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Abstract

The amount of raw generated data is growing at an exponential rate due to the

greatly increasing number of sensors in electronic systems. While the majority of this

data is never used, it is often kept for cases such as failure analysis. As such, archival

memory storage, where data can be stored at an extremely high density at the cost of

read latency, is becoming more popular than ever for long term storage. In biological

organisms, Deoxyribonucleic Acid (DNA) is used as a method of storing information

in terms of simple building blocks, as to allow for larger and more complicated struc-

tures in a density much higher than can currently be realized on modern memory

devices. Given the ability for organisms to store this information in a set of four

bases for an extremely long amounts of time with limited degradation, DNA presents

itself as a possible way to store data in a manner similar to binary data. This work

investigates the use of DNA strands as a storage regime, where system-level data is

translated into an efficient encoding to minimize base pair errors both at a local level

and at the chain level. An encoding method using a Bose-Chaudhuri-Hocquenghem

(BCH) pre-coded Raptor scheme is implemented in conjunction with an 8 to 6 bi-

nary to base translation, yielding an informational density of 1.18 bits/base pair. A

Field-Programmable Gate Array (FPGA) is then used in conjunction with a soft-core

processor to verify address and key translation abilities, providing strong support that

a strand-pool DNA model is reasonable for archival storage.
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Chapter 1

DNA as a Storage Method

This chapter targets an understanding of archival memory as a whole, and how De-

oxyribonucleic Acid DNA can be used practically to fill this need. In particular, the

different existing methods for archival storage are developed, and basic DNA theory

is explored.

1.1 A Practical Understanding of Memory

As a basis, the concept of computer memory revolves around some structure that

contains a characteristic signature, such that a clear differentiation can be made

between an effective on and off state. For situations where one wished to store data

for a longer period of time, early non-volatile memory consisted of punch-cards, where

binary data was represented through a physical hole in some kind of material[1]. As

more memory was needed, this gave way to punched tape, and later the first magnetic

memory. Later, the emergence of the first hard drive (HDD), marked a new age in

storage density due the extremely high storage density.

However, with the advent of the first floating gate type memory solutions, based

on the concept of consistently re-programmable EEPROM, a major divide in memory

storage was made[2]. Combining the non-volatility and access speed of EEPROM with

the device lifetime of modern transistor devices, a solid-state solution to memory was

found, at the cost of physical density. In the case of hard-drives, it is much easier to

1



CHAPTER 1. DNA AS A STORAGE METHOD

achieve a high storage density than NAND-based Solid State Drives (SSDs), which

required both a full floating-gate (FG) transistor design as well as significant read and

write overhead. Thus, depending on the speed and storage requirements, it became

necessary to choose the non-volatile storage solution as opposed to the previous catch-

all devices. Unlike that of HDDs, the floating-gate design allowed electron migration,

leading to much higher bit-rate errors and the popularization of Error-Correction

Codes (ECC). For example, the 2013 enterprise SAS specification for HDDs limited

errors to 1 in 1016 bits, while modern SSDs can be as bad as 1 in 106 for modern 4-bit

per cell NAND[3].

At the same time, the purpose of electronic memory began to shift between active

useful data and unprocessed data. In large corporations, automated testing began to

reach a point where it was no longer able to process all of the information produced,

but instead it became necessary to store all of it in the event that it was later needed.

Over the past two decades, the amount of data generated by both companies and

users has exploded, leading to an ever increasing need for high density storage with

strict read and write requirements. With some figures estimating 40 ZB of data to

be generated in 2020, it has become virtually impossible for all information to be

fully processed, let alone understood[4]. For these cases where a single read operation

isn’t even guaranteed, the access times become a non-factor, making HDDs and other

slower devices useful once again.

While NAND SSDs are fast and dense enough for most situations due to modern

improvements in vertical NAND arrays, this comes at a higher leakage current and a

much lower device lifetime. In particular, modern charge-trap NAND devices suffer

from memory drift, where data must be refreshed every few months to prevent mis-

reads[5], severely limiting the ability to act as a proper archival storage. Due to the

trends of wanting faster access time at the cost of operation, companies are moving

back to tape-based devices for their archival needs or instead low-RPM HDDs[6].

2



CHAPTER 1. DNA AS A STORAGE METHOD

With these quickly approaching their physical density limits, it is more and more

necessary to explore non-conventional methods for storing this archival data.

Memory in modern server systems can be broken down into the commonly ref-

erenced hierarchy of memory. A modified version of this pyramid is shown below.

Obviously, for small memory types, they are closer to the processor itself and are

accessed at a much higher frequency, increasing the power cost but providing signifi-

cantly better response times. At the bottom, memory is extremely slow, but is orders

of magnitude larger in size. It is noted that archival storage in this figure is broken

into a traditional archival storage and deep-archival, which is meant to represent the

needs for ’store-once’ type architectures.

Figure 1.1: Depiction of the hierarchy of memory showing that as read latency increases,
the memory size increases.

In particular, at the lowest level of the pyramid, that of deep-archival, there are

very few proposed memory systems due to the novelty of computational need. Deep-

archival in this respect is in reference to all data that should be stored but is not

expected to be read at all. One commonly suggested option is the idea of using the

Deoxyribonucleic Acid bases found in living organisms due to their logical parallels

3



CHAPTER 1. DNA AS A STORAGE METHOD

to electronic memory.

1.2 DNA as a Memory Source

DNA has long been investigated as both an archival memory solution as well as a

computational method due to the similarities with binary memory from the chain

linearity and binary-equivalent blocks[7]. Formed from two connecting chains in a

double-helix spiral, double-stranded DNA (dsDNA) as a linear polymer is composed of

four building blocks, Adenine, Guanine, Cytosine, and Thymine, which bond to their

opposite, A-T and G-C along a sugar-based backbone. These chains are direction-

based with one end being referred to as the 5’ end while the other is the 3’, which

defines the antiparallel nature of a dsDNA system. A simple DNA strand is shown

in Fig. 1.2.

Figure 1.2: Depiction of a DNA strand showing the backbone (a), the four base pairs (b),
base pair bonding to form the double helix (c), and bond reversal (d). [7].

Furthermore, unlike most other theoretical memory technologies, there is proof of

high storage density already in existence, through all living organisms. In a perfect

world, potentially two bits could be stored in each mer unit, however other factors

prevent this reality and greatly reduce efficiency. In the biological realm, the vast

majority of data in DNA is only indirectly useful, so it raises the question of whether

an archival system would have these same inefficiencies.

4



CHAPTER 1. DNA AS A STORAGE METHOD

The application of DNA, specifically through the use of four base pairs (A,C,G,T)

as a substitute for data bits, present themselves as an obvious solution for storage due

to their incredible physical density and estimated half life of 520 years[8]. Ignoring

peripherals and assuming this perfect encoding of two bits per base, this provides a

theoretical density of 1EB/mm3[9]. Before this becomes a commercial reality however,

a large number of issues from an architecture perspective need to be solved[10].

In particular, with entities such as DARPA investing more than 50 million dollars

in the next few years into various projects, there is a distinct need for a unified system

example for a DNA compute unit[11]. Seeing how DNA memory is a non-traditional

storage, it becomes necessary to develop a new form of address translation, in the sense

of computer architecture rather than the traditional genetic sense, as well as a new

methodology to describe a temporarily full system, which is unlike Solid State Drive

(SSD) single-bit cell (SLC) caching[12]. In the case of SLC caching slowdowns, this is

a comparatively minor hit as opposed to a change from NAND, the common storage

format of modern SSDs, folding to a complete DNA chemical synthesis process[13, 14].

Due to this, a new architecture for write misses needs to be developed in order to

significantly reduce system slowdowns.

1.3 Basics of Strand Errors

In traditional electronic memory, there are well-defined sources of error, due to events

such as magnetic bit-flips, electron migration, or various other understood phenom-

ena. DNA however behaves differently due to a much higher number of error cases.

Instead of simply having more or fewer electrons than expected in a read, errors are

much more binary in nature, where a base value is either correct or incorrect. How-

ever, due to the nature of bases themselves, one error generally has a direct effect

on the surrounding bases making error sequences more likely. Below, a number of

common DNA chain errors are briefly discussed, both as to how they are formed and

5



CHAPTER 1. DNA AS A STORAGE METHOD

how likely they are to appear.

It is important to note a distinction with DNA memory when compared to biolog-

ical mutations. Specifically, the availability of base pairs in new strand synthesis is a

known factor, where the injected leading to a probabilistic argument as to the possi-

bility of specific mutation occurrences. Additionally, the use of the term mutation in

this context is the discussion of short DNA chain mutations, not larger chromosomal-

type. Heredity mutation is also ignored because of the single-replication nature of

this proposed memory.

1.3.1 Single-base Substitution

The logical starting point when discussing base mismatches is that of a single-base

substitution, which is an electronic analog to a bit-flip. This is not an exact parallel to

Single-Nucleotide Polymorphism (SNP), because there is no formation of the reference

amino acid, and thus a non-functioning protein would not be created across copies

but is more akin to a point mutation[15]. An example of this would be an AT bonding

which instead turned into an TA.

Due to this possibility, it becomes necessary to build a model to predict what

the frequency of these bit errors are, particularly because they occur much higher

in frequency than HDDs would find acceptable at 10-10[16]. Even further, there is

no ability to perform true mismatch repair, so it is assumed that all sequencing

mismatches will remain in storage[17]. By building more accurate models parallel to

the conditions in the sequencing chamber, it becomes more realistic to predict both

the likelihood of point errors based on the surrounding sequence, but also get a better

idea of what errors are readily correctable. This provides an advantage over regular

memory, which generally is unable to provide useful recovery data from surrounding

bit cells.

6



CHAPTER 1. DNA AS A STORAGE METHOD

1.3.2 Frameshift Mutations

Furthermore, deletions and insertions also known as indels, which are the lack of a

base or the addition of an extra base leading to a frameshift, are also possible[18].

These are generally more likely to occur in short repeated sequences, which gives rise

to one of many general rules for encoding sequences. These are significantly more

abstract from the perspective of electronics. In most literature, they are concerned

with the shift in reading frame and stop codons, which are much less important in

electronics. However, in traditional memory, there is no ability for an extra bit of

information to appear, thus for a DNA system, it becomes necessary to correct for

this in a non-traditional manner.

By looking at the probability of such an insertion, its possible to establish the

maximum number of insertions that would be likely in an even such as this and

read the decoded sequence into a buffer of that length. The microcontroller would

then have to perform some degree of error correction to understand both where the

insertion likely occurred, as well as how much of the data can be corrected. In theory,

this could be handle directly in decode logic, but likely microcontroller ECC flow

would be tasked with this. In living organisms however, a proof-reading mechanism

can correct some mutations enzymatically using the complementary strand of the

dsDNA. In a truly biological compute system this could be leveraged, but at the

present this is deemed out of realistic scope.

1.3.3 Hairpin Loops

One final important synthesis error is through the creation of hairpin errors, another

example of a non-electrical type issue. These generally occur when regions of a strand

have complimentary sequences in opposite directions which self-bond. While useful

for many RNA secondary structures, these are undesirable for long-term DNA storage.

7



CHAPTER 1. DNA AS A STORAGE METHOD

Figure 1.3: Demonstration of how different extrusions can lead to hairpin loops.[19]

While these errors aren’t particularly common, it is important to highlight that

they do exist, and that new methods of error correction need to be developed.

1.4 Understanding Synthesis

A logical follow up onto all of the major DNA base errors is the discussion of synthesis

and sequencing itself.

1.4.1 Synthesis

One of the major barriers to feasibility with DNA memory is the extreme cost of

accurate synthetic DNA synthesis, which acts as an analog to the write in modern

computing. It is unnecessary to fully develop an understanding of all methods for

DNA synthesis, so instead only column-based oligonucleotide synthesis and micro-

array based synthesis are explored. While de Novo has been shown to be more

effective, the prohibitively high costs for this application make it unlikely to act as a

solution[20].

The concept of column-based oligonucleotide synthesis is relatively simple, hinging

on a four step elongation cycle to slowly build individual DNA strands[21]. This

8



CHAPTER 1. DNA AS A STORAGE METHOD

synthesis method is reasonably accurate, with an error rate around 0.5%, with yields

around 99%. For a continuous drive system this would have to be improved, but is a

reasonable starting point.

Figure 1.4: Depiction of four step cycle of chain elongation. Step 1 is a de-protection
using an acid. Step 2 adds the new base to the chain. Step 3 caps the chain to prevent
extra growth. Step 4 properly links the monomer to the backbone.[21]

However, due to the still relatively high cost per bp, this is still prohibitively ex-

pensive leading to the need for micro-array based solutions, which are significantly

cheaper, but come at the cost of many more errors. However, this should be cor-

rectable through ECC methods, so depending on the actual error rate, this is poten-

tially acceptable. In the next few years it is expected for synthesis to become much

more stable, removing another technological barrier. Furthermore, with significant

work being done on microfluidic systems for DNA synthetic synthesis, a complete lab

on chip package may be reasonable to expect[22].

1.4.2 Sequencing

Given that we have the ability to directly control the total chain length of each DNA

sequence for this memory type, it is a logical step to make the decision to only work

9



CHAPTER 1. DNA AS A STORAGE METHOD

with shorter strand lengths, such that Shotgun Sequencing is unnecessary[23]. By

sticking to shorter strands, it is possible to ideally read the entirety of each memory

chain in one attempt. Shorter strands can be sequenced, however they require overlap

to chain together, which would impact the efficiency in a memory system.

Sequencing technology can be broken up into three distinct methods, First Gen-

eration, Next-Generation, and Third-Generation. Beginning with First Generation

sequencing, originally developed as Sanger Sequencing in 1977, this provided some of

the earliest methods of sequencing DNA strands. At a high level, this process uses

the Chain-Termination method, which provides an ability to read a single base along

a chain at a time in an out of order sequence. The figure below outlines the basic

process for Sanger Sequencing.

Figure 1.5: Depiction of the Sanger Sequencing method. 1-3 demonstrate chain separation
and replication, followed by addition to specific polymerase solutions where chains are
grown in 5 and separated in 6. 7 then shows the resulting electrophorese to reconstruct the
sequence.[24]

With an extremely high (greater than 99.9999%) accuracy and the ability to read

chains up to 1000 base pairs (bp) long, this seems like a viable solution. Unfortunately,

this is an extremely slow and costly process, which makes it harder to argue the case

for DNA memory. This can then be read in numerous ways to provide the binary

base representations.

10
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More recently in 2005, sequencing moved to Next-Generation Sequencing, which

was primarily focused around cyclic-array methods[25]. DNA strands are fragmented

and specific adapters, which are artificial DNA sequences are added to create a se-

quencing library. These are then cyclically decoded to rapidly sequence the entire

strand[26].

While this method has a much higher throughput due to the simultaneous sequenc-

ing ability, it comes at a cost of a much higher error rate, as well as a much more

complicated set of errors. However, this error rate of 1-2.5% is still correctable using

modern decoding methods. Unfortunately, these reads have to be done on shorter

strands, within a limit of a few hundred bp instead. This is still possible, but places

a greater pressure on synthesis and will ultimately impact the bit efficiency of the

data. Unfortunately, unlike Sanger Sequencing, these errors are substitution errors

towards the end of reads and after CG groups. These sequences also will sometimes

contain adapter errors, which requires an additional computational step to accurately

remove. Additionally, the library preparation step can often introduce errors due to

its own reliance on polymerase chain reaction (PCR).

The final, and most recent sequencing is that of Third-Generation sequencing,

which rely on single-molecule sequencing directly, rather than relying on multiple

replicated copies[27]. This makes the read operation significantly faster due to the

removal of extra chemistry steps. This process is done either through direct real-time

sequencing or through nanopore webbing to identify individual bases at a time. The

figure below shows a cross-section of one such nanopore design, where decoding is

slightly more clear.
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CHAPTER 1. DNA AS A STORAGE METHOD

Figure 1.6: Image depicting (A) chain separation, (B) pass through a nanopore collector
setup, (C) electrical collection of voltage data, and (D) output intensity of base strands.[28]

These methods have the ability to handle much longer chains (into the thousands)

and much cheaper reads, which is ideal for DNA memory. While the error rates are

extremely high, 15-30%, it is clear that this will drop as these technologies become

more mature. Comparing these methods, it is clear the Third-Generation sequencing

will eventually be the method used for DNA memory assuming that the expected

improvements come true. Particularly, this method appears to have the highest like-

lihood for lab on chip designs to potentially create a more small form factor DNA

memory drive. In the meantime, it seems likely that errors can be handled by simply

collecting multiple copies of the same information strand to perform accurate reads.

This is a concern due to the destructive nature of reads, making single try systems

important.

1.4.3 Polymerase Chain Reactions

Much of these sequencing tools make large use of polymerase chain reactions (PCR) to

make large numbers of copies, typically in the 106 to 109 range through the repeated

use of a DNA polymerase enzyme such as Thermus aquaticus (Taq) polymerase[29].
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The existing DNA strands are treated as templates to allow for the creation of new

copies. The number of copies then increases by powers of two based on the number

of PCR cycles. This comes at the cost of larger processing time, so the goal for DNA

memory is to sequence with the smallest sample size possible. The basic process of

PCR is outlined in Figure 1.7.

Figure 1.7: Figure depicting the basic process of PCR.[30]

The basic cycle of the PCR process begins by the denaturation step, which is

a heating of the dsDNA strands to separate them into the complimentary ssDNA,

providing the templates. The second step then uses specific primers, which bond onto

the complimentary sequences on the ssDNA. The Taq polymerase then extends these

primers to make the complimentary strands, creating two copies of the dsDNA from

the original. This process is then repeated over and over until a large enough sample

is generated.
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1.4.4 Micro-electromechanical DNA Systems

One other major concern to be noted is that most modern works assume read and

write operations on DNA memory to be performed in full-scale sequencing tools rather

than on a Microelectromechanical System (MEMS) design, leading to a split between

the proposed full lab-on-chip (LOC) setup versus a much larger write and store sys-

tem, where the actual synthesis is done on a much larger system. While much bulkier,

this would allow for increased precision at the cost of speed and power. Read latency

once again is hurt but largely irrelevant due to the astronomical requirements already.

Microsoft in particular provides work that suggests that a full standalone chip

will be developed in the future through PUDDLE[31]. This work focuses on the full-

stack automation of microfluidic LOCs rather than the chip design itself, but provides

insight into where they expect DNA memory to go in the future. The target is to

manage low-cost droplet microfluidic setups such that they can be controlled compu-

tationally. In particular, they verify operation through the automation of Polymerase

Chain Reaction(PCR) operations and a DNA sequencing protocol, which is directly

applicable to DNA memory. The figure below demonstrates their proposed firmware

setup.
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Figure 1.8: Depiction of the PUDDLE firmware setup, beginning with a high level Python
control scheme, which is then translated into actions for the PurpleDrop microfluidic hard-
ware. [31].

This provides an early example of how a DNA memory system could be converted

into a microcontroller operational scheme. By offloading the PUDDLE translation

onto an on-board microcontroller, it is easy to see how this could be broken into a

storage system. The front end would handle the actual data storage, while the back

end would control the microfluidic operations similar to how modern microcontrollers

control individual NAND die, which are the specific smaller memory components that

make up an SSD.

This then leads to a natural discussion of the trade off between a longer strand

length versus a shorter strand length. From a purely spacial perspective, longer
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strands are better due to their higher density, however due to the constraints of

moderns synthesis tools, a MEMS approach is necessary. In modern works, error-free

synthesis often takes in excess of 10 seconds per base once all portions of synthesis

are complete[32]. At that rate, to write even a GB of data, it is prohibitively costly

in terms of time. The vast parallelization using MEMS devices is the likely solution,

where large numbers of strands are sequenced at the same time. This comes with a

natural trade-off of higher error probabilities and numerous design constraints. The

main key then becomes the ”at write” correction of strands, or more specifically the

rejection of poorly synthesized strands before storage. Smaller strands are then seen

as being more feasible in the near term due to the lower error likelihood, while longer

strands will eventually be targeted once synthesis is no longer the bottleneck.

1.5 Other Archival Storage Methods

In addition to the proposal of DNA memory as an archival replacement, there are

a number of other existing options that it must be compared with. Ignoring theo-

retical universal memory solutions, current archival methods include hard drives and

magnetic tape, with numerous other emerging memory solutions also being proposed.

1.5.1 Hard Drives

While HHDs were phased out in data servers for the numerous benefits provided

by SSDs, they are seeing a return in the form of low RPM longer storage drives.

In particular, Amazon Web Services (AWS) provides a product in the form of their

cold HDD, which makes use of extremely slow spinning HDDs for low data access

applications, making it ideal for deep archival storage[33]. For archival storage, it is

paramount to minimize power usage, particularly idle power usage. If this technology

is to continue along this development, there will be even slower drives in the near

future.
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With more modern advances in HHDs, there is a clear push towards increasing

storage density at the cost of access time. However, similar to flash memory, there is

a limit on horizontal footprint cell scaling, but there isn’t a parallel to the 3D vertical

integration that NAND has seen. As drives move ever closer to the Slater-Pauling

limit, Heat-Assisted Magnetic Recording (HAMR) has emerged as a temporary solu-

tion to the electric field limitation[34]. Through the use of surface plasmons to get

around the traditional diffraction limit, it is possible to increase the bit density of

HDDs to 5 terabits per square inch (tbpsi). In the future, it is likely that Heated

Dot Magnetic Recording (HDMR), which combines HAMR with bit-patterned me-

dia, will be used as well. While HDDs are clearly a fading technology due to their

power requirements, they can serve as a temporary solution due to the extremely low

bit-cost while more robust solutions are developed.

1.5.2 Magnetic Tape

Similarly to HDDs, magnetic tape storage was a popular archival technique histori-

cally that got phased out, but due to density increases has seen a revival[35]. Given

that there is no power usage after the data has been written and the extremely low

cost per bit, this technology is a much cheaper storage method than many alterna-

tives. Furthermore, due to the ”air-gap” that is provided due to disconnected tape

cassettes, there are major security benefits over server farms. Even more, the natural

error rate on tape is 4-5 orders of magnitude lower than that of even HDDs, which

already have extremely low error rates. Combining all of this with the extreme ex-

pected lifetime of tape, it is clear why this technology is making a return, although

for a slightly different use case.

While HDDs and Flash memory are commonly seen as having a higher areal

bit density, tape has the advantage of a much larger surface area to work off of.

Furthermore, much less work has been done in terms of scaling, so Moore’s Law
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will continue to be valid for the foreseeable future. In contrast to HDDs, which are

limited to the previously discussed superparamagnetic limit, tape has the ability to

store information to a much finer detail, making use of barium ferrite particles to

store information nearly 10 times as dense as traditional HDDs can[36].

A number of different advances have allowed this improvement to tape architec-

ture. To improve the lifetime, the recording layer itself has changed a number of

times leading to a complete redesign of the read and write heads. Track size scaling

was also a major development, allowing significantly denser patterning than before.

Future scaling suggestions include reduction of read head and media spacing and

general scaling reduction along the write paths. Given that these features are much

larger currently than those in HDDs, this suggests that minor improvements need to

be made, not requiring major breakthroughs required to enable other technologies.

Because of all this, magnetic tape is once again a clear front-runner for deep archival

storage methods.

1.5.3 Other Theoretical Memory

In addition to those memory solutions there are a large number of emerging solutions

that must also be investigated. At the forefront of these is domain wall memory

(DWM), also commonly called racetrack memory, which makes use of defects along

a material surface to store information[37]. At the core, defects are injected along a

ferroelectric nano-wire using spin-polarized electric current. These have the option of

being much denser than magnetic memory and can have an extremely high lifetime,

making them applicable for nearly all memory types. Initial work has shown that a

long retention device with a high ON-OFF ratio is possible, making this much better

than many other alternatives, which suffer from very low coherence levels. This

technology is far from mature however, requiring a much higher degree of material

domain coherence than is possible at a die level currently in production. Due to the
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ability to store more than one bit per effective cell and the 3D nature, this presents

a logical solution to archival storage.

Similar to DWN, ferroelectric RAM (FeRAM) works off of single transistor with

a capacitor to switch an intrinsic electric dipole to record data[38]. Unlike DWM,

this is a destructive read process, and has numerous device lifetime limitations. Over

time, there is a certain level of fatigue that limits the uses for DRAM alternatives,

but this is still promising for an archival regime.

Magnetic RAM (MRAM), the successor to FeRAM presents itself as a better

memory solution due to potentially lower read latency, higher density due to 3D

stacking, and better data retention during power loss[39]. Their operational principle

is based on a spin valve separating to ferromagnetic layers, where one is a pinned

layer and the other is a soft layer. Read and write operations are done similar to

FeRAM. Devices which operate based on Spin-Transfer Torque (STT-MRAM) has

been shown to be even better, but aren’t at a larger production level[40]. While this

is a technology much closer to scaled production, there are issues with coherency in

large systems, where each element can interfere with the surrounding cells.

One final solution is that of Phase-Change memory (PCRAM), which generally

makes use of chalcogenide-based materials to switch between a crystalline and amor-

phous state to behave as a ’1’ or ’0’[41]. The write latency of these devices is similar

to that of MRAM and has excellent scalability, making it useful for archival storage.

While also still in an early phase of development, it is suggested that power usage

will decrease enough to make this feasible.

While there are still numerous other memory solutions that are possible to fill this

niche, they are either too far from production to mention, or have much larger issues

to sort out for a large system.
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1.5.4 A Brief Comparison

With a brief explanation of these memory types completed along with a rough fea-

sibility time-line, they can be loosely compared using a number of metrics in the

table below. These values are compiled from a number of sources and are generally

estimates, but serve to get a loose sense of the benefits from each technology. In

particular, the realistic memory density provides a metric for what density has been

provably demonstrated, rather than a theoretical limit. This becomes even more

complicated in the cases of 3D memory solutions, where there is no known limit to

vertical cell stacking. The power consumption metric is the expected power to per-

form a single bit write. In all of these cases, there are exceptions such as limited

volatility, minimum write size and others.

Table 1.1: A table comparing all of the previously discussed archival memory solutions in
terms of basic metrics and lifetime. All cells marked with an ’Unknown’ are due to a lack
of significant data.[1, 4, 5, 34, 37, 36, 40, 41, 42, 43]

Memory Type Realistic Memory Density (cm2) Single-bit Write Energy
Expected Drive Lifetime

(Years)
Read Time

DNA 215 PB/gram Unknown 100+ ∼10 Hours

HDDs 0.77 TB 1.5 nJ/bit 5-7 1-10 ms

Flash Memory 8.5 GB 1 nJ/bit 1-2 5-50 us

Magnetic Tape 23 GB 1 nJ/bit 10-20 1-10+ s

DWM 100-500 GB Unknown Unknown 1-10 ns

FeRAM 1-10 GB 5 nJ/bit 10 60 ns

MRAM 10-50 GB 3.2 nJ/bit 10 1-50 ns

PCRAM 5-20 GB 50 nJ/bit 20+ 10-100 ns

This table is a good starting point for comparing the effectiveness of different

archival memory types, however it is not obviously conclusive. For any practical

decision to be made one must take into account all of the surrounding logic, whether

it be the synthesis and microfluidic systems for DNA, or read-write architecture for

DWM and others, or even the write-head equipment for HDDs. DWM seems like
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an obvious choice, however there is still a significant amount of time before this

technology is mature enough for a production setting. Taking all of these factors

into account, DNA seems to be a strong choice purely for the much longer expected

memory lifetime, but it is likely to be surpassed in the future by more novel techniques.
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Chapter 2

The Current State of DNA Memory

Following a basic development of memory systems in general in addition to a develop-

ment of the DNA side of DNA memory, it becomes necessary to discuss the existing

works in this sector. This chapter covers an introduction to a spin-off in the form of

DNA Computation and then discusses some of the major focuses in DNA memory

such as encoding methodologies and error correction. It then finishes by discussing

the most recent research in this area.

2.1 DNA Computing

Perhaps one of the most interesting other branches of DNA research is that of DNA

computation, specifically the use of biological components to act as actual compute

blocks. Originally developed to solve combinatorial problems in 1994, the proof of

concept was the development of a directed Hamiltonian path problem, which is some-

what similar to the traveling salesman problem[44]. At a high level, the initial graph

can be encoded into DNA strands and the computational operations are performed

through various helper enzymes. In particular, this type of problem is computation-

ally difficult because the worst case complexity is exponential. Sparing the specific

details, it is possible to use an excessive amount of different DNA chains to calculated

possibilities at runtime. this has problems with scaling though, not due to scaling

of the paths, but instead the exponential increase from the notes to provide a de-
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terministic answer. Additionally, the solutions become more probabilistic in nature,

requiring confirmation that the proposed solution is correct.

DNA computation instead chose to move towards the field of binary evaluation

problems due to high parallelization ability[45]. In particular, boolean circuit devel-

opment can benefit greatly from an almost brute force type approach rather than

relying on a costly depth solution. Given that boolean circuits can be of arbitrary

depth with an unbounded number of inputs, these quickly can become difficult to

evaluate, such as in modern CMOS design. Thus by encoding all of the specific

situations in a similar method to the nodes presented earlier, it is possible to simul-

taneously evaluate operation of the design. It has been shown that this can scale up

to billions of gates, which makes it reasonable for modern integrated circuit design.

While still not an active technology, there seems to be a high probability of future

interest in active boolean monitoring of biological processes which normally require

significant computational power. This primarily concerns the medical industry, with

the potential ability to in vitro monitor combinations of molecules[46].

2.1.1 Activity Detection

One important memory parallel that developed from this was a desire to more accu-

rately detect DNA sequences, leading to many proposed small form concepts ranging

from Chemical Field Effect Transistors (CHEMFETs) to resistive measuring devices.

In 2006, M. Barbaro et. al. developed one of the first CMOS style solutions for DNA

memory detection, paving the way for potentially much faster and denser methods

than currently in existence[47].

Up to this point, the commercial approach to the measurement of hybridization

was through the immobilization of the target, followed by the sequence labeling ds

strand reassociation of homologous ssDNA sequences and optical detection. While

extremely robust, this is extremely slow, requiring both a chemical targeting and
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expensive optical measurement tool. More modern methods are centered around

cantilever designs as well as quartz crystal microbalance. The proposed solution in

this work however was this to focus on a CMOS design through the use of electronic

detection. Figure 2.1 depicts the proposed structure, highlighting the immobilization

region as well as the general device footprint.

This device is similar to that of the floating gate flash memory technology, as

seen by the extremely large floating gate in S2 (Figure 2.1). This difference in charge

between the floating gate and the DNA then leads to a gate voltage and thus an

encoded bit read. Unfortunately, unlike modern memory designs, this has numerous

issues due to the inability to charge shift on the floating gate near the control, but

techniques exist which can correct this from an architecture standpoint.

Figure 2.1: Cross-section of a Complimentary Metal-Oxide-Semiconductor (CMOS)
biochip for combination detection. [47].

This design ultimately was fabricated with sensors ranging from 40x40 to 100x100

um, which while large is still significantly smaller than an optical-based approach. Ad-

ditionally, this testing was done in a low strength buffer, which would be reasonable

to use in a full micro-fluidic system. During fabrication, a surface activation proce-

dure was used, which does raise concerns though about the durability of this design,

particularly in the high demands of memory technology.

While this is not true memory decoding and rather simply a method to detect the

combination of a DNA sequence, it could potentially play a role in future microsystem
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designs. Future applications of this work could be in write verification, such that the

stored strand blocks are systematically tested to ensure that they are roughly the

correct length, suggesting that they are bonded correctly.

2.2 Encoding Methods in DNA Memory

Moving back into the memory side of applications, it quickly became necessary to

develop more rigorous encoding methods, particularly to minimize the number of

naturally occurring errors. While the obvious solution of a direct conversion of binary

to base four is possible, it leads to an unattractive number of synthesis errors due

to the strand randomness[48]. At the forefront of solutions was the concept of using

Huffman encoding to translate ASCII characters based on their statistical likelihood

and converting them into known low error base sets[49].

2.2.1 Huffman Encoding

Originally proposed in a work from Smith et al. in 2003, Huffman encoding quickly

became the de facto representation of how DNA would be encoded to efficiently store

data. Using a probability distribution of characters, each character is assigned an

individual set of base pairs to act as the code. An table using the probability distri-

bution of letters in the English language is shown below[50]. This allows for the easy

construction of a sequence with fewer than randomly suggested errors. Furthermore,

by designing the encoding around the data source, it is possible to achieve an average

of 2.5 codons per character encrypted.
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Table 2.1: Example of encoding based on character probability in the English language.

Character Probability Sequence Character Probability Sequence

e 12.7 C w 2.4 GGC

t 9.1 GA m 2.4 GTG

a 8.2 GC f 2.2 GTA

o 7.5 AG y 2 GTT

i 7 AA g 2 GTC

n 6.7 AT p 1.9 TTG

s 6.3 AC b 1.5 TTA

h 6.1 TG v 1 TTC

r 6 TA k 0.8 TTTG

d 4.3 TC j 0.2 TTTA

l 4 GGG x 0.2 TTTT

c 2.8 GGA q 0.1 TTTCG

u 2.8 GGT z 0.1 TTTCA

Other works added to this by either adapting it for image storage, or audio

recordings[51]. While this is by no means a universal encoding method, is has nu-

merous benefits in the case of direct text recording, although it would be extremely

simple to extend this for numeric encoding.

2.2.2 Other Proposed Methodologies

Further alternatives to the proposed Huffman code were investigated by many of the

same authors, but they are focused primarily on pure text encoding, which is far

from universal. In particular, they proposed two important new encoding algorithms,

comma code and alternating code. While individually not that useful, they provide a

basis for more modern works as well as highlight a significant problem. As this is an

introductory work, they ignored implications of error protection by naively making
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the statement that replicate chains can be used, which destroys the efficiency.

In the case of the comma code, the conceptual idea is to use five base codons, which

are separated by a single base which is denoted as the comma. The remaining slots

are then filled with the remaining base pairs which make up the character sequence,

thus providing 3 pairs, comprised of the two logically opposite bases with the comma

invert as the third. This provides a logical reading frame, which provides protection

against insertion and deletion mutation, for little special cost.

The other proposed method of encoding is that of the alternating encoding pattern,

which presents a method of 6-base codons of alternating purines and pyrimidines.

Similar to the comma code, characters are set in a 6-base pattern, but in this case

have no frame protection. This has the advantage of being able to establish exactly

where the error occurred, but is largely space inefficient.

These coding methods are less efficient than the Huffman encoding, but have

unique advantages from secondary points of view. They do contain significant costs

in terms of computational complexity, which is going to become a significant, par-

ticularly when it is stacked on top of other data protection techniques. It becomes

important to find the file-size at which it is more efficient from a write latency point of

view, encoding errors notwithstanding. With the realization that all written strands

should fall within a range of a few hundred to a few thousand base pairs, this becomes

an important conundrum. While a much longer strand length would be desirable due

to the naturally higher density, the shorter strands make it much simpler to attempt

a read correction.

More importantly, a key focus suggests that there should be some identifier to

detect if a DNA sample is a data source or of natural origin. In the event of contam-

ination, it might become necessary to disentangle usable data from organic contami-

nants.

A lot of these works have delved into an improvement upon the original Huffman
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encoding techniques, but there seems to be a focus on character efficiency rather

than looking at a fully system level. In particular, while the individual characters are

important, the system overheads end up being significantly more problematic in terms

of space efficiency as well as pool recall time (PRT). Notwithstanding, Ailenberg et

al [51] were some of the first to propose a method better than the original Huffman

encoding that is more universal than text specific.

This work chose to define a DNA base segment to represent a character, for all of

the keys on the keyboard, which can then be simply inserted as a base pair sequence.

Compared to the previously described methods of comma or alternating codes, which

provide a ratio of 6 bases per character, or sequential encryption, at 5.3 bases per

character, this approach chose to minimize the character set to a basis of 26 characters,

where secondary characters are referenced by specific longer chains. Extending upon

this, it becomes possible to efficiently encode other file types in a similar fashion,

where the number of operations is reduced to a trivial set of instructions, which can

then be assigned to valuable sequences. Simple graphical images can similarly be

encoded by defining vectors in the image sequence, and then using a decode library

to interpret the results. It was shown that using these methods, text-based encodings

could be done at 3.5 bases per character with other tested sets at 4.9 bases per

character. In specific cases, this shows its value but runs into the issue of requiring

prior knowledge about the file itself, making it non-universal.

While this is a valuable work, it complicates the issue of encoding by making

the sequencing much harder. Rather than running the system through a cypher to

generate the encoding, there is now an overhead of translation libraries, which either

have to be statistically generated, or hard-coded. From a system perspective, the

memory controller chip has to either assign its own codes dynamically, which becomes

problematic for an encoding perspective, or instead have the front processing system

provide encoding suggestions, which is unreasonable. Some would argue this is trivial,
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but for smaller data packet sizes this hurts the system response.

Furthermore, Goldman et al.[52] presented what has become the default suggestion

of DNA encoding through a modified Huffman encoding. The sequencing process is

shown below in Figure 2.2.

Figure 2.2: Depiction of full-pattern encoding sequence for ssDNA showing translation
into the base three system and finally the DNA encoding[52].

This strategy combines a number of previously developed encoding methods into

an operation function, beginning with a Huffman encoding into the necessary base

three system, converting local regions into stable DNA codes, and separating into

specific small-length strands. This allows for both a dense storage regime in addition

to an adjustment region to eliminate short-chain errors. Furthermore, all tagging

information can be supplied at the beginning of encoding and strand caps synthesized

at every end.

One important concept to note from this work is the use of a next state table
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to determine the next base in the sequence. This is one of the most important

metrics to limit the number of repeated bases in a sequence. A table such as the one

below could be used to prevent this repetition. Furthermore, deeper state transition

diagrams could be used to avoid many other short chain risks, with the decode logic

simply reversing this process.

Table 2.2: Next-State diagram demonstrating a method to prevent prevent homopolymer
runs of any length.

Current Base 0 1 2

A T G C

T G C A

G C A T

C A T G

2.3 Error Correction Methods for Modern Memory

Given the previously explored high error rates of this design, it is next important to

develop a thorough background of both what error correction algorithms and what

usefulness they have in the field of DNA memory. In particular, Reed-Solomon codes

with their successor Bose-Chaudhuri-Hocquenghem (BCH) codes are highlighted to

show what natural synthesis error can be corrected. Additionally, error recovery

methods for DNA are mentioned in the form of multiple copies of the same strand.

2.3.1 Reed-Solomon Codes

Given that error correction is so important to the future of DNA memory, a more

thorough explanation of basic error correction, as well as Reed-Solomon methods are

developed here. In essence, the purpose of error correction codes are a method to

discover the existence of errors and correct them to recover data. Whether these errors

are caused during synthesis or during the read-back process is relatively unimportant,
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just that they exist. One simple example of error checking is through the introduction

of parity bits, which are an extra bit added along to the end of a sequence, which

provides information about the information in the chain. One simple example is given

in Figure 2.3.

Figure 2.3: Example demonstrating the use of a single parity bit in a sequence, with the
correct sequence on top and the incorrect sequence on bottom. Because the parity bit is a
’1’, it suggests that a bit flip has occurred.

While this is an extremely simple example, it demonstrates how a misread can

be identified in a sequence. This can then be followed up by a re-read in most cases,

but with DNA memory this becomes slightly harder. Because a direct read would be

destructive, the read either has to be properly done the first time, with any errors

being handled by the microcontroller error flow, or has to be made on numerous

copies, which is a time-intensive process.

In the cases where reads can’t be retried in a method similar to modern processes,

it is important to have an in place correction such as Reed-Solomon correction[53].

This systematic coding scheme, which operates by adding a code word at the end of

a data set has the ability to correct for multiple bits in a sequence. For some set of

data with length ’k’ and ’s’ bits per symbol, a set of parity symbols ’2t’ is added such

that k + 2t = n, the total length of the data segment. From this, ’t’ total characters

are able to be recovered. A common example of this is through RS(255,223) with

8-bit symbols representing bytes as shown below. It is clear that errors in a total of

16 bytes can be corrected for.
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Figure 2.4: Example showing RS codewords, with the 223 B data on the left and the 32
B correction on the right.

This process of correcting errors is based on the concept of finite fields, where

a Galois field is used to generate a polynomial to provide an expected data result.

In a simpler sense, it is easiest to consider the idea of adding specific characters to

chains to make them unique, similar to a dictionary. These extended words are then

compared on the decode side to the set of possible words. Thus, any words that

are different than expected, which would occur in an error, can be corrected to the

nearest correct word, given by the Hamming distance. A simple example is given

below using text.

Figure 2.5: Example showing and RS text example. The initial encoded word is ’House’,
which is then misread as ’H**se’, with 2 error values. This is then compared to the allowed
word bank, where the closes word is the original ’House’. This demonstrates the ability to
correct for a total of two character errors.

However, as ’t’ grows, increasing the ability for correct bit flips, the processing

power increases significantly. While originally intended for byte codes, this can natu-

rally be extended to handle DNA encoding, simply by handling the encoding before
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conversion into the base equivalence.

2.3.1.1 Bose-Chaudhuri-Hocquenghem (BCH) Codes

While Reed-Solomon correction is extremely powerful, most modern memory error

correction schemes use BCH coding methods[54]. While these two methods are ex-

tremely similar, BCH codes are a generalization of RS but operate with a lower

number of codewords, making an exhaustive correction search feasible for memory

read operations. BCH codes are much more attractive due to their emphasis on the

correction of random errors, rather than burst errors. In flash memory for example,

it is more likely for a number of errors to occur in a row due to cases of physical

defects or write level issues. It is due to this trade-off of burst correction or random

error correction that makes memory correction more difficult due to the occurrence

of both. However, for DNA memory, single-base mutations and misidentifies are far

more likely to occur than a chain error sequence, making BCH more effective.

2.3.2 Error Recovery Methods

In addition to direct in-line error correction, there are a number of different methods

of error correction based on multiple chain reconstruction. The premise of this is to

simply duplicate that data a number of times to ensure a correct read, similar to how

modern DNA sequencing relies on numerous samples. While this is acceptable for

biological applications, in order to achieve the highest data density, the goal should

be to minimize chain replication. While early works were content with the statement

that four or eight copies of the data were sufficient, it was clear that better methods

existed[55].

One such method was that of data overlap, where different strands would contain

shifted copies of the same information, thus reducing the likelihood of repeated errors

at the same position. Bornholt et al. improved upon this further by making use of
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a three strand replication[56]. This takes the ideas from a RAID 5 setup, where two

strands, A and B, are XORed together to form a third strand AB. Thus, if any two of

these strands are correctly recovered, even with ECC, the last strand can be correctly

extracted.

2.4 A Comparison of Existing Systems

Now that a development of the concepts behind DNA memory have been completed, it

becomes important to discuss some of the full system designs that have been published

over the last few years.

2.4.1 A DNA-Based Archival Storage System

Perhaps the first major work following the 2014 paper by Goldman et al. was the

previously mentioned work by Bornholdt et al[56], which introduced a key-based

method of storing and retrieving data. The architecture design proposed was similar

to many other works, comprising of a synthesizer module, a storage container, and a

sequencer module. this proposed system made use of DNA strands 100-200 bp long,

correlating to 5-100 bits of data. Using a Huffman encoding to convert the data into

a base three system, a rotating encoding system was used to translate all of the data

into the DNA nucleotides. The data itself was stored in strands as a payload combined

with an address surrounded by a sense nucleotide and strand primers, which are used

to assist in the read portion.

In particular, careful attention is taken to the concept of key pair applications for

DNA storage. Due to the fact that the DNA itself has been proposed to be stored

in microfluidic chambers, it is assumed that the controller itself will know where the

data is physically stored. While this paper didn’t explore the details of this, it seems

likely that a simple address translation can be used to provide a pseudo-location front

the front end perspective, while the system microcontroller can rely on internal flash
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tables or similar to handle address decode. Thus, a conundrum is reached on how

to ensure random access. If pools were kept small, thus increasing DNA separation

and reducing the minimum read size, this vastly reduces the total spacial efficiency.

However, at the opposite end, if pools were kept large, minimum read sizes are greatly

increased, leading to much slower access times. This work discussed a potential fix to

this issue through the use of mapping keys to PCR primers. While the identification

of specific primers was outside of the scope of their work, it is an extremely valuable

discussion of how to minimize spacial inefficiencies. This allows specific amplification

of specific strands at read time, increasing the likelihood of a correct read in a specific

pool. Limitations on pool size are then simply based on the number of unique effective

primer agents.

A total of four different files were successfully encoded and decoded using this

process, ranging from 5kB to 84kB, showing that it is possible to write files of a

size reasonable for a single storage pool. While this work is somewhat old, it was

important in presenting a method for a full system design of DNA memory. One

key highlight is that even with these small file sizes, they did encounter errors, which

were manually fixed with the understanding that future work needs to go into error

correction using BCH or a similar process.

2.4.2 DNA Fountain

The next major work to discuss is that of the DNA Fountain, which is an early demon-

stration of the ability to store larger computer files in DNA memory and successfully

decode them[57]. This work provided a better analysis of the true Shannon infor-

mation density, which was found to be 1.83 bits/bp, rather than the ideal 2 bits/bp

proposed before. This work combines some of the encoding methods previously dis-

cussed with the use of RS for error correction to reduce the level of DNA overlap for

data duplication.
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The encoding process is somewhat different than the other explored ideas, where

data is first broken up into non-overlapping chains of some decided length. Next, the

data is iterated using two distinct steps, a Luby transform and a screening. The Luby

transform is responsible for collecting data into a set of packages of short sequences,

called droplets through random selection and bitwise edition under a set field. Each

of these droplets contains a payload and a fixed-length seed, which provides a state of

the random generation which chose the data distribution. The screening step of the

process then translates the specific binary sequence into base pairs directly (00 to A,

01 to G, ...) rather than a shifting cipher. The chain is then screened for the content

of GC and homopolymer runs, which would make the chain unstable. If the screen is

passed, the data can be stored, but if it fails a different encoding seed is chosen and

the process is repeated.

From this method, a total of 2.14x106 bytes of data were successfully encoded

and decoded, requiring nearly nine minutes of scripting time to verify. This was then

shown to extend to a maximum of 2.18x1015 retrievals. Unfortunately, this method is

computationally costly, which makes it impractical for a full-scale system. Potentially

future work will find a way to reduce the computational complexity, or instead find

a way to create dedicated hardware to speed up this encoding.

2.4.3 End-to-End Automation

2019 marked a transition into larger examples of fully automated end-to-end sys-

tems, which marks a large step forward. While the vast majority of works up until

this point required physical interaction as some stage of the process, Takahashi and

coworkers developed a fully automated system to handle DNA memory storage[58].

Even through it is unable to store nearly the information that some of the previous

works have shown is possible, it provides a scalable proof that a truly automatic

system is possible.
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Using similar methodology to previous works by including error correction and

adapters, encoding was done on chains longer than 1000 bp, which is significantly

longer than other works, which typically have aimed for 100-250 bp in length. The

overall system latency was seen to be 21 hours, with the vast majority of time being

spent on synthesis at a rate of nearly 305 seconds per base. This aligns with other

works, which suggest that synthesis will always be the major delay in design. In

contrast, the actual read portion of the synthesis took less than an hour, showing

that reads can be done in a somewhat reasonable amount of time.

A 5 B message was successfully encoded and decoded automatically, showing suc-

cessful operation. Unfortunately, this setup was extremely poor in terms of overall

efficiency. Out of the 1 mg of DNA synthesized to store this information, only 3469

reads were sequenced, of which 1973 were aligned with the specific adapter sequence.

Furthermore, of these only 30 had extractable payloads, with only a single correct

read. All other read attempts were identified as unrecoverable, but this wasn’t elab-

orated on. This shows that while other works have shown that this informational

encoding is possible, there is a large gap between what is possible and what can be

currently automated.

2.5 A Highlight of DNA Security

One final important sector to note is that of the security of DNA. Unlike other forms

of memory, where it is impossible to physically read out of system, gaining physical

access to the media allows for direct reads in the same manner that the DNA would

naturally be decoded. Thus, it becomes important to ensure a robust security method

to limit recoverable information.

While a number of solutions exist for other memory types, recent work has focused

on the concept of a physical key decode, where the DNA is only able to be properly

decoded on a specific system, as explored by Chen et al[59]. Due to the unique manner
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that DNA is read, there are advantages such as the use of these physical decode keys,

which will have only a minor effect on sequencing times. By introducing additional

single-sided overhangs on a side of the double helix to act as security key. Thus, in

order to correctly decode the DNA itself, the strand has to be read into the correct

micropore which contains the proper complimentary strand key leading to correct

data decoding. If reads occurred at any other location with a different key, the data

would be misidentified.

It is noted that this is an imperfect solution, particularly because DNA strands

such as those suggested will have a significantly lower level of stability, which Chen et

al. estimate will only survive for 30-32 years. In the long term, it seems likely that a

different method of physical encryption will be necessary in order to ensure the 100+

year lifetime targets. One likely decode solution for the decode method would be to

directly encrypt along the chain, where the nanopore would pick up the matching

address decode key. This could be handled completely in system, where the encode

logic knows the physical location of the data storage and because of that, it would

know which nanopore would be responsible for that specific read at decode time. Read

error recovery could then potentially reroute DNA decode into other similar pores

based on some other internal architecture. The physical location would be translated

from the system logical address, thus preserving locational integrity similar to modern

systems. While this falls prey to a strict dependence on the nanopore integrity, the

relatively large size would make it less prone to failures. This idea hasn’t been properly

explored, but would be worth investigating.
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Defining DNA Memory Architectural Systems

Following the development of DNA memory systems, it is natural to compare existing

works to determine the most effective methods of design. Some of the key recent works

are identified, they are slightly modified to provide equal grounds for comparison. The

proposed method of deep state-based encoding is then developed using background

theory. In particular, many works gloss over the concept of an ideal chain length,

choosing a length based on their synthesis and decode tools and adjusting the work

to fit the system. Instead, a memory-oriented base length should be developed as a

target.

After determining the ideal chain length size for a hypothetical system, it is then

important to develop a larger memory block by defining pool sizes, data distribution,

and microfluidic array size. Given how few physical constraints exist due to lack

of published information, a large number of assumptions have to be made. Special

care is taken to highlight a proposed interface between the DNA pool readout and

the physically proposed hardware, given that this will be extremely computationally

complex.

Finally, a proposed system is developed to provide a hardware flow on the input

and output side of the theoretical drive. While this in no way a complete end-to-end

design, it provides an initial hardware implementation of how such a system could be

constructed in hardware rather than software.
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3.1 Encoding Comparisons for DNA

Unfortunately, given the low number of different works in this sector, there are often

discrepancies between papers as to the exact metrics used for comparison. This

section develops the metrics needed for any encoding strategy in terms of net bit/bp

as well as a total chain efficiency.

The first primary metric is the coding potential of the data, which represents the

ideal number of bit/bp possible following the rules of the encoding pattern. This value

is capped at a theoretical maximum of 2 bit/bp by assuming absolutely unique bp

targets with no automatic redundancy. In the future, if sensing techniques continue

to improve, there is a possibility of increasing this value further based on different

bond-lengths such as the AT versus A*T*, which differ based on the hydrogen bonds

between the two ssDNA sides, and treating those as unique. Presently, this is unre-

alistic, and deemed outside of the scope.

That metric is a strong baseline, however it is a precursor to the net informa-

tion density, which is a much harder metric to meaningfully quantify. While the

calculation itself is quite simple, simply being total number of bits / total number of

base pairs, this provides a bias for systems which minimize redundancy and assume

perfect storage location information. While that is closer to ideal in terms of pure

storage density, full systems will forgo that to provide information on addressing,

error correction, and in the case of DNA memory, decode handles to improve read

times.

Another similar metric commonly used is the net redundancy of information,

which is the amount of straight data repetition. In early works, this was characterized

by a high value due to chain duplication, however more recent works have lowered

this value closer to the target of 1, where there is no direct data duplication.

The final two metrics to discuss aren’t specific to DNA memory, but instead tar-
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geted towards the proposed memory architecture. In particular, the total addressable

space is important because it has to handle the high theoretical memory densities.

Given that this is a metric that hasn’t been the target of much work in this sector,

there are vast improvements possible through design tweaks. Furthermore, the mini-

mum memory block size needs to be identified because it puts a limit on the minimum

write size to the system. This value is extremely hard to compare because most works

weren’t designed to be put into a full-scale memory environment.

3.2 State-based Encoding Methodology

While the Fountain approach of encoding has been shown to be vastly more efficient

than a simple next-state encoding, it comes at an extremely high computational cost.

While the naive thought would be that due to the extreme encoding times, this is

trivial, it unfortunately is not given the scaling needs of write execution. For this

technology to be feasible, there needs to be a massive parallelization of encoding,

rather than the linear encoding methods used in prior works. Thus, the target should

be a modular encoding pattern that can easily be implemented in hardware to develop

encoding patterns for micro-array synthesis. Thus, a simple encoding method must be

developed which requires relatively little hardware logic and achieves similar encoding

density to modern work.

In development of such a pattern, two main issue arise which need to be accounted

for. There exist issues with underrepresentation of read coverage in regions of high GC

or high AT content, which suggests that data should be kept to an even distribution

locally as well as globally[60]. For this work, the encoding target was between 0.48

and 0.52 GC bias. One oversight of other works is that they target the entire dataset

as a whole, when in reality the address tags and the payload itself can be treated

separately. Separation of these regions is less of an issue due to the large number

of amplifications that occur. The second important requirement is the limitation of
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homopolymer runs as discussed before. While some works strictly limited polymer

runs to one in length, it is seen that limiting below a total of four is reasonable[61].

3.2.1 Ideal Chain Length

One important portion of theory that is important to discuss is the dropout rate

during PCR amplification on the read-side of the system. In particular, in larger

pools, it becomes important to ensure that the specific read chain is being amplified

entirely, which is based off a probability mass function, shown below.

δv =

(
µ

µ+ r

)r

(3.1)

In this equation, r represents a process given factor determined by the library

processing technology, from 2-7. This value is roughly inverse to the amount of PCR

rounds that the sample undergoes. µ is correlated to the sequencer capacity, which

when taken to be a reasonable value demonstrates that a dropout rate of 0.5% is

reasonable.

However, with specific handle targeting for replication, this can be reduced low

enough that this is unimportant. This is identified though to demonstrate the im-

portance of PCR targeting. Using a common metric, it is possible to design for

primers 18-24 bp long, which lead to a limitation of 150-1000 bps of remaining chain

length[62]. Using the RUCS program, following the rules of the following section, it

is suggested that there are 800 potential 22 bp primers to work with in this case[63].

This is much smaller than the expected addressing due to the requirements around

repeats, GC content, and other factors in the primer itself. By treating each of these

as a unique address key, it is possible to then treat each strand as an addressable

location, rather than having to decode the entire pool. Logically, a secondary address

conversion table can be used to convert the front end address label into the pool

address and PCR key, which will be discussed in the following section.
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Optimization around maximizing PCR throughput with a limit of 996 bps, work-

ing around the modulo six requirement from the Raptor analysis, defining the min-

imum read size[64]. While primers can be developed for longer than 3-5 kbps, they

require additional time and provide further restrictions on the design. Using this, af-

ter subtracting the two primers, this places a theoretical upper limit of 764.8 kbps for

a specific pool, with individually addressable memory of 956 bps segments. This effi-

ciency however is subject to the limitations of BCH encoding and the state-efficiency

loss as stated above. A depiction of this strand/pool arrangement is shown below.

Figure 3.1: Example showing an individual pool with DNA strands. In particular, this
provides safety for under-sampled groups.

3.2.2 Use of a Raptor Encoding Pattern

Given the vast improvement in efficiency seen by the Luby transform (LT) to increas-

ing coding efficiency, it is natural to lean in this direction, provided a more efficient

encoding and decoding method is found[65]. Luckily, this exists through Raptor codes,

which are an extension of LT codes but linear in encoding and decoding, making them

much more easily implemented in hardware[66]. Thus, the original condition from LT

that all input symbols must be decoded, the decode graph can be constructed out of

a number of edges equal to the number of input symbols, making it linear. Instead, if

the natural read and write errors are minimized, Error Correction Codes (ECC) can
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be leveraged to fill in the remaining bits, thus increasing informational density.

By considering the dsDNA strands as message packets, it is easy to demonstrate

how this scheme can be applied to DNA memory. This code is really a modification

of the original LT fountain coding, being comprised of a total of two separate codes.

However, unlike LT, pre-code-only (PCO) Raptor codes use the simplest possible

output code[67]. To develop this, an R10 Raptor code in a fixed rate setting was

adopted for use in this work[68]. In particular, each pool is treated as a single code-

word for the Raptor algorithm. The relative position, in a memory sense rather than

a physical sense determines the key used. The foundation of this is based off of the

presented Fountain scheme, where a source of K symbols is used to produce a set of

output symbols M through a linear combination, where K = M . These packets are

generated to match the number of specific strands in a pool. A flow of the encoding

pattern is shown below in the form of an example.

Figure 3.2: Example showing the flow of data encoding. It is important to highlight that
this is the data specifically, which doesn’t include the specific key.
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Thus, the entire system can be defined as an input function f(K,C, t), where K is

the set of input symbols, C is the encoding scheme, and t is the number of correctable

bits required. By limiting the redundancy overhead, the time complexity is reduced

to O(K) rather than O(KlogK) at the cost of a higher error rate.

Developing the ideal of the Raptor combined with BCH, the Raptor code is ap-

plied to the entire pool of data, to form an extremely large codeword, comprised of a

combination of symbols taken from words in various individual strands. In this con-

text word denotes an arbitrary length n. The encoding process is done through two

parts, beginning with the generation of intermediate symbols. Defining m as a vector

of L intermediate symbols, along with t = [zT sT ]T , where z is a zero vector of length

(S + H), which itself represents the relationships between intermediate symbols, and

s, which is a vector of k source symbols, and encoding relationship can be defined.

Apre is an LxL matrix of GF(2) (Galois Field).

Aprem = t (3.2)

In this case, L = K +S +H, giving a total array to provide a binary relationship

between all of the initial symbols and the intermediate symbols. This can then be

easily adjusted to solve for m = A−1pret.

The second step involves the generation of all parity symbols, (N −K), which is

calculated from the GLT of dimension (N-K)xL binary matrix. This can be used to

generate individual parity symbols r.

r = GLTm (3.3)

Combining these, the overall coded vector can be calculated as follows, where step
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one can be preprocessed leading to a non-trivial, but linear solution.

C = Am,A =

[
Apre

GLT

]
(3.4)

A is then known to both the encoder and decoder. The decoding can then rel-

atively simply be done through Gaussian elimination on A′m = c′, where A′ is the

reduced generator from A, due to dropped symbols.

The likelihood of an uncorrectable error of the inner-code can then be computed

using the following, where pe is the raw bit error rate, which can be loosely calculated

using the synthesis and sequencing error rates.

PE = 1 −
∑
i≤t

(
n

i

)
pie(1 − pe)

n−i (3.5)

The overall probability of an overall uncorrectable failure can then be found as fol-

lows. It is assumed that the undetected error probability of the inner error correction,

is orders of magnitude below that of the other errors, and thus can be ignored[69, 70].

PF ≤
i=k∑
i=1

[(
K

i

)
P i
E(1 − PE)k−imin

{
1, 2−(Ns(N−K)−Nsi)

}]
(3.6)

Following this, the final translation is done by a mapping of data bits into using a

scheme that maximizes efficiency while maintaining the strict biological limitations of

DNA. Using this development, combined with the physical pool sizing requirements, it

is possible to design a system to maximize the data throughput while still maintaining

an error rate similar to what modern memory can provide.

3.3 Defining a DNA System

Using this encoding scheme, it next becomes important to develop an outline of a

conversion layer for the memory system itself. While it is clear that individual strands
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can be made addressable due to PCR, the ability to read a single strand is nearly

pointless due to the encoding pattern used. Instead, the front end memory only

needs to keep track of the pool as a whole. The individual addressability can then

be treated as an error recovery mechanism, where a sequencing mis-identity can be

corrected through a specific re-read rather than a complete re-read. While not the

focus of this work, it is important to highlight as an advanced recovery mechanism.

A high-level diagram of the complete system is shown below.

Due to the complexity of the design, only some of the key portions were developed

in VHDL 2008. This included the address conversion layer, an example microfluidic

communication layer, and the encoding module. On the output side, a theoretical

microfluidic adapter is proposed as well as error recovery logic. The address itself then

needs to be transformed into all of the required components. Ignoring the obvious

logical to physical address conversion that occurs in most memory systems already,

the address in a DNA system has a much larger functionality. In addition to providing

a physical address, this also is used as the key for the Raptor encoding and defines

the adapters used as well. A flow of the encoding side of the design is shown below.

Figure 3.3: Front end of encoding system, demonstrating full flow from write to store.
This is treated as independent to a full memory setup to limit overhead.
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In particular, the design of such a system implies that the number of sequencing

sites ss is orders of magnitude lower than the number of storage pools total, leading

to a necessary microfluidic movement. With the extreme length of sequencing time

required compared to traditional memory, read requests are then highly dependent on

the ability to make read requests, then arbitrarily move samples between read sites

so that performance hits aren’t as dependent on read location. A high-level design of

this decode architecture is presented below.

Figure 3.4: Decoding side of the DNA storage system. The actual design is much more
complex due to the more complicated logic in the region of DNA translation to the BCH
correction in the event of a read-retry.

Using these encode and decode units, it is possible to approximate a system by

simply tweaking the physical biological unit parameters and making adjustments to

the adapter modules.

3.4 Evaluation of DNA Architectures

Taking this design with the calculated parameters, it is then possibly to provide

rough throughput measurements, particularly on the decoding side of the applications.

Given that the encoding is always going to be limited by the ability for individual
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base synthesis, the ability to access the archived memory becomes the key throughput

measurement. The final portion of this work considers the evaluation of decoding

throughput, under a range of sequencing assumptions. While not mathematically

rigorous, this is used to suggest architecture design for a more efficient system.

In particular, given that the entire biological memory block is working off of limi-

tations in sequencing and synthesis technology, a modular investigation of the impact

of strand length on encoding performance and memory requirements is performed.

Key interface requirements are also outlined to maximize encoding throughput.

Furthermore, care is taken to investigate the so-called worst case requirements

under the condition of a repeated read-retry. Under a system holdup due to a BCH

failure, suggesting that a PCR-enabled reread is required, it becomes important for

drive recovery as well as minimal system slowdown. In particular, the decode request

stack needs to remain agile enough to attempt a secondary read at any given time.

Various levels of read failures are discussed as well as how a larger system should

handle them.

49



Chapter 4

A Comparison of Encoding Patterns

Following the outline of requirements for the Raptor with BCH encoding pattern, the

implementation and results are presented below. The structure of this chapter is the

reverse of the encoding method, where the binary to base pair translation is given,

followed by the generation of the ideal strand length based off of the BCH correction

probability, which gives rise to the original pool size proposal.

An error analysis is then done showing the expected error rates between different

modifications of both the BCH and Raptor algorithm as well as how this can be tuned

based on specific encoding and decoding tools. The final section is then devoted to

a comparison between this technique and previous techniques in terms of various

efficiency metrics, along with the identification of key areas of improvement.

4.1 Direct Conversion of Binary into DNA Bases

The first important translation is that of binary to base pair. Once the entire Raptor

chain with BCH is encoded, the resulting binary sequence is then converted into the

base pair equivalent. For simplicity, the four base pairs are assigned a 2-bit binary

code, which would then be provided to the sequencer as shown below.
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Table 4.1: A table showing the binary value for each base.

Base Binary

A 00

T 01

G 10

C 11

The conversion itself is done through a mapping of 8-bit segments onto 6-bases.

While the 8-bit was chosen to match the unit of a byte of memory, attempting some

reasonable level of overlap, the 6-base requirement was chosen as the smallest number

of bases that could encode 8-bits after illegal segments were removed, while still

leaving enough to generate unique primers for PCR.

For the case of 5-bases, a brief mathematical argument is presented below. A total

of 1024 possibilities exist, which, after removing the 64 cases caused directly by runs

of four or five homopolymers is reduced to 960. However, this still leave the possibility

of a run of 4 or more segments being generated by a sequence of symbols. To encode

the 256 possibilities from the byte of data, they must be mapped in a way that none of

these runs are generated. One trivial method of generating these is to allow character

positions one, three, and four to be any possibility, with positions two and five such

that no run of three is created, thus providing 576 possibilities, which is more than

enough for the required encodings. Given that all of the specific runs of four out of

five homopolymers were removed, this proves that the entire sequence could have a

GC imbalance of maximum 60/40, which was shown to be reasonable. However, even

with this mapping, there aren’t nearly enough to generate a unique-enough primer

set to target a specific strand, thus 6-bases are required.

Taking this 8-bit into 6-base mapping leads to a total of 4096 possibilities, where

after subtracting the 172 chains of 4 runs or longer, the 256 specific targets could be
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mapped into a unique set. The decision was made to group these closely together,

thus allowing for primers to have a maximum separation from the set itself. This set

was chosen as follows, where c1, c2, c3, c4 are distinct bases and the addition indicates

concatenation.

ci = [c1] +


c2

c3

c4

+



c1

c2

c3

c4


+



c1

c2

c3

c4


+ [c1] +


c2

c3

c4

 (4.1)

This set of possibilities was then generated in a Python script and showed that

the natural GC to AT balance remained at 50%, so combinations were removed at

random to provide a final balance of 50%, satisfying both key requirements. A portion

of the resulting code is shown below.

Table 4.2: A table showing the first four allowed base conversions.

Binary Base Conversion Binary Valuation of Bases

0b00000000 ATAAAG 0b000100000010

0b00000001 ATAGAA 0b000100100000

0b00000010 ATAGAT 0b000100100001

0b00000011 ATAGAG 0b000100100010

A simple example of a conversion with some of the data is shown below, while the

full table of the encoding set is given in Appendix A. A total of 4 bytes of data are

encoded, broken into 1 byte segments. This binary equivalent is then interpreted by

the synthesizer and turned into the strands themselves.
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Figure 4.1: Example showing the encoding of 4 bytes of data into base pairs, followed by
their binary equivalent.

Thus, the maximum bit efficiency of this mapping is 8/6, which is 1.33 bits/bp.

There is the possibility of an 8 to 5 mapping if better primers are identified, however

due to the extremely low error requirements, this seems unlikely at the present.

4.2 BCH Code Measurements

An analysis of the uncorrectable error rate of the BCH code is then done using

equation 3.5. pie is calculated using a set of values for synthesis errors of 1% down to

1x10−2%, and sequencing errors are 1% and 0.1%. It is noted that these are treated

as independent errors, but that there exists a possibility of a synthesis error that is

corrected by a second sequencing error. Taking the ideal chain length of 1000 bps,

valid values of t are defined in terms of the original byte symbol groupings, where

k + 2t = n.
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Figure 4.2: Plot showing probability of BCH unrecoverable failure versus the number of
bases used for correction. In this case, the 1% read with 0.01% synthesis and 0.1% read
with 0.1% synthesis appear to overlap, but the latter is instead slightly lower.

As expected, as the synthesis and sequencing go down, the probability of an

error also go down. Given that BCH codes are well understood, none of this is new

information, instead it is useful as a set of reasonable metrics for what is reasonable

in a current DNA system. However, at the strand level, increasing the number of

correctable bits reduces the overall encoding efficiency. The following shows the error

probability versus net encoding efficiency of individual strands.
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Figure 4.3: Plot providing a comparison between the error probability and next efficiency.
In this case it is clear that the maximum allowable error rates are much lower than what a
large-scale system currently reasonably can provide.

To hit the desired case of under 1% unrecoverable rate at a reasonable efficiency of

1.28 bits/bp, both synthesis and sequencing error rates need to be consistently below

0.1%. In particular, the upper bound of the traditional 6σ semiconductor bound must

be below this limit to ensure memory integrity.

4.3 Analysis of Complete Raptor Code

This is then substituted into 3.6 as P i
E. By adjusting the number of Raptor symbols

in each strand, Ns, the number of Source Symbols, SS, and parity symbols, PS can

be determined. The first measurement was a comparison between the probability of

an unrecoverable pool with respect to the net bit/pb efficiency. This was performed

on the four previously mentioned cases, where minimal Raptor codes were chosen,

SS + PS = 800, leading to a balance of SS = 784, PS = 16, signifying a 2%

overhead.
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Figure 4.4: Plot showing the addition of a 2% Raptor overhead with Ns = 1.

In this case, The case of 0.1% read error and 0.1% sequencing error was chosen

as a reasonable metric. The important case to note is the gradual bunching of values

as the BCH error rates decrease. Additionally, in this plot it is easily seen where the

two separate error recovery drive metrics are dominant. At this point, these errors

are still too large for the target of 10−12, so the Raptor overhead was increased.

The overhead was then varied, and the results are shown below. As expected, as

the overhead increased, the probability of an unrecoverable sequence went down and

it is possible to determine a reasonable cutoff for error values.
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Figure 4.5: Plot showing error probability based on Raptor Overhead in terms of number
of uncorrectable BCH errors.

From this, a family of curves is generated which allows for the extraction of re-

quired overhead in terms of BCH strand errors . Thus, if the sequencer and synthesis

tools have a known error rate, the required overhead can be found to match the target

error rate. For this example, a total net efficiency of 1.18 bits/bp was found to satisfy

the 10−12 error rate requirement.

4.4 An Efficiency Comparison of Encoding Techniques

Following this, it is then possible to compare these results with some of the other

proposed techniques and highlight some assumptions that were made in various works

that might skew the results.
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Table 4.3: A table comparing selected works to the data generated in this work.

Church et al.[25] Goldman et al[10]. Bornholt et al.[42] Erlich et al.[57] This Work

Theoretical Density [b/bp] 1.0 1.58 1.58 1.98 1.33

Redundancy None 4 1.5 1.07 1.08

Error Correction None Repetition RS RS BCH

Net Efficiency [b/bp] 0.83 0.33 0.88 1.57 1.18

In particular, this chart is unable to properly compare the overall recovery data,

which makes this work look worse by comparison. In particular, the net efficiency is

greatly reduced to ensure data integrity, while some of the earlier works focused on

showing that the recovery was possible at all. Additionally, the significant advance-

ments made by Erlich et al. target the reading of a single pool, rather than focusing

on individual strand addressability. This provides better results, but comes at a cost

of increased sequencing time and a non-linear error correction method.

This does however highlight the need to transition to an 8 to 5 encoding scheme,

which would boost the theoretical density and net efficiency significantly. As error

rates are reduced and sequencing methods improve, this becomes more and more

possible, particularly if it becomes possible to increase the strand size, thus reducing

the number of unique primers. Future work should target a better method of primer

development for arbitrary data sequences, because there is a major gap in research

in this sector.
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Chapter 5

A Practical System Understanding

Following the development of a system outline as well as the encoding method, the

basic construction of a full system becomes obvious. Unfortunately, while the main

recovery flow presented in 3.3 and 3.3 is relatively straightforward to implement,

the error flow makes this much more complicated. This chapter outlines a potential

error recovery flow which makes use of the more precise primer addressing method

to perform targeted read-retries. These presented flows were then verified using an

Arria V FPGA to ensure that these are hardware implementable.

5.1 A Practical Understanding of Error Flow

One of the most important considerations in this entire work is the concept of read-

retries, specifically when a sequence is unrecoverable. Unlike other memory, where

read settings such as voltage level can be adjusted to properly recover data, DNA

sequencing doesn’t provide a parallel that can be leveraged off of. PCR then needs

to be selectively leveraged to not only amplify the original data, but also to perform

selective amplification on addresses determined by the microcontroller. Thus, if the

microcontroller is able to detect that a sequence is unrecoverable due to a BCH indi-

cated read failure, it should be able to make a second read request to . However, this

isn’t nearly as quantifiable due to dropout restrictions and the sequencer dependence.

Below is a state diagram of a method to perform a read of a specific pool.
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Figure 5.1: Figure showing a potential design for DNA Memory error recovery. The
logic controlling the BCH Decode and the Raptor decode are responsible for holding the
correction table to ensure that retries are performed on the correct strands.

Taking this system and defining the amount of time to perform a normal read as tr

and targeted read as ttr, a loose approximation for operation can be developed. Using

the probability of a certain number of failed pages from before in conjunction with

this, an expected read-retry holdup time can then be determined using the following

equation. Other calculation time is trivial in comparison, being more than 4 orders

of magnitude below. The key metric in this case is the ability to perform parallel

sequencing, thus allowing multiple read attempts at the same time. However, this

adds an extra overhead of requiring additional DNA movement.

tread =

 tr, NBCHV alid >= K

tr +
∑NumMissingSymbols

i ttrPse,i(Ei<t)

parallelreads
, NBCHV alid < K

(5.1)

Furthermore, using some limiting number of single address retries, r, allows for a

probability of a mis-read correction, shown below. By tweaking this parameter, it is
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then possible to improve actual reads and lower the apparent sequencer error rate,

assuming the sequence was encoded correctly in the first place. This provides clear

evidence that the synthesis error rate is much more important than the sequencing

error rate due to the ability to correct for errors at an exponentially improved rate.

PBCHError = (1 −
t∑

i=0

(
n

i

)
pise(1 − pse)

n−i)r (5.2)

5.2 In-System Division of Tasks

One of the key points largely ignored to this point is the split between the microcon-

troller, the hardware layer, and the DNA system itself. A proposed system breakdown

is given in Figure 5.2, which is heavily inspired by existing SSD and HDD designs.

Due to the nature of the memory, it sits in a middle-ground between a disk drive and

flash memory due to the required memory movement, but at a much smaller scale.

While HDDs are completely reliant on the internal controller, DNA memory is able

to offload some translation logic onto hardware without significant timing penalty.

However, given that a much more complicated scheme of error correction is required,

the entire error flow must be handled on the microcontroller, rather than division

between the microcontroller and on-die logical elements.

Other points to note with this division is that the microcontroller will need sig-

nificant off-controller storage in the form of flash memory as well as a NOR storage

table equivalent. The flash memory in this case is to store larger data files before

they are translated, to reduce system overhead by allowing fast write operations of

smaller files. The NOR memory is then used as a faster alternative to storing. Given

the immense storage size that DNA systems will control, NOR memory might not be

the ideal solution, so this could be moved entirely to flash at a latency cost.
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CHAPTER 5. A PRACTICAL SYSTEM UNDERSTANDING

Figure 5.2: Proposed breakdown of tasks between the on-board microcontroller, the phys-
ical hardware, and the microfluidic system. The microfluidic system in this case can either
be on the board itself, causing it to be grouped with the physical logic, or a separate
off-system controller in the DNA storage system.

The physical logic portion of this table was then implemented in an FPGA design

using VHDL to act as a proof of concept. While BCH can be implemented directly

onto hardware designs, which would reduce overall microcontroller overhead, it pro-

vides a marginal advantage due to the existing read length overhead. This isn’t a

problem until read times fall far enough to no longer be the limiting factor, or if the

ability to perform parallel sequencing dramatically increases throughput.

5.3 Microfluidic Structural Concerns

The final section of discussion is to address one of the more unique requirements of the

microfluidic control structure. One of the key problems with this memory is the issue

of actually performing a read operation, given the number of pools compared to the

number of theoretical read elements. The use of microfluidic storage lends itself easily

to a 3d structure, but the following depiction portrays a number of different potential

microfluidic pool to sequence flows in a 2d depiction. The target of this diagram is

to show various architecture designs, particularly the specific pool to sequencing pool

designs versus a more open architecture, which would allow pools to be read at any

available read region.
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Figure 5.3: Image of four possible methods of pool read physical layouts. A) shows a
basic layout where all the pools are connected to the external sequencer, where B) the PCR
region has been moved inside the MEMS device to reduce sequencer labor. C) and D) then
depict two methods of of parallel sequencing methods, with either complete read ability or
specific region read locality.

Each of these proposed designs has various drawbacks, but the general trade off

is between the ability for concurrent reads and microfluidic complexity. While the

goal would be to perform as many concurrent reads as possible, this is currently

limited to the sequencing technology, but eventually to the ability for the transport

mechanisms to reach the read chambers. Unlike HDDs or tape, where the read head is

highly mobile, DNA systems currently would be required to efficiently move individual

pools to the reading location, which increases the risk of data loss. Future work should

begin to develop physical versions of these microfluidic structures to verify that such

a design is possible. While this work is unable to properly answer many of these

questions, they will likely be the subject of many future works.
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Chapter 6

Concluding Remarks

In this work, the concepts and applications of DNA memory were developed, along

with an understanding of technological issues and pitfalls. Encoding methods for

high distributed error sequences were investigated, and a modified Raptor with a

BCH pre-code was analyzed. A binary to base conversion method was developed and

the entire system was combined to calculate the expected error rates.

For a practical example with a pool of 800 strands and 1000 bp per strand, a

net efficiency of 1.18 bits per bp was found to successfully recover from errors. This

was then successfully compared with the existing literature, demonstrating that this

is a feasible memory solution able to fail less than 1 in 10−12 pool reads. Portions

of this proposed encoding method were then successfully translated into a hardware

design on an FPGA, demonstrating a practical example made possible by the linear

complexity of the Raptor algorithm.

There is still significant work before DNA memory becomes a common form of

archival storage, but the architectural groundwork has been developed to the point

that progress is dependent on the advancement of microfluidics and DNA sequencing

methods. The application in deep archival storage makes this an important step as

humanity moves into the century of atom, bit, and gene.
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APPENDIX A. FULL TABLE FOR DNA ENCODING

Appendix A: Full Table for DNA Encoding

Table A.1: Full chart showing the translation between the binary values and the base pair
with the binary encoding.

Binary Base Encoding Mapped Encoding Binary Base Encoding Mapped Encoding Binary Base Encoding Mapped Encoding Binary Base Encoding Mapped Encoding

0b0 ATAAAG 000100000010 0b1000000 ACCGAT 001111100001 0b10000000 TAACTG 010000110110 0b11000000 GTTTGA 100101011000

0b1 ATAGAA 000100100000 0b1000001 ACCGAG 001111100010 0b10000001 TAACTC 010000110111 0b11000001 CACACT 110011001101

0b10 ATAGAT 000100100001 0b1000010 TGTTTG 011001010110 0b10000010 TAAATT 010000000101 0b11000010 CACTCC 110011011111

0b11 ATAGAG 000100100010 0b1000011 TGTGTT 011001100101 0b10000011 TAAATG 010000000110 0b11000011 CACTCT 110011011101

0b100 ATTAAA 000101000000 0b1000100 TGTGTG 011001100110 0b10000100 GCGGGC 101110101011 0b11000100 CACGCA 110011101100

0b101 ATTTAG 000101010010 0b1000101 TGTCTT 011001110101 0b10000101 GCGGGA 101110101000 0b11000101 CACGCT 110011101101

0b110 ATTGAA 000101100000 0b1000110 TGTCTG 011001110110 0b10000110 GCGCGG 101110111010 0b11000110 CAACCT 110000111101

0b111 ATTGAT 000101100001 0b1000111 TGTATT 011001000101 0b10000111 GCGAGG 101110001010 0b11000111 CAAACC 110000001111

0b1000 ATTGAG 000101100010 0b1001000 TGTATC 011001000111 0b10001000 GCGAGA 101110001000 0b11001000 CAAACT 110000001101

0b1001 ATTCAG 000101110010 0b1001001 TGGTTT 011010010101 0b10001001 GCGTGG 101110011010 0b11001001 CAATCC 110000011111

0b1010 ATGAAA 000110000000 0b1001010 TGGGTT 011010100101 0b10001010 GCGTGA 101110011000 0b11001010 CAATCT 110000011101

0b1011 ATGTAA 000110010000 0b1001011 TGGGTG 011010100110 0b10001011 GCCGGC 101111101011 0b11001011 CAAGCC 110000101111

0b1100 ATGTAT 000110010001 0b1001100 TGGGTC 011010100111 0b10001100 GCCCGA 101111111000 0b11001100 CAAGCA 110000101100

0b1101 ATGTAG 000110010010 0b1001101 TGGCTT 011010110101 0b10001101 GCCAGC 101111001011 0b11001101 CATACC 110001001111

0b1110 ATGGAA 000110100000 0b1001110 TGGCTG 011010110110 0b10001110 GCCTGC 101111011011 0b11001110 CATACA 110001001100

0b1111 ATGGAT 000110100001 0b1001111 TGGATC 011010000111 0b10001111 GCACGC 101100111011 0b11001111 CATACT 110001001101

0b10000 ATGCAA 000110110000 0b1010000 TGCTTT 011011010101 0b10010000 GCATGG 101100011010 0b11010000 CATTCT 110001011101

0b10001 ATGCAT 000110110001 0b1010001 TGCGTG 011011100110 0b10010001 GCATGC 101100011011 0b11010001 CATGCA 110001101100

0b10010 ATGCAG 000110110010 0b1010010 TGCGTC 011011100111 0b10010010 GCATGA 101100011000 0b11010010 CAGCCT 110010111101

0b10011 ATCTAG 000111010010 0b1010011 TGCATT 011011000101 0b10010011 GCTGGA 101101101000 0b11010011 CAGACT 110010001101

0b10100 ATCGAA 000111100000 0b1010100 TGCATG 011011000110 0b10010100 GCTAGA 101101001000 0b11010100 CAGTCC 110010011111

0b10101 ATCCAA 000111110000 0b1010101 TGATTT 011000010101 0b10010101 GCTTGC 101101011011 0b11010101 CTCCCA 110111111100

0b10110 ATCCAT 000111110001 0b1010110 TGAGTG 011000100110 0b10010110 GAGGGG 100010101010 0b11010110 CTCACA 110111001100

0b10111 AGAAAA 001000000000 0b1010111 TGAATG 011000000110 0b10010111 GAGGGA 100010101000 0b11010111 CTCACT 110111001101

0b11000 AGAAAT 001000000001 0b1011000 TGAATC 011000000111 0b10011000 GACGGG 100011101010 0b11011000 CTCTCT 110111011101

0b11001 AGAAAG 001000000010 0b1011001 TCTTTC 011101010111 0b10011001 GACGGC 100011101011 0b11011001 CTACCA 110100111100

0b11010 AGATAA 001000010000 0b1011010 TCTGTT 011101100101 0b10011010 GACCGG 100011111010 0b11011010 CTAACC 110100001111

0b11011 AGAGAA 001000100000 0b1011011 TCTCTT 011101110101 0b10011011 GACCGC 100011111011 0b11011011 CTAACA 110100001100

0b11100 AGACAA 001000110000 0b1011100 TCTCTG 011101110110 0b10011100 GACCGA 100011111000 0b11011100 CTATCA 110100011100

0b11101 AGTAAA 001001000000 0b1011101 TCTATT 011101000101 0b10011101 GACTGG 100011011010 0b11011101 CTATCT 110100011101

0b11110 AGTAAT 001001000001 0b1011110 TCTATG 011101000110 0b10011110 GACTGC 100011011011 0b11011110 CTAGCA 110100101100

0b11111 AGTGAA 001001100000 0b1011111 TCGTTG 011110010110 0b10011111 GACTGA 100011011000 0b11011111 CTTCCC 110101111111

0b100000 AGTCAT 001001110001 0b1100000 TCGGTT 011110100101 0b10100000 GAAGGA 100000101000 0b11100000 CTTACT 110101001101

0b100001 AGGAAT 001010000001 0b1100001 TCGGTG 011110100110 0b10100001 GAACGG 100000111010 0b11100001 CTTTCA 110101011100

0b100010 AGGAAG 001010000010 0b1100010 TCGCTT 011110110101 0b10100010 GAAAGC 100000001011 0b11100010 CTTTCT 110101011101

0b100011 AGGTAA 001010010000 0b1100011 TCGCTG 011110110110 0b10100011 GAATGG 100000011010 0b11100011 CTTGCA 110101101100

0b100100 AGGTAG 001010010010 0b1100100 TCGATT 011110000101 0b10100100 GATGGG 100001101010 0b11100100 CTTGCT 110101101101

0b100101 AGGGAA 001010100000 0b1100101 TCGATG 011110000110 0b10100101 GATCGG 100001111010 0b11100101 CTGCCA 110110111100

0b100110 AGGGAT 001010100001 0b1100110 TCCTTG 011111010110 0b10100110 GATAGA 100001001000 0b11100110 CTGCCT 110110111101

0b100111 AGGCAA 001010110000 0b1100111 TCCTTC 011111010111 0b10100111 GATTGG 100001011010 0b11100111 CTGACC 110110001111

0b101000 AGGCAT 001010110001 0b1101000 TCCGTT 011111100101 0b10101000 GTGGGA 100110101000 0b11101000 CTGACA 110110001100

0b101001 AGGCAG 001010110010 0b1101001 TCCGTC 011111100111 0b10101001 GTGAGC 100110001011 0b11101001 CTGGCC 110110101111

0b101010 AGCAAT 001011000001 0b1101010 TCCCTG 011111110110 0b10101010 GTGAGA 100110001000 0b11101010 CTGGCT 110110101101

0b101011 AGCAAG 001011000010 0b1101011 TCCATT 011111000101 0b10101011 GTGTGA 100110011000 0b11101011 CGCACA 111011001100

0b101100 AGCTAT 001011010001 0b1101100 TCATTG 011100010110 0b10101100 GTCGGG 100111101010 0b11101100 CGCACT 111011001101

0b101101 AGCTAG 001011010010 0b1101101 TCATTC 011100010111 0b10101101 GTCGGC 100111101011 0b11101101 CGCGCC 111011101111

0b101110 AGCGAT 001011100001 0b1101110 TCAGTG 011100100110 0b10101110 GTCGGA 100111101000 0b11101110 CGCGCA 111011101100

0b101111 AGCCAA 001011110000 0b1101111 TCACTG 011100110110 0b10101111 GTCCGC 100111111011 0b11101111 CGACCC 111000111111

0b110000 AGCCAG 001011110010 0b1110000 TCACTC 011100110111 0b10110000 GTCAGG 100111001010 0b11110000 CGACCA 111000111100

0b110001 ACATAG 001100010010 0b1110001 TCAATG 011100000110 0b10110001 GTCTGA 100111011000 0b11110001 CGACCT 111000111101

0b110010 ACAGAG 001100100010 0b1110010 TATTTC 010001010111 0b10110010 GTAGGG 100100101010 0b11110010 CGAACC 111000001111

0b110011 ACACAA 001100110000 0b1110011 TATGTT 010001100101 0b10110011 GTAGGC 100100101011 0b11110011 CGAACA 111000001100

0b110100 ACTTAA 001101010000 0b1110100 TATGTC 010001100111 0b10110100 GTACGG 100100111010 0b11110100 CGAACT 111000001101

0b110101 ACTGAA 001101100000 0b1110101 TATATT 010001000101 0b10110101 GTACGC 100100111011 0b11110101 CGATCC 111000011111

0b110110 ACTGAG 001101100010 0b1110110 TAGGTT 010010100101 0b10110110 GTAAGA 100100001000 0b11110110 CGATCA 111000011100

0b110111 ACTCAG 001101110010 0b1110111 TAGCTG 010010110110 0b10110111 GTATGG 100100011010 0b11110111 CGAGCA 111000101100

0b111000 ACGAAG 001110000010 0b1111000 TAGCTC 010010110111 0b10111000 GTATGC 100100011011 0b11111000 CGAGCT 111000101101

0b111001 ACGTAA 001110010000 0b1111001 TAGATT 010010000101 0b10111001 GTTGGC 100101101011 0b11111001 CGTACA 111001001100

0b111010 ACGTAG 001110010010 0b1111010 TACTTC 010011010111 0b10111010 GTTCGC 100101111011 0b11111010 CGTACT 111001001101

0b111011 ACGGAA 001110100000 0b1111011 TACGTT 010011100101 0b10111011 GTTCGA 100101111000 0b11111011 CGTTCA 111001011100

0b111100 ACGCAT 001110110001 0b1111100 TACCTG 010011110110 0b10111100 GTTAGG 100101001010 0b11111100 CGTGCC 111001101111

0b111101 ACGCAG 001110110010 0b1111101 TAATTC 010000010111 0b10111101 GTTAGC 100101001011 0b11111101 CGTGCT 111001101101

0b111110 ACCAAT 001111000001 0b1111110 TAAGTT 010000100101 0b10111110 GTTAGA 100101001000 0b11111110 CGGTCT 111010011101

0b111111 ACCGAA 001111100000 0b1111111 TAAGTG 010000100110 0b10111111 GTTTGG 100101011010 0b11111111 CGGGCC 111010101111
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