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Dedication 

This work is dedicated to the millions that have suffered and will continue to suffer from chronic 

disease.   
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Abstract 

Chronic illnesses are poorly understood diseases that are often highly resistant to treatment. The 

prevalence and severity of these illnesses necessitates new methods for treatment development that 

diverge from the paradigm of one drug, one illness. Instead, multidrug interventions that utilize 

repurposable, previously approved drugs could be far more advantageous. In order to support this, 

a novel scoring framework and accompanying set of tools, collectively termed DrugAble, have 

been developed. DrugAble scores proposed, model-based treatment target solutions by analyzing 

drug-target interaction data and addressing the network complexity of these solutions. 

Actionability scores that summarize the likelihood of a proposed target set constituting a 

pharmacologically accessible path to remission are generated. Additionally, DrugAble proposes 

combinations of repurposable drugs that can potentially be used in tandem to achieve remission. 

Here, DrugAble is demonstrated on molecular target solutions supporting an escape from Myalgic 

Encephalomyelitis / Chronic Fatigue Syndrome, a debilitating illness that affects up to 2.5 million 

Americans alone. DrugAble effectively discriminates between theoretical target sets and those that 

are clinically actionable using available drugs while simultaneously accounting for drug-target 

interactions and off-target effects of these drugs. This framework constitutes the necessary first 

steps to designing more effective treatments for chronic illnesses, with the ultimate goal of 

reducing the failure rate of clinical trials and the financial burden on both drug developers and 

patients. Most importantly, it opens new and more immediately accessible paths toward achieving 

remission and full recovery for those suffering from chronic illnesses.
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Introduction 

Chronic diseases are an increasingly studied though still incompletely understood set of illnesses 

with continual impacts on society. While exact definitions vary, chronic disease differs from 

traditional disease in that it is characterized by a long-term presence of symptoms, often greater 

than three months1. These diseases are usually multi-symptomatic and lead to a variety of health 

complications in affected persons1. According to the National Health Council, greater than 75% 

of all healthcare costs are due to chronic disease, and as of 2007, this was a total of 1.3 trillion U.S. 

dollars annually. It is projected that by 2023, these costs will reach upwards of 4.3 trillion dollars1,2. 

The economic costs speak nothing of the toll that these diseases take on the lives of those affected. 

Chronic diseases are often debilitating, and greatly reduce the quality of life of those suffering 

from such diseases. An increasing amount of multidisciplinary research is being conducted on how 

best to prevent, treat, and cure chronic diseases. 

Over the past two decades, understanding of chronic disease has moved beyond hypotheses 

that attribute disease to single causes and that present as homogeneous phenotypes. It is 

increasingly understood that many chronic diseases are in fact highly heterogeneous in both 

etiology and presentation despite umbrella medical definitions3–6. This new understanding of 

chronic disease has led to an increased need for systems-level approaches to analysis and treatment 

of these illnesses. The field of systems biology arose from a need to analyze biological questions 

from a scope that far exceeds traditional analysis approaches. Viewing disease from the 

perspective of many co-interacting molecular and enzymatic pathways is a more robust and often 

more realistic perspective on disease7,8. Furthermore, because many chronic diseases lack a single 

identifiable cause, they are difficult to analyze using traditional methods. Systems biology allows 

researchers to analyze chronic disease from a wide angle and to consider multiple possible causes 

https://www.zotero.org/google-docs/?8vxGuf
https://www.zotero.org/google-docs/?OR8xHj
https://www.zotero.org/google-docs/?tNUoXb
https://www.zotero.org/google-docs/?I4HiVH
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of disease. When combined with other modern approaches to rapid analysis and treatment, systems 

biology becomes a powerful clinical tool9,10. However, modeling the full complexity of biological 

systems is computationally and temporally expensive, and thus the resolution of these models is 

often limited. By reducing the complexity of biological models into qualitative-- or discrete-- 

values and decisions, the size of the model can be increased even under relatively limited 

computational capacity. Instead of models containing dozens or even hundreds of parameters, 

models can be generated with as few as three parameters (a ternary model), each representing a 

directional, specific interaction between two system components11. For example, the effects of the 

addition of a drug to a system can be modeled as having one of three effects on each component 

of the system-- no interaction, inhibition, or activation. Using such models means that, even in the 

absence of kinetic data and numerous measurements that would otherwise be required, the ultimate 

state of the system can be calculated. This has the inherent advantage of being able to design larger 

models, but it comes at the cost of resolution. In reality, biological models are continuous 

functions. Nevertheless, discrete representations of biological systems can lead to robust and 

valuable results.  

Such discrete models have been applied to solving and understanding hypothesized “steady 

states” responsible for chronic disease12,13. These steady states represent stable, homeostatic 

“basins” in the topology of a model, which, regardless of the beneficence of this state, the 

biological system maintains12. Movement into a new steady state can be triggered by perturbations 

that propagate through the system. In other words, these perturbations can trigger a movement 

from a stable, healthy state to a stable disease state-- chronic disease12,13. Discrete methods for 

analyzing the existence of and movement to these steady states work particularly well because 

https://www.zotero.org/google-docs/?8dkkDa
https://www.zotero.org/google-docs/?ZTF3RL
https://www.zotero.org/google-docs/?PhOcgo
https://www.zotero.org/google-docs/?wLppVe
https://www.zotero.org/google-docs/?V0moPj
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they do not require any knowledge of a system’s kinetics. It does not matter when the system 

reaches the steady state, it only matters why it reaches such a state12.  

The development of these discrete logic models has enabled computation of minimally 

invasive drug interventions for the treatment of chronic disease. A Minimal Intervention Set (MIS) 

is defined by the least number of perturbations needed  in order to induce a transition between 

steady states in a model12. In a clinical reality, this represents the least number of therapies that 

will induce the required changes. In the context of this work, an MIS constitutes a set of molecular 

target-action pairs. Mathematically, there are often multiple ways in which the system may come 

to rest in a given steady state, and multiple steady states in the system. Through the use of Monte 

Carlo methodologies and constraint satisfaction solvers, the behavior of a given system can be 

determined from any starting state, and the likelihood of the system following a certain path can 

be determined. This is further described in Craddock, et al., 2018. These same methodologies are 

applied in the development of treatments. By simulating the immediate effect of a treatment-- 

upregulation or downregulation of a component-- the system is then allowed to evolve towards a 

new steady state12,13. By repeating these simulations many times, the likelihood of a given 

treatment succeeding can be calculated. However, the bulk of existing work in this has focused on 

the identification of treatment targets regardless of how effectively or how specifically they might 

be modulated using known pharmaceutical compounds.  Many if not most of these idealized 

treatments may translate poorly if at all to the clinical space as evidenced by the high failure rate 

of phase II clinical trials.  

General approach 

The current ethos underlying treatment design focuses on single-drug interventions that 

target a specific molecular process. Unfortunately, such treatments are often ineffective when 

https://www.zotero.org/google-docs/?dV0VrB
https://www.zotero.org/google-docs/?9LxkWz
https://www.zotero.org/google-docs/?0IMdwp
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treating chronic disease because of the multifaceted causes of these diseases. As a result, clinical 

trials for treatments of many chronic illnesses fail14–16. The exceptionally long and costly nature 

of clinical trials17 means that there is significant motivation to avoid dedicating resources to 

difficult-to-treat illnesses. In recent years, a new focus on the repurposability of drugs has arisen. 

Thousands of FDA approved drugs, originally for the treatment of one or more relevant conditions, 

may also be valuable for treating newly identified and newly understood illnesses18,19. This 

approach could be a significant boon to both pharmaceutical companies and sufferers of chronic 

disease, as time-to-market may be greatly reduced by implementing repurposing strategies. 

Nevertheless, there remains a need to both reduce the failure rate of clinical trials and to design 

new, efficacious treatments to chronic illnesses. 

To address the failure of single-drug interventions, a paradigm shift is required. Multidrug 

interventions, where drugs work synergistically with one another may be more effective than 

individual drugs alone. This paradigm has already begun to take hold in some areas of medicine, 

especially for the treatment of HIV infection and various cancers. A similar paradigm, known as 

polypharmacology, has attempted to replace the single drug, single target philosophy with a “single 

drug, multiple target” philosophy20. However, this area of pharmacology is not amenable to 

repurposing of drugs and still does not address all of the challenges that the use of multiple drugs 

attempts to overcome. In complex chronic diseases, multidrug treatments may prove to be 

exceptionally effective.  

There are important considerations that must be made when designing multidrug treatment 

courses. The treatments must be as minimally invasive as possible and the number of drugs, their 

frequency of dosage, and their side-effects should be as few as possible in order to reduce strain 

on the patient. While dosing parameters are outside the scope of this project, there remains a 

https://www.zotero.org/google-docs/?Cm7xKs
https://www.zotero.org/google-docs/?nae9KO
https://www.zotero.org/google-docs/?4dvD6N
https://www.zotero.org/google-docs/?90o6t5
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challenge to effective treatment design that computational methods can help resolve. Off-target 

drug interactions can greatly complicate a treatment course through unintended effects to the 

system that were not known during the model generation phase.  

Methods to detect off-target interactions have been widely employed in the field of drug 

discovery and design. Often, a variety of in silico procedures are used to identify these interactions. 

Work by Yera et al., 2014 demonstrated a novel methodology combining natural language 

processing of patient packet information and computational analysis of the 2D and 3D structures 

of drug molecules using adapted established methods21. This data fusion technique produces a 

probabilistic model for how likely two drugs are to share molecular targets. The methodology was 

validated using the Structural Pharmacology Database and the chEMBL database. In 2017, 

Chartier et al., using a combination of Protein Data Bank, PISCES, and DrugBank data, performed 

binding-site similarity analyses for 400 drugs and 7,895 different proteins. Chartier identified 

multiple drug-repurposing candidates as well as a large set of interactions that may explain the 

side-effects of certain drugs22. These works successfully demonstrate valid means for the 

computational prediction of off-target drug interactions. While these applications have 

traditionally been applied to drug discovery and design, similar methods are justifiably applicable 

to treatment design as well. Because predictive methods based on physical interactions and 

structural models are computationally intensive and limited to proteins with solved structures, 

other approaches may be preferable. The application of drug-target information for multidrug 

treatment design has precedent. Torres et al, 2016, analyzed pairs of drugs in DrugBank and 

developed scoring methods for predicting synergistic effects between pairs of drugs while also 

accounting for off-target effects23. However, their work focused specifically on pairs of drugs and 

https://www.zotero.org/google-docs/?DHLtF0
https://www.zotero.org/google-docs/?gSDKe6
https://www.zotero.org/google-docs/?e8qPxn
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on developing signed networks of drug-target effects without focus on scoring differing solutions, 

repurposing drugs, or predicting treatment combinations.  

In order to address the above-mentioned translational gaps, the current work is focused on 

aligning model-predicted molecular and cellular targets with pharmaceutical agents already in 

clinical practice as well as known compounds biochemically catalogued but not yet approved for 

use.  To meet this goal, quantitative criteria have been developed to assess the relative ranking of 

treatment target sets on the basis of their off-target effects, the interchangeability of compounds, 

expected downstream effects and the consensus among models in the robustness of predicted 

response. This theory has been implemented in the form of a computational framework known as 

DrugAble, which mines existing knowledge-bases for drug-target interaction data, links these data 

to targets in a provided model, ranks the solutions to the model, and translates high-scoring 

solutions into pharmaceutical interventions using repurposable compounds.  

Methods 

Drug Identification 

Effective implementation of the proposed scoring methodology requires maximal data on 

drug-target interactions. There are many web databases with drug-target information, including 

DrugBank, PharmGKB, and others. However, because effective data fusion from these sources, 

which do not utilize a standard format nor standard naming conventions, is difficult an alternative 

was sought. Instead, an API interface to the Elsevier Pathway Studio Service, dubbed DTQuery, 

is implemented. The Pathway Studio database contains a massive amount of drug-target 

information collected from literature mining of 3.5 million full texts and 24 million PubMed 

abstract, as well as putative interactions imported from Reaxys Medicinal Chemistry. DTQuery 

accepts input as a JSON file describing the modulations required for each target in all possible 
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MIS candidates and a file containing target names, their alternative names, and identifiers. Using 

this information, a series of queries is performed to the web database. Query 1, provided in a 

pseudo-SQL form, searches for all small-molecule drugs that modulate any of the provided targets. 

Query 2 then iterates over the results of the first query, returning all known targets of each 

identified small-molecule drug. This provides the necessary information on off-target effects. 

Every drug-target interaction that is identified is written to a local flat file. 

Query 1: Drugs that Modulate Each Target 

 

 

Query 2: Find all Off-Target Effects 

 

 

Candidate Solution Scoring 

The scoring of input solutions is a critical component of the DrugAble pipeline. A novel scoring 

function, henceforth known as Actionability (α), is designed to be a quantitative measure of the 

beneficence of a solution. Each of the five component scores summarize key information about 

both the solution and available drugs that may satisfy the parameters of the solution. Additionally, 
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two tuning parameters are defined that allow for weighted adjustment of the contribution of 

cardinality and the antagonist ratio, described below. The composite nature of Actionability 

allows fine-tuning to account for both the complexity of the solutions and the nature of the drugs 

used to achieve the solutions.  

In the following equations, a model is defined as a set of logical vectors each representing 

a solution to the discrete logic model being analyzed. Iverson bracket notation is used for logical 

operations, where conditions within square brackets evaluate to 1 if true and 0 if false. Finally, set 

cardinality is defined by the vertical line enclosure (||). 

The first component of α is cardinality (C). Cardinality is defined in this instance as the 

sum of non-zero elements of the polarity vector that defines a candidate solution to a model. The 

formal definition for the cardinality of a vector s is provided below in Equation (1) :  

Equation 1: 

 

where n is the number of targets in the model, si is the polarity of the target at index i, and 0 is a 

neutral polarity. It is generally best to promote candidate solutions with minimal cardinality. 

Candidate solutions with greater cardinalities will likely require a greater number of drugs in order 

to achieve a remissive state, which introduces a greater risk of destabilizing off-target effects and 

negative side effects for patients.  

 The second component score, the antagonist ratio (V) is defined as the ratio of antagonist 

actions to agonist actions in a candidate solution. It is generally accepted in pharmacology that it 

is easier to downregulate a drug target than to upregulate one []. The antagonist ratio has been 

incorporated in order to promote candidate solutions that require less upregulation of targets, and 
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thus are more likely to have available drugs. The formal definition for a candidate solution s is 

provided below in Equation (2): 

Equation 2: 

 

 

where n is the number of targets to be modulated, si is the polarity of the target at index i, p is the 

sum of antagonist actions, q is the sum of agonist actions, 1 arbitrarily represents an antagonist 

action and 2 arbitrarily represents an agonist action. Maximizing the antagonist ratio is ideal. 

 The third component score, repurposability (R), is a measure of the likelihood that a 

candidate solution can be translated into a true pharmaceutical intervention. It is a function of the 

number of drugs that exist for each target. The greater the number of available drugs, the more 

likely that a valid drug combination can be generated. Repurposability also serves as a filtering 

score. Any candidate solution with no available drugs automatically receives an R score of zero, 

which by design floors α to zero. The formal definition for the repurposability of a candidate 

solution s is provided in Equation (3): 
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Equation 3:  

where n is the number of targets to be modulated and ŝi is the set of all drugs that act with the 

correct polarity on si. Solutions with higher R are likely to have more varied combinations of 

drugs available when generating interventions when compared with lower R values. 

 The fourth component of α, the target score (T) effectively measures the mean number of 

targets a given intervention developed from a candidate solution is expected to have. This measure 

is agnostic to both whether interactions are on or off-target and to the polarity of the interactions. 

The formal definition for the target score of a candidate solution s is provided in Equation (4):  

Equation 4: 

 
 

where n is the number of targets to be modulated and Ki is the set of sums of interactions for every 

drug that also interacts with target i. Thus, T(s) is the geometric mean of the minimum possible 

number of target interactions across all targets in s. Solutions with a lower T are more likely to 

yield drug interventions with fewer off-target effects, and so it follows that minimizing T is ideal.  

 α incorporates the four component scores as well as two tuning parameters, τ and γ, which 

allow for adjusting the weights of V and C respectively. Because V and C are derived from the 

structure of the MIS in contrast to the data-driven R and T scores, the ability to adjust their 

contributions to the final score can be useful. Higher values of τ and γ place scoring emphasis on 
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ideal MIS structure. Being able to adjust τ and γ independently from one another allows for even 

finer rank-tuning. The formal definition of α for a given candidate solution s is provided in 

Equation (5):  

Equation 5: 

 
 

where R, V, C, and T are the same as defined in Equations (1:5).  

While individual component scores can be useful when gauging the viability of a candidate 

solution, a single summary measure is far wieldier. In addition, the ability to weight α with the 

provided tuning parameters means that implementations of the scoring system can be fine-tuned 

for what is considered most desirable in each analysis. In any circumstance, a more maximal α for 

a solution is considered best. Final actionability scores are normalized between 0 and 1 for ease of 

interpretation. It should be noted that neither α nor any of its component scores can be directly 

compared with the same scores from a non-structurally identical model, nor across differing drug-

target datasets. These scores are only valid in the context of the specific models and datasets used 

to generate the scores. There is opportunity for future research into developing a normalized score 

that can compare scores across different datasets and models.  

Intervention Generation 

The final major component of the DrugAble pipeline translates high-scoring candidate solutions 

into proposed clinical interventions. These proposed interventions must satisfy two restrictions. 

First, they must act upon, with correct polarity, every target prescribed to be modulated by the 

candidate solution. Second, they must use no more drugs than the cardinality of the candidate 

solution. Interventions that meet these requirements are considered valid. 
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 Exhaustive generation of interventions is best-formulated as an NP-hard constraint-

satisfaction problem24. In order to overcome the challenges brought by this, a heuristic approach 

using search-space reduction and ranking has been devised. Search-space reduction to identify 

viable drugs is performed based on three requirements. First, the drug must modulate at least one 

prescribed target in the candidate solution with correct polarity. Second, the drug must not 

modulate any other target in the solution with incorrect polarity. Third, any drug whose mean 

number of off-target effects is greater than one standard deviation from the mean number of off-

target effects for all drugs is excluded. Ranking is similarly performed in two steps. In the first 

ranking operation, drugs with a higher number of on-target effects are promoted. In the second 

ranking operation, drugs with more off-target effects are demoted. If at this point there are any 

drugs whose number on-target effects is equal to the cardinality of the candidate solution, a rare 

single-drug intervention has been identified. Most often, this is not the case. 

 Multi-drug interventions are then generated using an iterative combinatorial algorithm. 

First, all combinations of size 2:m from drugs n, formulated as n Choose 2:m, are generated, where 

m is no larger than the cardinality of the candidate solution. From this, a large random sample of 

combinations are selected. Second, all combinations whose total number of on-target effects are 

less than the cardinality of the candidate solution are discarded. Third, combinations containing 

redundant matches, such as two or more drugs modulating all of the same targets, are culled. The 

resulting set of valid drug combinations is then output. Use of a heuristic “filter-rank-filter” 

methodology allows for the generation of valid interventions in far less compute-time than a 

constraint-satisfaction solver or exhaustive guess-and-check strategies. 

Modeling Myalgic Encephalomyelitis / Chronic Fatigue Syndrome 

https://www.zotero.org/google-docs/?7ohuAE
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Myalgic Encephalomyelitis / Chronic Fatigue Syndrome is a severe chronic illness that affects 

millions of individuals across the world. Over a million in the United States alone suffer from 

illnesses that can be categorized as ME / CFS . ME / CFS, while highly complex, is generally 

categorized by long periods of severe bodily fatigue rendering sufferers unable to function 

effectively. In addition to fatigue, sufferers often experience debilitating whole-body pains and 

mental deficits. ME / CFS, affects upwards of one-percent of the world’s population, of which the 

overwhelming majority are women25. Both the etiology and presentation of ME / CFS are poorly 

understood, and in fact may comprise a set of similar but distinct conditions. Nevertheless, ME / 

CFS is increasingly understood in part to be the result of immune dysregulation, likely induced by 

viral infection26,27. 

Morris et al., 2019 developed a regulatory model of ME / CFS based on 28 molecular 

targets, 214 regulatory interactions, and 17 immune markers measured from a cohort of 88 females 

with diagnosed ME / CFS28 . These targets are outlined in Table 1. These 28 targets form a 

highly interconnected regulatory network between the immune and endocrine systems, as well as 

the HPA and HPG axes. Sex hormones exercise significant control over the immune system, 

especially in females29, and this multi-axis network is believed to become dysregulated following 

severe viral infection, such as by the Epstein-Barr virus30.  

 

 

 

 

 

 

https://www.zotero.org/google-docs/?o9fDw3
https://www.zotero.org/google-docs/?Eecwld
https://www.zotero.org/google-docs/?DrMVEM
https://www.zotero.org/google-docs/?q3eSk2
https://www.zotero.org/google-docs/?gIFFfK
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Target Class Function 

Norepinephrine Hormone Stress response modulation 

Estrogen Hormone Development and regulation of 

female reproductive system 

Dopamine Hormone Motor control, hormone control 

Cortisol Hormone Blood sugar modulation, immune 

system suppression 

Luteinizing Hormone Hormone Testosterone production (males), 

ovulation (females) 

Follicle-stimulating hormone Hormone Body growth and development, 

pubertal maturation, reproductive 

modulation 

Gonadotropin releasing hormone 1 Hormone FSH modulation, LH modulation 

Corticotropin releasing hormone Hormone ACTH synthesis modulation 

Progesterone Hormone Menstrual cycle, pregnancy, 

embryogenesis (females), 

testosterone production (males) 

Stress Physiological response Survival instinct promotion 

Natural Killer Cell Cell Response to viral infection 

B-Cell Cell Antibody & cytokine secretion, 

antigen recognition 

Interferon Gamma Cytokine Macrophage activation, MHC 

induction, response to viral 

infection 

Tumor Necrosis Factor Cytokine Cell proliferation and 

differentiation, cell death 

IL1A Cytokine Inflammatory response, Th2 cell 

activation 

IL1B Cytokine Inflammatory response 

IL2 Cytokine Immune response modulation 
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IL4 Cytokine Th2 cell induction  

IL5 Cytokine B-cell growth stimulation 

IL6 Cytokine Multifunctional, pro/anti-

inflammatory response 

C-X-C motif chemokine ligand 8 

(CXCL8) 

Chemokine pro-inflammatory response, 

neutrophil recruitment 

IL10 Cytokine B-cell proliferation, Th1 inhibition 

IL12 Cytokine Th1 cell induction 

IL13 Cytokine Allergic immune response 

IL15 Cytokine Anti-apoptotic response 

IL17A Cytokine Proinflammatory response, NFKB 

& MAPK regulation 

IL23 Cytokine Proinflammatory response, Th17 

mediator 

Table 1: Parameters of the Myalgic Encephalomyelitis / Chronic Fatigue Syndrome Model 

Twenty-Eight hormones, cytokines, chemokines, and immune cells form the interaction network model of ME / CFS. 

All drugs identified by DTQuery directly act upon one or more of these targets. However, no drugs were identified 

that directly target NK-Cell or stress. 

 

Currently, no effective interventions, pharmaceutical or otherwise, exist for the treatment 

of ME / CFS31. In order to address this issue, MIS candidate solutions from five selected models 

of ME / CFS were pooled. These MIS candidates serve here as data for the proof-of-concept 

implementation of DrugAble. Preprocessed solutions were fed to DTQuery in order to identify 

relevant drug-target interactions, and this dataset of interactions was used to perform actionability 

scoring and intervention generation for this solution set.  

Results 

In total, 44,845 drug-target interactions (19,013 agonist, 16,367 antagonist) were identified 

using target-action pairs described by 2,515 MIS candidates. This includes traditional small-

molecules drugs, lead compounds, monoclonal antibodies, and query contaminants. Query 

https://www.zotero.org/google-docs/?4j6zVA
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contaminants include elemental dimers, nonspecific hits such as DMSO, and other non-

pharmaceutical compounds that were identified during querying. The effect of contaminants on 

dataset quality is demonstrated in Figure 1A, where the Ca2+ ion has 632 annotated interactions, 

but is not an actual pharmaceutical. In figure 1B, ambiguous interactions were removed from the 

dataset, preserving only interactions annotated as “positive” or “negative.” This filtered Ca2+ and 

other contaminants from the dataset, tightening the distribution of counts of targets per drug 

significantly. In Figure 1C, the distribution of drugs can be seen per in-model target. Candidate 

solutions where targets with high opportunity for repurposability (R score) are more likely to 

receive a higher actionability score, though this is also dependent on the other component scores 

of Actionability. In this dataset, TNF, IL6, CXCL8, and IL1B appear to be exceptionally 

druggable. As expected, most drugs identified for these targets act as inhibitors. Oppositely, neither 

NK-cell nor stress are druggable. NK-cells, because of their central and essential role in the innate 

immune system, would almost never be intentionally targeted by a pharmaceutical. Stress, on the 

other hand, is difficult to target when it is treated as a single condition. Stress is itself multifaceted 

and not a single molecular target. It would therefore be rare for a drug to be annotated as directly 

targeting stress. Figure 1C also facets the total number of drugs identified per target by whether 

those drugs inhibit or promote the target. Across all targets, there are 1.8x more drugs that inhibit 

these targets than there are that promote it, justifying the inclusion of the antagonist ratio as a 

component score of actionability. 

The propensities for each target in the ME / CFS model to be inhibited or promoted can be 

seen in Figure 2. Interestingly, NK-cell and stress, the two targets for which no drugs were 

identified, are never modulated in any of the candidate solutions. ACTH, IL2, IL4, and IL5 are 

also never modulated. No single target is modulated in every candidate solution, suggesting the 
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presence of multiple subgraphs that lead to the same outcome. In Figure 3, the number of solutions 

by cardinality is divided per model. While model 3 produced the majority of total solutions (2005), 

it produced almost exclusively high-cardinality solutions. Combined, 97 percent of solutions had 

a cardinality of five or greater. Only 2.3 percent of solutions were of cardinality four or less, with 

none below a cardinality of three. The lack of low-cardinality solutions reinforces the highly 

complex nature of ME / CFS, and demonstrates the necessity of including cardinality as a 

component score of actionability.  
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Figure 1: Drugs Identified by DTQuery 

A summary of the drugs and compounds identified by querying the Elsevier Biological Knowledgebase. 

In (A), the distribution of all 44,845 relations is presented, including non-specific annotated interactions 

such as interactions labeled as “unknown.” The median number of interactions is 1.0 interaction / drug.  

In (B) ambiguous interactions have been removed, leaving only interactions annotated as “positive” or 

“negative.” Additionally, interactions with targets outside of the model have been removed. In (C) a 

breakdown of the polarity of interactions by target is provided. Note that NK-cell and stress are truly 

zero.  
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Figure 2: Upregulation and 

Downregulation of Targets 

The majority of targets are inhibited 

more often than they are promoted, 

with the notable exceptions of GNRH1, 

IL1A, IL12, IL15, and IL17A. IL2, 

IL4, IL5, NK-cell, stress, and ACTH 

are never modulated.  
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Figure 3: Density of Actionability Scores 

A) The distribution of all actionability scores is presented. B) The actionability scores are separated by 

cardinality, from 2 to 5. Actionability is normalized from 0.0 to 1.00, where 1.00 is the most actionable 

solution. The blue highlighted area is a best-fit curve to describe the distribution of scores.  
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Figure 4: Pairwise Correlations of Component Scores 

A) Pairwise scatterplots for each component score of actionability verses each other component, as well as the total 

actionability score. Diagonals are the distribution of each score, and the upper triangle shows the Pearson correlation 

for the corresponding cells. B) The same correlations shown in the upper triangle of A, but color-coded by magnitude.  
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Figure 5: The Effects of Tau and Gamma Tuning Parameters on Actionability 

A) Negative values of tau invert the antagonist ratio metric, instead prioritizing solutions with high 

agonist ratios. Positive values increase the weight of antagonist ratios on actionability. B) Negative values 

of gamma should not be used, as they prioritize high-cardinality solutions. Positive values increase the 

weight of cardinality on actionability. For both tau and gamma, values between 1 and 4 are recommended. 
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Actionability is not a statistical measure. It does not attempt to assign a probability of success or 

failure to a solution, only to rank solutions by their ability to be translated into pharmaceutical 

interventions in comparison to all other solutions available, using known drug-target interactions 

and knowledge about the structure of the solution. A normalized actionability score of 0.9 for a 

given candidate solution does not mean that this solution has a 90 percent chance of successfully 

being translated or succeeding as a pharmaceutical intervention. Rather, an α of 0.9 says that a 

solution is 90 percent more likely to be a good solution, as defined by the standards of an ideal 

solution, than the lowest-ranking solution.   

 Nevertheless, it is important to verify that actionability is a meaningful measure of the 

ideality of a solution. Before the implementation of actionability, the only measure for assessing 

the goodness of a candidate solution was cardinality. Cardinality, while an important metric-- 

hence its inclusion in actionability-- does not provide enough information alone to accurately score 

MIS candidates. As figure 4 demonstrates, no component score alone is able to provide the same 

level of discrimination as actionability is in total. While the antagonist ratio has a strongly positive 

correlation (0.9) with actionability, this correlation is somewhat spurious. Despite a clear upward 

trend in actionability with increasing antagonist ratio, which is expected as per the function of the 

antagonist ratio in calculating actionability, the possible values of actionability vary greatly at each 

level of antagonist ratio. The highest antagonist ratio predicts normalized actionabilities ranging 

from 0.215 to 1.0, a very large range. The distribution of each score is also worth noting. 

Actionability is exceptionally bimodal, with a very high concentration of very low-actionability 

scores. The bimodal nature of this distribution is likely caused by the filtering effects of the 

component scores, which rather harshly cause solutions with even one or two non-ideal component 

scores to drop out. The antagonist ratio distribution is also bimodal, with values concentrated at 
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either end. This suggests that it is common for solutions to have either many antagonized targets 

or many agonized targets, and far less often a comparable number of both, but it is important to 

note that this can vary greatly between models and illnesses. The moderate negative correlation (-

0.4) between repurposability and target score is also to be expected, because with an increasing 

number of available drugs (I.e., a higher repurposability), the target score is likely to increase due 

to an increasing number of off-target effects from those drugs.  

 The strictness of actionability can be adjusted with the tuning parameters τ and γ. These 

two parameters act as exponential scaling factors for the antagonist ratio and cardinality 

respectively. The effect of varying levels of τ and γ on the final actionability score can be seen in 

Figure 5. In Figure 5A, the distribution of actionability scores at τ values between -6 and +6 are 

shown. Any value of τ less than one increases the strictness of actionability greatly. The bimodal 

distribution of actionability seen in positive values of τ disappears. For this dataset, any value of τ  

below -2 is largely uninformative because most scores become effectively zero. Increasingly 

positive values of τ also impart strictness on actionability, though this effect is less extreme than 

negative values. As τ increases from 1, the bimodal distribution in this dataset is preserved, but is 

shifted into a narrower range toward the lower end of actionability scores. The behavior of γ 

(Figure 5B) is distinctly different from that of τ. Negative γ values have a much less drastic effect 

on the distribution of actionability scores, though increasingly negative values do lead to a slightly 

greater density of mid-level scores. Increasingly positive γ values have a similar but less-

pronounced effect on the distribution that increasingly negative values of τ do. In practice, in 

datasets with a high number of small-molecule drugs, a higher τ will cause greater separation in 

actionability between candidate solutions with high antagonist ratio and those with low ratios. This 

may be preferable because small-molecule drugs tend to be antagonists. In the same scenario, a 
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high γ will penalize candidate solutions with a high likelihood of generating interventions that 

have many off-target interactions. This may be preferable because it will indirectly penalize the 

use of promiscuous small-molecule drugs. Conversely, if a dataset is rich in agonist drugs, or a 

model is sparse in candidate solutions with antagonist actions, reducing or even inverting the 

weighting of these scores can be beneficial. Combined, these two parameters can be used to tune 

actionability so that it remains flexible under different assumptions of the ideality of candidate 

solutions. 

The generation of proposed pharmaceutical interventions is the final major function of 

DrugAble. It is also the most computationally demanding. In order to avoid the complexity and 

pitfalls of implementing a constraint satisfaction solver to identify combinations, a filter-rank-filter 

methodology, described above in the methods section, was implemented. The top ten candidate 

solutions were selected for translation to proposed interventions based on their actionability scores. 

For each of the ten candidate solutions, all possible interventions of two and three drugs were 

generated. Because the generation of combinations is performed iteratively down the supplied list 

of drugs, the resulting combinations are implicitly sorted by the least number of off-target effects 

and highest number of on-target effects. For each of the top ten solutions ranked by actionability, 

the top 20,000 combinations were checked for validity. Table 2 shows the target-action pairs for 

the ten highest-ranking solutions, and Table 3 shows the breakdown of valid combinations for 

those. Tables 4 and 5 are offered in contrast, showing the same data but for the 10 lowest-ranking 

solutions. Table 5 shows the top-ranking interventions for each of the 10 highest-ranking solutions.  
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Actionability IL1B IL16 CXCL8 IL10 TNF B-Cell Luteinizing 

Hormone 

1.00 1 1 1 1 1 0 0 

0.98 1 1 1 0 1 0 1 

0.98 1 1 0 1 1 0 0 

0.97 0 1 1 1 1 0 0 

0.96 1 1 0 0 1 0 1 

0.95 0 1 1 0 1 0 1 

0.93 0 1 0 1 1 0 0 

0.91 1 1 0 1 1 1 0 

0.90 0 1 0 0 1 0 1 

0.90 0 1 1 1 1 1 0 
Table 2: Best Solutions by Actionability 

Each of the best ten solutions, ranked by actionability. A 1 represents an antagonistic action, a 0 represents 

no action, and a 2 represents an agonistic action (none present).  

Actionability valid M=2 M=3 Mean OT Table 3: Interventions Generated for 

Top Solutions 

A breakdown of valid interventions 

generated for each of the top ten solutions, 

ranked by actionability. M=2 refers to 

interventions of size 2, and M=3 refers to 

interventions of size 3. Mean OT is the 

mean number of off-target effects across 

all generated interventions.  

1.00 483 57 426 69.6 

0.98 88 6 82 62.4 

0.98 2254 173 2081 10.1 

0.97 2363 171 2191 12.4 

0.96 131 27 104 15.6 

0.95 135 27 108 17.5 

0.93 3000 1310 1690 6.9 

0.90 158 21 137 6.9 

0.90 105 1 104 21.0 

Actionability IL1B IL15 IL1A IL12 IL17A IFNG B-Cell Cortisol GNRH1 Luteinizing 

Hormone 

0.010 0 0 2 0 2 0 0 1 2 0 

0.010 0 0 0 2 2 0 0 1 2 0 

0.010 0 2 0 0 2 0 2 0 1 0 

0.008 1 2 2 2 0 0 0 0 2 0 

0.007 0 2 0 0 2 0 0 1 2 0 

0.003 0 0 2 2 2 0 0 1 2 0 

0.003 0 0 2 2 2 1 0 0 2 0 

0.002 0 2 0 0 2 0 2 0 1 2 

0.000 0 2 2 0 2 0 0 1 2 0 

0.000 0 2 0 2 2 0 0 1 2 0 
Table 4: Worst Solutions by Actionability 

Each of the worst ten solutions, ranked by actionability. A 1 represents an antagonistic action, a 2 an agonist 

action, and a 0 represents no action. 
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Actionability Drug 1 Drug 1 Targets Drug 2 Drug 2 Targets Off-Targets 

Solution 1      

1.00 Rosmarinic acid IL1B,I L16,TNF, 

CXCL8 

IC14 Il6, IL10 12 

... ... ... Oxprenolol IL10 14 

... ... ... norcantharidin IL10, TNf 33 

... ... ... eplerenone CXCL8, IL10 21 

Solution 2      

0.98 Rosmarinic acid IL1B,IL16,TNF, 

CXCL8 

Levonorgestrel Luteinizing Hormone 22 

... ... ... Substance P Antibody Luteinizing Hormone 10 

... ... ... Galantide Luteinizing Hormone 12 

Solution 3      

0.98 Lipid A 

Derivatives 

IL1B, IL6, TNF IL12 Antibody IL10 1 

... ... ... Taurolidine IL10 1 

... Exosurf Neonatal IL1B, IL6, TNF IL12 Antibody IL10 1 

... ... .... Taurolidine IL10 1 

Solution 4      

0.97 Pulegone IL16, CXCL8, TNF IL12 Antibody IL10 1 

... ... ... Taurolidine IL10 1 

... Ammonium 

Acetate 

IL16, CXCL8, TNF IL12 Antibody IL10 1 

... ... ... Taurolidine IL10 1 

Solution 5      

0.96 Lipid A 

Derivatives 

IL1B, CXCL8, TNF Substance P Antibody Luteinizing Hormone 0 

... Exosurf Neonatal IL1B, CXCL8, TNF ... ... 0 

Table 5: Proposed Interventions 
A subset of the generated, predicted interventions for the first five solutions. Ellipses indicate that the cell is unchanged from 

the cell directly above.  
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Discussion 

DrugAble implements flexible quantitative measures that allow for the ranking of idealized 

candidate solutions to chronic illnesses. The actionability summary measure accounts for both 

known drug-target interactions and the complexity of candidate solutions. Importantly, 

actionability can be tuned to weigh its component scores differently. This means that users can 

define, to a degree, what defines an actionable solution. This is important because no two illnesses, 

nor the drug datasets used to examine these illnesses, are the same. While actionability by default 

discourages solutions with high numbers of agonistic requirements, it is not infeasible that a 

researcher may have a drug-target dataset rich in agonistic drugs. In this case, lowering or even 

reversing this weighting may be desirable. For ME / CFS targets and the accompanying drug 

dataset mined by DTQuery, agonistic actions were often unsatisfiable or undesirable. This is 

evidenced by the total lack of agonist actions in the top ten highest-scoring solutions, and the heavy 

presence of agonist actions in the lowest scoring solutions, seen in Tables 2 and 4. While the 

actionability scoring was tuned to intentionally lower the rank of agonist actions, this was clearly 

justified based on the inability to develop any valid interventions for the lowest-ranking solutions. 

Most importantly, actionability is a marked improvement over cardinality alone, the previous 

metric used to judge the viability of a solution. As can be seen in Figure 3B, low-cardinality 

solutions do not necessarily represent highly actionable ones. The range of actionability scores for 

each value of cardinality is often large. If solutions are ranked on cardinality alone, many poorly 

clinically actionable solutions may rise to the top. Thus, the use of actionability is necessary in 

order to filter out these cases.  

Proposed interventions generated by DrugAble need to be examined critically. Table 5 

shows the top interventions for each of the top ten solutions. Solution 1, intervention 5 is 
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suggesting the use of an IL12 antibody to target IL10, even though it stands to reason that an IL12 

antibody would act directly on IL12. Theoretically, this drug should have been filtered during 

search-space reduction because IL12 was not a prescribed target for this solution but is present in 

the model. However, upon examination of the drug-target database, “interleukin 12 antibody” was 

not annotated as modulating IL12.  The first drug proposed by all interventions for Solution 5 is 

“lipid A derivatives.” Lipid A in this case refers to the lipid component of lipopolysaccharide 

endotoxins common to gram negative bacteria32. These are being examined as potential adjuvants 

in vaccines because of their effect on immune modulators33.  Rosmarinic acid, present in all of the 

top interventions for both Solutions 1 and 2, has gained recent attention for its potential ability to 

combat neurodegenerative diseases such as Alzheimers34, but remains unverified as a useful 

pharmaceutical compound. Pulegone is a known carcinogen35. Oxprenolol and eplerenone are both 

anti-hypertensives. These drugs are commonly known as blood-thinners. Coagulation and related 

processes are known to be functions of the immune system, regulated by cytokines36,37. IC14 is a 

clinical trial-withdrawn CD14 antibody shown to inhibit TNF, IL6, and IL10, originally intended 

for the treatment of  Amyotrophic Lateral Sclerosis (ALS)38. Seletalisib is an investigational P13K 

inhibitor being examined for the treatment of immune inflammatory diseases39. Taurolidine is an 

antimicrobial compound also being examined for the treatment of cancers40, though the 

mechanisms for this are varied, not fully understood, and possibly hepatotoxic40,41, despite the low 

number of annotated interactions. There are various other suggested drugs, many of which are 

monoclonal antibodies and other anti-cancer drugs. Most of these chemotherapeutics act through 

cytotoxic mechanisms, which are not ideal for treatment of non-cancers. These findings further 

reinforce the need for robust drug-target datasets free from contaminating interactions or drugs 

known to have undesired effects or mechanisms of action.  

https://www.zotero.org/google-docs/?F4zz3b
https://www.zotero.org/google-docs/?HVadio
https://www.zotero.org/google-docs/?TPMBhL
https://www.zotero.org/google-docs/?EsQXY1
https://www.zotero.org/google-docs/?cvmUuX
https://www.zotero.org/google-docs/?xX0BES
https://www.zotero.org/google-docs/?puUvdC
https://www.zotero.org/google-docs/?IFOkp0
https://www.zotero.org/google-docs/?AXJV8L
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Using the number of off-target effects as a ranking for proposed interventions should be 

done with caution. These numbers will be as accurate as the database given to DrugAble. Any 

intervention with an exceptionally low number of off-target interactions, especially those with 0, 

warrants further analysis because it is rare that a drug is truly without off-target effects. The level 

of error in intervention generation is tolerable for two reasons. Firstly, it is often the case that 

multiple interventions are generated for a single solution, allowing experts to filter out incorrect 

combinations that may slip through. Furthermore, no proposed intervention would ever be 

implemented in a clinical trial without thorough examination by pharmacologists. DrugAble is not 

attempting to circumvent the need for expert examination, but rather to provide these same experts 

with tools to guide their work.  

There are areas of improvement for DrugAble. Firstly, while drug-target interactions are 

accounted for by the actionability score, drug-drug interactions are not considered during the 

intervention generation phase. Future implementations of DrugAble may benefit from utilizing 

such knowledge when available, so as to avoid suggesting pharmaceutical interventions with 

known, adverse drug-drug interactions. Secondly, DrugAble may benefit from more 

straightforward tuning of actionability. The effects of τ and γ as tuning parameters are difficult to 

visualize, and there are currently no tuning parameters implemented for the repurposability or 

target scores. Thirdly, DrugAble is highly sensitive to poor data quality. Because it has no choice 

but to trust the drug-target information it is provided with, spurious results can occur when datasets 

have not been well-curated. Improvement to the specificity of queries made to DTQuery may 

improve mined dataset quality, but in any case, it is important to ensure that DrugAble is provided 

with robust datasets and that results are examined critically. Fifthly, while the filter-rank-filter 

intervention generation method is a clever approach to a complex problem, there is potential that 
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it will miss valid pharmaceutical interventions. It is also by far the slowest step in the DrugAble 

pipeline. Improving the speed and accuracy of intervention generation is therefore important. 

Finally, actionability scores are relative. It is not currently possible to compare actionability scores 

across models of disease with differing targets and drug-target datasets. If a method to generalize 

actionability scores across models and drug-target datasets were developed, it would become 

possible to assess the relative complexity of different models against one another. It would also be 

possible to assess the robustness of different drug-target datasets. Improving upon DrugAble in 

these ways would only enhance its usefulness and accuracy.  

Despite the many areas for improvement, the current implementation of DrugAble is a 

marked improvement over current methods to design and assess multidrug interventions, which 

are few. Data and text mining methods for detecting off-target interactions have been previously 

applied by researchers such as Yera, but this data has not to our knowledge been applied toward 

the development of multidrug interventions. Computational prediction of drug-target effects is  a 

major area of research in pharmacology21–23,42,43, but predicted and putative effects are most-often 

used to guide traditional drug-development approaches. These new methods support the move 

away from traditional drug-development approaches and towards modern approaches that may 

prove to be more robust in treating complex illnesses. 

An additional component score has been developed in order to further improve 

actionability, referred to as the inter-model adjusted confidence score (Ma). Ma is only 

implemented when multiple models, utilizing the same targets, are available to an analysis and 

have generated solutions. Ma accounts for the possibility that a given candidate solution may be 

generated by multiple models, and for the varying robustness and efficiency of those models. 

Robustness and efficiency are two measures generated simultaneously with each candidate 

https://www.zotero.org/google-docs/?HblOOy
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solution. Robustness (r) is the number of times that an MIS candidate succeeds in achieving a 

steady-state transition under a given number of simulations and efficiency (m) is the number of 

transitions required to achieve the goal steady-state. A detailed explanation of both can be found 

in Sedghamiz et al., 2019. The formal definition of Ma for a given candidate solution s is provided 

in Equation (6): 

Equation 6: 

 
 

where S is the set of all models containing s, M(r) is the median robustness of the models in S, and 

M(m) is the median efficiency of the models in S. When multiple models are present, maximizing 

Ma is ideal. However, when only one model is used in the analysis, or the analysis is not based on 

model-derived solutions, Ma is defaulted to 1 and thus has no effect on the final scoring. Ma will 

allow actionability to account for the variability in the tuning between models, an important step 

towards a more generalizable and robust version of actionability. 

While the applicability of DrugAble is here demonstrated on chronic illness, specifically 

ME / CFS, there is no reason that it cannot be applied to a wide range of other illnesses, both 

chronic and acute. Furthermore, while used here on outputs from Bio-ModelChecker, this is not a 

strict requirement. So long as inputs are formatted in the way that DrugAble expects them, data 

from a variety of sources can be used. Rather than inputting an MIS candidate, proposed sets of 

target-action pairs can be given to DrugAble just as any MIS candidate from Bio-ModelChecker 

would be. Finally, while DTQuery currently only supports access to Elsevier’s proprietary 

biological knowledgebase, any drug-target dataset can be used so long as it is formatted as a drug-

target-action triplicate table. The flexibility in the implementation of DrugAble is important 



33 

because it allows researchers using any number of disease-model development methods and with 

virtually any drug-target dataset to also utilize DrugAble.  

Conclusions 

The prevalence, severity, and stubbornness of chronic diseases necessitates innovative methods 

for treatment discovery and design. The long-standing pharmacological paradigm of single-

disease, single-drug interventions is both ill-founded and ineffectual for the treatment of chronic 

illnesses. In order to shift this paradigm, methods that support the development of both multi-drug 

interventions and the use of repurposable drugs are necessary. DrugAble is a promising new 

avenue toward the ranking of competing target-action sets and multidrug therapy design that 

attempts to address these issues. Its ability to effectively discriminate between theoretical solutions 

and those that are clinically actionable based solely on the network-structure of the target sets and 

drug-target interaction data can speed up treatment design significantly. By proposing 

computationally valid pharmaceutical combinations, researchers can be guided toward the use of 

repurposable drugs instead of developing new ones, a costly and time-consuming procedure. By 

reducing the barriers to multidrug treatment design and implementation, new paths towards total 

remission of ME / CFS and a variety of other chronic illnesses have become available.   
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