
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-2019

Using Reduced Graphs for Efficient HLS Scheduling Using Reduced Graphs for Efficient HLS Scheduling

Stephanie Soldavini
ss1120@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Soldavini, Stephanie, "Using Reduced Graphs for Efficient HLS Scheduling" (2019). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10311?utm_source=repository.rit.edu%2Ftheses%2F10311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Using Reduced Graphs for
Efficient HLS Scheduling

Stephanie Soldavini

Using Reduced Graphs for
Efficient HLS Scheduling

Stephanie Soldavini
December 2019

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in Computer Engineering

Department of Computer Engineering

Using Reduced Graphs for
Efficient HLS Scheduling

Stephanie Soldavini

Committee Approval:

Dr. Marcin Lukowiak Advisor Date
RIT, Department of Computer Engineering

Dr. Sonia López Alarcón Date
RIT, Department of Computer Engineering

Dr hab. inż. Pawe l Śniata la Date
Poznan University of Technology, Department of Computer Science

i

In loving memory of Gary Soldavini

ii

Acknowledgments

I would like to thank my family, in particular my parents, Amy and Mark, for sup-

porting me in every way possible every day of my life.

I would like to thank my boyfriend of nearly eight years, Toby Lin, for being

someone I can explain everything I learn to and for giving me support and words of

encouragement, even from 350 miles away.

I would like to thank all of my friends here at RIT, Dakota Folger, Kevin Millar,

Max Proskauer, Emily Reynolds, Michael Shullick, and Humza Syed for always being

there through all of the shared ups and downs. In particular I would like to thank

Andrew Ramsey, who has been my twin since the very beginning, and for keeping me

in a constant struggle to keep up with his level of excellence.

I would like to thank my peers and friends in the High Performance Computing

lab and in the Applied Cryptography and Information Security lab including Jason

Blocklove, Thomas Cenova, Bradley Conn, Tom Guerin, Jerry Kotas, Stephen Lucas,

Eri Montano, Braeden Morrison, Yash Nimkar, Prathibha Rama, Cody Tinker, and

Eric Scheler. We’re all in this together.

I would like to thank our fantastic lab manager, Rick Tolleson, for always having

an open chair when I need something or just need a break.

I would like to thank all of my professors, particularly my committee for their

advising and support. Thank you to Dr. Sonia López Alarcón for her input and

support and for being an excellent woman mentor in a space where that is hard to

find, Dr hab. inż. Pawe l Śniata la for his incredible hospitality when I was otherwise

alone in a completely new country, and Dr. Marcin Lukowiak for always knowing my

worth and pushing me to realize my potential over and over again.

Finally, I would like to thank my cat, Crookshanks, for her companionship and

love throughout these last few months and for making me smile and laugh when I

need it the most.

iii

Abstract

High-Level Synthesis (HLS) is the process of inferring a digital circuit from a high-level

algorithmic description provided as a software implementation, usually in C/C++.

HLS tools will parse the input code and then perform three main steps: allocation,

scheduling, and binding. This results in a hardware architecture which can then be

represented as a Register-Transfer Level (RTL) model using a Hardware Description

Language (HDL), such as VHDL or Verilog. Allocation determines the amount of

resources needed, scheduling finds the order in which operations should occur, and

binding maps operations onto the allocated hardware resources. Two main challenges

of scheduling are in its computational complexity and memory requirements. Finding

an optimal schedule is an NP-hard problem, so many tools use elaborate heuristics to

find a solution which satisfies prescribed implementation constraints. These heuristics

require the Control/Data Flow Graph (CDFG), a representation of all operations

and their dependencies, which must be stored in its entirety and therefore use large

amounts of memory.

This thesis presents a new scheduling approach for use in the HLS tool chain. The

new technique schedules operations using an algorithm which operates on a reduced

representation of the graph, which does not need to retain individual dependency

information in order to generate a schedule. By using the simplified graph, the

complexity of scheduling is significantly reduced, resulting in improved memory usage

and lower computational effort. This new scheduler is implemented and compared

to the existing scheduler in the open source version of the LegUp HLS tool. The

results demonstrate that an average of 16 times speedup on the time required to

determine the schedule can be achieved, with just a fraction of the memory usage

(1/5 on average). All of this is achieved with 0 to 6% of added cost on the final

hardware execution time.

iv

Contents

Signature Sheet i

Dedication ii

Acknowledgments iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables ix

Acronyms x

1 Introduction 1

1.1 Motivation . 1

1.2 High-Level Synthesis . 2

1.3 Objective . 3

1.4 Approach . 3

2 Background 4

2.1 High-Level Synthesis . 4

2.2 Popular HLS Tools . 10

2.2.1 Xilinx HLS Tools . 10

2.2.2 LegUp . 11

2.3 The LLVM Compiler Infrastructure 12

2.3.1 LLVM Intermediate Representation (IR) 12

2.3.2 LLVM Infrastructure Classes 15

2.4 Related Work . 16

2.5 Graph Based Optimization of Pipelined Architectures 17

2.6 Contribution . 20

3 LLVM Front End 21

3.1 LLVM Optimization Passes . 21

v

CONTENTS

4 Custom Back End 30

4.1 Reduced Graph Extraction Pass . 30

4.2 Reduced Data Flow Graph (RDFG) Scheduler 32

5 Results 37

5.1 Schedule Length . 40

5.2 Time Efficiency . 47

5.3 Memory Efficiency . 48

6 Conclusion 53

Bibliography 54

vi

List of Figures

2.1 Overall flow of HLS . 4

2.2 Flow chart of LLVM, with the LegUp Verilog back end added 6

2.3 Control Flow Graph (CFG) of quadratic formula solver function. Di-

amond nodes are Basic Blocks (BBs) with conditional branched and

rectangle nodes are BBs with unconditional branches. 8

2.4 Data Flow Graph (DFG) of BB1 of the quadratic formula solver func-

tion where two unique roots are computed 8

2.5 PHI node example . 13

2.6 A typical LLVM IR instruction for a binary operation 13

2.7 Allocate, store, and load instructions 14

2.8 A LLVM phi instruction . 15

2.9 Hardware representation of a PHI node as a multiplexer 15

2.10 In minimized configuration, nodes are placed in the earliest level after

all of their inputs . 18

2.11 Complexity of standard scheduling compared to reduced-graph schedul-

ing. 20

3.1 Example flow of LLVM optimization passes 22

3.2 CFG for quadratic solver function with no optimization passes run . . 24

3.3 CFG for quadratic solver function after the memory to register pass.

The only remaining memory accesses are the necessary storage of the

results to r1 and r2 . 25

3.4 The instructions which the Global Value Numbering (GVN) Hoist and

GVN passes found to Hoist are shown on the left in their original

locations (in the if.then10 BB and if.then BB) and on the right

in their new location (in the entry BB). Redundant instructions were

eliminated. 26

3.5 The instruction which the GVN Sink pass found to move is shown on

the left in its original location (in the entry BB) and on the right in

its new location (in the if.then BB). 27

3.6 The BBs which were removed or combined by the Simplify CFG pass

are shown on the left and the final result is shown on the right. . . . 28

vii

LIST OF FIGURES

3.7 The final form of the quadratic solver code and CFG after the opti-

mization passes. 29

5.1 Percent increase in execution cycles for various input sizes in the Finite

Impulse Response (FIR) example . 42

5.2 CFG for the FIR example . 43

5.3 The schedules produced for the main loop body (BB preheader) of the

FIR example . 44

5.4 DFG of BB preheader in the FIR example 45

5.5 Percent increase in execution cycles for various input sizes in the Fast

Fourier Transform (FFT) example . 45

5.6 Percent increase in execution cycles for various input sizes in the Num-

ber Theoretic Transform (NTT) example 46

5.7 Percent increase in execution cycles for various input sizes in the Cholesky

example . 47

5.8 Matrix multiply memory usage (peak memory usage labeled) 49

5.9 FIR memory usage (peak memory usage labeled) 50

5.10 FFT memory usage (peak memory usage labeled) 50

5.11 NTT memory usage (peak memory usage labeled) 51

5.12 Cholesky memory usage (peak memory usage labeled) 51

viii

List of Tables

2.1 Summary of current popular HLS tools 10

5.1 FIR Execution Cycles Results . 41

5.2 FFT Execution Cycles Results . 44

5.3 NTT Execution Cycles Results . 45

5.4 Cholesky Execution Cycles Results 46

5.5 Timing results . 47

5.6 Memory results . 52

ix

Acronyms

ALAP As Late as Possible

ASAP As Soon as Possible

AST Abstract Syntax Tree

BB Basic Block

BSV Bluespec System Verilog

CDFG Control/Data Flow Graph

CFG Control Flow Graph

DAG Directed Acyclic Graph

DFG Data Flow Graph

FDS Force-Directed Scheduling

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

FU Functional Unit

GVN Global Value Numbering

HDL Hardware Description Language

x

Acronyms

HLL High Level Language

HLS High-Level Synthesis

ILP Instruction Level Parallelism

IR Intermediate Representation

MM Matrix Multiplication

NTT Number Theoretic Transform

RAW Read After Write

RDFG Reduced Data Flow Graph

RTL Register-Transfer Level

SDC System of Difference Constraints

SSA Single Static Assignment

WAR Write After Read

WAW Write After Write

xi

Chapter 1

Introduction

1.1 Motivation

High-Level Synthesis (HLS) is the method of creating a custom digital hardware

design from High Level Language (HLL) software code. This is useful for many

reasons. For instance, dedicated hardware designs are generally faster and more

energy efficient than software implementations of the same functionality. However,

hardware design requires a specific skill set with a fairly steep learning curve. HLS

facilitates hardware design by making it similar to software development, allowing

the user to operate at a higher level of abstraction than traditional hardware design.

Another advantage is that in HLS tools, the same software code can easily be used to

generate many hardware designs, such as one which is focused on speed or another

which is focused on area or yet another which is focused on reduction of energy

consumption. In an ideal scenario, circuits implemented through HLS achieve the

same objectives (performance, area, energy efficiency) as handcrafted hardware [1],

but with significantly less effort.

This design approach has been supported, for example, by Xilinx —one of the

leading manufactures of Field Programmable Gate Array (FPGA) devices— in its

Vivado HLS, SDAccel and SDSoC tool-sets, and in their recently introduced software-

centric development platform, Vitis [2]. The main purpose of this new environment is

1

CHAPTER 1. INTRODUCTION

to provide even greater support for the deployment of hardware accelerated systems

at the edge or in the cloud, without the need for hardware design expertise. In

addition, Intel, in its acquisition of Altera, has its Intel HLS Compiler. Intel also

recently introduced One API [3], which is its unified cross-architecture programming

model designed such that a single code base written in a single software language can

utilize CPUs, GPUs, AI, and FPGAs.

1.2 High-Level Synthesis

The HLS process can be summarized in a series of steps:

• Parse software code into a format the tool can operate on

• Allocation: Identify the necessary components, connectivity, and control logic

• Scheduling: Determine the order in which the operations occur

• Binding: Map the scheduled operations onto the allocated components

• Generate an Hardware Description Language (HDL) model

The generation of the schedule is a key step in creating quality hardware during

HLS process [4, 5, 6, 7]. Scheduling starts by extracting a Control/Data Flow Graph

(CDFG) from the software code. This CDFG represents the control and dataflow

dependencies between assembly-level software instructions. Traditional graph storage

methods include data structures in the form of an adjacency list for each vertex or

incidence and adjacency matrices, which for software CDFGs are sparse matrices.

All of these require significant amounts of memory when working with nontrivial

cases. The scheduling process then examines this graph to create a schedule which

guarantees that dependencies are not violated. Finding an optimal schedule is an NP-

hard problem [8], so conventional schedulers use heuristics to simplify the process.

2

CHAPTER 1. INTRODUCTION

The more elaborate schemes generate schedules which result in a shorter xecution

time, but take more time to find them.

1.3 Objective

The objective of this research is to demonstrate that it is possible to efficiently and

accurately schedule the operations extracted from the HLL description using a sim-

plified graph representation as presented in [9]. The efficiency of our approach was

examined using LegUp [10] —an existing open source HLS tool. LegUp’s scheduler

was used as a baseline for comparison and was replaced with the proposed reduced-

graph based custom scheduler.

1.4 Approach

The proposed process for this project was to modify the scheduling portion of the

LegUp 4.0 HLS tool such that it used the Reduced Data Flow Graph (RDFG) ap-

proach [9]. The original graph extraction was replaced with the extraction of the

RDFG and the System of Difference Constraints (SDC) scheduler was replaced with

the new scheduling algorithm. Then the original LegUp tool and the modified ver-

sion were used to generate HDL for several C implementations of common algo-

rithms. First, the generated HDL was simulated to ensure the new scheduler pro-

duced functionally-correct hardware. Then, both versions of the HDL were simulated

over various input sizes to gather the execution times as the number of clock cycles

each version took to complete. Finally, instrumentation was added to both tools to

measure schedule generation time and memory usage.

3

Chapter 2

Background

2.1 High-Level Synthesis

HLS consists of two main steps: the front end and the back end. The front end of

HLS turns HLL descriptions into a partially optimized Intermediate Representation

(IR) in the form of a CDFG. The back end takes the IR and maps operations onto

hardware components and generates HDL. The general flow is shown in Figure 2.1.

Front End

HLL

IR

Back End

HDL

Figure 2.1: Overall flow of HLS

A software compiler is generally organized as a front end, an optimizer, and a back

end. The front end is responsible for parsing the source and creating an Abstract Syn-

tax Tree (AST) which is represented in the compiler’s IR. The optimizer performs vari-

ous optimizations on an IR [11]. These optimizations are either machine-independent

4

CHAPTER 2. BACKGROUND

or machine-dependent. Machine-independent optimizations simplify code no mat-

ter what the target architecture is, and are therefore useful in all cases. Machine-

dependent optimizations depend on the target architecture, and therefore are only

executed when they will be advantageous. After the IR is optimized, the back end

generates machine code in the target architecture based on the optimized IR.

HLS is organized in a similar way. The front end is the same as the front end of

a software compiler. Machine-independent optimizations are performed, since even

though the code will not be compiled into machine-code, these optimizations still

simplify the IR and often result in more efficient hardware.

Some machine-independent optimizations include dead-code elimination, strength

reduction, and constant propagation and folding [12]. Dead-code elimination is the re-

moval of any code that would never be executed. Strength reduction is the conversion

of more expensive operators to less expensive equivalents, such as a multiplication or

division by a power of two can easily become a single bit shift. Constant propagation

and folding is the precomputation of any operations done on constants.

A particular example of a software compiler used as the front end in several

open source HLS tools, is the LLVM Compiler Infrastructure [13]. In LLVM the

front ends, optimizer, and back ends are decoupled and organized as a collection of

libraries. Because of this decoupling, LLVM supports many front ends for various

software languages and many back ends for various CPU architectures. Also, this

makes LLVM easily extensible for more front or back ends. A flow diagram of LLVM

is shown in Figure 2.2. The output of any LLVM based front end is the LLVM

IR. This IR can completely represent input code and is the only interface between

decoupled components of LLVM. The LLVM optimizer is a collection of optimization

iterations, known as “passes”, each implemented as a C++ class which take in IR

input and produce IR output which has been modified according to the optimization.

This means that passes can be chosen to fit the application.

5

CHAPTER 2. BACKGROUND

C/C++
Front End

Fortran
Front End

Haskell
Front End

C/C++ Code Fortran Code Haskell Code

LLVM Internal
Representation

ARM
Back End

x86
Back End

PowerPC
Back End

x86 ARM PowerPC

Optimization
Passes

LegUp Verilog
Back End

Verilog

RTL Generation

Binding

Scheduling

Allocation

IR

Synthesizeable
Verilog

Figure 2.2: Flow chart of LLVM, with the LegUp Verilog back end added

The IR of a compiler can often be traversed as a CDFG, and this is true of

the LLVM IR [12]. The control flow of a program can be presented in a Control

Flow Graph (CFG) where the nodes are the Basic Blocks (BBs) of the program and

the edges are the control dependencies between them. A BB is a section of code

with one entry point and one exit point such that once the program enters the BB,

all instructions in the block are executed in order until the end of the BB where

the program conditionally branches to a different BB. Within a BB, the data flow

between operations is represented by a Data Flow Graph (DFG) where the nodes are

the operations and the edges are the data dependencies such that an edge is drawn

from operation i to operation j if j requires the result of i. The CDFG is constructed

by inserting the DFGs of each BB into the nodes of the CFG such that a graph of

the control and data dependencies of the entire program is represented.

Given a quadratic equation, ax2 + bx + c = 0 where a 6= 0, b, c ∈ R, the so-

lutions for x, known as the “roots”, can be found using the quadratic formula,

x1,2 =
−b±

√
b2 − 4ac

2a
. Listing 2.1 is an example function for solving the quadratic

formula. For the sake of simplicity, if the roots fall in the complex domain, x ∈ C,

6

CHAPTER 2. BACKGROUND

the function returns 1 to indicate a failure, otherwise the roots are stored in r1 and

r2 and the return value is 0. The BBs for this function are annotated on the C code

int qsolve(double a, double b, double c, double* r1, double* r2) {

int ret = 0;

double disc = (b*b) - (4*a*c); // discriminant

if (disc > 0) { // unique real roots

*r1 = (-b + sqrt(disc)) / (2*a);

*r2 = (-b - sqrt(disc)) / (2*a);

} else if (disc == 0) { // double real roots

*r1 = *r2 = -b / (2*a);

} else { // complex roots

ret = 1;

}

return ret;

}

BB0

BB1

BB2

BB3

BB4

BB5

BB6

Listing 2.1: C code for a quadratic formula solver with the BBs partitioned

as BB0 through BB6.

Figure 2.3 visualizes the CFG of this function where a diamond node indicates

a BB with a conditional branch and the edges leaving that node are labeled with

“T” or “F” to indicate which path is taken based on a true or false evaluation of the

branch respectively. A rectangle node indicates a BB with an unconditional branch

and the edge leaving the node goes to the branch target. The DFG for BB1 of the

quadratic formula solver function, where roots are computed if there are two unique

roots, is shown in Figure 2.4. The variables used in the BB which are live on entry

are a, b, and disc, shown in rectangles at the top of the graph. Also needed for the

calculations are the constant literals 0 and 2, which are also inherently “ready” at the

beginning of the BB. The circle nodes represent individual operations needed for the

calculations. Shown in rectangles at the bottom of the graph are the variables r1 and

r2, which are produced in the BB and are needed in later BBs, in this case outside

of the function. The CDFG of this function could be represented by inserting all of

7

CHAPTER 2. BACKGROUND

BB0

BB2

BB4BB3

BB5

BB6

BB1

T

F

T F

Figure 2.3: CFG of quadratic formula solver function. Diamond nodes are BBs with
conditional branched and rectangle nodes are BBs with unconditional branches.

0 b 2 a disc

− × √
x

+ −

/ /

r1 r2

Figure 2.4: DFG of BB1 of the quadratic formula solver function where two unique roots
are computed

the individual DFGs of the BBs into the nodes of the matching BB in the CFG.

The HLS back end uses the CDFG to map operations into a hardware design [12].

This is done in four main steps: allocation, scheduling, binding, and HDL generation.

The first three of these steps are all interdependent and can be solved in any order and

any HLS implementation chooses the order to solve these steps which best suits their

goals. Allocation determines the amount of resources in three groups: Functional

Units (FUs) (i.e. adders, multipliers), routing resources (i.e multiplexers, buses), and

storage resources (i.e. registers, memory) [12]. Allocation is generally done in one

of two ways, by constraining resource usage to the target FPGA or by choosing a

8

CHAPTER 2. BACKGROUND

minimally necessary set of FUs.

Scheduling can either be done for the DFG of each BB or over the program’s

entire CDFG [12]. For a nontrivial program, scheduling the entire CDFG can be

impractical due to memory or time constraints. Examples of typical scheduling algo-

rithms employed in HLS are as follows. The As Soon as Possible (ASAP) algorithm

schedules operations in the first cycle they are ready to execute. The As Late as

Possible (ALAP) algorithm schedules operations in the latest cycle they can execute

such that their results are available in time for the operations that depend on them

and such that the overall schedule is the same length as the ASAP schedule. The

Force-Directed Scheduling (FDS) algorithm uses a heuristic to optimize resource us-

age while still maintaining the length of the ASAP and ALAP schedules. The System

of Difference Constraints (SDC) algorithm schedules by representing constraints in a

system of equations to be solved. This algorithm is flexible in types of scheduling and

types of constraints, but it cannot schedule across BB boundaries. The List Schedul-

ing (LS) algorithm is a resource-constrained scheduling algorithm which, given a set of

FUs, schedules all operations which are ready to execute onto the available FUs. Once

there are no ready operators which can be scheduled onto the available hardware, the

algorithm moves on to the next control step.

Binding depends on the allocation method [12]. If allocation was simply con-

straining to the resource availability of the target FPGA, binding must only ensure

these constraints are met. Depending on the goal of the HLS tool, binding may op-

tionally attempt to minimize area. If a minimal set of FUs were allocated, binding

is responsible for assigning operations in each control step to the FUs and for adding

the necessary routing and control logic.

The HDL generation process takes the results of allocation, scheduling, and bind-

ing, and generates HDL code, typically VHDL or Verilog, which can then be syn-

thesized and implemented by hardware design tools such as Xilinx Vivado or Intel

Quartus Prime [12].

9

CHAPTER 2. BACKGROUND

2.2 Popular HLS Tools

The existing HLS tools can be divided into two categories: commercial and open

source [6]. The most prevalent commercial HLS tools are Xilinx Vivado HLS [14]

and Intel HLS Compiler [15]. Other notable commercial HLS tools are Handel-C [16]

and the Bluespec BSV Compiler [17]. Bluespec uses the Bluespec System Verilog

(BSV) language as an input rather than an existing software programming language.

Open source HLS tools include Bambu [18], Gaut [19], LegUp [10], MyHDL [20],

ROCCC [21], and Trident [22]. All of them, with the exception of MyHDL, use C

as an input language and are built using various compiler frameworks (GCC, LLVM,

Eclipse) as their front ends. A summary of these tools is shown in Table 2.1.

Table 2.1: Summary of current popular HLS tools

License Tool Name Input Output Front End FPGAs

C
om

m
er

ci
al Vivado HLS [14] C/C++/

System C
VHDL/Verilog Eclipse Xilinx

Intel HLS [15] C/C++ Verilog - Intel
Handel-C [16] C Verilog/VHDL - Xilinx/Altera

Bluespec [17] BSV Verilog/
SystemC

- Device agnostic

O
p

en
so

u
rc

e Bambu [18] ANSI C Verilog/VHDL GCC Xilinx
Gaut [19] C/C++ VHDL LLVM Xilinx/Altera
LegUp [10] ANSI C Verilog LLVM Altera
MyHDL [20] Python Verilog/VHDL Python Device agnostic
ROCCC [21] C VHDL Eclipse Device agnostic
Trident [22] C VHDL LLVM Device agnostic

2.2.1 Xilinx HLS Tools

Xilinx Vivado HLS [14] is a commercial HLS tool owned by Xilinx Inc, originally

acquired from AutoESL where it was known as AutoPilot. Vivado HLS is tightly

integrated with the rest of the Xilinx suite of tools. The use cases for the HLS tool

are to take a C program and generate a fully hardware design, or to take a C function

within a larger program and turn it into a hardware block to be integrated into a

10

CHAPTER 2. BACKGROUND

software and hardware co-design solution. Along with the C code, other inputs to

the tool include constraints, such as clock period and FPGA target, and directives,

extra commands to guide the tool towards a particular behavior or optimization.

Xilinx SDSoC is an HLS tool specifically for Xilinx’s Zynq SoCs and Zynq Ultra-

scale+ MPSoCs. It abstracts some of the more manual and complicated portions of

using Vivado HLS away, such as the data-mover configuration. Xilinx SDAccel makes

the same abstractions, but instead of targeting the Zynq architecture, it is for PC

systems with an FPGA connected via PCIe.

2.2.2 LegUp

LegUp is an open source HLS tool developed at the University of Toronto [10]. It

uses the existing LLVM front-end for C code and implements a Verilog back end

to perform the allocation, scheduling, binding, and HDL generation. For allocation,

LegUp reads a configuration Tcl file specifying the target FPGA and the resource

constraints of the device. The default synthesized architecture will try to exploit

hardware parallelism with the goal of achieving desired performance. For scheduling,

the earlier version of LegUp used ASAP scheduling and the most recent open source

version 4.0 uses SDC [23]. The SDC algorithm schedules by representing constraints

in a system of equations to be solved. For binding, LegUp uses a weighted bipartite

matching heuristic with the goal of minimizing shared FUs.

In LegUp, each step in the HLS process is coded in a modular fashion such that

replacing the scheduler with a new one does not require full understanding of the entire

code base. For this reason, the LegUp 4.0 infrastructure was chosen to implement

the reduced graph scheduling method described in [9] in an HLS context. The time

and memory performance of this scheduler was tested against an unchanged version

of the LegUp 4.0 scheduler.

LegUp can be configured for several different flows, including software-only, hardware-

11

CHAPTER 2. BACKGROUND

only, and hybrid. The software-only flow compiles the input application as software

which can simulate as running on a processor. The hardware-only flow generates

hardware from the entire input application. The hybrid flow generates a hardware

coprocessor for a single function, which is chosen using a configuration Tcl file, and

the remaining input code is compiled as software. This system is then simulated as

a soft core processor running the code which sends data to the coprocessor of the

accelerated function.

2.3 The LLVM Compiler Infrastructure

2.3.1 LLVM IR

The LLVM IR is designed such that the internal bitcode is one-to-one to a human

readable assembly-like representation, similar to how machine code maps to assembly

language. The IR is an Single Static Assignment (SSA) based representation of the

input code which has the important properties that every variable is assigned exactly

one time and every variable is defined before it is used. Oftentimes, in software code,

a variable is assigned to several times. In the IR, to maintain SSA form, this variable

would be split into versions where each version is given a different name. However, if

a variable is assigned different values depending on the control flow of the program,

such as in Figure 2.5a, a PHI node is necessary to resolve the value. The PHI node

assigns a variable a value based on the preceding BB the control flow passed through.

An SSA form version of this example is shown in Figure 2.5b where the variable b2 is

assigned b0 if the if portion was executed, and b1 if the else portion was executed.

The LLVM IR is designed to be at a low-level where high-level code can easily

be mapped to it, analyses and transformations can be performed, and then IR can

easily be mapped to machine code of the target processor. LLVM IR instructions are

sorted into a few categories: binary instructions, terminator instructions, memory

12

CHAPTER 2. BACKGROUND

if (a == 0) {

b = c;

} else {

b = a;

}

(a) Original if-tree

if (a == 0) {

b0 = c;

} else {

b1 = a;

}

b2 = phi [b0, if], [b1 , else];

(b) SSA if-tree with PHI node

Figure 2.5: PHI node example

instructions, and other instructions. The most common type of LLVM IR instruction

is a binary instruction, or an instruction with two input operands. An example of a

binary instruction is shown in Figure 2.6.

%mul1︸ ︷︷ ︸
identifier

= fmul︸︷︷︸
operation

double︸ ︷︷ ︸
type

4.000000e+00︸ ︷︷ ︸
operand 1

, %a︸︷︷︸
operand 2

Figure 2.6: A typical LLVM IR instruction for a binary operation

The structure of most LLVM IR instructions is similar to this example. If the

instruction produces a result, it starts with an identifier for that result and an equality

operator. Next is the type of operation, in this case “fmul” or a floating point multiply.

After that is the type of the result and operands, which here is “double.” Other

common types are “float”, “i” followed by a number —which can be arbitrarily large—

(such as “i1,” “i32,” or “i65536”) indicating an integer of that many bits, arrays ([4 x

i32] indicates an array of four 32-bit integers), or pointers to any other type indicated

by a type followed by an asterisk (*). After the type, the operands or inputs to

the operation are specified in a comma separated list, in this case a literal double-

precision floating-point ‘4’ and an identifier for the variable ‘a’. Other typical binary

instructions are for addition or subtraction, division, or bitwise operations such as

bitwise-and or bitwise-or.

Identifiers, the names given to variables or expressions, either begin with ‘@’ if

they are global or with ‘%’ if they are local and they can either be strings derived

13

CHAPTER 2. BACKGROUND

from the code or simply numerical values. In Figure 2.6, the identifier “%mul1” is

local and the name was derived from the “mul” variable in the C code. “%a” is also

an identifier for the input variable “a”.

Terminator instructions are the last instruction in any basic block and indicate the

control flow of the program. These instructions are usually branches (“br”), which

indicate a jump to another basic block within the function or returns (“ret”), which

indicate control flow returns to the caller.

The most common memory instructions are shown in Figure 2.7.

%a.addr︸ ︷︷ ︸
address

= alloca double︸ ︷︷ ︸
type

align 8︸ ︷︷ ︸
alignment

store double︸ ︷︷ ︸
type

%a︸︷︷︸
id

, double*︸ ︷︷ ︸
addr type

%a.addr︸ ︷︷ ︸
address

, align 8︸ ︷︷ ︸
alignment

%8︸︷︷︸
id

= load double︸ ︷︷ ︸
type

, double*︸ ︷︷ ︸
addr type

%a.addr︸ ︷︷ ︸
address

, align 8︸ ︷︷ ︸
alignment

Figure 2.7: Allocate, store, and load instructions

The “alloca” instruction allocates memory based on the type and alignment and

assigns the address of that memory to the identifier on the left hand side. The

“store” instruction writes the value represented by the first identifier to the address

represented by the second identifier. The “load” instruction reads the value at the

address parameter and assigns the value to the left hand side identifier.

The “phi” instruction is unusual in that it does not have a counterpart in actual

assembly language. This instruction is used to represent the PHI node in the SSA

graph and if present must always be the first instruction in a BB. An example is

shown in Figure 2.8.

This instruction assigns a value to the left hand identifier based on the preceding

BB which terminated in a branch into the current BB. In this example, %ret is

assigned 0 if the control flow came from the %if.then BB and 1 if the control flow

14

CHAPTER 2. BACKGROUND

%ret︸︷︷︸
id

= phi i32︸︷︷︸
type

[%a︸︷︷︸
value 1

,%if.then︸ ︷︷ ︸
label 1

], [%b︸︷︷︸
value 2

,%if.else︸ ︷︷ ︸
label 2

]

Figure 2.8: A LLVM phi instruction

came from the %if.else BB. This is useful in compiler IR to maintain the property

of SSA where each identifier represents one value. In actual machine code, the same

register would be used for the value from each predecessor BB (here to hold either 0 or

1) as the identifier (here %ret) such that the correct value simply propagates through.

In hardware, however, this is simply represented as a multiplexer with inputs from

the predecessor BBs. The instruction shown in Figure 2.8 is shown as a multiplexer

in Figure 2.9.

0

1
%ret

%a

%b

%if.then

Figure 2.9: Hardware representation of a PHI node as a multiplexer

2.3.2 LLVM Infrastructure Classes

The LLVM represents the code to be compiled by several related classes. The most

relevant ones and their relationships are described here.

The Module class represents the overall structure of the input program. It contains

a list of Functions, GlobalVariables, and a SymbolTable.

The Value class represents any sort of typed value, which can be Constants,

Arguments, Instructions, and Functions. This class keeps a list of all of the Users

of the Value, which are any other nodes which consume the Value. An SSA variable

and the operation which produced it are represented as one in the same Value, which

15

CHAPTER 2. BACKGROUND

means the Users of a Instruction are the other Instructions which use the result

as an operand.

The User class is the base class for any LLVM node that may ‘use’ other Values.

It holds a list of Values which are its operands. This class is a subclass of the Value

class.

The Instruction class is the base class for all types of instructions. It holds the

opcode and the BasicBlock it is in. Also, since it is a subclass of the User class, its

operands can easily be accessed. There are subclasses for all kinds of instructions,

such as BinaryOperator, PHINode, and ReturnInst, and enums defined to easily

identify the exact operation of the Instruction.

The Function class represents functions in the Module. It keeps track of a list of

its BasicBlocks, a list of its Arguments, and a SymbolTable.

The BasicBlock class represents BBs in the code. It has a list of the Instructions

which make up the BB, and the last Instruction is always a terminator instruction.

The class also keeps track of its parent Function. This class is a subclass of the

Value because they can be used by branches as a destination.

2.4 Related Work

There have been many attempts to optimize portions of the HLS process. One ex-

ample was an autotuner for the input parameters to LegUp HLS which targets the

weighted normalized sum of a variety of metrics presented in [24]. These input pa-

rameters included the operation latencies, resource constraints, and resource sharing

patterns. The weighted normalized sum is defined as a sum of each metric multiplied

with a weight for how much it affects the desired optimization scenario. For instance,

when trying to optimize for area, the number of LUTs, Registers, BRAMs, and DSPs

affect the area the most and are weighted by a multiplication of 8. Clock cycles and

maximum frequency have a smaller effect and are weighted by a multiplication of 2.

16

CHAPTER 2. BACKGROUND

When attempting to optimize for latency, the number of registers, clock cycles, and

maximum frequency have a large impact and are weighted by 8. The number of other

resources has a lower impact and is weighted by 2. By minimizing this function the

autotuner successfully reduces the weighted normalized sum in scenarios attempting

to optimize for area, performance, latency, and a balance.

Optimizations to the scheduling portion itself include using an adaptive genetic

algorithm to perform a design space exploration on the optimal scheduling of a CDFG

presented in [25]. In this paper, a novel encoding for the chromosomes used in the

genetic algorithm was proposed which consisted of a ‘datapath string’ and ‘auxiliary

string’. The encoding scheme enables effective design space exploration. As the

process continues, the ‘datapath string’ evolves to eventually yield a satisfactory

configuration for the resource array and unrolling factor. The proposed approach saw

improvement in cost and runtime as compared to previous approaches.

Another scheduling optimization is the FALLS lookahead algorithm presented

in [26] which attempts to reserve FUs for operations in the critical path rather than

greedily scheduling. The List Scheduling (LS) algorithm initially pre-allocates insuffi-

cient FUs and must post-allocate greedily as it continues to schedule operations. The

proposed FALLS algorithm uses a lookahead technique such that there is as much

resource sharing as possible, and then uses a binary search to estimate the actual

required FUs such that they can be accurately pre-allocated for maximum resource

sharing. All of this maintains similar complexity to the LS algorithm, so the FALLS

algorithm remains just as scalable. This approach was successful in reducing the

number of FUs and had a shorter run time than other state-of-the-art algorithms.

2.5 Graph Based Optimization of Pipelined Architectures

A method for analyzing pipelined architectures and optimizing the schedule and con-

trol logic of operations is presented in [9]. Given a computation with a pipelined

17

CHAPTER 2. BACKGROUND

architecture, the first step is to create a DFG. Because the entire DFG of an appli-

cation requires more memory than is practical to store all vertices and edges, only

a reduced representation of the graph is stored. This reduced representation only

holds the number of operations executed at each level of the graph in the minimized

configuration. The minimized configuration of a graph is defined to be where all edges

from operations in level Li go to operations in a later level Li+j, for j > 0, and that

an operation in level Li cannot be in level Li−1 due to precedence constraints. An

example of this is shown in Figure 2.10. In this example, it can be seen that in Fig-

A B

CD

E

GF

H

Level 1

Level 2

Level 3

Level 4

Level 5

(a) Not minimized configuration

A B C

D E

GF

H

Level 1

Level 2

Level 3

Level 4

(b) Minimized configuration

Figure 2.10: In minimized configuration, nodes are placed in the earliest level after all of
their inputs

ure 2.10a several nodes are violating minimized configuration. For instance, node C

has no inputs and therefore can be in level 1. Also, node F has inputs from nodes A

and D, so it can be in the first level after both of them, level 3. In Figure 2.10b the

graph is in minimized configuration because all nodes are placed as early as possible.

The nodes without inputs— nodes A, B, and C —are in level 1. Nodes D and E only

have A, B, or C as input and therefore are in level 2. The latest inputs of nodes F

and G are in level 2, and therefore they are in level 3. Finally, the inputs to node H

18

CHAPTER 2. BACKGROUND

are in level 3 and therefore node H is in level 4.

This reduced graph can be constructed without storing all nodes at once by only

accessing nodes in the current level and each node can be freed when all of its suc-

cessors are found.

Because of the constraints placed on the minimized configuration, even though

precedence information is lost in the reduced representation, it can still be inferred due

to placing operations in levels. This is enough to be able to create the reduced schedule.

An iterative algorithm, shown in Algorithm 1, is used to schedule the operations and

calculate the span, or number of epochs needed to execute the schedule. An epoch is

the set of operations that are executed concurrently in the same amount of time (i.e.

the same clock cycle). For each level of the reduced graph, the operations are matched

to pipelines and each use of the pipeline is scheduled. A matching is a grouping of

operations into uses. A use of a pipeline is the set of operations that correspond to

the FUs in the pipeline. The number of epochs for the level is the maximum of all

the uses. The number of epochs in the level is added to the span, except when the

number of epochs in a level is zero, then 1 is added to account for pipeline latency.

Algorithm 1 EstimateSchedule(L, T,Ops, S, p)

1: span := 0
2: sch[][] := {{}}
3: for all i := 1 to |L| do
4: uses[] := matching(T,Ops, p, i)
5: epochs := max{uses[]}
6: sch[][] := addToSchedule(Sch, T,Ops, S, p, epochs, i)
7: Ops := removeNodes(T,Ops, S, p, epochs, i)
8: span := span + max{1, epochs}
9: end for

10: return sch, span

Finding an optimal schedule from the CDFG is NP-hard. The reduced graph

method, however, scales with the number of levels in the graph and the number of

types of operations. These relative complexities are shown in Figure 2.11.

19

CHAPTER 2. BACKGROUND

−1 ×1
√
x1

+1 −2

/1 /2

L1

L2

L3

Full Graph

NP-hard

×−+ /
√
x

E4

E3

E2

E1 −1

−2+1

×1

/1

/2

√
x1

Optimal Schedule

O(n)

Operations
+ − × /

√
x

1 0 1 1 0 1
2 1 1 0 0 0

L
ev

el

3 0 0 0 2 0

Reduced Graph

O(n)

O(|L| × |T |)

Operations
+ − × /

√
x

1 0 1 1 0 1
2 1 1 0 0 0
3 0 0 0 1 0E

p
o
ch

4 0 0 0 1 0

Reduced Schedule

Figure 2.11: Complexity of standard scheduling compared to reduced-graph scheduling.

By creating this reduced schedule, an achievable performance goal is acquired in

the form of the span and an execution plan is acquired in the form of the reduced

schedule itself. The new architecture can be compared to the original architecture

to determine if speedup was obtained. The results from [9] showed speedup of up to

10.7 as compared to the original architectures.

2.6 Contribution

Traditional HLS schedulers use advanced heuristics to generate schedules, due to the

fact that finding an optimal schedule is an NP-hard problem. These heuristics are

computationally intensive and therefore take significantly longer to find a schedule

on larger problems. Additionally, these schedulers need access to individual depen-

dencies in the CDFG which means the scheduler must store all of this information.

With traditional graph storage methods, storing the entire graph takes a exponential

amount of memory based on the number of nodes.

The goal of this research was to implement and evaluate a scheduler based on

the reduced graph approach and determine if quality schedules can be produced with

significant time and memory savings.

20

Chapter 3

LLVM Front End

LegUp is built as an extension to LLVM. It uses the existing LLVM C front end to

parse C input code into IR and implements a Verilog back end to perform allocation,

scheduling, binding, and HDL generation. In order to understand the IR that LegUp

works with, the LLVM optimizer was studied.

3.1 LLVM Optimization Passes

The LLVM optimization stage works by running “passes” over the IR to analyze and

transform the code. These passes analyze the IR or perform transformations based on

the analysis. The goal of this process is to generate the most efficient machine code as

possible. Different sets of passes can be chosen for different use cases. For instance,

some passes are useful in reducing the code size but others may duplicate code to

help optimize execution time of the final program. While these passes were designed

for software optimization, many of them are useful for hardware optimization as well.

An example flow of passes that could be used to optimize input C code with the goal

of becoming efficient hardware is presented in Figure 3.1.

All passes are subclasses of the Pass class, and there are several classes to inherit

from, depending on what the pass needs to do, such as the FunctionPass, LoopPass,

or BasicBlockPass classes. A function pass will run a transformation or analysis on

each function, likewise a loop or basic block pass will run a transformation or analysis

21

CHAPTER 3. LLVM FRONT END

Promote Memory
to Register

Unoptimized IR

GVN Hoist

GVN

GVN Hoist

GVN Sink

Merge Return

Simplify CFG

Optimized IR

Reduces memory accesses by keeping data
in registers

Moves instructions to earlier BBs to com-
bine common expressions

Eliminates redundant code

Repeated in case the GVN pass created
more opportunities to hoist

Moves instructions to later BBs when only
needed in one branch

Combines return instructions into one exit
node

Removes dead code and merges BBs

Figure 3.1: Example flow of LLVM optimization passes

22

CHAPTER 3. LLVM FRONT END

on each loop or basic block.

The quadratic solver function shown in Listing 2.1 is used to illustrate the func-

tionality of these passes in detail. Figure 3.2 shows the CFG generated by LLVM

with no optimization passes run with the human readable LLVM instructions inside

each BB. The BBs are labelled the same as in Listing 2.1 and Figure 2.3, but in other

figures the BBs will be referred to by their label in the code, at the top of the BB.

The Promote Memory to Register (-mem2reg) pass removes unnecessary loads and

stores to memory when the same access can be placed into a register. By default,

LLVM will allocate memory for every variable, store the initialization value into that

allocated location, then load it into a register when the value is needed. Running

this pass to remove these unnecessary memory accesses is useful to software because

register accesses are much faster than memory accesses, and in many instruction sets

data must be loaded into a register before it can be operated on anyway. When using

the software model for HLS, eliminating unnecessary memory accesses simplifies the

process of finding data dependencies, and the act of deciding if data belongs in a

“register” (flip-flops) or “memory” (block RAM or external memory) occurs later,

during the allocation step. Figure 3.3 shows the quadratic solver function code after

this pass. All of the allocations, stores, and loads which could be simplified to registers

were removed.

The Global Value Numbering (GVN) Hoist (-gvn-hoist) pass moves code to ear-

lier BBs where possible to combine common expressions. This is beneficial both to

reduce code size and expose more Instruction Level Parallelism (ILP). When trans-

lated to hardware, eliminating common expressions reduces the area of the circuit.

The GVN (-gvn) pass performs global value numbering which is the process of

assigning numbers to expressions so that equivalent expressions have the same num-

ber. This is used to find and eliminate redundant code. This pass may create more

opportunities to hoist code so the GVN Hoist pass is run again after GVN. Figure 3.4

23

CHAPTER 3. LLVM FRONT END

CFG for 'qsolve' function

entry:
 %a.addr = alloca double, align 8
 %b.addr = alloca double, align 8
 %c.addr = alloca double, align 8
 %r1.addr = alloca double*, align 8
 %r2.addr = alloca double*, align 8
 %ret = alloca i32, align 4
 %twoa = alloca double, align 8
 %disc = alloca double, align 8
 store double %a, double* %a.addr, align 8
 store double %b, double* %b.addr, align 8
 store double %c, double* %c.addr, align 8
 store double* %r1, double** %r1.addr, align 8
 store double* %r2, double** %r2.addr, align 8
 store i32 0, i32* %ret, align 4
 %0 = load double, double* %a.addr, align 8
 %mul = fmul double 2.000000e+00, %0
 store double %mul, double* %twoa, align 8
 %1 = load double, double* %b.addr, align 8
 %2 = load double, double* %b.addr, align 8
 %mul1 = fmul double %1, %2
 %3 = load double, double* %twoa, align 8
 %mul2 = fmul double 2.000000e+00, %3
 %4 = load double, double* %c.addr, align 8
 %mul3 = fmul double %mul2, %4
 %sub = fsub double %mul1, %mul3
 store double %sub, double* %disc, align 8
 %5 = load double, double* %disc, align 8
 %cmp = fcmp ogt double %5, 0.000000e+00
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %6 = load double, double* %b.addr, align 8
 %sub4 = fsub double -0.000000e+00, %6
 %7 = load double, double* %disc, align 8
 %8 = call double @llvm.sqrt.f64(double %7)
 %add = fadd double %sub4, %8
 %9 = load double, double* %twoa, align 8
 %div = fdiv double %add, %9
 %10 = load double*, double** %r1.addr, align 8
 store double %div, double* %10, align 8
 %11 = load double, double* %b.addr, align 8
 %sub5 = fsub double -0.000000e+00, %11
 %12 = load double, double* %disc, align 8
 %13 = call double @llvm.sqrt.f64(double %12)
 %sub6 = fsub double %sub5, %13
 %14 = load double, double* %twoa, align 8
 %div7 = fdiv double %sub6, %14
 %15 = load double*, double** %r2.addr, align 8
 store double %div7, double* %15, align 8
 br label %if.end13

if.else:
 %16 = load double, double* %disc, align 8
 %cmp8 = fcmp oeq double %16, 0.000000e+00
 br i1 %cmp8, label %if.then9, label %if.else12

T F

if.end13:
 %21 = load i32, i32* %ret, align 4
 ret i32 %21

if.then9:
 %17 = load double, double* %b.addr, align 8
 %sub10 = fsub double -0.000000e+00, %17
 %18 = load double, double* %twoa, align 8
 %div11 = fdiv double %sub10, %18
 %19 = load double*, double** %r2.addr, align 8
 store double %div11, double* %19, align 8
 %20 = load double*, double** %r1.addr, align 8
 store double %div11, double* %20, align 8
 br label %if.end

if.else12:
 store i32 1, i32* %ret, align 4
 br label %if.end

if.end:
 br label %if.end13

BB0

BB1

BB2

BB3

BB4

BB5

BB6

Figure 3.2: CFG for quadratic solver function with no optimization passes run
24

CHAPTER 3. LLVM FRONT END

CFG for 'qsolve' function

entry:
 %mul = fmul double %b, %b
 %mul1 = fmul double 4.000000e+00, %a
 %mul2 = fmul double %mul1, %c
 %sub = fsub double %mul, %mul2
 %cmp = fcmp ogt double %sub, 0.000000e+00
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %sub3 = fsub double -0.000000e+00, %b
 %0 = call double @llvm.sqrt.f64(double %sub)
 %add = fadd double %sub3, %0
 %mul4 = fmul double 2.000000e+00, %a
 %div = fdiv double %add, %mul4
 store double %div, double* %r1, align 8
 %sub5 = fsub double -0.000000e+00, %b
 %1 = call double @llvm.sqrt.f64(double %sub)
 %sub6 = fsub double %sub5, %1
 %mul7 = fmul double 2.000000e+00, %a
 %div8 = fdiv double %sub6, %mul7
 store double %div8, double* %r2, align 8
 br label %if.end15

if.else:
 %cmp9 = fcmp oeq double %sub, 0.000000e+00
 br i1 %cmp9, label %if.then10, label %if.else14

T F

if.end15:
 %ret.1 = phi i32 [0, %if.then], [%ret.0, %if.end]
 ret i32 %ret.1

if.then10:
 %sub11 = fsub double -0.000000e+00, %b
 %mul12 = fmul double 2.000000e+00, %a
 %div13 = fdiv double %sub11, %mul12
 store double %div13, double* %r2, align 8
 store double %div13, double* %r1, align 8
 br label %if.end

if.else14:
 br label %if.end

if.end:
 %ret.0 = phi i32 [0, %if.then10], [1, %if.else14]
 br label %if.end15

Figure 3.3: CFG for quadratic solver function after the memory to register pass. The
only remaining memory accesses are the necessary storage of the results to r1 and r2

25

CHAPTER 3. LLVM FRONT END

shows the quadratic solver function code after the GVN Hoist pass, GVN pass, and

the GVN Hoist pass again have been run.

entry:
 %mul = fmul double %b, %b
 %mul1 = fmul double 4.000000e+00, %a
 %mul2 = fmul double %mul1, %c
 %sub = fsub double %mul, %mul2
 %cmp = fcmp ogt double %sub, 0.000000e+00
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %sub3 = fsub double -0.000000e+00, %b
 %0 = call double @llvm.sqrt.f64(double %sub)
 %add = fadd double %sub3, %0
 %mul4 = fmul double 2.000000e+00, %a
 %div = fdiv double %add, %mul4
 store double %div, double* %r1, align 8
 %sub5 = fsub double -0.000000e+00, %b
 %1 = call double @llvm.sqrt.f64(double %sub)
 %sub6 = fsub double %sub5, %1
 %mul7 = fmul double 2.000000e+00, %a
 %div8 = fdiv double %sub6, %mul7
 store double %div8, double* %r2, align 8
 br label %if.end15

if.else:
T F

if.end15:

if.then10:
 %sub11 = fsub double -0.000000e+00, %b
 %mul12 = fmul double 2.000000e+00, %a
 %div13 = fdiv double %sub11, %mul12
 store double %div13, double* %r2, align 8
 store double %div13, double* %r1, align 8
 br label %if.end

if.else14:

if.end:

Before GVN and Hoist passes

entry:
 %mul = fmul double %b, %b
 %mul1 = fmul double 4.000000e+00, %a
 %mul2 = fmul double %mul1, %c
 %sub = fsub double %mul, %mul2
 %cmp = fcmp ogt double %sub, 0.000000e+00
 %sub3 = fsub double -0.000000e+00, %b
 %mul4 = fmul double 2.000000e+00, %a
 %0 = call double @llvm.sqrt.f64(double %sub)
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %add = fadd double %sub3, %0
 %div = fdiv double %add, %mul4
 store double %div, double* %r1, align 8
 %sub6 = fsub double %sub3, %0
 %div8 = fdiv double %sub6, %mul4
 store double %div8, double* %r2, align 8
 br label %if.end15

if.else:
T F

if.end15:

if.then10:
 %div13 = fdiv double %sub3, %mul4
 store double %div13, double* %r2, align 8
 store double %div13, double* %r1, align 8
 br label %if.end

if.else14:

if.end:

After GVN and Hoist passes

Figure 3.4: The instructions which the GVN Hoist and GVN passes found to Hoist are
shown on the left in their original locations (in the if.then10 BB and if.then BB) and on
the right in their new location (in the entry BB). Redundant instructions were eliminated.

Before these passes, there were three separate instructions (%sub11, %sub3, %sub5)

computing 0− b (negative ‘b’), two (%mul12, %mul4) computing 2× a, and two (%0,

%1) calling the square root function on %sub. After the passes, the redundant code

26

CHAPTER 3. LLVM FRONT END

was removed and hoisted to the common dominating BB.

The GVN Sink (-gvn-sink) pass moves code to later BBs when the code is only

used in one of the branches. This can reduce code size, enable if-conversion, or ensure

that code is only executed when the result is used. Figure 3.5 shows the quadratic

solver function code after the GVN Sink pass. The call to the square root function,

which was previously hoisted because there were redundant calls, was sunk to a lower

BB because the other branch did not use the result.

entry:
 %mul = fmul double %b, %b
 %mul1 = fmul double 4.000000e+00, %a
 %mul2 = fmul double %mul1, %c
 %sub = fsub double %mul, %mul2
 %cmp = fcmp ogt double %sub, 0.000000e+00
 %sub3 = fsub double -0.000000e+00, %b
 %mul4 = fmul double 2.000000e+00, %a
 %0 = call double @llvm.sqrt.f64(double %sub)
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %add = fadd double %sub3, %0
 %div = fdiv double %add, %mul4
 store double %div, double* %r1, align 8
 %sub6 = fsub double %sub3, %0
 %div8 = fdiv double %sub6, %mul4
 store double %div8, double* %r2, align 8
 br label %if.end15

if.else:
T F

if.end15:

if.then10: if.else14:

if.end:

Before GVN Sink pass

entry:
 %mul = fmul double %b, %b
 %mul1 = fmul double 4.000000e+00, %a
 %mul2 = fmul double %mul1, %c
 %sub = fsub double %mul, %mul2
 %cmp = fcmp ogt double %sub, 0.000000e+00
 %sub3 = fsub double -0.000000e+00, %b
 %mul4 = fmul double 2.000000e+00, %a
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %0 = call double @llvm.sqrt.f64(double %sub)
 %add = fadd double %sub3, %0
 %div = fdiv double %add, %mul4
 store double %div, double* %r1, align 8
 %sub6 = fsub double %sub3, %0
 %div8 = fdiv double %sub6, %mul4
 store double %div8, double* %r2, align 8
 br label %if.end15

if.else:
T F

if.end15:

if.then10: if.else14:

if.end:

After GVN Sink pass

Figure 3.5: The instruction which the GVN Sink pass found to move is shown on the
left in its original location (in the entry BB) and on the right in its new location (in the
if.then BB).

The Merge Return (-mergereturn) pass combines return instructions such that

there is only one exit node for the function. In the quadratic solver example, there is

27

CHAPTER 3. LLVM FRONT END

already only one return instruction so this pass changes nothing.

The Simplify CFG (-simplifycfg) pass removes dead code and merges BBs. This

pass cleans up BBs with no predecessors, combines BBs which are each other’s only

predecessor and successor, removes BBs which only contains an unconditional branch,

and removes PHI nodes for BBs with one predecessor.

Figure 3.6 shows the quadratic solver function code after the Simplify CFG pass.

The BBs which were unchanged have their code removed for clarity.

CFG for 'qsolve' function

entry:
T F

if.then:

if.else:
T F

if.end15:
 %ret.1 = phi i32 [0, %if.then], [%ret.0, %if.end]
 ret i32 %ret.1

if.then10: if.else14:
 br label %if.end

if.end:
 %ret.0 = phi i32 [0, %if.then10], [1, %if.else14]
 br label %if.end15

Before Simplify CFG pass

CFG for 'qsolve' function

entry:
T F

if.then:

if.else:
T F

if.end15:
 %ret.1 = phi i32 [0, %if.then], [0, %if.then10], [1, %if.else]
 ret i32 %ret.1

if.then10:

After Simplify CFG pass

Figure 3.6: The BBs which were removed or combined by the Simplify CFG pass are
shown on the left and the final result is shown on the right.

The if.else14 BB was removed entirely because it was only a single uncondi-

tional branch statement. The if.end and if.end15 BBs were combined because

the if.end BB only contained a PHI node and an unconditional branch, so the PHI

nodes from both BBs could be combined into a single PHI node.

The final result of all of these passes is shown in Figure 3.7. The code size is

significantly smaller (24 instructions as opposed to 65), which in software is beneficial

for many reasons, but in hardware translates to using less resources to produce the

same result. In addition, reducing the number of BBs simplifies the control flow

28

CHAPTER 3. LLVM FRONT END

CFG for 'qsolve' function

entry:
 %mul = fmul double %b, %b
 %mul1 = fmul double 4.000000e+00, %a
 %mul2 = fmul double %mul1, %c
 %sub = fsub double %mul, %mul2
 %cmp = fcmp ogt double %sub, 0.000000e+00
 %sub3 = fsub double -0.000000e+00, %b
 %mul4 = fmul double 2.000000e+00, %a
 br i1 %cmp, label %if.then, label %if.else

T F

if.then:
 %0 = call double @llvm.sqrt.f64(double %sub)
 %add = fadd double %sub3, %0
 %div = fdiv double %add, %mul4
 store double %div, double* %r1, align 8
 %sub6 = fsub double %sub3, %0
 %div8 = fdiv double %sub6, %mul4
 store double %div8, double* %r2, align 8
 br label %if.end15

if.else:
 %cmp9 = fcmp oeq double %sub, 0.000000e+00
 br i1 %cmp9, label %if.then10, label %if.end15

T F

if.end15:
 %ret.1 = phi i32 [0, %if.then], [0, %if.then10], [1, %if.else]
 ret i32 %ret.1

if.then10:
 %div13 = fdiv double %sub3, %mul4
 store double %div13, double* %r2, align 8
 store double %div13, double* %r1, align 8
 br label %if.end15

Figure 3.7: The final form of the quadratic solver code and CFG after the optimization
passes.

in both software and hardware. In software, this reduces the number of jumps and

predictions (which could be incorrect) which slow down execution and in hardware,

this simplifies the state machine required to control the circuit.

29

Chapter 4

Custom Back End

The original LegUp scheduler is split into first acquiring the Directed Acyclic Graph

(DAG) and then using the SDC algorithm to create a Finite State Machine (FSM).

The new scheduler was implemented in the same way. First the RDFG was extracted

and then it was used to schedule the operations into the FSM.

4.1 Reduced Graph Extraction Pass

In order to obtain the reduced graph of the DFGs from input software code, a custom

LLVM analysis pass was written. Eventually this pass was moved into the Verilog

target code instead of being a standalone pass, but the functionality remained the

same. The main algorithm to extract the reduced graph is shown in Algorithm 2.

In the loop starting on line 1, all of the instructions in the BB are iterated over.

The body of this loop determines the level that instruction i belongs in by iterating

over all of the uses (operands) of i (the loop starting on line 3). The IR is in SSA

form, which means that every operation assigns to a unique variable. Due to this

and the sequential nature of software, and because the instructions are iterated over

in order, all uses of i will already have been added to the working set with their

levels known. The level of i is set to the maximum of the levels of all its uses. While

this is being computed, the numUsers value of a use is decremented and the use is

removed from the working set when there are no more users. This keeps the memory

30

CHAPTER 4. CUSTOM BACK END

Algorithm 2 Extracting the reduced graph from a BB

1: for all Instructions i in BasicBlock do
2: i.level← 0
3: for all Uses u of i do
4: if u.level > i.level then
5: i.level← u.level
6: end if
7: if u.numUsers == 1 then
8: if u is not a memory instruction then
9: Remove u from working set

10: end if
11: else
12: u.numUsers← u.numUsers− 1
13: end if
14: end for
15: if i is a memory instruction then
16: for all Instructions i2 in memoryInst list do
17: if i depends on i2 then
18: if i2.level > i.level then
19: i.level← i2.level
20: end if
21: end if
22: end for
23: Add i to memoryInst list
24: end if
25: i.level← i.level + 1
26: if i.numUsers > 0 then
27: i.numUsers← getNumUsers(i)
28: Add i to working set
29: end if
30: Add i to i.level of the reduced graph
31: end for

footprint of this algorithm smaller than if all instructions were kept in memory at

all times. However, if the instruction is a memory instruction like a load or store, it

is kept in the working list because there may be a memory dependency with a later

instruction. In the loop starting on line 16, if i is a memory instruction, the previous

memory instructions are iterated over to determine if there is a memory dependency.

If i is a store to the same address as i2, then there is either a Write After Read

(WAR) or Write After Write (WAW) dependency. If i is a load and i2 is a store to

31

CHAPTER 4. CUSTOM BACK END

the same address, then there is a Read After Write (RAW) dependency. If there is a

dependency, the level of i is set to that of i2 if it greater than previous. Finally, the

level is incremented by one so that it is in the level after all its uses, and then i is

added to the working set and to the correct level of the reduced graph table.

4.2 RDFG Scheduler

The LegUp back end is implemented as a Verilog LLVM target. After a few custom

passes are run on the IR, the LegupPass is executed, which performs the allocation,

scheduling, binding, and Register-Transfer Level (RTL) generation steps, ultimately

producing Verilog output [27]. The Allocation class reads in a Tcl file with the

constraints such as the target device, timing, and other LegUp-specific options. These

settings are stored in the global LegupConfig object so other portions of the code can

access this information. The Allocation object is passed to all subsequent steps, so

global information that needs to be accessed by other stages is stored in this class.

Next, each function is iterated over for scheduling. Here, LegUp would use the

SDC algorithm to schedule the operations. Instead, this is where the reduced graph

(RDFG) pass is run and the ReducedDFG object for each function is stored in a

member variable of the Allocation object. Then the scheduleOperations function

of the GenerateRTL object is called, which was modified to call the RDFGScheduler’s

scheduling functions instead of those from the SDCScheduler.

The runOnFunction function of the RDFGScheduler iterates over the BBs of the

function and calls a createPipelines function, then calls the EstimateSchedule

function, using the results of the reduced graph pass, and finally after all BBs have

been scheduled, calls the createFSM function.

The createPipelines function iterates over all of the instructions in the BB

and creates a list of the matching FU by calling the getOpNameFromInst function

of the LegupConfig. Originally, the schedule created by Legup’s SDC scheduler was

32

CHAPTER 4. CUSTOM BACK END

going to be used to find the best pipelines for use in the RDFG scheduler, but it was

determined that this was impractical to do algorithmically. The pipelines used in [9]

were hand selected out of existing architectures based on looking at the DFG. It was

decided that since a pipeline is defined as having one or more stages, the pipelines in

this case would each be the available FU.

The psuedocode for EstimateSchedule, which performs most of the scheduling

functionality, is shown in Algorithm 3. The function is named after Algorithm 1 [9],

but this function produces a complete schedule in the form of mapping of instructions

to epochs.

Algorithm 3 EstimateSchedule(L, T,Ops, p)

1: span := 0
2: sch[][] := {{}}
3: for all i := 1 to L do
4: epochs, uses[] := matching(T,Ops, p, i)
5: sch[][] := addToSchedule(Sch, T,Ops, p, epochs, span)
6: span := span + max{1, epochs}
7: end for
8: sch[terminator] := span - 1
9: return sch, span

Several modifications were made to the original algorithm. First, the L input,

originally the set of levels, is now the number of levels, since the set would simply

be a list of integers. Also, the set of stages in the pipelines, S, was eliminated,

since in this case the pipelines are all just a single FU. For practicality purposes, the

matching function returns both the uses and the epochs, since keeping the maximum

epochs value while computing them is faster than finding the maximum later. Also,

the addToSchedule function handles removing nodes from the graph at the same

time as scheduling them. Finally, the terminator instruction (which is found in the

addToSchedule function) is scheduled after all other levels so that it executes in the

last epoch.

The pseudocode for the matching function is shown in Algorithm 4. The opera-

33

CHAPTER 4. CUSTOM BACK END

Algorithm 4 matching(T,Ops, p, level)

1: epochs := 0
2: for all op in T do
3: funame := p[op.opcode]
4: uses[op] := Ops[level][op]
5: if uses[op].size() > 0 then
6: latency := getOperationLatency(funame)
7: if op is a PHI node then
8: totalTime := 1 + latency
9: else

10: totalTime := uses[op].size() + latency
11: end if
12: else
13: totalTime := 0
14: end if
15: epochs := max{epochs, totalTime}
16: end for
17: return epochs, uses

tions in the operation set T are iterated over and matched to a FU in p. Then the

set of instructions in the reduced graph are placed in this level’s uses set. If there

are one or more instructions, the latency is computed by quering the LegupConfig

object. This latency is the number of extra cycles an operation may take, for instance

a multiply takes two cycles to complete so the latency is one. Since all the PHI nodes

should execute in the first cycle of a BB, the total time is just the latency plus one.

However, for other operations that may execute one after another, the total time is

the number of times the operation is used in the level, plus the extra latency. The

epochs variable is a running maximum of this totalTime for each operation. This

makes sure that each level is allotted enough epochs so that multi-cycle operations

complete before the next level begins.

The psuedocode for the addToSchedule function is shown in Algorithm 5. This

function iterates from the current value of span, which is the next epoch that can be

scheduled into, to span+epochs, which is the last epoch this level should schedule in.

For each of these epochs, the operations in the uses set are iterated over. If there are

34

CHAPTER 4. CUSTOM BACK END

Algorithm 5 addToSchedule(Sch, T,Ops, p, epochs, span)

1: for i from span to epochs + span do
2: for all op in uses do
3: if op.size() > 0 then
4: instr := op.back()
5: if instr is a terminator then
6: terminator := instr
7: Remove instr from op list
8: else if instr is a PHI node then
9: for all dophi in op list

10: sch[phi] := 0
11: end for
12: Empty op list
13: else
14: sch[instr] := i
15: Remove instr from op list
16: end if
17: end if
18: end for
19: end for
20: return sch

instructions of this op type, the last one is tested to see if it is a terminator instrucion,

a PHI node, or any other instruction. If it is a terminator, it is removed from the

list and stored to be mapped later because it needs to be scheduled in the last epoch

regardless of how early it is ready. If it is a PHI node, all instructions in this use are

mapped to epoch 0 and removed from the use list, because they all need to execute

in the first cycle of the BB. Otherwise, the one instruction is mapped to the current

epoch and removed from the list. This way, the next instruction of this use will be

scheduled in the next epoch until they are all scheduled.

The LegUp scheduler outputs the schedule for a function in the form of an FSM

which maps instructions to execution states. For the RTL generation and Verilog

writer to work, the RDFG scheduler must also produce an FSM of the same format.

To create this FSM, first an empty state is created for all BBs. Then the span of

each BB’s schedule is used to add that many empty states to the BB with the correct

35

CHAPTER 4. CUSTOM BACK END

transitions between them. Then, the instructions in the BB are iterated over and

inserted into the state that matches the epoch they were mapped to. The end state

of each instruction is set properly to account for latency. Later, transition variables

are added to the terminating states of each BB so that control flow will execute

properly.

36

Chapter 5

Results

To test the efficacy of the RDFG scheduler, five applications were compiled from

a software model to a hardware module. These applications were three examples

included in the LegUp 4.0 distribution: a Matrix Multiplication (MM), Finite Im-

pulse Response (FIR) filter, Fast Fourier Transform (FFT), and two additional exam-

ples: Number Theoretic Transform (NTT) multiplier [28], and Cholesky decomposi-

tion [29]. For these applications, three metrics will be discussed and compared against

the baseline, LegUp case: the execution time for varying input sizes as a metric of

the schedule’s efficiency, the time taken to find the schedule, and the memory usage

during this process.

The MM application implemented the definition shown in (5.1).

If A =

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

and B =

b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bn1 bn2 · · · bnn

,

C = AB such that cij =
n∑

k=1

aikbkj for i = 1, · · · , n and j = i, · · · , n (5.1)

Psuedocode for the MM application is shown in Algorithm 6. The multiply function

was selected as the hardware accelerated function. The width and height of the input,

37

CHAPTER 5. RESULTS

A and B, and output, C, matrices is denoted as n, as in the definition. A and B were

filled with non-zero values. All matrices were stored in global memory so that they

could be accessed by both software and hardware.

Algorithm 6 Matrix Multiply

1: A[n][n] := non-zero data
2: B[n][n] := non-zero data
3: C[n][n]
4: function multiply(i, j)
5: sum := 0
6: for k from 0 to n do
7: sum := sum + A[i][k] * B[k][j]
8: end for
9: C[i][j] := sum

10: end function
11: function main
12: for i from 0 to n do
13: for j from 0 to n do
14: multiply(i, j)
15: end for
16: end for
17: end function

The FIR application implemented the definition shown in (5.2).

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bNx[n−N] =
N∑
i=0

bi · x[n− i] (5.2)

The output signal is y[n], the input signal is x[n], and bi is the coefficient vector.

Pseudocode for the FIR filter application is shown in Algorithm 7. The fir function

was selected as the hardware accelerated function. ITERS was the number of out-

puts, y[n] computed. N was the order or number of past samples to use in the FIR

calculation. xn is the value of the new sample for the current iteration, x[n]. xprev

was the array of past samples. For testing, the main function initialized the past

samples to zeros and the coefficients were zero through fifteen and then all zeroes for

any remaining coefficients. For each iteration, the new input sample was incremented

by one.

38

CHAPTER 5. RESULTS

Algorithm 7 FIR Filter

1: function fir(xn, b[], xprev[])
2: sum := 0
3: for j from N -1 to 0 do
4: xprev[j] := xprev[j − 1]
5: end for
6: xprev[0] := xn
7: if xprev[N -1] == 0 then
8: return 0
9: else

10: sum := 0
11: for j in 0 to N do
12: sum := sum + xprev[N - j - 1]*b[j]
13: end for
14: return sum
15: end if
16: end function
17: function main
18: xprev[N] := zeros
19: b[N] := [0, 1, · · · , 15, 0, · · · , 0]
20: y[ITERS]
21: for i from 0 to ITERS do
22: y[i− 1] := fir(i, b, xprev)
23: end for
24: end function

The FFT application implemented the definition shown in (5.3).

Xk =
N−1∑
n=0

xn exp

(−2πj

N
kn

)
, k = 0, · · · , N − 1 (5.3)

The input size is N , the input values are x and the output values are X. In the

software C code, this was implemented in two main steps: time decimation and the

butterfly operation. Time decimation is a reordering of the input data based on even

or odd indices. The butterfly operation breaks the computation down into smaller

pieces. The C code also optimizes the sine computation using a lookup table.

Psuedocode for the NTT application is shown in Algorithm 8. The order of the

input (a and b) and output (c) polynomials is n. The implementation is based on the

39

CHAPTER 5. RESULTS

Algorithm 8 NTT Based Modular Polynomial Multiplication [28]

Require: Polynomials a(x) and b(x) of maximum degree n with coefficients ai, bi ∈
Zp for i = 0, 1, . . . , n− 1

Ensure: c(x) = a(x) · b(x) mod (xn + 1)
1: Pre-calculate look-up tables for consecutive powers of θ, ω, θ−1, and ω−1

2: weight coeff : for i ← 0 to n do
3: ai ← ai · θi mod p
4: bi ← bi · θi mod p
5: end for
6: fft(a, ω)
7: fft(b, ω)
8: mult coeff : for i ← 0 to n do
9: ci ← ai · bi mod p

10: end for
11: ifft(c, ω−1)
12: unweight coeff : for i ← 0 to n do
13: ci ← ci · θ−i mod p
14: end for

Schönhage-Strassen algorithm. The fft function implements the Gentleman-Sande

algorithm and the ifft function implements the Cooley-Tukey algorithm. The algo-

rithm was tested with a maximum polynomial degree of 32,768 with 32-bit coefficients.

The Cholesky decomposition application implemented the finding of a lower tri-

angular matrix, L, which satisfies (5.4).

A = LLT (5.4)

The Cholesky factor, L, if the input matrix, A, is symmetric and positive definite.

The software implementation was generic for any valid n× n A matrix.

5.1 Schedule Length

The five test applications were organized in the same way. All of the algorithms were

implemented as functions which were called by a “testbench” main function with

stimulus. These applications were compiled using the hybrid flow offered by LegUp,

40

CHAPTER 5. RESULTS

with the function implementing the algorithm chosen as the accelerator.

To evaluate the quality of the schedules created by both the RDFG and SDC

schedulers, both versions of LegUp were used to generate HDL for each of the five

test algorithms. This way, everything would be identical except for the schedule of

the accelerated function. Both versions were then simulated and the number of clock

cycles used to complete the application were recorded for varying input sizes. The

input sizes were increased until it became impractical to run the test.

The MM schedule was identical when generated by both the RDFG and SDC

schedulers, so the number of cycles was exactly the same in all cases.

On the other hand, the schedule for FIR converged to an approximately 5.1%

difference in the number of cycles for sufficiently large sizes, as shown in Table 5.1 and

Figure 5.1. Upon examination, it was observed that —as expected— the differences

in schedule corresponded to the inner loops of the code, resulting in a proportionally

growing number of additional clock cycles.

Table 5.1: FIR Execution Cycles Results

RDFG SDC Difference
Taps Cycles Cycles (%)

16 15,747 15,141 4.00
32 51,749 49,586 4.36
64 182,165 173,713 4.87

128 695,116 661,732 5.05
256 2,728,123 2,596,048 5.09
512 10,824,857 10,299,039 5.11

1,024 43,229,169 41,130,281 5.10

The CFG of the FIR function is shown in Figure 5.2. The only BB that was

scheduled differently between the SDC and RDFG scheduler was BB preheader. The

schedules for this BB are shown in Figure 5.3. Each instruction is labeled with the

same letter in each schedule. The difference in the schedules is with the scheduling of

the instruction labeled ‘J’, a load which depends on the output from the instruction

41

CHAPTER 5. RESULTS

24 25 26 27 28 29 210
0

2

4

Taps

D
iff

er
en

ce
(%

)

Figure 5.1: Percent increase in execution cycles for various input sizes in the FIR example

labeled ‘F’. In Figure 5.3b, the levels of the graph are outlined with bold lines. To see

where the levels come from, the DFG for this BB is shown in Figure 5.4. The instruc-

tions labeled ‘F’, ‘G’, and ‘H’ are in the same level, so ‘J’ must be scheduled after all

of these instructions have completed, since the RDFG only has enough information to

guarantee dependencies are satisfied if all instructions in a level are allowed to finish

before the next is allowed to begin. The problem with this is that ‘J’ only needs the

output from ‘F’, but ‘G’, another load, takes two extra cycles to finish. This means

that, in this case, the RDFG schedule is two cycles longer.

Since the schedules of all of the BBs are the same aside from these two extra cycles

in the BB of inner most loop, the percent increase in execution cycles converges to

approximately 5.1%. As the input size increases, time spent in the inner most loops

becomes much greater than time spent elsewhere. This leads to the percent increase

converging on a constant value for large enough input sizes.

The execution time results for the FFT example are shown in Table 5.2 and

Figure 5.5.

Because the FFT is three nested loops, BB have varying levels of effect on the

total number of execution cycles. Several of the BB are scheduled differently. The

differences in the outer loops have a greater effect until the 2048 input size. From the

4096 input size, the total execution cycles drops because the effect of the outer-loop

42

CHAPTER 5. RESULTS

Figure 5.2: CFG for the FIR example

43

CHAPTER 5. RESULTS

(a) SDC Scheduler

(b) RDFG Scheduler

Figure 5.3: The schedules produced for the main loop body (BB preheader) of the FIR
example

BBs is hidden by the cycles spent in the innermost loops.

The execution time results for the NTT example is presented in Table 5.3 and

Figure 5.6. The structure of this code has three separate triple-nested loops. In the

first two, the BBs of the inner most loops were scheduled with a total of 26 cycles by

SDC and with 28 cycles by RDFG and the innermost loop of the last triple-nested

loop was scheduled with 27 cycles by SDC and 28 cycles by RDFG. A few BBs at

Table 5.2: FFT Execution Cycles Results

RDFG SDC Difference
Points Cycles Cycles (%)

64 17,496 16,885 3.62
128 37,773 36,421 3.71
256 79,471 76,483 3.91
512 169,318 162,876 3.96

1024 393,296 377,159 4.28
2048 815,031 779,564 4.55
4096 4,220,049 4,128,284 2.22
8192 9,371,660 9,161,584 2.29

44

CHAPTER 5. RESULTS

A

D C E

B

F G H

J M

K

L

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 5.4: DFG of BB preheader in the FIR example

26 27 28 29 210 211 212 213
0

2

4

Number of Points

D
iff

er
en

ce
(%

)

Figure 5.5: Percent increase in execution cycles for various input sizes in the FFT example

Table 5.3: NTT Execution Cycles Results

Input Polynomials RDFG SDC Difference
Degree×Bit width Cycles Cycles (%)

128×32 78,159 75,433 3.61
256×32 162,114 155,923 3.97
512×32 344,188 330,289 4.21

1024×32 736,209 705,247 4.39
2048×32 1,796,093 1,728,572 3.91
4096×32 6,675,640 6,601,184 1.13
8192×32 14,393,095 14,231,037 1.14

16384×32 30,910,366 30,558,420 1.15
32768×32 66,076,673 65,327,517 1.15

45

CHAPTER 5. RESULTS

27 28 29 210 211 212 213 214 215
0

2

4

Polynomial Degree

D
iff

er
en

ce
(%

)

Figure 5.6: Percent increase in execution cycles for various input sizes in the NTT example

the top level of the program were scheduled with one cycle more when scheduled by

RDFG. The increase in the outer levels is shown in the initial increase of the overall

execution cycles, but since the innermost loops have only one or two extra cycles, the

overall percent increase drops and converges to approximately 1%.

The execution time results for the Cholesky decomposition example are presented

in Table 5.4 and Figure 5.7. In this test, the worst case percent increase of execution

cycles was 5.8%. This drops after a matrix of size 10×10 and continues dropping. The

example became impractical to run for sizes larger than 100× 100 so the convergence

point was not found, but at the last point only a percent increase of 2% was observed.

Table 5.4: Cholesky Execution Cycles Results

RDFG SDC Difference
Matrix Size Cycles Cycles (%)

3×3 11,087 10,591 4.68
5×5 17,086 16,213 5.39

10×10 39,916 37,706 5.86
20×20 128,868 122,808 4.94
50×50 1,051,616 1,023,749 2.72

100×100 6,773,112 6,674,957 1.47

46

CHAPTER 5. RESULTS

101 102
0

2

4

6

Matrix Dimension

D
iff

er
en

ce
(%

)

Figure 5.7: Percent increase in execution cycles for various input sizes in the Cholesky
example

5.2 Time Efficiency

In order to measure the time difference of the proposed scheduling algorithm, RDFG,

against the original LegUp scheduler, SDC, both schedulers were wrapped in timing

code which ran each scheduler for 10,000 iterations. The tests were run on an Ubuntu

14.04 VM with 4GB of memory on an AMD A10-5800K APU. The results for the tests

are shown in Table 5.5. The number of BBs in each test is listed to show the relative

complexity of each application. The Speedup achieved by using the RDFG as opposed

Table 5.5: Timing results

RDFG Time SDC Time
Test BBs (ms) (ms) Speedup

MM 3 0.12 0.67 5.69
FIR 7 0.42 4.91 11.79

FFT 13 0.96 12.79 13.29
NTT 42 2.41 31.18 12.93

Cholesky 70 5.31 186.70 35.16

to the SDC ranges from 5x to 35x faster to resolve the schedule, with larger speedup

for more complex applications. For the SDC algorithm, if V is the number of vertices

in the CDFG (the operations), then the number of scheduling variables n is O(|V |)

and the number of constraints m is O(|V |2). The SDC scheduling problem has a

47

CHAPTER 5. RESULTS

complexity of O(n2(m+n log n) log n) [30]. Because the RDFG scheduling algorithm

processes the reduced graph by iterating over each of the L levels of the graph and

within each level iterated over the T types of operations needed, the complexity is

O(|L| × |T |) [9]. It is expected that the time benefits of the RDFG scheduler will be

greater for larger, more complex applications.

5.3 Memory Efficiency

To measure the memory performance of the RDFG scheduling algorithm, the mem-

ory allocation functions in both the modified and unmodified copies of LegUp were

overloaded to record stack traces and sizes for every allocation and deallocation as

shown in Listing 5.1.

void* operator new(std:: size_t sz) {

// Allocate the memory

void * requestedMemory = std:: malloc(sz);

// Write the allocs to file

std:: ofstream& memoryProfile = resultFile ();

memoryProfile << "Allocation , size = " << sz << " at "

<< static_cast <void*>(requestedMemory) << std::endl;

// Stack trace of allocation

dumpStackTrace(memoryProfile);

memoryProfile << "-----------" << std::endl;

// Return the alloc’d memory

return requestedMemory;

}

void operator delete(void * p) {

// Write the deallocs to file

std:: ofstream& memoryProfile = resultFile ();

memoryProfile << "Deallocation at "

<< static_cast <void*>(p) << std::endl;

// Stack trace of deallocation

dumpStackTrace(memoryProfile);

memoryProfile << "-----------" << std::endl;

// Deallocate the memory

free(p);

}

Listing 5.1: Memory profiling instrumentation

This instrumentation generated huge unreadable files, so these files were parsed

48

CHAPTER 5. RESULTS

to strip out anything except the scheduling functions. After each allocation or deal-

location, the running total of currently allocated memory was printed to a new file.

These data points were saved to be plotted. Graphs showing the total memory usage

are shown in Figures 5.8 - 5.12. The x-axis is the index of the allocation/deallocation.

The y-axis is the total allocated memory at that allocation/deallocation. The RDFG

plots appear to end earlier than the SDC graphs, since the RDFG algorithm performs

fewer allocations. This also aligns with the fact that the RDFG algorithm takes less

time.

0 100 200 300 400 500 600 700

0

0.5

1

·104

(a) (b)

(c) (d)

3,860

9,039

Number of Allocations Occured

B
y
te

s
A

ll
o
ca

te
d

RDFG
SDC

Figure 5.8: Matrix multiply memory usage (peak memory usage labeled)

Because the schedules in the MM example were identical, this graph shows the

best comparison of the memory usage. On Figure 5.8, the graph extraction and

actual scheduling phases are presented. It can be seen that the RDFG extraction

(c) takes significantly less memory than the DAG extraction (a), since only portions

of the graph are stored temporarily for each epoch, and then discarded. The DAG

however must store the entire graph at once, and it cannot be deallocated for at least

the duration of scheduling, in order to track every possible dependency in the graph.

The RDFG scheduler (d) also deallocates portions of the RDFG as the schedule is

created, while the SDC scheduler (b) retains all information throughout the duration

of scheduling.

49

CHAPTER 5. RESULTS

For the FIR test, the SDC scheduler had a peak memory usage of 27,487 bytes.

The RDFG scheduler used 5,253 bytes, 19.1% of the SDC usage, as shown in Fig-

ure 5.9.

0 500 1,000 1,500 2,000 2,500 3,000
0

1

2

3

·104

5,253

27,487

Number of Allocations Occured

B
y
te

s
A

ll
o
ca

te
d

RDFG
SDC

Figure 5.9: FIR memory usage (peak memory usage labeled)

The SDC scheduler on the FFT test used a maximum of 60,685 bytes. The RDFG

scheduler used 10,645 bytes, 17.5% of the SDC usage, as shown in Figure 5.10.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

2

4

6

·104

10,645

60,685

Number of Allocations Occured

B
y
te

s
A

ll
o
ca

te
d

RDFG
SDC

Figure 5.10: FFT memory usage (peak memory usage labeled)

The NTT test needed a peak of 111,645 bytes to scheduler with the SDC algo-

rithm. The RDFG scheduler used 19,097 bytes, 17.1% of the SDC usage, as shown

in Figure 5.11.

The most complex example, the Cholesky decomposition, showed the best memory

savings. The SDC scheduler used a peak of 222,269 bytes. The RDFG scheduler used

at most 35,107 bytes, 15.8% of the SDC usage, as shown in Figure 5.12.

50

CHAPTER 5. RESULTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

0.5

1

·105

19,097

111,645

Number of Allocations Occured

B
y
te

s
A

ll
o
ca

te
d

RDFG
SDC

Figure 5.11: NTT memory usage (peak memory usage labeled)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·104

0

1

2

·105

35,107

222,269

Number of Allocations Occured

B
y
te

s
A

ll
o
ca

te
d

RDFG
SDC

Figure 5.12: Cholesky memory usage (peak memory usage labeled)

51

CHAPTER 5. RESULTS

A summary of the peak memory usage for each test with the SDC and the RDFG

schedulers is shown in Table 5.6. It can be seen that in general, more complex

Table 5.6: Memory results

RDFG SDC Percent (%)
Test BBs Peak Bytes Peak Bytes RDFG of SDC

MM 3 3,860 9,039 42.7
FIR 7 5,253 27,487 19.11

FFT 13 10,645 60,685 17.54
NTT 42 19,097 111,645 17.11

Cholesky 70 35,107 222,269 15.79

algorithms with more BB show more memory savings when scheduled with the RDFG

scheduler instead of the SDC scheduler. Even the simplest algorithm, the MM, used

less than half the memory.

52

Chapter 6

Conclusion

Scheduling is a key piece in creating efficient hardware systems from software appli-

cations. It is, however, time and memory consuming. In this research a new RDFG

scheduling approach that can be used as part of the HLS process was presented. The

reduced graph used for the proposed scheduler extracts the operations in the CDFG

and only partially considers dependencies by placing these in levels that determine the

order of execution. The RDFG scheduler was directly compared to the SDC sched-

uler used by the LegUp HLS tool. The original scheduler was replaced such that the

LegUp tool used the RDFG approach and five test applications were scheduled using

the original SDC scheduler and the custom RDFG scheduler. The schedules produced

by the RDFG approach achieve up to 35× speedup in the scheduling process with

less than 20% memory usage for sufficiently complex applications. The execution

times of the synthesized hardware benchmark circuits use 0 to 6% additional clock

cycles. Future work may include evaluating the performance of the scheduler using a

published benchmark suite. Also, in order to minimize the extra execution cycles, a

hybridized scheduler may be investigated which uses heuristic schedulers on critical,

inner loop BBs, but the efficient RDFG scheduler on the majority of BBs.

53

Bibliography

[1] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An Introduction to High-
Level Synthesis,” IEEE Design & Test of Computers, vol. 26, no. 4, pp. 8–17,
Jul. 2009. [Online]. Available: http://ieeexplore.ieee.org/document/5209958/

[2] “Xilinx Vitis,” 2019. [Online]. Available: https://www.xilinx.com/products/
design-tools/vitis.html

[3] “Intel oneAPI Toolkits,” 2019. [Online]. Available: https://software.intel.com/
oneAPI

[4] S. Skalicky, C. Wood, M. Lukowiak, and M. Ryan, “High level synthesis: Where
are we? A case study on matrix multiplication,” in 2013 International Conference
on Reconfigurable Computing and FPGAs (ReConFig). IEEE, Dec. 2013, pp.
1–7. [Online]. Available: http://ieeexplore.ieee.org/document/6732298/

[5] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are We There Yet? A
Study on the State of High-Level Synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 5, pp. 898–911,
May 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8356004/

[6] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Survey and Evaluation
of FPGA High-Level Synthesis Tools,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, Oct.
2016. [Online]. Available: http://ieeexplore.ieee.org/document/7368920/

[7] S. Logesh, D. S. Harish Ram, and M. Bhuvaneswari, “A Survey of High-Level
Synthesis Techniques for Area, Delay and Power Optimization,” International
Journal of Computer Applications, vol. 32, no. 10, pp. 1–6, 2011.

[8] A. Benoit, Ü. V. Çatalyürek, Y. Robert, and E. Saule, “A survey of pipelined
workflow scheduling,” ACM Computing Surveys, vol. 45, no. 4, pp. 1–36,
Aug. 2013. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2501654.
2501664

[9] S. Skalicky, S. Lopez, M. Lukowiak, and C. Wood, “Mission control: A
performance metric and analysis of control logic for pipelined architectures
on FPGAs,” in 2014 International Conference on ReConFigurable Computing
and FPGAs (ReConFig14). IEEE, Dec. 2014, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/7032539/

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp,” ACM Transactions on
Embedded Computing Systems, vol. 13, no. 2, pp. 1–27, Sep. 2013.

54

http://ieeexplore.ieee.org/document/5209958/
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://software.intel.com/oneAPI
https://software.intel.com/oneAPI
http://ieeexplore.ieee.org/document/6732298/
https://ieeexplore.ieee.org/document/8356004/
http://ieeexplore.ieee.org/document/7368920/
http://dl.acm.org/citation.cfm?doid=2501654.2501664
http://dl.acm.org/citation.cfm?doid=2501654.2501664
http://ieeexplore.ieee.org/document/7032539/

BIBLIOGRAPHY

[Online]. Available: http://dl.acm.org/citation.cfm?id=2514641.2514740http:
//dl.acm.org/citation.cfm?doid=2514641.2514740

[11] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition), 2007.

[12] D. Koch, F. Hannig, and D. Ziener, Eds., FPGAs for Software Programmers.
Cham: Springer International Publishing, 2016. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-26408-0

[13] “LLVM Compiler Infrastructure.” [Online]. Available: https://llvm.org/docs/
index.html

[14] Xilinx Inc., Vivado Design Suite User Guide, Xilinx, 2015. [On-
line]. Available: http://www.xilinx.com/support/documentation/sw manuals/
xilinx2015 4/ug903-vivado-using-constraints.pdf

[15] Intel Corp., “Intel R© High Level Synthesis Compiler Best Practices
Guide,” 2018. [Online]. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf

[16] Mentor Graphics, “Handel-C Synthesis Methodology,” 2018. [Online]. Available:
https://www.mentor.com/products/fpga/handel-c/

[17] B. Inc, “BSV High-Level HDL,” 2017. [Online]. Available: http://bluespec.
com/54621-2/

[18] C. Pilato and F. Ferrandi, “Bambu: A Free Framework for the
High Level Synthesis of Complex Applications,” 2012. [Online]. Available:
https://panda.dei.polimi.it/wp-content/uploads/PosterUB DATE.pdf

[19] “GAUT - High-Level Synthesis tool,” 2013. [Online]. Available: http:
//www.gaut.fr/

[20] “MyHDL,” 2018. [Online]. Available: http://www.myhdl.org/

[21] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular
Hardware Accelerators in C with ROCCC 2.0,” in 2010 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines.
IEEE, 2010, pp. 127–134. [Online]. Available: http://ieeexplore.ieee.org/
document/5474060/

[22] J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From High-Level
Language to Hardware Circuitry,” Computer, vol. 40, no. 3, pp. 28–37, Mar.
2007. [Online]. Available: http://ieeexplore.ieee.org/document/4133993/

[23] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC scheduling with
recurrence minimization in high-level synthesis,” in Conference Digest - 24th
International Conference on Field Programmable Logic and Applications, FPL
2014, 2014.

55

http://dl.acm.org/citation.cfm?id=2514641.2514740 http://dl.acm.org/citation.cfm?doid=2514641.2514740
http://dl.acm.org/citation.cfm?id=2514641.2514740 http://dl.acm.org/citation.cfm?doid=2514641.2514740
http://link.springer.com/10.1007/978-3-319-26408-0
http://link.springer.com/10.1007/978-3-319-26408-0
https://llvm.org/docs/index.html
https://llvm.org/docs/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug903-vivado-using-constraints.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug903-vivado-using-constraints.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls.pdf
https://www.mentor.com/products/fpga/handel-c/
http://bluespec.com/54621-2/
http://bluespec.com/54621-2/
https://panda.dei.polimi.it/wp-content/uploads/PosterUB_DATE.pdf
http://www.gaut.fr/
http://www.gaut.fr/
http://www.myhdl.org/
http://ieeexplore.ieee.org/document/5474060/
http://ieeexplore.ieee.org/document/5474060/
http://ieeexplore.ieee.org/document/4133993/

BIBLIOGRAPHY

[24] P. Bruel, A. Goldman, S. R. Chalamalasetti, and D. Milojicic, “Autotuning high-
level synthesis for FPGAs using OpenTuner and LegUp,” in 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), vol.
2018-Janua. IEEE, Dec. 2017, pp. 1–6. [Online]. Available: http:
//ieeexplore.ieee.org/document/8279778/

[25] P. Sarkar, A. Sengupta, and M. K. Naskar, “GA driven integrated exploration
of loop unrolling factor and datapath for optimal scheduling of CDFGs during
high level synthesis,” in 2015 IEEE 28th Canadian Conference on Electrical
and Computer Engineering (CCECE). IEEE, May 2015, pp. 75–80. [Online].
Available: http://ieeexplore.ieee.org/document/7129163/

[26] S. Dutt and O. Shi, “A fast and effective lookahead and fractional search based
scheduling algorithm for high-level synthesis,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, Mar. 2018, pp. 31–36.
[Online]. Available: http://ieeexplore.ieee.org/document/8341975/

[27] “LegUp 4.0 Documentation,” pp. 1–37, 2015. [Online]. Available: http:
//legup.eecg.utoronto.ca/docs/4.0/

[28] K. Millar, M. Lukowiak, and S. Radziszowski, “Design of a Flexible Schonhage-
Strassen FFT Polynomial Multiplier with High-Level Synthesis to Accelerate HE
in the Cloud,” in 2019 International Conference on ReConFigurable Computing
and FPGAs (ReConFig). IEEE, Dec. 2019.

[29] “Cholesky decomposition.” [Online]. Available: https://rosettacode.org/wiki/
Cholesky decomposition

[30] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based
on SDC formulation,” in Proceedings of the 43rd annual conference on Design
automation - DAC ’06. New York, New York, USA: ACM Press, 2006, p. 433.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1146909.1147025

56

http://ieeexplore.ieee.org/document/8279778/
http://ieeexplore.ieee.org/document/8279778/
http://ieeexplore.ieee.org/document/7129163/
http://ieeexplore.ieee.org/document/8341975/
http://legup.eecg.utoronto.ca/docs/4.0/
http://legup.eecg.utoronto.ca/docs/4.0/
https://rosettacode.org/wiki/Cholesky_decomposition
https://rosettacode.org/wiki/Cholesky_decomposition
http://portal.acm.org/citation.cfm?doid=1146909.1147025

	Using Reduced Graphs for Efficient HLS Scheduling
	Recommended Citation

	Signature Sheet
	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	High-Level Synthesis
	Objective
	Approach

	Background
	High-Level Synthesis
	Popular hls Tools
	Xilinx HLS Tools
	LegUp

	The LLVM Compiler Infrastructure
	LLVM ir
	LLVM Infrastructure Classes

	Related Work
	Graph Based Optimization of Pipelined Architectures
	Contribution

	LLVM Front End
	LLVM Optimization Passes

	Custom Back End
	Reduced Graph Extraction Pass
	rdfg Scheduler

	Results
	Schedule Length
	Time Efficiency
	Memory Efficiency

	Conclusion
	Bibliography

