproduct of the various network structures

used across the field of NST is that each of their outputs are qualitatively different from

each other even when given the same input and style images. The resulting effect is similar

to comparing the work of several different professional artists who are all commissioned to

paint the same vase in the same color palette. This phenomenon is difficult to quantify

because the majority of work in NST is designed to demonstrate improvements in capacity,

flexibility, and speed, rather than visual quality, if such an improvement could be objectively

measured at all.

2.2.1 A Neural Algorithm of Artistic Style

The seminal work by Gatys et al. [3,32] begins with an image of random noise and shapes

it so that it exhibits both the stylistic aspects of a given style image and the major features

of a given input image, which is also commonly called the content image. Of course, these

questions must be quantified in order to properly direct a neural network, and so Gatys

et al. introduced the content and style loss functions, which are described in more detail

in Section 3.1. For now, consider the content loss to be a measure of how well the output

image reproduces the major features of the content image and consider the style loss to be

a measure of how well the output image reflects the “essence” of the style image. Because
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the optimization process happens on an image-by-image basis, Gatys et al. [3] has a very

low throughput, which later algorithms sought to address.

2.2.2 Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Johnston et al. [4] train networks to minimize perceptual loss. Perceptual loss compares

high-level features between images rather than granular details, and so is much more in tune

with the priorities of NST. That said, we observe that there are no significant differences

in the calculation of optimization loss by Gatys et al. [3] and perceptual loss by Johnson et

al. [4]. The primary difference in this area, therefore, is in how Johnson et al. [4] structure

the loss function so that a neural network can learn to apply a specific style to an arbitrary

input image.

Such a network, once trained, stylizes images with a feed-forward process, and so can

produce output one thousand times faster than Gatys et al. However, they are limited in

that each network can only apply one specific style to an arbitrary content image. In order

to learn another style, an entirely new network must be trained.

2.2.3 Demystifying Neural Style Transfer

Li et al. [33] describe why NST is able to produce such visually pleasing images, positing

that it is in fact a domain adaptation problem. They explain in precise, mathematical

language the process by which the style loss is minimized.

Instead of the traditional style optimization equation used in previous works [3, 4], they

design style loss using the Maximum Mean Discrepancy (MMD) metric introduced by Gret-
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ton et al. [34]. MMD is a popular metric for measuring the difference between two distribu-

tions, and so provides a firmer theoretical basis for NST.

2.2.4 Neural Style Transfer via Meta Networks

A meta-network is a neural network that outputs another neural network. Shen et al. [35]

designed and trained a meta-network to accept a style image and produce an output network.

The output network takes an input image and produces a stylized version of that image.

In terms of functionality, the output networks are similar to those produced by Johnson

et al. [4], yet they are much quicker to produce because they require no training if the meta-

network already exists. These networks are also more space-efficient than those by Johnson

et al. The output networks exist independently of the meta-network, and so can be deployed

elsewhere.

2.2.5 A Learned Representation for Artistic Style

The key limitation of Johnson et al. [4] is how each network can only apply a single

style. This prompted research into methods to expand the artistic range of NST while

preserving the speed of feed-forward networks. Dumoulin et al. [36] addressed this problem by

developing a new normalization technique called conditional instance normalization (CIN).

CIN is based on instance normalization. Rather than performing normalization based on

individual content images in a batch, CIN performs normalization over every member of a

set of N style images. The network is structured to create N outputs for every input, one

for each style on which it was trained, allowing a single network to apply a broad range of
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styles. This is faster and simpler than training one network for each style.

2.2.6 Arbitrary Style Transfer in Real-Time with Adaptive Instance Normal-

ization

Huang and Belongie [11] designed an NST algorithm that lets the user select an arbitrary

content image and an arbitrary style image, producing a stylized output with a quick feed-

forward process. This algorithm uses a novel normalization layer called Adaptive Instance

Normalization (AdaIN). Rather than learning parameters during training based on features

of the content or style images, AdaIN computes the normalization parameters directly from

the features of the style image, then uses them to normalize the features of the content image.

This transformed image is then decoded by another network to create stylized output.

2.2.7 A Real-time, Arbitrary Neural Artistic Stylization Network

Shortly after Huang et al. [11] was introduced, Ghiasi et al. [1] published their approach,

which uses a “style prediction network” that takes a given style and transforms it to a point

in an embedding space that can then be used by a “style transfer network” which performs

the actual stylization procedure. This method can also take any pair of input and style

images and produce stylized output with a quick feed-forward process.

Ghiasi et al. claim that their work is superior to the work by Huang et al. [11] because

their loss is lower given a significance test. However, a model can have a higher loss and still

be superior. We perceive that in some of the examples they include in their appendix, Ghiasi

et al. [1] slightly overfits the NST problem compared to Huang et al. [11]. This judgement

is subjective, of course.
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2.2.8 Combining Markov Random Fields and Convolutional Neural Networks

for Image Synthesis

A common criticism of Gatys et al. [3] and other NST algorithms is that they prioritize

replacing the colors of an image over making significant stylistic adjustments to its content.

In other words, instead of repainting a photograph in the style of Picasso, NST repaints a

photograph using only the same color palette without introducing any characteristics asso-

ciated with cubism.

Li et al. [37] use Markov random fields (MRFs) to encourage their network to transform a

given content image to incorporate these stylistic patterns. They use a different process than

Gatys et al. to suit this purpose. Their approach more effectively incorporates style features

and performs especially well at photograph synthesis. Still, it has limits—for example, it has

little sense of which details of a given input image to change and which to keep the same,

and so sometimes changes more than is visually pleasing.

2.2.9 Arbitrary Style Transfer with Deep Feature Reshuffle

The field of NST can be divided into two categories, according to Gu et al. [38]: parametric

algorithms similar to those by Gatys et al. [3] and non-parametric algorithms similar to those

by Li et al. [37]. The principal difference between them is that the former prioritizes the

overall stylistic form of the output image and ignores opportunities to stylistically adjust the

content, replacing only the “low-hanging fruit,” e.g. the colors and textures of the scene. The

latter makes more daring adjustments but sometimes needlessly stylizes or shuffles content

features.
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Gu et al. propose two novel loss functions, the local style loss and the reshuffle loss. In

combination, they are designed to capture the strengths of both methods while avoiding their

drawbacks. By integrating these loss functions into a new NST algorithm, they demonstrate

that their approach is able to reproduce features from the style image in its output more

effectively than other methods. At present, however, their method is sensitive to various

edge cases and requires careful hyperparameter tuning.

2.2.10 Depth-Aware Neural Style Transfer

Another drawback of many NST algorithms is their reliance on VGG-16 or VGG-19

[39]. These networks are excellent at extracting features for image classification and so are

commonly used to train NST networks, which rely on an external source of feature extraction,

a process explained further in Section 3.1.1.

However, Liu and Lai [40] note that using VGG for this purpose carries an implicit

assumption. Because VGG is designed for image recognition, the features it considers are

generally in the foreground, and so other important features—especially depth—are not

prioritized by the stylization algorithm. To counteract this effect, Liu and Lai introduce an

additional constraint, depth loss, which encourages the algorithm to preserve these structures

in its stylized output.

2.2.11 Artistic Style Transfer for Videos

Shortly after NST was introduced by Gatys et al. [3], Ruder et al. worked to apply the

same concepts to video, accounting for the unique challenges that working on video provides.
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The näıve approach to NST for video—for example, applying the algorithm from Johnson

et al. [4] to every frame—results in flickering artifacts because the network is provided no

information about how to stylize adjacent frames consistently.

Ruder et al. designed several temporal consistency constraints that account for the shared

information between nearby frames, allowing the optimizer to account for both short- and

long-term changes in the scene. These constraints, described in more detail in Section 3.2,

take into account optical flow data to model which areas of a given frame must be kept the

same and which must be re-stylized from scratch. Of course, because their implementation

was based on that by Gatys et al. [3], it took several minutes to stylize a single frame, let

alone the hundreds or thousands of frames comprising even a very short video.

2.2.12 Real-Time Neural Style Transfer for Videos

Since using the original work by Gatys et al. [3] is too slow, Johnson et al. [4] is a clear

alternative. Huang et al. [41]1 developed a neural video stylization algorithm that trades

flexibility for speed. It uses the temporal loss from [42] and is designed to use optical flow

while training to learn how to accommodate this constraint. After training is finished, it

uses only information contained in adjacent frames to perform its stylistic inference. While

the videos produced are clearly high quality, the authors acknowledge that their videos have

more error than videos produced by Ruder et al. [42].

1The supplemental video for [41] can be found at https://www.youtube.com/watch?v=BcflKNzO31A
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2.2.13 Artistic Style Transfer for Videos and Spherical Images

Ruder et al. [12]2 also adjusted their algorithm to use Johnson et al. [4], and in contrast to

Huang et al. [41] their algorithm depends on optical flow data even after training is complete.

Ruder et al. use the loss from Johnson et al. [4] in addition to temporal loss. They train

a neural network to solve an optimization problem based on the perceptual and temporal

loss functions. This network is given the current input image along with two additional

images that help preserve consistency between stylized frames. A detailed explanation of

their method is provided in Section 3.2. This approach produces output equivalent to their

previous work [42] in only a fraction of the time.

Despite this speed advantage of this method, however, its additional constraints cou-

pled with the necessity of pre-computing optical flow make it computationally burdensome,

especially when GPU acceleration is unavailable.

2.2.14 Video Motion Stylization by 2D Rigidification

There are different philosophies about the desirable qualities of a stylized video. De-

lanoy et al. [43]3 believe that videos stylized with paintings ought to mimic hand-drawn,

two-dimensional animation. In pursuit of this goal, they designed a method of intelligently

coarsening the optical flow of a video via human-guided motion segmentation. This novel

“rigidification” of the flow field creates a distortion effect. The major features of the video

appear to be flattened pieces of cardboard that are moved, stretched, and folded on top of

each other. This creates output videos with simpler motion patterns that are more reminis-

2The supplemental video for [12] can be found at https://www.youtube.com/watch?v=2C3sxtnxpRE
3The supplemental video for [43] can be found here.
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cent of classic animation than other methods.

2.3 Chapter Summary

All NST algorithms use convolutional neural networks (CNNs) to extract important in-

formation from images. Many NST algorihtms improve their stability and capacity through

the use of batch normalization, instance normalization, or their own custom type of normal-

ization. The current state-of-the-art algorithms in NST for video require dense optical flow

data, which is an estimate of how pixels in one frame become pixels in the following frame.

In 2015, Gatys et al. [3] introduced NST for images. Because their algorithm optimizes on

an image-by-image basis, it has poor throughput compared to more recent methods. Shortly

afterward, Johnson et al. [4] trained a neural network that can apply a given style to an

arbitrary input image with a feed-forward process. This algorithm sacrifices flexibility for

speed. While it is much faster than Gatys et al. [3], it must train a new network in order to

apply a new style.

A common näıve approach to NST for video is applying [4] to every frame of a video

individually. This approach is fast, yet results in flickering artifacts. Ruder et al. [12, 42]

address this by introducing temporal consistency loss, which encourages their network to

give adjacent frames similar stlyizations. In addition to this loss, they guide the network

through the use of dense optical flow, which informs the network which regions of a given

frame must be the equivalent to its predecessor and which ones must be altered.
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2.3.1 Limitations of Current Approach

Current algorithms in NST for video are limited primarily in the trade-off between speed

and quality. The näıve stylization algorithm is fast, but ineffective. Fast Artistic Videos [12]

establishes the best balance between speed and quality. It uses feed-forward networks to

achieve speeds comparable to the näıve approach. However, its runtime is long. Even when

given an ideal hardware and software setup, Ruder et al. [12] takes 0.4 to stylize a frame. At

this rate, a 5-minute video at 30 frames per second will still take an hour to stylize.
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Chapter 3

A Method for Distributing Neural Video Stylization

In this chapter, we introduce the theory behind NST. We explain in detail how style is

represented mathematically and the models and methods used to produce stylized output.

We describe the two essential loss functions, content loss and style loss, and how they com-

bine to form perceptual loss. After that, we introduce Fast Artistic Videos (FAV) and its

novel constraints, which form the basis of our algorithm, Distributed Artistic Videos (DAV).

Finally, we describe how DAV divides the work of stylization across a cluster and suggest

possible improvements to the algorithm that we identified during testing.

Below, xi refers to a given frame at position i of the input video sequence, yi refers to

the stylized frame at position i of the output video sequence, and s refers to the style image

the network was trained to apply. All networks used in DAV are pre-trained.

3.1 Neural Content and Neural Style

NST forms the basis of its operation on a mathematical interpretation of artistic style.

Two objectives present in every NST algorithm are to minimize the content loss Lcontent and

the style loss Lstyle. Both losses depend on a pre-trained VGG network of the kind introduced

by Simonyan and Zisserman in [39]. We use these losses to measure the similarity of FAV
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and DAV in Section 4.1.

3.1.1 Using VGG to Measure Loss

The networks designed by the Visual Geometry Group, often simply called the VGG

networks, are expensive to use. In Torch7, a pre-trained VGG network can run upwards of

2GB of data, and in pyTorch around 566MB, all of which must be loaded into memory at train

time in addition to the rest of the program. The evaluation criteria of NST involve passing

images through VGG, causing further slowdown. To understand why VGG is necessary, we

must understand the problem it solves.

Consider a scenario where we wish to calculate Lcontent given xi and yi. Lcontent and Lstyle

both use mean-squared-error (MSE) in their loss functions; ignore Lstyle for now. Here, ∣x∣

is the size of the image, i.e. the product of its dimensions; assume that ∣x∣ = ∣y∣.

L(x, y) =
1

∣x∣

∣x∣

∑

i

(xi − yi)
2 (3.1)

For unstructured data, MSE can be extremely useful and efficient at assessing total

deviation. However, images are highly structured data. When used on images, MSE is

sensitive to small, granular changes that are imperceptible to the human eye. Because the

purpose of NST is to design images based on artistic features humans find visually pleasing,

MSE is only one component in the loss functions we use.

VGG is designed to have good performance on a benchmark dataset called ImageNet

[44, 45], and so its final “predictions” are useless for NST. In order to make predictions,

though, it must first extract features from images. NST algorithms use this feature-extraction
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process to support Lcontent and Lstyle.

Consider, then, running both xi and yi through VGG and using specific post-activation

layers of VGG to compare xi and yi. Our loss function is now the MSE between VGG’s

respective interpretations of xi and yi.

For both Lcontent and Lstyle, the exact pixel-by-pixel details of xi and yi are less important

than the features that VGG—and, in some sense, that humans—can see. For Lcontent, this

means preserving the high-level features of xi, for example, the edges of a face, in yi. For

Lstyle, it means something slightly different, discussed in Section 3.1.3.

VGG comes in several varieties, and the type used for NST varies slightly between papers;

some use VGG-16 [4,35,36], others use VGG-19 [3,11,37,41,42], others use both VGG-16 and

VGG-19 in different experiments [12], and still others fail to specify which VGG network

they used [1]. We see no theoretical benefits in using one version of VGG over an other

for this problem, and so perhaps the choice of network in any particular algorithm is for

historical or practical reasons.

There are other examples of subtle differences between implementations, noted in the

relevant portions of the following sections. For DAV, we have made every effort replicate the

implementation decisions taken by [12] in FAV. We suspect that these discrepancies play a

role in why all of these algorithms have subtly different patterns of output.

3.1.2 Content Loss

Theoretically, several VGG layers can be used to calculate Lcontent. In practice, only

one content layer is commonly used. In our implementation, we used the layer of VGG-16
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called relu3 3, i.e. Vcontent = [relu3 3]. In either case, we run xi and yi through VGG-16 and

extract features from the content layers for the purposes of comparison.

We apply the following equation to calculate Lcontent, where l(x) is the post-activation

features of layer l given an input x and where ∣l∣ is the size of the layer, i.e. the product of

its dimensions.

Lcontent(x, y) = ∑

l∈Vcontent

⎛

⎝

1

∣l∣

∣l∣

∑

i=0

[l(x)i − l(y)i]
2⎞

⎠

(3.2)

The exact distance metric used in calculating Lcontent varies. Some use the MSE method

shown in Equation 3.2 [12,42], some use squared error loss [3], and others use the Euclidean

distance [1, 4, 36].

3.1.3 Style Loss

The objective of Lstyle is to encourage the network to search for patterns and colors in s

that it can apply to yi to minimize the MSE between the Gram matrices of l(s) and l(yi).

Below is a definition of the Gram matrix calculation used in FAV and DAV, where l is a

layer of VGG, l(x) is a post-activation feature matrix flattened into 2 dimensions, and ∣l(x)∣

is its size, i.e. the product of its dimensions.

G(l, x) =
(l(x) ⋅ l(x)T )

∣l(x)∣
(3.3)

Note that (xT ⋅ x) is also a suitable numerator; the specific implementation depends on

how the dimensions of l(x) are arranged. A correctly-computed Gram matrix is relatively

low-dimensional.
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In measuring the difference between the Gram matrices of l(y) and l(s), we reward the

network for reproducing the same pattern of features in y that are in s and avoid penalizing

it for not reproducing those effects in exactly the same places or exactly the same shapes.

Our definition of Lstyle is below. Different from Lcontent, this time we use several layers

from VGG-16: Vstyle = [relu1 2, relu2 2, relu3 3, relu4 3].

Lstyle(s, y) = ∑

l∈Vstyle

⎛

⎝

1

∣G(l, s)∣

∣G(l,s)∣

∑

i=0

[G(l, s)i −G(l, y)i]

2
⎞

⎠

(3.4)

There are two common approaches to calculating Lstyle. The first is to use the MSE

method of Equation 3.4 [3, 12, 42]. The second is to use the squared Frobeneus norm of

G(l, s) −G(l, y) [1, 4, 36].

3.1.4 Perceptual Loss and Layer Weights

After the content and style losses for a given xi, yi, and s are computed, tallying the

perceptual loss is a simple endeavor. α and β are weights chosen by the user. A higher α

value encourages the network prioritize reducing Lcontent, and a higher β value encourages

the network to prioritize reducing Lstyle. Because Lcontent tends to be greater in magnitude

than Lstyle, the β value is commonly increased so that both losses are roughly equal.

Lperceptual(xi, s, yi) = αLcontent(xi, yi) + βLstyle(s, yi) (3.5)

Lcontent and Lstyle operate on a collection of layers and so accommodate individually

weighing the loss of each layer [3]. In FAV and DAV, all layers used to measure loss are

weighted 1, and so we omitted layer weighting from our notation for simplicity.
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3.2 Fast Artistic Videos

FAV tackles the challenge of incorporating information shared by nearby frames in order

to enforce temporal consistency. To eliminate the flickering artifacts present in the näıve

methods, the stylization process uses optical flow information to define Ltemporal, which is

then combined with Lperceptual to form Lvideo, the final loss function used to evaluate the

performance of FAV and DAV.

In order to avoid restating Ruder et al. [12] in entirety, we will briefly summarize only the

elements of FAV that are essential to understanding our work. Constraints of FAV’s multi-

frame training are not enforced at test-time, and because training a new model is outside

our scope, we will not describe any details thereof.

To stylize x0 and create y0, FAV and DAV are equivalent to Johnson et al. [4]—the

first frame of a video is stylized independent of the rest of the sequence because no prior

information exists. The general case for i ≥ 1 used by FAV is described in the next section.

3.2.1 Frame Initialization

In general, we wish to recreate the same pattern of stylization in yi that was in yi−1.

This means keeping the brush-strokes, the blobs of color, and the shading the same in both

frames. In static videos, this can be accomplished by copying yi−1 to yi. In videos with

motion, however, we must account for the optical flow of objects in the scene.

Optical flow can be calculated several different ways, and the exact method used is

an implementation detail not specific to FAV or DAV. The presence of dense, accurate

optical flow files describing movement between xi−1 and xi is henceforth assumed; fi is the
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forward optical flow estimating how xi−1 could become xi, and bi is the backward optical

flow estimating how xi could have come from xi−1.

Optical flow files are inaccurate in certain circumstances. Before applying them, FAV

measures which regions of the files are valid and which are not.

3.2.2 Detecting Occlusions

Optical flow is only useful if it is accurate, and even the most precise flow-computing al-

gorithms stumble when objects emerge from behind others, occlude others, or exit the frame,

among other scenarios. In order to account for these, FAV computes a consistency check ci

between fi and bi by applying a method for detecting occlusions and motion boundaries that

was originally described by Sundarm et al. [46]. In areas where their estimates are valid,

fi is roughly the opposite of bi. Large disagreements between the flow files denote areas of

inaccuracy that must be ignored.

ci is a ones-tensor masked by the inequality in Equation 3.7, where fi(x) and bi(x) denote

an image x being warped by the forward and backward optical flows, respectively. wi denotes

an object created by warping an image with the backward optical flow, adding its original

version, and finally warping the resulting image by the forward optical flow. Every file is

normalized between 0 and 1.

wi = fi(xi + bi(xi)) (3.6)

ci = ∣wi + bi∣
2
> 0.01 ∗ (∣wi∣

2
+ ∣bi∣

2
) + 0.5 (3.7)
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ci denotes which areas of xi are inconsistent and must be stylized again. For example,

we re-stylize regions that were occluded in the previous frame. While Ruder et al. [12, 42]

and Sundarm et al. [46] explicitly state that motion boundaries are inconsistent regions, the

implementation of FAV considers them consistent regions. If we choose not to mask out

motion boundaries, ci will have more regions that are the same between frames. Because

DAV follows from the implementation of FAV, it ignores the constraint on motion boundaries.

Pixels in the warped versions of xi that land outside the bounds of the original image,

either by fi or bi, are also masked out by necessity.

Once ci is calculated, fi has no further use in DAV, though certain configurations of FAV

or other algorithms use it to compute stylization from the end of the video to the beginning,

or for other purposes.

3.2.3 Temporal and Video Loss

Now that the consistency checks are available, we can define Ltemporal. In this equation,

sequential order is important, and so we include the index i of each file and abstract MSE

into its own function. ⊙ denotes the Hadamard, or element-wise, product.

Ltemporal(yi, yi−1, bi, ci) =MSE(ci ⊙ bi(yi−1), ci ⊙ yi) (3.8)

This leads to the final loss formula, Lvideo. Lperceptual is expanded here for the sake of

clarity, and α, β, and γ are weights chosen by the user.

Lvideo(s, xi, yi, yi−1, bi, ci) = αLcontent(xi, yi) + βLstyle(s, yi) + γLtemporal(yi, yi−1, bi, ci) (3.9)
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We explain how this equation is used to measure the performance of FAV and DAV in

Section 4.1.

3.2.4 Network Architecture

See Figure 3.1 for a diagram of the neural architecture of FAV. Section 3.3 explains how

to compute the input tensor; for now, know that it comprises two Blue-Green-Red (BGR)

images and one grayscale image. Each network is trained to apply only one style, and so the

essence of that style is encoded into its weights. Every convolutional layer save the last is

followed by an instance normalization layer of the kind proposed by Ulyanov et al. [31]. The

first 3 convolutional layers expand the number of channels from 7 to 32, 32 to 64, and lastly

64 to 128. The process of convolution encodes the input frame into abstract feature space.

Once the tensor is in its expanded state, it goes through 5 residual blocks. The residual

blocks are responsible for performing the stylistic adjustments in feature space and allow

the network to learn a residual mapping between the input and the desirable stylized out-

put according to the objective functions. This is an application of the ResNet technique

introduced by He et al. [47]; more specifically, it follows the residual architecture originally

described by Gross et al. [48].

After that, its non-channel dimensions are scaled to double their original size, and its

channels are reduced from 128 to 64 by a deconvolutional layer. After more upscaling, the

channels are finally reduced to 3. The process of deconvolution is, in this context, similar to

decoding from abstract feature space back to image space.

The final output is multiplied by 150 before being returned. The final layer in the
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Figure 3.1: A diagram of the neural network architecture used by FAV and DAV. The last

three layers are a bit different: We apply the tanh() activation function, multiply the final

tensor by exactly 150, and then measure Total Variation (TV) regularization, if applicable.



network is called Total Variation (TV). It is used to regularize FAV, and is included here

for completeness, but has no function outside training.

3.3 Distributed Artistic Videos

The main challege of DAV1 is distributing the work of FAV across an arbitrarily large

number of nodes, and doing so with minimal overhead. See Figure 3.3 for an illustration of

our algorithm. DAV-N means running DAV on N nodes.

The process of calculating the optical flow files bi and ci for every pair of adjacent frames

in a video is easily distributed because no set of files depends on the information of any other

set. In contrast, stylization depends on every new operation having access to the result of

the previous operation. By understanding the full process FAV uses to stylize an image, we

identified a way to work around this dependency and distribute stylization. All of the steps

and materials required to stylize xi are described below and illustrated in Figure 3.2.

1. Preprocess xi to produce x′i. Preprocessing is converting the image into a Torch tensor

and subtracting the VGG Mean.

2. Warp yi−1 according to bi and apply the same preprocessing in the previous step to

produce y′i−1.

3. Erode ci according to a minpooling operation, producing c′i.

4. Concatenate [x′i, y
′

i−1 ⊙ c
′

i, c
′

i] into a tensor, in that order. If stylizing the first frame of

1Our implementation can be found on GitHub at https://github.com/pgalatic/thesis/tree/repro

31

https://github.com/pgalatic/thesis/tree/repro


Figure 3.2: A flowchart representing the stylization process of FAV and DAV. The original

frames are from https://www.youtube.com/watch?v=cjdfqXIM-Ko

https://www.youtube.com/watch?v=cjdfqXIM-Ko


a video, y′i−1 and c′i are substituted with equivalently-shaped zero tensors. Run this

new tensor through the network.

5. Deprocess the output (the inverse of preprocessing) and save the resulting image.

FAV has the implicit assumption that all adjacent frames are related to each other, which

is not always true. Many videos have cuts, i.e. a form of scene transition where two adjacent

frames carry no important information between them. Once identified, these cuts allow the

the video to be split into sub-videos that can be stylized independently of one another and

later reassembled with no loss of visual fidelity. Thus, videos that have cuts can benefit from

even further distribution of labor.

A characteristic of FAV not addressed by DAV is its reliance on pre-trained models.

Each model can only apply a specific style to a video, e.g. Picasso’s Self-Portrait, 1907.

The process of training a model is nontrivial and is not replicated in DAV. Instead, the six

models from [12] have been converted from Torch to pyTorch. This was done using a modified

version of Convert Torch to pyTorch [49]. The equivalence of these converted models, and

the equivalence of FAV and DAV more broadly, is demonstrated in Section 5.1.1.

The most critical portions of FAV have also been converted to Python and pyTorch. This

migration alone greatly improved its speed, and distributing the newly flexible algorithm has

achieved even greater returns, described in Section 5.1.3.

DAV assumes that all computers in a cluster share a file system. The implementation

of this file system has a significant impact on performance; see section 3.3.1.3. DAV uses

this shared directory to store placeholder files that denote which tasks have been claimed
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by which nodes. The standard input to DAV is the path to the shared directory, the path

to the target video, and the path to the pyTorch stylization model. The output is a stylized

version of the input video, which is placed in the shared directory.

Claiming a task involves creating a file in this directory with a name unique to that task.

If two nodes attempt to claim the same task, DAV is designed so that one of them will fail

to create the file, resolving the conflict. Depending on the circumstances, the node or nodes

who failed to claim the task will either wait until it has finished or proceed to the next

available task. No messages are directly exchanged between nodes. Tasks are served on a

first-come, first-serve basis.

DAV has four phases. The first and the last are serial components that cannot be

effectively distributed, yet because they are so fast, the impact they have on computation

time is insignificant. The two in the middle are slow, but can be distributed to great effect.

See Figure 3.3 for an illustration.

3.3.0.1 Phase 1: Sync and Split

First, one node splits the video into a collection of frames, storing them in the main

directory. This phase also calculates the partitions used in Phase 3. Partitions are chunks

of a video defined by its cuts, and can be specified manually or determined automatically

via pySceneDetect [50].

When computing cuts automatically, we use the Content Detector from pySceneDetect

at a threshold of 45. This detector looks for rapid transitions between the colors of adjacent

frames. Automatic detection performs admirably, but not perfectly. It is particularly sen-
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Figure 3.3: A depiction of the distributed algorithm over a cluster of four nodes. It is, of

course, easily extended to an arbitrarily large number of nodes. The “Optflow Task Pool”

and “Stylization Task Pool” are operations on the same directory in practice (middle-left).

They are delineated more specifically here to better illustrate the control flow of the program.

The example video is https://www.youtube.com/watch?v=l0Nc0-dFwAI

https://www.youtube.com/watch?v=l0Nc0-dFwAI


sitive to bright flashes, e.g. an explosion, or prominent occlusions, e.g. a hand passing in

front of a camera. We used the output of the Content Detector to inform a more accurate

manual determination of cuts later. All testing was performed with manually-specified cuts.

3.3.0.2 Phase 2: Optical Flow

Once they have access to all the frames, nodes begin calculating optical flow. Optical

flow is organized in the form of ‘tasks,’ where a task is computing the three optical flow files

between a pair of consecutive frames. Once a task is claimed, the node that claimed it will

compute the optical flow between a pair of adjacent frames, forward and backward, and the

consistency check, placing all 3 resulting files in the shared directory. Nodes use threading

to claim and execute multiple ‘optflow’ tasks at the same time.

3.3.0.3 Phase 3: Stylization

After the pre-computation of optical flow is finished, nodes claim partitions the same way

they claimed optical flow tasks. When a partition is claimed, the node stylizes it using the

method described in Section 3.2. The stylized output frames are then moved to the common

directory. While threading can be used to claim and execute multiple stylization jobs at

the same time, we found that this caused so much computational strain that it actually

decreased the speed of stylization instead of increasing it. So, stylization jobs are completed

one by one.
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3.3.0.4 Phase 4: Combine and Complete

Once the stylized output is computed, one node combines the frames into the final stylized

video.

3.3.1 Planned Improvements to DAV

While testing DAV, we identified several weaknesses that we will fix going forward to

improve its performance and capacity.

3.3.1.1 On Scalability

When DAV was first implemented, it generated an enormous amount of intermediary files

at runtime. Not only is writing these files to disk a source of slowdown, but storing them can

be challenging in and of itself—a two-minute-long high-resolution video can generate over

100GB of data. This flaw drastically limited the scalability of DAV.

Shortly after testing concluded, DAV was adjusted so that optical flow jobs are allocated

from within the stylization procedure. That way, optical flow files are “consumed,” i.e.

deleted, after they are processed by the network. However, this improved procedure is still

imperfect. In a scenario where optical flow files are computed and written to disk rapidly,

they may overwhelm disk storage before the stylization algorithm has an opportunity to

consume them. A better solution is to avoid writing optical flow files to disk at all; for

example, by using the Python wrapper of DeepFlow2. In this design, DAV computes optical

flow just before it can be used by the stylization procedure and the entire process occurs in

memory.
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This idea of stylizing images exclusively in memory could also apply to the frames of a

video and their corresponding stylized outputs, which are currently written to disk in Phases

1 and 3 respectively. However, this strategy is likely more expensive than writing the files

to disk and reading them when they become necessary according to the original algorithm.

These updates, along with the considerations for load balancing according to Section

3.3.1.2, will improve the scalability of DAV. However, its efficiency is fundamentally limited

by the inputs it must process. In a video with 7 cuts where the vast majority of frames are

in only 1 partition, DAV must wait the same amount of time while the largest partition is

stylized whether it has access to 2 nodes or 200.

3.3.1.2 On Load Balancing

Another flaw in the original implementation of DAV is how partitions were allocated in

the order they appeared. On edge-cases where a video ends with a particularly long partition,

DAV always allocates that partition last, which causes a long period at the end of Phase 3

where only one node is working. This is the primary reason, we believe, that DAV-4 and

DAV-8 perform so similarly with respect to video stylization.

All other concerns equal, the most effective load balancing strategy for DAV is to allocate

the largest partitions first. After testing concluded, DAV was updated to behave in this way.

3.3.1.3 On the Common Directory

Originally, DAV was designed to place the files it produced in local directories and only

move them to the common directory when absolutely necessary. Since our testing environ-
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ment used fast LAN connections, this somewhat overbearing strategy was unnecessary for

the purpose of evaluating DAV, and so it was scrapped. Because of this, DAV relies on

quick access to the common directory to perform well. A slow connection will strangle its

throughput.

3.3.1.4 On Neural Networks for Optical Flow

Deepflow2 is used in DAV for two reasons. First, it is easy to implement on CPU-only

machines. Second, it is one of the optical flow algorithms used by Ruder et al. [12], and so

was necessary to include in order to demonstrate equivalence.

However, without GPU acceleration, computing optical flow using a neural network can

be very slow. For the benefit of users who have weak computers or are simply experiment-

ing for fun, DAV now supports using the optical flow calculation algorithm introduced by

Farnebäck [26].

We find this method produces acceptable results far faster and with a smaller amount of

computational overhead. Furthermore, the visual effects created are interesting in their own

right. At times, the background slides past the foreground, or the perspective on an object

in the foreground is lost, giving a two-dimensional appearance. These effects are reminiscent

of the videos created by Delanoy et al. [43].

3.3.1.5 On GPU Acceleration

GPUs were avoided for this thesis both for reasons of practical necessity and because

GPUs are not required to demonstrate how effectively the work of stylization can be dis-
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tributed across a cluster.

According to the results by Ruder et al. [12], running FAV on a GPU is faster per-

frame than running DAV-8. In practice, we were unable to reproduce this speed despite

considerable effort; we described why in Section 1.2. That said, GPU-accelerated nodes are

easily integrated into DAV alongside CPU-only nodes. Now that DAV is based on pyTorch,

updating it to support GPU acceleration is a simple endeavor.

3.4 Chapter Summary

Similar to other machine learning problems, NST algorithms require a mathematical

description of their objective. In NST for images, this takes the form of the loss functions

Lcontent and Lstyle, which combine to form Lperceptual. These losses measure the mean-squared

error (MSE) between two images, but not directly.

First, each image is run through a pre-trained network designed by the Visual Geometry

Group, i.e. a VGG network. Then, specific post-activation layers of the VGG network are

taken and their features compared. This strategy encourages the NST algorithm to minimize

differences in human-perceptible features rather than differences in granular, pixel-by-pixel

details.

Lcontent compares the features of the input image, sometimes called the content image,

to the features of the output image. Ideally, the high-level features, e.g. edges, are kept the

same between both the content and output images.

Lstyle compares the Gram matrix of the features of the style image to the Gram matrix

of the features of the output image. It measures the extent to which the pattern of features
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in the style image are applied in the output image.

Lperceptual is a weighted sum of Lcontent and Lstyle. In order to stylize videos, we need one

more loss, Ltemporal, and an understanding of how to apply optical flow.

Given forward and backward optical flow, we can calculate how well they correspond

using inequality formulas defined by Sundaram et al. [46]. These occlusion files, when given

to the network, help it decide which areas to change and which to keep the same when

stylizing a new frame.

The backward optical flow is applied to the previously stylized frame to predict the next

frame, and Ltemporal measures how well the actual output of the network compares, ignoring

regions that are inconsistent according to the occlusion detection procedure. This loss uses

MSE directly without first passing either image through VGG.

Lvideo is a weighted combination of Lcontent, Lstyle, and Ltemporal. FAV and DAV are

compared in Chapter 5 using Lvideo.

DAV distributes the work of FAV by spreading the optical flow and stylization calculations

across several nodes. Optical flow is easily distributed, but stylization is more difficult. FAV

has an implicit assumption that every two adjacent frames carry important information

between them, but this is not always the case. DAV splits videos into sub-videos that are

stylized individually and later recombines them with no loss of visual fidelity. Nevertheless,

it is not a perfect algorithm, and future versions will correct various issues that we identified

during testing.
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Chapter 4

Evaluation

DAV must demonstrate two important qualities. The first is functional equivalence to

FAV, measured based on the original loss measure from [12]. The second is massive speedup

when run on multiple nodes. Evaluation was performed by stylizing videos with DAV and

FAV on several differently-sized clusters, sampling different inputs and styles. We mea-

sured how the stylized output videos compare to each other in terms of quality, measured

qualitatively and quantitatively, and how long they took to produce.

4.1 Equivalence of FAV and DAV

The equivalence of FAV and DAV was measured by taking the composite average loss of

the first 15 frames of videos produced by each algorithm given the same style and content

inputs. For our experiments, following from details provided in Ruder et al. [12], we used

a content weight α of 1 and a temporal weight γ of 50. These hyperparameters are defined

in Section 3.1. In Ruder et al. the weight β was given for 5 different styles, and so FAV

and DAV were evaluated using these 5 styles. Finally, the composite losses of all trials are

averaged and presented to allow for an even easier comparison of FAV and DAV. Image

samples are also provided for visual comparison.
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For each trial and for the average of all trials, the total loss of each algorithm is shown

divided by 106, the scale used in Ruder et al. [12], to emphasize their true proximity. This is

because the range of the loss function is difficult to communicate without training a model

from scratch and comparing convergence patterns. When comparing raw loss values without

this context, differences can appear much more significant than they actually are. We also

provide frames stylized by each algorithm to aid comparison.

4.2 Dataset Analysis

Videos are naturally heterogeneous, having different lengths, resolutions, and number of

cuts. Our dataset has 30 videos, each of 720p resolution. This means that every frame has a

height of 720 pixels, while the width can vary, generally between 720 pixels and 1280 pixels.

This variation affects performance on individual videos, which is compensated for by using

averages in the final results.

The videos in the dataset range from short ‘vines’ featuring scenes in real life (hundreds

of frames) to video game and movie trailers in high fantasy settings (thousands of frames).

These videos are used because they best approximate the most likely use case for DAV in the

near-term: People stylizing short videos for fun. The sources of the videos we used, along

with the code used to perform evaluation, can be found in our reproducibility repository1.

We wanted to learn more about the distribution of cuts in each dataset and the extent to

which partitioning a video by its cuts actually reduces the time it takes to perform stylization.

However, the heterogeneity of our dataset makes identifying patterns difficult.

1https://github.com/pgalatic/thesis/tree/repro/videos
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Each video not only has a different length, but also a different number of cuts. The

lowest number of cuts in a video in our dataset is 0, and the largest is 80. Assuming a pair

of videos share the same number of frames and the same resolution, the time taken to stylize

them will be determined by the number of cuts they have—the more cuts, the more easily

the work of stylization is distributed across a cluster.

Beyond that, analysis become hazy. A pair of videos of the same length that both have

three cuts will not necessarily take the same amount of time to stylize. Consider a scenario

where the first video has all three cuts evenly spread throughout, while the second video has

all three cuts in its second half. The first video is more easily distributed than the second

because the second will need to wait longer for its longest partition to be stylized.

We used a novel statistic called standard frames per cut (SFC). It is defined below, where

H is Shannon entropy, V is a video, Vf is its number of frames, Vc is its number of cuts, and

Vp is an array of the number of frames in each of its partitions.

H(Vp) = −
n

∑

i=1

p(xi)loglen(Vp)(p(xi)) (4.1)

SFC(V ) =

Vf

1 + (Vc ∗H(Vp ⊙
1
Vf

)
2
)

(4.2)

This metric measures the effective average number of frames per partition; an average

augmented by how helpful a partitioning is to distributing the work. The SFC assumes that

every partition is given its own node so that load balancing is not a factor. Videos with no
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cuts are defined to have SFC = Vf . Videos with perfectly even cuts will have SFC =
Vf

Vc+1
.

All others will be somewhere in-between.

We predict that videos with a small SFC will be easier to stylize across a large cluster

because the stylization work will be more easily and evenly distributed between nodes.

4.3 Speedup

The speedup of DAV-N over FAV is easily computed by measuring the amount of time

each algorithm takes to stylize a video. In order to account for the length of a video, we

count the number of seconds it took to stylize divided by the its number of frames. This is

called the seconds per frame (S/F) ratio. These ratios are then averaged across all trials for

FAV, DAV-1, DAV-2, etc. We predict that when DAV is run on larger and larger clusters,

it will yield faster and faster speeds.

Due to time constraints, FAV was run on only the shortest 10 videos. DAV-1 and DAV-2

were run on only 18 videos and 22 videos, respectively, prioritizing shorter ones. DAV-4 and

DAV-8 were run on the entire 30 video dataset.

Our experiments for DAV measure how long each phase described in Section 3 takes to

complete. In FAV, optical flow calculations occur concurrently with stylization, and so we

were only able to measure total stylization time in our experiments with FAV.

4.4 Implementation and Setup Details

Cloudlab provided the testing hardware. Because no GPUs were necessary for the com-

pletion of this work, all testing was performed on nodes in the Utah facility. Nodes were
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initialized with the Ubuntu 16.04 distribution and ran on Python 3.5. We used FFM-

PEG [51] to split videos into frames and assemble stylized frames back into videos. We used

Deepflow2 [28] to calculate optical flow. Our models were run on pyTorch 1.4.0 [17].

4.5 Chapter Summary

The equivalence of FAV and DAV is determined by comparing the average loss of stylized

frames they produce. Videos are naturally heterogeneous, and we express a wide variety of

possible inputs in our custom dataset, from videos of a few hundred frames to a few thousand

frames. Some videos lack cuts, and others have dozens. The dataset is comprised of 30 videos

curated for what we believe is an effective distribution of the typical use cases.

The standard frames per cut (SFC) metric is a way of assessing the practical effect of

partitioning a video. In a scenario where an arbitrarily large number of nodes is available,

videos with no cuts are going to take longer to stylize than videos with cuts. A video that is

evenly cut into 4 pieces will be easier to distribute than a video cut unevenly, and the SFC

metric measures this effect.

The speedup of DAV over FAV is assessed by measuring the average seconds per frame

(S/F) ratio. This is simply the total number of seconds it takes to stylize a video divided by

the number of frames in that video. We measured the average S/F across all videos stylized

by a cluster of a given size in order to compare the speed of FAV to DAV-1, DAV-2, etc.
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Chapter 5

Results

In this chapter, we analyze the results of the experiments we described in Chapter 4.

Afterward, we discuss our experiences with NST for video and lay out a path for future

research.

5.1 Analysis

We first demonstrate that FAV and DAV are functionally equivalent. Next, we examine

our dataset using the SFC metric, and lastly we analyze the overall speedup that DAV yields

over FAV. The raw data we gained from our experiments can be viewed on GitHub1. We

also have a supplementary video on YouTube2.

5.1.1 Equivalence of FAV and DAV

FAV and DAV have nearly the exact same performance even across different models and

inputs. The specific loss values for each trial can be found in Table 5.1. At times FAV

slightly outperforms DAV, and at times DAV slightly outperforms DAV. Because the loss

function has a range up into the millions for an uninitialized network, a difference in loss of

1https://github.com/pgalatic/thesis/tree/repro/products
2https://www.youtube.com/watch?v=P6OLHvJHQpY
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Name/Style FAV Lcontent DAV Lcontent FAV Lstyle DAV Lstyle

chicken/picasso 28602 30013 58250 51991

dance/picasso 25615 26050 25707 23025

face/scream 11284 12291 13988 21396

floating/candy 25888 25789 17999 18107

jordan/WomanHat 19359 19995 60753 51533

night/mosaic 25317 27157 59419 51947

sonicfan/scream 11920 12506 15181 20835

Name/Style FAV Ltemporal DAV Ltemporal FAV Norm. Lvideo DAV Norm. Lvideo

chicken/picasso 4123 4509 0.091 0.087

dance/picasso 1173 975 0.052 0.050

face/scream 2761 2966 0.028 0.037

floating/candy 7919 7939 0.052 0.052

jordan/WomanHat 3238 3168 0.083 0.075

night/mosaic 14328 13836 0.099 0.093

sonicfan/scream 1699 1742 0.029 0.035

Table 5.1: The loss function by Ruder et al. [12] was reimplemented in pyTorch and used

to evaluate 15 frames of videos produced by FAV and DAV. Both algorithms used the same

input video and style model and so we expect them to both produce the same output. The

final normalized loss is produced by dividing the total loss by 106 to convey the range of the

loss function.



Figure 5.1: Examples of outputs from FAV and DAV given various frames of videos. There

are only faint differences between the outputs of FAV and DAV if there are differences at all.

Some of the images are square-cropped here for ease of presentation. Each frame is at least

ten frames after the start of the video. From top to bottom, the input frames (left) are from

chicken.mp4, floating.mp4, and face.mp4, while the styles (center-left) are Mosaic,

Candy, and The Scream. floating.mp4 is of only 360p resolution and so was not used

for evaluating speedup.



Overall FAV DAV

Average Lcontent 21140 21943

Average Lstyle 35899 34136

Average Ltemporal 5034 5019

Average Normalized Lvideo 0.062 0.061

Table 5.2: Above is the average composite loss across all equivalence trials. The normalized

loss is the total loss divided by 106.

a few thousand is inconsequential, which is why we normalized the total loss by 106.

The average loss across all the trials is displayed in Table 5.2. The slight variations in

loss are acceptable for this domain. Furthermore, the actual images produced are virtually

identical; see Figure 5.1.

Some slight differences between the two networks may remain. Any such difference is

most likely a discrepancy between the underlying implementations of the libraries used.

For example, where Ruder et al. [12] used the Torch7 image.warp() function, we used a

custom function based on cv2.remap() from OpenCV [52]. In this particular example, the

two functions seem to have the same effect, but there may be subtle differences elsewhere.

5.1.2 Dataset Analysis

Determining how helpful a cut is to a video depends on an array of factors external to

the cut itself. The resolution of the video, the number of nodes performing computation,

and the stylization inference used can all have affect the final result. For example, the
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Figure 5.2: A scatterplot of the number of frames in a video versus that video’s SFC. The

distribution is nearly uniform, except for a couple outliers, which are long videos that have

few to no cuts.

impact of partitioning a video dropped drastically when DAV was updated from Torch7 to

pyTorch, a phenomenon discussed in more detail in Section 5.1.3. That said, there are two

basic observations that can be drawn from examining the dataset. The first is that the SFC

of videos seems to follow a roughly uniform distribution; see Figure 5.2. This distribution

is rough in part because intentionally heterogeneous videos were chosen to comprise the

dataset, including a couple worst-case-scenario examples—long videos with few to no cuts.
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Figure 5.3: The average amount of time required to stylize a video drops dramatically

when the number of nodes increases. On top of each bar, the first number refers cumulative

speedup compared to the first bar, and the second number refers to the relative speedup

when compared to the previous bar.

5.1.3 Speedup

Our overall results can be seen in Figure 5.3. With DAV-4 the time to stylize a video

is reduced by 89% on average, and with DAV-8, the time is reduced by 92%. Stylization

procedures that used to take days can be completed in hours, and those that used to take

hours now take minutes.

While the difference in speedup between DAV-4 and DAV-8 may appear lackluster, a

reduction in time by nearly 28% is still significant time-savings, especially considering the
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Figure 5.4: There are still significant time savings even in videos that have no cuts.

large portion of the dataset that was unsuitable to distribution, e.g. videos with 0 cuts. The

benefits of distribution are potent even for these videos; see Figure 5.4.

Note that FAV is not included all figures because FAV does not measure its time to com-

pute optical flow independently of its time to compute stylization, and so we only measured

total processing time when we ran FAV.

Figures 5.5 and 5.6 together demonstrate the intuitive fact that the number of cuts in

a video does not impact the relative amount of time it takes to compute optical flow for

that video. When the number of nodes is doubled, the time required to calculate optical

flow is roughly halved. We believe these relative speedup effects will persist no matter the

algorithm used to calculate optical flow.
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Figure 5.5: Considering only the time taken to compute optical flow files, we observe a

roughly linear speedup when the number of nodes in DAV is doubled.

In the original design of DAV, the majority of runtime was spent stylizing videos with

Torch7. After updating to pyTorch, calculating all the required optical flow files takes roughly

2 or 3 times longer than stylization. Because the majority of speedup is now achieved by

reducing the time taken to compute optical flow, distributing stylization has less impact.

Considering only the amount of time spent performing stylization, the speedup of DAV-

4 and DAV-8 over DAV-1 was just under 65%; see Figure 5.7. We had hoped to achieve

greater speedup. Of course, our numbers are skewed because distributing stylization over

videos with no cuts yields no speedup; see Figure 5.8.

Even among videos that are supposed to benefit greatly from stylization, however, there
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Figure 5.6: Intuitively, flow computation is sped up regardless of now many cuts a video

has. This figure is similar to Figure 5.5, but counts only videos that have 0 cuts.

is a sharp diminishing-returns effect from DAV-4 to DAV-8; see Figure 5.9. This is likely

due to a lack of load balancing in the implementation used for testing; see Section 3.3.1.2.

5.2 Discussion

During experiments, FAV crashed surprisingly often when trying to load its own occlusion

files. These errors halted stylization in its tracks. They did not occur consistently—some

runs crashed at frame 50, others at frame 120, and others completed perfectly fine. It seemed

to occur only when running the algorithm on Cloudlab. We were unable to determine the

root cause of these errors.
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Figure 5.7: The speedup provided by distributing stylization is significant, but tapers off

rapidly after DAV-4. This effect is accentuated by the fact that our dataset has several

videos have zero cuts and thus cannot be parallelized in this way.

When crashes occurred, the total amount of stylization time was extrapolated based on

the number of frames that had already been stylized. Because every frame after the first

takes on average the same amount of time to stylize, we believe this is a fair approximation.

Thankfully, DAV did not experience the same problem.

It is challenging to determine to what extent cuts are helpful to stylizing a video, partly

because SFC is an imperfect metric, and partly because patterns in the data, if they exist at

all, are difficult to describe with only a relatively small dataset of 30 videos. A small dataset

is necessary in part because cuts must be determined manually to ensure their accuracy with
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Figure 5.8: The effect in Figure 5.7 is even more pronounced when only considering results

over videos with 0 cuts. The curious drop from DAV-2 to DAV-4 is mostly likely due to

differences in the hardware provided by Cloudlab in each experiment. This is essentially a

measure of the compute power in each experimental setup and is discussed further in Section

5.2.

our current implementation. A larger dataset would alleviate this somewhat, though this in

and of itself would not improve the capacity of SFC to describe the relationship between a

video’s partitioning and its distributed stylization speed.

Figure 5.8 exhibits a strange quality in the data: The stylization time for DAV-4 is sig-

nificantly less than DAV-2 even though we expected them to be exactly the same. This is

likely because Cloudlab provided more powerful hardware for our DAV-4 and DAV-8 exper-
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Figure 5.9: Even when looking at only videos that had greater than eight cuts, which are

supposedly ideal for distributed stylization, the effect is less pronounced than we anticipated.

This is possibly due to a lack of load balancing; see Section 3.3.1.2.

iments. We did not request more powerful computers—when launching each experiment, we

requested the same setup from the same facility. Nevertheless, Cloudlab can only apportion

what it has available, and so the machines provided can vary significantly in quality.

5.3 Future Work

There are many exciting opportunities for future research. In this section, we describe

ideas we consider particularly promising in the order from most practical to most theoretical.
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5.3.1 Advanced Optical Flow Calculations

DAV relies heavily on the provision of fast and accurate optical flow data. Currently, users

of DAV have the option of fast optical flow data from the Gunnar Farnebäck algorithm [26]

or slow optical flow data from Deepflow2 [28]. There are several better alternatives currently

available. FAV uses FlowNet2 [53], for example, though FlowNet2 has a large memory

footprint. LiteFlowNet [54], SPyNet [55], or PWC-Net [56, 57] are also alternatives worth

considering.

Lowering the computational burden of optical flow will make stylizing longer videos

possible, both by decreasing the overall time the program takes to run and by improving the

efficiency of dividing a video into individually-stylized partitions.

5.3.2 Precise Scene Detection

Our work is centered more around the distribution of labor than automatically identi-

fying scenes in videos, and so we prioritized ensuring that our algorithm produced videos

that looked identical to those produced by FAV. To support this goal, we used manually-

determined scenes to eliminate the chance of an improper partitioning introducing flickering

to our stylized videos.

For the convenience of users who are in a hurry, we included pySceneDetect [50], a library

that performs admirably yet not perfectly. We recommend that future versions of DAV or

successor algorithms include a better-performing scene detection algorithm if one exists.

Recent works by Haroon et al. [58] or Baraldi et al. [59, 60] are worth investigating for this

purpose.
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DAV is flexible on when partitions are determined. They can be computed anytime

before stylization begins without blocking the program, so even a computationally burden-

some scene detection algorithm could suffice provided it was more accurate than its faster

competitors.

5.3.3 Flexible Consistency

We observe that no theoretical justification was provided Ruder et al. [12,42] or Sundaram

et al. [46] for the current means by which consistency checks are calculated. Indeed, one factor

in calculating occlusions, the motion boundaries, are handled differently in the description

of FAV and its actual implementation. That it took so long for us to notice this discrepancy,

long after our experiments were complete, suggests that the motion boundaries are not

particularly important. The importance of the other constraints in NST for video should

therefore be investigated and reassessed.

Ruder et al. [42] mention that, rather than a binary mask, it is possible to use values

between 0 and 1 in occlusion tensors to express various degrees of confidence. We find this

avenue of research promising. We further recommend that future research experiment with

different values for the inequalities used in the definitions of occlusion detection.

5.3.4 Arbitrary Style Transfer for Video

While style transfer algorithms have long relied on pre-trained networks that can apply

only one specific style [4, 12, 41, 42], new works [1, 11, 38] have introduced NST algorithms

that can successfully apply style inputs they have never seen before. This has obvious
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implications in NST for video. Applying an arbitrary style to a video is firmly within the

realm of practical possibility.

An alternative avenue of research worth pursuing is designing a meta-network to create

lightweight video stylization networks using an approach similar to Shen et al. [35]. This ap-

proach would benefit low-power devices in particular, e.g. mobile phones or tablets, because

the models produced by Shen et al. are simple and lightweight.

5.3.5 Blending Frames for Arbitrary Cuts

An obvious limitation of DAV is its inflexibility when partitioning videos. DAV relies

on its inputs having many cuts where two adjacent frames are functionally unrelated. Long

videos with few to no cuts are the least efficient to stylize with DAV.

Deciding how to place the cuts that divide a video into partitions is ultimately an artistic

decision. We desire the smoothest videos possible, and so we only split videos on clear

boundaries. Introducing cuts in the middle of scenes would make a video easier to distribute

across a cluster but would also introduce sudden and distracting changes to these scenes on

playback. Therefore, any algorithm which could smooth the stylistic transition between two

partitions would allow DAV to perform consistently and efficiently on all inputs.

5.3.6 Comprehensive Style Transfer

When we speak to most people about their ideas for style transfer, be they laypersons or

computer scientists, they immediately jump to ideas that, while interesting, are not possible

with current NST algorithms.

61



For example, we received the suggestion to take a photo of former president Barack

Obama and stylize him to appear drawn in the style of the animated show The Simpsons.

Unfortunately, at present, most algorithms can only take the colors of The Simpsons and

apply them to the photo of Obama, giving him a pastel, watercolored appearance.

While interesting, this result does not satisfy the original request. NST can no more

perform this transformation than it can draw a caricature. In effect, because we cannot

reproduce shapes and patterns from the style image, many NST algorithms amount to not

much more than a particularly complex photographic filter.

Isolated weaknesses in NST have been identified and solved various ways; for example,

adjusting the constraints to prioritize texture synthesis over consistency [6], encouraging the

network to perceive depth [40], or coarsening optical flow to provoke a two-dimensional flow

of movement [43]. These solutions are specific to a subset of NST’s domain—human faces, for

example. While several works have sought to address this problem more holistically [37,38],

the field still awaits an algorithm that can convincingly forge a Picasso.

5.3.7 Neural Video Stylization via a Recurrent Convolutional Network

In 2015, the first convolutional recurrent neural network (CRNN) was introduced by

Tang et al. [61] for the purpose of document classification, and we believe that a similarly

powerful model may remove the need for optical flow calculations entirely.

Previous work has shown that optical flow files are not essential for creating reasonably

high-quality videos. In [41], optical flow is only used during training and is not required

for neural inference. Thus, neural networks are capable of learning how to apply temporal
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consistency—they simply perform better with access to optical flow.

We believe a video NST algorithm that uses optical flow at train time could produce

results similar in quality to those produced by DAV. CRNNs are a promising candidate ar-

chitecture on which to base such an algorithm. It is possible to redesign temporal loss to work

with recurrent connections, and therefore train a network to apply temporal relationships

when stylizing videos.

5.4 Chapter Summary

DAV is functionally equivalent to FAV. Using the scale of loss from Ruder et al. [12]

to evaluate FAV, we demonstrated that the losses of both algorithms across several inputs

are functionally equivalent. On some inputs FAV performed slightly better and on other

inputs DAV performed slightly better; on average, their loss is virtually identical. The

visual samples they produced are also virtually identical.

In general, the SFC of a video is independent of its length, though outliers are easy to

identify by their high SFC values. Most videos have a relatively low SFC, and so take a

similar amount of time to stylize per frame.

Given the same experimental setup, DAV-8 is on average ten times faster than FAV. This

is primarily due to the distribution of optical flow calculations. Distributing stylization, while

useful, does not appear to yield the same amount of speedup.

Still, this brings into possibility the stylization of videos that were previously infeasible.

A reduction in processing time of 90% is the difference between stylizing a video in 2.5 hours

and stylizing it in 15 minutes.
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There are several promising directions to take NST for video in the future. The most

promising is the prospect of adapting one of the algorithms proposed by Huang et al. [11],

Ghiasi et al. [1], or Gu et al. [38] to form the basis of DAV instead of Johnson et al. [4]. This

would allow it to apply an arbitrary style to a video, greatly improving its capacity.
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Chapter 6

Conclusions

In this thesis, we introduced the algorithm Distributed Artistic Videos (DAV). We proved

that DAV is functionally equivalent to its predecessor, Fast Artistic Videos. The neural infer-

ence of the original Torch7 model is completely translated to pyTorch and can be distributed

with no loss in artistic quality.

Basing the architecture on pyTorch instead of Torch7 gave DAV an initial speed boost,

and distributing the work of optical flow and stylization across a collection of nodes allowed

even further speedup. Across 8 nodes, the time taken to stylize a video was reduced by an

average of 92%, pushing stylization time from a scale of hours to a scale of minutes and

bringing into possibility the stylization of long, high-resolution videos that were previously

intractable to process.
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