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Abstract 

Vapor compression systems have dominated the HVAC area for close to 100 years.  These 

systems require significant amounts of energy to complete the compression cycle and the 

refrigerants used are known contributors to global warming.  As a result, new innovations are being 

sought and a membrane-based system, the subject of this thesis, is one such technology.  Water 

selective membrane materials offer a promising alternative to vapor compression for 

dehumidification of building air.  For HVAC systems, process air pressure drop constrains flow 

path design in a membrane-based approach.  The transport resistance for water vapor from air flow 

channels is experimentally investigated for a plate-type membrane mass exchanger design.  

Convective and diffusive resistances are measured for polymer membranes with varying flow 

channel dimensions.  A series of experiments and analyses is developed to separate diffusive and 

convective transport resistance to water vapor removal from supply air.  Results are compared with 

empirical Sherwood number correlations to enable improved mass exchanger design.  The 

validated mass transfer correlations were used to develop a mass transfer model and later 

implemented for the simulation of a 3 rTon (1 rTon = 3.516kW) membrane heat pump dedicated 

outdoor air systems.  From the various analyses, maintaining process air pressure drop at less than 

50 Pa while at a typical HVAC face velocity results in a convective resistance that is 6 times greater 

than the diffusive resistance to water vapor through an ionic membrane.  Furthermore, the trade-

off between required membrane area, system size, pressure-drop and effective latent cooling is 

explored.  Simulation results show that when conforming mass exchanger designs to meet 

ASHRAE standards, a system electrical COP of 7.5 or greater can be achieved. 
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Nomenclature 

𝐴𝐶 = 𝐴𝑖𝑟 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔  
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= 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠 𝑓𝑜𝑟 𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝑅𝑒𝑓𝑟𝑖𝑑𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝐴𝑖𝑟 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠  
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𝑃𝐹𝑆𝐴 = 𝑃𝑒𝑟𝑓𝑙𝑢𝑜𝑟𝑜 𝑆𝑢𝑙𝑓𝑖𝑛𝑎𝑡𝑒𝑑 𝐴𝑐𝑖𝑑  
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1. Introduction 
 

Air conditioning (AC) accounts for a significant portion of the energy delivered to 

residential and non-residential buildings.  Over 20% of energy consumed in buildings is used for 

cooling [1].  In tropical climates where most of the world’s population lives, the majority of this 

energy is used for dehumidification with a latent to sensible ratio typically greater than 3:1 [2].  

The most common systems currently deployed throughout the globe are vapor compression heat 

pumps that evaporate and condense refrigerants to remove heat and humidity from supply air.  The 

refrigerants used in these systems are known contributors to global warming.  The most common 

refrigerants, R-134A, R407C and R-404A have 2000 times more global warming potential than 

carbon dioxide [3].  Vapor compression systems also use electricity to power the compressor.  For 

this reason, electricity grids at macro and micro scales are ultimately sized for the highest annual 

sensible and latent cooling load in many regions.  As a result, the potential environmental and 

infrastructural impact of alternative cooling technologies that do not require refrigerants or high 

electrical power are substantial.  

The most common way of removing heat and humidity from air is through contact with an 

extended surface that is held at a low dew point by either directly or indirectly evaporating a 

refrigerant.  The energy required for this process is first constrained by the heat of vaporization to 

condense water.  Further, the process overcools air and requires postprocess heat input in many 

applications.  Humidity control with water transfer membranes can eliminate these energy 

requirements associated with condensing systems.  Numerous membrane materials have been 

shown effective for water selectivity and high water transfer flux [4–8]. 

Researchers have studied numerous system mechanizations aimed at utilizing membranes 

for AC applications [9,10].  All of these concepts are designed to diffuse water vapor through the 
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membrane by creating a concentration gradient.  Vacuum systems reduce the total pressure on the 

dry side of the membrane and exhaust water vapor from the pump outlet [11,12].  Membrane heat 

pumps are similar to vacuum-based approaches except the pressure ratio is reduced by using a 

second membrane at the pump outlet [13,14].  Membrane separators are also being used with a 

variety of liquid desiccants [15].  Isolating the desiccant solution greatly reduces carry over of salt 

and improves performance by enabling a higher free surface area of the solution. 

Regardless of how a membrane AC system is designed, the mass transfer (or separation) 

of water vapor from the supply air is a critical challenge.  Maximizing mass transfer while avoiding 

the energy penalty of high pressure drop results in carefully designed flow paths for supply air 

through the mass exchanger.  ASHRAE Standard 62 sets the standards for some HVAC 

components for use in commercial building ventilation systems.  For Finned-Tube Coils, the 

pressure drop through the coil cannot exceed 187 Pa (0.75 in. w.c.) when combined and face 

velocity cannot exceed 2.54 m/s [16].  For residential systems, the combined pressure drop that a 

fan must overcome is 250 Pa (1 in. w.c.) [17].  These constraints of pressure drop, and face velocity 

are used when determining the channel dimensions and channel length for a membrane system, 

however, to date there is limited published materials on the effects of channel dimensions on 

membrane heat pump performance.  

 In this study, the membrane water vapor transfer is measured and used to evaluate the 

effects of channel resistance on mass transfer performance.  A low-pressure differential evaluation 

consisting of two air streams, one humid (wet) and one dry, is completed with varying feed rates.  

A second evaluation is used to evaluate the performance of a proposed section of a membrane heat 

pump, the latent mass exchanger [13,14].  A single air stream is delivered to a mass exchanger 

with a vacuum held on the opposing side of the membrane.  This sequence of testing allows for 
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the channel’s diffusion resistance to be modeled separately from the membrane’s diffusion 

resistance.  Of the many studies that evaluate membrane heat pump performance [11,12,14,18,19], 

there have been few reports on the rate of mass transfer as convective resistance in the channel of 

a mass exchanger is varied.  The observed results were used to validate a down the channel mass 

transfer model and later applied to a system model of a 3 rTon Membrane Heat Pump (MHP) 

Dedicated Outdoor Air System (DOAS) where the Coefficient of Performance (COP) of multiple 

mass exchangers were compared under the same working conditions.  As a result, the tradeoff 

between the decrease of in-channel convective resistance to the energy penalty of pressure drop is 

discussed.  
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2. Literature Review 

Current literature has limited studies that focus on optimizing MHP performance to the 

current design constraints of an HVAC system.  Current HVAC components rely on minimal 

pressure drop through each component while maximizing mixing to overcome convective 

resistance.  The performance of an MHP is highly dependent upon the membrane material, channel 

geometry, pressure drop, and pump(s) efficiency.  The following sections will provide substantial 

background on the current state of the technology and on the phenomenon that occur in an MHP 

system.  

2.1 Overview of HVAC Energy Consumption and Current Refrigerants 

Of the 5645 quadrillion joules of energy used relating to commercial HVAC, 29% of this 

energy is consumed in conditioning the outdoor air to match desired indoor air conditions 

(ventilation) and another 28% of this energy is used to maintain the desired indoor conditions in 

the form of space cooling (Figure 1).  This totals to 3197 quadrillion joules annually and based on 

analyses by the United States Department of Energy, nearly all of this cooling power is delivered 

with electricity [19].  The impinging energy load strains the grid often causing failure.  The best 

method to improve grid reliability is to reduce energy consumption.  The current method of over 

cooling to condense water followed by reheat has become more efficient through the use of 

variable speed compressors [20].  However, independent control of latent and sensible cooling 

eliminates the need for post process heat input while avoiding the high energy cost of phase 

change. 
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Figure 1: Commercial primary energy consumption by end use, Quads/yr. [19] 

 The increase in concern from global warming has persuaded governments and regulatory 

bodies to ban the use of refrigerants such as R12 and R22 known for their excellent vapor 

compression properties.  While the current class of refrigerants such as R134A, R410A and R407C 

yield sufficient thermal properties, their global warming potential (GWP) are all greater than 1000 

[21].  As a result, there has been much interest in the development of new technology which would 

not require the use of refrigerants while improving the efficiency of HVAC systems. 

2.2 Membrane Cooling Systems  

Newly introduced technologies for reducing energy consumption relating to HVAC have 

showed promising futures.  Liquid Desiccant systems and Membrane Heat Pumps have been 

reviewed as “most promising” and “very promising” alternatives to vapor compression by the 

Department of Energy in 2014 [14].  The following sub-sections will provide more detail on each 

system and the current technology outlook. 

2.2.1 Liquid Desiccants 

Liquid desiccant systems use liquid salts such as lithium chloride or calcium chloride to 

absorb water vapor from the supply air [19].  The liquid desiccant is circulated from a conditioner 
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to a regenerator.  The transfer of water vapor out of the supply air is driven by vapor pressure 

gradients.  The break lines in Figure 2 represent the presence of a porous, hydrophobic membrane.  

Supply air is conditioned as it moves through the air flow channels and is then sent to the building.  

The diluted liquid desiccant is then heated in preparation of regeneration as it moves to a 

regenerator.  The regenerator supplies process, ambient air on the opposing side of a porous, 

hydrophobic membrane from the diluted liquid desiccant.  The water vapor then moves from the 

liquid desiccant solution into the process ambient air. [9] 

 

Figure 2: Schematic of liquid desiccant dehumidification [9] 

 The energy saving of a liquid desiccant system is provided by the removal of water vapor 

without phase change and from the limited amount of cooling required as the regenerated liquid 

desiccant returns to the conditioner.  If the heat required for the regeneration in liquid desiccant 

system is provided by an existing heat source, a significant energy savings can be produced for 

building owners.  The current barriers to market for liquid desiccant systems is the lack of design 

concepts suitable for large scale manufacturing, reliability, and maintenance. [14]  
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2.2.2 Membrane Heat Pump 

 The membrane heat pump is comprised of a dehumidification mass exchanger, a 

compressor, and an expirator mass exchanger.  The dotted lines in Figure 3 represent a highly 

selective membrane designed for water vapor transfer.  Water vapor movement is provided using 

pressure gradients in each mass exchanger.  As air enters the dehumidification mass exchanger, 

water vapor that is present in the supply air moves to the low-pressure plenum through the 

membrane.  This plenum is maintained at approximately 1.25 kPa absolute.  The water vapor is 

then pushed to the expirator through a compressor at a compression ratio of 2.3.  The vapor 

pressure in the expirator low pressure plenum is approximately 3.5kPa.  The water vapor in the 

plenum is removed by passing process air from the outdoors to accept the water vapor through the 

membrane.  [9] 

 

Figure 3: A membrane heat pump concept presented by DIAS (Adapted from [22]) 
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 The current state of membrane heat pumps has provided much interest as a 7.5-ton capacity 

prototype at Oakridge National Lab has produced results that relate to a 50% energy savings over 

current vapor compression technology.  Current barriers to entry for the MHP include complex 

membrane assemblies, durability concerns, and expensive compressors [19].  A further review of 

the membrane heat pump will be presented through the upcoming sections.  

2.3 MHP History 

Researchers have studied numerous system mechanizations aimed at utilizing membranes 

for AC applications [9,11,12,18,23].  All these concepts are designed to diffuse water vapor 

through the membrane by creating a concentration gradient.  Vacuum systems reduce the total 

pressure on the dry side of the membrane and exhaust water vapor from the pump outlet.   

 

Figure 4: Membrane air drying combined with indirect/direct evaporative cooling [12]. 

The idea of a membrane dehumidifier was first presented by NASA where it was necessary 

to recover the moisture from the air [24].  Since the concept was first presented, the cost of the 

membranes has significantly reduced making a membrane cooling system more feasible.  Early 

systems focused on using only a single mass exchanger for dehumificiation and a vacuum pump 

in conjunction with an indirect or direct evaporative cooler as seen in Figure 4 [12].  
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Another membrane-based dehumidification device was comprised of a single mass 

exchanger for dehumidification and a vacuum pump where the low-pressure side of the mass 

exchanger was fed through a gas sweeping process.  After supply air passed through the mass 

exchanger the air was passed through a flow splitter.  The flow splitter allows for air to be supplied 

to the room or to an expansion valve that leads to the low-pressure side of the mass exchanger.  A 

system diagram can be seen in Figure 5 [11].  The use of a sweeping gas requires an increase in 

the pump power resulting in a tradeoff between humidity removal and dehumidification efficiency 

making it less feasible [18].  

 

Figure 5: Vacuum Sweep Dehumidification System [11] 

The previous membrane systems rely on a pump with a high-pressure ratio to maintain the 

low-pressure environment.  Membrane heat pumps are similar but  they reduce the pressure ratio 

with a membrane at the pump outlet [11,18].  In a project funded by the Department of Energy, 

Dais Analytic and others developed a membrane based latent and sensible cooling system.  This 

system can be seen in Figure 6.  Outdoor air in this system enters first into a membrane 

dehumidifier.  The membrane dehumidifier is maintained at a pressure to promote water vapor 

transfer from the hot, wet outdoor air to the low-pressure side of the system.  The dehumidified air 

is then sent to an air-water heat exchanger which cools the air to the sensible setpoint.  The air-

water heat exchanger receives cold water from a membrane evaporator unit.  The membrane 

evaporator unit supplies liquid water to a membrane that is communicating with the low-pressure 
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environment.  The water vapor captured in the dehumidifier and evaporator is moved through a 

vacuum pump towards an external membrane unit to be rejected to ambient.  The vacuum pump 

raises the pressure of the water vapor that is passing through the pump, moving towards the outdoor 

membrane unit.  Within the outdoor membrane unit, water vapor exits the low-pressure 

environment of the heat pump and is transferred into ambient air.  The vacuum pump is crucial to 

the performance of the outdoor membrane unit as it raises the vapor pressure of the contained 

vapor environment above the vapor pressure of the air passing through.  As a result of the lower 

compression ratio, system simulations have yielded an EER of 16 – 20. [18] 

 

Figure 6: Proposed design by DIAS Analytic [18] 

 Another configuration of a membrane heat pump can be seen in Figure 7.  Like the system 

designed by Dias Analytics, there are three membrane modules that function as the dehumidifier, 

chiller/evaporator and an expiration system.  The key difference is the location of the vacuum 

pump and the air supplied to the expiration system.  The vacuum pump is used to roughen the 

system to the proper operating pressure of approximately 1.275 kPa.  Once at operating pressure, 
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the vacuum pump is shut off and isolated from the low-pressure environment.  To maintain the 

low-pressure environment, hot and dry air is supplied to the expirator.  The humidity ratio of the 

expiration supply air should be less than 8.0gwater vapor/kgdry air to sufficiently promote water vapor 

removal from the low-pressure environment.  As water vapor enters to the low pressure 

environment it is moved to the expirator where it transfers out of the low pressure environment 

and into the hot, dry process air passing through the expirator. [13] 

 

Figure 7: Thermally driven latent and sensible membrane cooling system   

2.4 Mass Transfer Characterization  

The performance of a membrane module in an MHP is primarily dependent upon the 

membrane material used and the conditions that promote mass transfer within the channels.  The 

ideal permeation for water vapor though a membrane consists of two different resistance regimes 

that contribute to the total resistance through a membrane.  The resistance between the bulk mean 
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fluid concentration and the boundary layer concentration at the membrane surface is the interfacial 

or convective mass transfer resistance.  The resistance in this regime is affected by the convective 

properties of the flow stream, such as Reynolds number, Schmidt number and Sherwood number.  

The resistance associated to the water vapor transfer through the membrane is known as membrane 

diffusion resistance.  These regimes are depicted in Figure 8. 

 

Figure 8: Ideal 1D water permeation 

Properly characterizing membranes for their resistance is imperative for developing mass 

transfer models and for designers of an MHP.  This section will focus on a few of the published 

mass transfer characterization methods.  
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Figure 9: Membrane fixture for vapor permeation experiment by Makota [25] 

Makoto evaluated water vapor transfer rates by using a cup filled with water that was 

covered by a membrane and placed in environmental chamber which circulated dry air.  The 

membrane fixture can be seen in Figure 9.  The experiment was conducted at 70°C and the mass 

of the cup was captured at intervals of 2-6hrs.  The membrane area was 25cm2. [25] 
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Figure 10: Vapor permeation test results [25] 

The results from Makoto’s experiment display the effect of the concentration gradient of 

water vapor across the membranes thickness on transfer rates.  The results also show the effect of 

membrane thickness on mass transfer performance.  These relationships follow Fick’s Law of 

diffusion. As shown in Figure 10, the water vapor flux is directly proportional to the change in 

water vapor concentration across the thickness of the membrane.  

Majsztrik et al. used the analysis in Figure 11 to flow dry Nitrogen and humidified Nitrogen 

on either side of a 1cm2 test cell.  RH was measured at each inlet and outlet to determine rate of 
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mass flux rate through the system at 30 °C.  The materials tested included varying thicknesses of 

a Perfluoro Sulfinated Acid (PFSA) membrane. [26] 

 

Figure 11: Testing assembly used by Majsztrik [26] 

The results from the experiments are seen in Figure 12.  As the flow rate into the test cell 

increases the mass flux through the membrane increased.  Additionally, as the flow rate increases 

the controlling resistance changes from convection limited to diffusion limited.  At low flow rates, 

the membrane can remove water vapor from the supply air at the same rate that water vapor is 

delivered to the test cell.  As the flow rate is further increased, more water vapor is delivered to 

the membrane than what the membrane can remove.  At this point the rate of mass flux increases 

in a linear manor and the resistance from diffusion is the primary contributor to the mass flux.  
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Figure 12: Water vapor flux as a function of Nitrogen flow rate at 30°C [26] 

 The study by Majsztrik et al. displays the resistance regimes that effect mass transfer as 

flow rate is varied, however the study was not focused for the HVAC applications.  To date, many 

studies have published results on various membranes and diffusion rates, yet little research has 

been published on the convective mass transfer resistance in a membrane mass exchanger 

specifically for HVAC applications.  

2.5 Materials 

Membranes have been used for many applications such as gas separation, desalination, 

biomedical, energy recovery, etc.  There are two types of membranes used for water selection, 

porous and homogeneous.  Porous membranes are typically used for filtering applications with 

pore sizes only large enough for water to permeate while larger molecules cannot penetrate.   

Homogeneous membranes are ideal for membrane heat pumps due to their high-water selectivity.  



17 
 

There are numerous homogeneous polymer membrane materials currently being 

investigated for water transfer applications by various research groups around the world.  Many of 

these materials are experimental with no near-term viable path to high volume production.  To this 

end, there are numerous hydrocarbon materials that were considered as these are more readily 

produced.  As shown in Figure 13, most of these materials have poor water selectivity and 

permeability.  In the few published studies on their durability, it is shown that hydrocarbon 

membranes fail quickly relative to perfluorinated materials. [27]   

 

 

Figure 13: Hydrocarbon membrane performance [6] 
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Most common membranes and membrane laminates of interest are seen in the list below 

and in Figure 14 and Figure 15: 

• Microporous PTFE membrane or microporous polytetrafluoroethylene membrane consists 

of a textile fabric with a membrane laminate.  These are resistant to liquid water mass 

transport, however there is little resistance for water vapor diffusion.  This selectivity is 

due to the microporous structure and the hydrophobic surface properties of the PTFE. [4] 

• Perfluoro sulfonate ionomer membrane (PFSA) is a commonly produced membrane often 

found in use for Proton Exchange Membrane fuel cells with the commercial name 

Nafion®.  The transport of water and water vapor within this membrane occurs due to 

electro-osmotic drag or by diffusion gradient. [28] 

• Polymer membranes and Polymer membranes laminates are a polymer membrane that act 

as a liquid barrier yet still allow water vapor transport.  These are typically used in clothing 

to enable the pass through of water vapor such as sweat.  Some of the commercial names 

of these materials include Gore-Tex® and Sympatex® [8,29]. 

• Derivatized cellophane membranes are typically used in the medical field and for food 

packaging due to their low permeability rates and are made of cellulose [4].  
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Figure 14: Water vapor flux as a function of temperature [4] 

 

Figure 15: Water vapor diffusion as a function of mean relative humidity [4] 

Figure 14 shows the effect that temperature has on the flux. As the temperature increases 

the water vapor flux increases for each material represents.  Additionally, Figure 15 displays that 

as the mean relative humidity increases the diffusion resistance for each material decreases.    
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3. Experimental 

A set of experiments were developed for the study of convective mass transfer resistance 

in a membrane mass exchanger for HVAC applications while also provide supporting evidence 

for a membrane heat pump system that is thermally driven.  As a result of these experiments, a 

series of correlations used to model mass transfer was outlined and advanced hardware and testing 

equipment was developed. 

The experiments consist of two different evaluations.  The first evaluation measured mass 

transfer with a sweep gas.  The second evaluation measured mass transfer for a vacuum mass 

exchanger.  The results from the first two experiments were collected and used to validate a down 

the channel mass transfer model.  The validated mass transfer is later used to simulate a 3 rTon 

MHP DOAS. 
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3.1 Membrane and Channel Performance Evaluations 

  The first two evaluations completed were designed specifically for material 

characterization and channel resistance measurement.  The collected results were used to identify 

the proper correlations for estimating the Sherwood number, and convective resistance while also 

determining the diffusion coefficient for a PFSA membrane. 

3.1.1 Hardware Designs for Membrane and Channel Performance Evaluations 

The testing equipment developed required unique designs to enable multiple configurations 

of flow geometry to be evaluated under the same conditions.  All testing systems were built and 

calibrated to specifically complete the tests outlined in this series of experiments.  The testing 

hardware were constructed in a consistent manor with design considerations for pressure drop, 

material compatibility, manufacturability, alignment, and flow distribution.  The test conditions 

selected correlate to the current set of conditions placed on HVAC components by ASHRAE 

pertaining to pressure drop of components and face velocity while also exploring mass exchanger 

design at high pressure drop to observe the tradeoff of pressure drop and effective latent cooling. 

3.1.2 Sweep Gas Experiments  

The experimental configurations were designed to specifically investigate membrane water 

vapor transfer using representative flow conditions and concentration gradients seen in HVAC 

systems.  The first configuration utilized a sweep gas at a controlled humidity with no pressure 

difference across the membrane.  The system schematic is seen in Figure 16.  Compressed air is 

supplied to mass flow controllers for separate wet and dry flow and humidity control.  Each flow 

stream had separate mass flow control, specified by Labiew, to a dryer and humidifier, where air 

was dehumidified with a granular desiccant and the wet-side air humidified by custom built 

bubblers at a controlled dew point.  A relative humidity sensor was used to control the mixing ratio 
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on each side at the inlet of the membrane test hardware.  Additional relative humidity sensors were 

used at the outlet to monitor the change in water content of the dry and wet flow through the test 

section.  Temperature and pressure were also monitored at the inlet and outlet of each gas stream.   

 

Figure 16: Membrane dehumidification with sweep gas experimental configuration. 

3.1.3 Vacuum Pressure Experiments 

Another evaluation was completed to observe the resistance of transferring water vapor 

from an ambient air stream to an all-water sink at a controlled vacuum pressure.  The system 

diagram for the experiment can be seen in Figure 17.  Compressed air is supplied to mass flow 

controllers for the supply air flow and humidity control.  Supply air was humidified by custom 

built bubblers and dehumidified with a granular desiccant.  A relative humidity sensor was used 

to control the mixing ratio at the inlet of the membrane test hardware.  Additional relative humidity 

sensors were used at the outlet to monitor the change in water content of the supply air flow through 

the test section.  For this experiment, the vacuum is maintained at approximately 900Pa.  Humidity 

was measured at both the inlet and outlet of the process air stream.   
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Figure 17: Vacuum Pressure System Diagram 

3.1.4 Test Systems  

 A custom-built test system was developed for the sweep gas experiments and the vacuum 

pressure experiments and can be seen in Figure 18.  The system was capable of controlling gas 

flow, humidity level for wet and dry air streams, vacuum pump control, and data logging.  The 

specifications for the test stand are given in Table 1.  Compressed air is supplied to two Unit 1000 

mass flow controllers and two Porter mass flow controllers.  After passing through mass flow 

controllers, air is either dehumidified by a Drierite Laboratory Gas Drying Unit filled with 1lb of 

indicating desiccant or is humidified by custom built bubblers.  Air is then measured by an Omega 

HX-71 V2 Relative Humidity sensor and a Drok pressure transducer before being delivered to the 

membrane testing hardware.  Temperature and atmospheric pressure were monitored continuously 

by a BME280 pressure transducer.  For vacuum pressure experiments, a SMC vacuum transducer 

is used to monitor the pressure.  An Edwards E2M0.7 rotary vane vacuum pump was used for all 

required experiments.  Data is collected by an Arduino Mega 2560 R3 and is controlled by 

LabView.  For each experiment, a dedicated LabView VI was created.  These VI interfaces can be 

seen in Figure 19 and Figure 20. 
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Table 1: Sweep gas and vacuum pressure test stand specifications 

Control Specifications 

Wet Side Flow 1 – 5 LPM 

Dry Side Flow 1 – 5 LPM 

Wet Side Humidity 1% - 90% 

Dry Side Humidity 1% - 90% 

Feed Gas Air 

Logger Rate 1 Hz 

 

 

 

Figure 18: Sweep gas and vacuum pressure test system 
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Figure 19: LabView control panel for sweep gas experiments 

 

Figure 20: LabView control panel for vacuum pressure experiments 
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3.1.5 Hardware Assembly 

For sweep gas evaluations, a 9 cm2 flow field made of rectangular channels was used.  The 

channels were 2 mm in width.  Channel thickness was varied from 0.5, 1.1, 1.6, and 3.1 mm.  

Channel geometry can be seen in Figure 21.  Flow fields were constructed of 3 layers of laser cut 

acrylic sheet adhered together.  Supplemental views of the flow field and flow field assembly can 

be seen in Figure 22, and Figure 23. The channel length of the acrylic was 55 mm and was reduced 

to 45 mm by a polyimide tape layer which was used to make the active area window for the 

membrane.  The acrylic layers were adhered together to create a plate assembly. 

 

Figure 21: Flow field geometry 
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Figure 22: Flow field exploded view 

 

Figure 23: Picture of flow field geometry 
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 The flow field consists of four ports.  Two ports guide the wet flow while the other two 

guide dry air flow.  This can be seen in Figure 24.  The membrane was placed on top of the 

channels.  A silicone face seal gasket was placed on top of the membrane.  Following the 

membrane, a second flow field geometry was placed with the channel side facing the membrane.  

 

Figure 24: Flow field geometry 

 

End hardware was machined from 6061 Aluminum.  Eight bolts were used to provide even 

clamping force throughout the assembly.  Plastic barbed fittings were used to connect the end 

hardware to the test stand.  O-rings were used at each port to create a seal between the end hardware 

and the flow field geometry.  The flow fields are assembled such that both feed flows passed 

through the channels in the same direction.  A picture of the assembly can be seen in Figure 25. 
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Figure 25: A picture of the vapor driven hardware assembly 

For vacuum pressure experiments, the same 9cm2 flow field geometry was used as 

previously described for the supply air.  The vacuum side plate was comprised of an embedded 

porous plastic in a custom-made membrane support structure.  The vacuum side assembly can be 

seen in Figure 26 and Figure 27.  Acrylic layers were again bonded together to create the frame of 

the membrane support structure. 
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Figure 26: Exploded view of the membrane support assembly 

 

Figure 27: Membrane support assembly 
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 To create a sealed environment between the flow field assemblies, a silicone face seal 

gasket was used.  The membrane was layered in between the porous membrane support with the 

gasket and flow field.  This assembly can be seen in Figure 28.   

 

Figure 28: Exploded view of the vacuum pressure test hardware  

 Aluminum end hardware was used to connect the acrylic flow field and porous membrane 

support to the test stand.  Brass hardware, compression fittings, and vacuum rated refrigeration 

tubing were used to allow the vacuum to communicate with the aluminum manifold and can be 

seen in Figure 29.  
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Figure 29: A picture of the vacuum pressure hardware assembled. 

3.1.6 Calibration 

 All controllers and sensors were calibrated to ensure accurate measurements of water 

vapor.  Mass flow controllers were calibrated using an Alicat Scientific calibration box to +/-0.02 

SLPM.  Pressure transducers were calibrated by a digital monometer which was integrated within 

the Alicat Scientific to +/- 10 Pa, and RH sensors were calibrated using the dew cup method.  The 

ambient pressure and temperature were monitored by a factory calibrated BME280 to +/-1 Pa and 

+/- 1°C, respectively.  

3.1.7 Test Plan  

 A consistent set of parameters were used to complete each set of experiments.  The test 

hardware was assembled in the same manor for each configuration.  The testing parameters that 

were used to complete the sweep gas experiments can be seen in Table 2.  The channel depth was 

varied at 0.5, 1.1, 1.6, and 3.1 mm.  For each channel depth the inlet RH was maintained at 80% 

and 20%. The feed rate of air was set to 1, 2, 3, 4, 5 standard liters per minute (SLPM) for each 
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channel depth.  Data was logged at 1Hz.  For vacuum pressure experiments, the testing parameters 

can be seen in Table 3.  The channel depth was varied at 0.5, 1.0, and 2.0 mm.  The inlet relative 

humidity was maintained at 80% for flow rates of 1, 2, 3, 4, 5 SLPM. The vacuum pressure was 

900 Pa.  

For the studies presented, perflourosulfinated acid (PFSA) ionomer membranes were used 

at varying membrane thicknesses of 25, 50, 130, and 180 microns.  The cast membranes were used 

as received in proton form.  PFSA was chosen for these benchmark experiments because it is 

reported to have the lowest resistance to water vapor transfer and high water selectivity [4,26,30].  

From a performance perspective, PFSA is thought to represent the best commercially available 

polymer for homogeneous water transfer membranes.  

Table 2: Testing parameters for sweep gas experiments 

Parameter Value 

Active area 9 cm2 

Channel depth 0.5, 1.1, 1.6, 3.1 mm 

Feed gas Air  

Temperature 23.5 °C 

Wet feed total pressure ~1 atm 

Dry feed total pressure ~1 atm 

Wet feed RH 80% 

Dry feed RH 20% 

Wet feed rate 1,2,3,4,5 SLPM 

Dry feed rate 1,2,3,4,5 SLPM 

 

  



34 
 

Table 3: Testing parameters for vacuum pressure experiments 

Parameter Value 

Active area 9 cm2 

Channel depth 0.5, 1.0, 2.0 mm 

Feed gas Air  

Temperature 23.5 °C 

Wet feed pressure ~1 atm 

Low pressure 0.9 kPa 

Wet feed RH 80% 

Wet feed rate 1,2,3,4,5 SLPM 
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4. Results and Discussion 

The observed results are presented from specifically chosen methods that best represent 

the hypothesis and conclusions that are to be discussed.  The presented results are followed by 

discussion and conclusions. 

4.1 Membrane Thickness and Flow Gap Study 

 The test system described in Section 3.1 was used to observe the mass transfer of four 

different membranes when evaluated in two different experiments for multiple channel depths.  

The inlet and outlet RH were measured at 1hz for 30 seconds.  The collected data was averaged 

for each input condition.  The test parameters outlined in Table 2 and Table 3 were used for the 

evaluations.   

In all experiments, the RH at the inlet and outlet was used to determine the mass of water 

removed from the process air flow stream and mass flux 𝑗 was calculated using Equation 1.  Where 

𝑉𝑎𝑖𝑟
̇  is the volumetric flow rate of process air, 𝜌𝑎𝑖𝑟 is the density of the air, ∆𝜔 is the change in 

humidity ratio of the process air stream, and 𝐴 is the membrane area.   

 𝑗 =
𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟

̇ ∆𝜔

𝐴
 

Equation 1 

 

The measured mass flux at varying process air velocities for all sweep gas and vacuum 

pressure experiments are given in Figure 30 and Figure 31.  Experimental error associated with 

flow control and the measurement of RH, pressure, and temperature was estimated to be 0.3 mg 

cm-2 min-1.  This error was estimated based on the average discrepancy between the sweep and 

process gas mass balance that was calculated for all sweep gas experiments.  The data Figure 30 

and Figure 31 demonstrate how both membrane thickness and process gas Reynolds number 

impacts water vapor transfer. For sweep gas experiments, the mass flux was measured from the 
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wet flow stream.  An increase in vapor flux was observed as the Reynolds number within the 

channel was increased.  Additionally, the observed flux increased as the thickness of the membrane 

decreased when comparing the flux for each thickness at similar Reynolds numbers.  For the 

analysis, Reynolds number was calculated as follows where velocity is represented by 𝑉𝑎𝑖𝑟 in the 

channel, 𝐻𝑑 represents for hydraulic diameter of the channel, and 𝜇 represents the dynamic 

viscosity.  

 𝑅𝑒 =
𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝐻𝑑

𝜇
 

Equation 2 

 

 

Figure 30: Observed mass flux from sweep gas experiments as Reynolds Number was increased 

for four different thicknesses of a PFSA membrane. 
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Figure 31: Observed mass flux from vacuum pressure experiments as Reynolds Number was 

increased for four different thicknesses of a PFSA membrane. 

4.1.1 Extraction of Diffusion Resistance and Convective Resistance 

Using the data previously presented, an analysis was developed to separate the relative 

influence of these key parameters. The total mass transport resistance (𝑅𝑇) for water vapor is the 

sum of diffusive resistance through the membrane and convective resistance in the channel.  While 

many factors impact the diffusion resistance of a membrane such as temperature, water activity in 

the polymer, and conductivity, this applied study probes the effective diffusivity (𝐷𝑒𝑓𝑓) at steady 

state for water concentrations and temperature associated with HVAC operating conditions.  This 

enables the relative influence of channel design and flow conditions on the convective mass 

transfer coefficient (𝑘) to be investigated.  Based on the difference between the average 
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concentration (∆𝐶) of the wet and dry sides of the membrane and the measured water flux, the 

total resistance to water transfer is expressed as: 

 
𝑗 =

∆𝐶

𝑅𝑇
=

∆𝐶

𝑡𝑚𝑒𝑚

𝑘𝑑𝑖𝑓𝑓,𝑒𝑓𝑓
+

1
𝑘𝑐𝑜𝑛𝑣

 
Equation 3 

 

In Equation 3, ∆𝐶 represents the average change in vapor concentration across the membrane 

thickness, 𝑅𝑇 represents the total resistance, 𝑡𝑚𝑒𝑚 is the thickness of the membrane, 𝑘𝑑𝑖𝑓𝑓,𝑒𝑓𝑓 is 

the diffusion coefficient for the material, and 𝑘𝑐𝑜𝑛𝑣 is the combined convective resistance of the 

channels. 

 

Figure 32: Data analysis to separate convective and diffusive resistance. 

As illustrated in Figure 32, the experimental results were organized with total transport 

resistance as a function of membrane thickness.  A linear trend represents a constant diffusivity 

through the membrane where the slope indicates the diffusion resistance and the intercept 

represents the convective resistance for a given experimental configuration.  Figure 33 displays 
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this analysis at selected gas velocities.  The sweep gas experiment results display channel 

resistance increases as channel depth increases.  As membrane thickness increased, diffusion 

resistance increased and as flow rate is increases, convective resistance decreases.  The data was 

fitted to a linear regression where the slope and y – intercept was determined.  A sufficient 

coefficient of determination was found with the linear fit yielding an average of 97%.        

 

 

Figure 33: Total diffusion resistance with varying PFSA membrane thickness at increasing gas 

velocity. 

The convective mass transfer resistance is expressed in similar manor to convective heat 

transfer.  In the convective heat transfer expression, Equation 4, the heat transfer rate is represented 

by �̇�, the area of heat transfer is represented by 𝐴, the convective mass transfer coefficient is seen 

as ℎ𝑐𝑜𝑛𝑣, and the difference in thermal energy between two states is seen as ∆𝑇.  Similarly, in the 
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convective heat transfer expression, Equation 5, the rate of mass transfer is denoted by 𝐽,̇ the area 

of mass transfer is represented by 𝐴, the convective mass transfer coefficient is seen as 𝑘, and the 

difference in species concentration energy between two states is seen as ∆𝐶. 

Convective Heat Transfer Expression: 

 �̇� = ℎ𝑐𝑜𝑛𝑣𝐴∆𝑇 Equation 4 

Convective Mass Transfer Expression: 

 𝐽̇ = 𝑘𝐴∆𝐶 Equation 5 

Several correlations have been published in literature that allow for convective resistance 

to be predicted.  In the governing expressions relating to heat and mass transfer, properly 

characterizing the convective resistance term requires using various mass and heat transfer 

supporting expressions.  For mass transfer, this includes fluid’s density, velocity, dynamic 

viscosity, momentum diffusivity, mass diffusivity, and the hydraulic diameter of the flow 

geometry. The Reynolds number is used to characterize the type of flow within the channel as a 

function of the fluid’s density, velocity, dynamic viscosity, and the hydraulic diameter.  The 

Schmidt number describes the ratio of momentum diffusivity (𝐷𝐴𝐵) and mass diffusivity of the 

fluid to characterize momentum and mass diffusion in the gas velocity and boundary layer.   

The Sherwood number is used to characterize the effectiveness of mass convection at the 

boundary layer of the membrane.  Equation 6 presents a correlation for the Sherwood number for 

Prandtl number that is greater than 0.6 and for Reynold numbers less than 5 ∙ 105.  The Reynolds 

number is represented by 𝑅𝑒 and the Schmidt number is presented as 𝑆𝑐: 
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 𝑆ℎ = 0.332𝑅𝑒1/2𝑆𝑐1/3  [31] Equation 6 

Using the Sherwood number, an estimated convective mass transfer coefficient is 

determined from Equation 7 where 𝐻𝑑 is the hydraulic diameter and 𝐷𝐴𝐵 is the mass diffusivity of 

water vapor in air. 

 
𝑘𝑐𝑜𝑛𝑣 = 𝑆ℎ (

𝐷𝐴𝐵

𝐻𝑑
) Equation 7 

The experimentally determined mass transfer resistance is used to validate the empirical 

correlation given in Equation 6.  Figure 34 compares the observed channel resistance to the 

empirical correlations as a function of the in-channel Reynolds number. 

 

Figure 34: A comparison of the experimental and estimated convective resistance as a function 

of the Reynolds Number. 
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Table 4 contains the measured diffusion coefficient, diffusion resistance and convective 

resistance for each membrane and channel configuration evaluated.  The measured diffusion 

coefficient was used to find the diffusion resistance for each PFSA membrane observed. 

Table 4: Observed diffusion resistance and convective resistance from sweep gas experiments 

Gas 

Velocity  

Diffusion 

Coefficient 

Diffusion Resistance  
Convective 

Resistance 
PFSA 

25 µm 

PFSA 

50 µm 

PFSA 

130 µm 

PFSA 

180 µm 

m/s cm2/s s/cm s/cm s/cm s/cm s/cm 

0.3 0.15 0.02 0.03 0.08 0.12 0.46135 

0.5 0.07 0.04 0.07 0.18 0.25 0.31935 

0.8 0.09 0.03 0.06 0.14 0.21 0.3148 

0.8 0.07 0.04 0.07 0.18 0.26 0.298 

1.3 0.05 0.05 0.09 0.23 0.33 0.23345 

1.6 0.06 0.04 0.08 0.20 0.29 0.20235 

1.6 0.10 0.03 0.05 0.13 0.18 0.27035 

2.3 0.07 0.04 0.07 0.18 0.26 0.17675 

2.6 0.06 0.04 0.08 0.20 0.29 0.17555 

3.8 0.06 0.04 0.08 0.21 0.30 0.1405 

4.9 0.06 0.04 0.08 0.20 0.29 0.1049 

8.2 0.06 0.05 0.09 0.23 0.33 0.0796 
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Figure 35: A comparison of the convective resistance to the diffusion resistance as gas velocity 

increases in the channel for four PFSA membranes. Additionally, the pressure drops incurred 

within the channel for each channel depth is displayed as a function of gas velocity. 

Figure 35 compares the convective resistance over the diffusion resistance as a function of 

membrane thickness and Reynolds number while also displaying the pressure drop in the channel 

as a function of channel length.  It is seen that channel convective resistance is significantly greater 

than diffusion resistance for the evaluated PFSA membranes, especially for membranes less than 

100 µm in thickness.  To reach a convective resistance that is equal to the diffusion resistance, a 

Reynolds number around 400 would be required.  
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4.2 Applying Results to a One Dimensional, Down the Channel, Mass Transfer Model 

To predict in-channel conditions for mass transfer, a model was developed from Equation 

3 that evaluates the rate of mass transfer along the axis of the channel.  The model was developed 

starting with an individual channel and creating a computational grid.  A visual representation of 

the computation model can be seen in Figure 36.  

 

Figure 36: A graphical depiction of the computation domain used to develop the 1D, down the 

channel, mass transfer model. 

The validated empirical correlations given earlier are used to determine the convection 

resistance based on the channel dimensions and flow rate.  The observed diffusion coefficient of 

the PFSA membrane was used to determine the diffusion resistance.  The input conditions of the 

gas entering have a known 3.1mm which are used to determine the local concentration of the water 

vapor in the stream(s).  The mass flux is then calculated at every 0.01 cm throughout the channel 

yielding 450 components to complete an analysis for one 45 mm channel.  The amount of water 

vapor that is removed or added, is used to adjust the respective streams’ local concentration for 

the next section in the computational domain.  To simulate vacuum experiments, it was assumed 

that the convective resistance within the vacuum plenum was negligible and the water vapor 

concentration was constant at 900 Pa. 
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A comparison of the simulated outlet humidity ratio to the observed outlet humidity ratio 

can be seen in Figure 37 for a channel with a depth of 3.1 mm for sweep gas experiments.  In 

addition, a comparison of the simulated outlet humidity ratio to the observed outlet humidity ratio 

for a channel depth of 3.1 mm for vacuum experiments is displayed by Figure 38.  

 

Figure 37: A comparison of the measured outlet humidity ratio of a 3.1 mm channel depth with a 

180 µm PFSA membrane to the simulated results from down the channel model from a sweep 

gas experiment. 



46 
 

 

Figure 38: A comparison of the measured outlet humidity ratio of a 1 mm channel depth with a 

180 µm PFSA membrane to the simulated results from the down the channel model for a vacuum 

pressure experiment. 

 The down the channel model was then applied to report humidity ratios as a function of 

channel length as a method to determine the useful length of a channel for varying flow rate, 

channel depth and membrane thickness.  Figure 39 displays the simulated humidity ratio 

throughout the length of a 0.5 mm channel at 1.7, 5.0, and 8.3 m/s.  As the gas moves through the 

channel, the concentration gradient decreases and as a result the rate of water vapor transfer 

decreases. Additionally, due to the small channel depth, the convection resistance is nearly equal 

to the diffusion resistance. 
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Figure 39: A simulation of the humidity ratio through the length of the channel with a 25 µm 

PFSA membrane in a 0.51 mm channel at three different gas velocity (Sweep Gas Experiments) 

 In deeper channels convective resistance is much greater than the diffusion resistance 

through the membrane.  As a result, the change in humidity ratio is nearly linear.  This can be seen 

in Figure 40 throughout the length of the channel. 
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Figure 40: A simulation of humidity ratio throughout the channel length in a 3.13 mm channel at 

three different gas velocities with a 180 µm membrane. (Sweep Gas Experiments) 
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4.3 The Modeling and Performance of an MHP Dedicated Outdoor Air System (DOAS) 

 A DOAS is responsible for managing the latent and sensible cooling for incoming 

ventilation air.  These systems are comprised of many subsystems such as vapor compression heat 

pumps, desiccant wheels, energy recovery cores, and a pair of mass exchangers.  This section 

provides an overview of each subsystem and the assumptions made for each subsystem required 

for the modeling of an MHP DOAS system.  

4.3.1 System Schematic  

 

Figure 41: An MHP DOAS system diagram 

 The DOAS as seen in Figure 41, manages four different air flows.  The first air flow is used 

to regenerate the desiccant wheel.  This air flow is heated by the condenser of a vapor compression 

system and a supplementary heater.  After passing through the desiccant wheel, the air is exhausted 

out of the unit.  A second air flow is passed through the desiccant wheel and is dehumidified to at 

minimum a humidity ratio of 0.0086 kgwater vapor/kgdry air.  The air then passes through the expirator 

mass exchanger where it is humidified and then exhaust outdoors.  The building supply air enters 
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the DOAS and is dehumidified by a mass exchanger to the building setpoint.  The air then passes 

through an energy recovery ventilator where it is partially cooled, followed by a vapor compression 

system to complete the rest of the necessary sensible cooling.  The final air flow is the building 

exhaust air, which is either pushed directly outdoors or is used to manage the initial sensible 

cooling of the building supply air.  

The vacuum pump is responsible for roughing the system to 1.25kPa, after which it is shut 

off.  The expirator removes water vapor from the vacuum plenum at the same rate that water vapor 

is removed from the supply building air stream.  After start up, the vacuum pump is required to 

intermittently return the system to 1.25kPa as a result of the diffusion of oxygen, nitrogen, etc.  

For this analysis, the electrical load required for system roughing and intermittent maintenance of 

system pressure from a vacuum pump is assumed to be negligible due to the high selectivity of 

water vapor from the PFSA membrane.  Additionally, it was assumed that all building exhaust air 

was directed to the energy recovery ventilator. 

The supplemental heat for this simulation was not included when determining the realized 

COP. Thermal integration of buildings has become common method of saving energy by using 

waste heat streams as a power source for other building activities.  As a result, it was assumed that 

any required supplemental heat was provided at no energy cost to the system.  This energy could 

come from a cooling loop from manufacturing equipment, combined heat and power system 

(CHP), or other processes exhausting a low-grade waste heat stream.  

4.3.2 Model Set-up 

 The DOAS simulation was developed to best represent the working conditions of a 3-rTon 

of latent cooling for air at 80% RH with a dry bulb temperature of 23 °C while at 1 atm with a 

building setpoint of 50% RH.  From this, the system flow rate was determined to be approximately 
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2650 m3/hr (1550 cfm).  Each subcomponent was sized individually, and energy input 

requirements were based on reported or calculated COP’s of commercially available components 

as functions of the water removal rate or the input dry bulb temperature.  

4.3.3 Desiccant Wheel 

 A software developed by Rotor Source, Inc [32] was used to estimate a COP based on the 

latent cooling completed for 2646 m3/h (1557 cfm) of air at 23 °C dry bulb and 80% RH.  A 

screenshot of the software can be seen in Figure 42. 

 

Figure 42: Rotor Source, Inc Software used to determine the COP of a desiccant wheel for a 3- 

rTon DOAS system [32] 

The energy requirements of the desiccant wheel are determined from the power required 

to overcome the pressure drop of the desiccant wheel, the input required heat, and the motor used 

to rotate the wheel.  Table 5 contains all sizing parameters for the selected desiccant wheel along 
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with the calculated COP. The COP of the desiccant wheel was determined using the following 

equation:  

 
𝐶𝑂𝑃 =

𝐿𝑎𝑡𝑒𝑛𝑡 𝐶𝑜𝑜𝑙𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐼𝑛𝑝𝑢𝑡
 

Equation 8 

Table 5: Selected parameters of the desiccant wheel  

Parameter Value 

Dry Bulb Temperature 23.0 °C 

Process Air Flow Rate  2646 m3/hr 

Regeneration Air Flow Rate 882 m3/hr 

Process Air Input Humidity Ratio 14.1 gwater vapor/kgdry air 

Process Air Output Humidity Ratio 6.9 gwater vapor/kgdry air 

Heater Temperature  120 °C DB 

Process Air Pressure Drop 161 Pa 

Regeneration Air Pressure Drop 

(Excluding heater) 
211 Pa 

Process Air Blower Efficiency  55% 

Regeneration Air Blower Efficiency 55% 

Process Air Blower Power 0.2 kW 

Regeneration Air Blower Power 0.1 kW 

Heat Required 28.7 kW 

Rotor Motor Power 0.04 kW 

Total Thermal Energy Input 28.7 kW 

Total Mechanical Energy Input 0.3 kW 

Latent Cooling Achieved 19.8 kW 

COP 0.68 

 

4.3.4 Vapor Compression System. 

 The vapor compression system was sized to account for the total sensible load.  However, 

the simulation of the vapor compression system worked in conjunction with the energy recovery 

ventilator.  The energy recovery ventilator was modeled after a commercially available system 

with a 65% sensible energy recover [33].  The remaining sensible cooling was completed by a 

vapor compression system.  
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 The selected vapor compression system for the simulation was rated for 5 Ton of sensible 

cooling at a COP of 4.4 (SEER 15) [34].  The electrical energy consumption was determined by: 

 
𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =

�̇�𝑎𝑖𝑟𝑐𝑝[(∆𝑇)(1 − 𝜂𝐸𝑅𝑉)]

𝐶𝑂𝑃
 Equation 9 

where �̇�𝑎𝑖𝑟 is the mass flow rate of air, 𝑐𝑝 is the specific heat of air, ∆𝑇 is the change in temperature 

and 𝜂𝐸𝑅𝑉 is the efficiency of the energy recover ventilator from 0-1.  

4.3.5 Mass Exchanger (ME) Design 

 For the simulation, the dehumidification mass exchanger was assumed to have the same 

mass transfer properties per square meter of membrane as the expiration system.  All geometry 

considerations for the dehumidification mass exchanger are the same for the expirator.  A PFSA 

membrane with a thickness of 50 µm and a diffusion coefficient of 0.07 cm2/s.  To make this 

assumption, the humidity ratio supplied to the expirator must be adequately below the outlet 

humidity ratio of the dehumidification mass exchanger.  To ensure this, the selected desiccant 

wheel was oversized by 15%.  

 To determine the aspect ratio of the mass exchanger, a study on the required length for 

three different channel depths was completed.  The selected channel depths were 0.5 mm, 1.0 mm 

and 2.0 mm.  The input relative humidity was 80% at 23 °C.  The required outlet humidity was 

50% at 23 °C.  The mass exchanger width was 0.3 m.  The length of the mass exchanger was then 

determined along with the pressure drop.  The pressure drop and volumetric flow rate were used 

to determine the pumping losses for each gap width.  The latent cooling and pumping losses were 

normalized over the active area of the membrane and is displayed by Figure 43. 
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Figure 43: Cooling Achieved and Pumping Losses per square meter of membrane for 3 different 

channel depths 

 As velocity increases, the rate of latent cooling increases in a logarithmic manor.  The small 

channel yielded the greatest cooling potential per meter squared of membrane as expected since 

the convective resistance in the channel is the lowest.  The pressure drops of the 0.5 mm channel 

increased at the quickest rate.  To get a better understanding of the tradeoff between latent cooling 

density and velocity in the channel, the effective latent cooling was determined from:  

 
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑎𝑡𝑒𝑛𝑡 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 =

𝐿𝑎𝑡𝑒𝑛𝑡 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 − 𝑃𝑢𝑚𝑝𝑖𝑛𝑔 𝐿𝑜𝑠𝑠𝑒𝑠

𝑀𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝐴𝑐𝑡𝑖𝑣𝑒 𝐴𝑟𝑒𝑎
 Equation 10 
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Figure 44: Effective Cooling per square meter of membrane 

 The results from Figure 44 display the tradeoff between energy loss as a result of pressure 

drop through the mass exchanger and the amount of latent cooling achieved per square meter of 

membrane area.  As a result, five mass exchangers were considered for the simulation.  The first 

three design parameters match to the greatest effective cooling achieved for each gap width.  These 

design parameters are seen in Table 6, Table 7, and Table 8.  The remaining two mass exchanger 

configurations were selected to meet ASHRAE standard 62 for pressure drop and velocity.  These 

configurations are seen in Table 9 and Table 10. 
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Table 6: Mass Exchanger #1 (ME #1) 

Parameter Value 

Gap Width 0.5 mm  

Exchanger Width  0.30 m 

Exchanger Length 0.1 m 

Active Area/Plate 0.03 m2 

Membrane Area 17.1 m2 

Air Velocity 9.44 m/s 

Latent Cooling / sq. meter 0.62 kW/m2 

Pressure Drop 610 Pa 

 

Table 7: Mass Exchanger #2 (ME #2) 

Parameter Value 

Gap Width 1.0 mm  

Exchanger Width  0.3 m 

Exchanger Length 0.32 m 

Active Area/Plate 0.09 m2 

Membrane Area 18.8 m2 

Air Velocity 12.6 m/s 

Latent Cooling / sq. meter 0.56 kW/m2 

Pressure Drop 599 Pa 

 

Table 8: Mass Exchanger #3 (ME #3)  

Parameter Value 

Gap Width 2.0 mm  

Exchanger Width  0.3 m 

Exchanger Length 0.9 m 

Active Area/Plate 0.27 m2 

Membrane Area 21.3 m2 

Air Velocity 15.73 m/s 

Latent Cooling / sq. meter 0.5 kW/m2 

Pressure Drop 532 Pa 
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Table 9: Mass Exchanger #4 (ME #4)  

Parameter Value 

Gap Width 1.0 mm  

Exchanger Width  0.3m 

Exchanger Length 0.1 m 

Active Area/Plate 0.03 m2 

Membrane Area 30.7 m2 

Air Velocity 2.44 m/s 

Latent Cooling / sq. meter 0.34 kW/m2 

Pressure Drop 36.7 Pa 

 

Table 10: Mass Exchanger #5 (ME #5)  

Parameter Value 

Gap Width 2.0 mm  

Exchanger Width  0.3 m 

Exchanger Length 0.26 m 

Active Area/Plate 0.08 m2 

Membrane Area 39.5 m2 

Air Velocity 2.44 m/s 

Latent Cooling / sq. meter 0.27 kW/m2 

Pressure Drop 23.7 Pa 

 

4.3.6 Centrifugal Blower Sizing 

 The system used centrifugal blowers or regenerative blowers with an efficiency of 70% or 

55%, respectively.  The power required to move air throughout the system was determined by 

Equation 11.  

 
𝑃𝑜𝑤𝑒𝑟𝑏𝑙𝑜𝑤𝑒𝑟 =

∆𝑃�̇�

𝜂𝑏𝑙𝑜𝑤𝑒𝑟
 Equation 11 

In Equation 11, 𝜂𝑏𝑙𝑜𝑤𝑒𝑟 is the blower efficiency, ∆𝑃 is the pressure drop in the air stream, and �̇� 

is the volumetric flow rate. 
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4.3.7 MHP DOAS System Performance 

 The previous sections outline the individual parameters taken into consideration for 

modeling the efficiency of each component.  This section will discuss how each system was 

incorporated into the MHP DOAS simulation.  

 The desiccant wheel was assumed to have a consistent ratio of heat required to latent 

cooling achieved of 1.45:1.  To determine the heater energy requirement the thermal energy for 

each operating condition was calculated by Equation 12. 

 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =

𝐿𝑎𝑡𝑒𝑛𝑡 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 
𝑀𝑎𝑠𝑠 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟

0.69
 

Equation 12 

The pressure drop through the desiccant wheel was considered constant as flow rate for 

each point was not varied.  Additionally, the energy required to rotate the wheel was considered 

constant.  The supplemental heater was assumed to have a pressure drop of 75 Pa.  

 The required sensible cooling was determined based on the dry bulb temperature for each 

condition at the outlet of the energy recovery ventilator.  The energy recovery ventilator only 

completed sensible cooling.  The pressure drop through the energy recover ventilator was assumed 

to be 100 Pa.  The pumping losses in the HVAC duct were considered negligible when compared 

to the pressure drop in each system component and were therefore not included in the analysis. 

Depending on the mass exchanger configuration, the efficiency of the blower was varied.  

For ME #1, #2 and #3, the blower efficiency was assumed 55% as there was a greater amount of 

pressure drop to overcome and would require the use of a regenerative blower.  For the 

configurations that used ME #4 and #5, a blower efficiency of 70% was selected to represent a 

centrifugal blower. The blower efficiency of 80% was assumed for the building return air.  Each 

simulation was completed with consistent assumptions for each system configuration. 
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In the first simulation, the model was given an increasing dry bulb temperature while the 

RH at each dry bulb temperature was maintained at 80%.  As seen in Figure 45, as the dry bulb 

temperature increased, the change in wet bulb temperature at the outlet of the ME increased.  The 

increased change in wet bulb temperature from inlet to outlet is a result of an increasing 

concentration differential of water vapor in the supply air stream to the vacuum side of the mass 

exchanger.  The outlet wet bulb temperature for each ME was similar and as a result only the 

simulation data for ME# 1 is displayed. 

 

Figure 45: A comparison of the inlet dewpoint and outlet dewpoint as dry bulb temperature was 

increased for an MHP DOAS configured with ME# 1 

The COP for each MHP DOAS was determined for the system as an overall COP and a 

electrical COP. The overall COP considers all input energy, thermal and electrical.  The electrical 
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COP assumes the building has been thermally integrated to the MHP DOAS system such that the 

thermal energy required is sourced from an existing waste heat stream.  The electrical COP is 

determined using the following formula: 

 
𝐶𝑂𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 =

𝐿𝑎𝑡𝑒𝑛𝑡 𝐶𝑜𝑜𝑙𝑖𝑛𝑔

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐼𝑛𝑝𝑢𝑡
 Equation 13 

 

Figure 46: COP for the various configurations of ME in an MHP DOAS 

Figure 46 and Figure 47 display the total COP and electrical COP of the various MHP 

DOAS configurations.  In both figures, the COP increases as the input dry bulb temperature 

increases.  ME #1, 2 and 3 did not perform as well as ME #3 and ME #4.  This is a result of the 

greater amount of pressure drop in the ME and the less efficient pump required to overcome the 

pressure drop. 
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Figure 47: Electrical COP for different configurations of an MHP DOAS Configuration 

If the thermal energy requirements of the MHP DOAS system are no longer considered an 

energy penalty to the system efficiency, i.e. thermally integrated to a building waste heat source, 

and the electrical energy input is considered the only energy input, the COP improves for each ME 

configurations.  

 



62 
 

 

Figure 48: Effective cooling per square meter for five different MHP DOAS configurations 

For each MHP DOAS configuration, the effective cooling per square meter was 

determined.  Figure 46, Figure 47, Figure 48 and Figure 49 when viewed together display the 

tradeoff of between membrane required, initial cost and performance.  As seen in Figure 48, ME 

#1, #2, and #3 display the greatest effective cooling flux, respectively, followed by ME #4 and #5.  

The designs of ME #1, ME #2 and ME #3 yield high flow rate within the channel to reduce 

convective resistance and to reduce the amount of membrane required. In summary, these MEs are 

diffusion limited or diffusion controlled. In ME #4 and ME #5, the convective resistance is greater 

than the diffusion resistance thus requiring more membrane in the system.    
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Figure 49: A comparison of the required membrane area for each ME configuration 

The MHP concept reviewed shows promise that an electrical COP greater than 7.5 can be 

achieved for the sensible and latent cooling required in DOAS system.  Current vapor compression 

systems operate with a COP between 3.5 and 4.5 [35,36].  Desiccant wheels typically operate with 

a COP between 0.5 – 0.6 and require a substantial amount of sensible cooling to return the air to 

the proper supply air temperature [37].  
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5. Conclusion 

 Latent cooling without phase change could potentially reduce the energy required for air 

conditioning.  Water selective membranes are a key enabler for many technologies aimed at 

achieving this goal.  Numerous membrane materials have been developed and characterized for 

water selectivity and transport performance with high process gas flow.  The current study was 

developed to consider a subset of these materials along with practical design requirements of 

commercial HVAC systems that constrain process air flow and pressure loss.  These parameters 

ultimately translate to high convective mass transport resistance of water vapor through air in the 

mass exchanger.  Experiments varying membrane thickness and gas flow gap were used to 

separately measure membrane and channel transport resistance.  The collected datas were used to 

validate an empirical down the channel mass transfer model.   The validated mass transfer model 

was then applied to simulate a 3 rTon MHP DOAS system for various mass exchanger geometries 

under consistent conditions.  From the resulting studies, multiple findings were concluded and can 

be summarized by the following: 

1. Using the two experiments, convection resistance in channels ranging from 0.5 mm to 3.1 

mm was measured and diffusion resistance through the PFSA membrane was characterized 

at four different membrane thicknesses.  

2. Convection resistance is up 6x’s greater than diffusion resistance for typical HVAC 

conditions for pressure drop and gas velocity. 

3. The observed convective resistances of the 4 channel depths were used to validate 

Sherwood number correlations that can be used to empirically model mass transfer.  



65 
 

4. The in-channel flow characteristics required to reach the greatest effective latent cooling 

per square meter of membrane surpasses the ASHRAE standards for pressure drop and air 

velocity.  

5. A comparison of five different mass exchangers geometries encompassed within a MHP 

DOAS was completed with results that show the tradeoff of effective latent cooling per 

square meter of membrane, system COP and required membrane active area. 

6. The MHP DOAS simulation results show that a total COP of 0.5 to 0.7 was achieved when 

considering both the required thermal and electrical energy inputs to the system.  

7. The COP of the MHP DOAS system based on the electrical input only is greater than 7.5 

for mass exchangers designed to meet ASHRAE standards with 1.0 mm and 2.0 mm 

channel depths.  

8. An MHP DOAS that is designed to meet ASHRAE standards is capable of achieving a 

COP that is 50% higher than comparable vapor compression DOAS. 

9. Mass exchangers designed my maximum effective latent cooling result in significant 

pumping losses which reduce the electrical COP to less than 4 for the simulated conditions. 
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6. Future Considerations 

Future considerations should focus on maximizing convection within the channel while 

meeting the design criteria set by ASHRAE.  Employing obstacles in designs for channels greater 

than 1.0 mm in channel depth show promise that the rate of mass transfer can be further improved. 

Additional modeling that considers the system location, the location’s average weather data, and 

the use of variable speed pumps would identify regions and climates that the system will perform 

the best.  Lastly, durability is great importance for HVAC systems.  Studies that outline the 

expected working hours of various membrane materials for conditions that relate to a membrane 

based HVAC system and that list the key environmental conditions that affect the working life will 

provide valuable insight for a life-cycle cost analysis and maintenance requirements if adopted 

within the HVAC market.   
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