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Abstract

Deep convolutional neural networks (CNNs) are effective and popularly used in a wide

variety of computer vision tasks, especially in image classification. Conventionally, they

consist of a series of convolutional and pooling layers followed by one or more fully con-

nected (FC) layers to produce the final output in image classification tasks. This design

descends from traditional image classification machine learning models which use engi-

neered feature extractors followed by a classifier, before the widespread application of

deep CNNs. While this has been successful, in models trained for classifying datasets with

a large number of categories, the fully connected layers often account for a large percentage

of the network’s parameters. For applications with memory constraints, such as mobile

devices and embedded platforms, this is not ideal. Recently, a family of architectures

that involve replacing the learned fully connected output layer with a fixed layer has been

proposed as a way to achieve better efficiency. This research examines this idea, extends

it further and demonstrates that fixed classifiers offer no additional benefit compared to

simply removing the output layer along with its parameters. It also reveals that the typical

approach of having a fully connected final output layer is inefficient in terms of parameter
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count. This work shows that it is possible to remove the entire fully connected layers thus

reducing the model size up to 75% in some scenarios, while only making a small sacrifice in

terms of model classification accuracy. In most cases, this method can achieve comparable

performance to a traditionally learned fully connected classification output layer on the

ImageNet-1K, CIFAR-100, Stanford Cars-196, and Oxford Flowers-102 datasets, while not

having a fully connected output layer at all. In addition to comparable performance, the

method featured in this research also provides feature visualization of deep CNNs at no

additional cost.
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Chapter 1

Introduction and Motivation

The strong performance of deep convolutional neural networks (CNNs) has enabled an

enormous number of new computer vision applications. However, many state-of-the-art

CNN architectures are ill-suited for deployment on mobile and embedded devices due

to their high computational and memory requirements. The vast majority of CNN ar-

chitectures are designed as having a feature extractor followed by a classifier. The fea-

ture extractor consists of convolutional layers and pooling operations, while the classifier

is made up of one or more fully connected layers. This has been a common practice

since the early days of deep CNNs, and it descends from traditional image classification

methods. In the years before the first deep CNN won the ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC) challenge, winning methods as documented in [23, 30]

used crafted feature extractors, followed by classifiers based on support-vector machines

(SVM). In ILSVRC2012, the winning method AlexNet proposed in [18] is a deep convo-

lutional neural network, which has a feature extractor, followed by a classifier using three

fully connected layers with ReLU activation in between. In the years followed, popular
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architectures, for example the VGG family proposed in [34], all used multiple fully con-

nected layers. The first work to change that is Network in Network proposed in [22], it

uses a global average pooling (GAP) layer after the feature extractors, and only has a

single fully connected layer for the classifier. In [37], GoogLeNet (Inception v1) uses this

method and won ILSVRC2014. Since then, using global average pooling followed by a

single fully connected layer has been the popular method of implementing the classifier.

A number of papers have developed methods for reducing the parameters in the feature

extractor, for instance, in [18], AlexNet first implemented group convolutions, in depth-

wise separable convolutions introduced in Xception from [4], and squeeze and expand

operations from SqueezeNet presented in [13], but little work has been done to reduce the

parameters in the classifier’s fully connected layers. Because the number of parameters

in the classifier is typically proportional to the number of categories, the classifier can

consume a large portion of the network’s total parameters for large datasets. For example,

in MobileNet v2 from [32], the fully connected layers consume 37% of the parameters in

the CNN for ImageNet-1K classification.

A few existing works have studied how to reduce the number of parameters in a CNN’s

classifier for many-class datasets by using fixed output matrices [10, 29]. These methods

initialize the weights, but do not update them during training, thus increasing the efficiency

of models.

In this research, this idea is taken further. A fixed identity matrix is used as the

classifier, which is equivalent to removing the classifier layer rather than having a fea-

ture extractor followed by a classifier. The convolutional layers are trained directly for

classification and the traditional classification layer is entirely eliminated. This research

shows that the number of parameters can be greatly reduced by rethinking the architec-



CHAPTER 1. INTRODUCTION AND MOTIVATION 3

ture design, as demonstrated in the bar plots for different architectures for ImageNet-1K

classification in Figure 1.1. The green plot shows the total number of parameters for each

architecture. As models get more efficient and compact, the final classifier accounts for

more of the total parameters. The method presented in this work eliminates the need for

a final fully connected (FC) layer for classification, significantly reducing memory require-

ments, especially in already efficient models.
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Figure 1.1: Bar plot showing the percentage of parameters in different parts of various
deep CNN architectures.

This research features the following contributions: 1) It shows that the final convolu-

tional layer can be modified in many widely used CNN architectures to enable the fully

connected layer to be completely eliminated, with little loss in classification performance

but with a large reduction in the total number of parameters for many-class datasets. 2) It

compares the method against existing fixed classifier methods and achieve superior results,
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while being much simpler and more efficient. 3) It shows that the final classifier layer con-

tributes little to overall model classification accuracy. Thus suggesting that using a fully

connected layer is very inefficient and should be changed in future architecture designs

for image classification. 4) It demonstrates that the method’s final convolutional layers

are interpretable without needing any additional computation or post-processing, which

can be prohibitive on edge devices. This enables the CNN to be used for detection and

localization without explicitly using techniques such as Class Activation Mapping (CAM),

which was demonstrated in [41].



Chapter 2

Background work

This work relates to three main categories of existing work: 1) Alternative classifiers

which have been explored mainly for making the output layer more discriminative, or

attempting to make the classifier more efficient, 2) Parameter reduction techniques

which range from the ground-up redesign of networks to post-trained pruning techniques,

and 3) Model visualization which are other techniques to provide visual interpretations

to deep CNN models. These background work are discussed in detail in the following

sections.

2.1 Alternative Classifiers

In [35], a study was conducted to understand what components of a CNN are absolutely

necessary. They concluded that a CNN can be constructed using only convolution oper-

ations by demonstrating that the final fully connected output layer could be replaced by

1-by-1 point-wise convolutions; however, they did not consider that the entire classification

5
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layer could be removed.

A few existing works have studied how to reduce the number of parameters in a CNN’s

classifier for many-class datasets by using fixed output matrices [10, 29]. In [10], it was

shown that any fixed orthogonal output matrix could be used to replace a learned output

matrix with no reduction in performance. While this does not reduce the number of

parameters or computational requirements, they then demonstrated that a Hadamard

matrix could be used. A Hadamard matrix can be deterministically generated and does

not need to be stored, thus enabling increased efficiency. However, it is not possible to

construct a Hadamard matrix if the input to the classifier has fewer dimensions than the

number of output categories because a Hadamard matrix’s rows and columns are mutually

orthogonal. This means for ResNet-18, which has 512-dimensional features input to the

classifier, it would be limited to classifying at most 512 categories. This limitation was

overcome in [29], which proposed a different method of creating a fixed output classifier.

Their approach uses coordinate values of high-dimensional regular polytopes as rows of

the fixed classifier weight matrix. While this approach works, it can be difficult to train,

and it is used mainly to optimize for feature extraction.

It is not currently clear which fixed output matrix approach is best, and some of these

methods still require the classifier’s parameters to be stored, even if the parameters are

not updated during training. In contrast, the approach in this research avoids using an

explicit classification layer entirely, eliminating the problem of selecting and storing a fixed

classifier weight matrix.
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2.2 Parameter Reduction Techniques

A class of popular methods for reducing the number of parameters in the feature extractor

is by using variants of convolution operations. Popular techniques include group convo-

lutions, depth-wise convolutions, bottleneck modules, etc. Group convolutions split the

convolution input and output channels into groups, where each group is a convolution

operation independent of other groups [18]. By removing connections between channels

belonging in different groups, it reduces parameters in the convolution by a factor equal to

the number of channels. Depth-wise separable convolution is a two-step procedure. First,

there is a group convolution where the number of input channels, output channels, and

groups are all the same, followed by a point-wise convolution with the desired number of

output channels [4]. In [9], bottleneck modules which has three layers of 1x1, 3x3, and 1x1

convolutions, using the point-wise convolutions to decrease and then increase the dimen-

sions, reducing the parameters in the 3x3 convolution. Similar techniques are used in [13],

the Fire module uses point-wise convolution to compress the number of channels first,

then uses both 3x3 and 1x1 convolutions to expand to the desired number of channels.

Other methods for reducing the number of parameters are pruning and quantization.

Pruning removes (zeros out) weights after training to promote sparsity, and a wide variety

of pruning methods have been explored [1,7,11,20,21,24,36]. Quantization methods typ-

ically reduce the numeric precision of the weights after training, which can greatly reduce

the number of parameters [5,14,15]. Both pruning and quantization are complementary to

the method proposed in this research, which focuses on eliminating the classifier to reduce

the number of parameters.
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2.3 Model Visualization

One of the major complaints about CNNs is that they lack interpretability, leading to

tools such as CAM [41], Grad-CAM [33], and Grad-CAM++ [3] being developed to better

understand the features that led to the output of the classifier. These methods require

additional post-processing computation after the model has been run to visualize the

evidence used by the classifier to generate its output. In contrast, the approach in this

research enables the CNN to be interpreted immediately, without any extra compute

required.

Visualization of CNN model is already present when Le Cun developed LeNet-5 for

handwritten digit recognition [19], showing the activations in each layer of the network.

In [39], Zeiler introduced a method that visualizes intermediate feature layers in deep con-

volutional neural networks, giving some insight to the inner workings of deep convolutional

neural networks.

Inverting the network is another technique that also provides insight to the network

itself, and reveals that deep features contain information to reconstruct the input image [6,

26].

Zhou et al. discovered that a deep CNN for image classification can also be used for

object detection [40], in the same forward pass calculation. Later they proposed class

activation map [41] (CAM), the technique was introduced as a way to visualize which

portion of the image a CNN used to make a prediction. It requires using global average

pooling in models, and needs extra calculations to produce the CAM. The method in this

work can output CAM, during the inference stage in a single forward pass as well, but can

do it directly without any other additional calculations.



Chapter 3

Methods

In this research, four methods for implementing the classifier are evaluated: 1. using a

learned fully connected classifier 2. using a fixed orthogonal projection; 3. using a fixed

Hadamard projection; and 4. removing the fully connected layer, which is equivalent to

using a fixed identity matrix for projection and setting the bias term to zero. First, the

conventional method of using a fully connected classifier will be explained. Then the two

fixed projection methods [10] will also be explained. Finally the classifier implementation

featured in this work will be demonstrated. All three fixed classifiers will be compared

against a learned fully connected classifier, and against each other, to evaluate their effects

on the model.

3.1 Learned Fully Connected Classifier

In typical deep neural networks for single-class image classification, the last layer is a fully

connected layer of affine transformation, and all its parameters are learned.

9
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First, a few variables will be defined:

• Let f(·) be the feature extractor.

• Let c(·) be the classifier.

• Let x ∈ R3×h×w be the input to the model, assuming the input is an 3 color channel

RGB image and h, w is its height and width.

• Let nc be the number of output channels from the feature extractor.

• Let fh and fw be the height and width of the output from the feature extractor.

• Let f ∈ Rnc×fh×fw be the output feature map, f = f(x).

• Let nk be the number of output categories.

• Let h and hi be intermediate results between layers in the classifier c(·).

• Let y ∈ Rnk be the output of the model, y = c(h).

In earlier deep convolutional neural networks, for convenience we will use the AlexNet

architecture proposed in [18] as an example, f ∈ R256×6×6 is the result of a non-global

max pooling operation of kernel size 3 × 3 in the end of its feature extractor f(·). This

feature map f is then flattened into a vector h0 ∈ R9,216. Then it goes through multiple

affine transformations followed by non-linear activations, to finally produce the output

y ∈ R1000 as shown in Equation 3.1 below

h1 = ReLU (W1h0 + b1)

h2 = ReLU (W2h1 + b2)

y = softmax (W3h2 + b3) .

(3.1)
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In the case of AlexNet, the weights for the affine transformations are W1 ∈ R4,096×9,216,

W2 ∈ R4,096×4,096, W3 ∈ R1,000×4,096; the biases b1...3 are of dimensions 4096, 4096, and

1024 respectively. The final non-linear activation is softmax(·), in order to produce the

final output, which is the classification likelihood for each potential category.

In more recent architectures, the classifier is a single affine transformation, and its

input is produced from a global average pooling (GAP) operation:

h =
1

fh × fw

∑
fh

∑
fw

f . (3.2)

By averaging the elements in each channel, we are able to obtain h ∈ Rnc as the input to

the affine transformation and obtain the output:

y = softmax (Wh + b) . (3.3)

It is intuitive that W ∈ Rnk×nc and b ∈ Rnk . Through the use of GAP, the classifier is still

able to use information from the entire feature map, while consuming way less parameters.

In either case, the weight matrices W and biases b are optimized during back-propagation

using gradient descent.

3.2 Fixed Orthogonal Classifier

In a fixed orthogonal classifier [10], everything is the same as using a learned fully con-

nected classifier, except for the weight matrix W, which is initialized using a specific

matrix, and during back-propagation, it is not updated.

To obtain the weight matrix W, a semi-orthogonal matrix is randomly generated. An
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orthogonal matrix is defined as a square matrix Q, where QQT = QTQ = I, and I is an

identity matrix. In the case of a semi-orthogonal matrix, the matrix is no longer square.

A matrix W is semi-orthogonal if either WTW = I or WWT = I.

Given the semi-orthogonality, in the case of nc ≥ nk, the rows of the weight matrix

W are mutually orthogonal; in the case of nc < nk the columns are mutually orthogonal,

but the rows are not.

In fixed orthogonal classifiers, the weight matrix is not updated during training and is

semi-orthogonal, hence its name.

3.3 Fixed Hadamard Classifier

In fixed Hadamard classifiers [10], the weight matrix is also fixed (i.e., not updated), and it

is initialized from a Hadamard matrix. In this case, the Hadamard matrix is constructed

using Sylvester’s construction. Let H1 be a Hadamard matrix of order 1, defined as

H1 =

[
1

]
. (3.4)

Let k be any non-negative integer greater than 1. Higher order Hadamard matrices of

order 2k can be constructed using Hadamard matrices of the lower order 2k−1, given as,

H2k =

H2k−1 H2k−1

H2k−1 −H2k−1

 . (3.5)

By iterating this process, we can obtain Hadamard matrices of order 1, 2, 4, . . . , 2k.

To construct the weight matrix, we would need to obtain a Hadamard matrix of order
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2k, where k = dlog2 max(nc, nk)e. Then the matrix is truncated to fit the size of the input

and output, by taking its first nc rows and first nk columns.

For instance, if we have 3 output channels from the feature extractor f(·), i.e. nc = 3,

and we have 2 output categories, i.e. nk = 2 then we know the input to the classifier

h ∈ R3 and the desired output is y ∈ R2. To construct the weight matrix we can calculate

k = dlog2 max(3, 2)e = dlog2 3e = 2, therefore we need to construct a Hadamard matrix of

order 22 = 4.

Using Sylvester’s construction, we have

H1 =

[
1

]
,

H2 =

1 1

1 −1

 ,
and finally

H4 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


.

Then we can truncate H4 to obtain

W =

1 1 1

1 −1 1

 .
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Then the output is obtained using the following calculation:

y = αWh + b , (3.6)

where α is a learned scalar parameter that is updated during back-propagation and h is

the input to the classifier.

The fixed Hadamard classifier using this construction has a limitation. It cannot

produce effective outputs when the output dimension is larger than that of the input. For

instance when using it in ResNet-18 for classification of ImageNet-1K, the input is a vector

of 512 dimensions, while the output needs to be 1000 dimensions. Here W has 1000 rows

and 512 columns, and it is apparent that rows 513 through 1000 are identical to rows

1 through 488, resulting in the same intermediate results for all these items. The final

results only differ because b could be different. This is also very apparent from observing

the first two columns of H4 constructed earlier, the first two elements from rows 1 and 3,

or rows 2 and 4, are the same.

3.4 Fixed Identity Classifier

This is the method featured in this work. Here, the final fully connected layer is com-

pletely removed, and the output from the global average pooling layer is directly used

to compute classification scores. The global average pooling layer is immediately after

the last convolution layer in the feature extractor. By removing the FC layer, it greatly

reduces the number of parameters in the network. A depiction of this method is shown

in Figure 3.1. Implementation wise, it is equivalent to setting the weight matrix W as

an identity matrix I, where all the elements on the diagonal are 1 and all other elements
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are 0. This matrix is not updated throughout training. The bias term, b, is also dropped.
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Figure 3.1: A depiction of the fixed identity classifier method.

This method offers an additional benefit: since each channel in the output of the final

CNN layer represents an output class, it enables the outputs to be visualized immediately,

similar to class activation mappings (CAM) [41]. Contrary to CAM which requires post-

processing intermediate results from the neural network, this method can obtain these

visualizations without any extra compute, during the forward pass (inference), along with

obtaining the classification scores. The visualization results are demonstrated in Fig-

ure 3.1, using an image of ostrich from ImageNet-1K test set. As shown in the figure, they

can be directly visualized to represent class-specific visualizations. The model produces

high activation for regions with the correct class (ostrich), low activation for an unrelated

class (zebra), and regions containing background objects (vulture).

This method suffers the same limitation as a fixed Hadamard classifier: it is unable

to handle cases where the number of classification categories is greater than the number
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of channels from the last convolution layer. However, this research is not promoting the

method as a drop-in replacement on existing architectures, it serves as a proxy tool to

study the final classifier layer in current image classification architectures, and a possible

method to design classifiers for future efficient architectures.



Chapter 4

Experiments

To demonstrate the effectiveness of fixed identity classifiers, the methods are evaluated

across a variety of base architectures and datasets. All experiments are implemented

using the Python programming language on PyTorch, an open-source machine learning

framework.

4.1 Architectures

Several common residual networks, as well as mobile architectures that contain far fewer

parameters, are chosen as the base architectures:

• ResNet-18 – The ResNet-18 architecture is a common residual network consisting

of 18 layers and skip connections to help gradient flow [9]. This architecture is used

since it is the fastest residual network to train for ImageNet-1K classification.

• ResNet-50 – ResNet-50 is a residual network with 50 layers and skip connections [9].

This architecture is chosen since it has been commonly used for computer vision

17



CHAPTER 4. EXPERIMENTS 18

applications and achieves higher performance on ImageNet than ResNet-18.

• ResNet-32 – This variant of ResNet is one variant that is optimized for the CIFAR

image classification dataset, where the input image size differs from that used in

ResNet-18 and ResNet-50.

• DenseNet – The Dense Convolutional Network takes the skip connection idea fur-

ther [12]. In DenseNets, each layer has a skip connection to every other layer in a

feed forward fashion. In this research, DenseNet-BC (L = 100, k = 12) is used to

match the work in [10].

• MobileNet v2 – MobileNet architectures are designed to efficiently run on mobile

devices by replacing convolutional layers with depth-wise separable convolutions.

The MobileNet v2 architecture [32] is used, which additionally uses bottlenecks and

residual connections. This architecture is chosen since it is computationally effi-

cient and using a fixed identity classifier can further reduce the network’s memory

requirements.

• ShuffleNet v2 x0.5 – ShuffleNet architectures use point-wise group convolutions

and bottleneck layers to run efficiently on mobile devices. A channel shuffle operation

is applied on top of these operations to allow gradients to flow between different

channel groups, which improves accuracy. ShuffleNet v2 additionally introduces a

channel split operation [25]. In this research, ShuffleNet v2 with half-width (x0.5) is

used.

For learned fully connected classifiers, the reference PyTorch implementations from the

torchvision package are used when available, or implemented as described in the original

work when the reference implementation is not available. For fixed Hadamard classifiers,

the implementation is based on reference code and the source code provided in [10]. For
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fixed orthogonal classifiers, the reference implementation with FC is used, but the weights

are initialized as a semi-orthogonal matrix and updates for the weight matrix is disabled,

which is similar to the implementation in [10]. The fixed identity version simply removes

the classifier, and truncates the output to the desired number of dimensions.

4.2 Datasets

Experiments are done on CIFAR-100 to quickly evaluate the performance of fixed identity

classifiers. Then, experiments are performed on the ImageNet-1K dataset, demonstrating

the robustness of the method on a large dataset with many categories. Additionally,

experiments are performed on two smaller datasets to demonstrate the method’s ability

to perform transfer learning.

These datasets were chosen because they have a large number of classes, making it

possible to test the method’s capability of performing well, while also saving memory.

The following datasets are chosen:

• ImageNet-1K – The ImageNet dataset consists of images from 1,000 categories

from the internet [31]. Each category consists of 732-1,300 training examples and 50

validation examples, which are used for testing. This is a common large-scale image

classification dataset that allows us to test the ability of the fixed identity classifier

method to scale up and showcase its parameter savings.

• CIFAR-100 – The CIFAR-100 dataset contains 100 classes each containing 600

color images of size 32 × 32 [17]. For each class, there are 500 images for training

and 100 for testing.

• Stanford Cars-196 – The Stanford Cars dataset consists of 196 car classes with
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8,144 training and 8,041 testing images [16].

• Flowers-102 – The Oxford Flowers dataset consists of 102 flower categories, with

each class containing 40-258 images [27].

While CIFAR allows for a quick evaluation of different methods, ImageNet tests the ability

of the method to scale up to a large number of categories. The Stanford Cars-196 and

Flowers-102 datasets are used for evaluating the method’s ability to perform fine-grained

transfer learning tasks.

4.3 Implementation Details

4.3.1 General Details

PyTorch is used for all experiments. For CIFAR-100, every model on every architecture

is trained from scratch. For the ImageNet results using a standard fully connected classi-

fication layer, the accuracy from the PyTorch pre-trained models are reported. For other

classifiers on ImageNet, the models are trained from scratch. For all other experiments,

each model is first initialized with pre-trained ImageNet weights and then fine-tuned on

the target dataset.

For training on ImageNet and CIFAR-100, the original setups including methods for

data augmentation [9,10,12] are used. For instance, for training ResNet-32 and DenseNet-

BC on CIFAR-100, the following data augmentations are performed for training: 4 pixels

are padded on each side, then a mirroring is applied at random, followed by cropping to 32×

32 randomly. For testing, the original image is used, only normalization is applied. This

follows the practice in their respective work. The specific hyperparameters for training

the models are given in Table 4.1, both architectures use the stochastic gradient descent
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(SGD) optimizer.

Table 4.1: CIFAR-100 training hyperparameters settings for each architecture.

Hyperparameter ResNet-32 DenseNet-BC

Initial Learning Rate 0.1 0.1
Momentum 0.9 0.9
LR Decay Factor 10 10
LR Decay Epochs [81, 122] [150, 225]
Weight Decay 1.0× 10−4 1.0× 10−4

Batch Size 128 64
Total Epochs 164 300

For training on ImageNet, hyperparameters are given in Table 4.2. Note that Mo-

bileNet v2 uses the RMSProp optimizer. The training scheme for ResNet-18 and Shuf-

fleNet V2 can be found in their original work [9, 25]. As for MobileNet V2, the training

scheme is partially described in the original work [32], while also making a reference to

to [38].

Table 4.2: ImageNet-1K training hyperparameters settings for each architecture.

Hyperparameter ResNet-18 MobileNet v2 ShuffleNet V2

Optimizer SGD RMSProp SGD
Initial LR 0.1 0.02 0.5
Momentum 0.9 0.9 0.9
LR Decay ×0.1 on 30, 60 epochs ×0.98 every epoch Linear decay to 0
Weight Decay 1.0× 10−4 4.0× 10−5 4.0× 10−5

Batch Size 256 256 1024
Total Epochs 90 100 240

Parameters for the transfer learning experiments on Cars-196 and Flowers-102 are
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provided in Table 4.3. All networks were trained with stochastic gradient descent and

momentum of 0.9 for 40 epochs, with a learning rate decay by a factor of 10 at 30 epochs.

Optimal parameters were chosen using a grid search.

Table 4.3: Transfer learning parameter settings for each architecture.

Learning Weight Batch
Architecture Rate Decay Size

ResNet-18 0.01 1e-3 64
ResNet-50 0.01 1e-4 64
MobileNet v2 0.01 1e-4 64
ShuffleNet v2 x0.5 0.1 1e-4 64

4.3.2 Adapting ResNet-32 with the Fixed Identity Classifier on CIFAR-

100

Despite the that the fixed identity classifier cannot work with architecture and dataset

combination that has more classification categories than the dimensions of the feature

vector, a slightly modified version of ResNet-32 is used to compare the effects of using a

fixed identity classifier with the architecture to classify CIFAR-100.

The key idea is to modify the last convolution layer to output 100 channels instead

of 64 channels. In convolutional networks that appeared before residual networks, this

is very easy to implement. However, in ResNets, the network consists of major ”layers”

(not individual layers), and each layer has several blocks. Within each block, there are

several convolution and pooling operations, and in addition, there is a skip connection

between the input and output in every block of the network. This means that the input
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to each block goes through an optional transformation and is added to the output from

the final convolution layer in each block, skipping the other operations in between, and

then this is used as the final output of the entire block. Therefore, simply modifying the

last convolution layer will break the network.

There are several ways to implement the skip connection. Identity, zero-padding, and

learned projection. In the case of identity, the input is added as-is, this mode can only be

used when the number of input and output channels are the same. A learned projection is

a learned one-by-one pointwise convolution filter so that the output can be of a different

number of channels. Zero-padding means additional channels are created, but the values

are all zero.

The original ResNet research showed that using projections in all skip connections is

marginally better than using projections only when doubling the channels. And using

identity and projection is slightly better than using identity and zero-padding.

To accommodate the modification of the last channel, several methods were explored

in preliminary experiments. The results reported uses the zero-padding method as no

method is particularly advantageous while zero-padding introduces the least number of

new parameters.
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Results

All variants of the final classifiers are evaluated on multiple architectures and multiple

datasets, to compare and demonstrate their ability to perform image classification. The

learned classifier is used as the baseline. To see how much accuracy each classifier is

sacrificing, the corresponding top-1 classification accuracy is compared against the baseline

results.

5.1 Results on CIFAR-100

DenseNet-BC and ResNet-32 are trained to perform classification on CIFAR-100, while

different methods are applied to implement its classifier. The results are shown in Ta-

ble 5.1. For DenseNet-BC, all variants of the classifier are used; for ResNet-32, the fixed

identity classifier is not used. This is because the fixed identity classifier is incapable of

dealing with the feature extractor in ResNet-32, which outputs 64 channels, for 100 cat-

egories classification. However, ResNet-32 is trained with the fixed Hadamard classifier,

24
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Table 5.1: Results on CIFAR with different models and different types of classifiers.

nk Architecture Classifier Top-1 Accuracy Performance Gap

100

ResNet-32
Learned 69.46% N/A
Fixed Orthogonal 68.61% -0.85%
Fixed Hadamard 44.86% -24.60%

ResNet-32 w/ Learned 70.23% N/A
100 ch. output Fixed Identity 69.98% -0.25%

DenseNet-BC

Learned 77.61% N/A
Fixed Orthogonal 76.68% -0.93%
Fixed Hadamard 75.84% -1.77%
Fixed Identity 76.90% -0.71%

64 ResNet-32

Learned 73.94% N/A
Fixed Orthogonal 73.92% -0.02%
Fixed Hadamard 73.97% +0.03%
Fixed Identity 74.25% +0.31%

even though it is projected that it will not perform well.

A modified version of ResNet-32 as described in Section 4.3.2 is used to compare both

a learned classifier and a fixed identity classifier on the same base architecture for the full

CIFAR-100 dataset.

To evaluate all the classifiers on a vanilla version of ResNet-32 and CIFAR-100, a 64

categories subset of CIFAR-100 was used so that the number of categories does not exceed

the number of output channels from the feature extractor.

This research was unable to reproduce results for DenseNet-BC using the fixed Hadamard

classifier, using their original open-source code. In their original work, they report 77.67%

for the test accuracy, only 75.84% was achieved in this work. However, the training setup

used in this research is fair to all classifiers, therefore the performance gap still shows that
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not having a dedicated output layer is slightly superior to using a fixed Hadamard matrix,

but not as good as having a learned fully connected classifier.

The results in Table 5.1 indicate that neither the fixed orthogonal classifier nor the fixed

Hadamard classifier performs better than the fixed identity classifier, while being more

complicated, while exhibiting the same weakness of not capable of working with feature

extractors producing less channels than the desired number of classification categories.

In the experiments on the modified ResNet-32, although total parameter count did

increase, the comparison between the two classifier methods is still fair. Multiple runs of

the experiment was completed for both classifiers, and there was no statistical difference

between the classification accuracy from the two methods, although the average for the

learned classifier is still higher.

5.2 Results on ImageNet-1K

Moving on to a more challenging dataset, ResNet-18 with different classifiers are trained

and evaluated on ImageNet-1K.

Similar to the situation before, due to limitations of the fixed Hadamard classifier

and fixed identity classifier, the full 1000 categories are evaluated only on the learned

classifier and the fixed orthogonal classifier. Then all classifiers are evaluated on the first

512 categories of ImageNet-1K, so that the Hadamard classifier and the fixed identity

classifier can be compared. The results are shown in Table 5.2. The results indicate that

while all fixed weights perform worse than learned weights, using a fixed identity matrix,

which is equivalent to removing the classifier layer, outperforms both fixed orthogonal

classifiers and fixed Hadamard classifiers.
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Table 5.2: Results on ResNet-18 with each type of classifier, performing classification on
ImageNet-1K and its subset.

nk Classifier Top-1 Accuracy Performance Gap

1000
Learned 69.76% N/A
Fixed Orthogonal 66.48% -3.27%

512

Learned 77.87% N/A
Fixed Orthogonal 77.29% -0.58%
Fixed Hadamard 76.33% -1.53%
Fixed Identity 77.59% -0.28%

Next, the fixed identity classifiers are used on the mobile architectures, MobileNet v2

and ShuffleNet V2, which are already very compact. Here, only the learned fully connected

classifiers are being compared against, as it has been demonstrated that fixed Hadamard

classifiers do not perform better. The results can be found in Table 5.3.

Table 5.3: Comparison of classification accuracy of the original ShuffleNet v2 and Mo-
bileNet v2 architectures with the fixed identity classifier method applied, trained on the
100 categories subset of ImageNet-1K.

K Architecture Classifier Top-1 Acc.

1000
ShuffleNet V2 x0.5

Learned 60.55%
Fixed Identity 53.06%

MobileNet v2
Learned 71.88%
Fixed Identity 71.03%

100 ShuffleNet V2 x0.5
Learned 72.94%
Fixed Identity 74.42%

By removing the final layer, the model will see significant parameter savings: on Shuf-
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fleNet V2 x0.5 the savings is about 75%, and on MobileNet v2 it’s about 37%. It is

apparent that there is a non-trivial degradation in performance in the case of ShuffleNet

V2. To evaluate whether this is due to the lack of parameters, or the modification to

the architecture, the same tests are run on a very small subset of ImageNet, consisting of

only 100 categories, and the results are also shown in Table 5.3. In this case, the fixed

identity classifier does not perform worse than a learned classifier. Therefore the major

performance gap on ImageNet-1K is likely due to the model being too small rather than

the difference in the model architecture.

5.3 Scalability of fixed classifiers

Originally, the study of fixed classifiers, especially fixed Hadamard classifiers, was intended

to find a classifier that is capable of scaling to more categories without using as many

parameters.

It was quickly determined that a fixed Hadamard classifier does not scale past its input

channels. Research is conducted on smaller subsets of ImageNet-1K to compare if a fixed

Hadamard classifier performs better in any other case. ResNet-18 with different classifiers

are trained on subsets of different sizes, the average top-1 accuracy over three runs are

reported in Table 5.4.

The results fluctuate somewhat at different subset sizes, although the variance between

three runs that only differ in random seeds is not very big. The fluctuations may be due

to overfitting and/or the characteristics of specific categories. The relative performance

plot is shown in Figure 5.1, and it is obvious that the fixed identity classifier is better than

the fixed Hadamard classifier regardless of how the model scales.
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Table 5.4: Top-1 accuracy results of different classifiers on smaller subsets of ImageNet-1K,
using ResNet-18 as base architecture.

nk Learned Fixed Hadamard Fixed Identity

8 74.92% 74.00% 76.58%
16 83.21% 81.25% 83.71%
32 83.64% 81.38% 83.50%
64 75.51% 72.23% 75.63%
128 77.98% 73.82% 78.36%
256 79.03% 77.52% 78.54%
512 77.87% 76.33% 77.59%

5.4 Fine-Tuning with More Datasets

One issue with removing the classifier (replacing it with an identity matrix) is that it

may harm the model’s ability to perform transfer learning. This research demonstrates

that the fixed identity classifier can be applied to more datasets and architectures, in

transfer learning settings. Results with several architectures on the Stanford Cars-196

and Flowers-102 datasets are shown in Table 5.5, they reflect the average top-1 accuracy

of three runs. The results are obtained by fine-tuning a model pretrained on ImageNet.

As the results indicate, the method works on ResNet-18, ResNet-50, MobileNet v2,

and ShuffleNet v2 x0.5 on both datasets. It shows that fixed identity classifiers are able

to achieve comparable results while using significantly fewer parameters, demonstrating

its capabilities in transfer learning and generalization on more datasets.
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Figure 5.1: Relative performance of fixed Hadamard classifier and fixed identity classifier,
against a learned classifier.

5.5 Feature Visualizations with ResNet-50

Visualizations of the final convolutional layer’s outputs for ResNet-50 trained on ImageNet-

1K are given in Figure 5.2. Unlike CAM, by using a fixed identity classifier, no additional

post-processing is required to obtain class-specific visualizations.

Furthermore, despite being trained with only a single label per image, visualizing the

final convolutional layer gives class-specific localization from a single forward pass. In

Figure 5.3, several example images that were downloaded from the Internet are shown.

They consist of multiple ImageNet-1K object categories, demonstrating that this method

is able to produce object localization for free. By selecting multiple channels, this method

can easily visualize activation maps for multiple categories. This is similar to the result
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Table 5.5: Transfer learning performance evaluation of fixed identity classifiers on Cars-196
and Flowers-102 using multiple deep CNN architectures.

Stanford Cars-196

Learned Fixed Identity Savings

ResNet-18 88.12% 86.06% 12.92%
ResNet-50 89.90% 90.35% 5.66%
MobileNet v2 87.68% 86.12% 24.26%
ShuffleNet V2 x0.5 77.99% 75.76% 66.65%

Flowers-102

Learned Fixed Identity Savings

ResNet-18 93.42% 92.78% 16.83%
ResNet-50 95.06% 94.64% 5.10%
MobileNet v2. 94.24% 93.95% 21.66%
ShuffleNet V2 x0.5 87.75% 86.34% 63.52%

in [28]. However, that model uses multiple fully connected layers, requires using a sliding

window method to process the image multiple times, and is trained with a multi-label

training objective. In contrast, using fixed identity classifiers is fully convolutional and

can handle input images of arbitrary size, and produces localization for all object categories

in a single forward pass. This allows controlling the quality of the visualization simply by

resizing the input during inference, as shown in Figure 5.4.

5.6 Attempts to improve the method

A few methods were explored to see if the results of the fixed identity classifier can be

further improved.
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Figure 5.2: Visualizations using fixed identity classifier with the ResNet-50 architecture
fine-tuned on ImageNet-1K. Maximally activated classes are visualized for each object.
Normalized scores and class labels are shown in the top-left corner of each visualization.

5.6.1 Orthogonal initialization and regularization

In this attempt, the network was either initialized using (semi-)orthogonal matrices (and

broadcast into tensors in some cases), or applied soft orthogonality regularization or double

soft orthogonality regularization as described in [2], using weight of 0.025. ResNet-18 is

used as the base architecture, and the networks are trained on 100 category subset of

ImageNet-1K. Results are given in Table 5.6. Unless otherwise mentioned, the parameters

are initialized using uniform He initialization described in [8].

From the results, it is clear that neither orthogonal initialization or orthogonal regu-

larization can further improve the performance of fixed identity classifiers.
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Figure 5.3: Feature map visualizations for images contain multiple categories from
ImageNet-1K.

5.6.2 Alternative pooling methods

Power-average pooling and soft attention pooling are also explored.

When using global power-average pooling in this setting, there is one parameter p, and

the pooling is given as

g(f) = p

√∑
f∈f

fp , (5.1)

where each element is power-averaged per channel. In the case of p = 1, it is equivalent to

sum pooling, which is proportional to average pooling; in the case of p =∞ it is equivalent

to max pooling.



CHAPTER 5. RESULTS 34

Input Image Visualization for image resized to 
224x224 px

Visualization for image  original 
image dimension 500x500px

Figure 5.4: CNN visualization for original image size (500px × 500px) and resized (224px
× 224px)

Table 5.6: Top-1 accuracy results of different orthogonal initialization and regularization
configurations, using ResNet-18 as base on ImageNet-1K 100 category subset.

Orthogonal Initialization Orthogonal Regularization Top-1 Accuracy

None None 81.20%
Final Conv. Layer None 80.58%
All Conv. Layers None 77.44%
None Final Conv. Layer 80.24%
None All Conv. Layers 78.80%
Final Conv. Layer Final Conv. Layer 80.76%

In soft attention pooling, an additional module is created, it has two fully connected

layers with tanh(·) as non-linear activation, and the number of hidden units is variable. It

takes the flattened feature map as input, and the output goes through softmax(·) activation

before being used weights for summing the feature maps.

Models based on the ResNet-18 architecture were trained for ImageNet-1K 100 cat-

egory subset. Neither offers a significant boost to accuracy when using fixed identity
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classifiers. For the sake of brevity, the detailed results are omitted. Furthermore, due to

modifying the pooling operation, this makes free feature visualization unobtainable.

5.7 Summary

The fixed identity classifier was evaluated in multiple configurations, and compared against

other fixed classifiers. In general, all fixed classifiers perform worse than a learned fully

connected classifier. However, among the fixed classifiers, the fixed identity classifier

performs best overall, while being the most simple method.
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Discussions

This research is primarily driven by the work in fixed classifiers, which claims to be more

efficient while maintaining performance [10]. In this research, fixed classifiers are put to

the test, against learned classifiers, and also against the fixed identity classifier, which is

equivalent to removing the fully connected classifier layer. This is an unorthodox approach,

because traditionally CNN architectures have a feature extractor followed by a classifier.

In the method proposed here, the classifier is removed, and classification scores are directly

obtained from the last convolutional layer. Comparing to conventional networks, this is

equivalent to removing the classifier; compared to fixed classifiers, this is equivalent to

using an identity matrix as the fixed weights, which is a matrix that contains as little

information as possible. This method can serve as a proxy to evaluate both learned fully

connected classifiers, as well as fixed classifiers with specifically designed weights.

36
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6.1 Benefits over other fixed classifiers

In all experiments that involve both fixed identity and fixed Hadamard classifiers con-

ducted in this research, the fixed identity classifier outperforms the fixed Hadamard clas-

sifier. This answers the question, whether fixed classifiers help the model learn anything.

The results presented in this research show that specially designed weight matrices do not

help the model learn to better classify. These designed fixed weights does force the feature

extractor to produce features with specific characteristics, as presented in [29]. While also

being capable of producing a classification score comparable to learned classifiers, it is

actually worse than using a simple identity matrix.

While other Hadamard matrices exist (other than those constructed using the Sylvester’s

method), Hoffer et al. does not use them in their source code. Also, they do not explain

the rationale for why Hadamard matrices are beneficial, other than the fact that it does not

require updating and is more efficient in terms of computation costs. Compute efficiency

will be discussed later.

6.2 Parameter efficiency

On the large-scale ImageNet dataset and smaller CIFAR-100 dataset, along with two even

smaller transfer learning datasets, the fixed identity classifier demonstrates it only suffers a

relatively small sacrifice in accuracy, compared against learned classifiers, while saving a lot

of parameters. Furthermore, on mobile architectures such as MobileNets and ShuffleNets

that already reduce the total number of parameters required by a model, using a fixed

identity classifier can reduce these memory requirements even further (e.g., 39% reduction

for MobileNet v2 and 75% reduction for ShuffleNet V2, both on ImageNet) with only a
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small degradation in performance, thus improving the parameter efficiency of models.

There is a greater degradation of ImageNet-1K classification performance when using

mobile architectures in conjunction with this method. In these scenarios, a significant

amount of parameters are removed from the model, and in the case of ShuffleNet V2

x0.5, around 75% parameters are removed, leaving the model with only 0.3M parameters,

compared to 1.3M parameters of the vanilla model. Results on ImageNet-100 showed

that there is no performance degradation, which implies that the performance gap on

ImageNet-1K is due to the model being too small to capture the statistics of the dataset.

This suggests that while the final classifier layer uses a lot of parameters, it does not

contribute much to the classification accuracy.

This means while fixed identity classifiers are not a drop-in replacement in some cases,

the conventional approach of having a fully connected classifier is not very efficient in

terms of the model size.

Furthermore, one could additionally make use of network pruning [1,7,11,20,21,24,36]

to explicitly reduce parameters even further. Another option is to use network quantization

to store parameters at a lower precision to save disk space and improve computational

efficiency [5,14,15]. Also, it is possible to specifically promote sparsity in the final classifier

using L1 regularization, using a learned final classifier.

While a lot of parameters can be saved in the final classifier, many models are very

deep and wide, consisting of tens and even hundreds of millions of parameters. To these

non-mobile models, the parameters in the fully connected final classifier can be negligible.

It is debatable whether compressing the final FC layer is very useful in these scenarios.

Despite this, as models get more complicated and are used for classification of datasets

with an even larger number of categories, an alternative to a fully connected classifiers
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Table 6.1: Compute cost for different components in different architecture in FLOPs, and
percentage of compute the final fully connected classifier accounts for.

Architecture Total First Conv. Final Classifier (FC) % FC

ResNet-50 4.12G 118M 2.05M 0.05%
ResNet-18 1.82G 118M 512K 0.03%
MobileNet v2 320M 10.8M 1.28M 0.40%
ShuffleNet V2 x0.5 43.6M 8.13M 1.02M 2.35%

may be helpful.

6.3 Compute efficiency

One argument for using a fixed Hadamard classifier is that: 1) by not updating the weights

during training 2) by using only +1 and -1 in the weights which simplifies calculation to

use only inversions and summing , can significantly reduce computation costs. By using

fixed identity classifiers proposed in this research, the cost for computation is even lower.

However, by looking at a bigger picture, when taking into consideration the entire

network, saving a single matrix-vector multiplication is negligible. Table 6.1 shows the

compute requirements for different architectures in terms of floating-point operations.

As the numbers indicate, except for in ShuffleNet V2 x0.5, the final fully connected

classifier layer uses more than 1% of the total compute, the FC layer uses a negligible

amount of computation. And even in the case of ShuffleNet V2 x 0.5 which FC accounts

for 75% of total parameters, the compute is only 2.35%.

Furthermore, while both Hadamard [10] and Binarized Neural Networks [5] argue

for special hardware designs that can further improve efficiency, it is hard to imagine
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a hardware that implements accelerated convolutions and general matrix multiplication

(GEMM, level 3 BLAS) but does not have generalized matrix-vector multiplication (level

2 BLAS). Even if that is the case, it is not difficult to perform a single matrix-vector

multiplication using the existing GEMM hardware.

6.4 Summary

While the fixed identity classifier yields comparable performance to a standard classifier

when trained on ImageNet for all architectures tested, and completely outperforms other

fixed classifiers in many ways, it still has a lot of limitations and pitfalls. It is incapable

of handling more classes than the number of channels of output categories, which is the

same for fixed Hadamard classifiers. It does reduce the computation requirements, but

the effect is not very significant in the grand scheme of things in a deep CNN for image

classification.

Despite the caveats of fixed identity classifiers, the results indicate that the final output

layer does not need to be a learned fully connected layer. The final output layer in deep

neural network architectures for image classification contains a lot of redundancy and can

be greatly compressed for more efficiency. The results can be insightful for future efficient

architecture design and/or efficient neural architecture search, enabling models to more

easily scale to handle even larger datasets.



Chapter 7

Conclusion

In this work, the performance and efficiency of various fixed classifier methods are eval-

uated and compared against each other, and conventional learned classifiers. This work

proposed the elimination of the fully connected classifier, and evaluated its performance

on several modern CNN base architectures. By using global average pooling to compute

classification predictions directly from the final convolutional layer, it is possible to achieve

comparable performance to several CNNs that use a fully connected layer, while greatly

reducing the total number of parameters required by the model, proving that specially de-

signed fixed classifiers are not as effective as simply removing the final layer from networks,

both in terms of parameter efficiency and classification accuracy. Research also showed

that this approach is able to work on multiple datasets and neural network architectures.

It is also demonstrated that using a fixed identity classifier is not only simpler, but also

helpful in the visualization of the neural network features. It can generate visualizations

similar to class activation maps, while requiring no additional post-processing.

This work also explored several methods that attempt to close the gap between this

41
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fixed identity classifier method and learned fully connected classifiers. It was demonstrated

that all these patchwork are of no avail.

Finally, this work demonstrated that the final classifier in general is not very efficient

in terms of parameter size, and does not contribute very much to classification accu-

racy. While it was discussed that neither of the alternative methods offers significant

improvements in terms of computational efficiency, this work still suggests future neural

architecture designs should use output layers more efficient than fully connected layers, in

terms of parameter count.
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Appendix A

Source Code (Selection)

A.1 Model Architectures

./models implementation/resnet cifar altskipconn.py

This implements more alternatives of the skip connection in the last block for ResNet-32.

1 import torch

2 import torch.nn as nn

3 import torch.nn.functional as F

4 import torch.nn.init as init

5 import random

6 from textwrap import dedent

7 import math

8 from models_implementation.clsf_utils import __fixed_eye, __no_bias, \

9 generate_hadamard, generate_orthoplex, generate_cube_ordered,

generate_cube_random↪→

10

11

12 __all__ = []

13

14

44
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15 def _weights_init(m):

16 if isinstance(m, nn.Linear) or (isinstance(m, nn.Conv2d) and not

isinstance(m, FixedConv2d)):↪→

17 init.kaiming_normal_(m.weight)

18

19

20 class FixedConv2d(nn.Conv2d):

21 pass # just a hack to change signature

22

23

24 class LambdaLayer(nn.Module):

25 def __init__(self, lambd):

26 super(LambdaLayer, self).__init__()

27 self.lambd = lambd

28

29 def forward(self, x):

30 return self.lambd(x)

31

32

33 class BasicBlock(nn.Module):

34 expansion = 1

35

36 def __init__(self, in_planes, planes, stride=1, option='A'):

37 super(BasicBlock, self).__init__()

38 self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,

stride=stride, padding=1, bias=False)↪→

39 self.bn1 = nn.BatchNorm2d(planes)

40 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,

padding=1, bias=False)↪→

41 self.bn2 = nn.BatchNorm2d(planes)

42

43 self.shortcut = nn.Sequential()

44 if stride != 1 or in_planes != planes:

45 if option == 'A':

46 """

47 For CIFAR10 ResNet paper uses option A.

48 """
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49 self.shortcut = LambdaLayer(lambda x:

50 F.pad(x[:, :, ::2, ::2], (0,

0, 0, 0, planes//4,

planes//4), "constant",

0))

↪→

↪→

↪→

51 elif option == 'B':

52 self.shortcut = nn.Sequential(

53 nn.Conv2d(in_planes, self.expansion * planes,

kernel_size=1, stride=stride, bias=False),↪→

54 nn.BatchNorm2d(self.expansion * planes)

55 )

56

57 def forward(self, x):

58 out = F.relu(self.bn1(self.conv1(x)))

59 out = self.bn2(self.conv2(out))

60 out += self.shortcut(x)

61 out = F.relu(out)

62 return out

63

64

65 class ClsfBlock(nn.Module):

66 expansion = 1

67

68 def __init__(self, in_planes, planes, stride=1, option='A',

num_classes=100):↪→

69 super(ClsfBlock, self).__init__()

70 self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,

stride=stride, padding=1, bias=False)↪→

71 self.bn1 = nn.BatchNorm2d(planes)

72 self.conv2 = nn.Conv2d(planes, num_classes, kernel_size=3,

stride=1, padding=1, bias=False)↪→

73 self.bn2 = nn.BatchNorm2d(num_classes)

74 self.shortcut = nn.Sequential()

75 if stride != 1 or in_planes != num_classes:

76 if option == 'A':

77 """

78 For CIFAR10 ResNet paper uses option A.
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79 """

80 pad_size = int((num_classes - in_planes)//2)

81 self.shortcut = LambdaLayer(lambda x:

82 F.pad(x, [0, 0, 0, 0,

pad_size, pad_size],

"constant", 0))

↪→

↪→

83 elif option == 'B':

84 self.shortcut = nn.Sequential(

85 nn.Conv2d(in_planes, num_classes, kernel_size=1,

stride=stride, bias=False),↪→

86 nn.BatchNorm2d(num_classes)

87 )

88 elif option == 'C': # Hadamard and scaling

89 h = generate_hadamard(in_planes, num_classes)

90 h = h.view(num_classes, in_planes, 1, 1)

91 conv = FixedConv2d(in_planes, num_classes, kernel_size=1,

stride=stride, bias=False)↪→

92 conv.weight.data = h.float()

93 conv.weight.requires_grad_(False)

94

95 init_scale = 1. / math.sqrt(num_classes)

96 self.scale = nn.Parameter(torch.tensor(init_scale))

97 self.shortcut = nn.Sequential(

98 conv,

99 LambdaLayer(lambda x: - self.scale * x),

100 nn.BatchNorm2d(num_classes)

101 )

102 elif option == 'D': # Fixed Orthoplex

103 w = torch.tensor(generate_orthoplex(in_planes,

num_classes))↪→

104 w = w.view(num_classes, in_planes, 1, 1)

105 conv = FixedConv2d(in_planes, num_classes, kernel_size=1,

stride=stride, bias=False)↪→

106 conv.weight.data = w.float()

107 conv.weight.requires_grad_(False)

108 self.shortcut = nn.Sequential(

109 conv,
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110 nn.BatchNorm2d(num_classes)

111 )

112 elif option == 'E': # shuffled fixed Orthoplex, using all

channels at least once (64x +1 then 36x -1)↪→

113 w = torch.zeros(num_classes, in_planes)

114 for row in range(num_classes):

115 col = row % in_planes

116 w[row, col] = 1 if row < in_planes else -1

117 w = w .view(num_classes, in_planes, 1, 1)

118 conv = FixedConv2d(in_planes, num_classes, kernel_size=1,

stride=stride, bias=False)↪→

119 conv.weight.data = w.float()

120 conv.weight.requires_grad_(False)

121 self.shortcut = nn.Sequential(

122 conv,

123 nn.BatchNorm2d(num_classes)

124 )

125 elif option == 'F': # d-cube ordered

126 w = generate_cube_ordered(64, 100)

127 w = w.view(num_classes, in_planes, 1, 1)

128 conv = FixedConv2d(in_planes, num_classes, kernel_size=1,

stride=stride, bias=False)↪→

129 conv.weight.data = w.float()

130 conv.weight.requires_grad_(False)

131 self.shortcut = nn.Sequential(

132 conv,

133 nn.BatchNorm2d(num_classes)

134 )

135 elif option == 'G': # d-cube random

136 w = generate_cube_random(64, 100)

137 w = w.view(num_classes, in_planes, 1, 1)

138 conv = FixedConv2d(in_planes, num_classes, kernel_size=1,

stride=stride, bias=False)↪→

139 conv.weight.data = w.float()

140 conv.weight.requires_grad_(False)

141 self.shortcut = nn.Sequential(

142 conv,
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143 nn.BatchNorm2d(num_classes)

144 )

145 elif option == 'H': # d-cube some better ordering that I can

think of↪→

146 raise NotImplementedError # don't know how to do it yet

147 else:

148 raise NotImplementedError

149

150 def forward(self, x):

151 out = F.relu(self.bn1(self.conv1(x)))

152 out = self.bn2(self.conv2(out))

153 out += self.shortcut(x)

154 return out

155

156

157 class ResNet_alt(nn.Module):

158 def __init__(self, block, num_blocks, num_classes=100, option='A'):

159 super(ResNet_alt, self).__init__()

160 self.clsf_expansion_option = option

161 self.in_planes = 16

162 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1,

bias=False)↪→

163 self.bn1 = nn.BatchNorm2d(16)

164 self.layer1 = self._make_layer(block, 16, num_blocks[0],

stride=1)↪→

165 self.layer2 = self._make_layer(block, 32, num_blocks[1],

stride=2)↪→

166 self.layer3 = self._make_layer(block, 64, num_blocks[2],

stride=2, num_classes=num_classes)↪→

167 self.fc = nn.Linear(100, num_classes)

168 self.apply(_weights_init)

169

170 def _make_layer(self, block, planes, num_blocks, stride,

num_classes=None):↪→

171 strides = [stride] + [1]*(num_blocks-1)

172 layers = []

173 for idx, stride in enumerate(strides):
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174 if (num_classes is not None) and (idx == len(strides) - 1):

175 layers.append(ClsfBlock(self.in_planes, planes, stride,

self.clsf_expansion_option, num_classes))↪→

176 else:

177 layers.append(block(self.in_planes, planes, stride))

178 self.in_planes = planes * block.expansion

179

180 return nn.Sequential(*layers)

181

182 def forward(self, x):

183 out = F.relu(self.bn1(self.conv1(x)))

184 out = self.layer1(out)

185 out = self.layer2(out)

186 out = self.layer3(out)

187 out = F.avg_pool2d(out, out.size()[3])

188 out = out.view(out.size(0), -1)

189 out = self.fc(out)

190 return out

191

192

193 for option in ['a', 'b', 'c', 'd', 'e', 'f', 'g']:

194 code = f"""\

195 def rn32_cf100_ex{option}():

196 model = ResNet_alt(BasicBlock, [5, 5, 5],

option='{option.upper()}')↪→

197 return model

198

199 def rn32_cf100_ex{option}_fixed_eye():

200 model = rn32_cf100_ex{option}()

201 model = __fixed_eye(model)

202 return model

203

204 def rn32_cf100_ex{option}_no_bias():

205 model = rn32_cf100_ex{option}()

206 model = __no_bias(model)

207 return model

208
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209 def rn32_cf100_ex{option}_fixed_eye_no_bias():

210 model = rn32_cf100_ex{option}()

211 model = __no_bias(model)

212 model = __fixed_eye(model)

213 return model

214 """

215 exec(dedent(code))

216 __all__ += [f'rn32_cf100_ex{option}',

f'rn32_cf100_ex{option}_fixed_eye',↪→

217 f'rn32_cf100_ex{option}_no_bias',

f'rn32_cf100_ex{option}_fixed_eye_no_bias']↪→



APPENDIX A. SOURCE CODE (SELECTION) 52

./models implementation/resnet orthogonal.py

This implements various modifications based on ResNet-18.

1 from collections import OrderedDict

2 import inspect

3

4 import torch.nn as nn

5 from torchvision.models import resnet18, ResNet

6

7 from .resnet_imagenet import Bias

8 from .hadamard_3rdpty import HadamardProj

9

10

11 class LambdaLayer(nn.Module):

12 """Module/Layer that encapsulates a single function for PyTorch

13

14 This is to make it easier to a lambda in an nn.Sequential()

container.↪→

15 """

16

17 def __init__(self, lm):

18 """

19

20 Args:

21 lm (Callable): function to use/call when the module is

called.↪→

22 """

23 super().__init__()

24 self.lm = lm

25 # this is because I want to see whatever the anonymous function

is↪→

26 # but I do not know how to parse python syntax or want to learn

to write a parser now↪→

27 self.src = inspect.getsourcelines(self.lm)

28 if len(self.src[0]) == 1:

29 module_code_str: str = self.src[0][0]

30 lam_start_pos = module_code_str.find("lambda")
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31 # the case where def f(x): ... is a one liner

32 if lam_start_pos == -1 and module_code_str[:4] == 'def ':

33 xtr_repr = module_code_str.strip('\r\n')

34 else:

35 xtr_repr = module_code_str[lam_start_pos:] # finds the

start of "lambda..."↪→

36 xtr_repr = xtr_repr.strip(')\r\n') # removes trailing

parenthesis and newlines↪→

37 self.xtr_repr = xtr_repr

38 else:

39 self.xtr_repr = '(not lambda)'

40

41 def forward(self, *input):

42 return self.lm(*input)

43

44 def extra_repr(self) -> str:

45 return self.xtr_repr

46

47

48 class SoftAttentionPooling(nn.Module):

49 def __init__(self, in_channels: int, middle_channels: int):

50 super().__init__()

51 self.in_channels = in_channels

52 self.middle_channels = middle_channels

53

54 self.attention = nn.Sequential(

55 nn.Conv1d(in_channels, middle_channels, kernel_size=1),

56 nn.Tanh(),

57 nn.Conv1d(middle_channels, 1, kernel_size=1)

58 )

59

60 def forward(self, x):

61 n, c = x.size(0), x.size(1)

62 x = x.view(n, c, -1)

63 summarized = self.attention(x).view(n, -1)

64 att = nn.functional.softmax(summarized, 1)

65 x = (x * att.unsqueeze(1)).sum(2)
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66 return x

67

68

69 class RepackagedResNet18(nn.Module):

70 def __init__(self, pretrained: bool):

71 super().__init__()

72 orig_resnet: ResNet = resnet18(pretrained=pretrained)

73 self.features = nn.Sequential(

74 OrderedDict([

75 ('conv1', orig_resnet.conv1),

76 ('bn1', orig_resnet.bn1),

77 ('relu1', orig_resnet.relu),

78 ('maxpool1', orig_resnet.maxpool),

79 ('layer1', orig_resnet.layer1),

80 ('layer2', orig_resnet.layer2),

81 ('layer3', orig_resnet.layer3),

82 ('layer4', orig_resnet.layer4)

83 ]))

84 self.classifier = nn.Sequential(

85 nn.AdaptiveAvgPool2d((1, 1)),

86 nn.Flatten(),

87 orig_resnet.fc

88 )

89

90 def forward(self, x):

91 x = self.features(x)

92 y = self.classifier(x)

93 return y

94

95

96 def rn18_3x3clsf():

97 model = RepackagedResNet18(pretrained=False)

98 model.classifier = nn.Sequential(

99 OrderedDict([

100 ('conv', nn.Conv2d(512, 1000, kernel_size=3)),

101 ('pool', nn.AdaptiveAvgPool2d((1, 1))),

102 ('flatten', nn.Flatten())
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103 ]))

104 return model

105

106

107 # note on this one

108 # it is semi-orthogonal

109 def rn18_orthogonal_fc():

110 model = RepackagedResNet18(pretrained=False)

111 fc = nn.Linear(512, 1000, bias=True)

112 nn.init.orthogonal_(fc.weight.data)

113 fc.weight.requires_grad_(False)

114 model.classifier[2] = fc

115 return model

116

117

118 # this is truly orthogonal

119 def rn18_512_orthogonal_fc():

120 model = RepackagedResNet18(pretrained=False)

121 fc = nn.Linear(512, 512, bias=True)

122 nn.init.orthogonal_(fc.weight.data)

123 fc.weight.requires_grad_(False)

124 model.classifier[2] = fc

125 return model

126

127

128 # this is semi-orthogonal but the other way around

129 def rn18_256_orthogonal_fc():

130 model = RepackagedResNet18(pretrained=False)

131 fc = nn.Linear(512, 256, bias=True)

132 nn.init.orthogonal_(fc.weight.data)

133 fc.weight.requires_grad_(False)

134 model.classifier[2] = fc

135 return model

136

137

138 def rn18_512_scratch():

139 model = RepackagedResNet18(pretrained=False)
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140 model.classifier[2] = nn.Linear(512, 512)

141 return model

142

143 def rn18_512_id_scratch():

144 model = RepackagedResNet18(pretrained=False)

145 model.classifier[2] = nn.Identity()

146 return model

147

148 def rn18_512_id_bias_scratch():

149 model = rn18_512_id_scratch()

150 model.classifier.add_module('bias', Bias(512, 512))

151 return model

152

153 def rn18_512_hadamard_scratch():

154 model = RepackagedResNet18(pretrained=False)

155 model.classifier[2] = HadamardProj(512, 512)

156 return model

157

158

159 def rn18_l4_1a_nc_1k():

160 model = RepackagedResNet18(pretrained=True)

161 model.classifier = nn.Sequential(

162 nn.AdaptiveAvgPool2d((1, 1)),

163 nn.Flatten()

164 )

165 model.features.layer4[1].bn2 = nn.Sequential()

166 model.features.layer4[1].conv2 = nn.Conv2d(512, 1000, kernel_size=(3,

3), stride=(1, 1), padding=(1, 1))↪→

167 pad_size = int((1000 - 512) / 2)

168 pad_param = (0, 0, 0, 0, pad_size, pad_size)

169 model.features.layer4[1].downsample = LambdaLayer(lambda x:

nn.functional.pad(x, pad_param, 'constant', 0))↪→

170 return model

171

172

173 def rn18_l4_1a_orthogonal_nc_1k():

174 model = rn18_l4_1a_nc_1k()
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175 nn.init.orthogonal_(model.features.layer4[1].conv2.weight)

176 return model

177

178

179 def rn18_l4_1a_all_conv_orthogonal_nc_1k():

180 model = rn18_l4_1a_nc_1k()

181 for m in model.modules():

182 if type(m) is nn.Conv2d:

183 nn.init.orthogonal_(m.weight)

184 return model

185

186

187 def rn18_l4_1a_relu_before_pool_nc_1k():

188 model = rn18_l4_1a_nc_1k()

189 model.classifier = nn.Sequential(

190 nn.ReLU(inplace=False),

191 nn.AdaptiveAvgPool2d((1, 1)),

192 nn.Flatten()

193 )

194 return model

195

196 def rn18_l4_1a_nc_1k_scratch():

197 model = RepackagedResNet18(pretrained=False)

198 model.classifier = nn.Sequential(

199 nn.AdaptiveAvgPool2d((1, 1)),

200 nn.Flatten()

201 )

202 model.features.layer4[1].bn2 = nn.Sequential()

203 model.features.layer4[1].conv2 = nn.Conv2d(512, 1000, kernel_size=(3,

3), stride=(1, 1), padding=(1, 1))↪→

204 pad_size = int((1000 - 512) / 2)

205 pad_param = (0, 0, 0, 0, pad_size, pad_size)

206 model.features.layer4[1].downsample = LambdaLayer(lambda x:

nn.functional.pad(x, pad_param, 'constant', 0))↪→

207 return model

208

209 def rn18_l4_1a_maxpool_nc_1k():
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210 model = rn18_l4_1a_nc_1k_scratch()

211 model.classifier = nn.Sequential(

212 nn.AdaptiveMaxPool2d((1, 1)),

213 nn.Flatten()

214 )

215 return model

216

217

218 def rn18_l4_1a_lppool_p2():

219 model = rn18_l4_1a_nc_1k_scratch()

220 model.classifier = nn.Sequential(

221 nn.LPPool2d(2, kernel_size=7),

222 LambdaLayer(lambda x: x / 7),

223 nn.Flatten()

224 )

225 return model

226

227 def rn18_l4_1a_lppool_p1_5():

228 model = rn18_l4_1a_nc_1k_scratch()

229 model.classifier = nn.Sequential(

230 nn.LPPool2d(1.5, kernel_size=7),

231 LambdaLayer(lambda x: x / 13.390518),

232 nn.Flatten()

233 )

234 return model

235

236 def rn18_l4_1a_lppool(p: float):

237 n = 49 ** (1/p)

238 model = rn18_l4_1a_nc_1k_scratch()

239 model.classifier = nn.Sequential(

240 nn.LPPool2d(p, kernel_size=7),

241 LambdaLayer(lambda x: x / n),

242 nn.Flatten()

243 )

244 return model

245

246 def rn18_l4_1a_lppool_p0_5():
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247 return rn18_l4_1a_lppool(0.5)

248

249 def rn18_l4_1a_lppool_p1_0():

250 return rn18_l4_1a_lppool(1.0)

251

252 def rn18_l4_1a_lppool_p4_0():

253 return rn18_l4_1a_lppool(4.0)

254

255

256 def rn18_l4_1a_soft_attention_pool(units: int):

257 model = rn18_l4_1a_nc_1k_scratch()

258 model.classifier = nn.Sequential(

259 SoftAttentionPooling(1000, units)

260 )

261 return model

262

263 def rn18_l4_1a_soft_attention_pool_32():

264 return rn18_l4_1a_soft_attention_pool(32)

265

266 def rn18_l4_1a_soft_attention_pool_64():

267 return rn18_l4_1a_soft_attention_pool(64)

268

269 def rn18_l4_1a_soft_attention_pool_128():

270 return rn18_l4_1a_soft_attention_pool(128)

271

272 def rn18_l4_1a_soft_attention_pool_256():

273 return rn18_l4_1a_soft_attention_pool(256)

274

275 def rn18_l4_1a_soft_attention_pool_512():

276 return rn18_l4_1a_soft_attention_pool(512)

277

278 def rn18_l4_1a_soft_attention_pool_1024():

279 return rn18_l4_1a_soft_attention_pool(1024)
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./models implementation/clsf utils.py

This implements several utility functions for modifying architectures.

1 import math

2 import random

3

4 import torch

5

6

7 def generate_hadamard(in_features, out_features):

8 from scipy.linalg import hadamard

9 n = math.ceil(math.log2(max(in_features, out_features)))

10 h = hadamard(2**n)

11 return torch.tensor(h[:out_features, :in_features])

12

13

14 def generate_orthoplex(in_features, out_features):

15 t = torch.zeros(out_features, in_features)

16 for row in range(out_features):

17 col = row // 2

18 t[row, col] = (-1) ** row

19 return t

20

21

22 def generate_cube_ordered(in_features, out_features):

23 t = torch.ones(out_features, in_features)

24 for row in range(out_features):

25 binary_coded = f'{{0:0{in_features}b}}'

26 binary_coded = binary_coded.format(row)

27 for col, val in enumerate(binary_coded):

28 t[row, col] = (-1)**int(val)

29 return t / math.sqrt(in_features)

30

31

32 def generate_cube_random(in_features, out_features):

33 t = torch.ones(out_features, in_features)

34 # FIXME: This causes ValueError: Maximum allowed size exceeded
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35 rnd_vector_numbers = set()

36 while len(rnd_vector_numbers) < out_features:

37 rnd_vector_numbers.add(random.randint(0, 2**in_features - 1))

38 rnd_vector_numbers = list(rnd_vector_numbers)

39 for row in range(out_features):

40 binary_coded = f'{{0:0{in_features}b}}'

41 binary_coded = binary_coded.format(rnd_vector_numbers[row])

42 for col, val in enumerate(binary_coded):

43 t[row, col] = (-1)**int(val)

44 return t / math.sqrt(in_features)

45

46

47 def __fixed_eye(model):

48 torch.nn.init.eye_(model.fc.weight.data)

49 model.fc.weight.requires_grad_(False)

50 return model

51

52

53 def __no_bias(model):

54 model.fc = torch.nn.Linear(model.fc.in_features,

model.fc.out_features, bias=False)↪→

55 return model
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A.2 Main Script

./main.py

This script sets up and runs experiments. It is invoked by other scripts to automatically
run experiments in batches.

1 #!/usr/bin/env python3

2

3 import argparse

4 import os

5 import random

6 import shutil

7 import time

8 import warnings

9 import sys

10

11 import numpy as np

12

13 import torch

14 import torch.nn as nn

15 import torch.nn.parallel

16 import torch.backends.cudnn as cudnn

17 import torch.distributed as dist

18 import torch.optim

19 import torch.multiprocessing as mp

20 import torch.utils.data

21 import torch.utils.data.distributed

22 import torchvision.transforms as transforms

23 import torchvision.datasets as datasets

24

25 import models

26 import datasets

27 import optimizers

28 model_names = sorted(name for name in models.__dict__

29 if name.islower() and not name.startswith("__")

30 and callable(models.__dict__[name]))

31
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32 dataset_names = sorted(name for name in datasets.__dict__

33 if name.islower() and not name.startswith('__')

34 and callable(datasets.__dict__[name]))

35

36 optimizer_names = sorted(name for name in optimizers.__dict__

37 if name.islower() and not name.startswith('__')

38 and callable(optimizers.__dict__[name]))

39

40

41 parser = argparse.ArgumentParser(description='PyTorch Training')

42 parser.add_argument('-a', '--arch', metavar='ARCH', required=True,

43 choices=model_names,

44 help=f"model architecture: {'/'.join(model_names)}")

45 parser.add_argument('-d', '--dataset', metavar='DATASET', required=True,

46 choices=dataset_names,

47 help=f"dataset to use: {'/'.join(dataset_names)}")

48 parser.add_argument('--optimizer', metavar='OPTIM', required=True,

49 choices=optimizer_names,

50 help=f"optimizer/lr_scheduler to use:

{'/'.join(optimizer_names)}")↪→

51 parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',

52 help='number of data loading workers (default: 4)')

53 parser.add_argument('--epochs', default=90, type=int, metavar='N',

54 help='number of total epochs to run')

55 parser.add_argument('--start-epoch', default=0, type=int, metavar='N',

56 help='manual epoch number (useful on restarts)')

57 parser.add_argument('-b', '--batch-size', default=256, type=int,

58 metavar='N',

59 help='mini-batch size (default: 256), this is the

total '↪→

60 'batch size of all GPUs on the current node when

'↪→

61 'using Data Parallel or Distributed Data

Parallel')↪→

62

63 parser.add_argument('-p', '--print-freq', default=10, type=int,

64 metavar='N', help='print frequency (default: 10)')
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65 parser.add_argument('--resume', default='', type=str, metavar='PATH',

66 help='path to latest checkpoint (default: none)')

67 parser.add_argument('-e', '--evaluate', dest='evaluate',

action='store_true',↪→

68 help='evaluate model on validation set')

69 parser.add_argument('--pretrained', dest='pretrained',

action='store_true',↪→

70 help='use pre-trained model')

71 parser.add_argument('--world-size', default=-1, type=int,

72 help='number of nodes for distributed training')

73 parser.add_argument('--rank', default=-1, type=int,

74 help='node rank for distributed training')

75 parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456',

type=str,↪→

76 help='url used to set up distributed training')

77 parser.add_argument('--dist-backend', default='nccl', type=str,

78 help='distributed backend')

79 parser.add_argument('--seed', default=None, type=int,

80 help='seed for initializing training. ')

81 parser.add_argument('--gpu', default=None, type=int,

82 help='GPU id to use.')

83 parser.add_argument('--multiprocessing-distributed', action='store_true',

84 help='Use multi-processing distributed training to

launch '↪→

85 'N processes per node, which has N GPUs. This is

the '↪→

86 'fastest way to use PyTorch for either single

node or '↪→

87 'multi node data parallel training')

88

89 best_acc1 = 0

90

91

92 def set_all_rng_seed(seed: int):

93 random.seed(seed)

94 np.random.seed(seed)

95
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96 # see PyTorch Notes

97 # https://pytorch.org/docs/stable/notes/randomness.html

98 torch.backends.cudnn.deterministic = True

99 torch.backends.cudnn.benchmark = False

100 torch.manual_seed(seed)

101

102

103 def get_all_rng_states():

104 r = {

105 'pytorch': torch.get_rng_state(),

106 'pytorch_cuda': torch.cuda.get_rng_state_all(),

107 'numpy': np.random.get_state(),

108 'python': random.getstate()

109 }

110 return r

111

112 def set_all_rng_states(state: dict):

113 random.setstate(state['python'])

114 np.random.set_state(state['numpy'])

115 torch.set_rng_state(state['pytorch'])

116 if 'pytorch_cuda' in state:

117 torch.cuda.set_rng_state_all(state['pytorch_cuda'])

118

119

120 def main():

121 args = parser.parse_args()

122

123 if args.seed is not None:

124 set_all_rng_seed(args.seed)

125 warnings.warn('You have chosen to seed training. '

126 'This will turn on the CUDNN deterministic setting,

'↪→

127 'which can slow down your training considerably! '

128 'You may see unexpected behavior when restarting '

129 'from checkpoints.')

130

131 if args.gpu is not None:
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132 warnings.warn('You have chosen a specific GPU. This will

completely '↪→

133 'disable data parallelism.')

134

135 if args.dist_url == "env://" and args.world_size == -1:

136 args.world_size = int(os.environ["WORLD_SIZE"])

137

138 args.distributed = args.world_size > 1 or

args.multiprocessing_distributed↪→

139

140 ngpus_per_node = torch.cuda.device_count()

141 if args.multiprocessing_distributed:

142 # Since we have ngpus_per_node processes per node, the total

world_size↪→

143 # needs to be adjusted accordingly

144 args.world_size = ngpus_per_node * args.world_size

145 # Use torch.multiprocessing.spawn to launch distributed

processes: the↪→

146 # main_worker process function

147 mp.spawn(main_worker, nprocs=ngpus_per_node,

args=(ngpus_per_node, args))↪→

148 else:

149 # Simply call main_worker function

150 main_worker(args.gpu, ngpus_per_node, args)

151

152

153 def main_worker(gpu, ngpus_per_node, args):

154 global best_acc1

155 args.gpu = gpu

156

157 if args.gpu is not None:

158 print("Use GPU: {} for training".format(args.gpu))

159

160 if args.distributed:

161 if args.dist_url == "env://" and args.rank == -1:

162 args.rank = int(os.environ["RANK"])

163 if args.multiprocessing_distributed:
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164 # For multiprocessing distributed training, rank needs to be

the↪→

165 # global rank among all the processes

166 args.rank = args.rank * ngpus_per_node + gpu

167 dist.init_process_group(backend=args.dist_backend,

init_method=args.dist_url,↪→

168 world_size=args.world_size,

rank=args.rank)↪→

169 # create model

170 if args.pretrained:

171 print("=> using pre-trained model '{}'".format(args.arch))

172 model = models.__dict__[args.arch](pretrained=True)

173 else:

174 print("=> creating model '{}'".format(args.arch))

175 model = models.__dict__[args.arch]()

176

177 if args.distributed:

178 # For multiprocessing distributed, DistributedDataParallel

constructor↪→

179 # should always set the single device scope, otherwise,

180 # DistributedDataParallel will use all available devices.

181 if args.gpu is not None:

182 torch.cuda.set_device(args.gpu)

183 model.cuda(args.gpu)

184 # When using a single GPU per process and per

185 # DistributedDataParallel, we need to divide the batch size

186 # ourselves based on the total number of GPUs we have

187 args.batch_size = int(args.batch_size / ngpus_per_node)

188 args.workers = int(args.workers / ngpus_per_node)

189 model = torch.nn.parallel.DistributedDataParallel(model,

device_ids=[args.gpu])↪→

190 else:

191 model.cuda()

192 # DistributedDataParallel will divide and allocate batch_size

to all↪→

193 # available GPUs if device_ids are not set

194 model = torch.nn.parallel.DistributedDataParallel(model)
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195 elif args.gpu is not None:

196 if args.gpu != -1:

197 torch.cuda.set_device(args.gpu)

198 model = model.cuda(args.gpu)

199 else:

200 # DataParallel will divide and allocate batch_size to all

available GPUs↪→

201 if args.arch.startswith('alexnet') or

args.arch.startswith('vgg'):↪→

202 model.features = torch.nn.DataParallel(model.features)

203 model.cuda()

204 else:

205 model = torch.nn.DataParallel(model).cuda()

206

207 # define loss function (criterion) and optimizer

208 criterion = nn.CrossEntropyLoss().cuda(args.gpu)

209

210 optimizer, scheduler = optimizers.__dict__[args.optimizer](model)

211

212 # optionally resume from a checkpoint

213 if args.resume:

214 if os.path.isfile(args.resume):

215 print("=> loading checkpoint '{}'".format(args.resume))

216 checkpoint = torch.load(args.resume)

217 args.start_epoch = checkpoint['epoch']

218 best_acc1 = checkpoint['best_acc1']

219 if args.gpu is not None and args.gpu != -1:

220 # best_acc1 may be from a checkpoint from a different

GPU↪→

221 best_acc1 = best_acc1.to(args.gpu)

222 model.load_state_dict(checkpoint['state_dict'])

223 optimizer.load_state_dict(checkpoint['optimizer'])

224 scheduler.load_state_dict(checkpoint['scheduler'])

225 set_all_rng_seed(args.seed)

226 set_all_rng_states(checkpoint['rng_state'])

227 print("=> loaded checkpoint '{}' (epoch {})"

228 .format(args.resume, checkpoint['epoch']))
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229 else:

230 print("=> no checkpoint found at '{}'".format(args.resume))

231

232 cudnn.benchmark = True

233

234 # Data loading code

235 train_dataset, val_dataset = datasets.__dict__[args.dataset]()

236

237 if args.distributed:

238 train_sampler =

torch.utils.data.distributed.DistributedSampler(train_dataset)↪→

239 else:

240 train_sampler = None

241

242 train_loader = torch.utils.data.DataLoader(

243 train_dataset, batch_size=args.batch_size, shuffle=(train_sampler

is None),↪→

244 num_workers=args.workers, pin_memory=True, sampler=train_sampler)

245

246 val_loader = torch.utils.data.DataLoader(

247 val_dataset,

248 batch_size=args.batch_size, shuffle=False,

249 num_workers=args.workers, pin_memory=True)

250

251 if args.evaluate:

252 validate(val_loader, model, criterion, args)

253 return

254

255 for epoch in range(args.start_epoch, args.epochs):

256 if args.distributed:

257 train_sampler.set_epoch(epoch)

258

259 # train for one epoch

260 train(train_loader, model, criterion, optimizer, epoch, args)

261

262 # evaluate on validation set

263 acc1 = validate(val_loader, model, criterion, args)
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264

265 scheduler.step()

266

267 # remember best acc@1 and save checkpoint

268 is_best = acc1 > best_acc1

269 best_acc1 = max(acc1, best_acc1)

270

271 if not args.multiprocessing_distributed or

(args.multiprocessing_distributed↪→

272 and args.rank % ngpus_per_node == 0):

273 save_checkpoint({

274 'epoch': epoch + 1,

275 'arch': args.arch,

276 'state_dict': model.state_dict(),

277 'best_acc1': best_acc1,

278 'optimizer': optimizer.state_dict(),

279 'scheduler': scheduler.state_dict(),

280 'rng_state': get_all_rng_states()

281 }, is_best, f'checkpoint.pth')

282

283

284 def train(train_loader, model, criterion, optimizer, epoch, args):

285 batch_time = AverageMeter('Time', ':6.3f')

286 data_time = AverageMeter('Data', ':6.3f')

287 losses = AverageMeter('Loss', ':.4e')

288 top1 = AverageMeter('Acc@1', ':6.2f')

289 top5 = AverageMeter('Acc@5', ':6.2f')

290 progress = ProgressMeter(len(train_loader), batch_time, data_time,

losses, top1,↪→

291 top5, prefix="Epoch: [{}]".format(epoch))

292

293 # switch to train mode

294 model.train()

295

296 end = time.time()

297 for i, (input, target) in enumerate(train_loader):

298 # measure data loading time
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299 data_time.update(time.time() - end)

300

301 if args.gpu is not None and args.gpu != -1:

302 input = input.cuda(args.gpu, non_blocking=True)

303 if not args.gpu == -1:

304 target = target.cuda(args.gpu, non_blocking=True)

305

306 # compute output

307 output = model(input)

308 loss = criterion(output, target)

309

310 # measure accuracy and record loss

311 acc1, acc5 = accuracy(output, target, topk=(1, 5))

312 losses.update(loss.item(), input.size(0))

313 top1.update(acc1[0], input.size(0))

314 top5.update(acc5[0], input.size(0))

315

316 # compute gradient and do SGD step

317 optimizer.zero_grad()

318 loss.backward()

319 optimizer.step()

320

321 # measure elapsed time

322 batch_time.update(time.time() - end)

323 end = time.time()

324

325 if i % args.print_freq == 0:

326 progress.print(i)

327

328

329 def validate(val_loader, model, criterion, args):

330 batch_time = AverageMeter('Time', ':6.3f')

331 losses = AverageMeter('Loss', ':.4e')

332 top1 = AverageMeter('Acc@1', ':6.2f')

333 top5 = AverageMeter('Acc@5', ':6.2f')

334 progress = ProgressMeter(len(val_loader), batch_time, losses, top1,

top5,↪→
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335 prefix='Test: ')

336

337 # switch to evaluate mode

338 model.eval()

339

340 with torch.no_grad():

341 end = time.time()

342 for i, (input, target) in enumerate(val_loader):

343 if args.gpu is not None and args.gpu != -1:

344 input = input.cuda(args.gpu, non_blocking=True)

345 if args.gpu != -1:

346 target = target.cuda(args.gpu, non_blocking=True)

347

348 # compute output

349 output = model(input)

350 loss = criterion(output, target)

351

352 # measure accuracy and record loss

353 acc1, acc5 = accuracy(output, target, topk=(1, 5))

354 losses.update(loss.item(), input.size(0))

355 top1.update(acc1[0], input.size(0))

356 top5.update(acc5[0], input.size(0))

357

358 # measure elapsed time

359 batch_time.update(time.time() - end)

360 end = time.time()

361

362 if i % args.print_freq == 0:

363 progress.print(i)

364

365 # TODO: this should also be done with the ProgressMeter

366 print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'

367 .format(top1=top1, top5=top5))

368

369 return top1.avg

370

371
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372 def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):

373 torch.save(state, filename)

374 if is_best:

375 shutil.copyfile(filename, 'model_best.pth')

376

377

378 class AverageMeter(object):

379 """Computes and stores the average and current value"""

380 def __init__(self, name, fmt=':f'):

381 self.name = name

382 self.fmt = fmt

383 self.reset()

384

385 def reset(self):

386 self.val = 0

387 self.avg = 0

388 self.sum = 0

389 self.count = 0

390

391 def update(self, val, n=1):

392 self.val = val

393 self.sum += val * n

394 self.count += n

395 self.avg = self.sum / self.count

396

397 def __str__(self):

398 fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'

399 return fmtstr.format(**self.__dict__)

400

401

402 class ProgressMeter(object):

403 def __init__(self, num_batches, *meters, prefix=""):

404 self.batch_fmtstr = self._get_batch_fmtstr(num_batches)

405 self.meters = meters

406 self.prefix = prefix

407

408 def print(self, batch):
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409 entries = [self.prefix + self.batch_fmtstr.format(batch)]

410 entries += [str(meter) for meter in self.meters]

411 print('\t'.join(entries))

412

413 def _get_batch_fmtstr(self, num_batches):

414 num_digits = len(str(num_batches // 1))

415 fmt = '{:' + str(num_digits) + 'd}'

416 return '[' + fmt + '/' + fmt.format(num_batches) + ']'

417

418

419 def accuracy(output, target, topk=(1,)):

420 """Computes the accuracy over the k top predictions for the specified

values of k"""↪→

421 with torch.no_grad():

422 maxk = max(topk)

423 batch_size = target.size(0)

424

425 _, pred = output.topk(maxk, 1, True, True)

426 pred = pred.t()

427 correct = pred.eq(target.view(1, -1).expand_as(pred))

428

429 res = []

430 for k in topk:

431 correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)

432 res.append(correct_k.mul_(100.0 / batch_size))

433 return res

434

435

436 if __name__ == '__main__':

437 main()
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List of third-party source code

referenced and used

• The PyTorch Framework and the torchvision package, including example codes,

at https://pytorch.org

• Fixed Hadamard classifier [10], at https://github.com/eladhoffer/fix_your_

classifier

• Classification on CIFAR-10/100 and ImageNet with PyTorch at https://github.

com/bearpaw/pytorch-classification

75



Bibliography

[1] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep

networks. In NeurIPS, pages 2270–2278, 2016.

[2] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthog-

onality regularizations in training deep networks? In NeurIPS, pages 4261–4271,

2018.

[3] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasub-

ramanian. Grad-cam++: Generalized gradient-based visual explanations for deep

convolutional networks. In WACV, pages 839–847. IEEE, 2018.

[4] François Chollet. Xception: Deep learning with depthwise separable convolutions. In

CVPR, pages 1251–1258, 2017.

[5] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-

gio. Binarized neural networks: Training deep neural networks with weights and

activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

76



BIBLIOGRAPHY 77

[6] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convo-

lutional networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4829–4837, 2016.

[7] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In NeurIPS, pages 1135–1143, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceedings

of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15,

page 1026–1034, USA, 2015. IEEE Computer Society.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[10] Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value

of training the last weight layer. In ICLR, 2018.

[11] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming:

A data-driven neuron pruning approach towards efficient deep architectures. arXiv

preprint arXiv:1607.03250, 2016.

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In CVPR, pages 4700–4708, 2017.

[13] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,

and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters

and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.



BIBLIOGRAPHY 78

[14] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of

neural networks for efficient integer-arithmetic-only inference. In CVPR, pages 2704–

2713, 2018.

[15] Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint

arXiv:1601.06071, 2016.

[16] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representa-

tions for fine-grained categorization. In 4th International IEEE Workshop on 3D

Representation and Recognition (3dRR-13), Sydney, Australia, 2013.

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical

report, 2009.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In NeurIPS, pages 1097–1105, 2012.
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