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Abstract

Increased design complexity has resulted in the need for efficient verification. The verification

process is crucial for discovering and fixing bugs prior to fabrication and system integration.

However, as designs increase in complexity, the use of traditional verification techniques with

VHDL and Verilog may fall short to provide a proper toolset. Especially when performing veri-

fication on designs involving audio signal processing, untested corner cases and bugs may result

in significant and sometimes undiscovered processing errors. This paper explores the use of Sys-

temVerilog and the universal verification methodology (UVM) class library to verify a pipelined

floating-point multiplier (FMULT) within the adaptive differential pulse code modulation (AD-

PCM) specification.
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Chapter 1

Introduction

When an intellectual property (IP) chip is taped out, bugs and design flaws are found in the

hardware and require re-spin. In order to mitigate time and cost spent on reworking chip designs,

verification is used to catch these issues prior to tape out. Verification has become increasingly

necessary as gate sizing has decreased, allowing for increased design complexity in smaller chips.

In the past few decades, the hardware description languages (HDL) most commonly used did

not present sufficient verification constructs, and as a result many engineers made use of other

languages such as OpenVera in order to attain the level of functionality their testbenches required.

Other engineers and companies designed their own verification languages and libraries as well.

In 2005, SystemVerilog (SV), an object-oriented programming language, was adopted as an

IEEE standard with the goal of unifying verification and design, and providing a language for

verification that has readability, reusability and efficiency.

Following the adoption of SV, the open verification methodology (OVM), a class library

written in SV, was created. OVM provides automation and transaction level modeling for Sys-

temVerilog testbench designs. The testbench structure provided by OVM allows for reusability in

other verification environments and makes use of tools provided in SystemVerilog such as code



1.1 Research Goals 2

coverage, assertions, and DPI. OVM would later evolve into the universal verification method-

ology (UVM), which combines various verification practices to make up the first standardized

verification methodology. This paper explores the use of SV and UVM for verifying the float-

ing point multiplier (FMULT) used in the G.726 Adaptive Differential Pulse-Code Modulation

(ADPCM) design specification [1], which consists of multiplying an 11-bit floating point binary

number with a 16-bit floating point binary number, resulting in a 16-bit product. The FMULT

was designed in Verilog with a pipelined architecture using one adder for the necessary additions.

1.1 Research Goals

The goal of this paper is to research and develop a testbench using SystemVerilog and UVM,

verifying the floating point multiplier (FMULT). The testbench is a multi-layered, self-checking

design. For success, the following goals are considered:

• Understanding ADPCM operation and how the FMULT relates to the overall specification

• Designing a test environment in UVM with self-checking using a reference model and

random stimulus

• Running simulations for RTL and gate-level designs

• Collecting coverage results and test results

1.2 Contributions

The major contributions for the paper are as follows:

• A floating point multiplier (FMULT) designed in Verilog
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• Verification of the FMULT using a multi-layered testbench written in SystemVerilog and

UVM

• Reusable UVM components to conduct verification on other parts of the ADPCM

1.3 Organization

The organization of the paper is as follows:

• Chapter 2: This chapter provides context to the UVM through research

• Chapter 3: This chapter discusses adaptive differential pulse code modulation and where

the FMULT is used in the design

• Chapter 4: This chapter provides an overview to UVM and the main components used in

a multi-layered testbench

• Chapter 5: This chapter discusses the architecture of the testbench and the design integra-

tion

• Chapter 6: The results of the tests are provided and discussed

• Chapter 7: The paper concludes here and possible future work is discussed



Chapter 2

Bibliographical Research

Prior to the introduction of verification methodologies, engineers used traditional verification

techniques to verify intellectual property (IP) before tape out. These traditional techniques had

their limitations; the testbench design affected code reuse and reapplication in future designs [2].

Another drawback with the use of traditional verification was its inability to test complex sys-

tems due to the lack of a strong tool set. This time consuming process would take up over 70%

of the time spent on the designs, and the introduction of verification methodologies in the fol-

lowing decades would serve to help lower the time and effort put into chip verification [3]. These

methodologies aimed at providing a verification language, library, and/or tool set with reusability.

One way these methodologies accomplished this was through the use of object oriented program-

ming (OOP), which was found in the Advanced Verification Methodology (AVM) [4], Univer-

sal Reuse Methodology (URM), e Reuse Methodology (eRM), Open Verification Methodology

(OVM) and the universal verification methodology (UVM). Using OOP allowed the testbench to

be broken up into smaller components, providing increased flexibility, simplicity, and reusabil-

ity lacking in traditional verification techniques [5]. Of the various methodologies created and

adopted, UVM is gaining ground and becoming popular among verification engineers. UVM is
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also the first methodology to be standardized.

One of the stepping stones to the development of UVM was SystemVerilog (SV). SV sought

to address some of the issues in the verification process across the industry, some of which being

the lack of unified design, specification, and verification [6]. The verification language was

designed to fully support backwards compatibility with Verilog as well as Verilog constructs. In

essence, SV was an expansion to the Verilog HDL, providing more robustness in verification.

As a language capable of both design and verification, or a hardware description and verification

language (HDVL), SV was adopted by IEEE as a standard in 2005 [7]. SV also included several

tools beneficial for thorough verification of complex designs: assertions, coverage, DPI, and

supported data types not present in Verilog. Assertions and coverage are two components of

UVM inherited from SV, and are critical tools used for verification.

Assertions are used to indicate an error if a particular event occurs during simulation run time.

The event typically involves output comparison or the behavior of the design under test (DUT)

during verification (i.e. enable is not active when it should be, etc). There are 2 types of assertions

in SV: concurrent and immediate [8]. Concurrent assertions involve conditions that must be

satisfied by the design at all times. Immediate assertions however are checked periodically,

typically after an event. SV provides the assertion tool set through System Verilog Assertions

(SVA), which can be added and synthesized within the design for debugging and verification.

[9] explores synthesizing assertions in a design, stating that the assertions are not treated as

the code, but as properties that must hold up in the design. The proposed design was run in

parallel with assertion checking from Synopsys OpenVera Assertions (OVA) checker, producing

the same results. The simulation for the proposed design ran faster than that of the OVA checker.

While the floating-point multiplier (FMULT) proposed in this paper did not include synthesized

assertions, this is an area that could be beneficial to explore in future work for both debugging

and run time purposes. SVA has also been used for assertion-based verification (ABV), which
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has been proven to increase efficiency and lower effort in catching corner cases when verifying

the design [10].

Coverage is a measurement used in verification for determining the quality of the testing

done on the DUT [11]. Quantified as a percentage, the higher coverage is, the more of the design

was tested. This includes corner cases, functional coverage, toggling, and user-defined coverage

groups. In SV these are known as cover groups. The goal is to reach 100% percent coverage if

possible, as untested code could result in defects and extraneous costs after tape out [12].

The UVM is a powerful verification methodology written in SV, providing functionality

found in AVM, OVM, URM and eRM [13]. UVM maintains transaction-level modeling (TLM)

found in SV and includes a separate component for handling testbench stimulus known as a se-

quence, which is separated from the testbench structure [14]. There is value to this, as it allows

for flexibility for stimulus generation within a testbench design. A class library is used to pro-

vide the building blocks for the methodology [15]. Typically used as a multi-layered design, the

UVM provides reusability, but tends to be too complicated for simple designs requiring verifica-

tion. Its flexible framework however proves valuable for complicated designs with mixed-signal

verification capabilities [16].



Chapter 3

Adaptive Differential Pulse Code

Modulation

Adaptive differential pulse code modulation (ADPCM) is a process of encoding and decoding

audio signals from analog to digital and vice versa. It expands on both pulse-code modulation

(PCM) and differential pulse-code modulation (DPCM). Converting these audio signals to dig-

ital has several benefits: lower costs per data line, ease of maintenance, and high quality signal

regeneration at repeaters [17]. ADPCM was first introduced in 1973 by Bell Labs, supporting

encoding and decoding for bit rates including 24 kb/s and 32 kb/s. In 1980 Bell Labs published

a paper expanding on the ADPCM described in [17], discussing the algorithmic nature and ar-

chitecture of the ADPCM in depth [18]. ADPCM was released as a specification in 1984, and is

commonly used today as the G.726 specification [1].

PCM is the bare-bones modulation approach. Figure 3.1 illustrates the process of encoding a

signal using PCM.The process starts with sampling the signal at a frequency typically set to twice

the maximum frequency of the analog signal. If the sampling frequency is higher, oversampling

can occur which might require signal reconstruction. If the sampling frequency is lower, then
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the signal will be under-sampled and the data can be misinterpreted. Following sampling, the

data is then quantized, placing it in a digital-friendly format. The data sampled is quantized as

an approximation of the analog signal, representing the magnitude of the analog signal in binary.

Sampler Quantizer Encoder
Sampled Signal Quantized Output PCM SignalInput Audio Signal

Figure 3.1: PCM Encoding Process

The quantization is determined by the minimum and maximum frequencies, in addition to

the sampling frequency. While there are an infinite number of amplitudes that can occur within

the minimum and maximum frequency range, the amplitudes are broken up into known values,

distributed into L number of evenly-spaced regions. This allows for a constrained range of values

that can be used for the approximation of the sampled waveform. The result produces a staircase

waveform parallel to the analog waveform from the input function. Following quantization,

the data is then encoded in accordance with the G.711 specification [19], which relies on the

encoding law used for the data received. There are 2 laws covered within the specification; μ-law

and A-law. One distinction between the two is that μ-law uses 13 bits, whereas A-law only uses

12 bits for quantization, and as a result requires a different encoding and decoding process.

The sampling and quantization processes both have potential for error in PCM. Data sampled

and quantized can result in an inaccurate approximate, either undershooting or overshooting the

sample point on the original analog frequency. DPCM worked to mitigate this error. Instead

of simply quantizing and encoding the analog signal, DPCM takes the difference between the

current sample and a predicted sample. This predicted sample originates from calculations per-

formed on the previous sample, utilizing the assumption that the change between 2 samples will

be small. The result is no longer a sampled value, but rather a difference between 2 sampled val-

ues [20]. This difference mapped alongside the analog waveform will form a staircase as well,
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Table 3.1: ADPCM Data Rates

Data Rate Quantizer Bit Width

16 kb/s 2-bit

24 kb/s 3-bit

32 kb/s 4-bit

40 kb/s 5-bit

but with smaller values, which allows for more adaptation [21]. One of the benefits DPCM has

over PCM in addition to mitigating sample error is the requirement of smaller register sizes used

in quantization.

ADPCM is similar to DPCM and is outlined in the G.726 and G.722 specifications [1, 22].

Instead of a defined step size for sampling like in PCM and DPCM, ADPCM is designed with

variability to accomodate both large and small changes in the sampled signal. Also, in accordance

with the G.726 specification, the ADPCM can be used for handling multiple data rates. The bit

width of the quantizer output is scaled based on the data rate. Table 3.1 illustrates the data rates

present, and the resulting output of the quantizer relative to the data rate. Figures 3.2 and 3.3 show

the diagram for the encoder and decoder in the ADPCM, respectively. The quantization process

is enhanced in order to provide this functionality. In addition to the quantizer, the ADPCM has

a quantizer scale factor adaptation (QSFA), which is used to compute the quantizer’s scaling

factor. This scale factor is determined by 2 things: the previous quantizer output and the output

of the adaptation speed control. In order to compute the scale factor, the QSFA calculates both a

slow (yl(k)) and a fast (yu(k)) scale factor. Equations 3.1 and 3.2 illustrate the fast and slow scale

factor equations, respectively. W [I(k)] makes use of a lookup table, y(k) is the scaling factor, and

al(k) is the adaptation speed control..
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Figure 3.2: ADPCM Encoder Block Diagram [1]

Figure 3.3: ADPCM Decoder Block Diagram [1]
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yu(k) = (1−2−5)y(k)+2−5W [I(k)] (3.1)

yl(k) = (1−2−6)yl(k−1)+2−6yu(k) (3.2)

y(k) = al(k)yu(k−1)+ [1−al(k)]yl(k−1) (3.3)

As noted in equation 3.3, the scale factor sent to the quantizer uses the slow and fast factors

calculated from the previous sampled value, making use of previously collected data to pre-

dict the output and sample size necessary to encode the input signal properly. The adaptation

speed control operation is documented in [1]. Due to the dynamic stepping of the quantizer in

the ADPCM, it proves to be both an economic and efficient digital coding solution for speech

compression [23].

In addition to the QSFA, the adaptive predictor and reconstructed signal calculator (APRSC)

blocks are utilized to generate the predicted signal which is compared to the current PCM signal.

The APRSC is a multi-step, algorithmic design that contains both a sixth order predictor used

for modeling zeros, and a second order predictor used for modeling poles of the predicted input

signal [1]. Within the APRSC, each order of the predictors requires the use of a floating-point

multiplier (FMULT), which produces each of the outputs required for constructing the predicted

signal. The FMULT design implemented in this paper is discussed in section 5.1 . The FMULT

has a 16-bit input and an 11-bit input, and produces a 16-bit output. Both inputs are converted

from two’s compliment to floating point format and multiplied. The result is then converted

back to two’s compliment and sent to the accumulator. For the sixth-order predictor, the FMULT

multiplies the predictor coefficient Bn with the quantized difference signal DQn. For the second-

order predictor, the FMULT multiplies the predictor coefficient An with the reconstructed signal
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SRn. In total, the FMULT block is used 8 times in the APRSC.

Figure 3.4: APRSC Block Diagram [1]



Chapter 4

UVM Overview

The basic UVM testbench hierarchy is discussed in this chapter. UVM provides a multi-layered

testbench architecture where components of each layer communicate through transactions, in-

heriting concepts and functionality from OVM, URM, eRM, and VMM.

4.1 UVM Hierarchy

Figure 4.1 illustrates the basic UVM testbench hierarchy. These components are crucial for

testbench operation, and UVM optimizes operation in each related to their function.

4.1.1 Sequencing

This is a functionality that differs between UVM and SV. There are 3 parts to sequencing: se-

quence item, sequence, and sequencer.
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Top Layer

DUT

Test Layer

Environment

Interface

Agent

Driver MonitorSequencer

ScoreboardRefMod

Sequence

Figure 4.1: Basic UVM Testbench Hierarchy
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4.1.1.1 Sequence Item

The sequence item is the component used for transactions between the sequencer and driver. The

sequence item is a customizable transaction packet, and is a key component for the sequence and

sequencer. The sequence item extends from class uvm_sequence_item.

4.1.1.2 Sequence

The sequence is a UVM class used for the generation of stimulus for the testbench. This is

typically found at the test-level. The sequence will generate random stimulus and will interact

with the driver through the sequencer, sending the data in the form of a sequence item. The

sequence extends from uvm_sequence.

4.1.1.3 Sequencer

The sequencer is a different UVM class than the sequence, and is instantiated within the agent.

A sequence will use the sequencer as the medium to handle transactions within the testbench,

specifically the driver. The sequencer extends from class uvm_sequence.

4.1.2 Interface

The interface is a UVM component used to connect a DUT or other component to the testbench.

Typically, a clock is passed to the interface from the top level instead of using the driver to man-

age it. Virtual interfaces are commonly used to provide one peripheral for all UVM components

to either drive or collect data from the DUT.
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4.1.3 Driver

The driver serves the purpose of driving the DUT and, if present, reference models through trans-

actions. The data used by the driver for driving the DUT and models comes from the sequencer

in the form of a sequence item. The driver will get the data from the sequencer, and will then

send the data to the DUT via a virtual interface tied to the DUT. Reference models can be driven

using uvm_put_ports. The driver extends from class uvm_driver.

4.1.4 Monitor

The monitor is used for managing output transactions and coverage. It will send the collected data

to the scoreboard, comparator (if present), or other components for verification. The monitor can

also serve the purpose of asserting output conditions as well as verifying the design. The monitor

extends class uvm_monitor.

4.1.5 Agent

An agent is used to handle transactions through an interface to a design, and a testbench can have

multiple agents. Typically, the agent will have the driver, monitor, and sequencer instantiated

within it. The agent is also used to connect the driver to the sequencer as well as any reference

models, if present. The agent extends class uvm_agent.

4.1.6 Environment

The environment contains any agents, the scoreboard, and reference models (if present). Similar

to the agent, the environment is also used to handle connections between various components,

typically the sequencer to the driver, and if a reference model is present, connecting it to the
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driver as well as the monitor through a FIFO; UVM’s mailbox. The environment extends class

uvm_env.

4.1.7 Scoreboard

The scoreboard receives data from the monitor and will typically run comparisons on the data

received from the monitor, acting as a comparator. The scoreboard also will keep track of the

results, which can be accessed during the report phase of the UVM testbench.

4.1.8 Test

This layer instantiates the test environment and the sequence. This layer encapsulates all lower

level components in each layer. The test layer is a component extending the UVM class uvm_test.

4.1.9 Top

The top level of the UVM testbench is a SV module that instantiates the DUT, interfaces and the

test to be performed. Operations such as resets and clock frequencies can be set at this level. The

UVM test to perform is also selected at this level.

4.2 Testbench Operation

A UVM testbench consists of 3 main phases: build phase, run-time phase, and clean up phase.

These phases are inherited from the class uvm_component and provide an organizational struc-

ture to the testbench.
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4.2.1 Build Phase

The build phase is executed at the start of the simulation. There are 4 functions within the

build phase, of which the build_phase and connect_phase are most used. During build_phase,

components are created locally or connected to virtual components. During connect_phase,

FIFOs, get ports, and put ports are connected to higher or lower level components. 2 other

functions exist in the build phase: start_of_simulation_phase and end_of_elaboration_phase.

These are used for setting the initial run time and making final adjustments to the testbench prior

to simulation, respectively. The build phase executes prior to the actual simulation, and takes up

0 simulation time.

4.2.2 Run-time Phase

The run-time phase is executed during the simulation. Operations such as driving, monitoring,

and checking occur during the run-time phase, and are called in the task run_phase. The run-time

phase also has several functions used for handling DUT resets, configurations, and shutdown.

4.2.3 Clean Up Phase

The clean up phase occurs last before the simulation ends. The purpose of this phase is to check

the data collected by the testbench (via the scoreboard) at the end of simulation, and determine

whether the test has either passed or reached sufficient coverage. 2 functions used in the clean up

phase are the report_phase and the final_phase. The report_phase is useful for printing out any

results from the test, and the final_phase will complete any tasks not already completed by earlier

phases. One factor to be mindful of, however, is that the clean up phase operates bottom-up, so

report phases of lower level components will execute before higher level components. A way to

avoid clutter for the report phase is to utilize the phase from one of the higher level components.
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Design and Test Methodology

This chapter discusses the design used for the FMULT as well as the testbench architecture used

to verify the FMULT.

5.1 FMULT Design

The final step in the APRSC involves accumulating the values calculated by each of the 8

FMULTs used in the hierarchical design (See Figure 3.4). As an option to help lower the re-

sources required for this step, the FMULT was designed with a pipelined architecture and a

single resource adder written in Verilog. The design had 2 data inputs: An and SRn, which were

16-bits and 11-bits, respectively. In order to incorporate the single-resourced adder design, the

FMULT required the use of a state machine to manage the 2 additions required per the G.726

design specification [1]. In order to properly pipeline this design, the inputs to the FMULT must

have 1 clock cycle between each new set of input stimulus, otherwise the pipeline will lag and

the additions will fall out of sync. Figure 5.1 illustrates the timing diagram of the proposed

FMULT design as well as the values driven to the adder within the FMULT, resulting in a 6-stage
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Figure 5.1: Pipelined FMULT Timing Diagram

pipeline. The design also incorporated several flip flops to maintain data values through pipeline

stages (not pictured in Figure 5.1).

The state machine used in the FMULT has only 2 states, one for each of the additions. The

first state adds AnEXP and SRnEXP, and the second state adds AnMANT * SRnMANT and 48.

The FMULT performs the first addition during the second stage of the pipeline, and the second

addition during the third stage, and will continue to go back and forth between these states during

operation.

5.2 Testbench Design

The testbench follows the basic UVM testbench architecture with adjustments to the monitor,

operating as the scoreboard in addition to monitoring the outputs and coverage. Also, a reference

model written in C is incorporated to provide a baseline for the DUT’s operation.

This section discusses each of the components used in the testbench and their functionality.
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Figure 5.2: FMULT Testbench Design
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5.2.1 Sequence Items

5.2.1.1 in_sqr_item

This sequence item is used within the uvm_sequence to generate random stimulus necessary to

drive both the DUT and the reference model. There are 2 pieces of data sent in this transaction

packet: An and SRn.

5.2.1.2 out_sqr_item

This sequence item is used by the reference model to send data to the monitor via transactions.

There is one piece of data sent in this transaction packet: WAn.

5.2.2 Sequence

The sequence generates random stimulus for SRn and An. The stimulus generated is used by

both the DUT and the reference model initially sent to the driver.

5.2.3 Interface

The interface contains a clock, reset, scan insertion cells and the FMULT inputs and output An,

SRn and WAn. The clock is passed through the interface from a clock generated at the top level

and is used to synchronize the testbench with the DUT.

5.2.4 Driver

The driver performs 2 primary tasks: get the transaction from the sequencer, and use the received

stimulus to drive the DUT and the reference model. A uvm_put_port is used to send the data
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from the driver to the reference model, which is a layer up from the driver. In order for the driver

to interact with the DUT, a virtual interface is used.

5.2.5 Monitor

The monitor, in addition to monitoring coverage and receiving the output from the DUT and

reference model, also handles the comparison of data and simulation duration. The scoreboard is

also included in the monitor; data is sent to the monitor from the DUT through the interface, and

from the reference model via a uvm_put_port. The monitor does not require the use of try_put,

and reads the data every time the FIFO is filled. However, in order to take into account the

6-stage pipeline, the monitor delays comparing values for 6 clock cycles.

The monitor also includes a report_phase, providing simulation information including run

time, coverage, tests run and the pass rate.

The monitor serves as both the monitor and scoreboard due to the simplicity of the testbench

design.

5.2.6 Agent

The agent instantiates the driver, monitor, and sequencer. The agent also handles the connection

between the sequencer and the driver.

5.2.7 Environment

The environment contains an instantiation of the agent and reference model. In addition, a con-

nect_phase is used to connect the driver to the reference model, and reference model to the

monitor. A report phase is also used in the environment to display the number of passes and

number of fails, which included the functionality of the scoreboard in addition to monitoring the
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outputs and coverage.

5.2.8 Test

The environment and sequence are instantiated here. The sequence used involves random stimu-

lus generation using the variables within the in_sqr_item.

5.2.9 Top

The top level entity instantiates the interface used to connect to the DUT, resets it, and also drives

the clock. Within the top level, the test to run is also chosen.

5.2.10 DPI Functions

DPI functions, written in C, are implemented in the monitor to keep track of wall time for the

simulation, generate a text report, and email the results. This proved to be a valuable tool to keep

track of test results.

5.2.11 Watermark

A configuration file is used to determine how many random stimulus will be generated and

checked by the sequencer, and the monitor keeps track of this. Once the watermark is reached,

the monitor drops the objection and the simulation ends.
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Results and Discussion

The results of the FMULT are in this chapter. The design was simulated using both RTL and

gate-level simulations, and passed for all stimulus.

6.1 RTL and Gate Level Simulation Results

The DUT was simulated using Cadence electronic design automation (EDA) tools [24]. The sim-

ulation ran until a watermark of random stimulus was met. Table 6.1 displays simulation results

and timing. Tables 6.2 and 6.3 show the coverage results for RTL and gate-level, respectively.

The ultimate goal is to achieve 100% functional coverage, and when using random stimulus

this is typically seen with higher test runs. Because An is a 16-bit number, there are 65,356

possible combinations for the randomly generated input. Therefore, at least 65,356 test runs

would be required, assuming the random stimulus hit each combination once. 100,000 cases was

not sufficient to reach full coverage, but using a watermark of 1,000,000 or higher attained 100%

functional coverage. Figure 6.1 illustrates the relationship between watermark. and coverage

results for RTL, and Figure 6.2 for gate.
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Table 6.1: Simulation Results

RTL Gate-Level
Test Runs Passing Rate Wall Time (s) Passing Rate Wall Time (s)

10 100% 0.0069 100% 0.058
100 100% 0.069 100% 0.146

1000 100% 0.454 100% 0.6140
10000 100% 1.313 100% 2.009
100000 100% 11.108 100% 16.117

1000000 100% 93.140 100% 150.133
10000000 100% 918.027 100% 1489.162

Table 6.2: RTL Simulation Coverage Results

Test Runs Code Coverage Functional Coverage An Coverage SRn Coverage

10 90.27% 50.15% 0.02% 0.59%
100 92.35% 51.28% 0.16% 4.98%

1000 95.22% 59.99% 1.52% 38.13%
10000 96.15% 78.29% 13.90% 99.27%

100000 96.15% 94.29% 77.14% 100%
1000000 96.15% 100% 100% 100%
10000000 96.15% 100% 100% 100%

Table 6.3: Gate-Level Simulation Coverage Results

Test Runs Code Coverage Functional Coverage An Coverage SRn Coverage

10 95.92% 50.15% 0.02% 0.59%
100 96.94% 51.28% 0.16% 4.98%

1000 96.94% 60.12% 1.52% 38.96%
10000 96.94% 78.29% 13.90% 99.27%

100000 96.94% 94.31% 77.25% 100%
1000000 96.94% 100% 100% 100%
10000000 96.94% 100% 100% 100%
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Another important factor in simulation is timing. The simulation ran fairly quickly, but higher

watermarks required more time to be allotted for the conclusion of the simulation. Figure 6.3

shows the relationship between watermark and time, and Table 6.1 includes the run time for each

watermark.

While the testbench is able to verify the behavior of the design, a c model with the desired

operation was required to verify the correctness of the DUT. Each random test stimulus was

processed by a C-model and the DUT, and each test passed for every test set, which did not

require significant processing time.

6.2 RTL and Gate Level Synthesis Results

The FMULT was synthesized and simulated for gate sizes of 32 nm, 65 nm, 90 nm and 180 nm

using Synopsys design compiler [25]. The synthesis results are recorded in Table 6.4. Figure 6.4

displays the area per gate size, and Figure 6.5 shows the number of gates as well.

Table 6.4: Synthesis Results

Gate Size
Category Component 32 nm 65 nm 90 nm 180 nm

Area (µm2)

Combinational Area 1084.432 1111.320 4382.208 8325.979
Buff/Inv Area 80.310 65.520 387.072 578.794

Non-Comb Area 724.31 867.24 2984.141 6566.314
Total Cell Area 1808.743 1978.560 7366.349 14892.293

Gate Count 1186 1374 1332 1492

Power

Internal Power (µW ) 34.239 53.800 33.417 95.900
Switching Power (µW ) 3.272 4.980 16.126 409.000
Leakage Power (nW ) 1.650∗1011 82.018 3.190∗1010 80.464

Total Power (µW ) 202.086 58.900 81.430 505.000
Coverage Test Coverage 99.98% 99.97% 99.98% 99.98%
Timing Worst Path Delay (ns) 19.805 19.730 19.840 19.496
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6.3 Discussion

This testbench design using UVM was able to verify the functionality of the FMULT. Several

points can be observed following verification:

1. The DUT did not fail for any test set of random stimulus

2. Higher watermarks/test runs require exponentially more time to complete

3. As the watermark increased, the functional coverage also increased

4. A watermark of around 1,000,000 is needed for the design to reach 100% functional cov-

erage

5. As the gate size decreased, the area of the device also decreased as expected
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Figure 6.4: Area Per Gate Size
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Conclusion

The FMULT was successfully verified using UVM and a multi-layered testbench approach. The

testbench was able to achieve 100% functional coverage at watermarks exceeding 1,000,000,

thoroughly verifying the design. The approach and results are documented in the previous chap-

ters. The FMULT was tested using random input stimulus and the outputs were compared with

a reference model written in C, in which the FMULT passed for every test set.

7.1 Future Work

The testbench structure provided proved to be a useful and efficient form of verification for the

FMULT. However, this approach is not limited to only the FMULT. Suggestions to continue the

work presented in this paper are below:

• The FMULT is one of several components within the APRSC. This verification approach

can be used to test the remaining low-level components, as well as the APRSC

• The RTL can be redesigned without a single-resource adder, allowing the design to be

pipelined with new stimulus every clock cycle
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• An implementation using UVM and the G.726 test sequences specification [26] would be

valuable for verifying the ADPCM
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Appendix I

Source Code

I.1 FMULT Design

1 module FMULT (

2 r e s e t ,

3 c lk ,

4 scan_ in0 ,

5 scan_en ,

6 tes t_mode ,

7 scan_ou t0 ,

8 An ,

9 SRn ,

10 WAn

11 ) ;

12

13 i n p u t



I.1 FMULT Design I-2

14 r e s e t , / / sys t em r e s e t

15 c l k ; / / sys t em c l o c k

16 i n p u t w i r e [ 1 5 : 0 ]

17 An ;

18 i n p u t w i r e [ 1 0 : 0 ] / / ALSO Bn ; Memory I n p u t

19 SRn ; / / R e c o n s t r u c t e d S i g n a l I n p u t

20 i n p u t

21 scan_ in0 , / / t e s t s can mode d a t a i n p u t

22 scan_en , / / t e s t s can mode e n a b l e

23 t e s t _ m o d e ; / / t e s t mode s e l e c t

24

25 o u t p u t

26 s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t

27 o u t p u t r e g [ 1 5 : 0 ]

28 WAn; / / P a r t i a l P r o d u c t / S i g n a l E s t i m a t e Outpu t

29

30 wi r e [ 1 3 : 0 ] AnMAG;

31 r e g [ 3 : 0 ] AnEXP ;

32 r e g [ 5 : 0 ] AnMANT;

33

34 wi r e [ 3 : 0 ] SRnEXP ;

35 wi r e [ 5 : 0 ] SRnMANT;

36

37 r e g [ 1 1 : 0 ] SRnAnMult ;

38
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39 wi r e WAnS;

40 r e g WAnS1, WAnS2, WAnS3, WAnS4 ;

41 r e g [ 4 : 0 ] WAnEXP, WAnEXP1, WAnEXP2, WAnEXP3;

42 r e g [ 7 : 0 ] WAnMANT;

43 r e g [ 1 5 : 0 ] WAnMAG;

44

45 r e g [ 1 1 : 0 ] A;

46 r e g [ 5 : 0 ] B ;

47 r e g s t a t e ;

48 wi r e [ 1 1 : 0 ] SUM;

49

50 / / p a r a m e t e r STATE1 = 0 ;

51 / / p a r a m e t e r STATE2 = 1 ;

52

53 / / Adder

54 a s s i g n SUM = A + B ;

55

56 / / SRnEXP and SRnMANT Calc

57 a s s i g n SRnEXP = SRn [ 9 : 6 ] ;

58 a s s i g n SRnMANT = SRn [ 5 : 0 ] ;

59

60 / / WAnS Calc

61 a s s i g n WAnS = SRn [ 1 0 ] ^ An [ 1 5 ] ;

62

63 / / AnMAG Calc
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64 a s s i g n AnMAG = An [ 1 5 ] ? (16 ’ d16384 − ( An [ 1 5 : 2 ] ) ) & 14 ’ d8191 :

An [ 1 5 : 2 ] ;

65

66 / / P i p e l i n e S t a g e 1 − ASynchronous C a l c u l a t i o n s

67 always@ ( posedge c l k o r posedge r e s e t )

68 b e g i n

69 i f ( r e s e t ) b e g i n

70 AnEXP = 4 ’ b0000 ;

71 AnMANT <= 6 ’ b000000 ;

72 end

73

74 e l s e b e g i n

75

76 / / AnEXP and AnMANT C a l c u l a t i o n s

77 c a s e z (AnMAG)

78 13 ’ b0000000000000 : b e g i n

79 AnEXP = 4 ’ b0000 ;

80 AnMANT <= 6 ’ b100000 ;

81 end

82 13 ’ b0000000000001 : b e g i n

83 AnEXP = 4 ’ b0001 ;

84 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

85 end

86 13 ’ b000000000001 ? : b e g i n

87 AnEXP = 4 ’ b0010 ;
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88 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

89 end

90 13 ’ b00000000001 ? ? : b e g i n

91 AnEXP = 4 ’ b0011 ;

92 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

93 end

94 13 ’ b0000000001 ? ? ? : b e g i n

95 AnEXP = 4 ’ b0100 ;

96 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

97 end

98 13 ’ b000000001 ? ? ? ? : b e g i n

99 AnEXP = 4 ’ b0101 ;

100 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

101 end

102 13 ’ b00000001 ? ? ? ? ? : b e g i n

103 AnEXP = 4 ’ b0110 ;

104 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

105 end

106 13 ’ b0000001 ? ? ? ? ? ? : b e g i n

107 AnEXP = 4 ’ b0111 ;

108 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

109 end

110 13 ’ b000001 ? ? ? ? ? ? ? : b e g i n

111 AnEXP = 4 ’ b1000 ;

112 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;
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113 end

114 13 ’ b00001 ? ? ? ? ? ? ? ? : b e g i n

115 AnEXP = 4 ’ b1001 ;

116 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

117 end

118 13 ’ b0001 ? ? ? ? ? ? ? ? ? : b e g i n

119 AnEXP = 4 ’ b1010 ;

120 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

121 end

122 13 ’ b001 ? ? ? ? ? ? ? ? ? ? : b e g i n

123 AnEXP = 4 ’ b1011 ;

124 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

125 end

126 13 ’ b01 ? ? ? ? ? ? ? ? ? ? ? : b e g i n

127 AnEXP = 4 ’ b1100 ;

128 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

129 end

130 13 ’ b1 ? ? ? ? ? ? ? ? ? ? ? ? : b e g i n

131 AnEXP = 4 ’ b1101 ;

132 AnMANT <= ( {AnMAG[ 1 3 : 0 ] , 6 ’ b000000 } ) >>AnEXP ;

133 end

134 e n d c a s e

135 end

136 end

137
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138

139 / / P i p e l i n e S t a g e 2 − Adder (1 s t I t e r a t i o n )

140 always@ ( posedge c l k o r posedge r e s e t )

141 b e g i n

142 i f ( r e s e t ) b e g i n

143 SRnAnMult <= 11 ’ b00000000000 ;

144 WAnS1 <= 16 ’ b0000000000000000 ;

145 / / s t a t e <= STATE1 ;

146 / / s a v e _ s t a t e <= STATE1 ;

147 end

148 e l s e b e g i n

149 / / s a v e _ s t a t e <= ~ s a v e _ s t a t e ;

150 / / s t a t e <= s a v e _ s t a t e ;

151 SRnAnMult <= SRnMANT * AnMANT;

152 WAnS1 <= WAnS;

153 end

154 end

155

156

157 / / P i p e l i n e S t a g e 3 ,4 − Adder (2 nd I t e r a t i o n )

158 always@ ( posedge c l k o r posedge r e s e t )

159 b e g i n

160 i f ( r e s e t ) b e g i n

161 WAnS2 <= 16 ’ b0000000000000000 ;

162 WAnS3 <= 16 ’ b0000000000000000 ;
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163 WAnS4 <= 16 ’ b0000000000000000 ;

164 WAnEXP1 <= 5 ’ b00000 ;

165 WAnEXP2 <= 5 ’ b00000 ;

166 WAnEXP3 <= 5 ’ b00000 ;

167 end

168 e l s e b e g i n

169 WAnEXP1 <= WAnEXP;

170 WAnEXP2 <= WAnEXP1;

171 WAnEXP3 <= WAnEXP2;

172 WAnS2 <= WAnS1 ;

173 WAnS3 <= WAnS2 ;

174 WAnS4 <= WAnS3 ;

175 end

176 end

177

178

179 / / P i p e l i n e S t a g e 5 − Outpu t

180 always@ ( posedge c l k o r posedge r e s e t )

181 b e g i n

182 i f ( r e s e t ) b e g i n

183 WAnMAG = 16 ’ b0000000000000000 ;

184 WAn <= 16 ’ b0000000000000000 ;

185 s t a t e <= 1 ’ b1 ;

186 end

187 e l s e b e g i n



I.1 FMULT Design I-9

188 s t a t e <= ~ s t a t e ;

189 i f (WAnEXP1 <= 26) b e g i n

190 WAnMAG = ( {WAnMANT[ 7 : 0 ] , 7 ’ b0000000 } ) > >(6 ’ d26−WAnEXP1) ;

191 end

192 e l s e b e g i n

193 WAnMAG = ( ( {WAnMANT[ 7 : 0 ] , 7 ’ b0000000 } ) <<(WAnEXP1 − 6 ’ d26 ) )

& 16 ’ b0111111111111111 ;

194 end

195 WAn <= WAnS4 ? (17 ’ d65536 − WAnMAG) : WAnMAG;

196 end

197 end

198

199

200 / / P i p e l i n e −> Adder Block

201 always@ ( posedge c l k o r posedge r e s e t )

202 b e g i n

203 i f ( r e s e t ) b e g i n

204 A <= 11 ’ b00000000000 ;

205 B <= 6 ’ b000000 ;

206 WAnMANT <= 8 ’ b00000000 ;

207 WAnEXP <= 5 ’ b00000 ;

208 end

209 e l s e b e g i n

210 c a s e z ( s t a t e )

211 1 ’ b0 : b e g i n
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212 WAnEXP <= SUM;

213 A <= SRnAnMult ;

214 B <= 6 ’ b110000 ;

215 end

216 1 ’ b1 : b e g i n

217 WAnMANT <= SUM[ 1 1 : 4 ] ;

218 A <= SRnEXP ;

219 B <= AnEXP ;

220 end

221 e n d c a s e

222 end

223 end

224

225 endmodule
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I.2 Interface

1 i n t e r f a c e i n t f ( i n p u t c l k ) ;

2 l o g i c r e s e t ;

3 l o g i c s c a n _ i n 0 ;

4 l o g i c scan_en ;

5 l o g i c t e s t _ m o d e ;

6 l o g i c s c a n _ o u t 0 ;

7 l o g i c [ 1 5 : 0 ] An ;

8 l o g i c [ 1 0 : 0 ] SRn ;

9 l o g i c [ 1 5 : 0 ] WAn;

10

11 e n d i n t e r f a c e : i n t f
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I.3 Input Sequence Item

1 c l a s s i n _ s q r _ i t e m e x t e n d s uvm_sequence_i tem ;

2 rand l o g i c [ 1 5 : 0 ] An ;

3 rand l o g i c [ 1 0 : 0 ] SRn ;

4

5 ‘ u v m _ o b j e c t _ u t i l s _ b e g i n ( i n _ s q r _ i t e m )

6 ‘ u v m _ f i e l d _ i n t ( An , UVM_ALL_ON | UVM_HEX)

7 ‘ u v m _ f i e l d _ i n t ( SRn , UVM_ALL_ON | UVM_HEX)

8 ‘ u v m _ o b j e c t _ u t i l s _ e n d

9

10 f u n c t i o n new ( s t r i n g name = " i n _ s q r _ i t e m " ) ;

11 s u p e r . new ( name ) ;

12 e n d f u n c t i o n

13

14 e n d c l a s s : i n _ s q r _ i t e m



I.4 Output Sequence Item I-13

I.4 Output Sequence Item

1 c l a s s o u t _ s q r _ i t e m e x t e n d s uvm_sequence_i tem ;

2

3 l o g i c [ 1 5 : 0 ] WAn;

4

5 ‘ u v m _ o b j e c t _ u t i l s _ b e g i n ( o u t _ s q r _ i t e m )

6 ‘ u v m _ f i e l d _ i n t (WAn, UVM_ALL_ON | UVM_HEX)

7 ‘ u v m _ o b j e c t _ u t i l s _ e n d

8

9 f u n c t i o n new ( s t r i n g name = " o u t _ s q r _ i t e m " ) ;

10 s u p e r . new ( name ) ;

11 e n d f u n c t i o n

12

13 e n d c l a s s : o u t _ s q r _ i t e m
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I.5 Reference Model

1 # i n c l u d e < s t d i o . h>

2 # i n c l u d e <math . h>

3

4 e x t e r n i n t

5 f m u l t ( x , y1 )

6 i n t x , y1 ;

7 {

8 / / p r i n t f ( "REFMOD I n p u t s %x , %x \ n " , x , y1 ) ;

9 i n t xs , xmag , xexp , xmant ;

10 i n t ys , yexp , ymant ;

11 i n t wxs , wx , wxexp , wxmant , wxmag , i ;

12

13 xs = ( x >> 15) & 1 ;

14 xmag = xs ? (16384 − ( x >> 2) ) & 8191 : x >> 2 ;

15 xexp = 0 ;

16 f o r ( i = 0 ; i <= 1 3 ; i += 1) {

17 i f ( ! ( xmag >> i ) ) {

18 xexp = i ;

19 b r e a k ;

20 }

21 i f ( i == 13)

22 p r i n t f ( "mag didn ’ t g e t s e t i n f m u l t \ n " ) ;

23 }



I.5 Reference Model I-15

24 xmant = xmag ? ( xmag << 6) >> xexp : 1 << 5 ;

25

26 ys = ( y1 >> 10) & 1 ;

27 yexp = ( y1 >> 6) & 1 5 ;

28 ymant = y1 & 6 3 ;

29

30 wxs = ys ^ xs ;

31 wxexp = yexp + xexp ;

32 wxmant = ( ( ymant * xmant ) + 48) >> 4 ;

33 wxmag = wxexp > 26 ? ( ( wxmant << 7) << ( wxexp − 26) ) & 32767

34 : ( wxmant << 7 ) >> ( 26 − wxexp ) ;

35 wx = wxs ? (65536 − wxmag ) & 65535 : wxmag & 65535;

36

37 r e t u r n ( wx ) ;

38 }
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I.6 Sequencer

1 c l a s s s e q _ i n e x t e n d s uvm_sequence # ( i n _ s q r _ i t e m ) ;

2 ‘ u v m _ o b j e c t _ u t i l s ( s e q _ i n )

3 i n t An , SRn ;

4 f u n c t i o n new ( s t r i n g name=" s e q _ i n " ) ;

5 s u p e r . new ( name ) ;

6 e n d f u n c t i o n : new

7

8 t a s k body ;

9 i n _ s q r _ i t e m t x ;

10

11 f o r e v e r b e g i n

12 t x = i n _ s q r _ i t e m : : t y p e _ i d : : c r e a t e ( " t x " ) ;

13 s t a r t _ i t e m ( t x ) ;

14 a s s e r t ( t x . r andomize ( ) ) ;

15 f i n i s h _ i t e m ( t x ) ;

16 end

17 e n d t a s k : body

18 e n d c l a s s : s e q _ i n
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I.7 Driver

1 t y p e d e f v i r t u a l i n t f i n t f _ v i f ;

2

3 c l a s s d r i v e r e x t e n d s uvm_dr ive r # ( i n _ s q r _ i t e m ) ;

4

5 ‘ u v m _ c o m p o n e n t _ u t i l s ( d r i v e r )

6

7 uvm_put_por t # ( i n _ s q r _ i t e m ) i c p ;

8 i n t f _ v i f v i f ;

9

10 e v e n t b e g i n _ r e c o r d , e n d _ r e c o r d ;

11

12 c o v e r g r o u p co v_ in ;

13 dut_An : c o v e r p o i n t v i f . An

14 { b i n s An [ ] = { [ 0 : 6 5 5 3 5 ] } ; }

15 dut_SRn : c o v e r p o i n t v i f . SRn

16 { b i n s SRn [ ] = { [ 0 : 2 0 4 7 ] } ; }

17 endgroup

18

19 f u n c t i o n new ( s t r i n g name = " d r i v e r " , uvm_component p a r e n t =

n u l l ) ;

20 s u p e r . new ( name , p a r e n t ) ;

21 i c p = new ( " i c p " , t h i s ) ;

22 co v_ in = new ( ) ;
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23 e n d f u n c t i o n

24

25 v i r t u a l f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

26 s u p e r . b u i l d _ p h a s e ( phase ) ;

27 void ’ ( uvm_resource_db #( i n t f _ v i f ) : : read_by_name ( . scope ( " i f s "

) , . name ( " i n t f _ v i f " ) , . v a l ( v i f ) ) ) ;

28 e n d f u n c t i o n

29

30 v i r t u a l t a s k r u n _ p h a s e ( uvm_phase phase ) ;

31 s u p e r . r u n _ p h a s e ( phase ) ;

32 f o r k

33 r e s e t _ s i g n a l s ( ) ;

34 d r i v e ( phase ) ;

35 j o i n

36 e n d t a s k

37

38 v i r t u a l p r o t e c t e d t a s k r e s e t _ s i g n a l s ( ) ;

39 f o r e v e r b e g i n

40 v i f . r e s e t = 1 ;

41 v i f . s c a n _ i n 0 = 0 ;

42 v i f . s can_en = 0 ;

43 v i f . t e s t _ m o d e = 0 ;

44 @( negedge v i f . c l k ) ;

45 @( negedge v i f . c l k ) ;

46 @( negedge v i f . c l k ) ;
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47 @( negedge v i f . c l k ) ;

48 v i f . r e s e t = 0 ;

49 @( posedge v i f . r e s e t ) ;

50 end

51 e n d t a s k

52

53 v i r t u a l p r o t e c t e d t a s k d r i v e ( uvm_phase phase ) ;

54 $ d i s p l a y ( " Wai t i ng " ) ;

55 w a i t ( v i f . r e s e t === 1) ;

56 $ d i s p l a y ( " R e s e t A s s e r t e d " ) ;

57 @( negedge v i f . r e s e t ) ;

58 $ d i s p l a y ( " R e s e t De−a s s e r t e d " ) ;

59 @( posedge v i f . c l k ) ;

60 f o r e v e r b e g i n

61 s e q _ i t e m _ p o r t . g e t ( r e q ) ;

62 −> b e g i n _ r e c o r d ;

63 w r i t e _ i t ( r e q ) ;

64 end

65 e n d t a s k

66

67 v i r t u a l p r o t e c t e d t a s k w r i t e _ i t ( i n _ s q r _ i t e m t r ) ;

68 v i f . An <= t r . An ;

69 v i f . SRn <= t r . SRn ;

70 / / $ d i s p l a y ( " An −> %d \ nSRn −> %d \ n " , t r . An , t r . SRn ) ;

71 i c p . p u t ( t r ) ;
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72 @( posedge v i f . c l k )

73 @( posedge v i f . c l k )

74 co v_ in . sample ( ) ;

75 −> e n d _ r e c o r d ;

76 e n d t a s k

77

78 v i r t u a l t a s k r e c o r d _ t r ( ) ;

79 f o r e v e r b e g i n

80 @( b e g i n _ r e c o r d ) ;

81 b e g i n _ t r ( req , " d r i v e r " ) ;

82 @( e n d _ r e c o r d ) ;

83 e n d _ t r ( r e q ) ;

84 end

85 e n d t a s k

86

87 e n d c l a s s
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I.8 Monitor

1 c l a s s m o n i t o r # ( t y p e T = o u t _ s q r _ i t e m ) e x t e n d s uvm_monitor ;

2 t y p e d e f m o n i t o r # (T ) t h i s _ t y p e ;

3 ‘uvm_componen t_pa ram_u t i l s ( t h i s _ t y p e )

4

5 c o n s t s t a t i c s t r i n g type_name = " m o n i t o r # (T ) " ;

6

7 uvm_put_imp #(T , t h i s _ t y p e ) from_rm ;

8 i n t f _ v i f v i f ;

9 i n _ s q r _ i t e m t r ;

10 o u t _ s q r _ i t e m exp ;

11

12 i n t s t a r t _ t i m e , r u n _ t i m e ;

13 i n t h rs , min , s e c ;

14 i n t watermark , wmfile , wmst r ing ;

15

16 l o g i c f r e e ;

17 i n t count , num_matches , num_mismatches ;

18 e v e n t b e g i n _ d e l a y , end_de lay , e n d s i m u l a t i o n , compared ;

19

20 c o v e r g r o u p cov_ou t ;

21 DUT_0 : c o v e r p o i n t v i f .WAn[ 0 ] ;

22 DUT_1 : c o v e r p o i n t v i f .WAn[ 1 ] ;

23 DUT_2 : c o v e r p o i n t v i f .WAn[ 2 ] ;
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24 DUT_3 : c o v e r p o i n t v i f .WAn[ 3 ] ;

25 DUT_4 : c o v e r p o i n t v i f .WAn[ 4 ] ;

26 DUT_5 : c o v e r p o i n t v i f .WAn[ 5 ] ;

27 DUT_6 : c o v e r p o i n t v i f .WAn[ 6 ] ;

28 DUT_7 : c o v e r p o i n t v i f .WAn[ 7 ] ;

29 DUT_8 : c o v e r p o i n t v i f .WAn[ 8 ] ;

30 DUT_9 : c o v e r p o i n t v i f .WAn[ 9 ] ;

31 DUT_10 : c o v e r p o i n t v i f .WAn[ 1 0 ] ;

32 DUT_11 : c o v e r p o i n t v i f .WAn[ 1 1 ] ;

33 DUT_12 : c o v e r p o i n t v i f .WAn[ 1 2 ] ;

34 DUT_13 : c o v e r p o i n t v i f .WAn[ 1 3 ] ;

35 DUT_14 : c o v e r p o i n t v i f .WAn[ 1 4 ] ;

36 DUT_15 : c o v e r p o i n t v i f .WAn[ 1 5 ] ;

37

38 REF_0 : c o v e r p o i n t exp .WAn[ 0 ] ;

39 REF_1 : c o v e r p o i n t exp .WAn[ 1 ] ;

40 REF_2 : c o v e r p o i n t exp .WAn[ 2 ] ;

41 REF_3 : c o v e r p o i n t exp .WAn[ 3 ] ;

42 REF_4 : c o v e r p o i n t exp .WAn[ 4 ] ;

43 REF_5 : c o v e r p o i n t exp .WAn[ 5 ] ;

44 REF_6 : c o v e r p o i n t exp .WAn[ 6 ] ;

45 REF_7 : c o v e r p o i n t exp .WAn[ 7 ] ;

46 REF_8 : c o v e r p o i n t exp .WAn[ 8 ] ;

47 REF_9 : c o v e r p o i n t exp .WAn[ 9 ] ;

48 REF_10 : c o v e r p o i n t exp .WAn[ 1 0 ] ;
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49 REF_11 : c o v e r p o i n t exp .WAn[ 1 1 ] ;

50 REF_12 : c o v e r p o i n t exp .WAn[ 1 2 ] ;

51 REF_13 : c o v e r p o i n t exp .WAn[ 1 3 ] ;

52 REF_14 : c o v e r p o i n t exp .WAn[ 1 4 ] ;

53 REF_15 : c o v e r p o i n t exp .WAn[ 1 5 ] ;

54

55 CC_0 : c r o s s DUT_0 , REF_0

56 { b i n s p a s s = b i n s o f (DUT_0) && b i n s o f ( REF_0 ) ; }

57 CC_1 : c r o s s DUT_1 , REF_1

58 { b i n s p a s s = b i n s o f (DUT_1) && b i n s o f ( REF_1 ) ; }

59 CC_2 : c r o s s DUT_2 , REF_2

60 { b i n s p a s s = b i n s o f (DUT_2) && b i n s o f ( REF_2 ) ; }

61 CC_3 : c r o s s DUT_3 , REF_3

62 { b i n s p a s s = b i n s o f (DUT_3) && b i n s o f ( REF_3 ) ; }

63 CC_4 : c r o s s DUT_4 , REF_4

64 { b i n s p a s s = b i n s o f (DUT_4) && b i n s o f ( REF_4 ) ; }

65 CC_5 : c r o s s DUT_5 , REF_5

66 { b i n s p a s s = b i n s o f (DUT_5) && b i n s o f ( REF_5 ) ; }

67 CC_6 : c r o s s DUT_6 , REF_6

68 { b i n s p a s s = b i n s o f (DUT_6) && b i n s o f ( REF_6 ) ; }

69 CC_7 : c r o s s DUT_7 , REF_7

70 { b i n s p a s s = b i n s o f (DUT_7) && b i n s o f ( REF_7 ) ; }

71 CC_8 : c r o s s DUT_8 , REF_8

72 { b i n s p a s s = b i n s o f (DUT_8) && b i n s o f ( REF_8 ) ; }

73 CC_9 : c r o s s DUT_9 , REF_9
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74 { b i n s p a s s = b i n s o f (DUT_9) && b i n s o f ( REF_9 ) ; }

75 CC_10 : c r o s s DUT_10 , REF_10

76 { b i n s p a s s = b i n s o f ( DUT_10 ) && b i n s o f ( REF_10 ) ; }

77 CC_11 : c r o s s DUT_11 , REF_11

78 { b i n s p a s s = b i n s o f ( DUT_11 ) && b i n s o f ( REF_11 ) ; }

79 CC_12 : c r o s s DUT_12 , REF_12

80 { b i n s p a s s = b i n s o f ( DUT_12 ) && b i n s o f ( REF_12 ) ; }

81 CC_13 : c r o s s DUT_13 , REF_13

82 { b i n s p a s s = b i n s o f ( DUT_13 ) && b i n s o f ( REF_13 ) ; }

83 CC_14 : c r o s s DUT_14 , REF_14

84 { b i n s p a s s = b i n s o f ( DUT_14 ) && b i n s o f ( REF_14 ) ; }

85 CC_15 : c r o s s DUT_15 , REF_15

86 { b i n s p a s s = b i n s o f ( DUT_15 ) && b i n s o f ( REF_15 ) ; }

87 endgroup

88

89 f u n c t i o n new ( s t r i n g name , uvm_component p a r e n t ) ;

90 s u p e r . new ( name , p a r e n t ) ;

91 from_rm = new ( " from_rm " , t h i s ) ;

92 exp = new ( " exp " ) ;

93 cov_ou t = new ( ) ;

94 c o u n t = 0 ;

95 num_mismatches = 0 ;

96 num_matches = 0 ;

97 f r e e = 0 ;

98 e n d f u n c t i o n
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99

100 v i r t u a l f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

101 s u p e r . b u i l d _ p h a s e ( phase ) ;

102 void ’ ( uvm_resource_db #( i n t f _ v i f ) : : read_by_name ( . scope ( " i f s "

) ,

103 . name ( " i n t f _ v i f " ) , . v a l ( v i f ) ) ) ;

104 t r = i n _ s q r _ i t e m : : t y p e _ i d : : c r e a t e ( " t r " , t h i s ) ;

105 e n d f u n c t i o n

106

107 v i r t u a l f u n c t i o n s t r i n g ge t_ type_name ( ) ;

108 r e t u r n type_name ;

109 e n d f u n c t i o n

110

111 v i r t u a l f u n c t i o n i n t g e t _ w a t e r m a r k ( ) ;

112 wmfi le = $fopen ( " s r c / wate rmark . param " , " r " ) ;

113 wmst r ing = $ f s c a n f ( wmfile , "%d " , watermark ) ;

114 i f ( wate rmark == " " ) r e t u r n 0 ;

115 e l s e $ d i s p l a y ( " Running t o Watermark of : %d " , wate rmark ) ;

116 r e t u r n 1 ;

117 e n d f u n c t i o n

118

119 v i r t u a l t a s k r u n _ p h a s e ( uvm_phase phase ) ;

120 phase . r a i s e _ o b j e c t i o n ( t h i s ) ;

121 s u p e r . r u n _ p h a s e ( phase ) ;

122 f o r k
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123 c o m p a r e _ t r a n s a c t i o n s ( phase ) ;

124 end_sim ( phase ) ;

125 j o i n

126 e n d t a s k

127

128 v i r t u a l t a s k end_sim ( uvm_phase phase ) ;

129 @( e n d s i m u l a t i o n )

130 phase . d r o p _ o b j e c t i o n ( t h i s ) ;

131 e n d t a s k

132

133 v i r t u a l t a s k p u t ( o u t _ s q r _ i t e m t ) ;

134 exp . copy ( t ) ;

135 e n d t a s k

136

137 v i r t u a l f u n c t i o n b i t t r y _ p u t ( o u t _ s q r _ i t e m t ) ;

138 exp . copy ( t ) ;

139 r e t u r n 1 ;

140 e n d f u n c t i o n

141

142 v i r t u a l f u n c t i o n b i t c a n _ p u t ( ) ;

143 r e t u r n f r e e ;

144 e n d f u n c t i o n

145

146 v i r t u a l t a s k c o m p a r e _ t r a n s a c t i o n s ( uvm_phase phase ) ;

147 a1 : a s s e r t ( g e t _ w a t e r m a r k ( ) == 1) ;
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148 s t a r t _ t i m e = g e t _ t i m e ( ) ;

149 w a i t ( v i f . r e s e t === 1) ;

150 @( negedge v i f . r e s e t ) ;

151

152 −> b e g i n _ d e l a y ;

153 do b e g i n

154 @( negedge v i f . c l k ) ;

155 c o u n t ++;

156 end w h i l e ( c o u n t != 6) ;

157 −> e n d _ d e l a y ;

158

159 f o r e v e r b e g i n

160 @( negedge v i f . c l k ) ;

161 i f ( exp .WAn !== v i f .WAn) b e g i n

162 num_mismatches ++;

163 uvm_repo r t_warn ing ( ge t_ type_name ( ) , $ s f o r m a t f ( " Outpu t

Mismatch RM: %h DUT: %h (% f mismatches ) " , exp .WAn, v i f .

WAn, num_mismatches ) ,UVM_NONE) ;

164 end

165 e l s e b e g i n

166 / / u v m _ r e p o r t _ i n f o ( ge t_ type_name ( ) , $ s f o r m a t f ( " Outpu t

match RM: %h DUT: %h (% f mismatches ) " , exp .WAn, v i f .WAn

, num_mismatches ) ,UVM_NONE) ;

167 num_matches ++;

168 end
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169 cov_ou t . sample ( ) ;

170 @( negedge v i f . c l k ) ;

171 −> compared ;

172

173 / / Uncomment f o r Coverage−Based f u n c t i o n a l i t y i n s t e a d o f

Watermark

174 / *

175 i f ( ( ( num_matches + num_mismatches ) % 10000) == 0) b e g i n

176 $ d i s p l a y ("%d Runs " , num_matches + num_mismatches ) ;

177 i f ( $ g e t _ c o v e r a g e ( ) >= 100) b e g i n

178 −> e n d s i m u l a t i o n ;

179 end

180 end

181 * /

182 / / Uncomment f o r Watermark−Based F u n c t i o n a l i t y i n s t e a d o f

Coverage

183 / / / *

184 i f ( ( num_matches + num_mismatches ) == watermark ) b e g i n

185 −> e n d s i m u l a t i o n ;

186 end

187 / / * /

188

189 end

190 e n d t a s k

191
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192 f u n c t i o n vo id r e p o r t _ p h a s e ( uvm_phase phase ) ;

193 $ d i s p l a y ( " S i m u l a t i o n Ended . Number o f T e s t s : %d " ,

num_matches + num_mismatches ) ;

194 $ d i s p l a y ( " T o t a l Coverage : %.2 f " , $ g e t _ c o v e r a g e ( ) ) ;

195 $ d i s p l a y ( "Num P a s s e s : %d \ nNum F a i l s : %d " , num_matches ,

num_mismatches ) ;

196 r u n _ t i m e = g e t _ t i m e ( ) − s t a r t _ t i m e ;

197 h r s = r u n _ t i m e / 3600 ;

198 min = ( r u n _ t i m e − ( h r s *3600) ) / 6 0 ;

199 s e c = ( r u n _ t i m e − ( h r s *3600) − ( min *60) ) ;

200 $ d i s p l a y ( " Run Time : %d Hrs %d Min %d Sec " , h rs , min , s e c ) ;

201 g e n e r a t e _ r e p o r t ( num_matches , num_mismatches , watermark , 0 , 0 , 0 ,

run_ t ime , $ g e t _ c o v e r a g e ( ) ) ;

202 e m a i l _ r e p o r t ( ) ;

203 e n d f u n c t i o n

204

205 e n d c l a s s
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I.9 Agent

1 c l a s s a g e n t e x t e n d s uvm_agent ;

2 s e q u e n c e r s q r ;

3 d r i v e r dvr ;

4 m o n i t o r # ( o u t _ s q r _ i t e m ) mtr ;

5

6 uvm_put_por t # ( i n _ s q r _ i t e m ) i c p ;

7

8 ‘ u v m _ c o m p o n e n t _ u t i l s ( a g e n t )

9

10 f u n c t i o n new ( s t r i n g name = " a g e n t " , uvm_component p a r e n t =

n u l l ) ;

11 s u p e r . new ( name , p a r e n t ) ;

12 i c p = new ( " i c p " , t h i s ) ;

13 e n d f u n c t i o n

14

15 v i r t u a l f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

16 s u p e r . b u i l d _ p h a s e ( phase ) ;

17 s q r = s e q u e n c e r : : t y p e _ i d : : c r e a t e ( " s q r " , t h i s ) ;

18 dvr = d r i v e r : : t y p e _ i d : : c r e a t e ( " dvr " , t h i s ) ;

19 mtr = m o n i t o r # ( o u t _ s q r _ i t e m ) : : t y p e _ i d : : c r e a t e ( " mtr " , t h i s ) ;

20 e n d f u n c t i o n

21

22 v i r t u a l f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;



I.9 Agent I-31

23 s u p e r . c o n n e c t _ p h a s e ( phase ) ;

24 dvr . i c p . c o n n e c t ( i c p ) ;

25 dvr . s e q _ i t e m _ p o r t . c o n n e c t ( s q r . s e q _ i t e m _ e x p o r t ) ;

26 e n d f u n c t i o n

27

28 e n d c l a s s
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I.10 Environment

1 c l a s s env e x t e n d s uvm_env ;

2

3 a g e n t ms t r ;

4 refmod rm ;

5 u v m _ t l m _ a n a l y s i s _ f i f o # ( i n _ s q r _ i t e m ) to_rm ;

6

7 ‘ u v m _ c o m p o n e n t _ u t i l s ( env )

8

9 f u n c t i o n new ( s t r i n g name , uvm_component p a r e n t = n u l l ) ;

10 s u p e r . new ( name , p a r e n t ) ;

11 to_rm = new ( " to_rm " , t h i s ) ;

12 e n d f u n c t i o n

13

14 v i r t u a l f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

15 s u p e r . b u i l d _ p h a s e ( phase ) ;

16 ms t r = a g e n t : : t y p e _ i d : : c r e a t e ( " ms t r " , t h i s ) ;

17 rm = refmod : : t y p e _ i d : : c r e a t e ( " rm " , t h i s ) ;

18 e n d f u n c t i o n

19

20 v i r t u a l f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

21 s u p e r . c o n n e c t _ p h a s e ( phase ) ;

22 / / Sequence r t o Ref Mod FIFO

23 ms t r . i c p . c o n n e c t ( to_rm . p u t _ e x p o r t ) ;
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24

25 / / Ref Mod FIFO t o Ref Mod

26 rm . i n . c o n n e c t ( to_rm . g e t _ e x p o r t ) ;

27

28 / / Ref Mod t o Moni to r

29 rm . o u t . c o n n e c t ( ms t r . mtr . from_rm ) ;

30 e n d f u n c t i o n

31

32 v i r t u a l f u n c t i o n vo id e n d _ o f _ e l a b o r a t i o n _ p h a s e ( uvm_phase

phase ) ;

33 s u p e r . e n d _ o f _ e l a b o r a t i o n _ p h a s e ( phase ) ;

34 e n d f u n c t i o n

35

36 v i r t u a l f u n c t i o n vo id r e p o r t _ p h a s e ( uvm_phase phase ) ;

37 s u p e r . r e p o r t _ p h a s e ( phase ) ;

38 ‘uvm_info ( ge t_ type_name ( ) , $ s f o r m a t f ( " R e p o r t i n g Matched %0d

" , ms t r . mtr . num_matches ) ,UVM_NONE)

39 i f ( ms t r . mtr . num_mismatches ) b e g i n

40 ‘ u v m _ e r r o r ( ge t_ type_name ( ) , $ s f o r m a t f ( "Saw %0d mismatched

sample s " , ms t r . mtr . num_mismatches ) )

41 end

42 e n d f u n c t i o n

43

44 e n d c l a s s



I.11 Test I-34

I.11 Test

1 c l a s s FMULT_test e x t e n d s u v m _ t e s t ;

2 env env_h ;

3 s e q _ i n s q r _ h ;

4 ‘ u v m _ c o m p o n e n t _ u t i l s ( FMULT_test )

5

6 f u n c t i o n new ( s t r i n g name , uvm_component p a r e n t = n u l l ) ;

7 s u p e r . new ( name , p a r e n t ) ;

8 e n d f u n c t i o n

9

10 v i r t u a l f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

11 s u p e r . b u i l d _ p h a s e ( phase ) ;

12 env_h = env : : t y p e _ i d : : c r e a t e ( " env_h " , t h i s ) ;

13 s q r _ h = s e q _ i n : : t y p e _ i d : : c r e a t e ( " s q r _ h " , t h i s ) ;

14 e n d f u n c t i o n

15

16 t a s k r u n _ p h a s e ( uvm_phase phase ) ;

17 s q r _ h . s t a r t ( env_h . ms t r . s q r ) ;

18 e n d t a s k

19

20 e n d c l a s s
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I.12 Top

1

2 ‘ i n c l u d e " uvm_macros . svh "

3 ‘ i n c l u d e " i n t f . sv "

4

5 ‘ i n c l u d e "FMULT_pkg . sv "

6

7

8 module t e s t ;

9

10 i m p o r t uvm_pkg : : * ;

11 i m p o r t FMULT_pkg : : * ;

12

13 l o g i c c l k ;

14

15 i n t f v i f ( c l k ) ;

16

17 i n i t i a l b e g i n

18 c l k = 0 ;

19 v i f . r e s e t = 0 ;

20 end

21

22 a lways #5 c l k = ~ c l k ;

23
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24 i n i t i a l b e g i n

25 $ t i m e f o r m a t ( −9 ,2 , " ns " , 1 6 ) ;

26 ‘ i f d e f SDFSCAN

27 $ s d f _ a n n o t a t e ( " s d f / FMULT_tsmc18_scan . s d f " , t e s t . t o p ) ;

28 ‘ e n d i f

29 uvm_resource_db #( i n t f _ v i f ) : : s e t ( . s cope ( " i f s " ) , . name ( "

i n t f _ v i f " ) , . v a l ( v i f ) ) ;

30 $se t_cove rage_db_name ( "FMULT" ) ;

31 r u n _ t e s t ( " FMULT_test " ) ;

32 end

33

34 FMULT t o p ( v i f . r e s e t ,

35 c lk ,

36 v i f . s can_ in0 ,

37 v i f . scan_en ,

38 v i f . t e s t_mode ,

39 v i f . s can_ou t0 ,

40 v i f . An ,

41 v i f . SRn ,

42 v i f .WAn) ;

43

44 endmodule
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