
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-17-2019

Towards an Intelligent System for Software Traceability Datasets Towards an Intelligent System for Software Traceability Datasets

Generation Generation

Waleed Abdu Zogaan
waz7355@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Zogaan, Waleed Abdu, "Towards an Intelligent System for Software Traceability Datasets Generation"
(2019). Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10314?utm_source=repository.rit.edu%2Ftheses%2F10314&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Towards an Intelligent System for Software

Traceability Datasets Generation

by

Waleed Abdu Zogaan

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

December 17th 2019

Towards an Intelligent System for Software

Traceability Datasets Generation

by

Waleed Abdu Zogaan

Committee Approval:
We, the undersigned committee members, certify that we have advised and/or supervised
the candidate on the work described in this dissertation. We further certify that we have
reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements
of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Mehdi Mirakhorli Date

Dissertation Advisor

Dr. Venera Arnaoudova Date

Dissertation Committee Member

Dr. Christian Newman Date

Dissertation Committee Member

Dr. Mohamed Mkaouer Date

Dissertation Committee Member

Dr. Daniel Phillips Date

Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date

Ph.D. Program Director, Computing and Information Sciences

ii

iii

c©2019 Waleed Zogaan
All rights reserved.

Towards an Intelligent System for Software

Traceability Datasets Generation

by

Waleed Abdu Zogaan

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Ph.D. Program in Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Software datasets and artifacts play a crucial role in advancing automated software trace-
ability research. They can be used by researchers in different ways to develop or validate new
automated approaches. Software artifacts, other than source code and issue tracking enti-
ties, can also provide a great deal of insight into a software system and facilitate knowledge
sharing and information reuse. The diversity and quality of the datasets and artifacts within
a research community have a significant impact on the accuracy, generalizability, and repro-
ducibility of the results and consequently on the usefulness and practicality of the techniques
under study. Collecting and assessing the quality of such datasets are not trivial tasks and
have been reported as an obstacle by many researchers in the domain of software engineering.
In this dissertation, we report our empirical work that aims to automatically generate and
assess the quality of such datasets. Our goal is to introduce an intelligent system that can
help researchers in the domain of software traceability in obtaining high-quality “training
sets”, “testing sets” or appropriate “case studies” from open source repositories based on
their needs. In the first project, we present a first-of-its-kind study to review and assess
the datasets that have been used in software traceability research over the last fifteen years.
It presents and articulates the current status of these datasets, their characteristics, and
their threats to validity. Second, this dissertation introduces a Traceability-Dataset Quality
Assessment (T-DQA) framework to categorize software traceability datasets and assist re-
searchers to select appropriate datasets for their research based on different characteristics
of the datasets and the context in which those datasets will be used. Third, we present
the results of an empirical study with limited scope to generate datasets using three base-
line approaches for the creation of training data. These approaches are (i) Expert-Based,
(ii) Automated Web-Mining, which generates training sets by automatically mining tactic’s
APIs from technical programming websites, and lastly, (iii) Automated Big-Data Analy-
sis, which mines ultra-large-scale code repositories to generate training sets. We compare
the trace-link creation accuracy achieved using each of these three baseline approaches and
discuss the costs and benefits associated with them. Additionally, in a separate study, we
investigate the impact of training set size on the accuracy of recovering trace links. Finally,

iv

v

we conduct a large-scale study to identify which types of software artifacts are produced by
a wide variety of open-source projects at different levels of granularity. Then we propose
an automated approach based on Machine Learning techniques to identify various types of
software artifacts. Through a set of experiments, we report and compare the performance
of these algorithms when applied to software artifacts. Finally, we conducted a study to
understand how software traceability experts and practitioners evaluate the quality of their
datasets. In addition, we aim at gathering experts’ opinions on all quality attributes and
metrics proposed by T-DQA.

Acknowledgments

First and foremost I would like to thank my advisor Prof.Mehdi Mirakhorli, for his
endless guidance, encouragement, and patience. Since the beginning of my journey as a
graduate during my master degree and over the years during my Ph.D.studies he has become
not just an advisor, but a good friend. All the credit goes to him for the researcher and
academic I have become today.

I would like also to thank my committee members Venera Arnaoudova, Mohamed
Mkaouer, and Christian Newman for serving on my dissertation committee and for all of
the discussions that have helped me in my research and to improve this dissertation.

Thank you to Pengcheng Shi for all of his valuable advice, and for helping to guide me
through my graduate studies.

vi

To the soul of my beloved father Abdu who supported me and whom I wish he is here today
to share this moment with me.

To my mother, Najat, for her endless love, prays and encouragement.

To my wife, Hend, whose love and confidence is a constant source of inspiration. She is the
star I follow to find my path in the dark nights.

To my siblings, Wail, Wesam, Reham and Rawan for everything they have done for me,
and for always being there for me.

And to my kids, Emaa, Khalid, Abdu, Mohab and Wafaa who were my companions in this
long journey and whose smiles brighten up my life.

vii

Contents

1 Introduction 1
1.1 Research Goals . 2
1.2 List of Contributions . 4
1.3 List of Publications . 5
1.4 Dissertation Organization . 6

2 Background 7
2.1 SLRs in Traceability . 7
2.2 Open-Source Software as a Dataset . 9
2.3 Assessing the Quality of Datasets . 9
2.4 Automated Datasets Generation . 11
2.5 Categorization of Software Artifacts . 11
2.6 Surveys in software engineering . 12

3 Methodology 14
3.1 Research agenda . 14
3.2 Goal 1: Investigate the characteristics and types of software traceability

datasets: . 16
3.2.1 Research questions . 16
3.2.2 Search strategy . 18
3.2.3 Inclusion and exclusion criteria . 19
3.2.4 Study selection process . 19
3.2.5 Data extraction . 21

3.3 Goal 2: Building data quality framework: . 21
3.4 Goal 3: Feasibility of automatically generate datasets from open source soft-

ware repositories: . 21
3.4.1 Research questions . 22
3.4.2 Study scope . 22
3.4.3 Traceability challenge: identifying Tactic-Related classes 23
3.4.4 Overview of the three baseline techniques 24
3.4.5 Baseline method 1: expert-created approach 25
3.4.6 Web-mining approach . 27
3.4.7 Big-Data analysis approach . 29
3.4.8 Experiment overview . 31
3.4.9 Experiment design . 32

viii

CONTENTS ix

3.4.10 Evaluation metrics . 33
3.4.11 Minimizing biases . 33

3.5 Goal 4: Classification, automated categorization, and detection of open-source
software artifacts: . 34
3.5.1 Research questions . 34
3.5.2 Study definition and design . 34
3.5.3 Subject Systems . 35
3.5.4 Oracle . 36
3.5.5 Automatic Artifact Classification . 36
3.5.6 Evaluation . 38

3.6 Goal 5: Traceability datasets quality assessment survey: 39
3.6.1 Research questions . 39
3.6.2 Survey Design . 39
3.6.3 Participants . 40
3.6.4 Pilot Study . 40
3.6.5 Data Collection . 40
3.6.6 Analysis . 40

3.7 Goal 6: T-DQA Web-Tool: . 41
3.7.1 Datasets collection . 41
3.7.2 T-DQA metrics . 42

4 Results 46
4.1 RQ1: What are the characteristics of traceability datasets? 46

4.1.1 RQ1.1: What are the source and target artifacts in traceability datasets? 46
4.1.2 RQ1.2: Which application domains are represented by traceability datasets? 47
4.1.3 RQ1.3: What is the size of traceability datasets? 49
4.1.4 RQ1.4: What proportion of the traceability datasets is from industry,

open-source projects, and student generated data? 49
4.1.5 RQ1.5: Are traceability datasets available for reuse? 50
4.1.6 RQ1.6: Is there a relation between the characteristics and the quality

of traceability datasets on the one hand and their reusability on the
other hand? . 50

4.1.7 RQ1.7: What are the threats to validity associated with traceability
datasets? . 50

4.1.8 RQ1.8: Do we, as a community, strive for a diversity of traceability
datasets? . 52

4.2 RQ2: How to assess the quality of traceability datasets? 53
4.3 RQ3: Is it feasible to automatically generate datasets from open source soft-

ware repositories? . 55
4.3.1 RQ3.1: Does the training method based on automated web-mining re-

sult in higher trace-links classification accuracy compared to an expert-
created training set? . 55

4.3.2 RQ3.2: Does the training method based on automated big-data result in
higher trace-links classification accuracy compared to an expert-created
training set? . 59

4.3.3 RQ3.3: What is the impact of training set size on the accuracy of trace
link classification? . 59

4.3.4 Cost-Benefit analysis . 61
4.3.5 Tool support . 62

CONTENTS x

4.3.6 Discussions . 64
4.3.7 Generalization of results to other classification techniques 65
4.3.8 Qualitative insights . 66
4.3.9 Application to the other Areas of Requirements Engineering 68
4.3.10 Usage Scenario#2: Classifying Functional Requirements: 70
4.3.11 Threats To Validity . 70

4.4 RQ4: Can we automatically detect and categorize open-source software arti-
facts? . 71
4.4.1 RQ4.1: How can software artifacts be categorized? 72
4.4.2 RQ4.2: How accurate is the proposed approach for automatic software

artifact classification? . 76
4.5 RQ5: What types of artifacts are created during open-source software devel-

opment? . 79
4.6 RQ6: How do experts assess the quality of traceability datasets? 81

4.6.1 RQ6.1: What are the quality attributes that researchers are looking
for when they select datasets? . 81

4.6.2 RQ6.2: What dataset qualities have an impact on the meaningful con-
clusions being drawn from a research project? 86

4.6.3 RQ6.3: What are the datasets quality-attributes that could impact
the generalizability of research results? 86

4.7 RQ7: Does the existing framework for evaluating the quality of traceability
datasets captures the relevant characteristics that experts are looking for? . . 88
4.7.1 Discussion . 90

4.8 T-DQA Web-tool support . 92

5 Conclusions 95

Appendices 110

A Traceability Datasets Quality Survey 111

List of Figures

3.1 Search process stages. 20
3.2 Overview of Automated Approaches to Create Tactic Traceability Training-sets 25
3.3 Two sample API descriptions from technical libraries of (a) MSDN and (b)

Oracle . 28
3.4 Approach overview. 35

4.1 Common Source and Target Artifacts. 47
4.2 Dataset Domains and Frequency of Use. 48
4.3 Source and availability of datasets. 49
4.4 Random Forest Importance Variable Plot. 51
4.5 Authors and their Dataset Diversity. 53
4.6 Results for Detection of Tactic-related Classes at various Classification and

Term Thresholds for five Different Tactics . 57
4.7 The impact of training-set size in manually established dataset on accuracy

of recovering trace links . 61
4.8 User interface for selecting the data generation parameters of BUDGET tool 63
4.9 Configuration parameters for Big Data Analysis, Web-Mining Approach and

Generated Output . 63
4.10 Distribution of primary languages in the sampled projects. 72
4.11 Demographic information about the participants. 81
4.12 Examples of Excerpt from online survey responses, identified codes in open

coding activities, and emerged categories. 82
4.13 Codes emerged from open coding activities and their frequencies. 83
4.14 Quality attributes used by the experts to select datasets and their frequencies

in the experts’ responses. 84
4.15 Expert’s opinion on the relationship between the dataset qualities and research

conclusions. 87
4.16 Expert’s opinion on the relationship between the dataset qualities and gener-

alizability of the results. 87
4.17 Importance of T-DQA attributes from participant’s perspective. 89
4.18 T-DQA Web-Tool Interface . 92
4.19 Datasets Details . 93
4.20 Dataset Search Example . 94

xi

List of Tables

3.1 Venues used in the manual search phase. 18
3.2 Databases used in the automatic search phase. 19
3.3 Inclusion and exclusion criteria. 19
3.4 Extracted dataset items. 20
3.5 Manual Dataset Generated by Experts . 26
3.6 Overview of the projects in Source Code Repository of Big-Data Analysis

Approach . 30
3.7 Existing Traceability-Datasets Sources . 42
3.8 T-DQA Web-Tool Traceability-Datasets Summary 43
3.9 List of T-DQA Web-Tool Datasets . 44
3.10 T-DQA Web-Tool Metrics . 45

4.1 Datasets’ trace space statistics. 49
4.2 Traceability-Dataset Quality Assessment (T-DQA) Framework: dimensions,

and definitions. 54
4.3 Indicator terms learned during training . 56
4.4 A Summary of the Highest Scoring Results 58
4.5 Differences in F-Measure of the Expert-Created and Web-Mining Approaches 58
4.6 Differences in F-Measure of manual expert-created and automated Big-Data

Analysis Approach . 59
4.7 Accuracy of automatically generated training-set 62
4.8 Differences in F-Measure of Expert-Created and Big-Data Analysis Approach

in Näıve Bayes Approach . 65
4.9 Differences in F-Measure of Expert-Created and Web-Mining Approach in

Näıve Bayes Approach . 66
4.10 Sample Regulations Discussed on Technical Libraries 69
4.11 Accuracy of automatically generated datasets in two different areas of require-

ments engineering . 73
4.12 Heuristics applied to identify types of non-documentation related artifacts. . 73
4.13 Extension distribution in the sampled projects. 75
4.14 Sample list of features. 76
4.15 Performance of individual classifiers and 10-fold cross-validation on the train-

ing dataset. 77
4.16 Performance of the classifiers using ensemble learning and 10-fold cross-validation

on the training dataset. 77

xii

LIST OF TABLES xiii

4.17 Performance of the classifiers using ensemble learning and 10-fold cross-validation
on the testing dataset. 78

4.18 Distribution of the different types of software artifacts in the sampled projects. 80
4.19 Updated Framework: T-DQA v.2. 91

Chapter 1

Introduction

The requirements of any software, both functional (FR) and non-functional (NFR), come in
different formats and sizes. These requirements represent the user’s desires for the software
functional features and quality constraints. The ability to trace software requirements to
its code-related artifacts is beneficial to all stakeholders. In fact, for safety-critical systems,
having such trace links is essential to verify the software compliance with the quality re-
quirements. Extracting such trace links manually is time-consuming, expensive and not a
trivial task. Therefore, different automated techniques were introduced by researchers to
automatically generate software trace links with less effort and cost while achieving high
quality.

Automated traceability techniques that rely on machine learning (ML) and information
retrieval (IR) are widely and increasingly being used by researchers and developers. Advances
in this area of research relies on the availability of different types of datasets and artifacts.
Training sets are needed to train trace-algorithms based on ML techniques. For instance,
researchers have used datasets of functional requirements and non-functional requirements
to train classification techniques to create traceability links between quality attributes and
requirements document, design models and source code [46, 127, 144, 151, 167]. Validation
sets are needed to tune algorithm parameters of such trace-algorithms [40,108,127]. Testing
sets are used to test the performance of trace-algorithms on unseen data. For instance,
researchers have used datasets to evaluate the accuracy of a trace-algorithms based on IR
techniques to establish links between requirements and source code [57,63,82,167,177].

Obtaining such software development datasets and manually identify the types of arti-
facts available or lacking in a specific open-source project has been one of the most frequently
reported barriers for researchers in the software engineering domain in general [106, 159].
This problem is even more acute in the area of requirements traceability which is crucial in
safety-critical and highly regulated application domains [42]. Many of the publicly available
open-source systems are not representative of those domains and consequently may not be
suitable to use for training, validation, or testing sets. Thus, a key challenge is to determine
the quality of datasets used to conduct a study, to develop an automated technique, or to
validate the results of research work. Furthermore, it is important to evaluate the quality
of the datasets and to explicitly state the threats to validity associated with the datasets so
that research results are articulated with perspective to the underlying datasets.

1

CHAPTER 1. INTRODUCTION 2

Despite the crucial role of trace datasets, few efforts have been taken to understand the
characteristics and limitations of the datasets in the area of requirements traceability [85]
as well as the threats to validity associated with the results obtained with these datasets.
Similarly, few efforts have been taken to standardize how the datasets quality tracking and
assurance should be implemented [161]. To the best of our knowledge, no previous work
assesses or defines quality dimensions and metrics for traceability datasets.

These challenges motivated us to investigate the possibility of using automated big-data
analysis approaches to generate scientific datasets from thousands of open source projects.
Our overall goal in this research project is to introduce an intelligent system for software
traceability datasets generation that can help researchers in the domain of software trace-
ability in obtaining high-quality “training sets”, “testing sets” or appropriate “case studies”
from open source repositories based on their needs.

1.1 Research Goals

Throughout this research project we aim to achieve the following research goals:

• Goal1. Investigate the statues, characteristics of the existing software traceability
datasets that have been used by the researchers in the community.

This study will shed some light on the current status of traceability datasets which
have been used by researchers and reveals their different characteristics. This will
provides us with solid ground and understanding of the characteristics and limitations
of the datasets in the area of requirements traceability. This knowledge will play a
crucial role when building our datasets generation tool. In addition, it will provide
our community with the ability to detect the areas that can improve the rigorousness
of evaluation and practicality of research.

• Goal2. Assess the quality of traceability datasets.

The adoption of a traceability-datasets quality framework will help researchers eval-
uate the quality of the datasets and their relevancy for specific research tasks. Fur-
thermore, the results and analysis of this study will provide an insight into the tacit
community-wide threats related to the datasets which will help to detect both the
strengths and weaknesses of our empirical foundations.

• Goal3. Automatically generate datasets from open source software repositories.

Automated traceability techniques that rely on machine learning (ML) and informa-
tion retrieval (IR) are widely and increasingly being used by researchers and devel-
opers. Datasets are essential for such algorithms and the advances in this research
area in general. The collection, quality, and availability of such datasets represent
an obstacle. This has been reported barrier for researchers in the software engineer-
ing domain in general. These challenges motivated us to investigate the possibility
of using automated big-data analysis approaches to generate scientific datasets from
thousands of open source projects.

• Goal4. Classification, and automated categorization and detection of open-source
software artifacts

CHAPTER 1. INTRODUCTION 3

In recent years, with the advancement and popularity of the open-source approach to
software development, researchers benefit from publicly available source code reposi-
tories [133]. Software artifacts, other than source code and issue tracking entities, can
also provide a great deal of insight into a software system and facilitate knowledge
sharing and information reuse. Previous studies show that obtaining such artifacts
from open-source projects is non-trivial and researchers lack appropriate automated
support to identify, filter, and browse through such artifacts [188]. More importantly,
we currently lack an in-depth understanding of the various types of software arti-
facts that are available in open-source projects. The common assumption is that
open-source projects often lack software artifacts such as requirements and design
documents.

• Goal5. Traceability Datasets Quality Assessment Survey

Advances in the area of auto-mated software requirements traceability is signifi-
cantly dependent on the quality of the datasets used to train,test, validate, or tune
the underlying machine learning algorithms. Many researchers tried to understand
and analyze the importance and impact of datasets quality from different points of
view [53, 92, 94, 101, 117, 184]. Yet, few efforts have been taken to understand how
experts define quality in traceability datasets and how they asses it.

• Goal6. T-DQA Web-Tool This web-tool is going to be an implementation of our
quality framework that will have all quality metrics applied to datasets. In addition,
this tool will have filtration parameters that help researchers to easily select and
download the datasets that satisfy their research needs.

First, to achieve the first two goals (Goal 1 and Goal 2) in this research project, we
performed a systematic literature review (SLR) to assess the current state of software trace-
ability datasets that have been used by researchers in the community over the past fifteen
years. Specifically, we investigate 1) the characteristics of those datasets, 2) ways to eval-
uate their quality, 3) the threats to validity associated with those datasets, 4) factors that
are associated with their reusability, and 5) the diversity of datasets used in the community.
In addition, we conduct a large-scale study to identify which types of software artifacts are
produced by a wide variety of open-source projects at different levels of granularity.

Through a set of research questions, we aim to explore the diversity, characteristics,
and quality of the used datasets. Furthermore, we introduce a Traceability-Dataset Quality
Assessment (T-DQA) framework to categorize software traceability datasets and assist re-
searchers to select an appropriate dataset for their research based on different characteristics
of the datasets and the context in which those datasets will be used.

Second, to achieve our third goal (Goal 3), we empirically present an empirical study
and novel techniques that advance previous work as well as of future software architecture
traceability research in several important ways. We first develop new approaches based on
(i) Web-Mining and (ii) Big-Data Analysis to automate the creation of traceability datasets.
The Web-Mining technique generates training sets by automatically mining tactic’s APIs
from technical programming websites. In contrast, the Big-Data Analysis technique uses an
ultra-large-scale code repository established in this work to automatically generate quality
training sets. The code repository we have established for this work contains over 116,609
open source projects. Furthermore, we propose an automated approach based on Machine
Learning techniques to identify various types of software artifacts. Through a set of experi-
ments, we report and compare the performance of these algorithms when applied to software
artifacts.

CHAPTER 1. INTRODUCTION 4

Third, to achieve this goal (Goal 4), we conduct a large-scale empirical study involving
383 open-source software projects that are randomly sampled from GitHub. These projects
are studied to obtain an empirically-based understanding of the artifacts developed in open-
source projects. Then we classify all artifacts contained in this sample of open-source projects
using the proposed automatic approach. Then, after using heuristics to manually categorize
artifacts into two groups, we explore various ML algorithms for software artifact classifi-
cation. In the last step, we report the performance of our approach to the validation and
testing datasets and finally, we classify all artifacts present in the 383 open-source projects
and report the prevalence of the different types of artifacts.

Finally, to achieve our final goals (Goal 5, Goal 6), we perform an online survey with
23 practitioners and researchers containing open questions that we analyzed using grounded
theory and open coding. In this work, our aim is to understand how software traceability
experts evaluate the quality of their datasets. In addition, we aim at gathering experts’
opinions on all quality attributes and metrics proposed by T-DQA. Based on the results of
this study and the updated quality framework T-DQA v.2, We have built a web-tool that
utilized these findings and assess the quality of 38 datasets that researchers can choose from
based on multiple quality filters to select what matches their needs.

1.2 List of Contributions

• Our literature review study highlights the detailed characteristics of the datasets used
in the domain of software traceability. This provides an in-depth understanding of
the current state of the datasets used in the community and draws their attention to
the areas that can improve rigorousness of evaluation and practicality of research.

• In our literature review study, we have presented a new quality assessment framework
to reason about traceability datasets, and reveals tacit information about a large
number of datasets used in the community which can highlight the path for addressing
the threats to validity of the research conducted in this area.

• In our literature review study we also makes the tacit community wide threats related
to the datasets explicit. This will help us as a community to better understand the
strengths and weaknesses of our empirical foundations, but also, it will help to make
more informed decisions in assessing and improving the quality of our datasets.

• T-DQA is the first proposed solution in the community and it relies on the knowledge
and frameworks used in other areas of computing. We have collected 73 datasets,
evaluated them using the T-DQA framework, and released the results publicly. These
results can be used as guidelines for the researchers to select datasets based on their
research needs and the characteristics of the datasets.

• In a separate study, we conducted an on-line survey that solicited feedback from 23
software traceability experts. As a result, we proposed T-DQA v.2 which comple-
ments T-DQA based on the feedback collected from the traceability experts. T-DQA
v.2 can be used to characterize existing benchmark traceability datasets and enable
the researchers to better reason about the quality of these datasets within the context
of their research problems at hand.

CHAPTER 1. INTRODUCTION 5

• We provided a web-tool that utilizes T-DQA v.2 to assess the quality of 38 datasets
that we have collected along with their traceability artifacts. This web-tool will
provide researchers with the datasets that matches their needs while being able to
select them based on different quality aspects.

• In our second study, we report a series of empirical studies conducted to compare
the accuracy of a traceability technique trained using the automatically generated
training-sets versus the datasets which are manually established by the experts.

• We provide a tool called BUDGET (available online1) that implements our automated
approaches. BUDGET enables traceability researchers to mine a collection of software
repositories containing 22 million source files to create training sets. BUDGET also
implements several data sampling techniques.

• Our third study of software artifacts detection and classification provide insights into
the types of artifacts created during open-source software development. Although
documentation related artifacts only account for 6.12% of total software artifacts in
open-source software projects, 14.88% of the projects contain either design or require-
ment documents, which is valuable resources for empirical studies that require such
documents.

• We propose a novel approach that utilizes heuristics and various ML classifiers that
automatically classify software artifacts.

1.3 List of Publications

• W. Zogaan, P. Sharma, M. Mirahkorli, and V. Arnaoudova. Datasetsfrom fifteen years
of automated requirements traceability research: Cur-rent state, characteristics, and
quality. In2017 IEEE 25th InternationalRequirements Engineering Conference (RE),
pages 110–121, Sept 2017.

• Waleed Zogaan, Ibrahim Mujhid, Joanna C. S. Santos, Danielle Gon-zalez, and Mehdi
Mirakhorli. Automated training-set creation for soft-ware architecture traceability
problem.Empirical Software Engineering,pages 1–35, 2016.

• J. C. S. Santos, M. Mirakhorli, I. Mujhid, and W. Zogaan. Budget:A tool for sup-
porting software architecture traceability research. In2016 13th Working IEEE/IFIP
Conference on Software Architecture(WICSA), pages 303–306, April 2016.

• Yuzhan Ma, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova,Waleed Zo-
gaan, and Mehdi Mirakhorli. Automatic classification of soft-ware artifacts in open-
source applications. InProceedings of the 15thInternational Conference on Mining
Software Repositories, MSR ’18,pages 414–425, New York, NY, USA, 2018. ACM.

1http://design.se.rit.edu/budget/

CHAPTER 1. INTRODUCTION 6

1.4 Dissertation Organization

The remainder of this document is organized as following: Chapter 2 gives a background
about software traceability datasets and automation of datasets generation. In Chapter 3,
we describes the methodology we followed to address our research questions RQ1, RQ2,
RQ3, RQ4, RQ5, RQ6 and RQ7. Chapter 4 presents our work results towards answering our
research questions. In Chapter 5, we conclude our work and discuss the contributions.

Chapter 2

Background

What is software traceability? “It is simply the potential to relate data that is stored
within artifacts of some kind, along with the ability to examine this relationship [44]. It is
all about establishing round-trip traceability between different software sources and target
artifacts which supports several activities such as architecture-level change-impact analysis,
design reasoning, and long-term system maintenance. Different aspects were tackled by
researchers to address the challenges in this area. The automation of software traceability is
one of the most active research areas where the focus is one utilizing machine learning (ML)
and information retrieval (IR) to automate such process instead of the high-cost manual
one. These algorithms are data-driven and their accuracy and effectiveness rely mainly on
collecting datasets with high quality which leads to other challenges and active research areas
in this domain.

In the remaining of this chapter, we discuss five main groups of related work: systematic
literature reviews (SLRs) in the domain of software traceability (Section 2.1), the use of
Open-Source software as a dataset (Section 2.2), work that assess the quality of datasets
(Section 2.3), work on automated datasets generation (Section 2.4), and work on categoriza-
tion of software artifacts (Section 2.5).

2.1 SLRs in Traceability

Several SLRs exist in field of software traceability [23], [135], [158], [45].
Borg et al. [23] conducted an SLR on Information Retrieval-based trace recovery based

on 79 publications. However, this study mainly focused on the classification of publications
based on the IR techniques used by the authors. In contrast, our study focuses on charac-
terizing the dataset used in the domain of automated software traceability research. Borg
et al. briefly discuss that most requirements documents used by researchers had less than
500 requirements, and results were reported only using precision and recall. However, this
SLR did not focus on studying the datasets used within the community, therefore, it lacks
insights in this regard.

Nair et al. [135] looked at 70 papers related to Software traceability from the Interna-
tional Conference on Requirements Engineering and inspected various aspects of traceability.

7

CHAPTER 2. BACKGROUND 8

The scope of this study was very limited. Regarding the datasets usage, the authors mention
that out of 70 papers, 27 (38.7%) do not specify any details about the datasets. They report
a rising trend in field traceability with an increasing emphasis on quality of experimentation
and academic-industrial partnership.

Santiago et al. [158] conducted an SLR on the impact of Model-Driven Engineering
in traceability. Based on 157 studies, they report that storage, data related operations,
and visualization are more widely studied aspects of traceability compared to exchange and
analysis.

Cleland-Huang et al. [45] analyzed the earlier and current trends in the field of software
traceability. They point out some intriguing future research questions concerning the cost-
effectiveness, trusted, scalable, portable, ubiquitous, and visualization aspects of traceability
techniques. They report that there is a lack of datasets that contain multiple artifact types
(e.g., requirements, design, code, test cases, etc.), which in turn leads to limited studies in
the direction of automation of traceability link evolution.

In this work, we conduct an SLR that focuses on the characteristics of the traceability
dataset as well as their quality. None of the previous studies provide a quality assessment
of datasets. We also investigate the reusability of traceability datasets which again is not
investigated by the above SLRs.

CHAPTER 2. BACKGROUND 9

2.2 Open-Source Software as a Dataset

Godfrey and Tu [77] focus on the evolution of open-source software development and ex-
amine 96 releases of the Linux operating system kernel. This study aims to compare the
evolutionary narratives of open-source with commercially developed systems. However, only
files with “.c” and “.h” extensions are examined. Other source artifacts such as configuration
files and documentation are ignored.

Behnamghader et al. [20] introduce a framework for conducting large-scale replicable
empirical studies of architectural changes across different versions of 23 open-source software
systems. The findings of this work bring new insights into the frequency of architectural
changes in software systems.

Munaiah et al. [133] propose a framework that helps researchers to identify GitHub
repositories that contain engineered software projects. The proposed work defines dimensions
that are used to classify software engineered projects by validating the existence of such
dimensions in GitHub repositories.

Tian et al. [169] propose a technique using LDA to automatically categorize open-source
applications. The proposed technique, called LACT, is evaluated in two studies and the
results show that LACT can effectively and automatically categorize software systems re-
gardless of their programming language.

Vendomo et al. [173] conduct an empirical study aiming at identifying and automatically
detecting exceptions in open-source software licenses by relying on machine learning. They
analyze the source code of 51K projects written in six programming languages and identify
14 different license exception types.

Caniell et al. [31] present a dataset that contains source code and related metadata of
FOSS history for the Debian operating system. This dataset contains over 30 million code
files in C and C++ along with their related metadata files.

In addition, there are a number of projects in the area of mining open-source software
repositories [66, 186] with primarily focus on studying the source code and coding issues.
There is a limited experimental research on using such resource to generate scientific datasets
with diverse artifacts.

2.3 Assessing the Quality of Datasets

Data quality assessment frameworks are adopted in various fields of computing such as
requirement engineering [53], information systems [101] [116], web linked data [184], data-
warehousing [92] [120], and health-care [139], [94] to assess the quality of scientific datasets.
Some of these frameworks are specific to a domain, while others are applicable to broad
range of scientific datasets.

Liebchen et al. [106] conducted a systematic review of 23 papers to study accuracy
(noisiness) based data quality. They conclude by stating that data quality should be taken
into account while selecting a dataset. Another area of focus should be in identifying and
correcting noisy datasets along with taking into account the impact of these noisy datasets
on the result of the particular studies.

Bosu et al. [24] analyzed papers concerning data quality and identified issues within
them. They emphasize the importance of quality in datasets in software engineering case
studies. In accordance with [23], [135] and [45], Bosu et al. highlight the need for industrial
collaboration to understand and improve data quality.

CHAPTER 2. BACKGROUND 10

Wang et al. [174] conducted a market research survey to derive a total data quality frame-
work adhering to the needs of the consumer. They broadly categorized their sub-dimensions
and data quality metrics under four labels: Intrinsic, Contextual, Representational, and
Accessibility.

Zaveri et al. [184] surveyed 30 existing data quality assessment approaches and derived
18 dimensions and 69 metrics for assessing the quality of linked data. They also draw
a comparative analysis of 12 tools based on eight different attributes. They conclude on
improving the tools for ease of use and result interpretation.

None of the previous studies considered the quality assessment for software traceability
datasets. Our goal is to propose a novel Dataset Quality Framework, we call it Traceability-
Dataset Quality Assessment (T-DQA) tailored to the field of traceability, and based on
several statistical metrics.

CHAPTER 2. BACKGROUND 11

2.4 Automated Datasets Generation

There have been many works in the area of data mining and information retrieval to facilitate
training set selection in text classification problems. However, the fundamental assumptions
in this line of research is that a large number of labeled data points exists and these ap-
proaches try to incorporate various sampling [163, 176], instance selection [29, 32, 69] and
data reduction techniques [143, 176] to obtain a small representative sample. Unlike these
approaches, we do not make such an assumption and the main problem in the area of software
traceability is the lack of any labeled data.

In the context of data mining, Zarei et al [183] described the automatic generation
of training datasets for classifying Peer-to-Peer (P2P) traffic. The generation of training
samples was made through sampling packets from incoming traffic and selecting some of
them based on heuristics and statistical models. One advantage of this approach is that
it could continuously update the classifier through collecting data periodically, so allowing
their classification mechanism to detect new traffic patterns. By applying their dataset to
classify incoming packets to a university network, their classifier was able to detect the
traffic flow with higher than 98% accuracy when using the generated training data with a
false positive rate of about 1.3%. These generated datasets, however, can be applied only for
P2P traffic classification while our approach aims to solve the problem of reusable datasets
for the software architecture domain.

Other research studies proposed to automatically generate training samples to improve
their classification accuracy by increasing the size of the training datasets. For instance,
Varga and Bunke [30] showed a training set generation for text recognition of handwritten
documents. Their training data was generated through performing geometrical transforma-
tions into existing samples of handwritten lines of text. Through a set of experiments, they
showed that the use of the generated training data increased the recognition rate of hand-
written text. Similarly, Guo and Viktor [80] approached the problem of adjusting unbalanced
training data (when the number of samples from one class is significantly higher than the
others) through the automatic generation of training samples from existing ones in the form
of a short-sized class of datasets. Contrasted to our approach, these solutions still need the
manual collection of labeled training samples in order to produce more training data sets
whereas our method does not need such samples. In fact, they were concerned about increas-
ing training data size rather than providing a solution to automatically generate training
data samples for being reused by classifiers within the same domain.

Several independent software engineering communities are providing mechanisms for
publishing and sharing datasets. The Mining Software Repositories (MSR) conference holds
a Data Track every year where researchers can publish and share their dataset. The Center
of Excellence for Software Traceability holds traceability challenges where researchers can
share their datasets related to software traceability challenges. Most works published on
these repositories are based on manually created datasets [107]. In our work, we utilize a
massive amount of public data on the web and large scale software repositories and provide
required automation to create high-quality datasets.

2.5 Categorization of Software Artifacts

Robles et al. [153] analyze source code artifacts from versioning repositories beyond source
code and provide insights into software projects from both a technical and management
point of view. Robles et al. [154] propose a semi-automatic approach that determines the

CHAPTER 2. BACKGROUND 12

availability and quantity of documentation and source code comments in a libre software
package. In both studies, only file extensions and names are utilized to identify the different
types of files. Our approach is complementary to this study since we use file content in
addition to file name and extension when classifying artifacts. We use manually extracted
features and machine learning algorithms to classify documentation related artifacts thus
proposing a fully automated approach.

Gousios and Zaidman [79] introduce pullreqs, a dataset of almost 900 OSS GitHub
projects and 350,000 pull requests that are used to study the pull request distributed de-
velopment model. The main focus of their study is to understand the principles that guide
pull-based development. Do et al. [64] design and construct an infrastructure to support
controlled experimentation with testing techniques. The infrastructure includes artifacts
(programs, versions, test cases, faults, and scripts) that enable researchers to perform con-
trolled experimentation and replications. While these studies provide artifacts that can be
used to improve the understanding of one aspect of OSS development, we complement these
works by automatically detecting and categorizing multiple OSS artifacts, which can be
beneficial to various OSS development activities.

Mirakhorli and Cleland-Huang [129] present an approach using ML to discover architec-
tural tactics in code. The ML classifier is trained using code snippets extracted from OSS
systems to automatically detect and categorize code-related files that contain ten common
architectural tactics. Our study is not limited to a specific artifact type. Instead, we cate-
gorize both documentation related and non-documentation related artifacts, including but
not limited to code related files.

Kalliamvakou et al. [95] conduct a study to understand the characteristics of the repos-
itories and users in GitHub. They analyze a GHTorrent dump [73] to identify a set of perils
that software engineering researchers should consider when utilizing GitHub repositories in
their studies. While this study focuses on the projects and user’s characteristics, we analyze
and classify software artifacts.

2.6 Surveys in software engineering

Several studies solicit experts’ opinion in the domain of software engineering and software
traceability [13,14,25,115,178].

Bouillon et al. [25] conducted an online survey to explore the most relevant traceability
usage scenarios to practitioners. They identify a list of 29 regularly cited usage scenarios
and via an online survey, they asked 56 practitioners to assess how frequently they are using
each one in their projects. The results showed that all listed traceability scenarios to be used
by practitioners.

Malviya et al. [115] presented an empirical study to elicit and analyze the queries of
29 requirements professionals to understand what questions do they ask when performing
requirements engineering tasks. Using an online survey, the data was collected from the
participants and analyzed using open coding and grounded theory. The study resulted in
identifying 159 questions and 80 different types of artifacts that practitioners use.

To understand why and how often developers rename program identifiers, Arnaoudova
et al. [13] conducted a survey with 71 industrial and open-source developers. Results show
that developers tend to rename identifiers to improve the quality of the source code lexicon
and its consistency with the program functionality. In addition, they proposed an automated
approach to document, detect and classify identifier renamings in the source code.

CHAPTER 2. BACKGROUND 13

In another work, Arnaoudova et al. conducted two online studies with 44 developers
to understand developers’ perception of Linguistic Antipatterns, i.e., recurring poor prac-
tices related to inconsistencies among the naming, documentation, and implementation of a
software entity [14].

Yamashita et al. [178] conducted a survey with 85 professional software developers with
the goal of understanding if they consider code smell important. The results showed that
32% of the respondents do not know about code smells.

Many researchers tried to understand and analyze the importance and impact of datasets
quality from different points of view [53,92,94,101,117,184]. Yet, few efforts have been taken
to understand how experts define quality in traceability datasets and how they asses it. Fur-
thermore, there is a need to introduce metrics and ways of measurements to help researchers
better assess the quality of their datasets. Among those, Hayes et al. [86] emphasize the
utilization of vetting processes and tools to ensure the dataset’s quality. Bosu et al. [24]
have developed a taxonomy presenting data quality issues in empirical software engineering.
In a previous study [188], we introduced a Traceability-Datasets Quality Assessment (T-
DQA) framework that defines quality dimensions and metrics for traceability datasets. The
framework was defined through the mean of a systematic literature review and adaptation
of existing quality assessment frameworks to the domain of software traceability. This is the
most relevant work in the domain of software traceability and also the most comprehensive
approach. However, to the best of our knowledge, this approach has not been evaluated by
experts in the domain of software traceability, nor directly driven from their feedback. Thus
it is unclear whether traceability experts agree with the proposed framework and whether it
is complete.

These studies all focused on software development activities and requirements engineer-
ing tasks. Our focus in this study is to understand what quality attributes experts use to
evaluate software traceability datasets and what is their opinion on the existing T-DQA
framework. To this end, as the above previous works, we conduct an online survey.

Chapter 3

Methodology

In this section, we discuss in detail our research goals along with the main and sub-research
questions that we are seeking an answer to achieve each goal. In addition, we describe the
methodology to follow in order to achieve our goals and answer our research question.

3.1 Research agenda

In order to reach our goals, we plan to go through the following steps:

1. Investigate the characteristics and types of software traceability datasets that have been
used by the researchers within the community: We aim to assess the existing datasets
and have some insight about their diversity and quality. Also, we want to understand
the challenges of obtaining such datasets. Therefore, we are seeking an answer to the
following research questions:

• RQ1: What are the statues, characteristics and types of the existing
software traceability datasets that been used by the researchers in
the community?

– RQ1.1: What are the source and target artifacts in traceability datasets?

– RQ1.2: Which application domains are represented by traceability datasets?

– RQ1.3: What is the size of traceability datasets?

– RQ1.4: What proportion of the traceability datasets is from industry, open-
source projects, and student generated data?

– RQ1.5: Are traceability datasets available for reuse?

– RQ1.6: Is there a relation between the characteristics and the quality of
traceability datasets on the one hand and their reusability on the other
hand?

– RQ1.7: What are the threats to validity associated with traceability datasets?

– RQ1.8: Do we, as a community, strive for a diversity of traceability datasets?

14

CHAPTER 3. METHODOLOGY 15

2. Can we build a data quality framework to help assess the quality of open-source soft-
ware and industrial projects: We will investigate existing frameworks used by re-
searchers for evaluating their datasets and how can we adapt those to traceability
datasets. In this step, we aim to answer the following research questions:

• RQ2: How to assess the quality of traceability datasets?

– RQ2.1: Is there a relationship between the characteristics and the quality of
traceability datasets on the one hand and its reusability on the other hand?

3. Investigate the potential of leveraging open source projects and automatically sample
and generate useful datasets from them: Our goal is to investigate the potentials of
using automated big-data analysis and web-mining approaches to generate scientific
datasets from thousands of open source projects. Also, we aim to compare the quality
of the generated datasets with datasets created by experts. First, we will conduct a
preliminary study on one traceability scenario. In this step, we aim to answer the
following research questions:

• RQ3: Is it feasible to automatically generate datasets from open-
source software repositories?

– RQ3.1: Does the training method based on automated web-mining result
in higher trace-links classification accuracy compared to an expert-created
training set?

– RQ3.2: Does the training method based on automated big-data result in
higher trace-links classification accuracy compared to an expert-created train-
ing set?

– RQ3.3: What is the impact of training set size on the accuracy of trace link
classification?

4. Classification and automated detection and categorization of software artifacts: The
common assumption is that open-source projects often lack software artifacts such as
requirements and design documents. In this work, we aim at improving the under-
standing of open-source projects by investigating this common assumption. Then we
propose an automated approach based on Machine Learning techniques to automat-
ically identify various types of software artifacts. In this step, we aim to answer the
following research questions:

• RQ4: Can we automatically detect and categorize open-source soft-
ware artifacts?

– RQ4.1: How can software artifacts be categorized?

– RQ4.2: How accurate is the proposed approach for automatic software arti-
fact classification?

• RQ5: What types of artifacts are created during open-source software
development?

5. Traceability datasets quality assessment survey: In this study, we conduct an online
survey with software traceability experts to (i) solicit their opinion about dataset

CHAPTER 3. METHODOLOGY 16

quality attributes in a data-centric filed such as software traceability; evaluate the
T-DQA framework (ii) identify the shortcoming of the T-DQA framework through
discovering additional measurement and metrics to be added to the framework.

This study sheds light on how experts define quality for traceability datasets and how
they asses it. In particular, we seek answers to what quality aspects they consider the
most important when they choose among different datasets. In this step, we aim to
answer the following research questions:

• RQ6: How do experts assess the quality of traceability datasets?

• RQ7: Does the existing framework for evaluating the quality of trace-
ability datasets captures the relevant characteristics that experts are
looking for?

To achieve the previously mentioned research goals and answer our research questions,
we have adopted following methodology:

3.2 Goal 1: Investigate the characteristics and types
of software traceability datasets:

To go through this step and investigate the characteristics and types of software traceability
datasets that been used by the researchers within the community, we conducted a systematic
literature review (SLR) that assesses the quality and characteristics of the used datasets in
traceability research for the last fifteen years. We performed a preliminary search to retrieve
existing literature reviews in the domain of software traceability and potential relevant stud-
ies. We found a few SLRs that are discussed in Section 2.1 but none of them address the
research questions that we defined. To identify and collect the datasets used in software
traceability community, we covered all published full papers with empirical and automated
software traceability theme. We followed the guidelines that were established by Kitcheman
et al. [97] for SLR in Software Engineering. In this work, by traceability dataset we mean any
form of data used by traceability researchers such as training set, testing sets, validation set,
answer set, and case studies. This study provided us with knowledge that helped answering
our first research question (RQ1) where we identified 73 different datasets from 78 different
research paper in the traceability domain.

In the followings we present our research questions (Section 3.2.1), the search strat-
egy that we have used to identify relevant publications (Section 3.2.2), the inclusion and
exclusion criteria that we used (Section 3.2.3), the overview of the paper selection process
(Section 3.2.4), and finally, the details of the data extraction approach from each paper
(Section 3.2.5) that allowed us to answer the research questions.

3.2.1 Research questions

• RQ1: What are the statues, characteristics and types of the existing soft-
ware traceability datasets that been used by the researchers in the com-
munity?

To answer this research question we define the following sub-research questions:

CHAPTER 3. METHODOLOGY 17

– RQ1.1: What are the source and target artifacts in traceability datasets? We
will collect the source and target types of the datasets and we will summarize
the results by considering all traceability links types as bi-directional.

– RQ1.2: Which application domains are represented by traceability datasets? We
will identify the domain of each dataset and we will group the datasets based
on their domains.

– RQ1.3: What is the size of traceability datasets? To provide a standardized
way of reporting size, we use a metric called trace space that provides a proxy
for the complexity of a dataset. Trace space, D, is defined as the product of
the size of the source and the size of the target artifacts:

DTraceSpace = |DSource| × |DTarget| (3.1)

Note that trace space defines the maximum number of trace links between two
artifacts.

– RQ1.4: What proportion of the traceability datasets is from industry, open-source
projects, and student generated data? We will use frequencies to answer this
research question.

– RQ1.5: Are traceability datasets available for reuse? We will investigate whether
the datasets are available online.

– RQ1.6: Is there a relation between the characteristics and the quality of trace-
ability datasets on the one hand and their reusability on the other hand? To
answer this research question we use Random Forest, a machine learning algo-
rithm used for creating classification and regression trees. Random Forest can
be also used for ranking the importance of different features [27]. The process
of building a tree is iterative where the goal at each node is to split the data
by using one variable only that best differentiates the data with respect to the
dependent variable, i.e., create two nodes that are more homogeneous or more
pure than the original node. Node purity is calculated using the residual sum
of squares. We use the total decrease of node impurity, IncNodePurity, as
an indication of the variable importance. A higher value of IncNodePurity
indicates more important input variable.

– RQ1.7: What are the threats to validity associated with traceability datasets? We
will categorize and summarize the threats to validity related to the usage of
datasets, acknowledged or mitigated by the studied papers.

– RQ1.8: Do we, as a community, strive for a diversity of traceability datasets? This
would provide an insight on whether the same datasets are used for all the re-
search problems in hand or whether we seek to adopt new datasets for different
research problems. For authors that have published more than one papers, we
calculate a ratio that represents the diversity of the datasets that they use.
The diversity ratio for author i, DiversityRatioi, is defined as the number
of unique datasets, UniqueDataseti, divided by the total number of datasets,
TotalDatasetsi, used across the publications of author i.

DiversityRatioi =
UniqueDataseti
TotalDatasetsi

(3.2)

CHAPTER 3. METHODOLOGY 18

3.2.2 Search strategy

A search strategy is fundamental for any SLR to ensure that all relevant studies are consid-
ered for accurate conclusions [97, 185]. Our search strategy consists of the following main
elements: search methods, search terms, and data sources. We performed a preliminary search
to retrieve existing literature reviews in the domain of software traceability. We found a few
SLRs that we discuss in Section 2.1 but none of them address the research questions that
we defined.

Table 3.1: Venues used in the manual search phase.

Conferences
ICSE International Conference on Software Engineering
TEFSE International Workshop on Traceability in Emerging Forms of Software Engineer-

ing
ASE International Conference on Automated Software Engineering
ESEC European Software Engineering Conference
FSE International Symposium on Foundations of Software Engineering
SST International Symposium on Software and Systems Traceability
RE International Requirements Engineering Conference
REFSQ International Working Conference on Requirements Engineering: Foundation for

Software Quality
COMP-
SAC

IEEE Computer Society International Conference on Computers, Software and
Applications

ICSM International Conference on Software Maintenance
MSR International Conference on Mining Software Repositories
WICSA Working IEEE/IFIP Conference on Software Architecture
ICPC International Conference on Program Comprehension
ECSA European Conference on Software Architectures

Journals
EMSE Empirical Software Engineering Journal
TSE IEEE Trans. on Software Engineering Journal
ISSE Innovations in Systems and Software Engineering Journal
SEP Journal of Software: Evolution and Process
TOSEM ACM Trans. on Software Engineering and Methodologies
REJ Requirements Engineering Journal

We conducted our search using both manual and automatic methods to ensure that we
cover as many relevant venues and electronic data sources as possible [185]. In the manual
search, we went through all papers published in the venues listed in Table 3.1. We built
an initial list of relevant venues that we augmented by contacting traceability experts for
suggestions on other related sources (conferences, journals, research groups active in this
domain or individual papers). Table 3.1 contains venues that are considered high quality
venues for software requirements (e.g., RE, TEFSE, and REJ), while other venues have a
broader and generic theme (e.g., ICSE, TSE, and TOSEM). In the automatic search, we
defined a set of search terms. We started with key terms used in traceability papers such
as requirements and traceability. To be as generic as possible we expanded the search terms
to include software traceability which resulted in our final query as follows: (software OR
requirement) AND traceability. We used the search terms during the automatic search to
search in the electronic data sources listed in Table 3.2 by matching the terms with the title,
keywords, and abstract of each paper.

CHAPTER 3. METHODOLOGY 19

Table 3.2: Databases used in the automatic search phase.

ID Database Web address
1 ACM DL http://portal.acm.org
2 IEEE Explorer http://www.ieee.org/web/publications/ xplore
3 SpringerLink http://www.springerlink.com
4 ScienceDirect http://www.elsevier.com

Table 3.3: Inclusion and exclusion criteria.

Inclusion criteria
I1 A Full paper.
I2 Focus on software (requirements) traceability.
I3 Proposed/used/evaluated an automated traceability technique.
I4 Used data-sets in their study.

Exclusion criteria
E1 Position papers, short papers, tool demo papers, keynotes, reviews, tu-

torial summaries, and panel discussions.
E2 A study that is not written in English.
E3 Duplicated studies.
E4 No datasets or case studies.

3.2.3 Inclusion and exclusion criteria

The inclusion and exclusion criteria are specified in Table 3.3 and were applied at differ-
ent stages to all of the retrieved studies (See Figure 3.1). To limit the scope of our SLR,
we included all studies that were published between 2000 and 2016. We have selected all
studies that have used datasets, case studies or empirical data to develop, validate, train,
or test traceability techniques. Papers that only presented approaches or an idea without
empirical data-based validation were excluded. We considered only studies that focus on
automated software traceability, therefore, papers related to models and processes of soft-
ware traceability were excluded. In addition, we excluded short papers, workshops, and
tool demonstration papers. Lastly, all duplicated studies found from different sources were
identified and removed.

3.2.4 Study selection process

Figure 3.1 shows the number of studies selected at each stage of the SLR. The initial search
process resulted in 1011 and 5398 papers that were collected during the manual and auto-
matic search, respectively. Because of a large number of retrieved papers (6409), we selected
the first set of papers that could be relevant to our study by reading their title, keywords,
and abstract [28]. From 6409 papers, we selected 202 papers as the primary studies. All
these 202 papers were reviewed by two of the authors of this paper. In this review process,
the inclusion/exclusion criteria were applied and the rationale for these decisions was docu-
mented. The rationale for including/excluding the studies were reassessed and discussed in
separate group discussions. If a paper satisfied all inclusion criteria, it was considered as a
primary study and was included in SLR. Our final list included 78 papers.

CHAPTER 3. METHODOLOGY 20

Stage 1

Stage 2

Stage 3

Manual Search Automatic Search

Combined Studies

1011 5398

6409

Apply inclusion and exclusion criteria
by reading title, keywords & abstract

202

Apply inclusion and exclusion
criteria by reading full paper 78

Figure 3.1: Search process stages.

Table 3.4: Extracted dataset items.

Data item Related RQs
The Name & Traceability Artifacts RQ1, RQ1.1
The Application Domain RQ1, RQ1.2
The Size (trace space) RQ1.3, RQ2
The Type (private, student, or open source) RQ1.4, RQ2
The Availability and link to the source RQ1.5, RQ2
The Licensing, Storage, Developer, Programming Language RQ2, RQ3
The Threats to validity related to the datasets that are acknowl-
edged or mitigated in the paper.

RQ4

CHAPTER 3. METHODOLOGY 21

3.2.5 Data extraction

In the data extraction phase, we collected all information from the selected studies that was
necessary to answer our research questions. First, we extracted basic information about the
papers such as the list of the author(s), year of publication, title, venue, and publication
type (full paper, short paper, etc.). Then, through a set of group studies, we identified,
extracted, and organized the information about the datasets used in each research paper.
Table 3.4 provides an overview of the dataset items that were extracted from each paper and
the research questions that require those items.

3.3 Goal 2: Building data quality framework:

For our second step, ”building a data quality framework”, to answer our second research
question (RQ2, RQ2.1) we are looking into the data extracted from our SLR study and
what metrics been used by the researchers to assess their datasets quality. Also, we are
looking into other domain quality assessments metrics that could potentially be used in the
traceability domain to assess software traceability datasets.

We have studied several data quality frameworks and looking into adapting them to the
domain of software traceability so that we can assess the quality of traceability datasets. As
a result, we can propose a Traceability-Data Quality Metric framework that is suited for
assessing datasets in the field of traceability.

3.4 Goal 3: Feasibility of automatically generate
datasets from open source software repositories:

For our third step and to answer its research questions (RQ3.1, RQ3.2, RQ3.3), we
conducted a preliminary study with limited scope and covered only architecture tactics
datasets [187]. In this work, we presented three baseline approaches for the creation of
training data for the problem of tracing architectural concerns. These approaches are (i)
Manual Expert-Based, (ii) Automated Web-Mining, which generates training sets by auto-
matically mining tactic’s APIs from technical programming websites, and lastly (iii) Auto-
mated Big-Data Analysis, which mines ultra-large scale code repositories to generate training
sets. Development of such approaches relies on the existence of large, (un)structured and
rich knowledge bases. Since both The Web and ultra-large-scale code repositories have such
characteristics, one key novelty of the proposed work in this study is to utilize such resources
and develop new techniques to help scientists in the area of software architecture traceability
to obtain high-quality datasets. The manual dataset that we used was established by experts
in previous work by M. Mirakhorli et al. [130,131]. They used a manual approach to collect
datasets to train their tactic classifier. The training set was established by experts in the area
of software architecture and requirements engineering. Then this dataset was peer reviewed
and evaluated by two additional independent evaluators. The dataset of files implementing
architectural tactics was discovered through rigorous search and validation approach that
resulted in a high quality and precise traceability dataset. However, the cost associated with
this approach is substantially high. For instance, it took them about 3 months to collect
and peer review tactical data from 10 different projects for 5 architectural tactics. In our
study, we compared the trace-link creation accuracy achieved using each of the three baseline
approaches and discuss the costs and benefits associated with them.

CHAPTER 3. METHODOLOGY 22

3.4.1 Research questions

• RQ3: Is it feasible to automatically generate datasets from open source
software repositories?

To answer this research question we define the following sub-research questions:

– RQ3.1: Does the training method based on automated web-mining result in higher
trace-links classification accuracy compared to an expert-created training set?

Through a set of experiments, we investigated this research question. Our
empirical analysis indicates that the web-mining approach presented in this
work produces high quality training set. The accuracy of trace-link classifier
trained using the web-mining approach is comparable to the classifier trained
using expert-created dataset. The statistical analysis shows that the differences
are not statistically significant. This finding can expand the current state of
software architecture traceability, by facilitating the creation of training data
through use of our proposed automated technique.

– RQ3.2: Does the training method based on automated big-data analysis result
in higher trace-links classification accuracy compared to expert-created training
set?

The results of our empirical study indicate that the proposed novel Big-Data
Analysis approach creates high quality training-set. In two experiments out of
five, the accuracy of trace-link classifier trained using the Big-Data Analysis
approach was better than the classifier trained using expert-created dataset.
Overall, the differences between the accuracy of these two training methods
is not statistically significant. Therefore, the Big-Data Analysis approach can
be used to help researchers create high quality datasets of architectural files.
Manually creating such dataset is very time consuming and our automated
technique provides a significant reduction in training set creation time

– RQ3.3: What is the Impact of Training Set Size on the Accuracy of Trace Link
Classification?

Through this research question we aim to perform a cost-benefit analysis for
the cases where the training-set is established manually by experts. The goal
is to investigate whether it is worth the effort to manually create large training
set with the hope of achieving higher accuracy. In an experiment we compared
the trace link classification accuracy of a classifier trained using 10, 20, 30, 40
and 50 projects. The results indicate that there is not a significant difference
in the accuracy of the classifier for different training set sizes.

3.4.2 Study scope

As we mentioned earlier that this is a preliminary study with limited scope and covered only
architecture tactics datasets. The goal was to investigate the feasibility of using automated
techniques to generate useful training-sets with similar quality to manual-created datasets.

Tactics serve as a building block of software architecture and are used to satisfy a specific
quality. A definition of tactics is provided by Bachman et al. [15] who define a tactic as a
“means of satisfying a quality-attribute-response measure by manipulating some aspects of
a quality attribute model through architectural design decisions”.

CHAPTER 3. METHODOLOGY 23

We limited the focus of this work to five tactics: heartbeat, scheduling, resource pooling,
authentication, and audit trail. These were selected because they represent a variety of reli-
ability, performance, and security requirements. They are defined as follows [16]:

• Heartbeat: A reliability tactic for fault detection, in which one component (sender)
emits a periodic heartbeat message while another component listens for the message
(receiver). The original component is assumed to have failed when the sender stops
sending heartbeat messages. In this situation, a fault correction component is notified.

• Scheduling: Resource contentions are managed through scheduling policies such as
FIFO (First in first out), fixed-priority, and dynamic priority scheduling.

• Resource pooling: Limited resources are shared between clients that do not need
exclusive and continual access to a resource. Pooling is typically used for sharing
threads, database connections, sockets, and other such resources. This tactic is used
to achieve performance goals.

• Authentication: Ensures that a user or a remote system is who it claims to be.
Authentication is often achieved through passwords, digital certificates, or biometric
scans.

• Audit trail: A copy of each transaction and associated identifying information is
maintained. This audit information can be used to recreate the actions of an attacker,
and to support functions such as system recovery and nonrepudiation.

3.4.3 Traceability challenge: identifying Tactic-Related classes

In previous work [126,131] M. Mirakhorli et al presented a novel approach for tracing archi-
tectural tactics to the source code. As a tactic can be implemented in several ways, through
structuring the source code in many different forms, we cannot use structural analysis as the
primary means of identification. Their approach therefore relied primarily on information-
retrieval (IR) and machine learning techniques to train a classifier to recognize tactics in the
source code through learning the specific terms that occur commonly across implemented
tactics. A tactic-classifier was used to identify all classes related to a given tactic, thereby
establishing traceability links from tactics to the code [128] . The classifier needs to be
first trained by several sample implementation of each tactic, and it includes three phases of
preparation, training, and classification which are defined as follows:

Data preparation phase: In this phase, the source code of both the training set
and the system under test are preprocessed using standard information retrieval techniques
(stemming, stop terms removal, etc). This way, each source code is represented as a vector
of terms.

Training phase: The training phase takes a set of pre-classified code segments (i.e.,
training set) as input, and produces a set of indicator terms, that are considered to be repre-
sentative of each tactic type, along with a weight score, which shows the level of importance
of a specific indicator term with respect to the tactic. For example, a term such as priority
is found more commonly in code related to the scheduling tactic than in other kinds of code
and therefore receives a higher weighting with respect to that tactic. In short, the weight
score is the probability that a given term is related to a specific tactic in the training set
provided as input.

CHAPTER 3. METHODOLOGY 24

The training formula has three parts. The first part normalizes the frequency with
which term t occurs in the training document with respect to its length. The second part
computes the percentage of training documents of type q containing term t. Lastly, the third
part decreases the weight of terms that are project-specific.

More formally, let q be a specific tactic such as heartbeat. Indicator terms of type q are
mined by considering the set Sq of all classes that are related to tactic q. The cardinality of
Sq is defined as Nq. In equation 3.3 Nq(t) refers to the total number of tactic related training
files containing the term t, while N(t) refers to the total number of documents containing
term t. NPq(t) refers to the total number of tactical projects containing term t and NPq

refers to the total number of projects in the training data. Through the training process,
each term t is assigned a weight score Prq(t) that corresponds to the probability that a
particular term t identifies a class associated with tactic q. The frequency freq(cq, t) of term
t in a class description c related with tactic q is computed for each tactic description in Sq.
Prq(t) is then computed as:

Prq(t) =
1

Nq

∑
cq∈Sq

freq(cq, t)

|cq|
∗ Nq(t)

N(t)
∗ NPq(t)

NPq
(3.3)

After calculating the weight score (Prq(t)) for each term t, this phase consider that a
term is an indicator term if it is higher than a fixed value (term threshold).

Classification phase: During the classification phase, the indicator terms computed
in Equation 3.3 are used to evaluate the likelihood (Prq(c)) that a given class c is associated
with the tactic q. Let Iq be the set of indicator terms for tactic q identified during the
training phase. The classification score that class c is associated with tactic q is then defined
as follows:

Prq(c) =

∑
t∈c∩Iq Prq(t)∑
t∈Iq Prq(t)

(3.4)

where the numerator is computed as the sum of the term weights of all type q indicator
terms that are contained in c, and the denominator is the sum of the term weights for all
type q indicator terms. The probabilistic classifier for a given type q will assign a higher
score Prq(c) to class c that contains several strong indicator terms for q. This score Prq(c)
indicates how similar the code is to an implementation of the tactic. Hence, if this probability
is higher than a fixed value (classification threshold), the code is considered as tactical file.

3.4.4 Overview of the three baseline techniques

As previously stated, the scope of this project is to presents novel automated techniques
to create training sets for the problem of tracing architectural tactics. These automated
techniques are designed to create software traceability datasets with little or no upfront cost
while achieving similar (or better) quality than datasets established by experts.

In a series of experiments we rigorously evaluate and compare three baseline training
set creation techniques: (i) Manual Expert-Created approach, (ii) Automated Web-Mining
approach which creates training-set through mining technical API libraries on the World
Wide Web, and (iii) Automated Big-Data Analysis technique which creates code based
training-set through mining code snippets from ultra-large-scale source code repositories.

CHAPTER 3. METHODOLOGY 25

The proposed automated training set creation techniques as well as the traditional
expert-created approach are illustrated in Figure 3.2. In the case of the manual expert-
created approach, architects collect, review and refine the training set. In the case of the
automated techniques, a description of the tactic from textbooks (or a set of tactic related
terms) can be used as a tactic-query. Then, in each approach, advanced searching and filter-
ing techniques are used to identify API descriptions or actual implementation of the tactic
from technical libraries or open source software repositories.

In the following sections we describe each of these baseline techniques. Then in section
3.4.8 we report empirical studies conducted to compare them.

3.4.5 Baseline method 1: expert-created approach

In previous work [130,131] M. Mirakhorli et al. used a manual approach to collect datasets
to train our tactic classifier. The training set shown in Table 3.5 was established by experts
in the area of software architecture and requirements engineering. Then this dataset was
peer reviewed and evaluated by two additional independent evaluators. The subject matter
experts involved in the project had two to eight years of experience as software architects.
The dataset of files implementing architectural tactics were discovered through the following
process:

• Direct Code Search: The source code search engine Koders [3] was used to search
for the tactic. The tactic-query for each tactic was composed of keywords used in

Web-mining agent: Custom-

search engine to retrieve

relevant API specifications.

Web-pages
describing APIs to
implement tactics

http://docs.oracle.com

http://docs.python.org

http://msdn.microsoft.com/library

HeartBeat Audit Tactic i

Tactic Query
Terms from

Textbooks

Traceability
Indexing

Processes
Term-Documents

Indexes (TF/DF/IDF)
for over 22 Million

Source Files

Automatically
Generated Datasets

Data Generator
Parallelized Vector
Space Model (VSM)

Running on Indexes

...

Heartbeat Audit

Baseline Method ❷:
Web-Mining Approach to Create Traceability
Datasets

Baseline Method ❸: Big-Data Analysis Approach to Create Traceability Datasets

Sec. Session

...

Tactic Query
Terms from
Textbooks

Direct Code Search via

GoogleCode, Koders,

SourceForge

Indirect Project Selection
Based on Documents

Codes Retrieved from Tutorials

and How to Examples

...

Heartbeat

Audit

Tactic i

P
e

e
r

R
e

v
ie

w
 P

ro
ce

ss

P
e

e
r

R
e

v
ie

w
 P

ro
ce

ss

Tactic i

22 Million Source Files

Baseline Method ❶:
Expert-Based Approach to Create Traceability Datasets

Code Crawler

Code Crawler

Code Crawler

...

Figure 3.2: Overview of Automated Approaches to Create Tactic Traceability
Training-sets

CHAPTER 3. METHODOLOGY 26

Table 3.5: Manual Dataset Generated by Experts

Tactic Projects

Audit 1-Jfolder(Programming), 2-Gnats(Bugs Tracking),
3-Java ObjectBase Manager(Database), 4-Enhydra
Shark(Business, workflow engine), 5-Openfire aka
Wildfire(Instant messaging), 6-Mifos(Financial),
7-Distributed 3D Secure MPI(Security), 8-
OpenVA.(Security), 9-CCNetConfig(Programming),
10-OAJ (OpenAccountingJ)(ERP)

Scheduling 1-CAJO library(Programming), 2-JAVA
DynEval(Programming), 3-WEKA Remote En-
gine(Machine Learning), 4-Realtime Transport
Protocol(Programming), 5-LinuxKernel(Operating
Systems), 6-Apache Hadoop(Parallel Computing), 7-
ReactOS(Operating Systems), 8-Java Scheduler Event
Engine(Programming), 9-XORP(Internet Protocol),
10-Mobicents(Mobile Programming)

Authentication 1-Alfresco(Content management), 2-JessieA
Free Implementation of the JSSE(Security), 3-
PGRADE Grid Portal(Business, workflow en-
gine), 4-Esfinge Framework(Programming), 5-
Classpath Extensions(Workflows Management), 6-
Jwork(Programming), 7-GVC.SiteMaker(Programming),
8-WebMailJava(Programming), 9-Open Knowledge
Initiative(OKI)(Education), 10-Aglet Software Develop-
ment Kit(Programming)

Heartbeat 1- Real Time Messaging-Java(Programming), 2-
Chat3(Instant messaging), 3-Amalgam(Content Man-
agement), 4-Jmmp(Programming), 5-RMI Connector
Server(Web Programming), 6-SmartFrog(Parallel
Computing), 7-F2(Financial), 8-Chromium Network-
Manager(Web Programming), 9-Robot Walk Control
Behavior(Programming), 10-Apache(Programming)

Pooling 1-ThreadPool Class(Programming), 2-Open
Web Single Sign On(Web Programming), 3-
ThreadStateMapping2(Programming), 4-RIFE(Web
Programming), 5-Mobicents(Mobile Programming),
6-Java Thread Pooling Framework(Programming),
7-Concurrent Query(Programming), 8-RIFE(Web Pro-
gramming), 9-RIFE(Web Programming), 10-EJBs(Web
Programming)

CHAPTER 3. METHODOLOGY 27

descriptions of the tactic found in textbooks, articles, and white papers or the libraries
that architects have previously used to implement the tactics. All the returned files
were reviewed by two other experts to determine whether they were relevant (i.e.
related to the current architectural tactic) or not.

• Indirect Code Search: Project-related documents, such as design documents, online
forums, etc. were searched for references and pointers to architectural tactics. This
information was then used to identify and retrieve relevant code. Similarly all the
retrieved files were peer-reviewed to ensure that they were implementing the targeted
tactic.

• ”How to” examples: Online materials, libraries (e.g. MSDN), technical forums (such
as Stack Overflow) and tutorials were used to extract concrete examples of imple-
mented architectural tactics.

The rigorous search and validation approach used in this manual data collection resulted
in a high quality and precise traceability dataset. However, the cost associated with this
approach is substantially high. For instance, it took us about 3 months to collect and peer
review tactical data from 10 different projects for 5 architectural tactics. For each of the
project, they identified (i) if the tactic is implemented in the project, (ii) which files are
involved in the implementation of the tactic, and (iii) how and why the tactic is being
used in the project (rationale for the design decision). Through this process we eliminated
cases that the tactic was used outside its intended context. This dataset is released at
http://coest.org/mt/27/150.

3.4.6 Web-mining approach

Web based libraries, such as msdn1 or oracle2, are one of the resources which contain a rich
set of information about implementing architectural tactics as well as many other design
and programming concerns. Our initial hypothesis was that creating training sets from
these libraries will result in a high quality training set for the classifiers. Figures 3.3(a)
and 3.3(b) illustrates sample implementation guidelines retrieved from these libraries to
implement reliability requirements through Heartbeat and security requirements through
Audit Trail tactics.

Data collection agent

We developed a custom web scraper which uses the search engine APIs of Google to query
the content of predefined technical libraries (e.g. msdn and oracle).

The tactic-query used in this approach contains keywords describing the tactic (drawn
from descriptions of the tactic found in textbooks). For example to find APIs related to
HeartBeat tactic, we used the following textual description from a book [16]: “Heartbeat is
a fault detection mechanism that employs a periodic message exchange between a system
monitor and a process being monitored.” We generated the following trace query from this
description: Heartbeat OR fault OR detection OR monitoring. Although the tactic queries

1https://msdn.microsoft.com
2http://www.oracle.com

http://coest.org/mt/27/150

CHAPTER 3. METHODOLOGY 28

(a) implementing reliability concerns through Heartbeat tactic from msdn.com

(b) addressing security concerns through Audit Trail tactic from Oracle.com

Figure 3.3: Two sample API descriptions from technical libraries of (a) MSDN
and (b) Oracle

CHAPTER 3. METHODOLOGY 29

can be more complex than OR joints of search terms, in this work we only use simple
tactic-queries.

For each tactic, a number of highly-relevant web pages were collected. The scraper-agent
returns the ranked web-pages containing relevant API documentations and sample codes to
implement the tactic. The information within each Web page is filtered, so the HTML tags
are removed and only textual content is stored in a plain text file.

Generated data

The generated data to train the classifier is a balanced dataset, containing the same number
of positive and negative samples. In this case, a balanced samples of text files (web page
contents) that are either tactic-related (positive samples) or non-tactical (negative samples).
Although the Web-Mining approach is able to generate unbalanced training sets, for the sake
of comparing different baseline techniques we generate balanced datasets.

The positive samples are API documentations for a tactic or sample tactical files. The
negative or non-tactical samples are sets of documents which have the highest dissimilarity to
the originated query. Negative samples would help to remove the terms which are dominant
in the Web pages of the library (e.g. Microsoft in MSDN library).

3.4.7 Big-Data analysis approach

This approach relies on using machine learning approaches to create the code-based training
sets by mining ultra large scale open source repositories. Our approach includes several
different components as illustrated in Figure 3.2.

Creating ultra-large scale repository of open source projects

The first component is the source code scraper, responsible for mining source code of projects
from a wide range of open source repositories.

For the purpose of this study, we have extracted over 116,609 projects from Github,
Google Code, SourceForge, Apache, and other software repositories. We have developed dif-
ferent code crawling applications to extract projects from all these different code repositories.
To extract the projects from Github, we make use of a torrent system known as GHTorrent3

that acts as a service to extract data and events and gives it back to the community in the
form of MongoDB data dumps. The dumps are composed of information about projects in
the form of users, comments on commits, languages, pull requests, follower-following rela-
tions, and others.

We also utilized Sourcerer [171], an automated crawling, parsing, and fingerprinting
application developed by researchers at the University of California, Irvine. Sourcerer has
been used to extract projects from publicly available open source repositories such as Apache,
Java.net, Google Code and Sourceforge. The Sourcerer repository contains versioned source
code across multiple releases, documentation (if available), project metadata, and a coarse-
grained structural analysis of each project. We have downloaded the entire repository of
open source systems from these code repositories.

After having extracted all these projects from Github and other repositories, we per-
formed a data cleaning where we removed all the empty or very small projects (i.e. projects

3http://ghtorrent.org/

CHAPTER 3. METHODOLOGY 30

that have less than 20 source files). Table 3.6 shows the frequency of all the projects in
different languages in our repository.

Table 3.6: Overview of the projects in Source Code Repository of Big-Data
Analysis Approach

Language Freq. Language Freq. Language Freq.

Java 32191 Go 1614 Emacs Lisp 321

JavaScript 22321 CoffeeScript 1187 Visual Basic 134

Python 9960 Scala 729 Erlang 154

CSS 9121 Perl 699 Processing 152

Ruby 8723 Arduino 321 PowerShell 151

PHP 8425 Lua 458 TypeScript 139

C++ 5271 Clojure 456 OCaml 105

C 4592 Rust 308 XSLT 102

C# 4230 Puppet 286 ASP 85

Objective-C++ 33 Groovy 253 Dart 84

Objective-C 2616 SuperCollider 185 Julia 84

ActionScript 120 F# 74 Elixir 82

Kotlin 43 Scheme 80 Bison 39

Prolog 77 Cuda 37 D 72

LiveScript 32 Common Lisp 65 AGS Script 29

Pascal 60 SQF 26 Haxe 60

Mathematica 25 FORTRAN 45 Apex 22

OpenSCAD 44 PureScript 22 Racket 44

DM 21

*Total number of projects:116,609, *Total number of source files: 23M

Indexing the Data

The second component of the Big-Data Analysis approach is a term-document indexing
module, which indexes the occurrence of terms across source files of each project in our
code repository. This component, which is called Traceability Indexing, first pre-processes
each source file, removes the stop words, stems the terms to its root form and then indexes
source files. The index stores statistics about each documents (source files) such as term
frequency (TF), document frequency (DF), TF/IDF and location of source file in order to
make term-based search more efficient. This is an inverted index which can list, for a term,
the source files that contain it [123].

CHAPTER 3. METHODOLOGY 31

Data generator component

The third component is a paralleled version of Vector Space Model (VSM) [156] capable
running over 22 million source files in a few seconds. The VSM is a standard approach in
which a query q and a source file f are both represented as a vector of weighted terms.

Therefore, a source file f is represented as a vector ~f = (w1,f , w2,f , ..., wn,f) and a query
q is represented as ~q = (w1,q, w2,q,, wn,q), where wi,f represents the weight of the term
i for source file f . We used the standard weighting scheme known as tf − idf to assign
weights to individual terms [156]. In this scheme, the tf represents the term frequency, and
the idf corresponds to the inverse document frequency. The term frequency is computed for
source file f as tf(ti, f) = (freq(ti, f))/(|f |), where freq(ti, f) is the frequency of the term
in the file, and |f | is the length of the file. The inverse document frequency idf , is typically
computed as :

idfti = log2
n

ni
(3.5)

where n is the total number of source files in the corpus (our repository) and ni is the number
of source files in which term ti occurs. Thus, the individual term weight for term i in source
file f is then computed as wid = tf(ti, f)× idfti. Given these definitions, the similarity score
Sim(f, q) between a source file f and technical query q is computed as the cosine of the
angle between the two vectors as:

Sim(f, q) =
(
∑n

i=1 wi,fwi,q)(√∑n
i=1 wi,f ·

√∑n
i=1 wi,q

) (3.6)

This component is used to generate a tactical dataset based on a query provided by a
trace user. It calculates the cosine similarity score between provided query and all the source
files , using the formula in Equation 3.6, in the ultra large scale software repository. For
each tactic, the most relevant source files exhibiting highest similarity to the trace query are
selected. In order to avoid domain specific files, this component also retrieves n samples of
non-tactical files for each tactic from the same project (n is defined by the user). Previously
it has been proven that unrelated sample data has significant impact on quality of trained
indicator terms for the classifier presented in this work [47,126,131].

Generated data

The generated data contains a balanced dataset of tactical and non-tactical files retrieved
from 10 open source projects. From each project, a tactical file and one non-tactical file is
retrieved.

3.4.8 Experiment overview

This section presents the experiment design to compare three baseline training-set creation
techniques and to answer our research questions.

In the following we describe the justification for selection of these techniques, and the
details of the methodology used to conduct the comparison and validate the results.

CHAPTER 3. METHODOLOGY 32

Justification for selection of approaches

The domain of automatically-generated training sets for machine learning is relatively new.
Although there are previous studies on trace-query replacement and augmentation, the idea
of automatically generating training-set has not been explored.

The development of such approaches relies mainly on the existence of large, (un)structured
and rich knowledge bases. Since both Web and ultra-large-scale code repositories have such
characteristics, one key novelty of our proposed work is to utilize such resources and develop
new techniques to help scientists in the area of software architecture traceability to obtain
high quality datasets.

Expert-created dataset used as testing set

The expert-created dataset of architectural tactics was used as the testing-set and a measure-
ment for comparison of the three baseline techniques. This dataset was manually collected
and peer reviewed by experts over the time frame of three months.

For each of the five tactics, the experts have identified 10 open-source projects in which
the tactic was implemented. For each project, they performed an architectural biopsy ((ran-
dom sampling of tactical files)) to retrieve a source file in which the targeted tactic was
implemented and also retrieved one randomly selected non-tactical file. Using this data we
built a balanced training set for each tactic which included 10 tactic-related files and 10
non-tactical ones.

3.4.9 Experiment design

Three different experiments were designed to answer research questions related to comparison
of baseline techniques.

Experiment design for using baseline method 1

The accuracy of classification techniques trained using the expert-created approach was
evaluated using a standard 10-fold cross-validation process. In this experiment the expert-
created dataset served as both the training and testing set. This is a classic evaluation
technique widely used in the area of data mining and information retrieval and automated
requirements traceability [41,43,98,131].

In each execution, the data was partitioned by project such that in the first run nine
projects, each including one related and four unrelated files, were used as the training set
and one project was used for testing purposes. Following ten such executions, each of the
projects was classified one time. The experiment was repeated using the same pairs of term
thresholds and classification thresholds used in the previous execution.

Experiment design for using baseline method 2

In the second baseline approach we used a web-mining technique to automatically extract
data from technical libraries such as MSDN and ORACLE. The tactic classifier was trained
using this dataset, and then tested against the expert-created dataset of files established by
experts (Table 3.5). The experiment was repeated using a variety of term thresholds and
classification thresholds required for equations 3.3 and 3.4. The term thresholds were used

CHAPTER 3. METHODOLOGY 33

for deciding which terms should be part indicator terms list and the classification thresholds
were utilized to classify a given source file into tactical/non-tactical.

Experiment design for using baseline method 3

Last baseline method was trained by the training set generating using Big-Data Analysis
approach. Then the trained classifier was used against the expert-created dataset of tactical
files collected by the experts. The training data was sampled from over 116,609 open source
projects in our code repository.

3.4.10 Evaluation metrics

Results were evaluated using four standard metrics of recall, precision, F-Measure, and
specificity computed as follows where code is short-hand for tactical code files.

Recall =
|RelevantCode ∩RetrievedCode|

|RelevantCode| (3.7)

while precision measures the fraction of retrieved files that are relevant and is computed as:

Precision =
|RelevantCode ∩RetrievedCode|

|RetrievedCode| (3.8)

Because it is not feasible to achieve identical recall values across all runs of the algorithm the
F-Measure computes the harmonic mean of recall and precision and can be used to compare
results across experiments:

FMeasure =
2 ∗ Precision ∗Recall

Precision + Recall
(3.9)

Finally, specificity measures the fraction of unrelated and unclassified files. It is computed
as:

Specificity =
|NonRelevantCode|

|TrueNegatives|+ |FalsePositives| (3.10)

3.4.11 Minimizing biases

To avoid the impact of datasets size, all the datasets that were automatically generated
from our automated approaches (Big-data and Web-mining) included 10 projects, (or 10
related web-pages). We trained the classifier using the files automatically extracted using
our own primitive big-data analysis technique and then attempted to classify the expert-
created dataset of manually established and reviewed files.

In order to avoid the bias of datasets size and primarily comparing the quality of training
sets, we decided to use the dataset size equal to manual training-set. Therefore, we only
included 10 sample API specifications. Furthermore, for training purposes, similar to manual
case, this dataset also includes 40 descriptions of non-tactic-related IT documents collected
by our web-scraper.

To minimize the biases toward selection of terms in the tactic-query, we solicited terms
from text book descriptions of the tactic. More systematic approaches were conducted to
address other related threats to validity, which are thoroughly discussed in section 4.3.11.

CHAPTER 3. METHODOLOGY 34

3.5 Goal 4: Classification, automated categoriza-
tion, and detection of open-source software ar-
tifacts:

In this step and to answer its research questions (RQ4.1, RQ4.2, RQ5), we conducted a
large-scale empirical study using open-source software projects that are randomly sampled
from GitHub. The goal behind studying these projects is to obtain an empirically-based un-
derstanding of the artifacts developed in open-source projects. Then we classify all artifacts
contained in this sample of open-source projects using the proposed automatic approach.

3.5.1 Research questions

• RQ4: Can we automatically detect and categorize open-source software
artifacts?

To answer this research question we define the following sub-researchquestions:

– RQ4.1: How can software artifacts be categorized? To answer this question we
randomly sample from a large set of open-source projects and manually exam-
ine the type of artifacts available. During this process, we iteratively identify
heuristics and features that can be used to automatically classify artifacts.

– RQ4.2: How accurate is the proposed approach for automatic software artifact
classification? We investigate the performance of the proposed approach using
different evaluation metrics. We report results on validation and testing datasets
using 10-fold cross-validation.

• RQ5: What types of artifacts are created during open-source software
development? We classify all artifacts present in the studied open-source projects
and report the prevalence of the different types of artifacts.

3.5.2 Study definition and design

The goal of this work is to investigate what types of artifacts are created during open-source
software development. To achieve this goal, we propose an automatic approach for software
artifact detection and classification using machine learning approaches. The quality focus
is the performance of the proposed approach on artifact classification in terms of selected
evaluation metrics such as precision and recall. The perspective of the study is that of
researchers, who are interested in automatically obtaining software development artifacts
that fit their research need. The evaluation is carried out in the context of open-source
projects collected from GitHub [90].

Figure 3.4 depicts the overview of our approach, which is designed to automatically
classify software artifacts leveraging (i) heuristics based on file names and extensions and
(ii) existing ML algorithms. To answer RQ4.1, we collect a large set of diverse open-source
projects and obtain a significant random sample of the projects. We identify the artifacts
contained in the sampled projects and divide them into two groups by applying heuristics
on file names and extensions. The first group contains artifacts that can be classified solely
based on file names and extensions whereas the second group contains artifacts that require
deeper analysis in order to be classified. We manually classify a sample of the artifacts

CHAPTER 3. METHODOLOGY 35

contained in the second group to construct an oracle of classified artifacts. During the
manual classification, we also identify features that could be used to automate the artifact
classification. For RQ4.2, we automate the feature extraction process and use various ML
algorithms to automatically classify software artifacts belonging to the second group. Finally,
to answer RQ5 we classify all artifacts of the studied open-source projects and report the
frequency of occurrence of each type of artifact identified during the manual process.

3.5.3 Subject Systems

We extract a large set of 91,108 open-source projects from GitHub making use of a code
crawling application known as GHTorrent [78]. GHTorrent acts as a service to extract
data and events, returning MongoDB data dumps. The dumps are composed of information
about projects in the form of users, comments on commits, languages, pull requests, follower-
following relations, and others.

To collect a significant sample of projects for our study, we randomly sample 383 projects
from the collected open-source projects, ensuring 95% confidence level and 5% margin of
error. All research questions are addressed using the sampled projects.

Figure 3.4: Approach overview.

CHAPTER 3. METHODOLOGY 36

3.5.4 Oracle

To create an oracle of classified software artifacts, we manually examine a random set of
artifacts from the 383 sampled projects. When the file name/extension are insufficient to
classify an artifact, we analyze the file content. Two coders perform the classification of arti-
facts independently. An inter-rater reliability (IRR) analysis [84] is used to assess the degree
to which coders consistently classify software artifacts. Both coders are Master students in
Computer Science. Disagreements between the coders are resolved with discussions and when
necessary a third coder is brought in. The category of artifacts are coded using categorical
variables. The Cohen’s kappa statistic measures the observed level of the agreement between
coders for a set of nominal ratings and corrects for agreement that would be expected by
chance, providing a standardized index of IRR that can be generalized across studies [84].
Possible values for kappa range from -1 to 1, with 1 indicating a perfect agreement, 0 indi-
cating a completely random agreement, and -1 indicating a total disagreement. Landis and
Koch [103] provide guidelines for interpreting kappa values as follows: values from 0.0 to
0.2 indicate slight agreement, values from 0.21 to 0.40 indicate fair agreement, 0.41 to 0.60
indicate moderate agreement, 0.61 to 0.80 indicate substantial agreement, and 0.81 to 1.0
indicate almost perfect or perfect agreement. The data in this study is collected through rat-
ings provided by coders and has a significant impact on the computation and interpretation
of our study. It is important that coders can independently reach similar conclusions about
the types of software artifacts they identify because that confirms the established categories
are well defined. Thus, we target at least substantial agreement, i.e., above 0.61.

3.5.5 Automatic Artifact Classification

To automate the software artifact classification process we identify heuristics based on file
names and extensions (Section 3.5.5). For files that require further analysis we extract
features (Section 3.5.5) that we use as input to machine learning algorithms (Section 3.5.5).

Heuristics Application

We utilize existing file name/extension categorization [52] and we randomly sample a portion
of the most frequently occurring extensions to confirm the correctness of such categorization.
In addition to file extension, we expect the file name to provide useful information in artifacts
identification as well. For example, testing code is often organized under directory with
names contain “test” or “tests” and files with .wav extension can be automatically identified
as audio file. Such identification is assumed to be correct by construction. On the other
hand, some files, such as .txt, can not be identified without examining the file content.

Feature Creation Process

Generating a set of features for text classification problems could be achieved with the use
of various information retrieval techniques. For instance, one could use a Vector Space
Model [157] and use a weighting schema such as Term Frequency-Inverse Document Fre-
quency (TF-IDF) [164] to automatically extract the most important terms in a document.
Other, more sophisticated techniques that could be used are Latent Semantic Indexing
(LSI) [65] and Latent Dirichlet Allocation (LDA) [21]. Information retrieval techniques are
most useful when the characteristics of the documents that we are working on are unknown.

CHAPTER 3. METHODOLOGY 37

In other words, we rely on the technique to identify hidden patterns that characterize each
document.

Instead, we decided to use the knowledge gained through the manual validation process
of artifacts and thus manually creating the set of features that characterize each type of
artifact. Because an optimal set of features cannot be determined a priori, the two annotators
generate an initial set of features and iteratively refine the set through discussions. This
manual approach gives us more flexibility in determining the relevant set of features, while
harnessing the knowledge gained during the oracle creation process.

Machine Learning Algorithms

We select seven different machine learning approaches belonging to three different categories:
decision trees, Support Vector Machines, and Bayesian Networks. Research has shown that
these algorithms perform well for text classification problems [93, 118, 122, 170]. We use the
implementations provided through Weka [83] and evaluate the classifiers using 10-fold cross-
validation. In other words, we evaluate the predictive models by partitioning the original
sample into 10 equal sized sub samples, performing the analysis on one subset, and validating
the analysis on the other. The validation is repeated 10 times to obtain an average estimate
of the predictive model. We briefly describe the selected algorithms and the parameter
tuning that we performed:

1. Random Forest [27] averages the predictions of a number of tree predictors where
each tree is fully grown and is based on independently sampled values. The large
number of trees avoids over fitting. Random Forest is known to be robust to noise and
to correlated variables. We use the function randomForest (package randomForest)
with the number of trees being 500 as a starting point, which has shown good results
in previous works [175]. We tune the parameters for the number of trees varying
from 500 to 1000 and for the features explored at each branch from the default value:
(log2(#predictors) + 1) to 20% of the total number of features with a step of 0.05.

2. Sequential Minimal Optimization (SMO) is an implementation of John Platt’s
sequential minimal optimization algorithm to train a support vector classifier. We use
RBF kernel, Polynomial kernel, and the Pearson VII function-based universal kernel
(PUK) [172] in combination with this classifier. We tune the exponent parameter of
the classifier varying from 1.0 to 4.0 with a step of 0.5, the gamma parameter from 0
to 1 with a step of 0.05, and the cost parameter from 1 to 50 with a step of 1.

3. Multinomial Näıve Bayes is a specific version of Näıve Bayes, created for improved
performance on text classification problems [122]. Näıve Bayes is the simplest proba-
bilistic classifier applying Bayes’ theorem. It makes strong assumptions on the input:
the features are considered conditionally independent among each other. We explore
the performance of the classifier using kernel estimator and supervised discretization.

4. J48 is an implementation of the C4.5 decision tree. This algorithm produces human
understandable rules for the classification of new instances. The implementation
provided through Weka offers three different approaches to compute the decision trees,
based on the type of the pruning techniques: pruned, unpruned, and reduced error
pruning. We tune the parameter for the minimum number of instances at each leaf
from 1 to 8 with a step of 1.

CHAPTER 3. METHODOLOGY 38

5. Ensemble Learning is used to combine individual classifiers with the aim of ob-
taining better overall predictive performance. We use the majority vote algorithm
provided through Weka. The majority vote approach considers the votes of each
classifier for the label of an instance and uses the label agreed upon by the majority.

3.5.6 Evaluation

We evaluate the performance of the automatic artifact classification approach using the
following evaluation metrics:

Precision

Precision is defined as the percentage of artifact predicted as belonging to the categories
that are correct with respect to the oracle, Precision = TP/(TP +FP), where TP and FP
are the number of true and false positives, respectively.

True Positive Rate (TPR)

TPR or relative recall is calculated as the ratio between the number of true positives and
the total number of positive events, i.e., TPR = TP/(TP + FN). In the context of this
study, the TPR indicates how many of the manually known software artifacts are correctly
discovered.

F-Score

Precision and recall are inversely related, thus, it is difficult to compare results of the model
using the two metrics. F-score is used to aggregate both measures into a single value. F-score
is the harmonic mean of the precision and recall, i.e., F = 2∗Precision∗TPR/(Precision+
TPR). F-score reaches its best value at 1 (perfect precision and recall) and worst at 0.

Area Under the Receiver Operating Characteristic (ROC) curve

ROC is a plot of the true positive rate against the false positive rate at various discrimination
thresholds. The area under ROC is close to 1 when the classifier performs better and close
to 0.5 when the classification model is poor and behaves like a random classifier.

Matthews Correlation Coefficient (MCC)

MCC is a measure used in machine learning to assess the quality of a two-class classifier
especially when the classes are unbalanced [121].

MCC = TP ·TN−FP ·FN√
(TP+FP)(FN+TN)(FP+TN)(TP+FN)

Values range from -1 to 1, where 0 indicates that the approach performs like a random
classifier. Other correlation values are interpreted as follows: MCC < 0.2: low, 0.2 ≤
MCC < 0.4: fair, 0.4 ≤ MCC < 0.6: moderate, 0.6 ≤ MCC < 0.8: strong, and MCC ≥
0.8: very strong [48].

CHAPTER 3. METHODOLOGY 39

Micro and Macro Average

There are different ways to average results of a multi-class classifier. Macro-average treats
each class with equal weight and is calculated as the average of the metrics computed within
each class. Micro-average gives each individual instance equal weight so that the largest
classes have most influence. It is computed by aggregating the outcomes across all classes
and computing a metric with aggregated outcomes. We report all evaluation metrics along
with both micro and macro average.

3.6 Goal 5: Traceability datasets quality assessment
survey:

For our last step and to answer its research questions (RQ6, RQ7), To achieve this goal,
we conducted an on-line survey that solicited feedback from 23 software traceability experts.
The responses were analyzes systematically using grounded theory approach. The goal of
this study is to gain insight into how experts in the domain of software traceability evaluate
the quality of their datasets. The quality focus is the importance and completeness of char-
acteristics captured by the Traceability-Datasets Quality Assessment (T-DQA) framework.
The perspective of the study is that of researchers and practitioners who are interested in
mitigating potential threats to validity related to the quality aspect of the datasets that they
are using.

3.6.1 Research questions

• RQ6: How do experts assess the quality of traceability datasets?

To answer this research question we define the following sub research questions:

– RQ6.1: What are the quality attributes that researchers are looking for when
they select datasets?

– RQ6.2: What dataset qualities have an impact on the meaningful conclusions
being drawn from a research project?

– RQ6.3: What are the datasets quality-attributes that could impact the general-
izability of research results?

• RQ7: Does the existing framework for evaluating the quality of traceability
datasets captures the relevant characteristics that experts are looking for?

3.6.2 Survey Design

Interviews and surveys are two popular data collection techniques in empirical research [145,
150, 162]. We decided to conduct an on-line survey as it minimizes the effort of collecting
data, increases the number of potential participants in the study, and, unlike interviews, it
allows the participants to answer the questions over a period of time based on their own
availability, preference, and schedule [145].

When designing the survey, we focused on using a clear and understandable language
within the questionnaire. In addition, to minimize the time of the survey, we used a mix

CHAPTER 3. METHODOLOGY 40

of multiple choice and text-entry questions. The online questionnaire was implemented in
English using a Qualtrics Survey. The survey link was shared through email.

The survey has three main parts. The first part of the survey focuses on gathering
demographic information about participants. The second part of the survey contains a
series of open-questions aiming to answer RQ6. To answer RQ7, the third part of the
survey is designed with a series of open and multiple choice questions asking participants to
provide feedback on the importance of each characteristic of the T-DQA framework. The
multiple choice questions use a 5-point Likert scale [138] ranging from ’Very Important’ to
’Not Important’. For each question, participants can decide not to answer or to choose the
option ’Do not have an opinion’.

3.6.3 Participants

In this survey study, we targeted traceability experts, i.e., researchers and practitioners from
either academia or industry with traceability research that involve datasets. We created a
mailing list of authors who have published full papers in the area of software traceability.
To do so, we utilize the papers included in three recent systematic literature review of
traceability papers [23,135,188] published from 2000 to 2016.

This process results in a list of 176 potential candidates. From all candidates contacted
for the survey, 40 visited the survey link and started the process of answering the survey
questions. From these 40 candidates, 23 subjects completed the survey and answered all
questions.

3.6.4 Pilot Study

To test the clarity of the questionnaire and estimate the time to answer all questions, per-
forming a pilot study is recommended [180]. Therefore, we performed a pilot study with a
couple of colleagues who are familiar with software traceability. The feedback we received
helped us in correcting linguistic and structural issues in the survey and reduce the number
of questions.

3.6.5 Data Collection

In order to ensure high data quality, we decided to exclude partly answered questionnaires.
We think that participants who answered only the first few questions will not spend sufficient
time to think about the questions and thus will not be able to provide real insights into the
topic. Thus, we only analyze the data from the 23 participants who completed the survey.

3.6.6 Analysis

We follow a grounded theory approach to qualitatively analyze the results provided by the
survey participants. A grounded theory approach involves progressive identification and
integration of categories of concepts (e.g., datasets quality attributes and metrics) from data
that leads to the construction of theories directly grounded in data. We use the classical
grounded theory approach described by Glaser due to its emphasis on the emergence of
concepts [76,165], i.e., an inductive rather than a deductive process.

Open questions are analyzed using open coding to extract all relevant information to
the quality of traceability datasets [96,155]. Open coding in grounded theory method is the

CHAPTER 3. METHODOLOGY 41

process by which we generate concepts from the data which are going to be the building blocks
for the theory [76,166]. Open coding is the analytic process by which concepts (codes) to the
observed data and phenomenon are attached during qualitative data analysis. Open coding
generates codes for discussions in the data that can be clustered into concepts and categories.
During open coding, concepts are generated by asking generative questions such as “What is
this data a study of?”, “What datasets quality category does this expert feedback indicate?”,
“What dataset concerns and characteristics can be driven from the expert’s response?”

Open coding starts with the review of the data and focuses on identification of the
concepts and generation of a descriptive tag for each answer. For instance, in the collected
data, we are looking for extracting the key characteristics related to how researchers reason
about and evaluate the quality of traceability datasets and the metrics that can be used to
assess those characteristics.

We perform three iterations of the coding phase. In a first iteration, one author of this
paper coded the participant’s responses for one of the survey questions and then reviews and
discusses the outcome with the remaining authors of this paper. In a second iteration, this
author coded all the remaining responses and took memos to be used by the other authors
when checking periodically all coded responses. All the generated codes were reviewed and
discussed by all the authors in regular coding review sessions.

Throughout this open coding process, we perform a constant comparative analysis in
which we compared experts feedback as well as the codes associated to them with each
other, in order to unify codes, identify variations in code and potentially emerge new codes.

Throughout this iterative process of open coding and constant comparative analysis, we
capture our insights in memos [6, 75]. Our memos mostly encompassed information on the
rationale behind considering a code as dataset quality attribute.

Through open coding and constant comparative analysis, we grouped the codes into core
categories each representing a quality attribute. All the authors participated in the review
and the discussion of the coded responses and categories.

Multiple choice questions are analyzed using histograms, stacked bar charts, and box-
plots. For both RQ6 and RQ7 we provide quantitative and qualitative analysis.

3.7 Goal 6: T-DQA Web-Tool:

A functional prototype of the automated approaches is developed and released as a web-based
tool4. First, we have manually searched for and collected traceability datasets. Next, all
T-DQA v2 metrics were applied to the datasets and made available for researchers online.
The tool provides multiple filtration parameters based on the quality metrics that allow
researchers to better choose the dataset that matches their needs. In the next sections,
we will provide the details and of the collected datasets and illustrate the functionality of
T-DQA web-tool.

3.7.1 Datasets collection

Datasets are the cornerstone for T-DQA web-tool. To make this tool useful for researchers
and practitioners, we needed to have several datasets that are rich in traceability artifacts.
In addition, they must vary in terms of the quality metrics to provide researchers with a
wide selection of datasets that matches their needs and the problem on hand that they are

4http://design.se.rit.edu/T-DQA/

CHAPTER 3. METHODOLOGY 42

addressing. There have been some efforts to collect and provide researchers with traceability
datasets. Table 3.7, gives an overview of two online sources of traceability datasets that
were cited by many researchers based on our literature review findings.

Table 3.7: Existing Traceability-Datasets Sources

COEST
of Datasets Traceability

Datasets
Domains Consider Quality Updated

Healthcare
Aerospace
Transportation

15 15 Entertainment No Yes
Software Engineering
Office Automation

PROMISE
20 2 Aerospace No No

As clearly shown in the above table, although the COEST website offers 15 traceability
datasets that represent a variety of domains and are updated, it lacks the quality considera-
tion that allows researchers to choose datasets based on their needs. On the other hand, we
can see that the PROMISE website lacks a reasonable number of datasets where only two
traceability datasets exist. Also, both datasets are representing a single domain which is the
Aerospace domain.

To achieve our goal of having a large number of traceability datasets, we conducted an
intensive manual search for such datasets not only on the previously mentioned resources
(COEST and PROMISE) but also including the existing literature in Software traceability
for the past fifteen years. All publications that have a traceability theme and used datasets
in their experiments or tool evaluation were considered. Then we have searched for any
existing online link for the datasets that were listed by the author. If we couldn’t find any
links or in the case of invalid links, we conduct an online search for the datasets in the well
known OSS repositories such GitHub5 and sourceforge6. In the case of failing to find the
required datasets, a list of authors who have used these datasets was created to contact them
asking for a valid link or sharing of the datasets.

Table 3.8, gives an overview of the traceability datasets that resulted from this intensive
manual search and made available by our T-DQA web-tool to the researchers. As shown in
the table, the web-tool offers a total of 37 traceability datasets that represents a variety of
domains. T-DQA web-tool not only offers a larger number of datasets that by far exceed
what existing resources offer but also takes into consideration quality metrics which is going
to be covered in the following section. Table 3.9, list all the datasets in our web-tool and
their corresponding domains.

3.7.2 T-DQA metrics

T-DQA web-tool implements the metrics of our previously quality framework that was de-
scribed in Section 4.7.1(T-DQA v2). Table 3.10 Shows all the quality metrics that were

5https://github.com
6https://sourceforge.net

CHAPTER 3. METHODOLOGY 43

Table 3.8: T-DQA Web-Tool Traceability-Datasets Summary

T-DQA Web-Tool
of Datasets Traceability

Datasets
Domains Consider Quality Updated

Healthcare
Aerospace
Transportation

37 37 Entertainment Yes Yes
Software Engineering
Office Automation
Industrial
Misc.

applied to the 37 datasets to assess their quality. These metrics were listed in T-DQA web-
tool as filters to allow researchers to choose the dataset that matches their needs in an easy
way while showing full details of the datasets. There are 15 metrics in total that represent
four main quality dimensions Accessibility, Intrinsic, Contextual, and Representational. The
diversity of the metrics and their dimensions provide the researchers with a big picture of the
quality of the datasets and make it easier for them to decide which datasets are suitable for
the problem they are tackling. The interface of the T-DQA web-tool is going to be described
in the following section.

CHAPTER 3. METHODOLOGY 44

Table 3.9: List of T-DQA Web-Tool Datasets

Dataset Name Domain Dataset Name Domain

Albergate Office Automa-
tion

Pine Software engi-
neering tool

WV CCHIT Healthcare WorldVistA Healthcare

CM1-NASA Aerospace AgileOERP Software engi-
neering tool

eANCI Office Automa-
tion

Modis Aerospace

EasyClinic Healthcare RETRO.NET Software engi-
neering tool

Event Based
Traceability
(EBT)

Misc. Aqualush
Benchmark

Industrial

eTOUR Entertainment CCHIT Healthcare

GANNT Software engi-
neering tool

Soren Healthcare

IceBreaker Transportation Consultations Healthcare

InfusionPump Healthcare Waterloo Misc.

iTrust Office Automa-
tion

iTrust2 Healthcare

Kiosk Healthcare PatientOS Healthcare

SMOS Transportation PracticeOne Healthcare

WARC Software engi-
neering tool

Trial Imple-
mentations

Healthcare

Apach Ant Software engi-
neering tool

WorldVistA2 Healthcare

ArgoUML Software engi-
neering tool

Care2x Healthcare

Dependency
Finder

Software engi-
neering tool

ClearHealth Healthcare

JHotDraw Software engi-
neering tool

Dronology Aerospace

PURE Software engi-
neering tool

CHAPTER 3. METHODOLOGY 45

Table 3.10: T-DQA Web-Tool Metrics

Metric Name Type Dimension

Domain Categorical Intrinsic

Type Categorical Intrinsic

Programming language Categorical Intrinsic

Popular Binary Intrinsic

Multi-Version Binary Intrinsic

Artifacts size Numerical Intrinsic

Artifacts type Categorical Contextual

Artifacts format Categorical Representational

Oracle is present Binary Intrinsic

Oracle developer Categorical Contextual

Oracle size Numerical Intrinsic

Oracle collection Categorical Contextual

Licensing Binary Accessibility

Storage Categorical Accessibility

Industry representative Binary Contextual

Chapter 4

Results

Currently, we have conducted the first and second steps from our research agenda. In the
third step, we have conducted a limited study that considers only one traceability scenario.
The main findings from our study to answer each research question are as follow:

4.1 RQ1: What are the characteristics of traceabil-
ity datasets?

This question is investigated through five sub-questions described below. Each sub-question
examines different characteristics of traceability datasets. From all the papers studied in our
SLR study (78 papers), we identified 73 unique datasets.

4.1.1 RQ1.1: What are the source and target artifacts in
traceability datasets?

Figure 4.1 shows the types of artifacts covered by the 73 datasets. The inner layer represents
the source artifact type and the outside layer represents the target artifact type. Artifacts
from the inner and outside layers are colored identically when there is an association between
them in the datasets. More details about these data points and their frequency can be found
in our online appendix.

All artifacts that specify textual requirement documents related to a dataset such as
high level, low level, functional, and non-functional requirements are grouped under the
“Requirements” category. In a similar fashion, the “Code” category consists of Java Classes,
Code, Methods, and Classes. The “Test Cases” category groups all non-code test documents
whereas the “Unit test” category is composed of the actual code implementations. The
category “Document” is composed of artifacts such as manuals and other pages that datasets
are being traced to.

As per our analysis, the most frequently, datasets are used to study traces between
Code to: Code (4), Unit Test (6) and other Non-Code artifacts such as Requirements (21),

46

CHAPTER 4. RESULTS 47

Figure 4.1: Common Source and Target Artifacts.

Documents (9), Diagram (5), Design Document (1), Test Cases (1) and Tactics (1). Another
category of commonly considered artifacts was found to be between “Requirements” and
other Non-Code artifacts such as Design Document (6), Goals (2), Regulatory Code (8),
Test Cases (5), Diagram (4), Requirements (3), and Use Cases (3). Less studied artifacts
were Use Cases, Issue Reports, Diagrams, and Documents.

4.1.2 RQ1.2: Which application domains are represented by
traceability datasets?

The frequencies and domains of the datasets are shown as a heat-map in Figure 4.2. Each
colored block refers to an application domain. The sub-areas within a block represent a
particular dataset where the area represents the frequency of that dataset usage.

Healthcare is by far the most frequent domain for traceability datasets [9, 17, 18, 33–35,
40,54,55,57–61,71,99,105,108–110,112,113,136,141,142,151,161]. This is not surprising as
traceability is crucial for safety critical and highly regulated domains [45]. Similarly, datasets
from the Aerospace domain are frequently used by researchers [35, 58, 70, 85, 87–89, 99, 104,
108, 109, 136, 140, 141, 161, 167, 168, 177, 189]. High proportion of datasets are also from the
domains of software engineering tools [8,37,49,56,67,134,146–148,181,182,189], development
libraries [8, 11, 12, 37, 49, 50, 57, 85, 99, 100, 119, 179], and entertainment [17, 18, 35, 46, 51, 63,
68, 71, 72, 85, 91, 102, 104, 109, 111–113, 136, 142, 144, 161]. The majority of these systems are
open source and available online which might explain their frequent usage by researchers. In

CHAPTER 4. RESULTS 48

Figure 4.2: Dataset Domains and Frequency of Use.

CHAPTER 4. RESULTS 49

addition, the researchers already serve as subject matter experts for some of these domains
(e.g., software engineering tools or development libraries).

Industries such as Power & Automation have been used but less frequently [22, 38, 39,
62,182,189]. All except one of the datasets from this domain are closed source.

4.1.3 RQ1.3: What is the size of traceability datasets?

Our analysis shows that there is an enormous gap in size among datasets that have been used
by researchers (Table 4.1). The minimum trace space size is from the industrial datasets and
it is 42 while the maximum one is over 29 million and it is a software system in the power
and automation domain, containing 4845 issue reports and 6104 non-code artifacts [22]. The
median of the trace space size among the three different datasets sources is relatively small.

Table 4.1: Datasets’ trace space statistics.

Statistics OSS Private/Industrial University/Students
Minimum 264 42 50
First Quar-
tile

870 1082 1515

Median 2028 2926 5135
Third
Quartile

6956 131690 15472

Maximum 49810 29573880 390978

4.1.4 RQ1.4: What proportion of the traceability datasets is
from industry, open-source projects, and student gen-
erated data?

As shown in Figure 4.3 there is a fair distribution among the different types of sources:
31 datasets are open-source software (OSS), 24 datasets come from academia (e.g. student
projects), and 18 datasets are industrial projects.

1

13
15

30 5

9

0

5

10

15

20

25

30

35

OSS Private/Industrial Academia

Not	Available Available

Figure 4.3: Source and availability of datasets.

CHAPTER 4. RESULTS 50

4.1.5 RQ1.5: Are traceability datasets available for reuse?

Figure 4.3 shows that 39.7% of the datasets (29 out of 73) are not available. Almost all of
the OSS datasets are available. The majority of the industrial datasets (13 out of 18) are
not available. The majority of the datasets coming from academia are not available (15 out
of 24).

4.1.6 RQ1.6: Is there a relation between the characteristics
and the quality of traceability datasets on the one hand
and their reusability on the other hand?

To answer this research question, we examined the relationship between reusability of a
dataset (dependent variable) and the dataset’s quality metrics as depicted in column “Met-
rics” of Table 4.2 (independent variables). We selected all datasets for which we were able
to retrieve or calculate the values for the quality metrics, i.e., 46 datasets.

Usability is a dichotomous variable, thus to compute the values for all datasets we
encoded all datasets used at least twice as 1 and all datasets that are used only once as 0.
We built a Random Forest importance plot [27] to determine the metrics that best predict
the reusablity of datasets.

Figure 4.4 indicates the importance of the quality metrics for the reusability of datasets.
We observe that the most important metric is the team of developers that creates the dataset.
This can be explained by the fact that almost all of the open source projects are available
and thus facilitate reusability. Size, which corresponds to the number of artifacts in the
dataset, appears to be an important factor as well. Other important factors are the domain,
which is in accordance with the discussion in section RQ1.2, and the completeness of the
datasets in terms of source and target artifacts.

Additionally, we built a linear regression model with the actual frequency of use as
dependent variable. When performing multivariate regression we must account for possible
risk of multicollinearity (i.e., interaction among the independent variables). A common way
to deal with multicollinearity is to compute the Variance Inflation Factors (VIF) for each
independent variable in the regression model and retain only those with low values—e.g.,
≤2.5 [36,160]. After removing independent variables and non-significant variables, the only
remaining independent variable is AnswerSet with coefficient 6.8352 (p-value=2.67e-07). The
percentage of variance of the data explained by the model is about 45%.

4.1.7 RQ1.7: What are the threats to validity associated with
traceability datasets?

Among the 78 papers included in our SLR, 40% did not include a section related to the
threats to validity nor discussed such concern while heavily relying on datasets to make
research conclusion. 6% of the papers did have a threats to validity section, but did not
identify any threats related to the usage of the data in their studies. Lastly, 54% of the
papers discussed the threats to validity of their research related to the usage of datasets.

Two of the authors extracted all the threats to validity related to the datasets and
manually grouped them. Note that we include all threats that are discussed by the authors
of the respective papers which means that they were not necessarily mitigated. The threats
to validity are as follows:

CHAPTER 4. RESULTS 51

Licensing
Artifact_Diagrams
Availability
Interpretability
AnswerSet
Language
Location
Artifact_UnitTest
Artifact_Requirements
Source
Artifact_SourceCode
Source_Target
Domain
Size
Developers

0.0 0.5 1.0 1.5 2.0

fit

IncNodePurity

Figure 4.4: Random Forest Importance Variable Plot.

• Trustworthiness

– Artificial AnswerSet: This threat is concerned with how answersets are cre-
ated [37, 54, 82, 89, 108, 110, 127, 149]. Often the trustworthiness threat is not
mitigated as the answersets are established by students rather than the original
developers.

– Students Dataset : This threat concerns dataset that are developed by stu-
dents [71].

– Vetting Datasets: This threat concerns datasets, particularly answersets, that
are not vetted nor peer-reviewed [89,127].

• Threats to external validity

– Real-World Data: This threat is concerned with whether the datasets are rep-
resentative of industrial projects [7,9,17,18,35,37,40,54,61,63,67,71,89,91,104,
109,113,114,124,127,136,140,142].

– Limited Observations: This threat is concerned with whether a limited number
of case studies are used to validate the results [7, 9, 50, 59, 70, 81, 89, 91, 99, 108,
110,113,127,140,141,189].

– Domain: This threat is a concern when all datasets belong to the same ap-
plication domain [37, 81, 82, 104, 124, 151] or when the number of datasets is
insufficient to generalize the conclusions for a particular domain.

CHAPTER 4. RESULTS 52

– Cross Industry : When an industrial dataset is used, this threat is concerned
with whether the results are applicable to other industrial systems [137].

– Size: This threat is related to the small size of datasets, impacting the gener-
alizability of the results [8,9,17,35,54,67,89,91,104,109,112,124,140,147,151].

– Programming Language: This threat is a concern when datasets are in a specific
programming language [33,34,71].

– Artifact Type: This threat is concerned with the diversity of the type of artifacts
available for the datasets (e.g., requirements, test cases, etc.) [99, 151].

• Data Acquisition

– Selection bias: When datasets are not representative of the intended population
(cherry picking) [40] or do not fir the problem [26,40,63,70,102]. For instance,
this happens when a dataset from a non-safety critical project is used for a
safety critical research study.

– Dataset-Equivalency : This threat to validity concerns cases where researchers
compare certain characteristics of their datasets with datasets used by previous
researchers to justify the adequacy of the selected datasets [9, 63].

– Information bias: Accuracy of the automatically generated datasets; misclassi-
fication and labeling of the data to be used [33,33,34,102].

– Negative Set Bias: Rich and unbiased selection of negative cases in training
data, a common threat in classification problems [127].

4.1.8 RQ1.8: Do we, as a community, strive for a diversity
of traceability datasets?

To answer this research question, we studied the diversity of datasets used by authors across
different research papers. First, we identified all authors who have published more than one
traceability paper. This took us from 128 authors served on the 78 studied papers to 38
authors who have published more than one paper. For each of these authors, we calculated
the diversity metric defined in Equation 3.2.

Figure 4.5 shows the results. The X-axis represents the total number of datasets used
by each author. The Y-axis represents the total number of papers from each author in this
SLR. The Z-axis represents the diversity ratio for the datasets used by the authors. Each
vertical drop-line corresponds to one of the 38 authors. 12 authors from these 38, have a
diversity ratio of 70% and above, 27 authors have a diversity rate of 50% and above, and
lastly, 11 authors have a diversity rate below 50%.

We observe that in general authors with low number of datasets and low number of
papers have a higher diversity ratio. One of the authors with high number of datasets and
high number of papers has a high diversity rate. This example highlights individual effort
in seeking diverse datasets for development and evaluation of various traceability solutions.

CHAPTER 4. RESULTS 53

 0 10 20 30 40 50 60

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

10
0

 0

 5

10

15

20

25

No. of Datasets

Pa
pe

rsD
iv

er
si

ty
 M

et
ric

Figure 4.5: Authors and their Dataset Diversity.

4.2 RQ2: How to assess the quality of traceability
datasets?

Data Quality Assessment frameworks are adopted in various fields of computing such as
requirement engineering [53], information systems [101] [117], web linked data [184], data-
warehousing [92] [120], and health-care [139], [94] to assess the quality of scientific datasets.
Some of these frameworks are specific to a domain, while others are applicable to a broad
range of scientific datasets [174]. We have studied several data quality frameworks and we
have adapted them to the domain of software traceability. We propose a Traceability-Dataset
Quality Assessment (T-DQA) framework that is suited for assessing datasets in the field of
traceability.

Following the approach of Wang et al. [174] we broadly classified the T-DQA under four
main quality dimensions: intrinsic, contextual, representational, and accessibility. These in
turn comprise of 10 sub-dimensions and 13 quality metrics. Table 4.2 provides a summary of
the proposed T-DQA framework with the dimensions, sub-dimensions, definitions, metrics
definitions and types. The metrics are adapted from the existing literature on assessment of
data quality in a broad sense [174] and from the domain of linked data which to some extent
is similar to traceability [184].

To illustrate the different dimensions in the T-DQA framework, we use the Easy-Clinic
dataset as an example. Easy-Clinic implements all operations required to manage a medical
ambulatory.

• The accessibility dimension accounts for data concerns related to access, authentic-
ity, and retrieval [184]. The EasyClinic dataset is publicly available on the COEST
GitHub repository under the General Public License.

• The intrinsic dimension captures the characteristics of the dataset that are inherent

CHAPTER 4. RESULTS 54

Table 4.2: Traceability-Dataset Quality Assessment (T-DQA) Framework: di-
mensions, and definitions.

Dimensions Sub - Dimensions Definition Metrics Metric Type

Accessibility

Availability Availability of a dataset is the extent to which data is
present, obtainable and ready for use.

Dataset can be downloaded
from the link provided. Binary

Licensing Licensing is defined as the granting of permission for a
consumer to re-use a dataset under defined conditions. license agreement exists. Binary

Storage Where is the Dataset Stored? Private Server/ Organizational
Server /Public Categorical

Intrinsic

Domain
A specified sphere of activity or knowledge having
common set of requirements, terminology, and
functionality

Application Domain Categorical

Completeness

Completeness refers to the degree to which all required
information is present in a particular dataset.

Source-Target artifacts are
present. (at least 2 types of
artifacts are present in dataset)

Binary

Answer Set is Present Binary
Developers Team responsible for creating the dataset. Open source community,

industrial or academic Categorical
Programming
Language

A programming language is a formal computer language
designed to communicate instructions to a machine. Java/ C++ etc. Categorical

Contextual
Relevancy

Relevancy refers to the provision of information which is
in accordance with the task at hand and important to the
users’ query.

Size – Total number of artifacts Numerical
Number of artifacts for each
specific type (Req., UML
Diagrams, Code, Test, and etc.)

(Type,
Numerical)

Trustworthiness
Trustworthiness is defined as the degree to which the
information is accepted to be correct, true, real, and
credible.

Dataset Source Categorical
Frequency of Usage Numerical

Representational Interpretability
It refers to technical aspects of the data, that is, whether
information is represented using an appropriate notation
and whether the machine is able to process the data.

detecting the use of appropriate
language, symbols, units,
datatypes and clear definitions

Categorical

	

to itself and independent of its usage. Characteristics such as domain, completeness
of dataset, developers (e.g. open source vs. industrial) and programming languages
can be used as intrinsic quality indicators helping researchers to reason about the
suitability of a dataset for a research problem. For instance, Easy-Clinic belongs to
the HealthCare domain. It is considered complete for use in traceability as it consists
of at least two artifacts (code, requirements, etc.) and it contains an answerset. It
was developed by Master students at the University of Salerno. It is written in Java.

• The contextual dimension captures how suitable a dataset is in a particular research
context. While a dataset might be good for tracing requirements to source code,
it might not be suitable for tracing requirements to tests or to design documents.
Contextual quality indicators are the relevancy of a dataset to a research problem
and the trustworthiness of the dataset in that context. Frequently used datasets
for evaluating a particular research problem are typically considered as benchmark
data, which adds to the reputability of the datasets, and facilitates the comparison
of the results across different papers [174]. Easy-Clinic consists of 30 use cases, 20
interaction diagrams, 63 test cases, and 37 code classes, accounting for a total of 160
artifacts and an answerset of 1005 trace links. The number of artifacts are contextual
metrics as their usage is relative to the traceability task at hand. For instance, in
case of requirement-to-requirement traceability, datasets having higher number of
requirement artifacts such as CM1 (235 High Level X 220 Low Level) and MODIS
(19 High Level X 49 Low level) are better suited than others that have lower number
of requirement artifacts. Easy-Clinic is a student project. Its reuse factor is 20 as it
is used as dataset in 20 papers.

• The representational dimension concerns the format in which a dataset is available.
The quality of a dataset depends on how the dataset is packed and shared with

CHAPTER 4. RESULTS 55

others. This metric is indicative of the dataset formats such as XML, PDF, Word,
Source-Code. EasyClinic is available on COEST website in XML format.

This framework helps researchers to be conscious of the different dimensions that need
to be considered when choosing a dataset for a traceability research problem at hand.

4.3 RQ3: Is it feasible to automatically generate
datasets from open source software reposito-
ries?

The experiments design described in section 3.4.8 was followed to train the tactic classifier
using three baseline approaches and compare the results. Table 4.3 shows the top ten indi-
cator terms that were learned for each of the five tactics using the three training techniques.
While there is significant overlap, the tactical file approaches unsurprisingly learned more
code-oriented terms such as ping, isonlin, and pwriter.

Figure 4.6 reports the F-Measure results for classifying classes by tactic using several
combinations of threshold values. Overall three baseline methods obtained similar accuracy.
In two cases, namely audit and heartbeat the classifier trained using expert-collected files
outperformed the classifier trained using automated techniques. In case of authentication
the classifier trained using the manually collected dataset achieved the same level of accuracy
as the Web-Mining-trained classifier.

In the case of pooling and scheduling, the Big-data-trained classifier outperformed the
other approaches at term threshold values of 0.01 and 0.001 and classification thresholds of
0.7 to 0.3. One phenomenon that needs explaining in these graphs is the horizontal lines
in which there is no variation in F-Measure score across various classification values. This
generally occurs when all the terms scoring over the term threshold value also score over the
classification threshold.

Table 4.4 reports the optimal results for each of the tactics i.e. a result which achieved
the high levels of recall (0.9 or higher if feasible) while also returning as high precision as
possible. The results show that in four cases the classifier trained using manually collected
data recalled the entire tactic related classes, while also achieving reasonable precision.

The Big-Data-trained classifier achieved recall of 0.909 in one case and recall of 1 for
two of the tactics. The classifier trained using Web-based approach achieved recall of 1, in
two cases and 0.909 for two other tactics.

4.3.1 RQ3.1: Does the training method based on automated
web-mining result in higher trace-links classification
accuracy compared to an expert-created training set?

The above results indicate that, in four out of five cases the manual expert-created approach
outperformed the automated Web-Mining technique. However, the differences were very
small. Table 4.5 shows the differences between the F-Measure of the manual expert-created
and the automated Web-Mining approaches.

Based on this limited observation, we can rank the manual expert-created baseline
method equivalent to the automated Web-Mining approach. In order to evaluate whether the
differences were statistically significant we performed Wilcoxon tests as well as the Friedman

CHAPTER 4. RESULTS 56

Table 4.3: Indicator terms learned during training

Tactic Name Web-Mining
trained indi-
cator terms

Big-Data
trained indi-
cator terms

expert-
created
trained indi-
cator terms

Heartbeat nlb cluster
balanc wlb ip
unicast net-
work subnet
heartbeat host

counter, fd,
hb, heartbeat,
member, mbr,
suspect, ping,
hdr, shun

heartbeat,
ping, beat,
heart, hb, out-
bound, puls,
hsr, period,
isonlin

Scheduling schedul paral-
lel task queue
partition
thread unord
ppl concurr
unobserv

schedul, pri-
oriti, task,
feasibl, prio,
norm, con-
sid, paramet,
polici, thread

schedul, task,
prioriti, prcb,
sched, thread,
rtp, weight, tsi

Authentication authent, pass-
word, user,
account, cre-
denti, login,
membership,
access, server,
sql

password,
login, user-
nam, rememb,
form, authent,
persist, sign,
panel, succeed

authent,
credenti, chal-
leng, kerbero,
auth, login,
otp, cred,
share, sasl

Resource Pooling thread, wait,
pool, ap-
plic, perform,
server, net, ob-
ject, memori,
worker

pool, job,
thread, con-
nect, idl,
anonym,
async, context,
suspend, ms

pool, thread,
connect, spar-
row, nbp, pro-
cessor, worker,
timewait, jdbc,
ti

Audit Trail audit, trans-
act, log, sql,
server, secur,
net, applic,
databas,
manag

trail, audit,
categori, ob-
serv, udit,
outcom, ix,
bject, acso,
lesser

audit, trail,
wizard,
pwriter,
lthread, log,
string, cate-
gori, pstmt,
pmr

CHAPTER 4. RESULTS 57

Figure 4.6: Results for Detection of Tactic-related Classes at various Classifi-
cation and Term Thresholds for five Different Tactics

CHAPTER 4. RESULTS 58

Table 4.4: A Summary of the Highest Scoring Results

Tactic Training
Method

FMeasure Recall Prec. Spec. Term/ Clas-
sification
threshold

Audit
Web-Mining 0.71 1 0.55 0.785 0.01 / 0.4
Big-Data 0.687 1 0.523 0.762 0.001 / 0.2

Expert-
Created

0.758 1 0.611 0.833 0.001 / 0.5

Authentication
Web-Mining 0.956 1 0.916 0.9772 0.01 / 0.3
Big-Data 0.6 0.545 0.666 0.931 0.05 /0.1

Expert-
Created

0.956 1 0.916 0.977 0.005 / 0.4

Heartbeat
Web-Mining 0.48 0.545 0.428 0.813 0.005 / 0.1
Big-Data 0.592 0.727 0.5 0.813 0.001 / 0.1

Expert-
Created

0.689 1 0.526 0.775 0.001 / 0.2

Pooling
Web-Mining 0.833 0.909 0.769 0.931 0.01 / 0.6

Big-Data 0.952 .909 1 1 0.01 /0.7
Expert-
Created

0.9 0.818 1 1 0.05 / 0.7

Scheduling
Web-Mining 0.740 0.909 0.625 0.863 0.005 /0.2

Big-Data 0.916 1 0.846 0.954 0.001 / 0.2
Expert-
Created

0.88 1 0.785 0.931 0.01 / 0.4

Table 4.5: Differences in F-Measure of the Expert-Created and Web-Mining
Approaches

Audit Authenticate Heartbeat Pooling Scheduling

0.048 0 0.209 0.067 0.14

CHAPTER 4. RESULTS 59

ANOVA test which is a non-parametric test for comparing the medians of paired samples
(Note: The data was not normally distributed). Both tests have been recommended for
small datasets (as small as 5 per group) [5].

In both statistical tests, we could not reject the null hypothesis (there is a difference in
median/mean-rank of two groups.)1

Result : There is no statistically significant difference between the trace link classification
accuracy for a classifier trained using expert-created approach and Automated Web-Mining.

4.3.2 RQ3.2: Does the training method based on automated
big-data result in higher trace-links classification accu-
racy compared to an expert-created training set?

Table 4.6 shows the differences between the F-Measure of two approaches (Subtract expert-
created F-Measure form Big-Data F-Measure). As we can see in the table for the classifica-
tion of two out of the five tactics (Scheduling and Pooling), the Big-Data Analysis method
outperformed the manual expert-created approach. In two of the remaining cases (Heartbeat
and Audit), both methods returned very close results.

Table 4.6: Differences in F-Measure of manual expert-created and automated
Big-Data Analysis Approach

Audit Authenticate Heartbeat Pooling Scheduling

0.071 0.356 0.097 -0.052 -0.036

Similar to RQ1, Wilcoxon and Friedman ANOVA tests were conducted to compare the
medians of paired samples. In both cases, the null hypothesis was retained. 2

Result : There is no statistically significant difference between the trace link classification
accuracy for a classifier trained using expert-created approach and automated Big-Data
Analysis. This indicates that Big-Data Analysis approach can be used as a practical tech-
nique to help software traceability researchers generate datasets.

4.3.3 RQ3.3: What is the impact of training set size on the
accuracy of trace link classification?

An ongoing debate exists on the research techniques examined/developed using student-
generated datasets. The community has utilized different mitigation techniques to minimize
the biases and threats related to this set of approaches [74, 107]. At the same time, the

1p-value of 0.05
2p-value of 0.05

CHAPTER 4. RESULTS 60

community has praised the notion of an Expert-Created approach for obtaining datasets.
Unfortunately there are several threats related to this approach as well, which some of
them are similar to student-generated datasets. In this section, we will explore one of these
challenges, which is related to the extent such datasets can be useful. It is commonly
perceived that the larger the size of training set, the more accurate and generalizable the
underlying learning method will be. This is essentially because, when the sample size is
large enough, it will more accurately reflect the population it was, and therefore the sample
is distributed more closely around the population mean. Based on this, and our research
question RQ3.3, we make the following Null Hypothesis: a larger training-set size will not
result in a more accurate and generalizeable learning method.

However, to the best of our knowledge no one has explored whether there is a benefit in
extending the training set size generated by the experts, especially because such an extension
can have a significant cost. With all the mitigation techniques used to minimize the threat
to validity and create generalizable training sets, we do not have scientific confidence in this
matter. Experiment to Investigate: In the next experiment we investigate the impact
of different dataset sizes on the accuracy of traceability link discovery. The goal of this
experiment is not to prove that the training set size matters or does not matter. Instead
we aim to perform a cost-benefit analysis for the cases where the training-set is established
manually by experts.

In our very first work in this area [131], we used training sets of files from 10 software
systems. In extension of this work [126] we used files sampled through a peer-reviewed
process from 50 open source projects. Considering that the training sets were established
using systematic manual peer review, extending them from 10 open source projects to 50
projects took almost 6 additional months of work. The experiment described in the next
sub-section aims to investigate the increase in accuracy of classifiers for such additional cost.

Experiment design: For each of the five tactics included in this study, three experts
identified 50 open-source projects in which the tactic was implemented. For each project an
architecture biopsy (random sampling of tactical files) was performed to retrieve the source
file in which each utilized tactic was implemented. In addition, for each project a randomly
selected non-tactical source files was retrieved.

For this investigation we use two software systems outside of our original dataset, Apache
Hadoop and OfBiz. These two projects are widely used in industry and are representative
of complex software systems. We made sure, that these two projects are not part of 50
projects used in the training set. So there was no overlap between training data and the case
studies used as the testing set. First the classifiers were trained using 5 randomly-selected
sub-samples of this dataset in the size ranges of 10, 20, 30, 40, and 50 sample files. Then,
each classifier was used against the source code of the two projects.

We compare the trace-link accuracy of classifiers trained using the different training set
sizes to see if there is a return-on-investment for employing experts to establish large(er)
training sets.

The accuracy metrics are reported in figure 4.7. The bars in this graph show precision,
recall and specificity [131]. The red line shows the F-Measure metric. Except heartbeat
architectural tactic that exhibits major changes across different training set sizes, in all the
other four tactics, the training-set size did not show any significant changes in the accuracy
of trained classifier.

CHAPTER 4. RESULTS 61

Figure 4.7: The impact of training-set size in manually established dataset on
accuracy of recovering trace links

Result : This observation supports the notion that in case of manually creating a high
quality training set, the size of the dataset will not have a significant impact on the accuracy
of the classification technique described in equations 3.4 and 3.3. Collecting of more data-
points by experts will not increase the accuracy or generalizability of the trained classifier.

This observation is only supported by the data obtained from these two case studies. In
future works, we will run more experiments, to investigate if this would be valid across
different systems.

4.3.4 Cost-Benefit analysis

Our empirical study of the tree baseline training set creation techniques suggests that there
is no statistically significant differences between trace link accuracy for a classification tech-
nique trained using each of these techniques. However the cost of employing experts to
help in establishing the training set is significantly higher than automated approaches, while
the obtained results are not different. The primary cost for automated techniques is query
formation. However, this cost is significantly minimal compared to the manual search for
the artifacts. For instance, in our experiments each query was formed by going through the
definition of the tactic, and it took approximately less than 2 minutes to finalize the query.

Cost-Comparison In an earlier work, the estimated cost (in terms of time) for creating
the training set using the expert-created approach for 5 tactics was 1080 hours. Taking into
account the hourly salary of an expert or even a student in terms of dollar per hour will
make this approach cost thousands of dollars.
The automated Big-Data approach generates a similar file dataset within a few seconds.

CHAPTER 4. RESULTS 62

One drawback for any automated data-mining based approach is the inherent inaccuracy
of these techniques. To better investigate this fact in our automated techniques, two members
of our team manually evaluated the automatically generated training-sets. The accuracy of
each training-set per tactic is shown in Table 4.7. Overall, the automated approach based on
Big-Data analysis has created more correct data points (tactical files) than the web-mining
approach. This might be because of the amount of noise on the technical libraries as well as
inaccuracies in the underlying search technique used by the web-mining approach.

Table 4.7: Accuracy of automatically generated training-set

Audit Scheduling Authentication Heartbeat Pooling

Web-Mining 0.6 1 0.91 0.6 0.8
Big-Data Analysis 1 1 1 0.9 0.9

We also compared the data quality in two baseline methods of Big-Data analysis and
Manual method. While in over 90% of cases the Big-Data approach has successfully retrieved
correct files from our large scale software repository, we observed that the data collected
by experts exhibits higher internal quality. The manually collected training-set not only
contains 100% accurate data points (due to the rigorous data collection), the experts have
also taken into account the representativeness, diversity, generalizability, as well as quality
of these samples for training purposes. The manually collected files are richer in terms of
vocabularies, APIs and comments. Based on our observation, we believe this is one of the
main differences in the underlying baseline methods.

Investigating the score assigned to each indicator terms across three baseline techniques,
we observed that the indicator terms generated by manually created dataset have bigger
probability scores, and are ordered better with less noises (e.g. unrelated terms). In future
work, we aim to augment our automated approach so that not only can they find related
files, they will also take into account metrics related to data quality and sampling strategies.

4.3.5 Tool support

A functional prototype of the automated approaches is developed and released as a web-based
tool called BUDGET (Bigdata aUgmented Dataset GEneration Tool)3. BUDGET’s inputs
are the name of the tactic of interest, which approach(es) to use when collecting the data
- Web-Mining or Big-Data Analysis - and the dataset size to be generated. Furthermore,
there are more advanced sampling parameters that can be tuned if a particular data sampling
strategy needs to be followed. This becomes especially useful for Big-Data analysis approach
where the user has access to index source code of more than 100,000 applications. The
sampling gives the user the flexibility to retrieve the tactical implementations from a single
project, many projects, or the entire repository.

Figure 4.8 shows the user interface for specifying generic parameters of the BUDGET
tool. As shown in this figure, the generated dataset size can be either balanced (equal
amount of negative and positive samples generated) or unbalanced (different sizes of positive

3http://design.se.rit.edu/budget/

CHAPTER 4. RESULTS 63

and negative samples) and the datasets can be automatically created using both Web-Mining
and Big Data analysis techniques or only one.

Figure 4.8: User interface for selecting the data generation parameters of
BUDGET tool

(a) Configuration parameters for Big Data Analysis

(b) UI for specifying the technical
libraries for Web Mining

(a) Output of the tool, downloaded as
a zip file

Figure 4.9: Configuration parameters for Big Data Analysis, Web-Mining Ap-
proach and Generated Output

When the Web-Mining approach is chosen, BUDGET will collect a set of web pages
related to a tactic selected from technical libraries. The user can specify the list of technical
libraries in a comma-separated list of URLs. By default, the tool uses MSDN as an informa-
tion source if no other libraries are provided. Figure 4.9 shows the form field for indicating

CHAPTER 4. RESULTS 64

the technical libraries.
In order to retrieve tactical-related web pages, BUDGET uses Google Search Engine

APIs to query technical programming libraries. Tactical terms collected from textbooks are
used as a tactic-query. Then BUDGET creates positive/tactical samples by extracting the
content of web pages in top search results (i.e. HTML tags are filtered out). A similar
process is followed to generate negative samples; the only difference is that the tactic-query
is modified to only return web pages that do not contain any of the tactic-related terms.

When using the Big Data Analysis technique, BUDGET will retrieve source code files
from public code repositories to generate the datasets. Currently BUDGET’s source code
repository contains over 116,609 projects, continuously more open source projects are being
added to this repository.

BUDGET’s parameter for generating training set of tactical files include programming
languages of the source codes, and a sampling strategy (Figure 4.9). The sampling strategy
defines how BUDGET should sample the tactic-related files from the our ultra-large scale
repositories. The three possible sampling strategies are: Best Cases, Random Sampling and
Stratified Sampling. These strategies work as follows:

• Best Cases: In this strategy, the tactical files with the highest similarity score are
returned. By default, the entire source code repository is used for drawing the samples,
unless the user specifies a list of repositories to limit the sampling.

• Random Sampling : In this strategy, first the user specifies the sampling population by
defining the percentage of tactical files to be included in the base population. BUD-
GET first separates top P % of tactical files (P defined by the user), then randomly
generates a dataset size of N (where N is defined by the user).

• Stratified Sampling : For each project in the repository (or user defined list), only X
tactical source code files are randomly selected. The value of X is also indicated by
the user.

After selecting the sampling strategy, the sampled tactical files are sorted based on the
similarity score to the tactic-query. Subsequently, the tool generates the N positive and
M negative samples defined by the user. For that, the tool selects the N most similar
tactical files and the M least related files for generating the positive and negative samples,
respectively.

Besides using the tactical terms for the Big-Data Analysis and Web-Mining approaches,
the tool has the flexibility of using user-defined terms to generate datasets. In this situation,
instead of using our own set of tactical terms, BUDGET applies the terms specified by the
user in the Web-Mining and Big-Data Analysis techniques.

After the datasets are generated, the BUDGET makes them available for download as
a compressed file in ZIP format. This ZIP file will contain two folders: one has textual
files obtained from Web-Mining and the other has source code files generated from Big-Data
Analysis. Each folder has two subdirectories for separating positive from negative cases.
Figure 4.9 shows the folder hierarchy of the datasets generated.

4.3.6 Discussions

Extrapolating the results of empirical studies beyond the context of the experiments and
the data used in them can be risky. Our empirical study is not an exception. We com-
pared three baseline data generation techniques. The results indicate that automated data

CHAPTER 4. RESULTS 65

generation techniques resulted in the same trace link accuracy as expert-created approach.
This conclusion was drawn based on study of five architectural tactics. However our further
experiments have shown that several tactics share similar characteristics at the code level,
and can be detected using text analysis. Therefore, it is possible to utilize BUDGET for
automating generation of training set for a large number of architectural tactics. We expect
to observe different accuracy.

The impact of dataset size in case of expert-created training set was evaluated using two
industrial case study. Although these are large scale, representative industrial projects, we
believe further experiments would be beneficial to support/disprove our observation. Since
BUDGET is accessible for the public, it would enable the researchers in the community
to conduct similar experiments, reproduce the results and expand this work. The expert-
created dataset used in investigating the impact of dataset size is also released on-line at
COEST.org. 4.

4.3.7 Generalization of results to other classification techniques

Throughout this work we used our own custom-made classification technique. This was pri-
marily done because the previous work by M. Mirakhorli et al [125] shows that our tactic
classifiers outperform off-the-shelf classifiers in identifying tactical files. In this section we in-
vestigate how another baseline classifier will perform using the data automatically generated
by our approach.

To do so, we repeated the experiments in section 3.4.8 using a Näıve classifier.5 Table
4.8 reports the difference between F-Measure of Expert-Created and Big-Data Analysis ap-
proaches. In case of Scheduling tactic, the Näıve classifier trained using Big-Data Analysis
approach outperformed the Näıve classifier trained using the expert-created dataset. In case
of Authentication tactic, both classifiers achieved similar F-Measure. In case of Audit the
F-Measure of both approach was very close while in the remaining two tactics (Heartbeat
and Pooling) the expert-created dataset resulted in better F-Measure.

Table 4.8: Differences in F-Measure of Expert-Created and Big-Data Analysis
Approach
in Näıve Bayes Approach

Audit Authenticate Heartbeat Pooling Scheduling

0.038 0 0.179 0.185 -0.21

These results are inline with our observation of how our custom-made classifier performed
in the experiment described in the section 4.3. Similarly, in order to evaluate whether
differences were statistically significant we performed Wilcoxon tests as well as the Friedman
ANOVA. In both statistical tests, we could not reject the null hypothesis that there is a
difference in median/mean-rank of two groups.6

4http://coest.org/mt/27/150
5Weka’s NaiveBayesMultinomialText method was used.
6p-value of 0.05

http://coest.org/mt/27/150

CHAPTER 4. RESULTS 66

Table 4.9: Differences in F-Measure of Expert-Created and Web-Mining Ap-
proach in Näıve Bayes Approach

Audit Authenticate Heartbeat Pooling Scheduling

0.187 0.184 0.364 0.368 0.086

While we used Web-Mining approach to train the Näıve classifier, the F-Measure val-
ues obtained were lower than the values obtained when this classifier was trained using
expert-created datasets. Similar statistical test were performed (Wilcoxon and Friedman
ANOVA) and the results indicate that Näıve classifier while trained using expert-created
dataset outperforms the Web-Mining technique.

Our inspection of this issue, indicates that Web-Based dataset has more diverse ter-
minologies as well as noises compared to the source files extracted using Big-Data analysis
approach. An appropriate feature selection algorithms [132] can help identify key discrimi-
nating terms in the training set.

In previous work [125] researchers has shown that custom tactic-classifier outperforms
off-the-shelf classifiers. The key factor is the way our classification technique identifies in-
dicator terms, that takes into account the impact of domain terms. The results obtain in
this section, provide support that both Big-Data Analysis and Web-Mining approaches are
as effective as Expert-Based approach when the data is collected for the tactic-classifier
technique as shown in previous work by M. Mirakhorli et al [131]. Furthermore, Big-Data
Analysis approach is as effective as Expert-Based approach when Näıve classifier is used.
Considering the empirical results we obtained in an earlier work [125] that recognizes the
tactic-classifier as best technique to identify tactical files, we can conclude that combined use
of our automated dataset generation and tactic-classifier technique can result in the most
cost effective way to create traceability datasets and trace tactics to the source code.

4.3.8 Qualitative insights

The quantitative experiments reported in previous sections provide evidence that automated
techniques can be used to help researchers obtain datasets of software artifacts. In order to
gain further insight into how these automated techniques work, and how datasets generated
this way differentiate from expert-created datasets, we present a qualitative study in this
section. We first compare the automatically generated datasets to the expert-created datasets
from various perspectives. Then we analyze random samples of false positives and false
negatives for each technique as well as cases reported as true positive for one technique and
false positive/negative for another technique.

Datasets comparison

In section 4.3.4 we evaluated the quality of datasets generated using the Web-Mining and
Big-Data Analysis approaches. This evaluation focused on the correctness of the items in
the datasets. In this section, we compare the content of datasets generated using automated
techniques with those obtained by the expert. Our comparison shows that the tactical
source files labeled by the experts are richer in terms of terminology and they tend to have

CHAPTER 4. RESULTS 67

more tactic related terms than those generated automatically. The automated approach
normalizes the term frequencies over the the source file length, so most labeled files were
relatively small. Comparatively, we found that the experts sometimes included very big
source files which also contained a diverse set of tactical terms. Overall, the data generated
automatically needed more context about the source file to understand how it related to a
tactic, while source files labeled by experts were easier to understand. From the perspective
of training a classifier, such differences can be less of an issue, however we plan to expand
our approach and include files which are not only representative of a tactic, but also expose
qualities similar to those identified by experts. To do this we will develop an algorithm which
samples the source files based on their centrality to the tactic’s implementation, or retrieves
all the files involved in the implementation of the tactic. Our tool will be expanded to enable
both of these sampling strategies.

Comparison of classification features

In the next qualitative investigation we looked into the indicator terms identified from the
expert-created and automatically generated datasets. The top ten indicator terms are de-
picted in table 4.3. While there are several commonalities between top 10 terms, we observed
that among the top 30 terms, the Big-Data Analysis dataset contained more diverse termi-
nologies. TheBig-Data Analysis datasets contain other terms associated with the tactic which
are not found in the expert-created dataset. As an example, for heartbeat the Big-Data Anal-
ysis data contains terms such as Pinger, live,monitor, msg, health, timeout, ack, failure, heard,
master, timer. However these terms are not used during the classification process, because
their score is smaller that indicator term threshold. This indicate a potential for augmenting
the automated approach with other techniques such as Natural Language Processing (NLP)
and Information Retrieval (IR) to better identify indicator terms.

This would enhance the generalizability of a trained classifier, so that it can identify
tactics which are implemented using different frameworks and terminologies.

Comparison of results

For each tactic we inspected a random misclassified case(true negatives, false positive/neg-
ative). The results show that in most of these cases a source file was misclassified as false
positive because one or two of the indicator terms occurred within that source file. For
instance, in case of Audit, the term Audit existed in one of non-tactic related files and that
file was always classified as Audit Tactic, despite the fact that other relevant indicator terms
such as (Trail, log, records) were missing. We believe that this can be improved by extend-
ing the classification equation to take into account the context in which the indicator terms
appear as well as reducing the sensitivity of the classifier to a single feature. In cases of false
negatives, the source file contained more of indicator terms with lower score (formula 3.3),
therefore the classification score was bellow the chosen classification thresholds. We could
not identify specific reasons for why different results was obtained by training the classifier
over automated and manually generated datasets. The results primarily depends on the in-
dicator terms discovered in the training phase and which of these terms occur in the testing
datasets.

CHAPTER 4. RESULTS 68

4.3.9 Application to the other Areas of Requirements Engi-
neering

The previous experiments show the feasibility and practicality of automated training set
generation techniques. The results indicate that the Web-Mining and Big-Data Analysis
approaches can automatically generate training set with similar quality to expert-created
ones. Here we aim to conduct a feasibility study on using the proposed automated dataset
creation technique to support research in different areas of requirements engineering.

In an initial study of resources in technical libraries such as MSDN as well as open source
repositories, we identified artifact types which can easily be automatically generated using
our approach. Therefore in the following sections we report traceability scenarios where
these artifacts can be used.

Usage scenario#1: tracing regulatory codes.

We now present the first potential usage scenario for applying the automated dataset gen-
eration techniques in the area of tracing regulatory codes.

Problem: One of the challenges faced by community of researchers in the area of
requirements traceability is the lack of datasets such as requirements, implementation or
documentations related to regulatory codes within a software domain. There are a limited
number of datasets commonly used such as CCHIT or HIPAA which can be found on CO-
EST.ORG website. The proposed research techniques in this area are primarily evaluated
by running experiments over sections of the same dataset, or by tracing one of these to the
source code of two open source software systems of WorldVista and Itrust.

Feasibility Study: Technical libraries such as MSDN have several documentations,
technical guidelines, best practices and preselected technologies and APIs which can be used
to address a wide range of regulatory codes, such as HIPAA and SOX [19]. For example, in
Table 4.10 we list a set of regulatory-compliance acts which we found significant technical
discussions about them on MSDN library.

In a preliminary study, we used our automated technique to create a dataset for the
domain of “Tracing Regulatory Code”. We ran a sample experiment to create a dataset for
technologies which can be used to address HIPAA regulations related to Database and Secu-
rity. Three independent traceability researchers have evaluated the accuracy of the extracted
data. The results are presented in Table 4.11 and indicated that 63% of automatically gener-
ated data points were correct. These are the extracted files while related to the search query
used by our approach. The traceability researchers through a peer-review process evaluated
each individual artifact and inspected whether the artifact is about Database Security con-
cerns in HIPA or not. Here we provide an excerpt of two sample data points extracted using
our approach:
•“HIPAA compliance: Healthcare customers and Independent Software Vendors (ISVs)
might choose SQL Server in Azure Virtual Machines instead of Azure SQL Database
because SQL Server in an Azure Virtual Machine is covered by HIPAA Business As-
sociate Agreement (BAA). For information on compliance, see Azure Trust Center.”
•“Confidentiality: Do not rely on custom or untrusted encryption routines. Use OS
platform provided cryptographic APIs, because they have been thoroughly inspected and
tested rigorously. Use an asymmetric algorithm such as RSA when it is not possible
to safely share a secret between the party encrypting and the party decrypting the
data....”

CHAPTER 4. RESULTS 69

Table 4.10: Sample Regulations Discussed on Technical Libraries

ACT
Name

Aplies to

Sarbanes
Oxley Act

Legislation passed by the U.S. Congress to protect share-
holders and the general public from accounting errors
and fraudulent practices in the enterprise, as well as im-
prove the accuracy of corporate disclosures [19]. More on
(http://www.sec.gov/)

HIPAA

the federal Health Insurance Portability and Account-
ability Act of 1996. The primary goal of the law is to
make it easier for people to keep health insurance, protect
the confidentiality and security of health care information
and help the health care industry control administrative
costs. [19]

PCI
Payment Card Industry Data Security StandardÂ(PCI
DSS) is a proprietaryÂ information security Âregulation
for organizations that handle brandedÂ credit cards. [4]

The The
Gramm-

LeachBliley
Act

(GLBA)

Also known as the Financial Services Modernization Act
of 1999, is an act of the 106th United States Congress,
removing barriers for confidentiality and integrity of per-
sonal financial information stored by financial institu-
tions. [2]

SB 1386

California S.B. 1386Â was a bill passed by the
ÂCalifornia legislature. The first of many U.S. and inter-
national Âsecurity breach notification laws. Enactment
of a requirement for notification to any resident of Cali-
fornia whose unencrypted personal information was, or is
reasonably believed to have been, acquired by an unau-
thorized person. [1]

BASEL II

Is recommendations on banking laws and regulations is-
sued by the ÂBasel Committee on Banking Supervision.
Aplies to: Confidentiality and integrity of personal finan-
cial information stored by financial institutions. Avail-
ability of financial systems. Integrity of financial infor-
mation as it is transmitted. Authentication and integrity
of financial transactions [19].

Health
Level
Seven
(HL7)

Provides regulations for the exchange of data among
health care computer applications that eliminate or
substantially reduce the custom interface programming
and program maintenance that may otherwise be re-
quired [19].

CHAPTER 4. RESULTS 70

In the area automatically generating dataset precision or accuracy of generated dataset
is more important than recall (retrieving all the artifacts from web). In our baseline Big-
Data Analysis and Data-Mining approaches we have not utilized any tweaking to improve
the precision of artifact retrieval. Common NLP techniques can result in greater artifact
accuracy. Our study reported here, provides the accuracy metric of a simplified search
technique. This is adequate to support the fact that automated dataset generation techniques
will work and to draw the community attention to this research area. In future, work we
plan to enhance the accuracy of our artifact retrieval techniques using NLP.

4.3.10 Usage Scenario#2: Classifying Functional Requirements:

Another area where automated techniques can be used is the generation of datasets for
classifying functional requirements. Classification in this context is primarily for tracibility
purposes and to distinguish functional and nonfunctional requirements.

Problem: Traditionally the VSM [71] technique has been widely used to trace functional
requirements to source code. On the other hand, there are studies showing the feasibility
of using supervised learning methods to trace reoccurring functional requirements [10]. The
biggest drawback for this approach is the difficulty of obtaining several samples of the same
functional requirements or files.

Feasibility Study: Using Big-Data analysis we observed that, in our ultra-large code
repository, there are a large number of software systems from the same domain, therefore the
files to implement functional requirements will also reoccur across these systems. Therefore
it is possible to collect datasets of such implementation and use different supervised learning
techniques to detect these types of requirements in the source code or utilize such dataset
for other purposes. Table 4.11 shows the accuracy of the Big-Data analysis in establish-
ing datasets for files implementing functional requirements of an ERP (Enterprise Resource
Planning) software system. In fact, in all cases, our approach successfully created datasets
of files to implement those requirements. The terms in the queries to retrieve the imple-
mentation of functional requirements were directly extracted from an on-line document of a
similar system 7. Although this is a feasibility study, it highlights the fact that our approach
can be applicable to the other types of datasets beyond tactical-files. The purpose of our
two usage scenario reported in this section is to show the potential for extending the auto-
mated dataset generation techniques to the other areas of software traceability. The positive
results reported in the table 4.11 indicate that in presence of large corpus, information re-
trieval techniques can assist developers in obtaining the datasets which require extensive
human involvement.

4.3.11 Threats To Validity

Threats to validity can be classified as construct, internal, external, and statistical validity.
We discuss the threats which potentially impacted our work, and the ways in which we
attempted to mitigate them. Since BUDGET is accessible for the public, it would enable
the researchers in the community to conduct similar experiments, reproduce the results and
expand this work. The expert-created dataset used in investigating the impact of dataset
size is also released on-line at COEST.org.

External validity evaluates the generalizability of the results. One of the primary
threats is related to the construction of the datasets for this study. The manual dataset

7Please see terms in the figures: http://www.1tech.eu/clients/casestudy_ventraq

http://www.1tech.eu/clients/casestudy_ventraq

CHAPTER 4. RESULTS 71

included over 250 samples of tactic-related code. The task of locating and retrieving these
files was conducted primarily by two experts in the area of requirements and software archi-
tecture and was reviewed by two additional experts. This was a very time-consuming task
that was completed over the course of three months. The systematic process we followed to
find tactic related classes and the careful peer-review process gave us confidence that each
of the identified files was indeed representative of its relevant tactic. In addition, all of the
experiments conducted in our study were based on Java, C# and C code. Some of the identi-
fied keyterms are influenced by the constructs in these programming languages such as calls
to APIs that support specific tactic implementation. On the other hand, the majority of
identified keyterms are non-language specific. Therefore, the experimental results reported
in this paper will not be impacted by this language-specific keyterms.

Furthermore, the Hadoop and OfBiz case studies were used to evaluate the impact of
dataset size on accuracy of tactic classification on a large and realistic system. We recognize
that these are only two case studies and cannot be representative of all typical software
engineering environments. In future work, we will to explore additional case studies in an
effort to generalize our observations.

Construct validity evaluates the degree to which the claims were correctly measured.
The n-fold cross-validation experiments we conducted are a standard approach for evaluating
results when it is difficult to gather larger amounts of data. To avoid the impact of dataset
size on training-set quality, all the comparison experiments were conducted on the training
set of equal size.

Internal validity reflects the extent to which a study minimizes systematic error or
bias, so that a causal conclusion can be drawn. A greater threat to validity is that the
search for specific tactics was limited by the preconceived notions of the researchers, and that
additional undiscovered tactics existed that used entirely different terminology. However we
partially mitigated this risk through locating tactics using searching, browsing, and expert
opinion. Since multiple data collection mechanisms were used by experts, the dataset is
not dependent on a limited number of terms, in fact in some cases there a large diversity
in terminologies. In the case of the Hadoop project, we elicited feedback from Hadoop
developers on the open discussion forum. An additional threat in this category is that the
accuracy of the automated techniques can be dependent on the tactic-query used in the
study. To avoid this bias, we pre-selected the queries from description of tactics from text
book. In future work we are planning to run different experiments to identify the impact of
domain knowledge of the person who creates the query on the quality of datasets.

Statistical validity concerns whether the statistical analysis has been conducted cor-
rectly. In order to address this threat appropriate statistical techniques were used. For
reliability of conclusions we used two non-parametric tests. Uniformly both tests indicated
that there is no statistically differences between the accuracy of training methods although
manual ones ranks the best.

4.4 RQ4: Can we automatically detect and catego-
rize open-source software artifacts?

We extracted 91,108 open-source projects in various programming languages from GitHub
between April and October 2015. To achieve 95% confidence level and 5% margin of error,
we randomly select 383 applications and study software artifacts in those projects. The size
of the selected subjects, in terms of Lines Of Code (LOC), ranges from 2 to 12 million LOC.

CHAPTER 4. RESULTS 72

Figure 4.10 shows the distribution of the primary programming language across the projects,
i.e., the language with the highest number of LOC.

Figure 4.10: Distribution of primary languages in the sampled projects.

4.4.1 RQ4.1: How can software artifacts be categorized?

We identify the following artifact types only by file names and extensions as shown in Ta-
ble 4.12: application, archive, audio, disk image, font, image, project, source code, testing
code, and miscellaneous. Some file extensions can be associated with multiple file types. For
example, png can be Portable Network Graphics Image or Corel Paint Shop Pro Browser
Catalogue, i.e., an image file or a documentation file. We randomly sample 5 instances of
such extensions and assign them to one file type based on their file content. In addition to
extensions we separate testing code from source code, by verifying if one of the following
keywords appears in file name or directory: “test”, “tests”, and “mock”. Another heuristic
is used to identify miscellaneous files based on the number of words in the file. Through
experiments, we observe that a threshold of 30 offers a good compromise between precision
and recall.

We analyze the file extensions associated with open-source projects. There are 234,296
artifacts with 1,217 distinct files extensions in the sampled projects, excluding hidden files.

CHAPTER 4. RESULTS 73

Table 4.11: Accuracy of automatically generated datasets in two different
areas of requirements engineering

Approach Query Correct

Big-Data

Query 1: Billing, Bill Calculation, Invoice Gen-
eration

90%

Query 2:Â Balance Management, Credit Man-
agement, Account Management, Credit Card
Processing

100%

Query 3: Business Intelligence, SLA Manage-
ment, Database Marketing

100%

Query 4: Product Shipment, Shopping 100%
Web-Mining Database Security HIPAA 63%

Table 4.12: Heuristics applied to identify types of non-documentation related
artifacts.

Artifact Type Heuristic

Application .bat .cmd .exe .ser .swf
Archive .a .gz .jar .pack .zip
Audio .kt .mp3 .ogg .wav
Disk Image .scl
Font .eot .otf .ttf .woff
Image .blp .bmp .dds .gif .ico .jpeg .jpg .png .psd .rs .svg .tga

.tif .xpm
Project .csproj .pbxproj .vcproj .vcxproj
Source Code .as .asm .c .cc .class .coffee .cpp .cs .cshtml .css .ctp .cxx

.d .dll .ebuild .ejs .el .erb .erl .f .f90 .go .gradle .groovy

.h .haml .hpp .hs .i .java .js .jsp .less .lua .m .mo .o .php

.phpt .phtml .pl .pm .pp .py .pyc .r .rb .s .scala .scss .scssc

.sh .smali .so .sql .swift .t .tcl .ts .vb .vim .rkt
Testing Code if a file is classified as code, we further examine if “test”,

“tests”, and/or “mock” is contained in fully qualified file
name, ex. ProjectName/src/test/file.java

Miscellaneous non-readable files
non-English files
insufficient information (files with ≤ 30 words)

CHAPTER 4. RESULTS 74

However, the top 38 most frequent file extensions occur in more than 95% of the projects
and account for over 76% of the total artifacts. Table 4.13 shows the top 38 most frequent
file extensions along with the number of projects that contain files with these extensions
and the number of files with these extensions in the sampled projects. “Num. of Projects”
(%) reports on the number (percentage) of sampled applications that contain files of each
extension. “Num. of Files” (%) reports on the number (percentage) of files with each
extension in the sampled applications. “Cum. %” reports the cumulative % of the artifacts.
For instance, the first row shows that 1) 383 out of the 383 sampled projects, i.e., 100%,
contain files without extension and 2) 13,706 out of 234,296 artifacts, i.e., 5.85%, have no
extension. The extensions highlighted in gray are documentation related files that are not
identified by the heuristics shown in Table 4.12. Since it is not feasible to manually go
through every single file, we sampled 2% of files with the highlighted extensions.

To create an oracle of documentation related files, two coders manually and indepen-
dently classify 894 randomly selected artifacts. 149 out of 894 sampled artifacts are docu-
mentation related files. During this manual classification process, we iteratively refine and
consolidate the initial list of categories as needed. The initial IRR value is 0.64 and it is
calculated for a set of 115 artifacts. The two coders then discuss the discrepancies to reach
an agreement. The subsequent IRR value increased to 0.786 for the next 115 artifacts, which
indicates substantial agreement [103]. Since kappa shows substantial agreement, the remain-
ing software artifacts categorization was conducted by only 1 coder. Our manual analysis led
to the creation of a taxonomy of documentation related artifacts with 7 distinct categories.
A description of each category follows:

1. Contributors’ Guide contain information targeting the contributors to the project
such as how to begin contributing to the project, the review process, tips on debugging,
etc.

2. Design Documents contain information about the design of the project, such as
design patterns and design decisions, underlying project framework and architecture,
as well as version compatibility details.

3. License contain information about copyright and the type of licenses the project
operates under.

4. List of Contributors contain information about and credit to the authors and main-
tainers of the project, including author names, their roles, and contact information.

5. Release Notes are usually documents shared with end users or clients and outline
specific version changes, bug fixes, or enhancements made to the project.

6. Requirement Documents often contain functional and non-functional require-
ments, use cases, and other software specifications that target expected user inter-
actions.

7. Setup Files contain all artifacts that have to do with project setup. Examples include
manifest files, make files, configuration files, and version requirement files.

During the manual classification, we identify 342 unique features that characterize the
categories in the above taxonomy. Some of those are based on their frequency of occurrence
in artifacts, while others are identified by the coders. We observe that five features are

CHAPTER 4. RESULTS 75

Table 4.13: Extension distribution in the sampled projects.

File Num. of % Num. of % Cum. %
Extension Projects Files

no extension 383 100.00% 13,706 5.85% 5.85%
md 262 68.41% 1,853 0.79% 6.64%
html 162 42.30% 3,203 1.37% 8.01%
txt 162 42.30% 7,828 3.34% 11.35%
png 153 39.95% 8,450 3.61% 14.96%
js 152 39.69% 9,921 4.23% 19.19%
css 132 34.46% 1,405 0.60% 19.79%
xml 115 30.03% 6,147 2.62% 22.41%
json 109 28.46% 1,542 0.66% 23.07%
jpg 97 25.33% 1,300 0.55% 23.63%
java 79 20.63% 3,582 1.53% 25.15%
ico 65 16.97% 96 0.04% 25.20%
svg 59 15.40% 435 0.19% 25.38%
sh 58 15.14% 1,265 0.54% 25.92%
gif 56 14.62% 2,614 1.12% 27.04%
properties 53 13.84% 164 0.07% 27.11%
py 53 13.84% 15,147 6.46% 33.57%
h 49 12.79% 48,448 20.68% 54.25%
php 42 10.97% 2,645 1.13% 55.38%
jar 42 10.97% 260 0.11% 55.49%
ttf 42 10.97% 131 0.06% 55.55%
yml 39 10.18% 264 0.11% 55.66%
woff 37 9.66% 79 0.03% 55.69%
eot 36 9.40% 78 0.03% 55.73%
pdf 35 9.14% 400 0.17% 55.90%
rb 32 8.36% 2,267 0.97% 56.86%
scss 29 7.57% 780 0.33% 57.20%
c 28 7.31% 43,056 18.38% 75.57%
sln 28 7.31% 100 0.04% 75.62%
lock 27 7.05% 41 0.02% 75.63%
conf 26 6.79% 270 0.12% 75.75%
bat 26 6.79% 51 0.02% 75.77%
plist 25 6.53% 266 0.11% 75.88%
cpp 25 6.53% 1,581 0.67% 76.56%
cache 23 6.01% 59 0.03% 76.58%
log 22 5.74% 133 0.06% 76.64%
config 21 5.48% 77 0.03% 76.67%
map 20 5.22% 123 0.05% 76.73%

CHAPTER 4. RESULTS 76

Table 4.14: Sample list of features.

Document Type # Example Features

Contributors’ Guide 26 contribute, welcome, checkout, severity
Design Document 10 architecture, design, framework, layer
License 30 disclaimer, free, law, reproduction
List of Contributors 18 authors, instructions, maintainers, thank
Release Notes 30 added, bug, date, fixed, improve, version
Requirement Document 10 feature, functionality, support, requirement
Setup Files 25 build, configure, defaults, ignore, manifest

not present in any of the files in our oracle. We remove those features and retain the
remaining 337 features that we will use for the automatic artifact classification. Table 4.14
shows examples of the features we used to identify each category and the distribution of
artifacts in our oracle. The complete list of features can be found in our online replication
package. Based on the in-depth analysis and manual classification of 894 artifacts, the
following conclusion was drawn:

RQ4.1 Summary: Some software artifacts can be categorized solely using heuristics
based on file names and extensions. However, other artifacts that are documentation
related require deeper analysis and identification of characterizing features to be classi-
fied.

4.4.2 RQ4.2: How accurate is the proposed approach for au-
tomatic software artifact classification?

In this section we evaluate the performance of the automatic artifact classification. We do not
evaluate the classification of non-document related artifacts, i.e., those listed in Table 4.12 as
those are correct by construction. Table 4.15 contains the results of applying ML algorithms
using 10-fold cross-validation. Results per class as well as the micro and macro averages
across classes are reported. Overall, Näıve Bayes Multinomial has the best performance
with a micro average precision of 0.80, 0.76 recall, 0.76 F-measure, 0.73 MCC, and 0.95
ROC. The high values for MCC and ROC indicate that the classifier performs very well on
the validation dataset.

Values in bold indicate the best performance achieved per class for both precision and
recall. For example, at 0.74, J48 is able to achieve the highest precision for the class Release
Notes relative to the other classifiers. However, at 0.83, Näıve Bayes Multinomial achieves
the highest recall for Release Notes. Each algorithm achieves the best precision and recall
performance for at least one class, therefore, different algorithms may be better suited to
classify instances from different classes. Using ensemble techniques, such as voting we are
able to combine the predictive power of several algorithms that perform well on unique
classes, to create one classifier with improved performance across all classes.

Table 4.16 contains the results of classifiers used in Table 4.15 combined using ensemble
learning. Specifically, the classifiers are combined using majority vote. Results in Table 4.15
indicate that Näıve Bayes Multinomial performs the best on several different classes, therefore

CHAPTER 4. RESULTS 77

Table 4.15: Performance of individual classifiers and 10-fold cross-validation
on the training dataset.

Classifier Parameters Class Precision Recall F-Measure MCC ROC

Näıve Bayes Multinomial Default Requirement Document 0.35 0.70 0.47 0.45 0.92
Design Document 0.63 0.50 0.56 0.53 0.93
Release Notes 0.69 0.83 0.76 0.69 0.97
Setup Files 0.86 0.48 0.62 0.59 0.94
License 0.94 1.00 0.97 0.96 1.00
List of Contributors 0.89 0.89 0.89 0.87 0.99
Contributors’ Guide 0.86 0.69 0.77 0.73 0.89

Micro Average 0.80 0.76 0.76 0.73 0.95
Macro Average 0.74 0.73 0.72 0.69 0.95

SMO Poly Kernel Default Requirement Document 0.40 0.40 0.40 0.36 0.86
Design Document 0.43 0.30 0.35 0.32 0.91
Release Notes 0.70 0.77 0.73 0.66 0.90
Setup Files 0.77 0.92 0.84 0.81 0.96
License 0.94 0.97 0.95 0.94 0.99
List of Contributors 0.82 0.78 0.80 0.77 0.95
Contributors’ Guide 0.81 0.65 0.72 0.68 0.87

Micro Average 0.75 0.76 0.75 0.71 0.93
Macro Average 0.69 0.68 0.69 0.65 0.92

Random Forest #Trees 500 Requirement Document 0.40 0.20 0.27 0.25 0.91
Design Document 1.00 0.30 0.46 0.53 0.97
Release Notes 0.65 0.73 0.69 0.60 0.94
Setup Files 0.71 0.88 0.79 0.74 0.95
License 0.91 1.00 0.95 0.94 1.00
List of Contributors 0.87 0.72 0.79 0.77 0.98
Contributors’ Guide 0.64 0.69 0.67 0.59 0.93

Micro Average 0.74 0.74 0.72 0.69 0.96
Macro Average 0.74 0.00 0.69 0.63 0.95

J48 MinNumObj 4 Requirement Document 0.27 0.30 0.29 0.23 0.70
Design Document 0.67 0.60 0.63 0.61 0.84
Release Notes 0.74 0.67 0.70 0.63 0.87
Setup Files 0.45 0.52 0.48 0.37 0.76
License 0.93 0.93 0.93 0.92 0.98
List of Contributors 0.43 0.50 0.46 0.38 0.79
Contributors’ Guide 0.55 0.46 0.50 0.41 0.82

Micro Average 0.62 0.61 0.62 0.55 0.84
Macro Average 0.58 0.57 0.57 0.51 0.82

Table 4.16: Performance of the classifiers using ensemble learning and 10-fold
cross-validation on the training dataset.

Classifier Class Precision Recall F-Measure MCC ROC

Majority Vote Release Notes 0.85 0.84 0.84 0.81 0.90
(2*Näıve Bayes Multinomial, Contributors’ Guide 0.90 0.78 0.84 0.81 0.88
SMO Poly Kernel, List of Contributors 0.99 0.86 0.92 0.91 0.93
J48, and Random Forest) Design Document 0.74 0.51 0.60 0.59 0.75

License 0.98 1.00 0.99 0.99 1.00
Requirement Document 0.39 0.66 0.49 0.46 0.79
Setup Files 0.74 0.79 0.77 0.72 0.87

Micro Average 0.85 0.82 0.83 0.80 0.90
Macro Average 0.80 0.78 0.78 0.76 0.87

CHAPTER 4. RESULTS 78

Table 4.17: Performance of the classifiers using ensemble learning and 10-fold
cross-validation on the testing dataset.

Classifier Class Precision Recall F-Measure MCC ROC

Majority Vote Release Notes 0.50 0.80 0.62 0.54 0.82
(2*Näıve Bayes Multinomial, Contributors’ Guide 0.90 0.82 0.86 0.83 0.90
SMO Poly Kernel, List of Contributors 0.86 1.00 0.92 0.92 0.99
J48, and Random Forest) Design Document 1.00 0.40 0.57 0.62 0.70

License 1.00 0.90 0.95 0.94 0.95
Requirement Document 0.33 0.14 0.20 0.15 0.55
Setup Files 0.75 0.90 0.82 0.78 0.92

Micro Average 0.76 0.75 0.73 0.70 0.85
Macro Average 0.76 0.71 0.70 0.68 0.83

we increase the weight of its vote during classification by two to create a weighted majority
vote, which has shown to be effective in similar text classification research [152]. As compared
to the best performing single classifier, majority vote yields a micro average precision of
0.85, which is a 5% increase, recall increases by 6% to 0.82, F-Measure increases by 7% to
0.83. MCC increases by 7% to 0.80 and ROC decreases to 0.90, which still indicates strong
performance.

Requirement Document is the class with the lowest performance using both single clas-
sifiers and voting. However, using voting we are able to achieve a better balance between
precision and recall. The best precision and recall for the class are both at 0.40 for single
classifiers, however, with ensemble learning precision drops by only 0.01 and recall increases
by 0.26. Overall, voting improves the performance in terms of precision and recall across all
classes. The only exception is with the class Setup Files for which SMO Polynomial Kernel
is able to achieve a 3% higher precision and 13% higher recall. Despite this, comparing
the micro average for all classes of SMO Polynomial Kernel to the ensemble approach, the
performance trade off is a 10% increase in precision, 6% increase in recall in favor of the
ensemble approach.

In order to evaluate the model generated by the majority vote algorithm, we run the
classifier on a newly generated oracle, the testing dataset, and analyze the results. Table 4.17
contains the results of the classifier on the second oracle of 59 data points. Overall, results
for classes Contributors Guide, List of Contributors, Design Documents, License, and Setup
Files are very similar, in term of F-Measure, MCC and ROC, to the performance obtained
on the first oracle. Release Notes and Requirement Documents are two categories that
perform significantly worse with 0.35 decrease in precision for Release Notes and 0.52 decrease
in recall for Requirement Documents. The results for these two classes affect the overall
micro and macro averages. 3 out of 7 instances from the Requirement Document class are
categorized as Release Notes and 2 out of 10 instances of Release notes are categorized
as Requirement Documents. We investigate the ML features across the different types of
artifacts to understand the drop of performance in the testing dataset. Our analysis leads
to two observations. First, we note that there is a significant decrease in the number of
documents containing the features for Requirement Documents in the testing dataset. The
second observation is that there is an increased overlap of features between Requirement
Documents and Release Notes in the testing dataset. One explanation could be due to the
fact that the features we manually created are not representative of Requirement Documents.

CHAPTER 4. RESULTS 79

Another explanation could be due to fact that Requirement Documents in the second oracle
are considerably smaller in size compared to the Requirement Documents in the first oracle.
Thus, there might not be enough textual content, i.e., features, in the second oracle for
the ML algorithms to perform well. We plan to further investigate and try to improve
the performance of ML features regarding the Release Notes and Requirement Document
artifacts in our future work by adding more documents to the training set and by comparing
the performance of manually extracted features to that of automatically extracted features
using information retrieval approaches.

RQ4.2 Summary: Combining different ML algorithms through ensemble learning, we
are able to automatically classify documentation related software artifacts with an av-
erage precision of 85% and recall of 82% using 10-fold cross-validation on the validation
dataset—an oracle of 149 data points. Using the same classifier on a testing dataset of
59 new data points, our approach achieves an average precision of 76% and a recall of
75%.

4.5 RQ5: What types of artifacts are created during
open-source software development?

To explore the types of artifacts created during open-source software development, we run
our classification approach on the entire sample set of 383 projects. Table 4.18 contains the
predicted distributions of various documentation and non-documentation related artifacts
created during open-source project development. “Num. of Projects” (%) reports on the
number (percentage) of sampled applications that contain each type of artifact. Overall, the
most common type of artifacts are source code, setup, miscellaneous, and archive, which are
identified in over 50% of the applications. The least common type of artifacts are disk image
and audio, which are identified in less than 5% of the applications.

“Num. of Files” (%) in Table 4.18 reports on the number (percentage) of artifacts from
each category across all sampled applications. There is a total of 87,619 software artifacts
in the sample applications. We observe that documentation related artifacts make up only
6.12% of all files. Further more, design documents and requirement documents only make
up 0.42% and 0.68% respectively. Setup files account for 3.57% of the total artifacts. As
expected, source code makes up 56.79% of the entire artifacts collection.

Focusing on documentation, we observe that 5.74% and 10.18% of the projects contain
design and requirement documents, respectively. Taking into consideration that 4 projects
contain both design and requirement documents, the combination of projects that contain
either type makes up 14.88% of the sampled applications (22+39-4=57). Although doc-
umentation related artifacts only accounts for a small portion of the available artifacts,
open-source projects can still be a good resource for researchers for such artifacts.

RQ5 Summary: Using our automatic artifact classification approach, we confirm that
open-source projects provides a variety of software artifacts. Approximately 14.88% of
the projects contain either design or requirement documents.

CHAPTER 4. RESULTS 80

Table 4.18: Distribution of the different types of software artifacts in the
sampled projects.

Software Category Num. of % Num. of %
Artifacts Projects Files

Documentation Design Documents 22 5.74% 371 0.42%
List of Contributors 33 8.62% 134 0.15%
Requirement Documents 39 10.18% 592 0.68%
Contributors’ Guide 54 14.10% 389 0.44%
License 84 21.93% 259 0.30%
Release Notes 93 24.28% 489 0.56%
Setup Files 235 61.36% 3,130 3.57%

Subtotal 5,364 6.12%

Non- Disk Image 1 0.26% 4,209 4.80%
Documentation Audio 5 1.31% 83 0.09%

Project 25 6.53% 68 0.08%
Font 31 8.09% 201 0.23%
Application 32 8.36% 121 0.14%
Testing Code 92 24.02% 3,766 4.30%
Image 126 32.90% 10,212 11.66%
Source Code 217 56.66% 49,680 56.70%
Misc 236 61.62% 13,380 15.27%
Archive 236 61.62% 535 0.61%

Subtotal 82,255 93.88%

Total 87,619 100%

CHAPTER 4. RESULTS 81

4.6 RQ6: How do experts assess the quality of trace-
ability datasets?

Figure 4.11 shows the demographic information about the participants of the survey. Out
of the 23 experts, 14 are from within the US, 5 from Europe, 2 from Asia, and 2 from
Canada. Twenty-two experts are researchers from academia and one is from industry. In
the following, we present the answers for each of these questions:

(a) Participants Location. (b) Participants traceability
experience.

Figure 4.11: Demographic information about the participants.

4.6.1 RQ6.1: What are the quality attributes that researchers
are looking for when they select datasets?

The descriptive answers provided by the experts participated in the survey were analyzed
using open coding practices. First, we highlight a descriptive tag for each answer, then we
created a code for these descriptions and the codes were converted into categories defining
quality attributes of the datasets.

CHAPTER 4. RESULTS 82

Excerpt#1

“In my experience, I’ve had to use the datasets that were available
for the work I was tasked to do, rather than having much choice in
the matter. But in general I want to see data that is mostly com-
plete, that doesn’t have a lot of empty fields. A dataset with many
typographical or grammatical errors is hard to understand. I want
to see data that is collected from real projects and not generated
as “typical data” using a tool.”

Codes: “Availability”, “Completeness”, and ‘’Source of Data”, “Qual-
ity of the natural language text”.

Excerpt#2

“Quality of the oracle (I would not use dataset with just few links). I
also use to select datasets validated and used by other researchers.
Is the dataset big enough to create valid results.”

Codes: “Size of Data”, “Answerset Validity”.

Categories Emerged from Open Coding

“Availability”, “Completeness”, and ‘’Trustworthiness”, “Readability”,
“Size”.

Figure 4.12: Examples of Excerpt from online survey responses, identified
codes in open coding activities, and emerged categories.

CHAPTER 4. RESULTS 83

Availability

Completeness

Source	of	data

Industrial	
representativeness

Collection	method

Artifacts	type
Quality	of	natural	language	text

Consistency

Interpretability

Size	of	Data

Domain
Dataset	type

Representative	artifacts

Existence	of	Answerset	

Answerset	Validity

Multi-Version

Dataset	metadata

Trustworthiness

Validation

Correctness

Answerset	size
Richness	of	Answerset

Programming	Language

Frequency	of	usage
Grammaticality

Relevancy

Representation

Life	of	project

Data	collection	date

Dataset	creation	date

Artifact	size
Vocabulary	size

0
2
4
6
8
10
12
14
16
18
20

Code	Frequency

Figure 4.13: Codes emerged from open coding activities and their frequencies.

Figure 4.12 shows excerpts from answers provided by two different experts, and descrip-
tive tags identified as bold font and red color. The codes generated by the authors are shown
below each excerpt and categories emerged from this coding activity are shown in the last
part of this figure.

For instance, in case of the examples shown here, the following codes were discovered
from the responses: “Availability”, “Completeness”, “Source of Data”, “Quality of natural
language text”, “Size of Data”, and “Answerset Validity”. This process was repeated for
all the answers provided by the participants. The identified codes from the entire dataset
were discussed by the research team and then grouped into logical categories. Example of
emergent categories are “Availability”, “Completeness”, and “Developer”, “Readability”,
“Size”, and “Trustworthiness”.

Figure 4.13 shows all the codes emerged through open coding of the survey results and
their frequency. These codes were used to summarize the respondent’s opinions about what
attributes do they consider when reasoning about datasets quality. These are intermediary
data points, in the next step of the grounded theory, these codes were grouped into categories
until no further categories could be discovered.

Figure 4.14 shows all the emerged categories (quality attributes) and their frequency.
Relevancy of the datasets to research problem, their size and trustworthiness are top three
most common quality attributes discussed by the researchers. Each of these 11 categories,
their descriptions, and the codes associated with them are summarized below:

• Relevancy: Refers to the provision of information which is in accordance with the
task at hand. Artifacts type: Representing various forms of data generated from
software engineering activities. Examples of artifact types are requirements document,
test cases, design documents, test plans, assurance cases and etc. This code is observed
in the responses of 15 participants. Several participants highlighted the importance
of having heterogeneous artifacts. One expert reports that: “Type of the artifacts in a
dataset is useful to measure the generalizability of the conclusions. I may think of (and
experienced with) techniques that work for some software artifacts (e.g., requirements)
but that are not applicable for other artifacts (e.g., test cases).”

Representativeness: whether the dataset or artifacts are representative of a popula-
tion. This code was observed in the responses of 5 participants. One expert points
out that representativeness is important for example when needing to demonstrate
that the results of an “approach are applicable to an industry-wide problem”. Another
expert mentions that she will use “industrial or industry-like datasets”.

CHAPTER 4. RESULTS 84

Figure 4.14: Quality attributes used by the experts to select datasets and
their frequencies in the experts’ responses.

• Size: Reflecting how big is the dataset, and how many artifacts are for each artifact
type.

Dataset size: This code was observed in the responses of 19 participants. One par-
ticipant reports that a lot of his work uses machine learning approaches and thus
the number of data points, i.e., the size of the dataset really matters. Two other
participant highlight that size is important to generate “valid research results”.

Artifact size: reflects how big is an artifact in terms of the number of entities (re-
quirements, methods, classes, etc.) within that artifact. This code was observed in
the responses of 2 participants. One expert reports that it is important to have many
artifact types and many artifacts per type.

Size of the vocabulary: Reflecting how big is a textual artifact and how diverse is its
vocabulary. This code was observed in the responses of one participant.

Representative artifacts: To what extent the provided artifacts are correctly repre-
senting the required artifacts type. This code was observed in the responses of 5
participants. For instance, one participant points out that “feature requests in Jira
are a poor proxy for requirements”.

• Trustworthiness: Is the information provided in the dataset accepted to be correct,
true, real, and credible.

CHAPTER 4. RESULTS 85

Answerset trustworthiness: Are the trace links provided in the answerset accepted to
be correct and credible. This code was observed in the responses of 4 participants. One
participant highlights that for him it is important to have a “full understanding how
this data is obtained”. Another participant mentions that ”if non-project members
created links after the fact, the dataset cannot be considered realistic”.

Validation: Is the dataset been vetted and validated previously by researchers. This
code was observed in the responses of 7 participants. One participant reports that
“Accuracy above all. False positives will let me draw to completely biased conclusions.”

Frequency of Usage: How frequently is the dataset used by the other researchers.
This code was observed in the responses of 2 participants.

Generation approach: indicates whether the dataset is established and vetted manu-
ally or whether it is generated automatically by a tool. This code was observed in the
responses of 2 participants. One participant reports that “A dataset is trustworthy to
me when I know how is has been generated and in general the generation process is
replicable.”

• Language: Are the provided artifacts written in different languages (natural lan-
guages, programming languages).

Natural languages: This code was observed in the responses of 2 participants.

Programming languages: This code was observed in the responses of 5 participants.

• Completeness: Refers to the degree to which all required information is present in
a particular dataset. The following codes have resulted the creation of this category:

Presence of Source-Target artifacts: at least 2 types of artifacts are present in the
dataset. This code was observed in the responses of 5 participants. One expert adds
that ”Completeness - that is, I want to have more than just the traceability matrix,
for example, including the source code and all relevant artifacts.”

Answerset: Is there an answerset (Oracle) that was provided with the dataset. This
code was observed in the responses of 2 participants.

• Availability: Is the extent to which the dataset is present, obtainable and ready for
use. This code was observed in the responses of 7 participants.

• Interpretability: It refers to whether the information is represented using an ap-
propriate notation and whether the machine is able to process the data. This code
was observed in the responses of 6 participants.

• Developers: Team responsible for creating the dataset or answerset. The following
codes have resulted the creation of this category:
Source of Dataset: Open source community, industrial, or academic. This code was
observed in the responses of 4 participants.

Source of Answerset: Professionals, students, or tools. This code was observed in the
responses of 2 participants.

• Readability: Refers to correctness and appropriateness of the artifact in its under-
lying language.

CHAPTER 4. RESULTS 86

Grammaticality: Any natural language artifacts needs to be proper and free of gram-
mar issues. This code was observed in the responses of 2 participants.

Consistency: whether consistent terminology, style, and the argument are present in
the data. This code was observed in the responses of 2 participants.

• Timeliness: Refers to the date of the dataset or answerset creation. The following
codes have resulted the creation of this category:

Multi-Version: Refers to multiple version of the artifacts or the source code that was
provided within the dataset. This code was observed in the responses of 3 participants.
One expert mentions that “There should be enough information about the relationships
between the source and target artifacts so that I can evaluate the traceability. For
example, the information can be multiple versions of the project. The co-evolution
of the requirements and code can be obtained. These are proof of the trace links.”
Furthermore, the same expert emphasizes the timeliness of projects, ”I like the active
and hot projects, because more people participating in the project, higher probability
that I can get more related and diverse data.”

Data collection date: Refers to the date in which the dataset was obtained. This code
is observed in the responses of one participant.

Data creation date: Refers to the date in which the dataset was obtained. This code
is observed in the responses of one participant.

• Domain: A specified sphere of activity or knowledge having a common set of re-
quirements, terminology, and functionality. This code is observed in the responses of
10 participants. Participants have different opinions whether the quality attributes
used to assess the dataset change for different domains.

4.6.2 RQ6.2: What dataset qualities have an impact on the
meaningful conclusions being drawn from a research project?

Based on the feedback collected from participants, dataset size is the most important quality
attribute impacting the conclusion drawn from research in this area. After this attribute,
the trustworthiness of the dataset and relevancy of the datasets to the domain and tasks
at hand are the next two most important attributes. Figure 4.15 illustrates all attributes
identified by the experts and the number of experts who mention that attribute.

4.6.3 RQ6.3: What are the datasets quality-attributes that
could impact the generalizability of research results?

Similarly, we obtained experts’ opinion on the topic of generalizability of the research results
and its association with the dataset quality. Figure 4.16 illustrates all the attributes identified
by the experts and the number of experts who have mentioned that attribute. Relevancy
and size are the most frequently reported quality attributes followed by trustworthiness and
domain.

CHAPTER 4. RESULTS 87

Figure 4.15: Expert’s opinion on the relationship between the dataset qualities
and research conclusions.

Figure 4.16: Expert’s opinion on the relationship between the dataset qualities
and generalizability of the results.

CHAPTER 4. RESULTS 88

RQ6 Summary of findings: Researchers use a combination of eleven attributes to
reason about the quality of scientific datasets and select the appropriate ones. Among
these attributes, datasets size, trustworthiness, and relevancy of datasets to research
task at hand are three important factors impacting the validity of research conclusions
and their generalizability.

4.7 RQ7: Does the existing framework for evalu-
ating the quality of traceability datasets cap-
tures the relevant characteristics that experts
are looking for?

Subject matter experts were presented with the T-DQA quality sub-dimensions and were
asked to rank them on a five-point Likert scale, one representing not important and four to
capture the importance of each quality attribute. They were also given an option of selecting
“Do not have an opinion”. This option helps minimize the risks in cases that the subjects
are uncertain about their answers. Figure 4.17 summarizes the expert’s opinion about the
importance of T-DQA sub-dimensions.
Dataset size: 65.2% of the surveyed experts consider the dataset size to be a very important
attribute to assess dataset quality in the domain of requirements traceability. That supports
the inclusion of this characteristic in T-DQA framework.
Dataset domain: Eleven of the surveyed experts (47.8%) consider that the dataset do-
main is important or very important quality attribute. Eight participants (34.8%) report
the quality attribute as moderately important. One participant shares: “if it is a safety
critical system then completeness and consistency is even more important. Accuracy is also
important.” However, other participants report that the domain should not be playing a
role: “Ideally you want all datasets to be of the same quality, regardless of the application.”
Artifact types: Seven experts (30.4%) consider artifact types very important, and ten
experts (43.5%) consider artifact types important quality attribute of the datasets. Experts
also highlight the importance of artifacts granularity.
Availability: Sixteen experts (69.6%) consider the availability of dataset as a very impor-
tant attribute for the datasets quality. Six experts consider it important. This reflects the
importance of this attribute in desirability of a dataset for researchers.
Completeness of the dataset artifacts: Eleven experts (47.8%) consider completeness
of the dataset artifacts as a very important attribute for the datasets quality. Eight experts
(34.8%) consider it as important.
Representation: Nine experts (39.1%) consider representation to be an important or very
important attribute. Seven experts (30.4%) report that this attribute is moderately impor-
tant for assessing the quality of the dataset.
Dataset Developer: For this quality attribute, eleven experts (47.8%) consider it to be
important or very important quality attribute. Seven experts (30.4%) consider dataset de-
veloper as a moderately important quality attribute. There have been conflicting responses
when it comes to this attributes. One expert reports that “researchers should primarily focus
on industry datasets.”, there are other experts that agree with this opinion. Another expert

CHAPTER 4. RESULTS 89

Figure 4.17: Importance of T-DQA attributes from participant’s perspective.

CHAPTER 4. RESULTS 90

mentions that “Many OSS projects are higher quality than closed-sourced ones I have encoun-
tered.” Another expert argues that “it depends what the academic project looks like (toy ones
like EasyClinic are too small). iTrust has been used a lot even though it is academic—but
its a poor substitute. OSS definitely *not* good enough—unless your interest lies specifically
in building tools for OSS—in which case those datasets are clearly perfect.”

There are other experts that argue that this quality attribute is dependent on the context
of research and other attributes of the dataset itself. For instance, one researcher mentions
that “There is no definite answer for Dataset Developer. It depends. They can be good
enough, that it must be assessed.” Another expert reports that “One of the fundamental
aspects of any dataset is the incentive for the engineers involved in creating and maintaining
it. If an OSS project carefully maintained traceability to support regression testing, that would
be very interesting. If an academic project maintained traceability because the developers
considered it valuable (not just students trying to get good grades...) for long-term evolution
of a product—yes, very interesting as well.”
Trustworthiness: Seventeen experts (73.9%) consider the trustworthiness of dataset as a
very important attribute to assess dataset quality in the domain of requirements traceability.
This is the quality attribute with the highest number of participants considering it very
important.

RQ7 Summary of findings: Traceability experts identify the quality attributes de-
fined in T-DQA important, in particular Trustworthiness (73.9%), Availability (69.6%),
and Dataset Size (65.2%).

4.7.1 Discussion

In earlier sections (4.6 and 4.7), we used a grounded theory-based approach to answered two
research questions of RQ6 and RQ7

Such approach can be particularly useful for researchers whose topic of interest has not
been subject to systematic analysis before and theories in the domain are incomplete or
inexistent. Since the topic of dataset quality in the domain of requirements traceability has
not been analyzed and articulated in-depth, we considered that grounded theory would help
us in deriving a theory around. This analysis helps better understand how researcher reason
about the quality of their scientific datasets and how do they choose among various datasets.

Our analysis showed that while T-DQA represents a set of quality attributes that relevant
to the surveyed experts, it does not capture all the attributes that they use when reasoning
about dataset quality. We have used the results obtained in RQ6 and RQ7 to extend the
T-DQA framework.

Table 4.19 shows the updated version of this framework (i.e., T-DQA v.2) obtained
based on the feedback collected from 23 software traceability experts. The light gray color
shows the quality attributes modified and the dark gray color shows new quality attributes
that are added in T-DQA v.2.

Three new quality attributes are added to the framework: Timeliness (suggested by 5
experts), Size (suggested by 18 experts) and Readability (suggested by 5 experts). Further-
more, the Language sub-dimension was modified to cover both programming languages and
different natural languages.

We did not remove any attribute from T-DQA, as the majority of the surveyed experts
consider all quality attributes defined by the T-DQA framework from moderately to very

CHAPTER 4. RESULTS 91

important.
Participants report that since requirements traceability research significantly relies on

textual artifacts beside source code or models, metrics such as “Size of vocabulary” are neces-
sary to reason about the appropriateness of a dataset for research. Furthermore, consistency
of natural language, and statements as well as correctness in terms of language grammar,
are important indicators of high-quality datasets.

Trustworthiness of scientific datasets can also be reasoned in terms of collection ap-
proach, validation and vetting procedure, and correctness of data or answersets. One trace-
ability expert reports that two major challenges in obtaining high quality dataset are the
correctness and completeness of the answerset. Often traceability datasets lack answerset,
may have an answerset with false positive links or missing links (incomplete). Such metrics
can be used to reason about the quality and appropriateness of a dataset within the context
of researchers projects. Another participant reports that a dataset is trustworthy when “I
can verify it myself and when I know who produced it.”

Relevancy of datasets to researchers problems at hand is a contextual quality metric.
One metric discovered through this study was representativeness of datasets or artifacts.
Experts consider a dataset high quality if it represents the industrial domain of their interest
or the type of artifact they are looking for.

Table 4.19: Updated Framework: T-DQA v.2.

Dimension Sub-dimension Definition Metrics Metric type

Accessibility

Availability Availability of a dataset is the extent to which data is present,
obtainable and ready for use. Dataset can be downloaded from the link provided. Binary

Licensing Licensing is defined as the granting of permission for a consumer to
re-use a dataset under defined conditions. license agreement exists. Binary

Storage Where is the Dataset Stored? Private Server/ Organizational Server /Public Categorical

Intrinsic

Domain A specified sphere of activity or knowledge having common set of
requirements, terminology, and functionality Application Domain Categorical

Completeness Completeness refers to the degree to which all required information
is present in a particular dataset.

Source-Target artifacts are present. (at least 2 types
of artifacts are present in dataset) Binary

Answerset completeness Binary
Answer Set is Present Binary

Dataset Developer Team responsible for creating the dataset or answerset
Dataset: Open source community, industrial, or
academic
Answerset: Professionals, students, or tools

Categorical

Language Describes the natural language or the programming language used
to write software artifacts.

Java/ C++ etc.
Natural Language Categorical

Timeliness Refers to the date of the dataset or answerset creation as well as the
period of time its been in use.

Active Binary
Popular Binary
Multi-version Binary
Collection Date, Creation Date Date

Size Reflecting how big is the dataset, and how many artifacts are for
each artifact type.

Dataset size, Answerset size, Software artifact size,
Size of the vocabulary Numerical

Contextual

Relevancy Relevancy refers to the provision of information which is in
accordance with the task at hand and important to the users’ query.

Type of artifacts (Req., UML Diagrams, Code,
Test, etc.)

(Type,
Numerical)

Industrial/ Domain Representativeness Binary
Artifact Representativeness Binary

Trustworthiness Trustworthiness is defined as the degree to which the information is
accepted to be correct, true, real, and credible.

Dataset Source Categorical
Frequency of Usage Numerical
Manual Collection Method Binary
Automatic Generation by Tools Categorical
Dataset Correctness, Answerset Correctness Binary
Validation Procedure Descriptive

Representational
Interpretability

It refers to technical aspects of the data, that is, whether information
is represented using an appropriate notation and whether the
machine is able to process the data.

detecting the use of appropriate language, symbols,
units, datatypes and clear definitions. Structure of
the data

Categorical

Readability Refers to correctness and appropriateness of the artifact in its
underlying language.

Grammaticality Binary
Consistency Binary

CHAPTER 4. RESULTS 92

4.8 T-DQA Web-tool support

As we mentioned earlier that T-DQA web-tool is an implementation of our previously pro-
posed and updated quality framework (T-DQA v2). The main goal of this tool is to provide
traceability researchers with a mean to easily find high-quality datasets that meet their
needs. Figure 4.18 shows the main-page of the web-tool. The left panel holds all the quality
metrics that were listed in Table 3.10 in the form of filters that researchers can select from.
On the right panel, the list of all the 37 datasets. For each dataset as shown in Figure 4.19,
the following details are represented:

1. Dataset Name

2. Dataset Domain

3. Dataset Size (the total number of artifacts)

4. Dataset Artifacts Format

5. Dataset Description

6. More Details

7. Download Dataset in a ZIP file

Figure 4.18: T-DQA Web-Tool Interface

Figure 4.20, Shows an example of T-DQA web-tool usage by researcher who is looking
for a dataset that has the following quality characteristics:

• Domain: Office Automation

• Type: Industrial

• Programming Language: Java

CHAPTER 4. RESULTS 93

• Popular: Yes

• Multi Versions: No

• Artifacts Type: Requirements and Source Code

As shown in the figure above, the dataset that matches the quality filters selection is
appearing on the right panel where the researcher can choose either to go over its details by
clicking on the details button or download the dataset by clicking on the download button.

Figure 4.19: Datasets Details

CHAPTER 4. RESULTS 94

Figure 4.20: Dataset Search Example

Chapter 5

Conclusions

In this dissertation, we have presented and discussed the findings emerged from two prelim-
inary studies that aimed to better comprehend the datasets used by traceability researchers
and the feasibility of automatically generating such datasets by utilizing large scale open-
source software. In the first study, we have conducted a large-scale systematic literature
review to assess the current state of software traceability datasets that have been used
by researchers in the community over the past fifteen years. In addition, we introduce a
Traceability-Dataset Quality Assessment (T-DQA) framework aimed to provide researchers
with a mean to categorize software traceability datasets and assist them to select an appro-
priate dataset for their research. Additionally, we conducted a study to better understand
how requirements traceability researchers reason about datasets quality and choose among
various available datasets and to assess our quality framework (T-DQA). To achieve this
goal, we conducted an on-line survey that solicited feedback from 23 software traceability
experts. The responses were analyzes systematically using grounded theory approach. As
a result of this study, eleven types of dataset quality attributes were identified. For each
quality attributed we identified a set of metrics used by researchers to quantify the qual-
ity attribute. Furthermore, we compared our finding with an existing traceability dataset
quality framework. This framework was adapted from other application domain. Our anal-
ysis showed that experts agree with the dimensions of this framework, however, there are
other attributes that expert use to reason about datasets quality which can augment this
framework. As a result, we proposed T-DQA v.2 which complements T-DQA based on the
feedback collected from the traceability experts. T-DQA v.2 can be used to characterize
existing benchmark traceability datasets and enable the researchers to better reason about
the quality of these datasets within the context of their research problems at hand.

Secondly, to investigate the feasibility of automatically generating traceability datasets
we have conducted an empirical study and novel techniques that advances previous work.
The proposed work introduced new approaches based on (i) Web-Mining and (ii) Big-Data
Analysis to automate the creation of traceability datasets.

95

Bibliography

[1] California Senate Bill SB 1386, Sept. 2002. http://www.leginfo.ca.gov/pub/13-14/
bill/sen/sb_1351-1400/sb_1351_bill_20140221_introduced.pdf.

[2] US Congress. Gramm-Leach-Bliley Act, Financial Privacy Rule. 15 USC §6801–§6809,
November 1999. http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.
html.

[3] Koders.

[4] P. C. I. Council. Payment card industry (pci) data security standard. Available over
the Internet - July 2010. https://www.pcisecuritystandards.org.

[5] Using the Student’s t-test with extremely small sample sizes.

[6] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study
the experience of software development. Empirical Software Engineering, 16(4):487–
513, Aug 2011.

[7] N. Ali, Y. Gueheneuc, and G. Antoniol. Trust-based requirements traceability. In
Proc. of ICPC, pages 111–120, June 2011.

[8] N. Ali, Y. Gueheneuc, and G. Antoniol. Trustrace: Mining software repositories to
improve the accuracy of requirement traceability links. TSE, 39(5):725–741, May 2013.

[9] N. Ali, Z. Sharafl, Y. Gueheneuc, and G. Antoniol. An empirical study on requirements
traceability using eye-tracking. In Proc. of ICSM, pages 191–200, 2012.

[10] Preethu Rose Anish, Balaji Balasubramaniam, Jane Cleland-Huang, Roel Wieringa,
Maya Daneva, and Smita Ghaisas. Identifying architecturally significant functional
requirements. In Proceedings of the Fifth International Workshop on Twin Peaks of
Requirements and Architecture, TwinPeaks ’15, pages 3–8, Piscataway, NJ, USA, 2015.
IEEE Press.

[11] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information retrieval models
for recovering traceability links between code and documentation. In Proc. of ICSM,
pages 40–49, 2000.

96

http://www.leginfo.ca.gov/pub/13-14/bill/sen/sb_1351-1400/sb_1351_bill_20140221_introduced.pdf
http://www.leginfo.ca.gov/pub/13-14/bill/sen/sb_1351-1400/sb_1351_bill_20140221_introduced.pdf
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
 https://www.pcisecuritystandards.org

BIBLIOGRAPHY 97

[12] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering trace-
ability links between code and documentation. TSE, 28(10):970–983, Oct 2002.

[13] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol, and Y. G.
Guéhéneuc. Repent: Analyzing the nature of identifier renamings. IEEE Transactions
on Software Engineering, 40(5):502–532, May 2014.

[14] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. Linguistic an-
tipatterns: What they are and how developers perceive them. Empirical Software
Engineering (EMSE), 21(1):104–158, 2015.

[15] Felix Bachmann, Len Bass, and Mark Klein. Deriving Architectural Tactics: A Step
Toward Methodical Architectural Design. Technical Report, Software Engineering In-
stitute, 2003.

[16] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Adison
Wesley, 2003.

[17] G. Bavota, A. De Lucia, R. Oliveto, A. Panichella, F. Ricci, and G. Tortora. The role
of artefact corpus in lsi-based traceability recovery. In TEFSE, 2013, pages 83–89,
2013.

[18] G. Bavota, A. De Lucia, R. Oliveto, and G. Tortora. Enhancing software artefact
traceability recovery processes with link count information. Information and Software
Technology, 56(2):163–182, 2014.

[19] George W. Beeler, Jr. and Dana Gardner. A requirements primer. Queue, 4(7):22–26,
September 2006.

[20] Pooyan Behnamghader, Duc Minh Le, Joshua Garcia, Daniel Link, Arman Shahbazian,
and Nenad Medvidovic. A large-scale study of architectural evolution in open-source
software systems. Journal of Empirical Software Engineering (EMSE), 22(3):1146–
1193, 2017.

[21] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003.

[22] M. Borg, O.C.Z. Gotel, and K. Wnuk. Enabling traceability reuse for impact analyses:
A feasibility study in a safety context. In TEFSE, pages 72–78, 2013.

[23] Markus Borg, Per Runeson, and Anders Ardö. Recovering from a decade: a sys-
tematic mapping of information retrieval approaches to software traceability. EMSE,
19(6):1565–1616, 2014.

[24] Michael Franklin Bosu and Stephen G MacDonell. A taxonomy of data quality chal-
lenges in empirical software engineering. In Proc. of the Australian Software Engineer-
ing Conference (ASWEC), pages 97–106. IEEE, 2013.

[25] Elke Bouillon, Patrick Mäder, and Ilka Philippow. A survey on usage scenarios for
requirements traceability in practice. In Joerg Doerr and Andreas L. Opdahl, editors,
Requirements Engineering: Foundation for Software Quality, pages 158–173, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

BIBLIOGRAPHY 98

[26] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M. Utting. Requirements trace-
ability in automated test generation: Application to smart card software validation.
SIGSOFT Softw. Eng. Notes, 30(4):1–7, May 2005.

[27] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[28] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed
Khalil. Lessons from applying the systematic literature review process within the
software engineering domain. Journal of Systems and Software, 80(4):571 – 583, 2007.

[29] Carla E. Brodley. Addressing the selective superiority problem: Automatic algorith-
m/model class selection, 1993.

[30] Horst Bunke et al. Generation of synthetic training data for an hmm-based handwriting
recognition system. In null, page 618. IEEE, 2003.

[31] Matthieu Caneill, Daniel M. Germán, and Stefano Zacchiroli. The debsources dataset:
two decades of free and open source software. Journal of Empirical Software Engi-
neering, 22(3):1405–1437, 2017.

[32] J. R. Cano, F. Herrera, and M. Lozano. Using evolutionary algorithms as instance
selection for data reduction in kdd: An experimental study. Trans. Evol. Comp,
7(6):561–575, December 2003.

[33] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella. On the role
of the nouns in ir-based traceability recovery. In Proc. of ICPC, pages 148–157, 2009.

[34] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella. Traceability
recovery using numerical analysis. In Proc. of WCRE, pages 195–204, Oct 2009.

[35] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella. Improving
ir-based traceability recovery via noun-based indexing of software artifacts. SEP,
25(7):743–762, 2013.

[36] M. Cataldo, A. Mockus, J.A. Roberts, and J.D. Herbsleb. Software dependencies,
work dependencies, and their impact on failures. IEEE Transactions on Software
Engineering (TSE), 35(6):864–878, November 2009.

[37] Xiaofan Chen and John Grundy. Improving automated documentation to code trace-
ability by combining retrieval techniques. In Proc. of ASE, pages 223–232, 2011.

[38] J. Cleland-Huang, R. Settimi, Chuan Duan, and Xuchang Zou. Utilizing supporting
evidence to improve dynamic requirements traceability. In Proc. of RE, pages 135–144,
2005.

[39] J. Cleland-Huang, R. Settimi, Xuchang Zou, and P. Solc. The detection and classi-
fication of non-functional requirements with application to early aspects. In Proc. of
RE, pages 39–48, 2006.

[40] Jane Cleland-Huang, Adam Czauderna, Marek Gibiec, and John Emenecker. A ma-
chine learning approach for tracing regulatory codes to product specific requirements.
In Proc. of ICSE - Volume 1, pages 155–164, 2010.

BIBLIOGRAPHY 99

[41] Jane Cleland-Huang, Adam Czauderna, Marek Gibiec, and John Emenecker. A ma-
chine learning approach for tracing regulatory codes to product specific requirements.
In ICSE (1), pages 155–164, 2010.

[42] Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Mäder, and Andrea
Zisman. Software traceability: trends and future directions. In Proc. of the on Future
of Software Engineering (FOSE), pages 55–69, 2014.

[43] Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Mader, and Andrea
Zisman. Software traceability: Trends and future directions. In Proc. of the 36th
International Conference on Software Engineering (ICSE), India, 2014.

[44] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman. Software and Systems Trace-
ability. Springer Publishing Company, Incorporated, 2012.

[45] Jane Cleland-Huang, Orlena CZ Gotel, Jane Huffman Hayes, Patrick Mäder, and
Andrea Zisman. Software traceability: trends and future directions. In Proc. of the
on Future of Software Engineering, pages 55–69, 2014.

[46] Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Eugenia Berezhanskaya,
and Selvia Christina. Goal-centric traceability for managing non-functional require-
ments. In Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 362–371, New York, NY, USA, 2005. ACM.

[47] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. Automated
detection and classification of non-functional requirements. Requir. Eng., 12(2):103–
120, 2007.

[48] Jacob Cohen. Statistical power analysis for the behavioral sciences. 1988.

[49] Christopher S. Corley, Nicholas A. Kraft, Letha H. Etzkorn, and Stacy K. Lukins.
Recovering traceability links between source code and fixed bugs via patch analysis.
In Proc. of the TEFSE, pages 31–37, 2011.

[50] Barthélémy Dagenais and Martin P. Robillard. Recovering traceability links between
an api and its learning resources. In Proc. of ICSE, pages 47–57, 2012.

[51] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and D. Poshyvanyk. Enhancing software
traceability by automatically expanding corpora with relevant documentation. In Proc.
of ICSM, pages 320–329, 2013.

[52] DataTypes.net. The most recent filename extension database, 2018.

[53] Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma Dandashi, An-
htuan Dinh, Gary Kincaid, Glen Ledeboer, Patricia Reynolds, Pradip Sitaram, et al.
Identifying and measuring quality in a software requirements specification. In Software
Metrics Symposium, 1993. Proceedings., First International, pages 141–152. IEEE,
1993.

[54] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella. Improving
ir-based traceability recovery using smoothing filters. In Proc. of ICPC, pages 21–30,
2011.

BIBLIOGRAPHY 100

[55] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact manage-
ment system with traceability recovery features. In Proc. of ICSM, pages 306–315,
2004.

[56] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Adams re-trace: A traceability
recovery tool. In Proc. of CSMR, pages 32–41, 2005.

[57] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Can information retrieval tech-
niques effectively support traceability link recovery? In Proc. of ICPC, pages 307–316,
2006.

[58] A. De Lucia, R. Oliveto, and P. Sgueglia. Incremental approach and user feedbacks:
a silver bullet for traceability recovery. In Proc. of ICSM, pages 299–309, 2006.

[59] A. De Lucia, R. Oliveto, and G. Tortora. IR-based traceability recovery processes: An
empirical comparison of ”one-shot” and incremental processes. In Proc. of ASE, pages
39–48, 2008.

[60] A. De Lucia, R. Oliveto, and G. Tortora. The role of the coverage analysis during
ir-based traceability recovery: A controlled experiment. In Proc. of ICSM, pages 371–
380, 2009.

[61] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. Assessing ir-based traceabil-
ity recovery tools through controlled experiments. EMSE, 14(1):57–92, 2009.

[62] M. Di Penta, S. Gradara, and G. Antoniol. Traceability recovery in rad software
systems. In Proc. of the International Workshop on Program Comprehension (IWPC),
pages 207–216, 2002.

[63] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, and A. De Lucia. Using
code ownership to improve ir-based traceability link recovery. In Proc. of ICPC, pages
123–132, 2013.

[64] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled ex-
perimentation with testing techniques: An infrastructure and its potential impact.
Journal of Empirical Software Engineering (EMSE), 10(4):405–435, 2005.

[65] Susan T Dumais. Latent semantic analysis. Annual review of information science and
technology, 38(1):188–230, 2004.

[66] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining billions
of ast nodes to study actual and potential usage of java language features. In Proceed-
ings of the 36th International Conference on Software Engineering, ICSE 2014, pages
779–790, New York, NY, USA, 2014. ACM.

[67] A. Egyed, F. Graf, and P. Grunbacher. Effort and quality of recovering requirements-
to-code traces: Two exploratory experiments. In Proc. of RE, pages 221–230, 2010.

[68] A. Egyed and P. Grunbacher. Automating requirements traceability: Beyond the
record replay paradigm. In Proc. of ASE, pages 163–171, 2002.

BIBLIOGRAPHY 101

[69] G. Gates. The reduced nearest neighbor rule (corresp.). Information Theory, IEEE
Transactions on, 18(3):431–433, May 1972.

[70] V. Gervasi and D. Zowghi. Supporting traceability through affinity mining. In Proc.
of RE, pages 143–152, 2014.

[71] M. Gethers, R. Oliveto, D. Poshyvanyk, and A.D. Lucia. On integrating orthogonal
information retrieval methods to improve traceability recovery. In Proc. of ICSM,
pages 133–142, 2011.

[72] A. Ghabi and A. Egyed. Code patterns for automatically validating requirements-to-
code traces. In Proc. of ASE, pages 200–209, 2012.

[73] GHTorrent. Downloads 2014-01-02, 2018.

[74] Marek Gibiec, Adam Czauderna, and Jane Cleland-Huang. Towards mining replace-
ment queries for hard-to-retrieve traces. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’10, pages 245–254, New
York, NY, USA, 2010. ACM.

[75] B. G. Glaser and A. L. Strauss. The discovery of grounded theory: Strategies for
qualitative research. Transaction Books, 2009.

[76] Barney G Glaser. Basics of grounded theory analysis: Emergence vs forcing. Sociology
press, 1992.

[77] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case study. In
Proceedings of the International Conference on Software Maintenance (ICSM), pages
131–142, 2000.

[78] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the Interna-
tional Conference on Mining Software Repositories (MSR), pages 233–236, Piscataway,
NJ, USA, 2013.

[79] Georgios Gousios and Andy Zaidman. A dataset for pull-based development research.
In Proceedings of the Conference on Mining Software Repositories (MSR), MSR 2014,
pages 368–371, 2014.

[80] Hongyu Guo and Herna L Viktor. Learning from imbalanced data sets with boost-
ing and data generation: the databoost-im approach. ACM SIGKDD Explorations
Newsletter, 6(1):30–39, 2004.

[81] Jin Guo, J. Cleland-Huang, and B. Berenbach. Foundations for an expert system in
domain-specific traceability. In Proc. of RE, pages 42–51, 2013.

[82] Jin Guo, Natawut Monaikul, Cody Plepel, and Jane Cleland-Huang. Towards an
intelligent domain-specific traceability solution. In Proc. of ASE, pages 755–766, 2014.

[83] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

BIBLIOGRAPHY 102

[84] Kevin A Hallgren. Computing inter-rater reliability for observational data: an overview
and tutorial. Tutorials in quantitative methods for psychology, 8(1):23, 2012.

[85] J. H. Hayes, G. Antoniol, B. Adams, and Y. G. Guéhéneuc. Inherent characteristics
of traceability artifacts less is more. In Proc. of RE, pages 196–201, 2015.

[86] Jane Huffman Hayes, Alex Dekhtyar, Jody Larsen, and Yann-Gaël Guéhéneuc. Effec-
tive use of analysts’ effort in automated tracing. Requirements Engineering, 23(1):119–
143, Mar 2018.

[87] J.H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing via infor-
mation retrieval. In Proc. of RE, pages 138–147, 2003.

[88] J.H. Hayes, A. Dekhtyar, S.K. Sundaram, and S. Howard. Helping analysts trace
requirements: an objective look. In Proc. of RE, pages 249–259, 2004.

[89] E.A. Holbrook, J.H. Hayes, and A. Dekhtyar. Toward automating requirements satis-
faction assessment. In Proc. of RE, pages 149–158, 2009.

[90] GitHub Inc. Github, 2018.

[91] K. Jaber, B. Sharif, and Chang Liu. A study on the effect of traceability links in
software maintenance. Access, IEEE, 1:726–741, 2013.

[92] Matthias Jarke and Yannis Vassiliou. Data warehouse quality: A review of the dwq
project. In IQ, pages 299–313, 1997.

[93] Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of the European conference on machine learning,
pages 137–142, 1998.

[94] Michael G Kahn, Marsha A Raebel, Jason M Glanz, Karen Riedlinger, and John F
Steiner. A pragmatic framework for single-site and multisite data quality assessment
in electronic health record-based clinical research. Medical care, 50, 2012.

[95] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German,
and Daniela Damian. An in-depth study of the promises and perils of mining github.
Journal of Empirical Software Engineering, 21(5):2035–2071, 2016.

[96] Shahedul Huq Khandkar. Open coding. University of Calgary, 23:2009, 2009.

[97] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic lit-
erature reviews in software engineering. Technical report, EBSE Technical Report
EBSE-2007-01, 2007.

[98] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. Morgan Kaufmann, 1995.

[99] W. K. Kong and J. H. Hayes. Proximity-based traceability: An empirical validation us-
ing ranked retrieval and set-based measures. In Workshop on Empirical Requirements
Engineering (EmpiRE), pages 45–52, 2011.

BIBLIOGRAPHY 103

[100] W.-K. Kong, J. Huffman Hayes, A. Dekhtyar, and J. Holden. How do we trace require-
ments: An initial study of analyst behavior in trace validation tasks. In Proc. of the
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pages 32–39, 2011.

[101] Rita Kovac, Yang W Lee, and Leo Pipino. Total data quality management: The case
of iri. In IQ, pages 63–79, 1997.

[102] Hongyu Kuang, P. Mader, Hao Hu, A. Ghabi, Liguo Huang, Lv Jian, and A. Egyed.
Do data dependencies in source code complement call dependencies for understanding
requirements traceability? In Proc. of ICSM, pages 181–190, 2012.

[103] Richard J Landis and Gary G Koch. The measurement of observer agreement for
categorical data. Biometrics, pages 159–174, 1977.

[104] Wenbin Li, J.H. Hayes, Fan Yang, K. Imai, J. Yannelli, C. Carnes, and M. Doyle.
Trace matrix analyzer (tma). In Proc. of TEFSE, pages 44–50, 2013.

[105] Yonghua Li and J. Cleland-Huang. Ontology-based trace retrieval. In Proc. of TEFSE,
pages 30–36, 2013.

[106] Gernot A. Liebchen and Martin Shepperd. Data sets and data quality in software
engineering. In Proc. of the International Workshop on Predictor Models in Software
Engineering (PROMISE), pages 39–44, 2008.

[107] Gernot A. Liebchen and Martin Shepperd. Data sets and data quality in software
engineering. In Proceedings of the 4th International Workshop on Predictor Models in
Software Engineering, PROMISE ’08, pages 39–44, New York, NY, USA, 2008. ACM.

[108] Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane Cleland-
Huang. Improving trace accuracy through data-driven configuration and composition
of tracing features. In Proc. of ESEC/FSE, pages 378–388. ACM, 2013.

[109] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella. Applying
a smoothing filter to improve ir-based traceability recovery processes: An empirical
investigation. Information and Software Technology, 55(4):741–754, 2013.

[110] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering
traceability links in software artifact management systems using information retrieval
methods. TOSEM, 16(4), September 2007.

[111] P. Mader, O. Gotel, and I. Philippow. Rule-based maintenance of post-requirements
traceability relations. In Proc. of RE, pages 23–32, 2008.

[112] A. Mahmoud. An information theoretic approach for extracting and tracing non-
functional requirements. In Proc. of RE, pages 36–45, 2015.

[113] A. Mahmoud and N. Niu. Source code indexing for automated tracing. In Proc. of the
TEFSE, pages 3–9, 2011.

BIBLIOGRAPHY 104

[114] A. Mahmoud and N. Niu. Supporting requirements to code traceability through refac-
toring. REJ, 19(3):309–329, 2013.

[115] S. Malviya, M. Vierhauser, J. Cleland-Huang, and S. Ghaisas. What questions do re-
quirements engineers ask? In 2017 IEEE 25th International Requirements Engineering
Conference (RE), pages 100–109, Sept 2017.

[116] Vijay V Mandke and Madhavan K Nayar. Information integrity—a structure for its
definition.

[117] Vijay V. Mandke and Madhavan K. Nayar. Information integrity: A structure for its
definition. In Conf. on Information Quality, pages 314–338, 1997.

[118] Larry M Manevitz and Malik Yousef. One-class svms for document classification.
Journal of machine Learning research, 2(Dec):139–154, 2001.

[119] A. Marcus and J. I. Maletic. Recovering documentation-to-source-code traceability
links using latent semantic indexing. In Proc. of ICSE, pages 125–135, 2003.

[120] Alan Matsumura and Nadia Shouraboura. Competing with quality information. In
IQ, pages 72–86, 1996.

[121] Brian W Matthews. Comparison of the predicted and observed secondary structure of
T4 phage lysozyme. Biochimica et Biophysica Acta (BBA, 2(405):442–451, 1975.

[122] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive bayes
text classification. In AAAI-98 workshop on learning for text categorization, volume
752, pages 41–48, 1998.

[123] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action, Second
Edition: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA,
2010.

[124] Collin McMillan, Denys Poshyvanyk, and Meghan Revelle. Combining textual and
structural analysis of software artifacts for traceability link recovery. In Proc. of
TEFSE, pages 41–48, 2009.

[125] Jane Cleland-Huang Mehdi Mirakhorli. Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Software Eng., 2015.

[126] M. Mirakhorli. Preserving the quality of architectural decisions in source code, PhD
Dissertation, DePaul University Library, 2014.

[127] M. Mirakhorli and J. Cleland-Huang. Detecting, tracing, and monitoring architectural
tactics in code. TSE, 42(3):205–220, March 2016.

[128] Mehdi Mirakhorli and Jane Cleland-Huang. Using tactic traceability information mod-
els to reduce the risk of architectural degradation during system maintenance. In Pro-
ceedings of the 2011 27th IEEE International Conference on Software Maintenance,
ICSM ’11, pages 123–132, Washington, DC, USA, 2011. IEEE Computer Society.

BIBLIOGRAPHY 105

[129] Mehdi Mirakhorli and Jane Cleland-Huang. Detecting, tracing, and monitoring archi-
tectural tactics in code. Transactions on Software Engineering (TSE), 42(3):205–220,
2016.

[130] Mehdi Mirakhorli, Patrick Mäder, and Jane Cleland-Huang. Variability points and
design pattern usage in architectural tactics. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 52:1–52:11. ACM, 2012.

[131] Mehdi Mirakhorli, Yonghee Shin, Jane Cleland-Huang, and Murat Cinar. A tactic
centric approach for automating traceability of quality concerns. In International
Conference on Software Engineering, ICSE (1), 2012.

[132] Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. Feature selection algorithms:
A survey and experimental evaluation. In Proceedings of the 2002 IEEE International
Conference on Data Mining, ICDM ’02, pages 306–, Washington, DC, USA, 2002.
IEEE Computer Society.

[133] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
github for engineered software projects. Journal of Empirical Software Engineering
(EMSE), 22(6):3219–3253, 2017.

[134] L.G.P. Murta, A. Van Der Hoek, and C.M.L. Werner. Archtrace: Policy-based support
for managing evolving architecture-to-implementation traceability links. In Proc. of
ASE, pages 135–144, 2006.

[135] Sunil Nair, Jose Luis De La Vara, and Sagar Sen. A review of traceability research at
the requirements engineering conference re@ 21. In Proc. of RE, pages 222–229, 2013.

[136] N. Niu and A. Mahmoud. Enhancing candidate link generation for requirements trac-
ing: The cluster hypothesis revisited. In Proc. of RE, pages 81–90, 2012.

[137] Nan Niu, T. Bhowmik, Hui Liu, and Zhendong Niu. Traceability-enabled refactoring
for managing just-in-time requirements. In Proc. of RE, pages 133–142, 2014.

[138] A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude Measurement.
Pinter, 1992.

[139] John O’Donoghue, Tom O’Kane, Joe Gallagher, Garry Courtney, Abdur Aftab, Ave-
line Casey, Javier Torres, and Philip Angove. Modified early warning scorecard: the
role of data/information quality within the decision making process. Electronic Journal
Information Systems Evaluation Volume, 14(1), 2011.

[140] S. Pandanaboyana, S. Sridharan, J. Yannelli, and J.H. Hayes. Requirements tracing
on target (retro) enhanced with an automated thesaurus builder: An empirical study.
In Proc. of TEFSE, pages 61–67, 2013.

[141] A. Panichella, A. De Lucia, and A. Zaidman. Adaptive user feedback for ir-based
traceability recovery. In Proc. of SST, pages 15–21, 2015.

BIBLIOGRAPHY 106

[142] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk, and
A. De Lucia. When and how using structural information to improve ir-based trace-
ability recovery. In Proc. of CSMR, pages 199–208, 2013.

[143] Maria Luiza C. Passini, Katiusca B. Estébanez, Grazziela P. Figueredo, and Nelson
F. F. Ebecken. A strategy for training set selection in text classification problems.
(IJACSA) International Journal of Advanced Computer Science and Applications,
4(6):54–60, 2013.

[144] D. Port, A. Nikora, J. H. Hayes, and L. Huang. Text mining support for software
requirements: Traceability assurance. In Proc. of the Hawaii International Conference
on System Sciences, pages 1–11, 2011.

[145] T. Punter, M. Ciolkowski, B. Freimut, and I. John. Conducting on-line surveys in
software engineering. In 2003 International Symposium on Empirical Software Engi-
neering, 2003. ISESE 2003. Proceedings., pages 80–88, Sept 2003.

[146] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley. Scotch: Test-to-code
traceability using slicing and conceptual coupling. In Proc. of ICSM, pages 63–72,
Sept 2011.

[147] A. Qusef, G. Bavota, R. Oliveto, Andrea De Lucia, and D. Binkley. Evaluating test-to-
code traceability recovery methods through controlled experiments. SEP, 25(11):1167–
1191, 2013.

[148] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley. Recovering test-to-code
traceability using slicing and textual analysis. JSS, 88:147–168, 2014.

[149] A. Qusef, R. Oliveto, and A. De Lucia. Recovering traceability links between unit tests
and classes under test: An improved method. In Proc. of ICSM, pages 1–10, 2010.

[150] M. P. Couper J. M. Lepkowski E. Singer R. M. Groves, F. J. Fowler Jr. and
R. Tourangeau. Survey Methodology. 2nd ed. Hoboken, NJ, USA: Wiley, 2009.

[151] M. Rahimi, M. Mirakhorli, and J. Cleland-Huang. Automated extraction and visu-
alization of quality concerns from requirements specifications. In Proc. of RE, pages
253–262, 2014.

[152] KR Remya and JS Ramya. Using weighted majority voting classifier combination for
relation classification in biomedical texts. In Proceedings of the International Confer-
ence on Control, Instrumentation, Communication and Computational Technologies
(ICCICCT), pages 1205–1209, 2014.

[153] Gregorio Robles, Jesus M Gonzalez-Barahona, and Juan Julian Merelo. Beyond source
code: the importance of other artifacts in software development (a case study). Journal
of Systems and Software, 79(9):1233–1248, 2006.

[154] Gregorio Robles, Jesus M Gonzalez-Barahona, and Juan Luis Prieto. Assessing and
evaluating documentation in libre software projects. In Workshop on Evaluation
Frameworks for Open Source Software (EFOSS), 2006.

BIBLIOGRAPHY 107

[155] Colin Robson. Real world research: a resource for users of social research methods in
applied settings. Wiley, Chichester, West Sussex, 3rd edition, 2011.

[156] Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1989.

[157] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

[158] Iván Santiago, Alvaro Jiménez, Juan Manuel Vara, Valeria De Castro, Verónica A
Bollati, and Esperanza Marcos. Model-driven engineering as a new landscape for
traceability management: A systematic literature review. Information and Software
Technology, 54(12):1340–1356, 2012.

[159] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some comments on the nasa
software defect datasets. IEEE Transactions on Software Engineering, 39(9):1208–
1215, Sept 2013.

[160] Emad Shihab, Zhen Ming Jiang, Walid M. Ibrahim, Bram Adams, and Ahmed E.
Hassan. Understanding the impact of code and process metrics on post-release defects:
A case study on the Eclipse project. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 4:1–4:10, 2010.

[161] Yonghee Shin, J.H. Hayes, and J. Cleland-Huang. Guidelines for benchmarking auto-
mated software traceability techniques. In Proc. of SST, pages 61–67, 2015.

[162] Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. Software Engineering Data
Collection for Field Studies, pages 9–34. Springer London, London, 2008.

[163] David B. Skalak. Prototype and feature selection by sampling and random mutation
hill climbing algorithms. In Machine Learning: Proceedings of the Eleventh Interna-
tional Conference, pages 293–301. Morgan Kaufmann, 1994.

[164] Karen Sparck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 28(1):11–21, 1972.

[165] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software en-
gineering research: a critical review and guidelines. In Software Engineering (ICSE),
2016 IEEE/ACM 38th International Conference on, pages 120–131. IEEE, 2016.

[166] Anselm L Strauss. Qualitative analysis for social scientists. Cambridge University
Press, 1987.

[167] H. Sultanov and J.H. Hayes. Application of reinforcement learning to requirements
engineering: requirements tracing. In Requirements Engineering Conference (RE),
2013 21st IEEE International, pages 52–61, July 2013.

[168] Senthil Karthikeyan Sundaram, Jane Huffman Hayes, and Alexander Dekhtyar. Base-
lines in requirements tracing. In Proc. of the Workshop on Predictor Models in Software
Engineering (PROMISE), pages 1–6, 2005.

BIBLIOGRAPHY 108

[169] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. Using latent dirichlet allocation for
automatic categorization of software. In Proceedings of the International Conference
on Mining Software Repositories (MSR), pages 163–166, 2009.

[170] SL Ting, WH Ip, and Albert HC Tsang. Is naive bayes a good classifier for document
classification. International Journal of Software Engineering and Its Applications,
5(3):37–46, 2011.

[171] Irvine University of California. The sourcerer project. sourcerer.ics.uci.edu.

[172] Bülent Üstün, W. J. Melssen, and Lutgarde M C Buydens. Facilitating the application
of support vector regression by using a universal pearson vii function based kernel.
Chemometrics and Intelligent Laboratory Systems, 81(1):29–40, 2006.

[173] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel German, and Denys Poshyvanyk. Machine learning-based detec-
tion of open source license exceptions. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 118–129, 2017.

[174] Richard Y Wang and Diane M Strong. Beyond accuracy: What data quality means
to data consumers. Journal of management information systems, 12(4):5–33, 1996.

[175] Elaine J Weyuker, Thomas J Ostrand, and Robert M Bell. Comparing the effective-
ness of several modeling methods for fault prediction. Journal of Empirical Software
Engineering (EMSE), 15(3):277–295, 2010.

[176] D. Randall Wilson and Tony R. Martinez. Reduction techniques for instance-
basedlearning algorithms. Mach. Learn., 38(3):257–286, March 2000.

[177] Suresh Yadla, Huffman Jane Hayes, and Alex Dekhtyar. Tracing requirements to defect
reports: an application of information retrieval techniques. ISSE, 1(2):116–124, 2005.

[178] Aiko Yamashita and Leon Moonen. Do developers care about code smells? - an
exploratory survey. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 242–251, 2013.

[179] Hsin yi Jiang, T.N. Nguyen, Ing-Xiang Chen, H. Jaygarl, and C.K. Chang. Incremental
latent semantic indexing for automatic traceability link evolution management. In
Proc. of ASE, pages 59–68, 2008.

[180] R. K. Yin. Case study research: Design and methods. In Sage, 2009.

[181] Yijun Yu, Jan Jurjens, and J. Mylopoulos. Traceability for the maintenance of secure
software. In Proc. of ICSM, pages 297–306, 2008.

[182] Xuchang Z., R. Settimi, and J. Cleland-Huang. Phrasing in dynamic requirements
trace retrieval. In Proc. of COMPSAC, volume 1, pages 265–272, 2006.

[183] Roozbeh Zarei, Alireza Monemi, and Muhammad Nadzir Marsono. Automated dataset
generation for training peer-to-peer machine learning classifiers. Journal of Network
and Systems Management, 23(1):89–110, 2015.

BIBLIOGRAPHY 109

[184] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, and
Sören Auer. Quality assessment for linked data: A survey. Semantic Web, 7(1):63–93,
2016.

[185] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying relevant studies in
software engineering. Information and Software Technology, 53(6):625–637, 2011.

[186] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Patterns of folder use and project
popularity: A case study of github repositories. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ESEM
’14, pages 30:1–30:4, 2014.

[187] Waleed Zogaan, Ibrahim Mujhid, Joanna C. S. Santos, Danielle Gonzalez, and Mehdi
Mirakhorli. Automated training-set creation for software architecture traceability
problem. Empirical Software Engineering, pages 1–35, 2016.

[188] Waleed Zogaan, Palak Sharma, Mehdi Mirahkorli, and Venera Arnaoudova. Datasets
from fifteen years of automated requirements traceability research: Current state, char-
acteristics, and quality. In Proceedings of the International Requirements Engineering
Conference (RE), pages 110–121, 2017.

[189] X. Zou, R. Settimi, and J. Cleland-Huang. Improving automated requirements trace
retrieval: a study of term-based enhancement methods. EMSE, 15(2):119–146, 2009.

Appendices

110

Appendix A

Traceability Datasets Quality
Survey

111

11/28/19, 4:32 PMQualtrics Survey Software

Page 1 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Traceability Datasets Quality Survey

Introduction

.
Please read the following information about this research survey:

 The goal of this study is to understand how traceability researchers assess the
quality of the datasets they are using. Also, we want to know if the context is
important for your assessment of quality and how context is impacting your
decision. During the survey, you will be asked to answer a mix of both short answer
and multiple-choice questions.

We anticipate that the survery would take less than 15 minutes of your time. We
would very much appreciate it if you agree to participate in the survery. The deadline
for the survery is Januery 31st (one week). Please let us know if you need more
time.

This survey study is going to be conducted online and will not require any personal information. Also, the responses are

going to be used for analysis only. Your participation in this study voluntarily. This means that you can decide to leave the

study session at any time without penalties. If you have questions, concerns, or complaints about this study or you want

to get additional information or provide input about this research, please contact Waleed Zogaan (waz7355@rit.edu) or Dr.

Mehdi Mirakhorli (mxmvse@rit.edu). If you have questions about your rights as a research subject you may contact

Heather, RIT’s Associate Director of Human Subjects Research Office (HSRO) at (585)475- 7673 or by email

at hmfsrs@rit.edu. You may also contact RIT’s Office of Research Protections if:

· Your questions, concerns, or complaints are not being answered by the research team.  

· You cannot reach the research team.  

· You want to talk to someone besides the research team.  You may keep or print this information for your records.  

Click YES to participate in the study

11/28/19, 4:32 PMQualtrics Survey Software

Page 2 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Q1. What is the country you work in?

Q2. Where do you work?

Q3. What is your occupation?

Q4. Number of years of experience with software traceability?

Q5. What are the quality attributes you are looking for when you select datasets for
your project? Please explain.

Yes

No

Academia

Industry

Other:

Researcher

Software engineer

Other:

11/28/19, 4:32 PMQualtrics Survey Software

Page 3 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Q6. Does the application domain of your research project has an impact on what
type of quality attributes you are looking for in a dataset? Please explain.

Q7. What dataset qualities have an impact on the meaningful conclusions being
drawn from a research project? Please explain.

Q8. What are the datasets quality-attributes that could impact the generalizability of
your research results?

11/28/19, 4:32 PMQualtrics Survey Software

Page 4 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Q9. Does the granularity of the tracing artifacts (Requirements, Source code, Use-
cases, etc.) impact the type or direction of your research? By granularity we mean
the existence of artifacts at different levels of detail, e.g., source files mapped to
requirement documents versus source code methods mapped to individual
requirements.

Q10. When do you consider that a dataset is trustworthy?

Q11. Do you consider academic or OSS projects sufficient enough for development
or validation of a proposed research technique?

11/28/19, 4:32 PMQualtrics Survey Software

Page 5 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Q12. How important to you are the following as a measurement of your dataset
quality?

Not
important

Slightly
Important

Moderately
Important Important

Very
Important

Don't
have
an

opinion

Dataset size

Dataset domain

Artifacts types

The availability
of answer-set.

The
correctness of
the answer-set.

The
completeness
(all required
information is
present) of
datasets
artifacts.

The
representation
(Dataset
format) of the
dataset.

11/28/19, 4:32 PMQualtrics Survey Software

Page 6 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Comments:.

Q12. How important to you are the following attributes when you are searching for a
dataset.

The dataset
type
(Academia,
OSS, or
Industry).

The dataset
collection
method
(Manually,
automatically
generated, or
provided by
collaborator)

Trustworthiness
(information is
accepted to be
correct, true,
real, and
credible)

Representation
(Dataset
format)

Not
Important

Slightly
Important

Moderately
Important Important

Very
Important

Don't
have
an

opinion

Dataset quality

11/28/19, 4:32 PMQualtrics Survey Software

Page 7 of 8https://rit.az1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Comments:.

Block 1

. This is the end of the survey. Please click on "Submit" to submit all your answers
or click on "Back" to make any changes to your answers.

Dataset size

Dataset domain

Source of the
data (industry,
academia, or
OSS)

Artifacts types

Availability (the
extent to which
data is present,
obtainable and
ready for use)

Trustworthiness
(information is
accepted to be
correct, true,
real, and
credible)

Representation
(Dataset
format)

	Towards an Intelligent System for Software Traceability Datasets Generation
	Recommended Citation

	Introduction
	Research Goals
	List of Contributions
	List of Publications
	Dissertation Organization

	Background
	SLRs in Traceability
	Open-Source Software as a Dataset
	Assessing the Quality of Datasets
	Automated Datasets Generation
	Categorization of Software Artifacts
	Surveys in software engineering

	Methodology
	Research agenda
	Goal 1: Investigate the characteristics and types of software traceability datasets:
	Research questions
	Search strategy
	Inclusion and exclusion criteria
	Study selection process
	Data extraction

	Goal 2: Building data quality framework:
	Goal 3: Feasibility of automatically generate datasets from open source software repositories:
	Research questions
	Study scope
	Traceability challenge: identifying Tactic-Related classes
	Overview of the three baseline techniques
	Baseline method 1: expert-created approach
	Web-mining approach
	Big-Data analysis approach
	Experiment overview
	Experiment design
	Evaluation metrics
	Minimizing biases

	Goal 4: Classification, automated categorization, and detection of open-source software artifacts:
	Research questions
	Study definition and design
	Subject Systems
	Oracle
	Automatic Artifact Classification
	Evaluation

	Goal 5: Traceability datasets quality assessment survey:
	Research questions
	Survey Design
	Participants
	Pilot Study
	Data Collection
	Analysis

	Goal 6: T-DQA Web-Tool:
	Datasets collection
	T-DQA metrics

	Results
	RQ1: What are the characteristics of traceability datasets?
	RQ1.1: What are the source and target artifacts in traceability datasets?
	RQ1.2: Which application domains are represented by traceability datasets?
	RQ1.3: What is the size of traceability datasets?
	RQ1.4: What proportion of the traceability datasets is from industry, open-source projects, and student generated data?
	RQ1.5: Are traceability datasets available for reuse?
	RQ1.6: Is there a relation between the characteristics and the quality of traceability datasets on the one hand and their reusability on the other hand?
	RQ1.7: What are the threats to validity associated with traceability datasets?
	RQ1.8: Do we, as a community, strive for a diversity of traceability datasets?

	RQ2: How to assess the quality of traceability datasets?
	RQ3: Is it feasible to automatically generate datasets from open source software repositories?
	RQ3.1: Does the training method based on automated web-mining result in higher trace-links classification accuracy compared to an expert-created training set?
	RQ3.2: Does the training method based on automated big-data result in higher trace-links classification accuracy compared to an expert-created training set?
	RQ3.3: What is the impact of training set size on the accuracy of trace link classification?
	Cost-Benefit analysis
	Tool support
	Discussions
	Generalization of results to other classification techniques
	Qualitative insights
	Application to the other Areas of Requirements Engineering
	Usage Scenario#2: Classifying Functional Requirements:
	Threats To Validity

	RQ4: Can we automatically detect and categorize open-source software artifacts?
	RQ4.1: How can software artifacts be categorized?
	RQ4.2: How accurate is the proposed approach for automatic software artifact classification?

	RQ5: What types of artifacts are created during open-source software development?
	RQ6: How do experts assess the quality of traceability datasets?
	RQ6.1: What are the quality attributes that researchers are looking for when they select datasets?
	RQ6.2: What dataset qualities have an impact on the meaningful conclusions being drawn from a research project?
	RQ6.3: What are the datasets quality-attributes that could impact the generalizability of research results?

	RQ7: Does the existing framework for evaluating the quality of traceability datasets captures the relevant characteristics that experts are looking for?
	Discussion

	T-DQA Web-tool support

	Conclusions
	Appendices
	Traceability Datasets Quality Survey

