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Abstract

The paper will discuss the implementation of a novel system using a black box to make the overs-

peeding ticketing system more robust. The system will provide a physical proof of the drivers

driving statistics. The system consist of three parts. First being a black box implementation

using a raspberry pi 3b+ on the drivers side. It will track the current speed of the car via OBD-ii

port with timestamp. Second being IOT device on the sheriff’s side which can fetch the speed

information for past 20 minutes (speed information before vehicle came to compelete stantstill)

from the black box and push it to the cloud. And the third part is cloud infrastructure which

will receive the information from all the IoT devices and store in a S3 bucket. The sheriff can

see the visualization of this data w.r.t. time on IoT device. The system will help sheriff make

much informed decision as they will have past driving statistics of the driver. This will also

help eliminate the corner cases such as over-speeding ticket when changing lanes or overtaking

a vehicle.
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Chapter 1

Introduction

’Every once in a while, a new technology, an old problem and a big idea turn in to innovation.’

- Dean Kamen

National Highway Traffic and Safety Administration or more commonly known as NHTSA

is a federal agency of the US state government. The agency did a survey in 2018 to estimate the

speed for all types of motor vehicles on freeways, arterial highways, and collector roads across

the United States. At 677 sites speed of close to 12 million vehicles were sampled across the

united states. The survey [1] mentions that "Overall, speeds of free-flow traffic on freeways

averaged 70.4 mph and were approximately 14 mph higher than on major arterials, which at

56.4 mph were in turn about 7 mph higher than the mean speed of 49.7 mph on minor arterials

and collector roads. Most traffic exceeded the speed limits. Sixty-eight percent of the traffic

on limited-access roads, about 56 percent of the traffic on arterials, and about 58 percent of the

traffic on collectors exceeded the speed limit. About 16- to 19 percent of traffic exceeded the

speed limit by 10 mph or more on freeways, arterials, and collector roads. While speeds of most

vehicle size classes remained constant since 2009, the longest truck class (80-100 ft.) showed

a 2 mph increase on limited-access highways." The results were almost the same in the survey
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done in 2015 [2].

This survey helps to understand the driving trend on the roads. In most cases, the vehicles

traveling on the highways or the minor arterials travel at a considerably higher speed than the

assigned limit. A thing to observe here is that drivers try to maintain the speed the vehicle with

the flow of traffic. Going slow or too fast may result in a ticket. So, as the speed of the traffic

flow itself is high, anyone trying to maintain that traffic speed is bound to be above the speed

limit. Thus, it is not fair to the ticket only a few drivers for over-speeding. This also means

that the over-speeding ticket citation is more of a relative process than absolute. There are cases

where the drivers are let go with a warning or sometimes given a ticket for going a mere of 1

mph above the speed limit. The idea of this project is to bring in the robustness to the decision

making the process. This is done by giving the sheriff a tool to identify the type of driver. If the

sheriff has proof of speed statistics over a certain amount of period about the driver in question,

he/she can identify whether the driver is aggressive or a good driver and then take the decision on

the citation. This data will also be available in the judicial system, in case the driver decides to

fight the ticket in the court. This will also provide as a second check before anyone being given

an over-speeding citation.

In this project, a system is developed to address and fix these issues using the currently

available technology. In this project, a raspberry pi 3b+ is used to implement a black box. A

black box will always be present in the car and will record the actual speed of the vehicle along

with the time stamp via OBD-ii port. The speed is sampled at one sample per second. Another

raspberry pi 3b is used to implement an IoT device. This IoT device will be present with the

sheriff. The IoT device will request the speed reading from the car for the past 20 minutes (1200

data points) over the Bluetooth. This data is then pushed to the secure cloud and can be accessed

on a website or by a tool in real-time for the particular vehicle in focus. In this project, a tool is

implemented to fetch the data from a cloud and plot it on a graph with clear, distinct speed limit
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of the car. The data fetched from the car is used to verify the speed of the vehicle in question.

Thus, reducing the human error of misidentifying vehicle. Such a mechanism will help sheriff

make a much-informed decision as he/she will have drivers speed statistics over a period of time,

helping them to identify if the driver is aggressive or not and then give them a ticket.

One more advantage of this system is that as the data will be present in the cloud and anyone

in the judiciary system can access it. So, in case the driver is given an over-speeding ticket and

decides to fight it. He/she can have proof to present in the court. Hence, making the process

more robust. In this system, the decision is not solely dependent on judgment on a single person

but multiple cross-verification supported by proof.

1.1 Organization

• Chapter 2 discusses the motivation for the project, discussion about the current speeding

violation rules and research, and systems available to tackle the problem so far.

• Chapter 3 discusses overall system architecture in detail. It will cover various components

used, why they were used? Cost of the system etc.

• Chapter 4 discuss various protocols used such as CAN, BLE, MQTT. It will cover the brief

description and mode in which they are used and a few important specifications.

• Chapter 5 discusses the various method in which all the scripts were tested individually.

The difficulty faced during the project integration and the comparison between the actual

and expected output.

• Chapter 6 discusses the future work and conclusion of the project.



Chapter 2

Bibliographic Research

The over-speeding ticket is one of the most common traffic citations given in the United States.

According to the statistics, every year, close to 34 million speeding tickets are issued. The United

States has close to 227 million [3] licensed drivers. This means that every year, one in every six

drivers receives an over-speeding ticket. These numbers are on a higher side. So, does the United

States have so many drivers who willingly Overspeed? The answer is no. Let’s see the bigger

picture. Any traffic citation (in this case, over-speeding ticket) can result in a fine and increase

in driver’s insurance rate. Thus, anyone breaking the traffic law knowing the consequences is

highly unlikely. The problem here is the way over-speeding vehicles are identified. Currently, a

handheld RADAR or a LIDAR gun (most commonly known as speed gun) is used to measure the

speed of the car [4]. The gun is pointed at the target vehicle number plate to measure its speed.

Using speed gun has few disadvantages:

• The gun has to be held with steady hands.

• There are chances that the sheriff may issue a ticket to the wrong vehicle.

• RADAR reading is affected by weather conditions and the color of the car/number plate.
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Moreover, the major drawback of the current Overspeed ticketing system is that the driver does

not have proof to counter the sheriff’s claim, in case he/she is innocent. Thus, making him/her

vulnerable if they decide to fight the ticket in the court.

In the past year, three over-speeding tickets were given to someone or the other I know.

Although sure that they were not over-speeding, two of them decided to pay the fine in upwards

of $240 reluctantly. They decided to do pay the fine because the area where the citation was

given to them was around one to one and a half hours away from the place they stay. Fighting the

ticket meant them to travel back to that particular county court where the citation was given. If

the sheriff who gave them the citation is not present, then it meant they had to travel back again

for the next trial. Thus, in order to avoid the hassle, they ended up paying up for the tickets. The

third person decided to fight the ticket. The person traveled to county court thrice, and the sheriff

who gave them the citation never showed up in the court once. This resulted in the judge let go

of the ticket. As it can be observed from these incident fighting the over speed ticket is a tedious

process and also even if the driver is sure that he/she was not over speeding they end up paying

the fine in order to save time and lack of proof. After discussing the issue with them, I realized

the gaps in the current system and tried to fill them using this project. But before going in deep

with the issue first, we will discuss current over-speeding vehicle identification mechanisms and

loopholes.
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Figure 2.1: View from the Lidar/Radar gun

A LIDAR or RADAR guns are used by the sheriff to identify the over-speed vehicle. The

gun can be handheld or car-mounted. RADAR guns use the Doppler effect [4] to identify the

over-speeding vehicle. The gun is pointed at the vehicle in question, and it will transmit a radio

wave. This radio wave will bounce back from the vehicle and is received by the gun [5]. Due to

the Doppler effect, the frequency of the transmitted wave will be different, and comparing both

of them will help identify the speed of the vehicle. These guns suffer from a problem of beam

divergence [5], which makes it difficult to which an individual vehicle cannot be targeted. Thus,

the operator has to be trained and certified before using such guns [6]. To avoid such a problem,

a LIDAR gun is used [7]. It does not suffer from beam divergence problems, and the speed of the
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individual vehicle can be determined. The speed identification using both the guns takes around

half a seconds. The gun may have a screen or viewfinder which have a pointer to focus on the

vehicle in question. It displays the speed of the vehicle on the screen. A sample view is shown

in Figure 2.1. From the figure, it is evident that if the traffic is less than it is easy to identify the

over-speeding vehicle. But with a high volume of the vehicle on the road, there are chances of

misidentification of the vehicle. Also, a slight movement when the gun is pointed at a vehicle

in question may result in the wrong vehicle identification; thus, although the LIDAR or RADAR

gun is an excellent method to identify the over-speeding vehicle with skilled hands and eyes but

not the most accurate one.

Whenever any individual is identified for over-speeding, no proof or cross verification method

is present at either party i.e., with the sheriff or the driver. Hence, in the current system, there is

no method available to verify if the vehicle in question is misidentified. This is a big problem.

Because if the driver wants to fight the ticket in the court, he/she does not have proof to defend

there claim. And during the trial, it becomes more of sheriff’s word to drivers word. Sheriff

being a part of the judicial system, will always be given more emphasis. Also, the sheriff always

assumes that he/she has identified the vehicle correctly as no cross-verification is present. In such

a scenario driver is entirely at a losing end of the bargain. Hence, we see that the current system

does some dangerous loopholes and not robust.

In this project, a system is designed to fill these loopholes. As discussed in the introduction,

a black box will provide the speed statistics of the driver to the sheriff. The sheriff can fetch the

data over IoT device push it on to a cloud so that it is available to anyone in the judicial system.

Data is represented to the sheriff in the simple graph with clear distinction in speed limits. A

sample image is shown in Figure 3.7. This will just make sure that the decision, accusation, and

citation are crosschecked, making the entire process more robust.



Chapter 3

System Overview

Figure 3.1: Architecture

The system is divided into three separate sections, as shown in Figure 3.1 viz Black Box, IoT

Device, and AWS Environment. A black box will always be present in the car. It is implemented

using a CAN shield (PiCAN2) and a Raspberry pi 3b+. Raspberry pi does not have a CAN

interface. So, a CAN shield is used as a gateway module to interface CAN protocol from OBD-ii

port and the SPI protocol of the Raspberry pi 3b+. This is discussed in Subsection 3.1.3. The
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Raspberry pi 3b+ is programmed to fetch the speed, timestamp, and accelerator pedal position

data from OBD-ii port and store it in a log file. IoT devices can request this data from a black-box

whenever necessary. A black box will read the data only when the car is in motion. The vehicle

data is sampled at one sample per second. A black box will share only the latest 1200 samples

of vehicle data with the IoT device i.e., past 20 minutes before the vehicle came to a standstill.

IoT devices will always be present with the sheriff. IoT device is built using a Raspberry pi

3b and a Raspberry pi screen. It is programmed to initiate the request and fetch data from the

black box over the Bluetooth. It will then send this data to AWS IoT Core over the internet using

the MQTT protocol. MQTT is an abbreviation for Message Queuing Telemetry Transport. It is

a lightweight messaging protocol designed specifically for communication between sensors, IoT

devices, or mobile devices. This protocol is discussed in detailed in Section 4.4. The IoT device

acts as an MQTT protocol publisher, and AWS IoT core acts as an MQTT broker. The AWS IoT

core is used as it can receive data from multiple IoT devices. It then sends this data to an AWS

S3 bucket. AWS S3 bucket is used to store vehicle data. Each message received from AWS IoT

core is stored as a file with a user-assigned device-specific unique name in the AWS S3 bucket.

This helps to maintain the files from different vehicles. The IoT device then downloads the data

from the AWS S3 bucket and will make a plot of speed and gas pedal position versus time. This

plot contains vehicle data for the past 20 minutes before it came to a standstill. A thing to note is

that none of the user data is stored locally on the device; this is done to protect the user’s privacy.
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3.1 Black Box

Figure 3.2: Black Box Side Architecture

Figure 3.2 shows the black box architecture. The CAN shield sits on the Raspberry pi 3b+.

The connection is established using a 40 pin on board male-female connectors on Raspberry pi

and CAN shield, respectively. The CAN shield has a DB9 female connector present on the board.

Every car has an OBD-ii port as mandated by the California Air Resources Board or generally

known as CARB. The details about the OBD-ii port will be discussed in Section 4.1. An OBD-ii

to DB9 connector is used to connect CAN shield to the car. A thing to note is that the black box

is powered from the car itself. OBD-ii port provides a 12V supply, and the CAN shield has a

switch-mode power supply, which will convert this 12V to 5V and draws a current up to 1 Amp.
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3.1.1 CAN Shield

Figure 3.3: CAN Shield

For CAN shield, a PiCAN2 with Switch Mode Power Supply board from SK Pang electronics

is used. A simple CAN shield outline is shown in Figure 3.3. The board consists of MCP 2515,

a standalone CAN controller with SPI interface, and MCP 2551 CAN transceiver. Both the

chips are compatible with ISO 11898 standard set for CAN protocol. A CAN controller requires

CAN transceiver to convert received transmission signal to digital signal and vice versa when

sending it over a CAN channel. MCP 2551 suffice this need on the PiCAN2 board. MCP 2551

is compatible with 12V and 24V systems. In this project, we use a 12V system drawn from the

OBD-ii port [8]. It can handle up to 1 Mbps of data [9]. MCP 2551 can be operated in 3 different
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modes viz High Speed, Slope Control, and Stand-By Mode [9, 10]. As the name indicates, the

high-speed mode and standby mode are used for high-speed data transfer and sleep, respectively.

The mode can be selected using Rs pin on the chip. On the PiCAN2 board, the MCP 2551 chip

is used in Slope Control mode [10]. This mode can be achieved by connecting a resistor between

the Rs Pin and the ground. This mode is used to keep EMI emissions low by restricting the rise

time and fall time at both the CANL and CANH pin low.

MCP 2515 standalone CAN controller is used for transmitting and receiving standard/ex-

tended data frames and remote frames. A CAN controller acts as a gateway to connect CAN

protocol from the OBD-ii port to the SPI protocol on Raspberry pi 3b+ side. CAN controller

consists of three main blocks [11]:

• CAN Module: It consists of a CAN engine block, Tx and Rx buffers, masks, and filters

block. Masks and filters block is used to remove unwanted messages and reduce host

(Raspberry pi in this case) overheads. The CAN engine block is used for reception and

transmission of the message. To initiate message transmission, appropriate control regis-

ters and buffers are loaded. Control registers initiate transmission via SPI interface or by

using transmit enable pins. Received CAN message is checked for errors and then verified

against the filter values and then is transferred to the next buffer.

• SPI Interface Engine: SPI interface is used to connect the micro-controller(Raspberry pi

in this case). The read and write to all the registers is done using a standard and specialized

SPI commands.

• Control Logic: This block is used to provide setup and sequential operation of the other

blocks in order to pass the information. A multi-purpose interrupt pin is available to indi-

cate the reception of a valid message into the buffer. There are also three pins available for

transmission of a message from one of the three transmit registers.
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For this project, CAN and SPI are used at 500Kbps. This is a standard OBD-ii CAN speed for

most of the vehicles available in the market.

3.1.2 Raspberry Pi 3b+

Raspberry Pi 3b+ is used as it is one of the most affordable powerful computers available in the

market. Raspberry Pi 3b+ has 1.2 GHz 64-bit quad-core processor, an onboard IEEE 802.11n

Wi-Fi, 5.50 Bluetooth, and four USB ports. For black-box Bluetooth and SPI interface are the

only two peripherals used. Raspberry pi uses CAN shield with an SPI interface to fetch the data

from the OBD-ii port over CAN protocol whereas Bluetooth is used to transmit the vehicle data

to the IoT device. For Bluetooth PyBluez and for CAN PyCAN, Python package is used. The

details of the Bluetooth is discussed in Section 4.3. A Python script is used to perform the fetch

and transfer of the vehicle data from the car and to IoT devices, respectively. The settings needed

for the interface of CAN shield and Raspberry pi is discussed in the next Subsection 3.1.3.

3.1.3 Interface between CAN Shield and Raspberry Pi 3b+

In Raspberry pi, a device tree is used to enable the peripherals. So in order to enable the SPI

interface, dtparam is used. In second-line dtoverlay are used to set the parameters for the

peripherals that should be enabled. In this case, MCP2515 is connected to the SPI interface.

Also, the chip has an 8 MHz quartz, so the frequency of the oscillator has to be twice the crystal,

which is 16 MHz [9]. GPIO pin 25 is connected to the interrupt pin of MCP2515, hence interrupt

= 25. On the Raspberry pi side, the BCM 2835 SPI controller is used. It is enabled in the third

line.



3.2 IoT Device 14

Figure 3.4: Configuration for SPI Interface

In order to interface CAN shield and Raspberry pi three lines shown in the Figure 3.4 are

added to the config.txt file[8].

3.2 IoT Device

Figure 3.5: IoT Side Architecture

The architecture on the IoT side is shown in Figure 3.5. It consists of two sections a Raspberry

pi 3b and AWS IoT and Cloud infrastructure. A Python script is implemented on Raspberry pi,

which will perform tasks such as fetching of the vehicle data from the black box, sending this

data to the AWS infrastructure over MQTT, fetching data from the cloud and creating the plot of

the data.
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3.2.1 Raspberry Pi

A Raspberry pi 3b and the Raspberry pi screen is used as an IoT device. Bluetooth and Wi-Fi

are the peripherals used from the Raspberry pi. Python package PyBluez, AWS IoT SDK, AWS

Boto, and Boto3 are also installed. PyBluez is used for Bluetooth; AWS IoT SDK is used to set

up and configures MQTT protocol, whereas AWS Boto and Boto3 are used to fetch the vehicle

data files from AWS S3 bucket. Three different files with encryption keys are used for secure

communication between Raspberry pi and AWS IoT Core. The generation of these keys and

using them will be discussed in Appendix A I. IoT device will initiate the request for vehicle

data i.e., speed, timestamp, and gas pedal position from the black box over the Bluetooth. It will

fetch the latest 1200 data points and then send it to AWS IoT Core over MQTT protocol. IoT

device then will download all the vehicle data from the cloud and create a speed and gas pedal

position versus time plot. Both these tasks are done using a single Python script. A thing to note

here is that once the data is sent to AWS IoT Core, it is instantaneously sent AWS S3 bucket.

3.2.2 AWS Infrastructure

Following are the components of used from AWS [12]:

• AWS IoT Thing: A thing is a block that will communicate directly with the sheriff’s IoT

device. The communication between AWS IoT Thing and IoT Device is encrypted. A

private and RootCA1 key and certificate are required on both the ends for reception and

transmission of the messages. These keys are unique for each IoT thing. Thus, for multiple

IoT devices, multiple IoT things should be created, and each pair are having its own unique

set of keys. Keys are created by AWS IoT Core.

• AWS Policy: A policy is used to enable connection, subscription, reception, and publish-

ing for the IoT thing. These terms are MQTT protocol specific and will be discussed in
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Section 4.4. The same policy can be attached to multiple IoT things.

• AWS Rule: A rule is used to extract a specific information form the received message for

a particular topic. As seen in Figure fig:Rule-created-for, the information extracted for the

topic Vehicle-Data is VIN number, Time Stamp, and Gas Pedal Position. Similar to the

policy, the same rule can be attached to multiple IoT things.

Figure 3.6: Rule created for the IoT thing

• AWS Action: Once the data is extracted from the message we have to store in the AWS

S3 bucket. This step is called the action. Each message is stored in a separate JSON file

with the current time appended to its name. The time is in epoch format.

• AWS S3 Bucket: As the name suggests AWS S3 bucket is used to store the information

from all the IoT devices.

The stepwise configuration for all the blocks will be discussed in detail in Appendix A I.
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3.2.3 Data Representation

Figure 3.7: Final Speed Plot

A tool is developed using Python AWS Boto and Boto3 package. These packages are used to

access the AWS S3 bucket. The tool downloads all the JSON files, extract the vehicle data, and

plot speed, the gas pedal position with respect to time, as shown in Figure 3.7. The tool scales

the 1200 points data to 120 points by averaging the speed for the 10 points. A similar is done

for the gas pedal position. As the vehicle movement is not significant in just 10 seconds, so the

average of the speed can be considered. Also, the code has a functionality where users can make

a plot of all the 1200 points instead of 120 points if need be.

Figure 3.7 shows the final speed plot. As we can see plot has the VIN number at the top to

identify the vehicle, the date when the incident occurred, and the time span for which the data
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is being plotted. The vehicle speed and gas pedal position have a resolution of 1. The gas pedal

position is in percentage. So, it can go from 0 to a maximum of 100. The gas pedal position

is used to estimate the stopping distance since the acceleration applied was zero. The graph

has separate sections to indicate the various speed limit on roads such as city roads, interstate

highways, and national highways. Such type of clear distinction helps the sheriff to identify the

violation of speed limit by the driver if any.

3.3 Software Flow

This section will explain the software/Python scripts flow for the project. The software is divided

in two Python scripts. One runs on the Raspberry pi of the black box and the second one on

Raspberry pi of IoT device. Next four section will discuss in details of the working these Python

scripts.

3.3.1 Software Flow for Black Box Side

As mentioned in the Section 3 the black box side has, Raspberry pi has two Python packages

installed on it viz PyCAN and PyBluez. OBD-ii port uses CAN protocol for communication.

PyCAN package in Python provides built-in API for sending and receiving CAN messages. It

also provides the user with ease of CAN message configuration such as arbitration id, data, data

length code, etc. One more thing to note is the OBD-ii Parameter ID’s or more commonly know

as OBD-ii PID’s or just PID’s. PID’s are standardized code set by SAE (Society of Automo-

tive Engineer). PID’s code is used to request specific information such as vehicle speed, engine

coolant temperature, gas pedal position, etc. from the car. The details about the PID’s is dis-

cussed in Section 4.1.

PyBluez [13] provides simple implementation for Bluetooth communication. In this project,
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a serial port profile with a client-server communication is used. PyBluez provides with a simple

client-server communication example. The Bluetooth communication developed for this project

is based on those examples. The details about this protocol and module are discussed in Section

4.3.
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Figure 3.8: Software flowchart for Black Box Part-I
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Figure 3.9: Software flowchart for Black Box Part-II
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Figure 3.8 and 3.9 shows the flow chart for the software in the Python script, developed for

black box Raspberry pi. As we can see from the image there are three threads being used. The

main thread, a CAN receive thread and a CAN transmit thread. The detailed working of the

threads are given below:

• Main Thread: This thread establishes a connection between the black box and the car via

CAN shield. If the connection is successful, it starts CAN receive thread and CAN transmit

thread. If the connection fails, then it re-tries to establish the connection. A message queue

is created to store the received messages from the car in CAN receive thread. The original

thread checks if a message is present in the queue. In order to check if the message is

valid, the arbitration id of the received CAN message is checked. It has to be 0x7E8 [14].

The received values form the car are raw data. Thus, they are converted to readable format

i.e., and the timestamp is epoch for so it is converted standard HH:MM:SS format, the

vehicle speed is converted to miles per hour and gas pedal position to a percentage from 0

to 100. This data is written into the log file only if the vehicle is in motion. This is done in

order to avoid unnecessary repetitive data points. This mechanism is also used to trigger

the Bluetooth function. This function is discussed in a separate point later. Thus, the main

thread keeps tracking the vehicle data and write it to the log file if the vehicle is in the

motion. It also monitors the nearby sheriff’s device if the car is not in motion. This is done

to simulate that the vehicle is actually stopped by the cop for the over-speeding violation.

An important thing to note here is that the vehicle data is written in the JSON format into

the log file. This is done because of the AWS IoT core transfer of the data to the AWS S3

bucket in JSON format. The format of the data stored is given below:
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{"VIN": "1ZVHT84N265118896", "TimeStamp": 1568463191, "GasPedalPosition": 47,
"VehicleSpeed": 42}↪→

• CAN Transmit Thread: This thread requests the gas pedal position and vehicle speed

for the current timestamp. The request is sent per second. The reason for the selection

of this sample rate is discussed in Section 3.4. To request data from car an arbitration id

0x7DF [13] is sent along with PID’s (type of data to be requested) in the CAN message.

For this project, we need three vehicle-specific data, VIN number, vehicle speed, and gas

pedal position. The PID’s for vehicle speed is 0x0D, and gas pedal position is 0x49 [14].

The timestamp is provided by default. The VIN number request from the vehicle is OEM

specific. The being used for testing the project did not provide with VIN number. So,

vehicle identification has been hardcoded. The details of the CAN transmit message re-

quest is discussed in Section sec: can. This thread runs continuously and keeps sending

the messages.

• CAN Receive Thread: This thread is used to collect the response from the car. The thread

will check for valid arbitration id i.e. 0x7DF [15]from the received message. It will then

store it in a message queue. The message from this queue is used by the main thread for

raw data conversion and storing it in the log file.

Figure 3.10 shows the software flow for the script of Bluetooth data transfer to the IoT device.

One thing to note is that both the black box and IoT devices are already paired manually. This

can be done by the script, as well. So whenever a Bluetooth function is called, it searches for

the nearest IoT device. As both the device are already paired, they will connect immediately.

Once the connection is established latest 1200 readings are read from the log file and sent to

the IoT device. A serial port profile is used in the client-server mode for Bluetooth communi-

cation. Bluetooth is discussed in detail in Section 4.3. The Bluetooth communication used is
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unidirectional. A black box acts as a client, whereas the IoT device acts as a server.

Figure 3.10: Bluetooth Transmit Function



3.3 Software Flow 25

3.3.2 Software Flow for IoT Device Side

As mentioned in the Section 3 IoT device, Raspberry pi has three Python packages installed on

it viz AWS IoT SDK, Boto, and Boto3. AWS IoT SDK is used to set up the MQTT protocol for

communication between the IoT devices and AWS IoT Core, whereas Boto and Boto3 [16] are

used to access the AWS S3 bucket. Both these packages provide various API’s, which helps to

simplify complex operations related to AWS infrastructure. WiFi and Bluetooth peripherals are

used on IoT devices. The IoT device is connected to WiFi manually. As mentioned in Subsection

3.3.1, both the IoT and black box are paired manually.
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Figure 3.11: IoT Device Main Function

The Figure 3.11 shows that the entire script is divided in to 5 functions and a Python script

used to plot the data from the cloud. The details of the functions are discussed below:

• aws_config(): This function is used to configure the MQTT protocol on the IoT device.
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A handle is created, which points to the AWS client connection. The settings for MQTT

protocol are configured to this handle. A thing to consider is that the handle is created

using AWS IoT SDK provided API, so this handle should all the configuration parameters

required to initiate the MQTT protocol. Once the handle is created and configured a host id

and port number of the AWS IoT Core is assigned. The host id differs as per the account.

It is present in the settings section of the AWS IoT core website under custom endpoint.

The port number for AWS IoT core always be the same for everyone. The port number for

AWS is 8883 [12]. For the secure communication between the IoT device and AWS IoT

core X.509, the cryptography standard is used by AWS. AWS IoT core generates 3 keys for

each IoT thing. The creation of the keys is discussed in detail in Appendix A I. These keys

have to present at both points of the communication in our case IoT device and AWS IoT

core. Other things to be configured are disconnect timeout time and operation time out.

Disconnection timeout means that if the IoT device and AWS IoT core are disconnected,

it will wait for 10 seconds to establish the new connection automatically. The code is set

to 10 seconds. Operation time out means if the send or reception of data is lost, then the

retransmission or reception is initiated after this time. In the code, it is set to 5 seconds.

• ble_fetch_data(): As both IoT devices and black boxes are already paired, the name of

both the devices is known. The IoT device starts the Bluetooth and starts the advertisement

of its device name and UUID number using a serial port profile. Whenever the black box

is in the vicinity of the IoT device, which is about 1 to 10 meters, both the device auto-

matically connects. Once the connection is established, the IoT device acts as a server and

requests the vehicle data from the black box. When all the 1200 data points are received,

the Bluetooth is disconnected. A socket model is used for Bluetooth implementation. If

there is any data loss i.e., a number of data points received are less than 1200 points,

and then a message is popped up, telling the sheriff to reinitiate the data transfer. All the
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received data is stored in a temporary array.

Figure 3.12: AWS IoT Core Software Configuration

• send_data_to_aws(): The flow for this function is shown in Figure f3.12. An AWS handle

is already created in aws_config() function. An API <awshandle>.connect() is used to
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connect to the AWS IoT core. Once the connection is established, the vehicle data received

from the black box sends to the AWS IoT core. When all the 1200 data points are sent,

the IoT device disconnects from the AWS IoT core. An API <awshandle>.disconnect() is

used for disconnection.

• clr_usr_data(): This function is used to delete all locally store user data. This is done to

protect users privacy.
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Figure 3.13: AWS S3 Bucket

• fetch_s3_data(): This function is used to fetch the data from the AWS S3 Bucket. A

bucket with the name “www.giotdata-east.com” is created in the AWS S3 bucket [16]. The

process of creating an AWS S3 bucket is mentioned in Appendix A I. In order to access
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this bucket using a script, an access key and secret key are required. These keys are created

in the AWS environment. The process to generate these keys is mentioned in Appendix A

chap: Guides. A handle is created for a connection to the AWS S3 bucket. The region,

access key, secret key, and the bucket name is assigned to this handle. The region used in

this project is US-East-1. One can use any region they want; it does not make a difference.

After the assignment and API <awsbuckethandle>.connect_to_region() is used to connect

the S3 bucket. After this connection is established, another API <awsbuckethandle>.list()

is used to fetch the count of the number of files present in the S3 bucket. Now the content

of each file is fetched using a API <awshandle>.get_contents_to_filename(). When all the

1200 JSON files are downloaded, the IoT device disconnects from the AWS S3 bucket.

• data_plot_v4.py: This file is executed from the main IoT device Python script. This script

reads all the 1200 JSON files and extract information viz VIN number, vehicle speed, gas

pedal position, and time stamp and store it in different arrays. The script also covert the

time stamp from epoch to HH:MM:SS. It then plots the graph for vehicle speed, gas pedal

position versus time stamp.

3.4 Key Consideration for the System Design and Compo-

nents

This section discusses reason to choose various components and design decision.

• Raspberry Pi 3b/3b+: Raspberry pi is one of the most affordable computers available on

the market. It is small and has many useful peripherals such as onboard WiFi, Bluetooth

4.2 and upwards, SPI Interface with speed up to 10MHz Ethernet, HDMI input, 4 USB

ports, etc. Raspberry pi used runs on Debian OS, which is free. Access and control of the
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peripherals are relatively easy using Python scripts. Many Python packages are available

to use these peripherals and easy integration of AWS infrastructure. As the OS used is

open source, the plethora of literature is available on the internet.

• CAN Shield: The reason to choose this board was its versatility and support form the

manufacturers. It is to easy interface to with the Raspberry pi and user manual guides user

in a stepwise manner to establish the connection. Users can test the setup of the CAN

shield and Raspberry pi by using a loopback functionality available. This can be done

without actually connecting it to the external CAN bus.

• AWS Infrastructure: AWS IoT Core can connect and fetch information from multiple

IoT devices. It has a very sophisticated GUI available along with an ample amount of

documentation and sample code provided by AWS.

• MQTT Protocol: MQTT is a lightweight, easy to implement, and secure protocol widely

used for IoT communication. AWS provides a package to implement and communicate

with its infrastructure over MQTT. This was one of the main reasons to choose this proto-

col.

• Bluetooth Protocol: Bluetooth is simple, secure, and easy to implement the wireless pro-

tocol. For the communication of two Bluetooth devices, both of them have to be paired and

authenticated. This makes sure that the data is not being transferred to any unauthorized

device. Also, Bluetooth devices are inexpensive, readily available in the car and market,

respectively.

• Sampling Rate: Human reaction time is a time elapsed after stimulus action until a re-

action/response occurs from a human. Numerous research has been done on this topic

and they estimate it to be around 2.3 seconds [17, 18]. Thus, the sampling rate has to be
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faster than human reaction time. Hence, the sampling rate of one second per second is

appropriate as it is at double than the human reaction time.

3.5 Cost Break-Down for the Project

Sr. No. Name of Equipment Quantity Cost ($)

1. Raspberry Pi 2 70

2. CAN Shield 1 59

3. OBD-ii to DB9 Cable 1 28

4. AWS S3 Storage (Variable) N/A 0.021/GB

5. AWS S3 Access (Variable) N/A 0.0125/GB

Total Cost 157+

Table 3.1: Overall Final System Cost

Sr. No. Name of Equipment Quantity Cost ($)

1. Raspberry Pi 1 35

2. CAN Shield 1 59

3. OBD-ii to DB9 Cable 1 28

Total Cost 122

Table 3.2: Cost to driver
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Sr. No. Name of Equipment Quantity Cost ($)

1. Raspberry Pi 1 35

2. Raspberry Pi Screen 1 60

3. AWS S3 Storage (Variable) N/A 0.021/GB

4 AWS S3 Access (Variable) N/A 0.0125/GB

Total Cost 35+

Table 3.3: Cost per Sheriff

Sr. No. Name of Equipment Quantity Cost ($)

1. Raspberry Pi 2 70

2. CAN Shield 1 59

3. OBD-ii to DB9 Cable 1 28

4. AWS S3 Storage (Variable) N/A 0.021/GB

5. AWS S3 Access (Variable) N/A 0.0125/GB

6. Raspberry Pi Screen 1 60

7. Raspberry Pi Kit 1 35

8. Raspberry Pi Keyboard 1 18

Total Cost 270+

Table 3.4: Overall Development Cost
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Protocols and Standards

4.1 OBD-ii Standard

Figure 4.1: OBD-ii Port and Pin description

OBD-ii port is mandated by the California Air Resources Board or generally known as

CARB, to be present in all the cars that are on the roads since 1996. The pin layout fo the

port is shown in Figure 4.1. It is generally present below the steering wheel in the cars. For this
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project, only CAN high CAN low, and Battery voltage lines are used. As the name suggests, the

port is used to fetch the diagnostic information about the vehicle’s health. This topic is vast and

not in scope for this project. We discuss only OBD-ii PID’s, which are used in the project. An

OBD-ii PID’s or OBD-ii Parameter Identifiers [19] is a set of commands that are sent to the car

via OBD-ii port form an external device. The device can be any laptop, computer, or specialized

device having software designed to communicate with the car over CAN. PID’s are code used to

request information about cars such as engine coolant temperature, vehicle speed, valve position.

For this project, the black box requests the gas pedal position, vehicle speed, and time stamp for

the same from the car. The data is requested in the specific format shown in Figure 4.2.

Figure 4.2: Format for PID request

A typical CAN data frame consists of 8 data bytes. Thus, we send 8 bytes of data. The first

byte indicates the number of bytes to be sent. As we are going to send only the type of service

and PID code, it is always set to 0x02. OBD-ii standard provides different services such as fetch

current data from the car, show diagnostic trouble codes, clear diagnostic trouble code. For this

project, we are using service 0x01, which is fetching the current data as we need a real-time

speed and gas pedal position. The third byte is the PID code. The PID code for speed and gas

pedal position is 0x0D and 0x49, respectively. All other bytes are set to zero. In a CAN frame,

an arbitration id needs to be set. An arbitration id is an address or the device id of an ECU

(Electronic Control Unit). For the PID request, this id is 0x7DF. A sample message request for

vehicle speed is 7DF 02 01 0D 00 00 00 00 00. A thing to note is that all the data sent is in
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hexadecimal format [14]. To such a request, the respective ECU responds with the same format

of CAN message, but only the arbitration id is different. As per the OBD-ii standard, any device

connected to OBD-ii port has an address or an arbitration id as 0x7E8. So in the script to check

if a valid message is received, this arbitration id is checked. The data received from the car is

in raw format that is a fixed point data. This data is converted into standard or readable data.

Received data is converted to miles per hour for speed and percentage for the gas pedal position.

The conversion formula [14] for speed is:

Speedmph =
1

1.609344 ∗ReceivedValue (4.1)

The conversion formula [14] for gas pedal position is:

GasPedalPosition% = 255
100 ∗ReceivedValue (4.2)

The received values are in hexadecimal. They are converted to decimal and than used in

formulas.

4.2 CAN

CAN is an abbreviation for Controller Area Network. It is a two-wire, multi-master slave,

broadcast protocol. It has two wire called CAN high and CAN low. All the nodes are connected

to these two lines, as shown in Figure 4.3. Any ECU can transmit the data if the bus is free. As

this is a broadcast protocol, all the ECU receives the message. All ECU checks for the arbitration

id of the message. Arbitration id is the address of the ECU for which the message is to send.

If the arbitration id matches, then the ECU accepts the message and responds. As mentioned in
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Figure 4.3: CAN network

Section 4.1, the arbitration id used for requesting the vehicle data is 0x7Df. So when black box

sends this arbitration id on to a CAN channel for data request. The CAN message is sent to all

the ECU in the car. The ECU, which is responsible for that particular data request, responds with

the data. OBD-ii port is like an open connection in the network where an external device can be

connected [20].

A typical CAN frame is shown in Figure 4.4. The CAN message used in this project is the

standard format. As PyCAN package [21] is used setting different fields in the message using

API is simple. Only the arbitration id and data field are set in the Python script everything

else such as DLC, CRC, RTR bit, etc. are taken care of by the PyCAN package and the CAN

controller on the CAN shield.

4.3 Bluetooth

Bluetooth is a wireless protocol. It uses the unlicensed ISM 2.4GHz wireless link to send and re-

ceive data [22]. It is a secure method of communication for short-range data transfer. It supports
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Figure 4.4: CAN frame format

up to 1Mbps of data transfer. Both the Raspberry pi used is Bluetooth 4.2 and upward compat-

ible. As per the Bluetooth standard, a specific profile needs to be used for communication. A

profile is a way in which data is shared between devices. In this project, the serial port profile is

used in client-server mode. A serial port profile means that the device sends or receives data from

the Bluetooth module over its UART interface. The method to activate the serial port profile on

Raspberry pi is discussed in Appendix A I. In a client-server model, a server can request data

from the client, and the client sends the data. The client-server communication is unidirectional.

Bidirectional communication can be used in this mode but is not advisable. A black box acts as a

client, and the IoT device acts as a server. A Bluetooth code is built on the sample code provided

in the PyBluez Python for the Raspberry pi. Another important thing to consider is the Universal

Unique Id or UUID and device address. A UUID can be a 16 or 128-bit unique id used by the

Bluetooth devices to identify the type of services and its attribute [23]. The UUID present in

the code is used from the client-server communication as the same profile is used. The device
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address is the physical address of the Bluetooth chip. It is like a MAC address for the Bluetooth

chip.

Figure 4.5: Bluetooth data exchange

Bluetooth profile works on the advertise and scan method. As shown in Figure 4.5. A server

advertises that it is available for connection, and the client scans for the available server devices.

Before the start of the data transfer, both the Bluetooth devices need to be paired [13]. This

is done manually, and the process is discussed in Appendix A I. Once the device is paired, the

Bluetooth on both the devices is turned on. The address of the assigned name of the Bluetooth

device is pair displayed on both the ends. As they are paired, the devices connect and start the

data transfer. The connection of both the devices and data transfer control is made using a Python

script. PyBluez does provide with very efficient API’s to do these operations.
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4.4 MQTT

Figure 4.6: MQTT network

Message Queueing Telemetry Text or commonly know as MQTT protocol. It is designed

for lightweight, secure communication between IoT devices, sensors or a mobile device [24].

The protocol is versatile and easy to implement. It runs on TCP/IP and works on publish and

subscribe model. In such models, the data is shared only amongst devices that are publishing

and subscribed to a particular topic. A topic can be considered as a filter used by communicating

devices before accepting the message [25]. A simple MQTT network representation is shown in

Figure 4.6. MQTT protocol has three main components:

• Publisher: It is a device that actually generates/sends the data. In this case, it will be IoT

devices. IoT device receives the data form the black box then converts it to a JSON format

and sends it to AWS IoT core.
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• Broker: It can be a device or software which receives the data from the publisher and

routes it to the subscriber. It acts as a gateway for the message. AWS IoT core acts as

an MQTT broker. It receives a message from all the IoT devices/publishers and separates

them as per the topic then pushes them to the AWS S3 bucket.

• Subscriber: It can be a device or software which receives the message and acts as an

endpoint for the message. In this case, it is an AWS S3 bucket. All the messages from

the MQTT broker/AWS IoT Core are stored in the JSON file with current epoch time

appended to its name. The message can be stored in any text format and any supported

text file format. The reason for choosing JSON was the ease of creation and extraction of

the data using the keywords/parameters.
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Tests and Results

5.1 Black Box Script Testing

The black box script was developed in parts.

5.1.1 CAN shield and Raspberry Pi 3b+ Interface Testing

• The first part was checking the interaction between Raspberry pi and CAN shield. The

CAN controller on the CAN shield has loopback functionality available on it. This func-

tionality sends loopback/send back any data it receives from the node(in this case, it is

Raspberry pi). For this testing, no black box i.e. CAN shield and Raspberry pi, is used

with the screen, keyboard, and a power supply.

• Before starting the testing the SPI is enabled and the PyCAN Python package is installed

on the Raspberry pi for the black box. Now in the terminal following lines of code is

entered to enable the loopback functionality and establish the connection with the CAN

shield:
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sudo /sbin/ip link set can0 up type can bitrate 500000 loopback on

• A cansend and candump file are provided by the SkPang electronics. http://www.skpang.

co.uk/dl/can-test_pi2.zip. These files are can be used to send and receive the data over can

respectively. To send the message following commands are used in terminal:

./cansend can0 7DF#1122334455667788

• In a separate terminal window used following command:

./candump can0 -n1

• One should receive the data same sent using cansend command in candump terminal win-

dow as:

./candump can0 -n1
can0 7DF [8] 11 22 33 44 55 66 77 88

• If the received data is same it means that the CAN shield and Raspberry Pi are interacting

correctly.

• An important note is that both the files candump and cansend should be in current directory.

http://www.skpang.co.uk/dl/can-test_pi2.zip
http://www.skpang.co.uk/dl/can-test_pi2.zip
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5.1.2 Black Box and Car Interface Testing

• In this testing, the speed fetched from the car is cross verified to make sure that the black

box is interacting with the car. The Black Box and the car is interfaced using an OBD-ii to

DB9 connector. A screen and keyboard are also used. Raspberry pi is powered from a car

via OBD-ii to DB9 connector, whereas a separate power source(battery bank) is used for

the screen. A Python script given below is used to fetch the data. The script is developed

using open-source examples.

import RPi.GPIO as GPIO
import can
import time
import os
import queue
from threading import Thread

led = 22
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(led,GPIO.OUT)
GPIO.output(led,True)

ENGINE_RPM = 0x0C
VEHICLE_SPEED = 0x0D

PID_REQUEST = 0x7DF
PID_REPLY = 0x7E8

outfile = open('log.txt','w')

print('\n\rStart Reading CAN Data')
print('Connecting to CAN0....')

#Connect to can0 interface at 500kbps
os.system("sudo /sbin/ip link set can0 up type can bitrate 500000")
time.sleep(0.1)
print('Ready')

try:
bus = can.interface.Bus(channel='can0', bustype='socketcan_native')



5.1 Black Box Script Testing 46

except OSError:
print('Cannot connect PiCAN board.')
GPIO.output(led,False)
exit()

def can_rx_task():
while True:

message = bus.recv()
if message.arbitration_id == PID_REPLY:

q.put(message)

def can_tx_task():
while True:

GPIO.output(led,True)

# Sent a Engine RPM request
msg =

can.Message(arbitration_id=PID_REQUEST,data=[0x02,0x01,ENGINE_RPM,0x00,0x00,0x00,0x00,0x00],extended_id=False)↪→

bus.send(msg)
time.sleep(0.001)

# Sent a Vehicle speed request
msg =

can.Message(arbitration_id=PID_REQUEST,data=[0x02,0x01,VEHICLE_SPEED,0x00,0x00,0x00,0x00,0x00],extended_id=False)↪→

bus.send(msg)
time.sleep(0.001)

q = queue.Queue()
rx = Thread(target = can_rx_task)
rx.start()
tx = Thread(target = can_tx_task)
tx.start()

temperature = 0
rpm = 0
speed = 0
throttle = 0
c = ''
count = 0

# Main
try:

while True:
for i in range(2):

while(q.empty() == True):
pass

message = q.get()
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c = '{0:f},{1:d},'.format(message.timestamp,count)

if message.arbitration_id == PID_REPLY and message.data[2] == ENGINE_RPM:
rpm = round(((message.data[3]*256) + message.data[4])/4)

if message.arbitration_id == PID_REPLY and message.data[2] ==
VEHICLE_SPEED:↪→

speed = round(message.data[3]*0.621)

c += '{0:d},{1:d}'.format(rpm,speed)
print('\r {} '.format(c))
print(c,file = outfile)
count += 1

except KeyboardInterrupt:
GPIO.output(led,False)
outfile.close()
os.system("sudo /sbin/ip link set can0 down")
print('\n\rStop Operation')

• This script will just fetch engine rpm and vehicle speed at a sample rate of 3 readings per

second and store it in the log file along with the time stamp and reading count number. The

output of the script did match the speed on the vehicle cluster.

5.1.3 Bluetooth Module Testing

• In order to test the Bluetooth module, both the boards are paired and trusted. Bluetooth, in

order to communicate with the device, should have a profile installed on it. For this project,

the serial port profile is used. The pairing and serial port profile installation are discussed

in detailed in Appendix A I. Stand-Alone testing is done by connecting the boards via

Bluetooth and sending a message from the client board to the server board. The sample

code for client-server communication was used from the PyBluez Bluetooth module. The

sample codes are [13]:
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#rfcomm-server.py

from Bluetooth import *

port = 1

server_sock=BluetoothSocket( RFCOMM )
server_sock.bind(("",port))
server_sock.listen(1)

client_sock, client_info = server_sock.accept()

print "Accepted connection from ", client_info
data = client_sock.recv(1024)

print "received [%s]" % data

client_sock.close()
server_sock.close()

#rfcomm-client.py

from Bluetooth import *

server_address = "01:23:45:67:89:AB"

port = 1

sock=BluetoothSocket( RFCOMM )

sock.connect((server_address, port))

sock.send("hello!!")

sock.close()

5.2 IoT Device Script Testing

AWS provides with Python packages for cloud infrastructure for Raspberry pi. Excellent docu-

mentation with example is also provided in these documentation.
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5.2.1 AWS IoT Core Interface

• For this testing AWS IoT Core message reception is configured on the AWS website and

then MQTT protocol configuration using AWS IoT SDK on the Raspberry pi.

• For AWS IoT Core and Raspberry pi communication testing following code [16]:

from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient
import logging
import time
import json

host = "YOUR-THING-END-POINT"
certPath = "PATAH-OF-THE-KEY-CERT"
clientId = "IOT-DEVICE"
topic = "Vehicle-Data"

# Init AWSIoTMQTTClient
myAWSIoTMQTTClient = None
myAWSIoTMQTTClient = AWSIoTMQTTClient(clientId)
myAWSIoTMQTTClient.configureEndpoint(host, 8883)
myAWSIoTMQTTClient.configureCredentials("{}aws-root-cert.pem".format(certPath),

"{}private-key.pem.key".format(certPath), "{}iot-cert.pem.crt".format(certPath))↪→

# AWSIoTMQTTClient connection configuration
myAWSIoTMQTTClient.configureAutoReconnectBackoffTime(1, 32, 20)
myAWSIoTMQTTClient.configureOfflinePublishQueueing(-1) # Infinite offline Publish

queueing↪→

myAWSIoTMQTTClient.configureDrainingFrequency(2) # Draining: 2 Hz
myAWSIoTMQTTClient.configureConnectDisconnectTimeout(10) # 10 sec
myAWSIoTMQTTClient.configureMQTTOperationTimeout(5) # 5 sec
myAWSIoTMQTTClient.connect()

# Publish to the same topic in a loop forever
Count = 0
while True:

message = {}
message['message'] = "YOUR-MESSAGE"
message['sequence'] = Count
msgjson = json.dumps(message)
myAWSIoTMQTTClient.publish(topic, msgjson, 1)
print('topic published %s: %s\n' % (topic, msgjson))
loopCount += 1
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time.sleep(10)
myAWSIoTMQTTClient.disconnect()

• Flow of this code is discussed in chapter 3 section 3.3.2. AWS IoT Configuration will be

discussed in the appendix A I.

5.2.2 AWS S3 Core

• The file connection to S3 bucket and file download we done separately using the following

script:

bucket_name = "BUCKET_NAME"
aws_access_key_id = os.getenv("ACCESS_KEY")
aws_access_secret_key = os.getenv("SECRET_KEY")

conn = boto.s3.connect_to_region('us-east-1',
aws_access_key_id = aws_access_key_id,
aws_secret_access_key = aws_access_secret_key,
is_secure = True,
calling_format = 'boto.s3.connection.OrdinaryCallingFormat'
)

bucket = conn.get_bucket(bucket_name)

bucket_list = bucket.list()

cnt = 0

for l in bucket_list:
key_string = str(l.key)
s3_path = local_cloud_location + key_string
try:

cnt += 1
if (data_print_flag == 1):

print ("Current File is ", s3_path)
l.get_contents_to_filename(s3_path)

except (OSError,S3ResponseError) as e:
pass
if not os.path.exists(s3_path):

try:
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os.makedirs(s3_path)
except OSError as exc:

import errno
if exc.errno != errno.EEXIST:

raise

5.3 Integration Testing

Once the module separately tested and was working properly. They were integrated one by one

on both the black box and IoT device side and tested. Following are the steps in which modules

were integrated:

• First, on the black box side, the fetching of the vehicle data and the Bluetooth data trans-

mission was integrated into a single Python script and tested. On the IoT side, only the

data reception/client code from Bluetooth was tested without any other functionality.

• On the IoT side first, the client Bluetooth code and the AWS IoT core module was tested

with the finished black box script. The received messaged were then observed on the

monitor dashboard of the AWS website.

• Once it was concluded that the connection between the IoT device and AWS IoT core is

established. The AWS S3 bucket Python script was integrated with the IoT device script

and checked if the files pushed to the S3 bucket were able to download.

• As the vehicle was not always available for testing tow mock data generator scripts were

developed for Bluetooth data exchange and AWS data push and fetch testing.



Chapter 6

Conclusions

This chapter discusses future work that could be completed as well as the conclusions from this

project.

6.1 Project Conclusions

The project was successfully implemented. It addressed the following issues in the current over-

speed ticketing system:

• Lack of Proof to Support Claimant(Sheriff) or Defendant(Driver): The system im-

plemented duly addresses this issue. Proof of vehicle speed along with a timestamp is

provided from the vehicle itself.

• Wrong Identification of Over-Speeding Vehicle: The speed record is provided by the

vehicle itself. Thus, no wrong implication of the ticket can be done.

• Covers Corner Cases: Even if the caught vehicle was over-speeding, the sheriff could see

the speed details for the past 20 minutes. This helps him/her make a much more educated
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decision in identifying if the driver is an aggressive driver or it was just a corner case where

the driver was overtaking a truck, changing lane, or passing by the slow vehicle.

• Court Scenario: In the current system, both the claimant(Sheriff) and the defen-

dant(Driver) have to be present in the court if the driver decides to defend the over-speeding

ticket. In this scenario, as no proof is present, the case becomes more to sheriff’s word to

drivers word. And the judges, in most cases, assume that sheriff has identified the correct

vehicle using a radar gun. In such cases, the black box system implemented here is benefi-

cial. The driver can request the vehicle records from the secure cloud to counterclaim the

assigned ticket. In this scenario, the sheriff need not be present in court. Thus, saving the

time of the court, sheriff, and driver as if either party is not present, a new date is assigned.

• Cost advantage: The system introduced is inexpensive, easy to implement and uses very

secure communication protocols.

• Privacy Concerns: The driver’s data can be shared with the sheriff only with his/her

approval via Bluetooth. The shared data is only for the latest 20 mins, and no prior data is

shared. The driver’s data is not stored locally on the IoT device.

6.2 Future Work

Theres always a room for improvement in any system. After lots of consideration and going

through the final expected output following are the two add-in features which can enhance the

usability of the project:

• GPS Module: A GPS module can provide a much clearer graphic view of the data about

the over-speed traffic violation. GPS module provides the speed with a limit of the roads
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Figure 6.1: GPS View

on which the driver is going. Thus, it can be used to pinpoint the exact location at which

speed violation occurred. A visual representation of this is shown in Figure 6.1.

• Mobile App: Instead of using an IoT device, a mobile app can be developed to replace it.

This makes sure that the sheriff does not carry an additional device and instead uses his

cellphone to carry out the task. It also helps to reduce the cost to the device for sheriff.



References

[1] National Highway Traffic Safety Administration. Traffic records program assessment ad-

visory. Technical report, National Highway Traffic Safety Administration, 2018.

[2] Richard Huey Doreen De Leonardis and James Green. National Traffic Speeds Survey III:

2015. Technical report, National Highway Traffic Safety Administration, 2015.

[3] I. Wagner. Total number of licensed drivers in the U.S. in 2017, by state.

February 2019. URL: https://www.statista.com/statistics/198029/

total-number-of-us-licensed-drivers-by-state/.

[4] Siliang Wu Guohua Wei, Yuxiang Zhou. Detection and localization of high speedmoving

targets using a short-range uwbimpulse radar, 2008.

[5] Improving on police radar. IEEE Spectrum, 1992.

[6] Mai T. Ngo Vilhelm Gregers-Hansenm. Emi repair in pulse doppler radar, 2008.

[7] Mahendra Mandava, Robert S. Gammenthaler, and Steven F. Hocker. Vehicle Speed En-

forcement using Absolute Speed Handheld Lidar, 2018.

[8] S. K. Pang. PiCAN 2 User Manual. Website.

https://www.statista.com/statistics/198029/total-number-of-us-licensed-drivers-by-state/
https://www.statista.com/statistics/198029/total-number-of-us-licensed-drivers-by-state/


References 56

[9] Microchip Technology Inc. MCP 2551 Stand-Alone CAN Controller with SPI Interface,

2003-2016.

[10] SK Pang. PiCAN 2 Board Schematic, 2015.

[11] Microchip Technology Inc. MCP 2515 Stand-Alone CAN Controller with SPI Interface,

2003-2019.

[12] Amazon Web Services, Inc. AWS IoT: Developer Guide, 2019.

[13] Albert Huang and Larry Rudolph. Bluetooth Essentials for Programmers. Cambridge

University Press, 2007.

[14] Wikipedia. OBD-II PIDs. Wikipedia. URL: https://en.wikipedia.org/wiki/

OBD-II_PIDs.

[15] Yu-Wei Huang, Jieh-Shian Young, Chih-Hung Wu, and Hsing-Jung Li. A Practice Learning

of On-board Diagnosis (OBD) Implementations with Embedded Systems. Technical report,

American Society for Engineering Education, 2010.

[16] Amazon.com, Inc. Boto3 Documentation, 2015.

[17] Ma, Xiaoliang and AndrÃ©asson, Ingmar. Driver reaction time estimation from real car

followingdata and application in GM-type model evaluation. Master’s thesis, Royal Insti-

tute of Technology (KTH), Stockholm 10044, Sweden.

[18] Thomas J. Triggs and Walter G. Harris. REACTION TIME OF DRIVERS TOROAD

STIMULI. Master’s thesis, MONASH UNIVERSITY, 1982.

[19] John Keenan III. Creating A Wireless OBDII Scanner. Master’s thesis, WORCESTER

POLYTECHNIC INSTITUTE, 2009.

https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/OBD-II_PIDs


References 57

[20] BOSCH. CAN Specification, 1995.

[21] Python. python-can. Website. URL: https://python-can.readthedocs.io/en/

master/.

[22] Joaquim Oller Carles Gomez and Josep Paradells. Overview and Evaluation of Bluetooth

Low Energy: An Emerging Low-Power Wireless Techn. MDPI, 2012.

[23] Mrs. Pratibha Singh, Mr. Dipesh Sharma, and Mr. Sonu Agrawal. A Modern Study of

Bluetooth WirelessTechnology. In International Journal of Computer Science, Engineering

and Information Technology, 2011.

[24] Ashwin Makwana Dipa Soni. A Survey on MQTT: A Protocol Of Internet of Things (IoT).

[25] Srijan Manandhar. MQTT BASED COMMUNICATION IN IOT. Master’s thesis, Tampere

University of Technology, 2017.

https://python-can.readthedocs.io/en/master/
https://python-can.readthedocs.io/en/master/


Appendix I

Guides

I.1 Bluetooth Pairing

• To pair two Raspberry pi via Bluetooth is to update OS and install the Bluetooth and

PyBluez on both the Raspberry by run following commands:

sudo apt-get dist-upgrade
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install bluez pi-Bluetooth Python-bluez

• Next step is to kill all the process that may be blocking Bluetooth chip using following

commands on both the boards:

sudo rfkill unblock all

• Now in the next few the both the Raspberry pi will be paired with each other. Make sure

the Bluetooth is on using following commands on both the boards:
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Bluetoothctl
[Bluetooth]# power on

• In order to pair the Raspberry pi’s, they should be made discoverable and the pairing mode

should be turned on using following commands on both the boards:

[Bluetooth]# discoverable on
[Bluetooth]# pairable on

• The next step is to discover the boards using following commands on both the boards:

[Bluetooth]# scan on

• The output on screen of both the Raspberry pi should be like this:

Discovery started [CHG]
Controller B8:27:EB:56:F3:62 Discovering: yes
[NEW] Device 80:7A:87:0D:A8:68 HTC 691DC1
[NEW] Device 80:7A:09:10:D4:D4 MOTO D5D068
[NEW] Device B8:27:34:25:BH:F5 Raspberrypi

• Note down the address <bdaddr> of both the board to be paired and turn off the scanning.

Now to pair the boards with each others use following commands:

[Bluetooth]# scan off
[Bluetooth]# pair <bdaddr>

• Both the boards should pair and a GUI should pop-up message asking to pairing. Click

yes to all of options. An error message may be thrown and the devices will disconnect.
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• To verify if the both the boards are paired use following commands on both the boards:

[CHG] Device <bdaddr> Paired: yes
Pairing successful
[CHG] Device <bdaddr> Trusted: yes

• To check if the paired board is trusted type following command on one of the board and

you should get the output as below:

[Bluetooth]# info <bdaddr>
[Bluetooth]# info B8:27:EB:25:95:F5
Device B8:27:EB:25:95:F5

Name: Raspberrypi
Alias: Raspberrypi
Paired: yes
Trusted: yes
Blocked: no
Connected: no
LegacyPairing: no
UUID: Serial Port (00001101-0000-1000-8000-00805f9b34fb)
UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)
UUID: A/V Remote Control (0000110e-0000-1000-8000-00805f9b34fb)
UUID: PnP Information (00001200-0000-1000-8000-00805f9b34fb)
UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
UUID: Generic Attribute Profile (00001801-0000-1000-8000-00805f9b34fb)
Modalias: usb:v1D6Bp0246d0517

• If not trusted use following command:

[Bluetooth]# trust <bdaddr>

I.2 Bluetooth Serial Port Profile

• To add Bluetooth serial port profile edit file dbus-org.bluez.service.
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• To edit enter this lines in the terminal:

sudo nano /etc/systemd/system/dbus-org.bluez.service

• Search for the line: ExecStart=/usr/lib/Bluetooth/Bluetoothd

• Add -C at the end for the line. It should look like this: Exec-

Start=/usr/lib/Bluetooth/Bluetoothd -C

• Add this line after the above line: ExecStartPost=/usr/bin/sdptool add SP

• Save the file and then reboot the Raspberry pi.

• Open the terminal and type following line:

sudo sdptool browse local

• After this if you see following output then serial port profile is installed on the Raspberry

pi.

Browsing FF:FF:FF:00:00:00 ...
Service Search failed: Invalid argument
Service Name: Serial Port
Service Description: COM Port
Service Provider: BlueZ
Service RecHandle: 0x10001
Service Class ID List:

"Serial Port" (0x1101)
Protocol Descriptor List:

"L2CAP" (0x0100)
"RFCOMM" (0x0003)

Channel: 1
Language Base Attr List:

code_ISO639: 0x656e
encoding: 0x6a
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base_offset: 0x100
Profile Descriptor List:

"Serial Port" (0x1101)
Version: 0x0100

• A lot more information will also be present. Please be sure to do this on both the Raspberry

pi boards.

I.3 AWS IoT Core

AWS IoT Core is a service provided by AWS. To configure AWS IoT core for message reception

from IoT core following are the steps:

• Create a single IoT thing. For each IoT device to be connected to the AWS IoT core a

separate IoT thing needs to be created in the AWS IoT Core. The screenshot of the same

is shown in figure I.1.

Figure I.1: Create a thing

• After creating a thing add name to the thing you created. In this case it is PL_Device aka
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police device. After creating a thing you will be asked to create a certificate. You can use

the “One-click certificate creation”. By doing AWS IoT will creates the certificates for

user. The screenshot of the same is shown in figure I.2.

Figure I.2: Naming a thing

• After creating the certificate make sure to activate the certificate and download all of them.

This keys will be used on both the ends of the MQTT communication i.e. IoT device and

IoT Core. The screenshot of the same is shown in figure I.3.
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Figure I.3: Create certificate

• After the certificates user should create a policy. The option for this will be present under

the secure heading on the left side. On click on create a policy and name you policy. In

this case it PD_Policy. The screenshot of the same is shown in figure I.4.

Figure I.4: Create certificate

• Now in the add statements in the Add Statements section to enable the connection, pub-
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lishing, subscription and reception of message from IoT device.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource": "*"

},
{

"Effect": "Allow",
"Action": "iot:Publish",
"Resource": "*"

},
{

"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": "*"

},
{

"Effect": "Allow",
"Action": "iot:Receive",
"Resource": "*"

}
]

}

• Now go to settings and copy the custom end point address and use it for AWS IoT config-

uration on Raspberry pi. The screenshot of the same is shown in figure I.5.
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Figure I.5: End point address

• To check if you are receiving message check the AWS IoT Core dashboard monitor. You

can see when the connection was established and number of messages received. The

screenshot of the same is shown in figure I.6.
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Figure I.6: Monitor on dashboard

I.4 AWS S3 Bucket

To receive the message from AWS IoT Core and configure AWS S3 bucket following steps

should be done:

• First thing you should do is to create an action. An action is needed to extract the informa-

tion from the message. The screenshot of the same is shown in figure I.7.
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Figure I.7: Action creation

• Now enter the name of the bucket in this case “www.giotdata-east.com”. Key is the name

of the file that will be stored in the S3 bucket. The screenshot of the same is shown in

figure I.8.
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Figure I.8: S3 bucket creation
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Source Code

II.1 Python Script Related to Black Box

II.1.1 Black Box Script

1 #################################################################################
2 # Author: Gaurav M. Shende
3 # Description: This script will fetch the vehicle speed and gas pedal position
4 # and will store it in the 'car_log.txt'. It will then send this data to IoT
5 # device whenever requested.
6 #################################################################################
7

8 import os
9 import sys

10 import queue
11

12 import can
13 import time
14

15 import RPi.GPIO as GPIO
16 from threading import Thread
17 from bluetooth import *
18

19 led = 22
20 GPIO.setmode(GPIO.BCM)
21 GPIO.setwarnings(False)
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22 GPIO.setup(led,GPIO.OUT)
23 GPIO.output(led,True)
24

25 gaspp_pid = 0x49
26 vspeed_pid = 0x0D
27

28 pid_rq = 0x7DF
29 pid_rp = 0x7E8
30

31 gaspp = 0
32 vspeed = 0
33

34 msg_q = None
35 file_name = 'car_log.txt'
36

37 uuid = "94f39d29-7d6d-437d-973b-fba39e49d4ee"
38 addr = 'B8:27:EB:10:43:0B'
39

40 standalone_test_flag = 1
41 data_display_flag = 0
42 ble_exc_flag = 0
43

44 temp_flag = 0
45

46 #Thread to receive vehicle data
47 def canrx_task():
48

49 global standalone_test_flag
50 global ble_exc_flag
51 global msg_q
52

53 print("\nIn canrx_task")
54

55 while True:
56 if (standalone_test_flag == 0):
57 message = bus.recv()
58 if message.arbitration_id == pid_rp:
59 msg_q.put(message)
60 else:
61 time.sleep(5)
62 ble_exc_flag = 1
63

64 #Thread to request vehicle data
65 def cantx_task():
66

67 global standalone_test_flag
68 global ble_exc_flag
69 global led
70
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71 print("\nIn cantx_task")
72

73 while True:
74 if (standalone_test_flag == 0):
75 GPIO.output(led,True)
76

77 # Sent a request for gas pedal position
78 msg =

can.Message(arbitration_id=pid_rq,data=[0x02,0x01,gaspp_pid,0x00,0x00,0x00,0x00,0x00],extended_id=False)↪→

79 bus.send(msg)
80 time.sleep(0.4)
81

82 #Sent a request for vehicle speed
83 msg =

can.Message(arbitration_id=pid_rq,data=[0x02,0x01,vspeed_pid,0x00,0x00,0x00,0x00,0x00],extended_id=False)↪→

84 bus.send(msg)
85 time.sleep(0.4)
86 else:
87 time.sleep(5)
88

89 #Function to find near by bluetooth devices and send the latest vehicle data
90 def bletx_task():
91

92 global uuid
93 global addr
94

95 print("Searching for the near by Sheriff's device")
96

97 service_matches = find_service( uuid = uuid, address = addr )
98

99 if len(service_matches) == 0:
100 print("Couldn't find the Sheriff's device")
101 return None
102

103 first_match = service_matches[0]
104 port = first_match["port"]
105 name = first_match["name"]
106 host = first_match["host"]
107

108 print("Found Sheriff's device: \"%s\" Device Address: %s" % (name, host))
109 print("Connecting to the Sheriff's device")
110

111 # Create the client socket
112 ble_sock=BluetoothSocket( RFCOMM )
113 ble_sock.connect((host, port))
114

115 print("Sending Data to the Sheriff's device")
116

117 i = 0
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118

119 for ln in reversed(list(open("car_log.txt"))):
120 if (data_display_flag == 1):
121 print(ln)
122 i+=1
123 ble_sock.send(ln)
124

125 if(i == 1220):
126 break
127

128 print("Total number of readings sent:", i)
129

130 ble_sock.close()
131

132 #Main thread
133 def main():
134

135 global gaspp_pid
136 global vspeed_pid
137

138 global gaspp
139 global vspeed
140

141 global file_name
142 global standalone_test_flag
143

144 global msg_q
145

146 if (standalone_test_flag == 0):
147 print('Connecting to the Vehicle....')
148

149 #Bring up can0 interface at 500kbps
150 os.system("sudo /sbin/ip link set can0 up type can bitrate 500000")
151 time.sleep(0.1)
152

153 try:
154 bus = can.interface.Bus(channel='can0', bustype='socketcan_native')
155 print('Connection to the Vehicle established')
156 except OSError:
157 pprint('Connection to the Vehicle failed')
158 GPIO.output(led,False)
159 exit()
160

161 msg_q = queue.Queue()
162

163 canrx = Thread(target = canrx_task)
164 canrx.start()
165

166 cantx = Thread(target = cantx_task)
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167 cantx.start()
168

169 try:
170 while True:
171 if (standalone_test_flag == 0):
172 for i in range(2):
173 while(msg_q.empty() == True): # Wait until there is a message
174 pass
175 message = msg_q.get()
176

177 if message.arbitration_id == pid_rp and message.data[2] ==
gaspp_pid:↪→

178 gaspp = round(message.data[3]*0.392*100)
179

180 if message.arbitration_id == pid_rp and message.data[2] ==
vspeed_pid:↪→

181 vspeed = round(message.data[3]*0.621)
182

183 if (vspeed != 0):
184 data = {
185 'VIN' : '1ZVHT84N265118896',
186 'TimeStamp': message.timestamp,
187 'GasPedalPosition': gaspp,
188 'VehicleSpeed': vspeed
189 }
190

191 with open(file_name, 'a') as outfile:
192 json.dump(data, outfile)
193 outfile.write("\n")
194 else:
195 time.sleep(10)
196 if(vspeed != 0):
197 bletx_task()
198 else:
199 sts = 0
200 if (ble_exc_flag == 1):
201 sts = bletx_task()
202 time.sleep(5)
203

204 except KeyboardInterrupt:
205 #Catch keyboard interrupt
206 GPIO.output(led,False)
207 if (standalone_test_flag == 0):
208 outfile.close() # Close logger file
209 os.system("sudo /sbin/ip link set can0 down")
210 print('\n\rKeyboard interrtupt')
211

212 if __name__=="__main__":
213 main()
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II.1.2 Log Data Generator Script

1 #################################################################################
2 # Author: Gaurav M. Shende
3 # Description: This script will create a sample mock data from OBD-ii port and
4 # store it in to 'car_log.txt'. This helps to test the 'car_to_iot_v1.py'
5 # without actually connecting black box to the car.
6 #################################################################################
7

8 import json
9 import random

10 import os
11

12 import shutil
13

14

15 if os.path.exists('car_log.txt'):
16 os.remove('car_log.txt')
17 print("File car_lot.txt already exist")
18 else:
19 print("New file car_lot.txt created")
20

21 acpad = 0
22 vspeed = 0
23 temp = 1568463179
24 file_name = 'car_log.txt'
25

26 for i in range(1300):
27

28 temp = temp + 1
29 if(0 <= i < 120):
30 vspeed = 42
31 acpad = 47
32 elif(121 < i < 240):
33 vspeed = 52
34 acpad = 57
35 elif(241 < i < 480):
36 vspeed = 62
37 acpad = 67
38 elif(481 < i < 600):
39 vspeed = 72
40 acpad = 77
41 elif(601 < i < 720):
42 vspeed = 82
43 acpad = 87
44 elif(721 < i < 840):
45 vspeed = 78
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46 acpad = 77
47 elif(841 < i < 960):
48 vspeed = 42
49 acpad = 47
50 elif(961 < i < 1200):
51 vspeed = 41
52 acpad = 43
53

54 data = {
55 'VIN' : '1ZVHT84N265118896',
56 'TimeStamp': temp,
57 'GasPedalPosition': acpad,
58 'VehicleSpeed': vspeed
59 }
60

61 with open(file_name, 'a+') as outfile:
62 json.dump(data, outfile)
63 outfile.write("\n")

II.2 Python Script Related to IoT Device

II.2.1 IoT Device Script

1 #################################################################################
2 # Author: Gaurav M. Shende
3 # Description: This script will fetch the vehicle data from the black box. Then
4 # send it to the S3 bucket and again download it and then plot it.
5 #################################################################################
6

7 import sys
8 import os
9 import boto

10 import json
11 import time
12

13 from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient
14 from bluetooth import *
15 from boto.s3.key import Key
16 from boto.exception import S3ResponseError
17

18 #Used to store car readings
19 car_data = []
20
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21 #AWS related vairables
22 aws_host = "YOUR_HOST_NAME"
23 cert_path = "/home/pi/Desktop/iot_to_cloud/key_cert/"
24 client_id = "RaspberryPi"
25 vdata_topic = "Vehicle-Data"
26

27 my_aws_client = None
28

29 uuid = "94f39d29-7d6d-437d-973b-fba39e49d4ee"
30

31 local_cloud_location = "/home/pi/Desktop/iot_to_cloud/data_from_cloud/"
32

33 #Variable used for debugging
34 data_print_flag = 0
35

36 #Function to fetch data from S3 bucket
37 def fetch_s3_data():
38 bucket_name = "BUCKET_NAME"
39 aws_access_key_id = os.getenv("ACCESS_KEY")
40 aws_access_secret_key = os.getenv("SECRET_KEY")
41

42 conn = boto.s3.connect_to_region('us-east-1',
43 aws_access_key_id = aws_access_key_id,
44 aws_secret_access_key = aws_access_secret_key,
45 is_secure = True,
46 calling_format = 'boto.s3.connection.OrdinaryCallingFormat'
47 )
48

49 bucket = conn.get_bucket(bucket_name)
50

51 bucket_list = bucket.list()
52

53 cnt = 0
54

55 for l in bucket_list:
56 key_string = str(l.key)
57 s3_path = local_cloud_location + key_string
58 try:
59 cnt += 1
60 if (data_print_flag == 1):
61 print ("Current File is ", s3_path)
62 l.get_contents_to_filename(s3_path)
63 except (OSError,S3ResponseError) as e:
64 pass
65 if not os.path.exists(s3_path):
66 try:
67 os.makedirs(s3_path)
68 except OSError as exc:
69 import errno
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70 if exc.errno != errno.EEXIST:
71 raise
72

73

74 print("Total number of files downloaded: ", cnt)
75

76 #Function to fetch data from black box over bluetooth
77 def ble_fetch_data():
78

79 global uuid
80 global car_data
81

82 ble_srv_sock = BluetoothSocket( RFCOMM )
83 ble_srv_sock.bind(("",PORT_ANY))
84 ble_srv_sock.listen(1)
85

86 port = ble_srv_sock.getsockname()[1]
87

88

89 advertise_service( ble_srv_sock, "Sheriffs_Device",
90 service_id = uuid,
91 service_classes = [ uuid, SERIAL_PORT_CLASS ],
92 profiles = [ SERIAL_PORT_PROFILE ])
93

94 print("Waiting for connection on RFCOMM channel %d" % port)
95

96 ble_clnt_sock, ble_clnt_info = ble_srv_sock.accept()
97 print("Accepted connection from ", ble_clnt_info)
98

99 co_data = []
100 n_data = []
101

102 i = 0
103

104 try:
105 while True:
106 data_holder = ble_clnt_sock.recv(1024)
107 data_holder = data_holder.decode('utf8').replace("'", '"')
108

109 l = len(data_holder)
110

111 if (l > 98):
112 co_data.append(data_holder)
113 elif (l == 98):
114 car_data.append(data_holder)
115

116 if len(data_holder) == 0:
117 break
118 i += 1
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119 else:
120 n_data.append(data_holder)
121

122 except IOError:
123 pass
124

125 ble_clnt_sock.close()
126 ble_srv_sock.close()
127

128 l = len(car_data)
129 for m in range(l):
130 if (data_print_flag == 1):
131 print("Data received from Car: %s" % car_data[m])
132

133 if (data_print_flag == 1):
134 print(len(co_data))
135 print("Co", co_data)
136

137 print(len(n_data))
138 print("N", n_data)
139

140 print("i",i)
141

142 temp = []
143 l1 = len(co_data)
144 for j in range(l1):
145 temp = co_data[j].split("\n")
146 l2 = len(temp)
147 for k in range(l2):
148 if (temp[k] != ""):
149 if (data_print_flag == 1):
150 print("temp",k, temp[k])
151 car_data.append(temp[k])
152 i += 1
153

154 if(i < 1200):
155 print("Reinitiate data transfer")
156 sys.exit(0)
157 else:
158 print("Data reception from car done!")
159 print("Total number of readings received: 1200")
160 print("BLE disconnected")
161

162 #Function to configure AWS S3 bucket on IoT device
163 def aws_config():
164

165 global aws_host
166 global cert_path
167 global client_id
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168 global my_aws_client
169

170 my_aws_client = AWSIoTMQTTClient(client_id)
171 my_aws_client.configureEndpoint(aws_host, 8883)
172 my_aws_client.configureCredentials("{}AmazonRootCA1.pem".format(cert_path), \
173

"{}38ea5c7a2c-private.pem.key".format(cert_path),
\

↪→

↪→

174

"{}38ea5c7a2c-certificate.pem.crt".format(cert_path))↪→

175

176 # AWSIoTMQTTClient connection configuration
177 my_aws_client.configureAutoReconnectBackoffTime(1, 32, 20)
178 my_aws_client.configureOfflinePublishQueueing(-1) # Infinite offline Publish

queueing↪→

179 my_aws_client.configureDrainingFrequency(2) # Draining: 2 Hz
180 my_aws_client.configureConnectDisconnectTimeout(10) # 10 sec
181 my_aws_client.configureMQTTOperationTimeout(5) # 5 sec
182

183

184 temp = None
185

186 #Function to send data from IoT device to S3 bucket
187 def send_data_to_aws():
188

189 global vdata_topic
190 global my_aws_client
191 global temp
192

193 my_aws_client.connect()
194

195 num_car_data = len(car_data)
196

197 cnt = 0
198 for i in range(1200):
199 try:
200 cnt += 1
201 temp = json.loads(car_data[i])
202

203 vdata = {}
204 vdata['VIN'] = temp['VIN']
205 vdata['TimeStamp'] = temp['TimeStamp']
206 vdata['GasPedalPosition'] = temp['GasPedalPosition']
207 vdata['VehicleSpeed'] = temp['VehicleSpeed']
208

209 vdata_json = json.dumps(vdata)
210

211 my_aws_client.publish(vdata_topic, vdata_json, 1)
212
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213 if (data_print_flag == 1):
214 print('Data sent to Cloud: %s\n' % vdata_json)
215

216 # time.sleep(0.1)
217

218 except ValueError:
219 #print("Error for reading: ",temp)
220 pass
221 my_aws_client.disconnect()
222 print("Total number of readings sent to cloud: ", cnt)
223

224 #Function to clear user data
225 def clr_usr_data():
226 global car_data
227

228 car_data.clear()
229

230 def main():
231

232 aws_config()
233 ble_fetch_data()
234 send_data_to_aws()
235 clr_usr_data()
236 fetch_s3_data()
237 os.system("sudo Python3 /home/pi/Desktop/iot_to_cloud/data_plot_v4.py")
238

239 if __name__== "__main__":
240 main()

II.2.2 Data Plotting Script

1 #################################################################################
2 # Author: Gaurav M. Shende
3 # Description: This script will plot the vehicle data vs time
4 #################################################################################
5

6 import os
7 import datetime
8 import matplotlib
9 matplotlib.use('agg')

10 import matplotlib.pyplot as plt
11 from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
12 AutoMinorLocator)
13

14 #Global variables related to files
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15 file_path = []
16 file_list = []
17 num_file = []
18

19 #Global Variables related to vehicle parameters
20 vin_num = []
21 tstamp = []
22 acpad_d = []
23 vspeed = []
24

25 #Global Variables related to plot
26 tstamp_p = []
27 acpad_d_p = []
28 vspeed_p = []
29

30 #Scaling variable
31 scale_param = 1 #Make this variable 1 for 120 sample points and 0 for 1200 for a

plot↪→

32 x_maj_loc = 0
33 x_min_loc = 0
34

35 #Function to fetch the data from the files
36 def fetch_data():
37 global file_path
38 global file_list
39 global num_file
40

41 global vin_num
42 global tstamp
43 global acpad_d
44 global vspeed
45

46 for i in range(num_file):
47 file_list[i] = file_path + "/" + file_list[i]
48 with open(file_list[i],'r') as json_file:
49 data = (json_file.readline()).split(',')
50

51 #Extract vin infromation
52 temp = data[0].split(':')
53 vin_num.append(temp[1])
54

55 #Extract time stamp
56 temp = data[1].split(':')
57 temp[1] = temp[1].replace('{','')
58 tstamp.append(temp[1])
59 tstamp = list(map(float, tstamp))
60

61 #Extract accelarator pedal position
62 temp = data[2].split(':')
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63 acpad_d.append(temp[1])
64 acpad_d = list(map(int, acpad_d))
65

66 #Extract vehicle speed infromation
67 temp = data[3].split(':')
68 temp[1] = temp[1].replace('}','')
69 vspeed.append(temp[1])
70 vspeed = list(map(int, vspeed))
71

72 #Function to average the fetch data for 10 points
73 def avg_data():
74

75 global tstamp
76 global acpad_d
77 global vspeed
78

79 global tstamp_p
80 global acpad_d_p
81 global vspeed_p
82

83 global scale_param
84 global x_maj_loc
85 global x_min_loc
86

87 #Scale the data i.e. reduce the sample data points by averaging
88 #the speed for 10 seconds
89 if(scale_param == 1):
90 for i in range(0,num_file,10):
91 tstamp_p.append(tstamp[i])
92

93 temp = []
94 for i in range(0,num_file,10):
95 for j in range(10):
96 temp.append(acpad_d[i+j])
97 acpad_d_p.append(round(sum(temp)/10))
98 temp.clear()
99

100 temp = []
101 for i in range(0,num_file,10):
102 for j in range(10):
103 temp.append(vspeed[i+j])
104 vspeed_p.append(round(sum(temp)/10))
105 temp.clear()
106 x_maj_loc = 6
107 x_min_loc = 1
108 #Do not scale
109 else:
110 for i in range(0,num_file):
111 tstamp_p.append(tstamp[i])
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112 acpad_d_p.append(acpad_d[i])
113 vspeed_p.append(vspeed[i])
114 x_maj_loc = 60
115 x_min_loc = 10
116

117 #Function to plot the data
118 def plot_data():
119

120 global vin_num
121 global tstamp_p
122 global acpad_d_p
123 global vspeed_p
124

125 t_len = len(tstamp_p)
126

127 for i in range(t_len):
128 tstamp_p[i] = datetime.datetime.fromtimestamp(tstamp_p[i]).strftime('%H:%M:%S')
129

130 tdate = datetime.datetime.today()
131

132 fig,ax = plt.subplots()
133

134 #Title, and label for x and y axis
135 plt.title("" + r"$\bf{" + "VIN:" + "}$" + vin_num[0] + "\n" + r"$\bf{" + "Date: "

+ "}$" + str(tdate.month) + "-" + \↪→

136 str(tdate.day) + "-" + str(tdate.year) + " " + r"$\bf{" + "Time: " +
"}$" + \↪→

137 tstamp_p[0] + " to " + tstamp_p[t_len-1], fontsize = 12)
138

139 plt.xlabel('Time Stamp')
140 plt.ylabel('Vehicle Speed')
141

142 #Convert string to integer in order to plot the graph
143 for i in range(num_file):
144 acpad_d[i] = int(acpad_d[i])
145 vspeed[i] = int(vspeed[i])
146

147 #Plot the graph for vehicle speed and accelerator pedal position
148 ax.plot(tstamp_p,vspeed_p, label = 'Vehicle Speed', color = 'brown', alpha = 0.6)
149 ax.plot(tstamp_p,acpad_d_p, label = 'Gas Pedal Position', color = 'blue', alpha =

0.6)↪→

150

151 #Set parameters for the x and y axis label
152 ax.tick_params(axis="x", labelsize=5, labelrotation=30, labelcolor="black")
153 ax.tick_params(axis="y", labelsize=5, labelrotation=0, labelcolor="black")
154

155 #Set the resolution for x and y axis
156 ax.xaxis.set_major_locator(MultipleLocator(x_maj_loc))
157 ax.xaxis.set_minor_locator(MultipleLocator(x_min_loc))
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158

159 ax.yaxis.set_major_locator(MultipleLocator(5))
160 ax.yaxis.set_minor_locator(MultipleLocator(1))
161

162 #Set the color code for different speed range
163 plt.axhspan(35, 55, color='green', alpha=0.3)
164 plt.axhspan(55, 65, color='violet', alpha=0.3)
165 plt.axhspan(65, 75, color='yellow', alpha=0.3)
166 plt.axhspan(75, 85, color='blue', alpha=0.3)
167 plt.axhspan(85, 100, color='red', alpha=0.3)
168 plt.axhspan(100, 120, color='brown', alpha=0.3)
169

170 #Write speed limit text on graph
171 plt.text(0,40,"Speed 35-55 mph", color = 'black', alpha=0.2, fontsize = 20)
172 plt.text(0,57,"Speed 56-65 mph", color = 'black', alpha=0.2, fontsize = 20)
173 plt.text(0,67,"Speed 66-75 mph", color = 'black', alpha=0.2, fontsize = 20)
174 plt.text(0,77,"Speed 76-85 mph", color = 'black', alpha=0.2, fontsize = 20)
175 plt.text(0,89,"Speed 86-100 mph", color = 'black', alpha=0.2, fontsize = 20)
176 plt.text(0,106.5,"Speed 101-120 mph", color = 'black', alpha=0.2, fontsize = 20)
177

178 #Set the remaining parameters and save the plot
179 fig1 = plt.gcf()
180 plt.legend(loc='upper center', bbox_to_anchor=(0.9, 1), shadow=True, ncol=1)#,

bbox_transform=fig.transFigure)↪→

181 plt.grid(linestyle='dotted')
182 plt.show()
183 plt.draw()
184 fig1.savefig('vehicle_data.png', dpi=300)
185

186 print("Plot saved in the current directory... \n")
187

188 #Main Function
189 def main():
190

191 global file_path
192 global file_list
193 global num_file
194

195 print("Python script started... \n")
196

197 #Get the list of all .json files
198 file_path = "/home/pi/Desktop/iot_to_cloud/data_from_cloud"
199 file_list = os.listdir(file_path)
200 num_file = len(file_list)
201 if (num_file < 1200):
202 print("Not enough data fetched from cloud")
203 else:
204 num_file = 1200
205 #Sort the files by name
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206 file_list.sort()
207

208 #Print the file names
209 #for i in range(num_file):
210 # print(file_list[i])
211

212 print("\nTotal Number of files present in the folder: " + str(num_file))
213

214 fetch_data()
215 avg_data()
216 plot_data()
217

218 print("Done... \n")
219

220 if __name__== "__main__" :
221 main()

II.2.3 Mock JSON files Generator Script

1 #################################################################################
2 # Author: Gaurav M. Shende
3 # Description: This script will create mock data to send to S3 bucket
4 #################################################################################
5

6 import json
7 import random
8 import os
9

10 import shutil
11

12 file_path = "/Users/gauravshende/Google
Drive/Project/Git_Repo/gms1682_grad_ppr/Code/Data_Presentation/Json_files"↪→

13

14 for root, dirs, files in os.walk(file_path):
15 for f in files:
16 os.unlink(os.path.join(root, f))
17 for d in dirs:
18 shutil.rmtree(os.path.join(root, d))
19

20 temp = 1568463179
21 fname = temp
22 #random.seed(0)
23

24 vspeed = 0
25 acpad = 0
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26

27 for i in range(1200):
28 temp = temp + 1
29 fname = fname + 1
30 if(0 < i < 120):
31 vspeed = 42
32 acpad = 47
33 elif(121 < i < 240):
34 vspeed = 52
35 acpad = 57
36 elif(241 < i < 480):
37 vspeed = 62
38 acpad = 67
39 elif(481 < i < 600):
40 vspeed = 72
41 acpad = 77
42 elif(601 < i < 720):
43 vspeed = 82
44 acpad = 87
45 elif(721 < i < 840):
46 vspeed = 78
47 acpad = 77
48 elif(841 < i < 960):
49 vspeed = 42
50 acpad = 47
51 elif(961 < i < 1200):
52 vspeed = 41
53 acpad = 43
54

55 data = {}
56 data = {
57 'VIN' : '1ZVHT84N265118896',
58 'TimeStamp': temp,
59 'Accelerator Pedal Position': acpad,
60 'Vehicle Speed': vspeed
61 }
62 filename = file_path + "/giotdata_"+str(fname)+".json"
63 with open(filename, 'w') as outfile:
64 json.dump(data, outfile)
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