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Abstract 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with brain tissue 

loss. Accurate estimation of this loss is critical for the diagnosis, prognosis, and tracking the 

progression of AD.  Structural magnetic resonance imaging (sMRI) and X-ray computed 

tomography (CT) are widely used imaging modalities that help to in vivo map brain tissue 

distributions. As manual image segmentations are tedious and time-consuming, automated 

segmentation methods are increasingly applied to head MRI and head CT images to estimate brain 

tissue volumes. However, existing automated methods can be applied only to images that have 

high spatial resolution and their accuracy on heterogeneous low-quality clinical images has not 

been tested. Further, automated brain tissue segmentation methods for CT are not available, 

although CT is more widely acquired than MRI in the clinical setting. For these reasons, large 

clinical imaging archives are unusable for research studies. In this work, we identify and develop 
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automated tissue segmentation and brain volumetry methods that can be applied to clinical quality 

MRI and CT images. In the first project, we surveyed the current MRI methods and validated the 

accuracy of these methods when applied to clinical quality images. We then developed CTSeg, a 

tissue segmentation method for CT images, by adopting the MRI technique that exhibited the 

highest reliability. CTSeg is an atlas-based statistical modeling method that relies on hand-curated 

features and cannot be applied to images of subjects with different diseases and age groups. 

Advanced deep learning-based segmentation methods use hierarchical representations and learn 

complex features in a data-driven manner. In our final project, we develop a fully automated deep 

learning segmentation method that uses contextual information to segment clinical quality head 

CT images. The application of this method on an AD dataset revealed larger differences between 

brain volumes of AD and control subjects. This dissertation demonstrates the potential of applying 

automated methods to large clinical imaging archives to answer research questions in a variety of 

studies.  
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Chapter 1 

1 Introduction 

STRUCTURAL BRAIN IMAGING 

Structural brain imaging using magnetic resonance (MR) and computed tomography (CT) 

modalities is capable of non-invasively mapping brain structure. In addition to visualizing brain 

structure, these images are used to determine the volume of various anatomical regions inside the 

brain. Quantifying the volumes of brain anatomical regions is referred to as brain volumetry 

(Giorgio and De Stefano, 2013). Segmentation is the process of delineating the regions of interest 

from the brain images and is an important tool for brain volumetry. Brain regions can be segmented 

using manual or automated methods. Due to the time-consuming and tedious nature of the manual 

methods, automated methods are increasingly used for brain volumetry. 

BRAIN VOLUMETRY IN ALZHEIMER’S DISEASE 

AD is an irreversible, progressive neurodegenerative disorder resulting in loss of brain tissue 

volume. It is the most common form of dementia. As of 2017, one person develops dementia every 



2 

 

66 seconds in the USA (Yolanda Smith, 2017). This rate is expected to double by 2050. 

Neuroimaging studies report that regional brain volume loss starts as early as five years before 

symptoms are evident (Johnson et al., 2012). Accurate early identification of brain tissue loss 

(atrophy) using automated brain volumetry allows for early clinical intervention and aids in 

slowing down disease progression. Recent advances in brain image processing and volumetry 

methods not only detect atrophy at an early stage, called mild cognitive impairment (MCI), but 

also predict the patients that are likely to advance to AD (Jack et al., 2010; McEvoy et al., 2011). 

Therefore, the disease can be controlled, if not prevented, if the disease is detected in the early 

stages. Brain volumetry using automated methods is an important tool for diagnosis, prognosis, 

and tracking the progression of Alzheimer’s disease (AD) (Johnson et al., 2012) and other 

neurodegenerative diseases. Automated methods that are capable of tracking atrophy using 

clinically acquired brain images collected at different timepoints of the same patient are desirable 

for early detection of AD. 

RELIABILITY OF AUTOMATED METHODS 

The accuracy of the methods that use brain volumetry depends on the accuracy of the automated 

segmentation methods being used. This raises important questions about the reproducibility of 

research studies that rely on the segmentation methods (Maclaren et al., 2014). Current widely 

used brain segmentation methods are developed and validated using high-quality images acquired 

for research purposes. Their reproducibility has not been validated on clinical quality images that 

are heterogeneous in image quality, scanner model, brain abnormalities, medical conditions, 

motion and other factors. 
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RESEARCH VS CLINICAL QUALITY IMAGING 

Unlike research-quality images which are homogenous, as they are collected using advanced 

image acquisition protocols and by following strict quality-control, clinical-quality images are 

heterogenous. Research hospitals maintain large archives of (tens of thousands) images obtained 

for diagnostic purposes using standard-of-care acquisition protocols. These images are consented 

for research studies after deidentification by removing patient-specific information. These datasets 

are a great resource to obtain a deeper understanding of various medical conditions. However, 

clinical images are highly heterogenous and exhibit a wide range of image quality, medical 

conditions, and patient demographics. The clinical-quality images are typically acquired at lower 

resolutions (thick slices) to aid in better tissue contrast, faster acquisition times, and lower costs. 

Other additional issues with clinical images are low contrast-to-noise ratio, resolution, the presence 

of artifacts and the presence of brain abnormalities. 

Conventional machine learning based segmentation methods require careful engineering and 

domain expertise to select imaging features to detect or segment a region of interest (LeCun et al., 

2015). Due to the heterogenous nature of the clinical-quality imaging data it is extremely difficult 

to engineer these features. Therefore, automating the feature engineering process is highly 

desirable for developing robust segmentation methods. 

DEEP LEARNING 

Recent advancements in deep learning methods like convolutional neural networks (CNNs) are 

data-driven i.e. they automatically learn complex features required for segmentation directly from 

the data (LeCun et al., 2015). However, these methods require large datasets with ground truth 

labels, computationally intensive, and difficult to train. Recent advances in computer technologies 
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such as distributed computing and GPUs have made high-performance parallel computing more 

affordable.  As a result, many deep learning methods were developed for various applications like 

natural language processing, image recognition, and image segmentation. These methods have 

surpassed the performance of existing state-of-the-art methods. Recently in neuroimaging, several 

MRI datasets along with their manual segmentations for brain anatomical structures were made 

available (Landman and Warfield, 2012; Rohlfing, 2010; Scully et al., 2008) publicly and this lead 

to the development of deep learning based brain anatomical segmentation (Kleesiek et al., 2016; 

Ronneberger et al., 2015; Wachinger et al., 2017) and classification algorithms (Klöppel et al., 

2008; Li et al., 2014; Suk et al., 2017). However, these methods were developed using research-

quality datasets and have not been validated on heterogeneous clinical-quality images. This raises 

questions about the robustness of these algorithms and limits their application only to research-

quality images.  

AIM  

The focus of this dissertation is to identify and develop reliable methods for brain segmentation 

and volume estimation from head MRI and head CT imaging modalities. The limitations of the 

existing methods will be assessed, and we will build upon existing methods as well as develop 

new methods using deep learning techniques. The performance of these methods will be assessed 

using clinical quality datasets. Statistical methods to evaluate the limitations of these methods will 

be investigated. 

THESIS ORGANIZATION 

This dissertation is devoted to the identification and development of fully automated segmentation 

methods for clinical quality brain images. The remainder of this dissertation is organized as 
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follows.  Chapter 2 contains basic concepts and introduce the current state-of-the-art followed by 

advanced methods that will be frequently used in this thesis. Chapter 3 analyses the reliability of 

existing fully automated brain segmentation methods on clinical quality brain MRIs. The 

performance of three widely used MRI segmentation methods are compared between clinical- and 

research-quality images of the same subjects. Chapter 4 presents a novel CT segmentation pipeline 

developed by adapting an existing widely used atlas-based MRI segmentation method and 

demonstrates its application in the detection of atrophy in Alzheimer’s disease patients. Chapter 5 

presents a novel deep learning architecture using CNN that is designed to overcome the 

shortcomings of the atlas-based CT segmentation method. In chapter 6 we conclude by presenting 

key contributions of this work and discuss potential future work. 
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Chapter 2 

2 Background 

This chapter provides an understanding of the structural brain imaging of the human brain using 

sMRI and CT imaging modalities. Later, we discuss the process of cleaning the clinical imaging 

data and preparing them for research purposes. Clinical images are highly heterogenous and should 

be subjected to strict quality control at various stages. The quality control strategies that were 

employed in this work will be discussed here. Then we introduce several existing widely used 

image preprocessing and analysis methods for segmentation and volume estimation of brain 

regions from 3D brain images. Challenges related to application of these methods on clinical 

quality images will be discussed. New segmentation methods using advanced artificial neural 

networks will be discussed. Finally, we will present the application of brain segmentation methods 

for Alzheimer’s Disease applications. 

2.1 Structural imaging of the human brain 

Structural imaging of the brain involves in vivo imaging of the structure of the human nervous 

system. There are several technologies available to create brain images: MRI, CT, positron 

emission tomography (PET), electroencephalography (EEG), Magnetoencephalography (MEG) 

and near infrared spectroscopy (NIRS) (Michael Demitri, 2018). Of these technologies, structural 

MRI (sMRI) and CT are the widely used modalities for imaging the human brain for both research 

and clinical purposes. 3D and 2D images can be acquired using sMRI and CT imaging modalities. 
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Structural brain imaging is increasingly used to study the brain structure in research and 

clinical applications for disease diagnosis, prognosis and to monitor treatment effects (Giorgio and 

De Stefano, 2013). There are numerous other applications of structural brain imaging, one of them, 

which is the major focus of this work, is brain volumetry. Brain volumetry involves quantifying 

various anatomical regions of the brain like gray matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), intracranial space and subcortical structures like amygdala, hippocampus etc. 

2.2 3D Brain Images 

Every 3D sMRI or CT image consists of a 3D array of elements called voxels. A voxel is a cuboidal 

volume encompassing a 3D volume in space. The voxel size is determined by the length, width 

and height of the cuboid. Each voxel is assigned a value that represents the intensity of the 

encompassed 3D space. The dimensions of these voxels (length, width and height) in the sMRI or 

CT imaging methods, are determined by the acquisition parameters set during scanning and the 

intensity value at each voxel represents the average signal intensity received from the physical 

volume imaged inside the voxel.  

In practice, sMRI and CT images are acquired in planar sections: coronal, axial, and sagittal, 

on which the voxels are arranged in a 2D grid (Figure 2.1 A) along the x and y axes, just like pixels 

in an image. Figure 2.1 B and C illustrate MRI and CT sections, respectively, acquired in different 

acquisition planes. These 2D sections of voxels are arranged along an orthogonal grid along the z 

axis (orthogonal to x and y axes) making the image a 3D image. 
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Figure 2.1 (A) Illustrates the three acquisition planes of the 3D structural brain image. (B) MRI 

and (C) X-ray CT image of the human head in the three acquisition planes. 

2.3 Brain imaging applications in Alzheimer’s disease (AD) 

Diagnosis of AD is typically made by neuropsychological and neuroimaging assessment. 

Neuroimaging is routinely used for assessment of brain atrophy in AD patients to track disease 

progression. Neuroimaging studies in AD have shown that the brain exhibits atrophy in various 

regions up to 5 years before the diagnosis (Chan et al., 2003). Figure 2.2 illustrates the loss of 

volume in various brain regions as the disease progresses through the three stages: asymptomatic, 

MCI and dementia. Hippocampal and entorhinal volumes show a loss of 15-25% of overall volume 

at the time of diagnosis (Chan et al., 2001). The volume and the rate of brain volume loss in these 

regions can be quantified using brain images acquired at different timepoints from the same 

patient. Hence imaging has prognostic capabilities which can lead to early diagnosis of AD. 
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Figure 2.2 Illustration of the loss of brain volume at different stages of Alzheimer’s disease 

(Frisoni et al., 2010).  

 

MRI is the preferred neuroimaging modality for AD because of its ability to distinguish various 

anatomical regions inside the brain like Hippocampus. Though not as fast as a CT, a high-

resolution volumetric scan can be acquired in 5-10 mins using MRI. MRI is safe and doesn’t 

involve exposure to harmful radiation and therefore individuals can be imaged for routine checks 

without any concerns about the harmful side effects.  

In a typical imaging protocol for AD diagnosis, patients are imaged with CT and then followed-

up by MRI to rule out other causes of dementia (Johnson et al., 2012). Although CT may not be 
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used for primary diagnosis of the disease, cerebral atrophy (loss of whole brain volume) which is 

typical of advanced AD can be detected using CT. Figure 2.3 compares the MRI image of an AD 

patient with a healthy subject illustrating cerebral atrophy in addition to loss of volume in 

hippocampus and both the left and right lobes.. Hence CT is sometimes recommended for the 

routine evaluation of AD. CT is preferred over MR when MR is contraindicated, not readily 

available or not affordable (Petrella, 2003).  

 
Figure 2.3 (A) healthy and (B) AD patient brain MRI images showing global and hippocampal 

atrophy (Duara et al., 2008). 

2.4 sMRI 

sMRI is a widely used medical imaging modality for both research and clinical applications. About 

20,000 research articles are published on MRI every year (Vlaardingerbroek and Boer, 2013). 

Applications of sMRI covers every part of the human body from head to toe and it is used in a 

wide variety of diseases such as stroke, cancer, and AD. One main advantage of MR is that there 
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are no reported side effects on the human body. Since its introduction in the 1980s MR imaging 

has improved in image quality and resolution enabling it to create detailed representations of the 

tissues inside the human body.  

 

Figure 2.4 (a) Illustration of the MRI image acquisition system. (b) Illustration of the gradient coils 

in all three dimensions. Transceiver consists of a transmitter, coil and receiver (Coyne, 2012).  

MRI machine (Figure 2.4a) consists of a large magnet that maintains a constant magnetization all 

through its core and small gradient coils that create a gradient magnetic field along each of the 

three axes. The strong magnetization aligns the spins of the protons present in the body that we are 

interested in imaging, perpendicular to the direction of the magnetization. The gradient magnetic 

coils (Figure 2.4b)  are used for spatial encoding of the MRI signal by making the protons precess 

at slightly different rates. Phase and frequency encoding is achieved using the gradient magnetic 

fields which encode the RF signals coming from different regions of the 3D space thereby 

providing the RF receiver with a spatial information to reconstruct the 3D image.  

A 3D sMRI is created by stacking a number of 2D sections or slices each containing a matrix 

of voxels. The intensity values of the voxels in the sMRI images are unitless. sMRI is acquired 

using a combination of settings, called pulse sequences. Every sequence is designed to achieve the 



12 

 

best possible image for observing a specific medical condition or an anatomical region of interest. 

Most commonly used and standardized pulse sequences in brain imaging are T1-weighted (T1), 

T2-weighted (T2), Fluid Attenuated Inversion Recovery (FLAIR), and Proton Density (PD) as 

illustrated in Figure 2.1. However, the choice of magnetic field strength on the MR scanner, 

scanner manufacturer, and scanning- and image-parameters introduce heterogeneity in the 

acquired images. 
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Figure 2.5 Axial slices (vertical) of a brain MRI image acquired using different scanner parameters 

that highlight the contrast between different brain tissue types (Sweeney, 2016). 

In spite of MRI being a great imaging tool with no reported side effects, in a clinical setting it 

is not as widely used as CT due to several reasons; MRI is very expensive to acquire and takes 

longer scanning time which leads to high operating costs. Due to the large magnetization, people 

who have metal implants or shrapnel cannot have an MRI. 
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2.5 CT Imaging 

X-ray Computed Tomography (CT) is the most widely used modality for imaging in the clinical 

setting. Compared to MRI, CT has lower cost, faster acquisition, and fewer contraindications, as 

well as reasonable image quality making CT applicable for a plethora of medical conditions and 

situations. Therefore, CT is the imaging modality of choice in case of emergencies. However, CT 

exposes the patient to a dose of ionizing radiation which is associated with side effects and 

complications. This makes it difficult to justify its use in a research setting especially for obtaining 

brain images from healthy volunteers. Hence, CT is used mostly only in a clinical setting when the 

procedure is essential for diagnostic purposes.  

 

Figure 2.6 (A) Illustration of CT image acquisition (Shivnauth et al., 2013). (B) Acquired CT 

image viewed in the tissue intensity window (0-100Hu) in axial, sagittal and coronal planes. 

Although CT brain image also consists of an array of 3D voxels just like MRI, the method of 

acquisition is quite different. CT takes advantage of the X-ray attenuation property of the tissues. 

The intensity of each voxel is the measure of X-ray attenuation in Hounsfield units (HU) of the 
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physical medium enclosed by the voxel. Therefore, the voxel intensity is consistent irrespective of 

the scanner and scanner brand. In contrast to MR, CT exhibits a low contrast-to-noise ratio between 

soft tissues like GM and WM regions of the brain. For dense tissues like bone, the attenuation is 

very high therefore the intensity of such structures in a CT image is very high compared to the soft 

tissues. Therefore, it is very hard to distinguish soft tissues like GM, WM and other subcortical 

structures in a CT brain image. Unlike MRI the freedom of selecting the axis of imaging in CT 

images is limited. The axis is determined by the angle of the CT imager gantry. The gantry is 

usually perpendicular to the axial axis of the head when acquiring axial slices of the head. 

However, sometimes gantry is tilted to avoid the artifacts due to bone in CT images resulting in 

the slices that are tilted at an angle but still acquired along the axial direction. The range of the tilt 

angle is very limited due to the physical constraints.  

The scope of the research in this work is limited to the 3D structural imaging of the brain. 

Henceforth for the rest of the dissertation MRI refers to the 3D sMRI and CT refers to 3D X-ray 

CT. All the MRI images used in this work are T1-weighted MRI images. Both MRI and CT 

datasets used in this work consist of images acquired from patients of a large hospital system 

acquired for diagnostic purposes using standard-of-care imaging practices.  

2.6 Clinical imaging datasets 

Clinical datasets are a collection of images that are obtained from the imaging archives of a hospital 

that are primarily acquired for diagnostic purposes. These images are acquired using standard-of-

care procedures. Clinical images are originally ordered by a physician for diagnosing a condition 

and the image parameters for the acquisition are chosen by the operator to best capture the region 

of interest. 
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Clinical quality image datasets in this work were created from images available in Geisinger 

Health System’s clinical picture archiving and communication system (PACS). MRI and CT 

images obtained from the archives were de-identified (i.e. removal of all protected health 

information (PHI) to comply with HIPAA regulations). The data access for the research studies in 

this work was approved by Geisinger’s institutional Review Board. Preparation of datasets using 

these images and handling of the image files is described below. 

2.6.1 Preparing Clinical Quality Brain Images  

Clinical-quality images are highly heterogeneous with respect to image parameters, subject age, 

diagnosis, etc. Due to this heterogeneity, the datasets prepared by collecting these images should 

be subjected to strict quality checks at different stages. The process we used for obtaining the 

imaging dataset, preparation of the clinical datasets, and post processing quality assessment is 

outlined in this section. 

The images obtained from PACS come in the Digital Imaging and Communications in 

Medicine (DICOM) format containing one DICOM file per image slice. DICOM files contain 

image intensity data along with a large amount of metadata which includes information about 

image acquisition, type of scan, scanning equipment information, patient and image parameters 

etc. This overhead of metadata makes the DICOM images less portable for research. Further, for 

research questions we require only a small number of those variables, mainly the intensity matrix 

and imaging parameters. Therefore, in research, the practice is to convert the images from the 

DICOM format to the Neuroimaging Informatics Technology Initiative (NIfTI) format (Cox et al., 

2004). This format is lighter and simpler to use and includes sufficient information to process the 

images.  
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Creating Clinical datasets starts with selecting DICOM images of patients that satisfy 

specific criteria that we are interested in for a study (for example: patients from age 60 to 80 years 

diagnosed with AD). This is followed by a two-step quality check in which images with 

undesirable structural abnormalities and artifacts are removed. 

2.6.2 Pre-processing quality check 

Clinical images may contain abnormalities that are visibly present like motion artifacts, 

implants, noise, cancerous growth, hemorrhage, abnormal brain conditions etc. Some of the 

common image artifacts and brain abnormalities are presented in Figure 2.7. These abnormalities, 

if they are not part of the study, create undesirable noise and biases during analysis. Therefore, it 

is very important that a rigorous quality check is done to remove such images and grade the 

remaining images for quality before any analysis methods are applied. This grading helps us 

understand the performance of analysis methods when applied on images with different quality 

grades. This quality check is a two-step process as outlined below. 

Step1. In this step the images undergo a careful visual inspection to exclude the images that 

contain abnormalities that do not concern the research question. This visual inspection should be 

performed under the supervision of an experienced neuro-radiologist. This step reduces the 

undesirable heterogeneity in the image dataset.  
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Figure 2.7 (top row) Images containing different imaging artifacts. (Bottom row) Images 

containing brains with abnormal pathology. 

Step 2. After the removal of images with artifacts and brain abnormalities, the images undergo 

a second visual inspection to grade them according to the quality of the tissue reconstruction. In 

this step the images are visually examined for signal to noise ratio, tissue contrast to noise and 

graded into three categories: grade 0 or ‘low’ quality, grade 1 for ‘good’ quality and grade 2 for 

‘high’ quality. Figure 2.8 illustrates brain images with different levels of motion, noise and tissue 

contrast and the grades assigned to them. This quality rating helps us to understand the influence 

of image quality on study results. This method of grading is qualitative, and subjective and should 

be performed only by a trained operator. Although some image quality metrics like signal-to-noise 

ratio can be measured, there is no standard criteria to grade these images. 
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Figure 2.8 Images assigned with different levels of quality grades for different levels of motion 

noise and tissue contrast. 

2.6.3 Post-processing quality check 

Post-processing quality check is performed after the application of an automated analysis method 

on the image. For example, in case of image segmentation, this quality check is performed after 

the images are segmented using an automated segmentation method to check for method failures. 

Segmentation methods fail to process the images for various reasons and this check is essential to 

identify those failures and to exclude them from being used in further analysis. After performing 

segmentation of anatomical regions of interest from the brain images, the resulting images 

containing the segmentation labels undergo a visual quality inspection. This is to assess the 

segmentation quality and understand the limitations of the method being used. This is an important 

step in any neuroimaging study to ensure the anatomical regions of interest are accurately 

delineated and quantified and there are no outliers due to algorithmic failures. 
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2.7  Brain Image Analysis 

2.7.1 Brain volumetry 

Brain volumetry typically involves segmentation and quantification of various tissue types of the 

brain such as GM, WM and CSF. Other Global metrics include total intracranial volume (TIV) 

and total brain volume (TBV) which are volume estimates of the intracranial space and the brain 

parenchyma respectively. These metrics are called global metrics as they are computed for the 

brain as a whole which includes the brain cortex, subcortical regions, cerebellum, brainstem and 

for TIV the fluid surrounding these structures. Regional brain volume metrics comprise of volumes 

of anatomical brain structures like hippocampus, amygdala, thalamus, nucleus accumbens, etc 

which constitute the subcortical structures. Other types of regional brain volumes measures include 

lobes and regions that represent various functions like speech, vision, memory etc. 

The volume of a brain tissue is measured by integrating the volumes of the voxels belonging 

to the region of interest in a structural image. These regions of interest are segmented using manual 

or automated methods. Manual brain segmentation is performed by individuals with training in 

brain anatomy with the aid of MRI visualization software tools. This is a laborious procedure 

which results in inter and intra-operator variability of the estimated volume. Nordenskjöld et al., 

(2013) reported that manual segmentation of TIV of a brain image with 50 image slices can take 

up to 25 minutes for an experienced operator. Therefore, automated tools are increasingly used for 

brain volumetry. A wide variety of automated methods are available for the segmentation of brain 

images. A study by Helms, (2016) provides an extensive review of the available state-of-the-art 

brain segmentation methods. 
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The whole brain volume metrics are directly computed from the brain images by identifying 

the voxels within the intensity range of the tissues. Whereas the regional brain volumes are 

computed from the voxels delineated by identifying complex region boundaries that make these 

regional structures. In practice, the voxels belonging to these complex brain structures are 

identified by carefully registering standard brain atlases onto the brain image. Most of the work in 

this thesis is focused on accurately estimating global brain volumes.  

2.7.2 Automated Brain Image Segmentation 

Brain segmentation involves accurately delineating the brain images into different tissues: GM, 

WM, and CSF (Figure 2.9). A variety of automated segmentation methods currently exist of which 

Statistical Parametric Mapping (SPM) (Ashburner and Friston, 2005), FreeSurfer 

(surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al., 2002a), and FMRIB Software 

Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl) (Smith et al., 2004) are the most widely used. This 

section outlines the brain segmentation methodology used by each of these automated methods. 
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Figure 2.9 Brain tissues in a single section of a brain image from (A.) an MRI image, (B.)an 

average MRI brain tissue probabilistic map. 

STATISTICAL PARAMETRIC MAPPING (SPM) 

SPM uses an atlas-based Bayesian method to perform brain segmentation. SPM starts by 

registering the subject’s brain image onto a tissue probability map (TPM). TPM contains prior 

probability maps of different tissue classes of the voxels in the standard space template. For linear 

and non-linear registration SPM uses a default International Consortium for Brain Mapping space 

template (ICBM; Rex et al., 2003) whose coordinates are defined in the Montreal Neurological 

Institute (MNI) space. The unified segmentation algorithm also accounts for any biases present in 

the image intensity. The segmentation algorithm performs tissue classification, bias correction and 

registration steps iteratively to optimize the parameters for maximum a posteriori solution. 
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The above segmentation yields three types of images: (1) probabilistic tissue maps in the native 

space of the subject, (2) probabilistic tissue intensity maps in the template space and (3) modulated 

tissue intensity maps in the template space (Figure 2.10). The modulated images preserve the local 

volumetric changes in grey and white matter intensity on a voxel-by-voxel basis while spatially 

normalizing to the template. The modulated images are used for voxel-based morphometry (VBM) 

(Ashburner and Friston, 2000) as they measure subtle changes in the anatomical brain structures 

by removing the global affine effects (like scaling, rotation and translation). GM volume (GMV) 

and WM volume (WMV) are obtained by integrating the product of the corresponding tissue 

probabilities and the voxel volume in the native space of the subject. We will be using VBM to 

estimate the volumes of subcortical structures of the brain in chapter 3.   
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Figure 2.10 SPM brain segmentation pipeline illustrating probabilistic segmentation of GM, WM 

and CSF and voxel based morphometry (Ashburner and Friston, 2012). 

FREESURFER 

FreeSurfer utilizes a complex fully automated segmentation method for segmenting the brain into 

various cortical and subcortical regions (Fischl et al., 2002a). Segmentation is done by modeling 

a segment as an anisotropic Markov random field by using the priors for anatomical regions which 

are obtained after registering the image onto a template. FreeSurfer uses recon-all pipeline for 

segmentation, which also includes several preprocessing stages such as motion correction, non-

uniform intensity normalization, Talairach transform computation, intensity normalization, skull 

stripping, and cortical parcellation. In addition to volumetric analysis FreeSurfer also provides 
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surface-based analysis of the brain. It creates a vertex map for surfaces which forms the interfaces 

(e.g., WM-GM, GM-CSF) between different soft tissues. 

FMRIB SOFTWARE LIBRARY (FSL) 

FSL uses the SIENAX algorithm to perform brain extraction and tissue segmentation. SIENAX 

first creates a brain mask for the T1 image using FSL’s brain extraction tool (BET) (Jenkinson et 

al., 2002b). BET performs brain segmentation by growing a tessellated mesh inside the cranium 

until the boundary between brain and CSF is reached. After brain extraction, brain tissues are 

segmented using FSL’s Automated Segmentation Tool (FAST) (Zhang et al., 2001). FAST uses 

hidden Markov random field segmentation with expectation maximization algorithm and segments 

the brain into GM and WM segmentations.  

2.8 Segmentation using deep learning 

One of the important steps in brain segmentation is the feature learning. These features represent 

the patterns for identifying region boundaries for detecting various structures like GM, WM and 

CSF. In atlas-based methods as discussed above the probabilistic tissue maps are the examples of 

these features which determine the soft tissues in the brain. These probabilistic tissue maps created 

using manually segmented tissue maps which require careful delineation of the tissues from good 

quality healthy brain images or using statistical methods that rely on manually selected features. 

These features are highly task dependent and different task requires deriving a set of new features. 

For example, the probabilistic tissue maps that are used for segmenting healthy brains of a certain 

age cannot be used for segmenting images that have artifacts, certain brain conditions or from a 

different age group. Furthermore, curating these features requires a lot of domain knowledge that 
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is very difficult to obtain in many cases. Therefore, data-driven methods that can automatically 

learn these features from the ground truth data are highly desirable for developing robust 

segmentation methods. As segmenting brain structures involves identification of complex features 

that can be derived from a combination of simpler features, having a hierarchical feature learning 

setup is much more efficient. 

Although deep learning dates back to 1980’s, only in the recent years has gained popularity 

due to the advances in neural networks and availability of large computing power. Deep learning 

neural network architecture consists of layers of neural networks that are stacked to form a larger 

neural network. With more layers the network can learn more complex representations.  

2.8.1 Convolution neural networks 

CONVOLUTION 

Convolution neural network (CNNs) (Krizhevsky et al., 2012; LeCun et al., 1998) is a special kind 

of neural network in which each layer consists of filters, also called kernels, that convolve with 

the input data and computes features or representations. These features are fed to the consecutive 

layers which have another set of filters to learn hierarchical representations and so forth. Kernels 

may be of 2D for 2D images or 3D for 3D images and consist of weights. Weights are 

automatically learned by training the model using the ground truth data. Convolution neural 

networks are suitable for data that are arranged in grid-like fashion and contain sparse but repeated 

features e.g. images.  

Discrete convolution is defined as follows: 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑚, 𝑛) × 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚
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Where I is the input signal/image, K is the convolutional kernel and the output S is called the 

feature map. The three important properties that help CNNs to perform well over conventional 

neural networks are sparsity, parameter sharing and shift invariance (Goodfellow et al., 2016). 

These properties are elaborated below briefly to support the usage of CNNs for segmentation.  

SPARSITY:  

The values of the features in CNNs are computed over the entire input image by advancing the 

kernel from start to end along all the dimensions. Each value in the feature map is obtained by the 

neighborhood around it and it’s the same as the size of the kernel being used. The kernel size is 

usually selected much smaller than the input size resulting in a finite number of advances along 

each dimension resulting in a feature size with same number of dimensions as the input although 

the size is different. Smaller size of the kernel provides a number of advantages: reduced memory 

requirement, decreased computational costs and statistical efficiency. 

PARAMETER SHARING: 

As convolution operation is performed by advancing the kernel over the input, the weights in the 

kernel are used multiple times resulting in weight sharing. Contrastingly in conventional neural 

networks each weight is only used once to compute the feature values. This results in substantial 

reduction in number of parameters in the neural network there by reducing its memory footprint.  

SHIFT INVARIANCE: 

CNNs are shift (also called translation) invariant which means that when the image is shifted, 

convolving that input with the kernel produces a shifted feature output. Therefore, the same kernel 

is capable of detecting the same features wherever it is present in the image. However, 
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convolutions are sensitive to other image operations like rotation, scaling and shearing (Figure 

2.11).  

 
Figure 2.11 Illustration of different operations performed on images. 

ACTIVATION FUNCTIONS 

At the end of each layer in a CNN non-linearities are introduced in the output feature maps using 

the activation functions. Without non-linearity any number of neural networks connected one after 

the other can be solved using a single shallow neural network. The main advantage of deep neural 

networks is creating hierarchical features which can only be accomplished by introducing a 

nonlinearity after every layer. Most common activation functions used in CNNs are sigmoid, tanh, 

and rectified linear unit (ReLU). Sigmoid and tanh activation functions have a disadvantage of 

diminishing the gradients in the shallower layers during the back-propagation which slows down 

the learning. Therefore, ReLU is the recommended nonlinear activation function in neural 

networks containing multiple layers. In addition to avoiding the vanishing gradient problem, ReLU 

also contributes to the computational efficiency.  

 

Figure 2.12 (left to right) The sigmoid, tanh and ReLU activation functions 
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POOLING 

Pooling is another operation often used after convolutional layers. Pooling involves replacing a 

rectangular neighborhood with some statistics summarizing the responses in the feature map. For 

instance, max and average pooling replace the neighborhood with the maximum and average 

responses respectively. Figure 2.6 provides an illustration for the max pooling operation. Max 

pooling is the more frequently used form of pooling which has two major advantages: the compact 

representation and the translational invariance. Pooling makes the feature representation smaller 

and more manageable, therefore cheaper to store and computationally more efficient. Translational 

invariance means that the operation is insensitive to small translations of the structure of interest. 

This becomes more notable once having several pooling layers, which implies no matter where 

the structures similar to the feature detectors (kernels) appear, the operation will result in an 

appropriate response to the feature. This is especially useful when dealing with classification 

problems. 

 

Figure 2.13 Illustration of the max pooling operation. 

CNNs can be used for classification as well as segmentation. In a simple classification model, 

the entire input data (an image containing voxels in our case) is assigned to a single class or 

probability of a few classes is computed in case of multi class classification. An example of image 
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classification is predicting if the whole brain image is from a patient with Alzheimer’s disease or 

not. Segmentation is a kind of classification in which each voxel is assigned a probability of 

belonging to a class (which represents a tissue or a region of interest). This type of segmentation 

is also called semantic segmentation. The main advantage of CNNs is that the user doesn’t need 

to explicitly design the kernels that are required for the segmentation. The network automatically 

learns these kernels from the training data by optimizing a cost function. Recently, deep learning 

CNNs for imaging applications are gaining increasing attention as these methods surpass the 

accuracies of existing state-of-the-art methods. In AD, deep learning algorithms exhibit very high 

accuracy (91%) for classification of AD patients from healthy controls (Suk et al., 2017; Zhu et 

al., 2014). Deep neural networks for skull stripping (Kleesiek et al., 2016), and anatomical brain 

segmentation (Wachinger et al., 2017) exhibited higher segmentation accuracies than the existing 

state-of-the-art methods. However, all these methods used research-quality datasets for training 

and validation. One main reason that limits the usage of deep learning methods in clinical 

applications is that the features learned by these methods are unexplainable and hence we do not 

know if these methods are detecting the features that are meaningful in the context of the disease 

or some feature that is specific to the dataset. It is still unknown how these methods perform when 

applied to clinical-quality standard of care images. Hence it is very important that these methods 

are systematically validated on a variety of datasets. 
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Chapter 3 

3 Reliability of automated brain segmentation 

methods on clinical quality MRI  

3.1 Introduction 

Traditionally radiologists treated images as pictures and made interpretations by visual inspection 

of these images. However, by applying appropriate methods to the brain images various metrics 

that can aid in diagnostic assistance can be estimated. Now a days automated brain volumetry is 

increasingly utilized on structural MR images for both research and clinical applications to 

diagnose disease, track disease progression, and monitor treatment effects (Giorgio and De 

Stefano, 2013). MR images that are acquired for clinical purposes are different in their quality 

from the images that are specially acquired for usage in research studies. Typically, clinical images 

are acquired using low slice-resolution (i.e. usually with a slice thickness > 3mm) to maintain 

better signal to noise ratio and low acquisition time and costs. Whereas the research quality images 

are acquired with higher slice resolutions (typically with a slice thickness < 2mm). It is unknown 

how reliable are the brain volume metrics that are estimated from thick-slice images compared to 

those estimated from thin-slice images. Answering this question establishes the reliability of 

clinical MR imaging data for research-driven volumetric analysis and allows the utilization of vast 
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archives of previously unutilized clinical images. Additionally, it also identifies the methods that 

can be reliably used for processing clinical quality MR images.  

Limited studies are available that performed brain volumetry using thick-slice images. Smith 

et al., (2002) validated FSL’s SIENAX (structural image evaluation using normalization of atrophy 

for cross-sectional measurement) algorithm on MR images acquired from the same subjects with 

varying slice thicknesses (1mm to 6mm) and found that FSL estimated TBV did not vary with 

slice thickness. Eritaia et al., (2000) examined the effect of sparse sampling of image slices and 

showed that reliable estimates of TIV can be achieved up to a sampling density of 1 in 25 slices. 

These results were confirmed in a recent study (Sargolzaei et al., 2014). Klauschen et al., (2009) 

compared the performances of SPM, FSL, and FreeSurfer in calculating gray matter volume 

(GMV), white matter volume (WMV), and TBV using thin-slice images. This study found that 

volumetric accuracy of SPM5 and FSL were better than FreeSurfer. A more recent study showed 

that SPM12 performed better than FreeSurfer in calculating TIV (Malone et al., 2015). However, 

the reliability of applying automated methods on clinical quality MR images has not been well 

established in the literature. In this study, our aim is to validate the use of thick-slice clinically 

acquired MR images for estimating GMV, WMV, and TBV using three widely used automated 

methods SPM, FreeSurfer, and FSL. Sections in this chapter are taken from our article published 

in the journal Radiology as (Adduru et al., 2017). 

3.2 Materials and Methods 

3.2.1 Study population 

This study was reviewed and approved by Geisinger institutional review board. The data used in 

this study was not identifiable and no protected health information (PHI) was collected, accessed, 
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used or distributed. This study was part of a larger research initiative on the question of leveraging 

clinical imaging archives for research studies. As part of that initiative we de-identified 2,500 

randomly selected head MRIs from our clinical picture archiving and communication system 

(PACS) archive; all images were acquired between March and November of 2014. Of these head 

MRIs, a total of 44 images had both thick- and thin-slice images with complete head coverage 

acquired from the same scanner in the same scanning session. Of the 44 images, 38 were free of 

intracranial abnormalities based on a neuroradiologist’s clinical review (GJM, 6 years of 

experience). These 38 images (age range: 1–71 years, mean age: 22 years, 11 females) were used 

as the final dataset of this study. A retrospective inspection of the de-identified radiology reports 

indicated that these 38 images were acquired for clinical purposes as part of our institution’s 

routine clinical imaging protocol for evaluating patients with seizures or reported headaches. 

3.2.2 Image Acquisition 

Twenty-two of the patients were scanned using a 1.5 Tesla Achieva (Philips Medical systems) and 

sixteen patients were scanned using 1.5 Tesla Signa HDxt (GE Medical systems). For thin-slice 

images coronal T1 spoiled gradient recalled (T1 SPGR) acquisition was used and for thick-slice 

images axial T1 spin echo (T1 SE) acquisition was used. Further information on image parameters 

is available in Table 3.1. 

All the images were obtained in DICOM format containing one file per image slice and were 

converted into Neuroimaging Informatics Technology Initiative (NIfTI) format using dcm2nii 

(2013 version, distributed with MRIcro; Rorden and Brett, 2000).  
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Table 3.1 Image and scanner parameters 

 Thin-slice images Thick-slice images 

MRI pulse sequence T1 SPGR T1 SE 

Acquisition plane Coronal Axial 

Scanner Manufacturer GE Phillips GE Phillips 

Scanner Model 1.5T Signa 1.5T Achieva 1.5T Signa 1.5T Achieva 

Number of subjects 16 22 16 22 

Slice Thickness (mm) 0.8 to 1.6 1.10 5.5 to 6 4.4 to 5.5 

voxel width (mm) 0.35 to 0.43 0.43 to 0.83 0.39 to 0.47 0.63 to 0.9 

Note. -- T1 SPGR = T1 spoiled gradient recalled, T1 SE = T1 spoiled echo 

3.2.3 Brain volumentry 

To estimate brain volumes using SPM, we applied the unified segmentation algorithm (Ashburner 

and Friston, 2005) provided as ‘Segment’ tool in SPM12 (SPM version 12). GMV and WMV were 

calculated according to “Approach 2” outlined in Malone et al., (2015) using the native space 

probabilistic tissue maps produced during segmentation. FreeSurfer volumes were obtained using 

the ‘recon-all –all’ pipeline of FreeSurfer (version 6 beta). The ‘total gray matter volume’ and 

‘cerebral white matter volume’ values found in the aseg.stats output file were used for GMV and 

WMV respectively. Further information on the FreeSurfer segmentation process can be found in 

Fischl et al., (2002b). In FSL (version 5.0.8) segmentation, volumes were obtained using SIENAX 

(Smith et al., 2002). We utilized the un-normalized GMV and WMV volumes produced by 

SIENAX. All images were processed using the default parameters of the toolboxes.  



35 

 

3.2.4 Voxel Based Morphometry 

VBM in SPM uses the modulated GM and WM maps created by the unified segmentation pipeline 

(Mechelli et al., 2005). Modulated images allow users to compare regional tissue density and 

absolute volume differences across subjects (Good et al., 2001). To examine if thick-slice clinical 

images can reliably be utilized for VBM, we obtained modulated images for GM and WM for both 

thick- and thin-slice MR images using the ‘Modulated’ option for ‘Warped Tissue’ selection in the 

‘Segment’ tool in SPM12. Modulated images produced from thick-slice images had aliasing 

artifacts due to low resolution. To remove this artifact, the thick-slice images were resliced to 1mm 

using nearest-neighbor interpolation before running the unified segmentation pipeline. 

3.2.5 Statistical analysis 

GMV, WMV, and TBV were obtained for thick- and thin-slice images using SPM, FreeSurfer, 

and FSL. TBV is calculated as a summation of GMV and WMV. The reliability and level of 

agreement between thick- and thin-slice image volumes were evaluated using intraclass correlation 

coefficient (ICC) for all three volumes. ICC was computed using one-way random effects model 

(‘case-1’ as defined in McGraw and Wong, (1996)) with subjects (row effects) as random effects 

assuming a normal distribution. Before applying ICC, volumes estimated by the automated 

methods were tested for normal distribution using Kolmogorov-Smirnov test (Massey, 1951). 

Reliability is classified based on ICCs using the following scale: 0–0.36, poor; 0.37–0.47, fair; 

0.48–0.55, good; and 0.56–1.0, excellent. For our sample size of N=38, the scales fair, good and 

excellent correspond to a statistical significance of P<0.01, P<0.001 and P<0.0001 respectively. 

The difference in volumes between thick- and thin-slice images was compared using percentage 

difference and Bland-Altman plots (Martin Bland and Altman, 1986). Percentage differences 
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between the thick- and thin-slice estimates were calculated as a percentage of the thin-slice 

estimate. Figure 3.1 outlines the inter-method comparison methodologic analysis. 

 

Figure 3.1 Flow chart of the inter-method brain volume comparison methodology between thick- 

and thin-slice MR images. Green arrows represent the raw image input to three different automated 

volume estimation methods: SPM, FreeSurfer, and FSL. Orange arrows represent estimated brain 

volumes. The volume comparison box represents performing statistical analyses to compare thick-

slice and thin-slice image volumes. The inter-method comparison box (gray box) represents the 

comparison of performance between the three methods. 

In addition to the above reliability tests and after establishing the most reliable method, the 

following analyses were performed using estimates from the most reliable method. The effect of 
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age on GM/WM contrast in structural MR images was previously demonstrated by several studies 

(Kim et al., 2002; Knight et al., 2016). To evaluate the effect of age on the reliability of thick-slice 

brain volume estimates the following experiment was performed. ICCs between thick- and thin-

slice volume estimates were iteratively calculated starting with the ten youngest subjects (age: 1– 

4 years) and then sequentially adding the next older subject to the group.  

The structure and signal intensities of infant MR images are different from that of adults. To 

verify if the infant subjects influenced the reliability, ICCs were calculated between thick- and 

thin-slice volumes for the cohort after excluding the infants (age<2 years, N=5).  

MR image intensity range, noise and tissue contrast are different for images scanned using 

different scanners. The effect of scanner heterogeneity on reliability is verified by computing ICCs 

for each scanner separately (N=22 for Phillips Achieva, N=16 for GE Signa).  

To study the reliability in VBM analysis, voxel-by-voxel ICC was calculated between the 

voxels of the modulated images obtained from thick- and thin-slice images for GM and WM maps. 

The voxel-by-voxel analysis creates a stereotaxic map of voxels where the tissue concentrations 

are reliably reproduced. As in previous studies (Lorio et al., 2014; Peelle et al., 2012) voxels with 

10% or greater probability of belonging to GM or WM were selected for analysis. The tissue 

probability is given by the tissue probability map (TPM) distributed with the SPM12 package. The 

TPM is defined in the Montreal Neurological Institute (MNI) space (Tzourio-Mazoyer et al., 

2002). All the statistical analyses were performed using MATLAB (version 8.6.0). 
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3.3 Results 

3.3.1 Brain Volumetry  

Out of the 38 subjects included in the study three failed FreeSurfer processing. FreeSurfer failed 

to automatically register images of two subjects to the atlas. The processing of the third subject 

had to be manually terminated as the processing time exceeded 36 hours. These three subjects were 

excluded from the FreeSurfer analysis. 

The performance of the three automated methods between thick-slice and thin-slice image 

volumes is presented in Table 3.2. All volumes estimated by the methods satisfied the criterion for 

normal distribution as determined by the Kolmogorov-Smirnov test. SPM showed excellent 

reliability between thick- and thin-sliced image volumes for TBV, GMV and WMV (ICC=0.97, 

0.85 and 0.83, respectively). FSL exhibited excellent reliability for TBV, and WMV (ICC=0.69, 

0.60, respectively) and good reliability for GMV (ICC=0.51), but ICC values were lower than that 

of SPM. FreeSurfer showed the lowest reliability among the methods for all the volumes with 

excellent reliability only for TBV (ICC=0.63) and poor reliability for GMV and WMV (ICC=0.30, 

0.16, respectively). GMV in SPM (0.70 liters) showed the largest estimates while FreeSurfer 

exhibited the lowest (0.52 liters). In WMV, however, SPM showed the lowest (0.38 liters) estimate 

for WMV while FSL exhibited the highest (0.56 liters). One outlier (seen in Figure 3.2) was 

observed in the case of FSL which exhibited a thick-slice GMV of 1.423 liters – more than four 

standard deviations away from the mean thick-slice GMV of FSL 0.63 liters. The GMV from the 

same subject’s thick-slice image for SPM and FreeSurfer were 0.58 liters and 0.43 liters 

respectively, which were within one standard deviation from their respective means. Figure 3.2 

illustrates volumes derived from thick-slice images plotted against thin-slice images for TBV, 
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GMV, and WMV for all three methods with trend lines and reference lines. Points with identical 

estimates from thick-slice and thin-slice volumes should fall on the reference line. SPM showed 

the best linear trend among the three methods for all the volumes followed by FSL. FreeSurfer 

showed large deviations from the trend line for all the volumes.  

 

Table 3.2 Summary of statistical analysis on thick and thin-slice volume estimations, for the three 

automated methods: SPM (N = 38), FreeSurfer (N = 35) and FSL (N = 38). 

  

  
Method 

Mean ± SD (liters) Percentage 

difference   

(Mean ± SD) 

ICC 
Paired t-test  

t-value 
Thin-slice Thick-slice 

TBV SPM 1.10 ± 0.18 1.08 ± 0.17 -1.19 ± 3.95 0.97 *** 2.23 

FreeSurfer 1.13 ± 0.20 1.07 ± 0.21   -4.87 ± 14.80 0.63 * 2.15 

FSL 1.13 ± 0.17 1.19 ± 0.20    6.25 ± 12.52 0.69 ** -3.11 * 

       

GM

V 

SPM 0.69 ± 0.13 0.70 ± 0.13  2.29 ± 11.88 0.85 *** -0.89 

FreeSurfer 0.59 ± 0.15 0.52 ± 0.12 -7.92 ± 30.98 0.30 3.02 * 

FSL 0.61 ± 0.12 0.63 ± 0.18  4.43 ± 25.96 0.51 * -0.94 

       

WM

V 

SPM 0.41 ± 0.11 0.38 ± 0.13 -7.35 ± 16.29 0.83 *** 2.31 

FreeSurfer 0.49 ± 0.22 0.51 ± 0.24 12.84 ± 59.70 0.16 -0.23 

FSL 0.52 ± 0.11 0.56 ± 0.13   9.53 ± 21.05 0.60 * -2.54 

***  P<10-10 

**   10-10<P<10-6 

*    10-6<P<10-2 

Note. -- TBV = total brain volume, GMV = gray matter volume, WMV = white matter volume, ICC = 

intraclass correlation coefficient, SD = standard deviation, N = number of subjects. 
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Further, we also compared the three methods after excluding the three subjects that failed 

FreeSurfer from SPM and FSL and observed similar results Table 3.3. 

 

Table 3.3 Results of intraclass correlation and paired t-test for TBV, GMV, and WMV, across the 

three automated methods: SPM, FreeSurfer and FSL. N = 35 for all three methods. 

  
 

 

Method 
Mean ± SD (liters) Percentage 

difference  

 (Mean ± SD) 

ICC 
Paired t-test  

t-value 
Thin-slice Thick-slice 

TBV SPM 1.10 ± 0.18 1.09 ± 0.17 -0.59 ± 2.71 0.98 *** 1.75 

FreeSurfer 1.13 ± 0.20 1.07 ± 0.21 -4.87 ± 14.80 0.63 * 2.15 

FSL 1.13 ± 0.17 1.19 ± 0.20 6.47 ± 13.03 0.68 * -2.96  

       

GMV SPM 0.69 ± 0.14 0.70 ± 0.14 2.63 ± 12.13 0.86 *** -1.04 

FreeSurfer 0.59 ± 0.15 0.52 ± 0.12 -7.92 ± 30.98 0.30 3.02 * 

FSL 0.61 ± 0.12 0.63 ± 0.18 5.56 ± 26.58 0.51 * -1.15 

       

WM

V 

SPM 0.41 ± 0.11 0.39 ± 0.13 -6.03 ± 13.16 0.85 *** 2.11 

FreeSurfer 0.49 ± 0.22 0.51 ± 0.24 12.84 ± 59.70 0.16 -0.23 

FSL 0.52 ± 0.12 0.56 ± 0.13 8.73 ± 21.09 0.60 * -2.16 

***  P < 10-10 

**   10-10 < P < 10-6 

*    10-6 < P < 10-2 
Note. -- TBV = total brain volume, GMV = gray matter volume, WMV = white matter volume, ICC = intraclass 

correlation, SD = standard deviation, N = number of subjects.  
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Figure 3.2 Scatter plots between thick-slice (y-axis) and thin-slice estimates (x-axis) of total brain 

volume (TBV), gray matter volume (GMV), and white matter volume (WMV) as estimated by 

three different automated methods: SPM, FreeSurfer and FSL. Blue lines represent the trend lines 

fitted to the scatter points. Black lines represent the y=x reference lines. 

SPM exhibited the lowest mean and standard deviation of the percentage difference for all 

three volumes (Table 3.2). The difference between thick-slice and thin-slice volumes was plotted 

against their mean in Bland-Altman plots, in Figure 3.3. SPM showed the lowest standard 
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deviation of the volume error (thick – thin volume) for all the three brain volumes. The trend line 

fitted between volume difference vs. mean volume of the thick- and thin-slice pair showed no 

particular pattern for all three methods. The mean of the difference between thick- and thin-slice 

volumes represents the bias introduced by the methods.   
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Figure 3.3 Bland-Altman plots showing (thick – thin volume) difference (y-axis) plotted against 

the respective mean value (x-axis) of thick and thin volumes for each subject for total brain volume 

(TBV), gray matter volume (GMV) and white matter volume (WMV) estimated by three 

automated volume estimation methods: SPM, FreeSurfer and FSL. Solid blue line represents the 

trend lines. Numerical values of the mean difference (red line) and ± 2 standard deviations (dashed 

blue line) are also presented. 

The effect of age on SPM reliability is provided in Figure 3.4. Results indicate that the 

reliability of TBV is stable with increasing age, but the reliability of GMV and WMV declined 
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marginally with increasing age. However, the reliability for all three volumes remained excellent 

at all ages. When ICCs were calculated for SPM estimates after excluding the infants (age < 2 

years, N=5) from the cohort, all the volumes showed excellent agreement. After the removal of 

infants ICC did not change for TBV (ICC=0.97), marginally improved from 0.85 to 0.86 for GMV, 

and marginally declined from 0.83 to 0.78 for WMV. 

 

Figure 3.4 Effect of age on reliability. Intraclass correlation coefficient (ICC) (y-axis) between 

thick- and thin-slice SPM estimates for total brain volume (TBV), gray matter volume (GMV) 

and white matter volume (WMV) as age (x-axis) of the oldest subject in the group increases. The 

extreme left data points correspond to ICC for the 

When the effect of scanner heterogeneity was assessed using SPM estimates, for each scanner 

separately, despite lower sample size, the reliability was robust. For the Phillips scanner (N=22) 

reliability was excellent for the all three estimates; TBV, GMV and WMV (ICC=0.99, 0.90 and 
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0.85 respectively, P<0.0001). The reliability of GE scanner (N=16) was excellent for TBV 

(ICC=0.90, P<0.0001), but for WMV (ICC=0.74, P<0.001) and GMV (ICC=0.57, P<0.01) 

reliability dropped but remained significant.  

3.3.2 VBM Modulated images 

ICC for GM and WM tissue regions between thick- and thin-slice images are presented in Figure 

3.5. The sagittal and axial maps of the GM (Figure 3.5.A) and WM (Figure 3.5.B) are shown with 

red regions representing significantly (P<0.01, N=38) correlated voxels with fair to excellent 

reliability of ICC>0.37 and green regions showing voxels with ICC≤0.36. 80.35% (377282 of 

469502 voxels, ICC=0.37 to 0.97) and 88.47% (306924 of 346916 voxels, ICC=0.37 to 0.98) of 

the GM and WM voxels respectively show agreement between thick- and thin-slice images. GM 

voxels above the spinal cord, GM-WM boundary in the cerebellum and near the ventricles 

exhibited poor reliability. In WM, mismatches were seen in voxels near the ventricles and GM-

WM boundary in the cerebellum. 
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Figure 3.5 Sagittal and axial views of intraclass correlation coefficient (ICC) between thick- and 

thin-slice MR images in SPM voxel based morphometry for gray matter (in A) and white matter 

(in B). All red regions represent fair to excellent agreement (ICC>0.37, P<0.01, N=38) and all 

green regions represent insignificant ICC. The slice coordinates are in Montreal Neurological 

Institute (MNI) space. 

3.4 Discussion 

In this study, we compared brain volume estimates from thick-slice (>3mm) MR images to those 

obtained from thin-slice (<2mm) MR images obtained during routine clinical scanning. Using 

three separate automated toolboxes (SPM, FSL, and FreeSurfer) we evaluated their reliability in 

estimating TBV, GMV, and WMV using thick-slice brain images. The best method is 

characterized by excellent reliability and lowest bias. Using this criterion, SPM was the superior 

overall performer for all three volumes examined. FSL exhibits good to excellent agreement, albeit 

much lower than SPM. FreeSurfer in contrast exhibited excellent agreement for TBV only and 
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poor agreement for GMV and WMV. In VBM using SPM12, our results indicate fair to excellent 

reliability between thick- and thin-slice images for GM and WM maps for the majority of brain 

voxels. Our findings suggest that thick-slice MR images can be reliably used for estimating total 

brain and brain tissue volumes using SPM, a widely applied automated method. Additionally, 

clinical quality images may be utilized for VBM in SPM. 

Previous work has not directly attempted to compare thick- and thin-slice MR image reliability 

for computing brain volumes although several studies have examined the effect of sparse sampling 

of MR image slices for computing TIV manually (Eritaia et al., 2000; Sargolzaei et al., 2014). 

These studies indicated that sparse sampling can provide accurate TIV estimates. Similarly, our 

findings indicate that thick-slice images can provide reliable brain volume estimates using 

automated methods. Previous studies indicate that SPM gives the most accurate estimates for brain 

volumes in comparison to ground truth (Klauschen et al., 2009; Malone et al., 2015). Our study 

builds on these findings and we report that SPM gives the most reliable estimates for TBV, GMV, 

and WMV among the three methods when utilizing thick-slice images. 

In addition, we demonstrated that the reliability of automated methods for thin vs thick 

estimation for TBV was stable with increasing age but declined marginally for GMV and WMV. 

Although there was a marginal decline of ICC for GMV and WMV, all ICC values remained 

excellent. The decline in GMV and WMV reliability can be attributed to decreasing GM and WM 

contrast with age (Kim et al., 2002; Knight et al., 2016). 

There are two important limitations to address regarding our findings. First, images were 

acquired from different scanners and had varying acquisition planes and acquisition sequences. 

Despite this heterogeneity, consistent results emerged. We therefore do not expect that differences 
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in scanners and scanner parameters significantly influenced the results. The second limitation is 

that our study has a small sample size and our findings need to be further validated using a large 

dataset. 

Despite the presence of large archives of clinical quality MR images this source of valuable 

data has not been utilized to its full extent in research studies. This study demonstrates the potential 

to utilize large existing clinical brain imaging archives for radiomics opening a vast new data 

resource to researchers and clinicians for a variety of studies. These include clinical 

outcome/association studies, studies of pharmacologic efficacy, and phenome/genome-wide 

association studies. 
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Chapter 4 

4 CTSeg: A Probabilistic brain segmentation method 

for clinical quality head CT images. 

4.1 Introduction 

Total brain volume (TBV) is an important measure for assessing brain atrophy in aging and 

neurodegenerative diseases (Smeets et al., 2016). TBV is estimated from MR or X-ray CT brain 

images by segmenting the brain parenchyma. A number of automated segmentation methods are 

available for MR images that are extensively applied in the clinical domain (Giorgio and De 

Stefano, 2013). In the clinical setting, CT is more widely used than MRI due to faster acquisition 

speed, smaller number of contraindications, lower cost, and its ability to answer a range of clinical 

questions (Li et al., 2016). In current practice, CT images are analyzed by visual inspection. 

However, quantifying brain tissue volumes or brain volumetry is desirable for aiding accurate 

diagnosis. Although a number of automated segmentation methods are available for MR images 

that are extensively applied in the clinical domain (Giorgio and De Stefano, 2013), only a handful 

of automated segmentation methods exist for head CT images. There are two major reasons 

responsible for this limitation: CT images from healthy subjects are difficult and unethical to 

obtain due to the permanent effects of the exposure to ionizing radiation as brain segmentation 

methods are developed using healthy images for brain volumetry. Second, the contrast to noise 
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ratio in CT is low between various tissues (e.g. GM-WM contrast) making them undistinguishable 

leading to the complexity in modelling them. 

 Several existing methods in CT segmentation are either semi-automated (Mandell et al., 

2015; Manniesing et al., 2017) targeted towards a specific brain region (Chen et al., 2009; Liu et 

al., 2010; Ruttimann et al., 1993) or a disease condition (Cherukuri et al., 2018; Mandell et al., 

2015). Methods available for segmenting CT images for measuring global volumes metrics such 

as TIV and TBV from images with no detectable pathology were not formally validated (Gupta et 

al., 2010; Imabayashi et al., 2013; Kemmling et al., 2012). Some well validated methods segment 

only TIV (Aguilar et al., 2015; Muschelli et al., 2015) but not TBV. However, TBV is more 

indicative of disease conditions in neurodegenerative diseases (Jenkins et al., 2000) and TIV is 

used merely as a nuisance variable for normalization purposes. Manniesing et al., (2017) estimated 

TBV using head CT, but used enhanced CT images. However, their method cannot be applied to 

single time point CT images with no image enhancement. Irimia et al., (2019) adapted SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) (Ashburner and Friston, 2005), a widely used MRI based 

segmentation method, for CT segmentation and validated by comparing with MRI images 

segmented using Freesurfer. However, they validated only the accuracy of ventricular CSF and 

not TIV or TBV.  

We present a fully automated CT segmentation (CTSeg) algorithm for brain segmentation and 

estimation of TBV and TIV from non-enhanced single time-point head CT images by adapting 

SPM12. CTSeg was validated for brain segmentation and volume estimation by comparing with 

manual segmentation (N=20). Additionally, we present a clinical application where CTSeg is used 

http://www.fil.ion.ucl.ac.uk/spm/
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to show TBV differences in AD (N=116). Sections in this chapter are taken from our article 

published in the American Journal of Neuroradiology as Adduru et al., (2020) 

4.2 Materials and Methods 

4.2.1 Study population 

This study was reviewed and approved by Geisinger’s Health System Foundation’s institutional 

review board. No protected health information (PHI) was collected or accessed for the subjects 

used in this study. This study was a part of a larger research initiative on the question of leveraging 

clinical imaging archives for research studies. A large cohort of 10000 patients containing head 

CT scans were identified from Geisinger health system’s clinical picture archiving and 

communication system (PACS). The patients who have undergone CT scans were selected by 

going back in time, starting from March 2014, until a count of 10000 patients was reached. The 

oldest scan was from September 2007. All the scans were fully de-identified.  

From the cohort we created two datasets: (1) manual segmentation dataset (N=20, subjects free 

of brain abnormalities) and (2) AD dataset (N=167, subjects with and without a diagnosis of AD). 

Fifteen of the AD subjects had catheters and were removed from further analysis. The AD dataset 

that was further analyzed consisted of 152 subjects. 

4.2.2 Manual segmentation dataset 

A total of 20 subjects (mean age, 66 years; age range, 32-89 years; 10 females) were randomly 

selected for manual segmentation of the intracranial space and the brain parenchyma. These 

subjects were free of brain abnormalities and were unremarkable according to the radiology 
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reports. Additionally, through visual inspection we confirmed that the images were free of imaging 

artifacts. 

4.2.3 AD dataset 

The initial cross-sectional AD dataset consisted of 62 subjects (mean age, 77 years; age range, 68-

83 years; 41 females) with a diagnosis of AD and 90 controls (mean age, 78 years; age range, 68-

83 years, 64 females), who did not have a diagnosis of AD or dementia. AD and control subjects 

were selected based on ICD 9 (ICD-9-CM 331.0) codes (“ICD – Classification of Diseases, 

Functioning, and Disability (2009) National Center for Health Statistics,” n.d.). Subjects 

containing gross head pathologies visible on CT images were excluded from this study. All CT 

images were free of imaging artifacts and the radiology reports of the images confirmed no acute 

pathologies or brain abnormalities. A retrospective evaluation indicated that the controls obtained 

a CT scan following headaches or head injury. The CT images were acquired using multiple CT 

scanners and details of the scanner models and image parameters are provided inTable 4.1.  
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Table 4.1 Image and Scanner parameters 

  Manual segmentation 

Dataset (N=20) 

AD Dataset (N=152) 

AD (N=62) Controls (N=90) 

Scanner Model 

  

GE LightSpeed VCT (12) 

GE LightSpeed16 (4) 

Toshiba Aquilion (4) 

GE LightSpeed VCT (26) 

GE LightSpeed16 (18) 

Siemens Sensation 64 (1) 

Toshiba Aquilion (17) 

GE LightSpeed VCT (42) 

GE LightSpeed16 (19) 

Siemens Sensation 64 (1) 

Siemens Sensation 16 (2) 

Toshiba Aquilion (26) 

Slice Thickness  

(mm) 

5.0 5.0 5.0 

Pixel size 

(mm) 

0.4x0.4 (2) 

0.5x0.5 (18) 

0.4x0.4 (5) 

0.5x0.5 (57) 

0.4x0.4 (3) 

0.5x0.5 (87) 

Note— Number of images are indicated within the parenthesis. 

4.3 Image Pre-processing 

The DICOM images obtained for above selected subjects from the PACS archive were converted 

to NifTi format using dcm2niix software (provided with MRIcroGL, 2016 version)  (Li et al., 

2016). During the conversion dcm2niix automatically corrected the images for both gantry tilt, and 

varying slice thickness within the image. All the images were reconstructed with 5mm slice 

thickness. 

4.3.1 Manual Segmentation 

Manual segmentation was performed by a trained operator using the ITK-SNAP 3.6 

(www.itksnap.org) (Yushkevich et al., 2006). The intracranial space was outlined according to the 

http://www.itksnap.org/
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guidelines provided by (Nordenskjöld et al., 2013). The segmented intracranial image was then 

used to segment the brain parenchyma by tracing the boundary between brain tissue and CSF. 

4.3.2 Automated brain segmentation 

CTSeg adapts the unified segmentation algorithm from the statistical parametric mapping (SPM) 

toolbox, version 12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). SPM is widely used for 

segmenting brain tissues such as the GM, WM, CSF, and skull from MR images. SPM creates 

probabilistic tissue maps for each tissue type, and these maps describe the probability of each voxel 

belonging to a certain tissue. SPM segments the brain tissues by iteratively modeling the intensity 

distribution of each tissue type to derive posterior tissue probabilities using Bayes rule followed 

by spatial normalization of the standard tissue probabilistic atlas maps (TPM) (Mazziotta et al., 

2001) to the obtained posterior probabilistic map, and updates the priors to be used in the next 

iteration. This method is independent of the absolute tissue intensity in the original image, i.e., the 

intensity distributions are modeled for each image independently, which makes this method easily 

adaptable for segmentation of brain images from different modalities that have different intensities 

for the tissues. CT images differ from MR images in both, the range of tissue-intensity, and the 

contrast-to-noise ratio between tissue types. In this work, we adapt SPM segmentation to model 

CT image intensities. 

The first step in SPM segmentation is to perform an initial registration of the native space MR 

image to be segmented onto an International Consortium of Brain Mapping (ICBM) MR brain 

template (Mazziotta et al., 2001) in the MNI space. The registered image iteratively goes through 

tissue classification, bias-correction, and spatial normalization until all the parameters are 

optimized to construct the final partial tissue volume maps (Ashburner and Friston, 2005). The 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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initial registration of native space image is the only step that is specific to an MR image as the 

template used is an MR template. We adapted this method for our CTSeg pipeline to perform CT 

image segmentation by using a CT template, that was registered to the TPM or the ICBM MR 

template, needed for the initial affine registration step. Using an adult CT brain template developed 

by Rorden et al., (2012), we aligned the CT image to TPM in the MNI space. In the process of 

creating the CT template, they used an intensity transformation for the CT images for better 

registration with the MR image template. The CT template thus created was in the new intensity 

space and therefore an initial step was required to transform the CT image intensities before 

proceeding with the registration. The TPM used here during segmentation was created originally 

for MR images. However, TPM only contains voxel wise tissue probabilities and is independent 

of the imaging modality. Therefore, we used the default TPM provided in SPM for the CTSeg 

pipeline. 

 

Figure 4.1 CTSeg pipeline for intracranial space and brain parenchyma segmentation from head 

CT images. Within parenthesis is the 3D coordinate space of the image. MNI: Montreal 

Neurological Institute. 
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The CTSeg pipeline is outlined in Figure 4.1 and the steps involved in the pipeline are 

described below:  

1. Intensity transformation: CT image voxel intensities (in Hounsfield units (HU)) are 

transformed to the Cormack units using the method outlined in Rorden et al., (2012) to 

match the intensity space of the CT template.  

2. Registration: The transformed image is then spatially registered to the CT template 

using a 12-parameter affine registration using FMRIB image registration tool (FLIRT) 

(Jenkinson et al., 2002a; Smith et al., 2002). The affine matrix obtained during the 

registration is retained for use in Step 5. 

3. SPM segmentation: The registered CT image is segmented using SPM, with default 

parameters, to create tissue probability maps for GM, WM and CSF. The affine 

regularization option is selected as ‘no affine registration’ as we already registered the 

CT image to the MNI space template in Step 2. 

4. Adding probabilistic maps: GM and WM maps are added to obtain a probabilistic map 

for the brain parenchyma and GM, WM and CSF maps are added to obtain the 

probabilistic map of the intracranial space.  

5. Affine transformation to native space: The probabilistic segmentation maps of the brain 

and intracranial space are transformed back to the native space of the original CT image 

using the inverse of the affine registration matrix computed in Step 2. 
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6. Binarization: The probabilistic maps of the intracranial space and brain parenchyma in 

the native space are binarized by thresholding using respective optimal threshold values 

to create binary segmentation maps. Selection of optimal threshold is discussed in the 

next section. 

Though CTSeg creates individual GM and WM maps we summed them up to obtain brain 

parenchymal maps to obtain TBV. Moreover, the validity of individual GM and WM maps derived 

through the above process is questionable due to low contrast to noise ratio between the tissues in 

CT. Though several previous studies used GM and WM probabilistic maps obtained from CT 

images (Imabayashi et al., 2013; Kemmling et al., 2012), they did not systematically establish the 

validity of the GM and WM maps using ground truth segmentations.  

OPTIMAL THRESHOLD SELECTION 

The probabilistic maps of the brain and the intracranial space obtained by applying CTSeg were 

binarized by thresholding them to obtain the respective binary masks and were compared with 

their respective manual segmentation masks using Dice similarity index (DSI) (Dice, 1945). DSI 

was calculated using the following formula: 

𝑆𝐼 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

where 𝑇𝑃 refers to the ‘True Positive’ voxels where both the binary mask voxels and the 

corresponding ground truth voxels (from manual segmentation) indicated the tissue presence. FP 

refers to ‘False Positive’ voxels where the binary mask indicated the tissue presence when there 

was no tissue in ground truth. FN refers to the number of ‘False Negative’ voxels where the binary 

mask indicated no tissue while the ground truth indicated tissue presence. For both brain and 



58 

 

intracranial probabilistic maps, DSI was computed for a range of probability threshold values 

between 0 and 1 on the training dataset (subset of manual dataset) and tested on the rest of the 

images. The optimal threshold was selected using the following procedure for brain and 

intracranial space maps independently: A set of 10 images from the manual dataset were randomly 

selected as the training set with the remaining 10 used for testing. All the voxels from images in 

the training set were pooled into a single array, separately for the probabilistic map and the manual 

segmentation mask.  The optimal threshold was identified using random search between 0 and 1 

as the threshold value that exhibits the highest DSI on the pooled array of voxels. The optimal 

threshold was then applied to binarize the probabilistic maps of the test images and DSI was 

computed for each test image individually. The robustness of the optimal thresholds was also 

verified using leave-one-out cross-validation.  

4.3.3 Statistical Methods 

The overlap between the automated and manual segmentation masks was measured using Dice 

similarity index (DSI) (Dice, 1945). TIV and TBV were obtained from the probabilistic maps as 

well as the binary masks obtained using CTSeg. For probabilistic maps, volumes were calculated 

by integrating the partial tissue volumes (tissue probability × voxel volume) over all the voxels 

from the respective tissue maps. Volume estimates were calculated from binary masks, by 

multiplying the number of masked voxels by the unit voxel volume.  

Volumes estimated using CTSeg were compared with the manual estimates using scatter plots 

and Pearson’s correlation coefficient. The systematic bias was assessed using Bland-Altman (B-

A) analysis (Martin Bland and Altman, 1986) and percentage difference calculated as a percentage 

of the manual estimates. The absolute agreement between automated and manual volumes was 
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evaluated using the intra-class correlation coefficient (ICC) computed using two-way ANOVA 

(McGraw and Wong, 1996) with fixed effects. The volumes were checked for normality using the 

Kolmogorov-Smirnov test (Massey, 1951).  

The TIV estimates of CTSeg were also compared with the state-of-the-art brain extraction 

method (BET) for CT (Muschelli et al., 2015). The images were processed using the BET pipeline 

with the smoothing option. The bash script used for this pipeline is available at 

http://bit.ly/CTBET_BASH. The TIV was estimated by integrating the volumes of the voxels from 

the binary intracranial mask. 

CTSeg estimated volumes from the images of age-matched AD and control subjects were used 

to compare brain atrophy between AD and controls. AD and control subjects were age-matched 

by minimizing the age-difference using the MatchIt package (Ho et al., 2011) in R (Core Team, 

2013). Previous studies have demonstrated that sex has no significant effect on TBV as a 

percentage of TIV (%TBV) (Smith et al., 2007) as it is a normalized measure that accounts for the 

variability introduced by the head size and sex (Kruggel, 2006; Smith et al., 2007).  Therefore, 

subjects were not sex-matched as all our analyses were performed on %TBV. TBV vs TIV, and 

%TBV vs age scatter plots were used to compare brain atrophy in AD and controls. Linear 

regression models were used to determine the significance of age, sex and ADdiagnosis on %TBV. 

For the regression models, age x ADdiagnosis interaction term was added to check if the rate of 

brain volume loss was significantly different between AD and controls. Additionally, we 

investigated the effect of TIV by modeling TBV using TIV as a confounding factor in the linear 

models, as recommended in recent studies (Nordenskjöld et al., 2013; Voevodskaya, 2014). TIV 

and sex were in addition to age and ADdiagnosis while modeling TBV. Results with P < 0.05 are 

http://bit.ly/CTBET_BASH
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considered significant for all statistical analyses. Statistical analyses were performed using Python 

2.7, R 3.4.3 and MATLAB 8.6.0.  

4.4 Results 

4.4.1 Segmentation 

CTSeg successfully segmented all 20 images from the manual segmentation dataset. The optimal 

image intensity threshold obtained using a random selection of 10 training images was 0.2 for the 

brain mask and 0.0006 for the intracranial mask. These thresholds were robust when applied on 

the test set (Figure 4.2). 

 

Figure 4.2 Dice similarity index (DSI) computed for brain and intracranial binary masks of the 

test subjects. 
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Binary masks from CTSeg agreed well with that of the manual segmentation masks (DSI was 

0.94±0.008 for brain, and 0.98 ± 0.002 for the intracranial masks). The gyri and sulci in the superior 

slices of the brain were well captured by CTSeg (Figure 4.3). 
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Figure 4.3 Axial views of head CT image slices for the three subjects that showed highest TBV 

error. Top row of each subject is the original CT image viewed in brain intensity window (40-80 

Hounsfield Units) and second row is the binary brain mask of CTSeg overlaid on top of manual 

segmentation mask and the original CT image slices. Brown represents regions where CTSeg 

and the manual segmentations agree. Red regions represent false positive labelling by CTSeg and 

green regions represent the false negatives. 
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Figure 4.4 Axial views of head CT images for the three subjects that showed the highest TIV 

error. Top row of each subjects is the original CT image viewed in bone intensity window (300-

1500 Hounsfield Units) and second row is the binary intracranial mask from CTSeg overlaid on 

top of manual segmentation mask and the original CT image. Brown regions represent the voxels 

where the CTSeg and manual segmentations agree. Red regions represent false positive labelling 

by CTSeg and green regions represent the false negatives.  
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4.4.2 Brain volumetry 

 Comparison between automated and manual volume estimates is presented in Table 4.2. The 

binarized TBV, and TIV estimates showed excellent agreement with the manual estimates (ICCs 

were 0.94 and 0.97 respectively) whereas the probabilistic estimates showed lower agreement 

(ICCs were 0.74 and 0.71 for TBV and TIV respectively). The variance of ICC was low for 

binarized estimates. TIV estimated using BET also showed excellent agreement with manual (ICC, 

0.94) but lower than binarized TIV from CTSeg. Binarized CTSeg also exhibited the lowest bias 

in-terms of the percentage difference (Table 4.2) in the B-A plots (Figure 4.5) for both, TIV (mean 

difference of -0.04L for CTSeg binarized vs. -0.05L for BET and -0.13 for CTSeg probabilistic) 

and TBV(mean difference of 0.02L for CTSeg binarized vs. -0.08L for CTSeg probabilistic for 

TBV). The pattern of the linear fit in the B-A plots shows that error increases with average volume 

and therefore head size, for both TIV and TBV estimates from CTSeg. However, the rate of 

increase is higher for probabilistic estimates than binarized estimates of CTSeg. BET TIV estimate 

showed lowest dependence of error on the average volume but showed larger bias than the 

binarized CTSeg TIV. As the binarized CTSeg estimates showed better agreement with manual 

estimates, proceeding evaluations are made only using the binarized CTSeg method. 
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Table 4.2 Comparison of automated TBV and TIV estimates with manual ground truth estimates. 

Parameter Method %difference Pearson's r 

(P-value) 

ICC 

(P-value) 

Bootstrap 

mean ICC  

(95% CI) 

      

TBV      

 CTSeg-

probabilistic 

-7.22±2.98 0.96 

(<1E-10) 

0.74 

(<1E-10) 

0.727 

(0.724, 0.730) 

 CTSeg-

binarized  

1.58±3.46 0.95 

(<1E-10) 

0.94 

(<1E-10) 

0.937 

(0.935, 0.939) 

      

TIV      

 CTSeg-

probabilistic 

-12.15±1.44 0.99 

(<1E-20) 

0.71 

(0) 

0.685 

(0.680, 0.689) 

 CTSeg-

binarized 

-3.28±1.36 0.99 

(<1E-20) 

0.97 

(0) 

0.962 

(0.961, 0.963) 

 BET -5.12±0.667 0.99 

(<1E-25) 

0.94 

(0)  

0.930 

(0.928, 0.932) 

Note: %difference is reported as mean ± standard deviation. 
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Figure 4.5 (Top row) Scatter plots of automated vs manual volume estimates. Thin black line 

represents the line of equality. Thick black lines represent the linear fit between automated and 

manual volumes. (Bottom row) Bland-Altman plots presenting automated minus manual volumes 

on y-axis and average of automated and manual volumes on x-axis. Mean difference and ± 2 

standard deviations (σ) are represented by dotted and dashed horizontal lines respectively 

4.4.3 Brain volumetry in AD 

CTSeg was applied to the AD dataset containing 152 images. CTSeg successfully segmented 135 

images (58 AD and 77 controls) of 152 images (88%). Reasons for CTSeg failures are discussed 

in the section 4.4.4. After excluding CTSeg failures, 58 control subjects were optimally age-

matched to 58 AD subjects. A paired t-test confirmed no significant age-difference (P=0.74) 

between the two groups after age-matching. Group comparisons were performed on binarized 

volumes estimated from the age-matched subjects. TBV and %TBV computed for AD and controls 

are presented in Figure 4.6.  
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Figure 4.6 (left) Scatter plot of %TBV estimated using CTSeg maps vs age. (right) Scatter plot of 

TBV vs TIV. Lines represent linear fits. 

Linear fit to %TBV indicates a higher loss with age in the AD group than controls. We 

observed significantly lower mean %TBV (P<0.05) in the AD group (76.24±2.87) than the control 

group (77.52±3.05). A paired t-test between %TBVs of the matched subjects also showed a 

significant difference (P<0.05) between the two groups. The linear fit in the TBV vs TIV plot 

shows that the slope is lower for AD suggesting lower TBV to TIV ratio in AD subjects.  

Linear regression analysis (Table 4.3) showed that both age (P<0.001) and ADdiagnosis 

(P<0.05) had significant effect on %TBV. Age x ADdiagnosis term was insignificant as an 

interaction term in the linear model. Similar results were observed when TBV was modeled using 

sex and TIV as additional covariates. Age and ADdiagnosis exhibited significance when these 

variables are modeled as main effects. TIV exhibited significant contribution in all regression 

models. Results remained same when sex was removed from the main effects model. 
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Table 4.3 Results of linear regression analysis 

Model Dependent variable Included predictor B Standard error 

of B 

P-value 

1 %TBV Intercept 99.61   

  Age -0.28 0.06 <0.0001 

  ADdiagnosis -1.28 0.51 0.014 

2 %TBV Intercept 93.02   

  Age -0.20 0.09 0.03 

  ADdiagnosis 12.30 9.94 0.21 

  Age x ADdiagnosis -0.17 0.13 0.17 

3 TBV Intercept 0.29   

  Age -0.004 0.001 <0.0001 

  Sex -0.001 0.009 0.90 

  TIV 0.766 0.031 <0.0001 

  ADdiagnosis -0.017 0.007 0.013 

4 TBV Intercept 0.201   

  Age -0.002 0.001 0.054 

  Sex -0.0004 0.009 0.965 

  TIV -0.76 0.031 <0.0001 

  ADdiagnosis 0.178 0.133 0.186 

  Age x ADdiagnosis -0.0025 0.002 0.146  

5 TBV Intercept 0.293   

  Age -0.0036 0.0008 <0.0001 

  TIV 0.763 0.025 <0.0001 

  ADdiagnosis -0.017 0.007 0.013 
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4.4.4 Segmentation failures in AD dataset 

CTSeg failed to produce acceptable segmentations for 4 of 62 AD images and 13 of 90 control 

images. Failures in the segmentation include segmentations of non-brain regions like eyes as brain 

tissue or segmentation maps that do not resemble brain or intracranial space. Table 4.4 summarizes 

the failure rate of the CTSeg for different scanners. Overall the failure rate was <15% across all 

the scanners. 

Table 4.4 Segmentation failure rates of CTSeg pipeline for different scanners. 

Scanner AD controls Total 

GE LightSpeed VCT  2/26 7/42 9/68 (13%) 

GE LightSpeed16  1/18 3/19 4/37 (11%) 

Siemens Sensation 16 0/0 0/1 0/1 (0%) 

Siemens Sensation 64  0/1 0/2 0/3 (0%) 

Toshiba Aquilion  1/17 3/26 4/43 (10%) 

Total 4/62 (6%) 13/90 (14%) 17/152 (11%) 

Note—Values are 𝑁𝑓𝑎𝑖𝑙𝑒𝑑/𝑁𝑡𝑜𝑡𝑎𝑙, in parenthesis are failure rates as a percentage. 

4.5 Discussion 

TBV is an important measure for assessing brain atrophy in AD and other 

neurodegenerative diseases. Although CT is widely used in the clinical setting, segmentation 

methods to estimate TBV from head CT images are not available. We presented CTSeg, an 

automated head CT segmentation method and validated the method by comparing with manual 

segmentation. 
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TBV and TIV from binary CTSeg masks showed better agreement with manual estimates 

than the TBV and TIV estimates from probabilistic masks. This was expected as the MRI based 

default TPM that we used does not model some of the anatomy present in CT images and 

binarizing the masks by thresholding mitigated these errors. Additionally, the systematic bias in 

TIV estimate using the binary masks was better than TIV estimated using a BET based method by 

Muschelli et al., (2015). 

The utility of CTSeg was demonstrated in a cross-sectional dataset containing AD and 

control groups. We found that CTSeg estimated volumes exhibited significant %TBV (P<0.05) 

difference between AD and control groups in a linear regression model with age, sex and 

ADdiagnosis as covariates. The sex of the subjects had no significant effect on the %TBV. This 

finding is in agreement with previous findings using MR images that normalized global brain 

volumes using TIV (Kruggel, 2006; Smith et al., 2007). The average %TBV estimated from AD 

images was lower than that for matched controls. The statistical insignificance of age x 

ADdiagnosis interaction on %TBV can be attributed to the cross-sectional nature of our dataset. 

We expect that significant TBV group differences can be achieved if longitudinal head CT images 

of the same subjects are tracked. Further, some of the %TBV variability may be due to not 

accounting for the duration from the actual onset of AD with respect to the time of CT image 

acquisition. Another factor that may have contributed to the %TBV is that our controls may have 

atrophy due to undiagnosed disorders. We expect to see higher AD differences if compared against 

healthy controls. Additionally, when TBV is modeled with TIV as a confounding variable we 

observed similar results as with %TBV. TIV was a significant confounding variable in all the 

models. Sex was insignificant in all the models suggesting that correction for TIV removes the 
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structural differences between males and females, which agrees with previous findings using MRI 

estimated volumes (Voevodskaya, 2014). 

Unlike MRI, the intensity of CT images is standardized and is a measure of radiation 

attenuation of the tissue. Therefore, we do not expect the scanner variability to have significantly 

affected our method. The standardized intensity in CT is, in fact, an advantage and makes the 

comparison of CT images across scanners easier, compared to MR images. Additionally, we 

expect the optimal thresholds of CTSeg to be widely applicable as SPM models the tissue 

intensities separately for each image. We confirmed the optimal threshold using two different 

approaches: random search and leave-one-out cross-validation. High DSI in both approaches 

demonstrated the robustness of the optimal threshold. However, further validation on a larger 

dataset is required to verify the robustness of the threshold at different noise levels of CT images. 

In CTSeg we used a standard MR image based TPM specific to an age range of 18-90 years 

for the segmentation (Mazziotta et al., 2001). The CT template used for initial registration was 

developed for an age range of 46-79 years (Rorden et al., 2012). Although the age of the subjects 

used for this study is 67-89 years, we achieved a good segmentation accuracy using the standard 

TPM and the CT template. However, if age appropriate CT-based TPMs are used, we expect that 

segmentation accuracy can further improve. The TPM and the CT templates were created using 

images without brain abnormalities. Therefore, CTSeg assumes that the CT images to be 

segmented have brains that are free of large structural abnormalities like glioma, stroke, surgeries, 

and of image artifacts due to beam hardening and implants. CTSeg can be extended for applications 

for abnormal brain, like identifying lesions (Cabezas et al., 2011).  
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CTSeg marginally overestimated TBV due to the misclassification of dura as brain, in the 

superior slices of the image. This can be attributed to the low contrast-to-noise ratio between the 

soft tissues of CT images. Misclassification of dura is a known problem even in the segmentation 

of T1 weighted MR images (Viviani et al., 2017). TIV and TBV estimates from all automated 

methods tested in this study exhibited a linear dependence of error with head size. Binarizing the 

probabilistic maps using an optimal threshold slightly reduced this linear dependence to some 

extent and this phenomenon can be attributed to several reasons. One reason may be partial volume 

effect, where a single voxel represents two or more tissues due to the finite spatial resolution of 

the image (Tohka et al., 2004). The number of voxels at tissue boundaries increases with head size 

thereby increasing the error in volume estimation due to the partial volume effect. The linear 

dependence of error and head size can also be attributed to errors in spatial registration and 

allometric effect of the tissue priors. In the case of intracranial mask, the optimal threshold was 

very low due to the influence of the high bone intensity (compared to CSF) on the partial volume 

effect for voxels near the bone-CSF interface.  

We computed optimal thresholds for CT images with 5mm image slice thickness, which is the 

clinical standard for CT images. As partial volume effect increases with slice thickness (Souza et 

al., 2005) thresholds may need to be derived independently for images with different slice 

thicknesses. However, it should be noted that CT images reconstructed with smaller slice 

thicknesses exhibit a lower contrast-to-noise which can lead to larger errors in the segmentation of 

brain tissue using CTSeg. Therefore, care should be taken when applying CTSeg to high-resolution 

images. Upon close visual inspection, we note that some brain-CSF boundary regions were 

misclassified especially in the left and right regions of the frontal lobe where the brain is closer to 
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the skull and in regions between the brain hemispheres where the dura is present (Figure 4.3). The 

misclassifications in intracranial maps (Figure 4.4) were observed at the boundaries of the 

intracranial space in the superior and inferior slices resulting in lower TIV estimates compared to 

the manual. We also note that the binarized segmentation misclassified some parts of the eyes as 

the intracranial space. This shortcoming can be corrected by registering a standard intracranial 

mask on to the binary intracranial mask obtained using CTSeg and excluding the voxels classified 

as TIV that are outside the registered standard intracranial mask (Malone et al., 2015). 

4.6 Conclusions 

We present CTSeg to automatically estimate TBV and TIV from non-enhanced head CT images 

acquired for diagnostic purposes that were originally intended for visual evaluations by 

radiologists. We show that CTSeg can accurately estimate TBV and TIV. Application of CTSeg 

on CT images from AD and controls provides evidence that CTSeg can be used for detection and 

tracking global brain atrophy in neurodegenerative diseases. AD does not exhibit symptoms until 

the mild cognitive impairment stage which occurs several years after the onset and CTSeg may be 

used to track brain atrophy in these patients. In addition, CTSeg can be applied to clinical CT 

archives to develop normative brain volumes and to research studies involving neurodegenerative 

diseases that exhibit global brain volume loss.  



74 

 

Chapter 5 

5 Head CT segmentation using fully convolutional 

neural networks with spatial context 

5.1 Introduction 

Currently available head CT methods are able to successfully estimate TIV but not TBV, the 

volume of the brain parenchyma (Akkus et al., 2018; Muschelli et al., 2015). In our previous 

chapter we developed CTSeg (Adduru et al., 2020), a method for segmenting head CT images to 

segment brain parenchyma and intracranial space and accurately estimate both TBV and TIV. 

CTSeg adapted SPM to segment the brain parenchyma and the intracranial space from CT images. 

SPM being an atlas-based statistical modeling method, has the following limitations; poor 

efficiency (takes ~20 minutes/image), requires age specific templates, poor performance when CT 

images contain imaging artifacts or brain abnormalities. SPM is also sensitive to partial volume 

effect which is prevalent especially in thick-slice standard of care CT images. 

Convolution neural networks (CNN) have demonstrated state of the art performance in 

segmenting brain MRI images (Akkus et al., 2017; Litjens et al., 2017). CNNs have been widely 

adapted for medical image segmentation for tasks like whole brain segmentation (Moeskops et al., 

2016; Shakeri et al., 2016), tumor segmentation (Havaei et al., 2015; Menze et al., 2014; Shen and 

Anderson, 2015), lesion segmentation (Brosch et al., 2016; Kamnitsas et al., 2017), and 
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hemorrhage segmentation (Kuo et al., 2019). CNNs are data-driven and they automatically learn 

complex features when trained on a subset of data. Former CNN based segmentations provide 

single label predictions for the complete input patch of an image (Ciresan and Giusti, 2013; Farabet 

et al., 2013; Vaidya et al., 2015). These models have several limitations including slow prediction 

times and post-processing (Bernal et al., 2018). These limitations are resolved by using fully 

convolutional neural networks (FCNN) (Long and Shelhamer, 2015) that perform dense 

prediction. FCNNs are different from traditional CNNs in their last layers where fully connected 

layers are replaced by convolution layers containing filters of single pixel/voxel.  Additionally, 

FCNNs can perform segmentations on variable input sizes without change in performance while 

enabling faster predictions (Kleesiek et al., 2016).   

Ever since their introduction, FCNNs have been widely applied in semantic segmentation of 

medical images. Newer FCNN architectures like Unet (Ronneberger et al., 2015) for 2D and Vnet 

(Wangobani and Macdonald, 2016) for 3D improved the segmentation performance of the FCNNs 

significantly and have demonstrated state of the art performance on various medical image 

segmentation tasks (Zhou et al., 2019). 

However, only a limited number of deep learning based methods are available, that were 

properly validated for unenhanced head CT image segmentation. Among them are two methods 

(Akkus et al., 2020; Kleesiek et al., 2016) for brain tissue segmentation for the purpose of brain 

volumetry. However, both of these only segmented the intracranial volume and not the brain 

parenchyma. Other available deep learning segmentation methods for head CT are for segmenting 

specific brain abnormalities like hemorrhage (Helwan et al., 2018; Islam et al., 2019; Muelly and 

Peng, 2019), tumors (Amiri et al., 2018; van der Heyden et al., 2019), or lesions (Gao and Qian, 
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2018). This lack of methods for CT brain segmentation can be attributed to the reasons that we 

discussed in chapter 4, mainly to the unavailability of proper head CT image datasets. In the 

context of brain segmentation Kleesiek et al. developed a 3D FCNN model to perform brain 

segmentation on MRI images and showed state-of-the-art performance (Kleesiek et al., 2016). 

Their approach included an additional post-processing step of using a connected component filter 

to remove groups of connected voxels lying outside the skull. This additional step was required as 

the CNNs are translation invariant (Rawat and Zenghui, 2017) and identify regions of same 

patterns irrespective of the location. However, removing just connected components is not 

sufficient as regions containing similar patterns may occur connected to the brain. For example, 

regions inside the eye and optic nerve are connected to the brain and connected component filter 

doesn’t filter such regions. Furthermore, this problem aggravates in the presence of noise 

especially in case of the soft tissue regions in CT images. Therefore, a method of incorporating 

location context into the FCNN is required to train the network to learn the spacial context.  

In this work we present an FCNN architecture that incorporates location context to segment 

brain and intracranial space from CT images. We train and validate our model on a dataset 

containing 5mm non-enhanced standard of care CT images (N=20) by comparing with manual 

segmentation. Additionally, we present a clinical application where the network is used to show 

TBV differences in AD vs controls (N=116). To our knowledge this is the first application of a 

deep learning network to segment head CT images. 
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5.2 Materials 

5.2.1 Data 

This work used head CT images obtained from the Geisinger Health system’s clinical imaging 

archive. These images were originally collected for our previous study in chapter 4 and contain 20 

CT images in the manual segmentation dataset and 152 images in the Alzheimer’s disease dataset. 

The 20 CT images were manually segmented, and binary ground-truth tissue masks were created. 

The AD dataset contained 62 AD subjects and 90 control subjects. For more information on the 

subjects, image selection and manual segmentation please refer to Section 4.2. 

5.2.2 Automated brain segmentation 

FCNN 

We used a 2D deep FCNN architecture that trains on 2D patches extracted from the axial slices of 

the CT images. Model in Figure 5.1 (top) shows the architecture of the simple FCNN network for 

CT segmentation. This network consists of seven hidden convolution layers followed by the final 

1x1 convolution layer which is a softmax output layer that predicts the probabilities of each voxel 

belonging to one of the following three tissue classes: brain, CSF and background. This network 

was inspired by the architecture used to segment the intracranial space from 3D MRI (Kleesiek et 

al., 2016). We experimented with several different variations of this architecture by 

increasing/decreasing the number of layers and found negligible change in performance. However, 

compared to their network, we used rectified linear unit (ReLu) as the nonlinear activation function 

for all the hidden convolutional layers, a smaller input size of (61x61) and a larger filter size (7x7) 

in the first layer followed by a 2x2 average pooling layer instead of max pooling for reasons as 

explained below.  
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During training the network accepts a 61x61x1 2D input patch (corresponding to height, width 

and channel respectively) from the CT image and applies the convolution operation with 16 

different filters of size 7x7 in the first layer followed by the non-linear activation function 

producing 16 2D features. The resulting features are down-sampled using an average pooling of 

size 2x2. The average pooling acts as a low pass filter that filters the high frequency noise from 

the 2D features. Since the signal to noise ratio in soft tissues is high for CT images the usage of 

average pooling is advantageous as it filters out the noise from the features. The output of one 

hidden layer is fed as an input to the next layer resulting in a final output of size 3x3 which is a 

sparse output with a stride of 2x2 that covers an output field of 5x5.   

FCNNs are capable of using variable input size patches (Bernal et al., 2018), e.g., an FCNN 

trained on an input patch of size 61x61 can also be applied on a patch of different size e.g. 95x95. 

However, the only requirement is that the resolution (mm/voxel) of both the patches are be similar. 

This feature of FCNNs makes it faster to segment large images containing millions of voxels 

compared to traditional CNNs that predict one voxel at a time. 

FCNN WITH CONTEXT MASK (FCNN+CM) 

One challenge when using CNNs is that the network is translation invariant. Which means that the 

CNNs look for patterns in the image but are not sensitive to the spatial context on where the 

patterns occur. If two regions, one inside the brain and the other outside the skull, have similar 

intensity patterns the network may identify both the regions as brain. This leads to false positive 

segmentations in locations outside the region of interest where similar intensity patterns occur.  
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Figure 5.1 Preprocessing pipeline for patch preparation and proposed network architectures. S1 

and S2 are input image channels. 

Neural networks can be trained to the learn the spatial context by using the location specific 

features as inputs. This can be easily implemented in traditional single voxel prediction models by 

supplying the dense layers with additional location specific input features (Ghafoorian et al., 2017) 

e.g., the coordinates of the center voxel of the input patch. However, these location features are 

very difficult to introduce in an FCNN model where the network only learns to recognize the 

patterns but are incapable of learning the scalar values of the input features. Another possibility is 

to create a model with multi-scale patches to train independent convolutional layers for each scale 

like U-net (Ronneberger et al., 2015) or multi-scale fusion models. U-nets performed better 

segmentation of complex structures, for example the subcortical brain structures, and multi-scale 

fusion methods segmented white-matter hyperintensities. However, these complex architectures 

lead to unnecessary increase in the number of parameters of the neural network, leading to model 

overfitting. 
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Therefore, we used an approach in which we provide contextual information to the network 

using a region mask to limit the search region where the network looks for important patterns only 

within the mask.  The contextual mask is provided as an additional channel along with the input 

image patch. We create this mask by registering an MNI template to the CT image. First a CT 

template defined in the MNI space is registered onto the CT image using a 12-parameter affine 

matrix. This affine registration matrix is used to transform the ICBM 152 intracranial mask in the 

MNI space (Fonov et al., 2009) onto the CT image.  Figure 5.1 (bottom) illustrates the architecture 

of our method. 

5.2.3 Preprocessing: 

Before creating patches for the network, the CT images were pre-processed using the following 

steps: 

1. Intensity transformation: CT image voxel intensities (in Hounsfield units (HU)) are 

transformed to the Cormac units using the method outlined in (Rorden et al., 2012) to match 

the intensity space of the CT template. 

2. MNI ICV mask registration: CT template is registered onto the intensity transformed CT 

image using a 12-parameter affine registration using FMRIB image registration tool 

(FLIRT). This affine matrix obtained during the registration is used to register the ICBM 

152 (Fonov et al., 2009) intracranial mask onto the CT image. 

3. Intensity normalization: The CT image intensities are clipped to the [0-4500] range and 

then rescaled to be within the [0-1] range. During clipping any intensity outside the 

accepted range is set to the nearest boundary value of the clipping range. 
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TRAINING, VALIDATION AND TEST SETS 

The manual segmentation dataset is randomly divided into 8 training, 4 development and 8 test 

images.  

PATCH PREPARATION 

Patches of size 61x61 were extracted from each voxel neighborhood from each axial slice of the 

CT images. For FCNN+CM model, 61x61 patches are extracted from the registered ICBM 

intracranial mask and paired with corresponding image patches creating 61x61x2 patches. The last 

dimension corresponds to the channel number.  

5.2.4 Training 

The neural networks were implemented in Python 3.5 using Keras 2.1.2 with tensorflow 1.4.1 as 

the backend. Stochastic gradient descent algorithm with momentum of 0.9, and Nesterov (Bengio 

et al., 2013) update was used to train the network weights to optimize a cross-entropy as the cost 

function. We use a mini-batch size of 128. The weights were initialized randomly using the Glorot 

initialization (Glorot and Bengio, 2010). To avoid overfitting, we used dropout regularization with 

0.3 probability on all the hidden layers. At each step, batches of size 128 are created by randomly 

sampling the patches without replacement from the training images. To increase the robustness of 

the model, we modify the patch intensities by randomly shifting and scaling by a random value. 

The intensities are shifted by adding a random value in the range [-0.15, 0.15] and scaled by 

multiplying the patch intensities by a random value in the range [0.90, 1.10]. We initiate training 

with a learning rate of 0.025 and reduce it to 0.001 after 200 epochs. Finally, we picked the best 

model with the lowest error on the validation set. 
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5.3 Statistical Analysis 

FCNN and FCNN+CM were used to segment and obtain the probabilistic masks of brain and CSF 

from the manual segmentation dataset. The intracranial mask is obtained by adding the CSF and 

brain masks. The probabilistic masks are binarized by classifying each voxel to the class with 

maximum probability. The overlap between the automated and ground truth manual segmentation 

masks was determined using Dice similarity index (DSI) (Dice, 1945). In addition, the sensitivity 

score was also computed. As we perform a multiclass classification, sensitivity is computed in a 

one vs all manner. For statistical significance a 5-fold cross validation is performed by training the 

network on three folds of the data and using the other two folds for validation and testing. The 

mean and standard deviation of the DSI of the test data are compared between the folds. 

Additionally, the performance of FCNN based segmentation was compared with that of CTSeg .  

TBV and TIV were estimated using the binary masks of the brain and intracranial space 

respectively. Volumes were computed by multiplying the number of masked voxels in the binary 

mask by the unit voxel volume. The estimated volumes from automated methods were compared 

with the manual estimates using %difference, intra-class correlation (ICC) and paired t-test. A 

two-way ANOVA (McGraw and Wong, 1996) with fixed effects was used to compute ICC. Bland-

Altman plots (Martin Bland and Altman, 1986) were used to assess the systematic bias in the 

volumes obtained from the automated methods.  

FCNN+CM and CTSeg were applied to estimate TIV and TBV from the images of age-

matched AD and control subjects. The estimated volumes were used to compare brain atrophy 

between AD and controls. AD and control subjects were age-matched by minimizing the age-

difference using the MatchIt package (Ho et al., 2011) in R (Core Team, 2013). Previous studies 
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have demonstrated that sex has no significant effect on TBV as a percentage of TIV (%TBV) as it 

is a normalized measure that accounts for the variability introduced by the head size and sex 

(Kruggel, 2006; Smith et al., 2007). Therefore, subjects were not sex-matched as all our analyses 

were performed on %TBV. TBV vs TIV, and %TBV vs age scatter plots were used to compare 

brain atrophy in AD and controls. Linear regression models were used to determine the 

significance of age, sex and ADdiagnosis on %TBV. For the regression model, age x AD diagnosis 

interaction term was added to check if the rate of brain volume loss was significantly different 

between AD and controls. A P-value < 0.05 is considered statistically significant for all the 

analyses. All statistical analyses were performed using Python 3.5 using scikit-learn 0.19.1, and R 

programming language.  

5.4 Results 

5.4.1 Segmentation 

Table 5.1 presents the comparison of brain and intracranial space binary masks obtained using the 

automated methods on the CT images from the test set (N=8). All three methods; FCNN, 

FCNN+CM and CTSeg successfully segmented all the twenty manually segmented CT images. 

We used the same thresholds for CTSeg (0.2 for brain, 0.0006 for intracranial mask) to binarize 

the probabilistic masks as obtained in chapter 4. With highest DSI and sensitivity on the test set, 

the FCNN+CM model (DSI: 0.953±0.005, sensitivity: 0.972±0.008) exhibited the best 

segmentation performance among the three methods followed by FCNN which was only 

marginally low. SPM exhibited lowest DSI and sensitivity. The above results were observed for 

the validation and training images as well. 
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Table 5.1 Segmentation performance of automated methods using validation data 

  Brain ICV 

DSI Sensitivity DSI Sensitivity 

Test (N=8) 

  FCNN 0.951±0.006 0.971±0.007 0.985±0.004 0.986±0.008 

  FCNN+CM 0.953±0.005 0.972±0.008 0.989±0.003 0.988±0.007 

  CTSeg 0.942±0.006 0.945±0.009 0.977±0.003 0.962±0.007 

Valid (N=4) 

  FCNN 0.942±0.010 0.967±0.010 0.985±0.003 0.985±0.005 

  FCNN+CM 0.946±0.009 0.967±0.009 0.989±0.003 0.988±0.003 

  CTSeg 0.930±0.013 0.958±0.004 0.979±0.001 0.968±0.003 

Train (N=8) 

  FCNN 0.960±0.004 0.972±0.007 0.991±0.002 0.995±0.002 

  FCNN+CM 0.962±0.004 0.972±0.007 0.993±0.001 0.995±0.002 

  CTSeg 0.946±0.007 0.947±0.011 0.979±0.002 0.970±0.006 

Note: Number of images are indicated within the parenthesis. Values are mean ± Standard deviation. 
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Figure 5.2 Axial views of head CT image slices for the two images for which FCNN+CM 

showed highest TBV error. Binary brain mask of automated methods are overlaid on top of 

manual segmentation mask and the original CT image slices. Yellow represents regions where 

automated methods and the manual segmentations agree. Red regions represent false negative 

labelling by the automated methods and green regions represent the false positives. 

Brain masks obtained from FCNN+CM and FCNN matched the manual segmentation well 

with low DSI for all of the subjects except the ones shown above. Both FCNN methods segmented 

a region in the middle of ventricles as brain in both the subject images shown in Figure 5.2. When 
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images were examined retrospectively, we observed slightly higher intensity in those regions. 

These regions may not be included in the manual segmentation due to human error. The images 

show that the both the FCNN based methods were able to classify the dura correctly in the top 

slices in both images shown in Figure 5.2. Whereas, SPM segmented dura as brain.  
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Figure 5.3 Axial views of head CT image slices for the two subjects for which FCNN+CM 

showed highest TIV error. Binary Intracranial mask of automated methods are overlaid on top of 

manual segmentation mask and the original CT image slices. Yellow represents regions where 

automated methods and the manual segmentations agree. Red regions represent false positive 

labelling by the automated methods and green regions represent the false negatives. 
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The segmentation masks of TIV from FCNN+CM and FCNN match well with that of the 

manual segmentation (Figure 5.3). The FCNN methods were able to successfully segment the 

boundaries of the CSF and skull regions despite the presence of the partial volume effect (Souza 

et al., 2005) unlike CTSeg which was very sensitive to the partial volume effect and couldn’t 

accurately segment the CSF-skull boundary which is illustrated by the presence of false positive 

regions in the top slices of both the examples in Figure 5.3. The FCNN model segmented some 

localized regions outside the skull as brain (Figure 5.3 B) whereas no such regions were found in 

the segmentations of FCNN+CM supporting the value of using the context mask.  

5.4.2 Brain volumetry 

In this section the performance of the methods to compute brain volume metrics for TIV and TBV 

is compared. Since FCNN+CM has exhibited that usage of contextual map has improved the 

segmentation from the network variant without the contextual map, we will be comparing the brain 

volume metrics between FCNN+CM and CTSeg from here on. Both the methods are compared 

using the separate test set (N=8) from the manual segmentation dataset. 
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Table 5.2 Comparison of volume estimations using automated methods from test set (N=8). 

  % difference ICC ICC p-value Paired t-test 

t-value 

Paired t-test 

p-value 

TBV   

  FCNN+CM 3.92±2.77 0.89 <1E-4 4.30 <0.01 

  CTSeg -7.98±2.41 0.652 <1E-4 -8.69 <1E-4 

TIV   

  FCNN+CM -0.09±1.16 0.99 <1E-6 -0.27 0.79 

  CTSeg -2.89±1.04 0.93 <1E-6 -7.12 <1E-3 

Note: %difference values are mean ± standard deviation. 

 

 

Figure 5.4 (left) Scatter plot of automated vs manual TBV estimates. (right) Bland-Altman plots 

presenting difference between automated and manual TBV (y-axis) vs the mean of the automated 

and manual TBV (x-axis). Solid, and dashed lines represent mean difference and  2 standard 

deviations respectively. 
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Figure 5.5 (left) Scatter plot of automated vs manual TIV estimates. (right) Bland-Altman plots 

present difference between automated and manual TIV (y-axis) vs the mean of the automated and 

manual TIV (x-axis). Solid, and dashed lines are mean difference and  2 standard deviation 

respectively. 

Comparison between automated and manual volume estimates from the images in the test set 

is presented in (Table 5.2). ICCs of TBV, and TIV estimates from FCNN+CM show excellent 

agreement with the manual estimates compared to SPM. The paired t-test shows significant 

difference between the estimated volumes and manual TBV for both the methods. However, the 

statistical significance of FCNN+CM is higher than CTSeg. TIV estimates from FCNN+CM were 

not significantly different from manual estimates, whereas the CTSeg estimates exhibited higher 

difference. FCNN+CM also exhibited the lowest bias in-terms of the percentage difference (Table 

5.2) and mean-difference in the B-A plots (Figure 5.4 and Figure 5.5) for both, TBV and TIV 

estimates (0.04L and -0.09L respectively). The pattern of the linear fit in the B-A plots shows an 

increase in error with average volume and therefore head size, for TBV. However, the rate of 

increase for FCNN+CM is lower than for CTSeg. The TIV error dependence was very low for 
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FCNN+CM with a low systematic bias (mean-difference, 0.001L) whereas CTSeg showed a high 

systematic bias (mean-difference, 0.045L).  

5.4.3 Brain volumetry in AD 

 

Figure 5.6 Brain volumes between AD and controls estimated using FCNN+CM (Top row) and 

SPM (Bottom row). (left) Scatter plot of %TBV estimated using binarized CTSeg maps vs age 

after excluding images with catheters. (right) Scatter plot of TBV vs TIV. Red and green represent 

the AD, and the controls groups respectively. Solid lines represent linear fits. 

FCNN+CM and CTSeg were applied to the AD dataset containing 152 images. CTSeg 

successfully segmented 135 images (58 AD and 77 controls) of 152 images (88%). FCNN+CM 
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was able to successfully segment 148 (62 AD and 86 controls) of 152 images (97%). However, for 

comparing the results between FCNN+CM and CTSeg we have only used same subjects that were 

successfully segmented by CTSeg. After excluding the subjects that CTSeg failed to segment, 58 

control subjects were optimally age-matched to 58 AD subjects. A paired t-test confirmed no 

significant age-difference (P=0.86) between the two groups. TBV and %TBV of AD and controls 

for both the methods are presented in Figure 5.6. The slopes of the linear fits to %TBV indicate a 

higher loss with age in the AD group than in the controls. The linear fits are clearly separated in 

case of FCNN+CM indicating that the AD subjects have lower brain volume than controls at all 

ages. This trend is not observed for volumes estimated using CTSeg. The linear fit in the TBV vs 

TIV plot shows that the slope is lower for AD suggesting lower TBV to TIV ratio in AD subjects 

in FCNN+CM compared to CTSeg. The results of the statistical tests comparing %TBV between 

AD and controls are presented in Table 5.3. We observe a significantly lower mean %TBV (P<1E-

6) in the AD group (72.64±3.45) than the control group (76.07±3.48) using FCNN+CM. A paired 

t-test also confirmed a significant difference. Although a significant difference (P<0.005) was 

observed between %TBV of AD and controls for CTSeg the difference was not as significant as 

FCNN+CM. Linear regression analysis showed that both age and ADdiagnosis had significant 

effect on %TBV for both the methods. This means that AD group exhibited lower %TBV than the 

control group at all ages. However, these values had higher statistical significance in FCNN+CM. 

Sex and age x ADdiagnosis variables did not exhibit any significant contribution to %TBV when 

added as variables in the model for both FCNN+CM and SPM. 
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Table 5.3 Comparison of %TBV estimates between Alzheimer’s(N=58) and control subjects 

(N=58). 

  %TBV 

(AD) 

%TBV 

(Controls) 

2 sample t-test 

p-value 

Paired t-test 

p-value 

Linear model p-values 

age diagnosis 

FCNN+CM 72.63±3.45 76.07±3.48 <1E-6 <1E-6 <1E-3 <1E-10 

CTSeg 76.24±2.87 77.52±3.05 0.023 0.024 <1E-4 0.014 

Note: -- % TBV values are mean ± standard deviation  

5.5 Discussion 

In this chapter we present FCNN+CM, a 2D deep FCNN with context masking, for the 

segmentation of brain and intracranial volume from clinical quality 5mm thick-slice CT images. 

We compare the performance of our network with FCNN, a similar network without context 

masking, and SPM a state-of-the-art method adapted to perform CT segmentation. We compare 

the segmentations of these two methods using DSI and sensitivity with manual segmented tissue 

masks as the ground truth. ICC, %difference and paired t-test were used to compare the estimated 

volumes. By comparing these metrics FCNN+CM was the best performer for both brain and ICV 

estimation. Both TBV and TIV estimated using FCNN+CM exhibited excellent agreement with 

manual volume estimates. The low dependence of volume error on the average TIV estimated 

using FCNN+CM shows that the network is less sensitive to the partial volume effect in the voxels 

near the CSF-skull boundary. 
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APPLICATION IN ALZHEIMER DATASET 

The utility of FCNN+CM was demonstrated in a cross-sectional dataset containing AD and control 

groups and was compared with the results from CTSeg. FCNN+CM estimated volumes exhibited 

significant %TBV (P<1E-6) difference between AD and control groups at all ages. Linear 

regression model also confirmed this result. The sex of the subjects had no significant effect on 

the %TBV for both the methods. This finding is in agreement with findings from previous studies 

using MR images that normalized global brain volumes using TIV (Voevodskaya, 2014). The 

average %TBV estimated from AD images was significantly lower than matched controls for both 

the methods. However, %TBV estimated using CTSeg was only marginally different between AD 

and Controls. This can be attributed to over-estimation of TBV by CTSeg due to the inability to 

segment regions like dura where the brain-dura boundary is affected by noise in CT. Furthermore, 

CTSeg being an atlas-based method depends on the age specific atlas to perform accurate 

segmentation. Usage of a healthy atlas to segment AD images may be one of the reasons for 

inaccurate segmentation by CTSeg. FCNN+CM was robust and performed well in such difficult 

to segment regions. 

Compared to conventional brain segmentation methods which use hand crafted features, deep 

learning models using CNN learn features in a data driven manner. However, deep learning 

requires a training dataset that contains the required features, for the method to generalize well on 

testing datasets. In brain tissue segmentation, brain images contain more or less similar imaging 

features and the number of features that the network had to learn are small compared to general 

domain image datasets that contains a variety of images. Therefore, our network needed only a 

small set of images (N=8) for learning the task of segmenting brain and intracranial volume. Using 
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the 2D segmentation on each slice independently provided large number of image slices despite 

the small number of 3D images. Additionally, usage of patches, and data augmentation, by adding 

noise to the patches during training, further improved the model by making the model learn a 

robust set of features. The requirement of small training dataset makes this network easy to train 

and makes it easily adaptable to segment CT images of brain diseases, or images with artifacts etc. 

This can be done by manually segmenting a small set of images and to train the network from 

scratch or using transfer learning. 

USE OF PATCH-BASED SEGMENTATION 

Patch-based segmentation allows FCNN+CM to focus on a small portion of the image at a time 

making the method robust to features like artifacts or abnormal brain conditions that may be 

present elsewhere in the image. This allows the FCNN+CM to accurately segment regions that are 

not affected by such artifacts. However, in Whole brain segmentation architectures, or atlas-based 

methods like CTSeg, presence of the artifact in any part of the image effects the segmentation of 

the entire image. This is because the atlas-based methods use registration of the image with the 

atlas and registration is very sensitive to the presence of artifacts.  

USAGE OF LARGE INITIAL FILTER SIZE 

Large initial filter size (7x7) was beneficial as it learned to identify larger features that are required 

for segmentation of simpler brain structures like brain parenchyma and intracranial volume instead 

of learning unwanted smaller features responsible for more complex regions at the first layer. 

Unlike MRI, such small features are dominated by noise in CT images and using smaller filter size 

may learn on such noisy features thereby leading to overfitting. Usage of the average pooling layer 
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after the first convolutional layer helped to reduce noise present in the patch thereby improving 

the signal to noise ratio of the larger structural features.  

LOCATION CONTEXT CONTRIBUTION 

Highest DSI for the FCNN+CM model show that the novel procedure in which contextual 

information supplied as a second channel to the CNN was beneficial. The context information 

provided in the form of an intracranial mask was successful in training the FCNN network to 

distinguish if the classified voxels belonged to the background or the foreground (inside or outside 

the cranium respectively).  

INCORPORATION OF COORDINATES INSTEAD OF MASK 

Previous methods to incorporate location information used coordinate information as additional 

input features to the dense layers in the neural network architectures. However, single voxel 

segmentation methods only segment one voxel at a time increasing the segmentation time 

significantly. With FCNN+CM we have the advantage of incorporating location context as well 

as making dense predictions. Furthermore, FCNN+CM can use larger input image-patches thereby 

speeding up the segmentation unlike single voxel segmentation networks which use a fixed input 

patch size. 

We experimented with two types of rescaling; (1)  rescaling the intensity transformed image 

to [0,1] by using 0 as minimum intensity and maximum as the maximum intensity of the image 

and (2) clipping the maximum intensity of the image to 4500 HU and using that as the upper bound 

to rescale the image. The clipping method worked better, and the model was able to converge to a 

lower validation loss. This is expected as the upper bound intensities are highly variable across CT 

images. As all the high intensity voxels above 500HU are mostly bone, in CT, it is useful to clip 
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the images to a fixed higher bound for normalization so that the intensity distributions of various 

tissues are normalized across images. 

2D VS 3D 

We used 2D convolution layers in the network that segment 2D patches obtained from the slices 

of the CT images. Although 3D image data can provide more useful spatial information, given the 

slice thickness of 5mm, image features present in consecutive slices were different. Furthermore, 

use of 2D slices allows segmentation of CT images that do not contain the entire head, which is 

often the case in diagnostic imaging, especially with CT where the usage is regulated due to the 

ionizing radiation (Rorden et al., 2012).  

RESTRICTED TO 5MM NOISE LEVEL CHANGES 

One limitation of FCNN+CM is that the network cannot be used to segment slices with 

significantly different resolution. This model was trained to segment CT images reconstructed with 

5mm slice thickness and 0.4-0.5 mm/voxel resolution. Applying this model on images with 

different resolutions will impact the prediction quality. However, by rescaling the input slices to 

the same resolution will solve this limitation. Another solution is to train the network by feeding 

small patches of the same image with different resolutions.  

Unlike MRI, the intensity of CT images is standardized and is a measure of radiation 

attenuation of the tissue. Therefore, we do not expect the scanner variability to have significantly 

affected our method. Compared to MRimages, the standardized intensity in CT is, in fact, an 

advantage and makes the comparison of CT images across scanners easier. However, further 

validation on a larger dataset is required to verify the robustness of the method.  
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Before applying the trained network for segmenting CT images on new images from a different 

scanner we recommend validating the performance of the network on a small set of images with 

ground truth segmentations from that scanner. In case of a significant difference in performance, 

the network should be retrained to adapt to the new image quality by applying transfer learning 

using a small independent set of images acquired from the new scanner. Additionally, we advise 

that the method may be calibrated from time to time using independently collected images that 

represent the target population to ensure that the method exhibits acceptable performance. 

MNI TIV MASK 

We used a standard MNI space ICBM ICV mask specific to an age range of (47-88) to register to 

the CT images. Although the images have ages different from that of the mask, we do not expect 

this to influence the segmentation because of two reasons. First, we are only using an intracranial 

mask which does not have age specific changes for the brain mask. Second, even if the registration 

is not accurate, the neural network is capable of automatically learning these differences and can 

incorporate these differences to segment the image. 

5.6 Conclusion 

In this chapter we present a 2D fully convolutional deep learning architecture FCNN+CM for 

segmenting the brain and intracranial volume from 5mm standard of care head CT images. This 

method incorporates spatial context using a standard space intracranial mask registered onto the 

CT image and thereafter successfully segments regions within the mask to and achieve 

segmentation with high accuracy. In addition to fast prediction times, FCNN+CM requires only a 

few segmented ground truth labels and making it easy to adapt our method to a variety of head CT 
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images. Using a separate Alzheimer’s dataset, we also demonstrated the utility of this model to 

automatically track brain atrophy in patients with AD. FCNN+CM also enables the inclusion of 

clinical quality CT images in volumetric studies opening new data resources to researchers and 

clinicians for variety of research studies.  
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Chapter 6 

6 Conclusion 

The main contributions in this thesis and their implication are discussed below. We first discuss 

the major contributions and specifications of the studies. We will also briefly discuss future 

directions and prospective studies on better understanding of methods for clinical quality images. 

6.1 Contributions 

6.1.1 Thick-slice clinical quality images are reliable for brain volumetry. 

By comparing the performance of three widely used fully automated methods we demonstrated 

that the thick-slice clinical quality brain MRI images can be reliably used for brain volumetry. 

Global brain volume metrics like TBV, GMV and WMV can be reliably estimated using the 

clinical quality images. This enables the inclusion of large clinical archives of brain images in 

hospitals for a variety of clinical and research studies involving brain volume estimations.  

6.1.2 SPM is the most reliable method for brain volumetry on clinical quality 

images. 

In chapter 3, in addition to finding the reliable usage of thick-slice images, we have shown that 

SPM is the most reliable among the existing state-of-the-art MRI brain segmentation methods for 

clinical quality images.  Our image dataset was heterogeneous spanning different scanners and 

image parameters. Despite the heterogeneity in the data, SPM exhibited consistent results. 
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However, our study used a small dataset and these results need to be further validated using a 

larger dataset.  

6.1.3 Clinical Quality images can be used for Voxel-based morphometry 

We show that the clinical quality images can be reliably used for voxel-based morphometry except 

for some regions at the boundaries of the brain tissues. This means clinical quality images can also 

be used for group comparison studies enabling the inclusion of large imaging archives to study the 

effect of diseases on various regions of the brain in comparison with healthy controls. 

6.1.4 CTSeg is a reliable brain segmentation method for clinical quality head CT 

images  

In chapter 4 we presented a novel brain segmentation algorithm for clinical quality CT images by 

adapting the reliable segmentation algorithm from our first study. We designed a pipeline using 

the existing MRI segmentation algorithm for segmenting CT images and found that the brain 

volume measurements were very accurate when validated by comparing with the measures derived 

from ground-truth manual segmentations. With CTSeg, we then unlock a large clinical image 

archive of CT images, much larger than that of the MRI. However, we had to binarize the 

probabilistic maps as the bone intensity in CT was influencing the segmentation by a phenomenon 

called partial volume effect. Several other disadvantages were observed in this approach due to the 

very nature of the SPM algorithm. Being an atlas-based method, it needed age specific and group 

specific atlases for accurate segmentation.  
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6.1.5 Clinical quality CT with CTSeg can be used for detection and tracking of brain 

volume loss in AD. 

We applied CTSeg on a large dataset containing images from AD and control subjects and found 

that CTSeg derived volumes exhibited similar results as observed in previous studies with research 

quality MRI images. This demonstrated that thick-slice clinical quality CT images can be used for 

estimating and tracking brain atrophy in neurodegenerative diseases. However, a longitudinal 

study is needed to further validate the method for tracking brain atrophy.  

6.1.6 Deep learning brain segmentation method for CT surpassed the state-of-the 

art in brain segmentation. 

In chapter 5 we present a novel deep learning architecture to segment clinical CT images. This 

method was trained on the same dataset that is used in the previous study. We used the ground 

truth manual segmentations to train the deep learning architecture for segmenting the CT images 

into brain and intracranial volumes. This method surpassed the performance of previous 

segmentation methods for CT segmentation. The deep learning model was robust to data from 

different scanners and also for images containing abnormal brain structures or artifacts. We used 

normalization of the intensities before training and found that this improved the convergence of 

the model significantly. One limitation of our model was that the model was trained for images 

with a noise model in 5mm thick slice reconstructions of CT images. This means the model may 

not be as robust when used on higher or lower resolution images. This may require retraining the 

model using images with different resolutions. Additionally, we excluded images that contain 

artifacts and abnormal brains as we do not have enough number of samples of those images to 

train the deep learning model. However, with reasonable samples of image that exhibit artifacts 

and other features, the deep learning based segmentation can be made more robust. 
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6.1.7 Contextual awareness helped deep learning brain segmentation network  

Another contribution of this work is presenting a contextual aware neural network for 

segmentation. Existing CNN based segmentation methods used only the sparse features derived 

from the images. However, in images, same features repeat in different locations and the 

classification of a region depends on the overall context in which these features have occurred. 

Adding local features to the network in the form of intracranial mask is shown to be very straight 

forward, efficient and effective. This mask is a registered standard space tissue probabilistic mask 

which provides only a rough overall context of the location of the patch (inside/outside of the 

cranium). Therefore, this mask can be used irrespective of age of the image that is being segmented 

6.2 Future work 

6.2.1 Need for robust methods for segmenting images with artifacts. 

In this thesis we have mainly focused on the following two aspects of the clinical images: slice 

thickness and CT imagery. However, clinical images come with a variety of heterogeneity which 

includes both image artifacts, and abnormal pathology due to brain condition.  One of the main 

challenges with developing methods that are robust to this level of heterogeneity is the lack of 

sufficient samples of imaging data representing each kind of heterogeneity and it is very hard to 

collect these images. Artificially creating these samples is another possibility. This can be achieved 

by using generative networks that can artificially create the artifacts or brain abnormalities on the 

input images that are normal. Using these generative networks (Nazeri et al., 2000), artifacts of 

different sizes and types can be created in locations of our choice in the images. Binary maps that 

specify the location of these artifacts can also be created using the same generative networks. 
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These generated heterogenous images and their binary ground-truth can then be used to train the 

segmentation models to learn to segment images with these abnormalities. 

6.2.2 Better evaluation techniques 

An important challenge is providing better reference standards for the evaluation of the 

segmentation methods. Although human expert annotations were used as the ground truth for the 

evaluation, it is difficult to demonstrate the performance of the intelligent systems. For example, 

when comparing segmentation maps created by the automated methods with ground truth, in many 

cases the methods may identify a region correctly which the human raters may fail to delineate. 

Such a detection was not rewarded in the performance assessment. On the contrary, it was counted 

as a false positive due to the nature of the metrics we used. A recommended approach for future 

work, that addresses this problem is to use several human raters on the test set and obtain multiple 

ratings from each rater for the same images. This gives us the opportunity to also study intra and 

inter-rater reliability and score how the automated method performs relative to multiple raters.  

6.2.3 Longitudinal studies for detecting Alzheimer’s disease progression. 

Application of the segmentation methods in AD was limited by the cross-sectional nature of the 

data set that we used. Therefore, the method was not validated for its performance in tracking the 

disease progression. In this work, we were limited to observing group differences between AD and 

controls. We recommend creation of a dataset containing multiple time point images of the same 

subjects for this purpose. Clinical archives contain images from different modalities collected from 

patients for diagnostic purposes taken at multiple visits. Due to the heterogenous nature of the 
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clinical data, the data collection process for creating a longitudinal data can be challenging and 

tedious involving long hours of human effort.  

6.2.4 Clinical adoption of deep learning segmentation methods. 

Although latest advances in image segmentation methods provide cutting edge tools, transferring 

these technologies for clinical usage is posed with several key challenges (Kelly et al., 2019). Care 

must be taken to ensure that the methods perform as per requirements by performing regular 

periodic validation and calibration using current data that is independently collected and that is 

representative of the target populations. Health care systems need to design regulatory frameworks 

to perform these periodic audits effectively. Machine learning methods are prone to the biases 

exhibited by the dataset that is used to train these methods. These limitations and biases must be 

understood and well documented by the developers. The developers must be aware and be 

educated of potential unintended consequences these methods can have on the quality of the health 

care. Careful validation and research are needed to improve the validity of these models thereby, 

leading to understanding the limitations of these methods. It’s very important to document where 

the method fails, for the clinicians to understand in which scenarios the results from the method 

cannot be trusted and therefore not applied. Researchers must work in close collaboration with 

clinicians to understand their requirements and focus on problems that add value to the clinical 

needs. This will lead that the clinical community cares about for them to be excited about the 

methods and build trust leading to effective clinical adoption. A detailed discussion of these 

challenges is beyond the scope of this work and we refer to (Kelly et al., 2019) for deeper 

understanding.  
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