
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

11-2019 

Improving Automatic Speech Recognition on Endangered Improving Automatic Speech Recognition on Endangered 

Languages Languages 

Kruthika Prasanna Simha 
kps2151@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Simha, Kruthika Prasanna, "Improving Automatic Speech Recognition on Endangered Languages" (2019). 
Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10300?utm_source=repository.rit.edu%2Ftheses%2F10300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Improving Automatic Speech 
Recognition on Endangered 

Languages  
 
 
 
 
 
 
 
 
 
 
 
 

Kruthika Prasanna Simha 
 



Improving Automatic Speech 
Recognition on Endangered 

Languages 
Kruthika Prasanna Simha 

November 
2019 

 
 
 
 
 
 

KATE GLEASON COLLEGE 
OF ENGINEERING 

A Thesis Submitted in Partial 
Fulfillment 

of the Requirements for the Degree of 
Master of Science in 

Computer Engineering 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Computer Engineering  
 
 

 



Improving Automatic Speech Recognition 
on Endangered Languages  

By 
Kruthika Prasanna Simha  
          November 2019 

 
 
 

A Thesis Submitted in Partial Fulfillment of the Requirements for the  
Degree of Master of Science  

in Computer Engineering from 
Rochester Institute of Technology 

 
 
 
 

Approved by:  
 
 
 

Dr. Raymond Ptucha, Assistant Professor Date  
Thesis Advisor, Department of Computer Engineering  

 
 

 
Dr. Cecilia Ovesdotter Alm, Associate Professor Date  
Thesis Advisor, Department of English  

 
 

 
Dr. Andres Kwasinski, Professor Date  
Committee Member, Department of Computer Engineering  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Computer Engineering  
 



 
 

i 

Acknowledgements 
 

I am very grateful to Dr. Ptucha for his constant encouragement, support and guidance 

throughout my master’s education. I would like to extend my gratitude towards Robbie Jimerson 

for giving me the opportunity to be involved in research on endangered languages, and to have 

supported me through my thesis. I would also like to thank my fellow Machine Intelligence 

Laboratory members for their support. And lastly, I would like to thank my family for giving me 

the opportunity to travel far from home to pursue my master’s degree.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

ii 

 
Abstract 

As the world moves towards a more globalized scenario, it has brought along with it the 

extinction of several languages. It has been estimated that over the next century, over half of the 

world’s languages will be extinct, and an alarming 43% of the world’s languages are at different 

levels of endangerment or extinction already. The survival of many of these languages depends 

on the pressure imposed on the dwindling speakers of these languages.  Often there is a strong 

correlation between endangered languages and the number and quality of recordings and 

documentations of each. But why do we care about preserving these less prevalent languages? 

The behavior of cultures is often expressed in the form of speech via one’s native language. The 

memories, ideas, major events, practices, cultures and lessons learnt, both individual as well as 

the community’s, are all communicated to the outside world via language. So, language 

preservation is crucial to understanding the behavior of these communities.  

Deep learning models have been shown to dramatically improve speech recognition 

accuracy but require large amounts of labelled data.  Unfortunately, resource constrained 

languages typically fall short of the necessary data for successful training.  To help alleviate the 

problem, data augmentation techniques fabricate many new samples from each sample. The aim 

of this master’s thesis is to examine the effect of different augmentation techniques on speech 

recognition of resource constrained languages. The augmentation methods being experimented 

with are noise augmentation, pitch augmentation, speed augmentation as well as voice 

transformation augmentation using Generative Adversarial Networks (GANs). This thesis also 

examines the effectiveness of GANs in voice transformation and its limitations. The information 

gained from this study will further augment the collection of data, specifically, in understanding 

the conditions required for the data to be collected in, so that GANs can effectively perform voice 



 
 

iii 

transformation. Training of the original data on the Deep Speech model resulted in 95.03% 

WER.  Training the Seneca data on a Deep Speech model that was pretrained on an English 

dataset, reduced the WER to 70.43%. On adding 15 augmented samples per sample, the WER 

reduced to 68.33%. Finally, adding 25 augmented samples per sample, the WER reduced to 

48.23%. Experiments to find the best augmentation method among noise addition, pitch variation, 

speed variation augmentation and GAN augmentation revealed that GAN augmentation 

performed the best, with a WER reduction to 60.03%. 

  



 
 

iv 

Table of Contents 

Chapter 
Number 

Name of Chapter Page 
Number 

1.  Introduction 1 

2.  Related Work 4 

3.  Background 8 

3.1.  Under-Resourced Languages 8 

3.2.  Automatic Speech Recognition 9 

3.2.1.  Feature Extraction 9 

3.2.2.  Acoustic Modeling 10 

3.2.3.  Language Modeling 10 

3.2.4.  Lexical Modeling 11 

3.3.  Mel Frequency Cepstral Coefficients 11 

3.3.1.  Pre-emphasis 11 

3.3.2.  Windowing 12 

3.3.3.  Discrete Fourier Transform 12 

3.3.4.  Mel Filter Bank and Log 12 

3.3.5.  The Cepstrum 13 

3.4.  The Deep Speech Model 14 

4.  Generative Adversarial Networks 16 

4.1.  Generative Adversarial Networks Preliminaries 16 

4.2.  CycleGAN 17 

4.3.  DiscoGAN and CycleGAN vs DiscoGAN 19 

4.4.  VoiceGAN 20 

4.4.1.  Image vs Speech samples 20 

4.4.2.  VoiceGAN model changes 21 

4.4.2.1.  Retaining linguistic information 21 



 
 

v 

4.4.2.2.  Variable-length input generator and discriminator 22 

4.4.2.3.  Style Embedding Model 22 

4.5.  StarGAN-VC 23 

4.5.1.  Objectives 23 

4.5.1.1.  Adversarial Loss 25 

4.5.1.2.  Domain Classification Loss 25 

4.5.1.3.  Cycle Consistency Loss 25 

4.6.  StarGAN-VC v/s VoiceGAN 26 

5.  Raw Audio, Spectrogram and MFCCs 27 

5.1.  What is raw audio format? 27 

5.2.  What are Spectrograms?  27 

5.2.1.  Wideband and Narrowband Spectrograms 28 

5.3.  Computing the Spectrogram 30 

5.3.1.  Input Values to Deep Speech 31 

5.4.  Converting Spectrogram to Raw Audio 31 

5.5.  Computing MFCCs from a Spectrogram 33 

6.  Thesis Proposal 34 

6.1.  Problem Statement 34 

6.2.  Dataset 34 

6.2.1.  Seneca Dataset 34 

6.2.2.  Free Spoken Digits Dataset 36 

6.2.3.  LibriSpeech 36 

6.2.4.  Tensorflow Speech Recognition Challenge Dataset 36 

6.2.5.  Voice Conversion Challenge 2018 Parallel Dataset 37 

6.3.  Language Model 37 

6.4.  Data Augmentation 37 

6.4.1.  Noise Addition 37 

6.4.2.  Pitch Augmentation 39 



 
 

vi 

6.4.3.  Speed Augmentation 40 

6.5.  Research Questions 40 

7.  Design of Experiments 41 

7.1.  Problem Statement and Hypothesis 41 

7.2.  Design of Experiments 42 

7.2.1.  Deep Speech Experiments 42 

7.2.2.  Griffin-Lim Algorithm Experiments 45 

7.2.3.  VoiceGAN Experiments 45 

7.2.4.  StarGAN-VC Experiments 50 

7.3.  Morpheme error rate v/s Word error rate 51 

7.4.  Motivation behind chosen augmentation techniques 51 

8.  Results and Inferences 53 

8.1.  Deep Speech 53 

8.1.1.  Data Augmentation 53 

8.1.1.1.  Noise Addition 53 

8.1.1.2.  Pitch Augmentation 54 

8.1.1.3.  Speed Augmentation 56 

8.1.2.  Deep Speech Results and Inference 58 

8.2.  Griffin-Lim Algorithm experiments 60 

8.3.  VoiceGAN results 61 

8.3.1.  LibriSpeech results and observations 62 

8.3.2.  Free 0-9 dataset results and observations 63 

8.3.3.  TSRC results and observations 67 

8.3.4.  StarGAN-VC augmentation results with DeepSpeech 68 

8.3.5.  Inference 69 

9.  Conclusion and Future Work 70 

9.1.  Conclusion 70 

9.2.  Future Work 72 



 
 

vii 

List of Figures  
Figure 

Number 
Name of Chapter Page 

Number 

1.  Components in an ASR system 9 

2.  Deep Speech ASR model 15 

3.  Image of domain transformation of images using CycleGAN 17 

4.  Data flow in CycleGAN 18 

5.  Full translation cycle 19 

6.  Generator and Discriminator of VoiceGAN 22 

7.  CycleGAN-VC 23 

8.  StarGAN-VC 24 

9.  Wideband Spectrogram 29 

10.  Narrowband Spectrogram 29 

11.  Sample Annotation in Praat 35 

12.  The wav file before addition of noise and after addition of white 
noise 

53 

13.  The wav file before and after the addition of sounds of dishes as 
noise 

54 

14.  The wav file before pitch augmentation after pitch augmentation 54 

15.  Spectrogram of wav file before pitch augmentation 55 

16.  Spectrogram of wav file after pitch augmentation 55 

17.  The wav file before augmentation, after pitch augmentation and 
after speed augmentation 

56 

18.  Spectrogram of wav file before speed augmentation 57 

19.  Spectrogram of wav file after speed augmentation 57 

20a  Spectrogram of the original utterance in the LibriSpeech dataset 60 

20b Spectrogram of the Griffin-Lim reconstructed utterance in the 
LibriSpeech dataset 

60 

21  Best Model results for Free 0-9 dataset  65 



 
 

viii 

List of Tables 
Table 

Number 
Name of Chapter Page 

Number 

1.  Deep Speech experiments planned 42 

2.  Controlled Variables and Possible Values for each Augmentation 
method 

44 

3.  Experiments testing the effectiveness of the Griffin-Lim algorithm 45 

4.  Experiments to determine the limitations of GANs on voice 
conversion 

47 

5.  StarGAN-VC Experiments 50 

6.  Deep Speech results 58 

7.  VoiceGAN results with LibriSpeech 62 

8.  VoiceGAN results with Free 0-9 Dataset 64 

9.  VoiceGAN results with TSRC 67 

10.  StarGAN-VC augmentation results with DeepSpeech on the 
Seneca Dataset 

68 

  



 
 

ix 

Acronyms 
ASR Automatic Speech Recognition 

CNN Convolutional Neural Network 

GAN Generative Adversarial Networks 

MFCC Mel Frequency Cepstral Coefficient 

LPC Linear Prediction Coefficients 

PLP Perceptual Linear Prediction Coefficients 

MLP Multi-Layer Perceptron 

GMM Gaussian Mixture Model 

AM Acoustic Model 

LM Language Model 

HMM Hidden Markov Model 

DFT Discrete Fourier Transform 

FFT Fast Fourier Transform 

STFT Short Time Fourier Transform 

SNR Signal to Noise Ratio 

WER Word Error Rate 

TSRC TensorFlow Speech Recognition Challenge 

  



 
 

1 

Chapter 1 

Introduction 

In today’s world, text and speech are two major forms of communication. Several text 

processing tools, online dictionaries, automatic speech recognition systems and text-to-speech 

systems are easily available for people to access and are available in several languages. Most deep 

models require large resource languages, but only a few of the living languages today have the 

variety of data and large dataset sizes required to train text and speech related systems. The way to 

overcome this language barrier is to make these text and speech related systems portable to other 

languages, especially for low resourced languages.  

Limited ground truth data is preventing Automatic Speech Recognition (ASR) systems 

from being ported to under-resourced languages. The methods described in this research go beyond 

just applying transfer learning and retraining the model on the new dataset. There are many issues 

that arise with such a re-training. For example, the new language may have a different phonological 

structure. Retraining such models directly can cause word segmentation problems due to word 

sense ambiguities in the two languages.  The new language may have fuzzy grammatical structures, 

and worse, the language may not even have a written script of its own requiring translation into a 

language that has a script and shares phones with the new language. It is often challenging to find 

native speakers of under-resourced languages, and even harder to find native speakers with the 

technical expertise required to be able to develop a custom ASR in the language. To bootstrap these 

languages, resources and knowledge from other languages with similar phones and language 

structures can be borrowed and used to build ASR systems. The lack of resources requires new 

methods of data collection and models which have information shared between languages, or data 

augmentation techniques to increase the available training data. 



 
 

2 

This master’s thesis reviews the ability to port ASR systems trained on large English 

datasets, to under-resourced languages, specifically the Seneca Native American Indian language. 

It will be focused on applying data augmentation methods on the speech samples in the dataset and 

examines the effect of each of the augmentation methods being experimented with. It also focuses 

on examining the effectiveness of GANs in voice transformation, acting as one of the 

augmentation techniques, and its limitations. 

Seneca is one of the six Iroquoian languages, spoken primarily in Western New York, parts 

of Oklahoma, and near Brantford Ontario. Seneca words are written with 13 letters (a, ä, e, ë, i, o, 

ö, h, j, k, n, s, t, w, y), plus the colon and acute accent mark.  

Data augmentation is a method often used in image processing tasks to increase the dataset 

size, to avoid overfitting on limited data and make the model robust. This idea can be extended to 

speech data to increase the size of language corpora, especially for low resourced languages. For 

example, augmentation methods such as pitch, speed, noise addition, etc. Another augmentation 

method that can be used is voice conversion. Voice conversion pertains converting to a source 

speaker’s voice to mimic a target speaker’s voice characteristic. 

Learning feature representations from datasets that are unlabeled, in an unsupervised 

manner, is becoming exceedingly popular in image processing and is being used as a method of 

image synthesis. Generative Adversarial Networks [1] can generate high resolution images in 

various domains, such as Faces [2], Bedrooms [3], and many more. This can be extended to speech 

synthesis as well. Voice conversion is a field of speech processing which deals with voice 

mimicking of target speakers without changing the content of what is being said. The process of 

image synthesis can be extended to voice conversion using GANs. 



 
 

3 

The contributions of this thesis research are: 1) extending Automatic Speech Recognition 

(ASR) methods to Seneca, an endangered Native American language, using methods of transfer 

learning and augmentation; 2) demonstrating that augmentation methodologies can improve 

robustness of ASR systems to a resource constrained language; and 3) demonstrating the abilities 

and limitations of Generative Adversarial Networks (GANs) in the voice conversion task using 

ablation studies on various datasets 4) demonstrating that voice conversion using GANs can be 

used as an augmentation techniques to improve the robustness of the model.   

  



 
 

4 

Chapter 2 

Related Work 

Automatic speech recognition is a field that comprises of technology to convert speech 

samples to computer text. There has been extensive research that has been done to reduce the 

word error rate, i.e., the error in the word recognition. While classically, speech recognition 

systems were built with one Hidden Markov Model for every phoneme and the probabilities of 

the HMM were modeled using a Gaussian Mixture Model, current deep learning models explore 

end-to-end systems for both the acoustic and language models. Google AI [4] successfully 

explored the effectiveness of an attention-based sequence-to-sequence model to perform speech 

recognition, achieving a word error rate of 5.7% on a 12,500 hour English dataset. Pham et al. [5] 

experimented with self-attention (Transformers) and layer normalization to achieve 9.9% WER 

on the Switchboard dataset. Shi et al. [6] used a Long short term memory connectionist temporal 

classification model to achieve a 4% – 6% WER on the Librispeech dataset. Sabour et al. [7] 

presented a new method of training ASR systems, called Optimal Completion Distillation, with 

optimizing for the edit distance. Zeyer et al. [8] showed that pre-training the model starting with 

a high time reduction factor, and lowering it during the training process helps reduce the WER on 

the Librispeech-1000 dataset to 3.84%. But the common factor among all the above methods is 

that, they are all trained on large datasets. 

Datasets with a large amount of transcribed speech samples are often required to train an 

automatic speech recognition model. While for some languages like English and Mandarin, these 

resources are easily available, for other low resource languages, these resources are not easily 

accessible. Designing an ASR system on the languages, for languages with limited training 

resources is a key issue in the field of speech recognition. Hannun et al. [9] explored the effect of 

corrupting clean speech with noise on the ASR system and found that it improved the robustness 



 
 

5 

of the speech recognition system against noisy speech. Jaitley et al. [10] successfully experimented 

with Vocal Tract Length Perturbation (VTLP) as an augmentation technique on the TIMIT 

phoneme recognition task, using a Deep Neural Network (DNN) based acoustic model. VTLP was 

further successfully tested on Large Vocabulary Continuous Speech Recognition (LVCSR) dataset 

by Cui et al. [11].  Ragni et al. [12] and Kanda et al. [13] used similar augmentation methods on 

low-resource languages, with training data less than ~10hours.  Ko et al. [14] experimented with 

the Switchboard (SWB) benchmark task, using speed augmentation with various speeds for 

augmentation. Data augmentation has an important advantage of being able to produce data when 

large, real datasets are not available for training. These methods are known as label-preserving 

methods of transformation or augmentation.  

Voice conversion is a field of speech processing that deals with voice mimicking of other 

speakers without changing the content of what is being said by the source speaker. So far, voice 

conversion systems have implemented this conversion in the spectral domain. Prosodic features, 

such as F0 movements and speaking rhythm, also contain important cues of identity. Helander et 

al. [15] showed that pure prosody alone can be used, to an extent, to recognize speakers that are 

familiar to us. 

GANs are becoming more popular by the day, gaining a lot of traction in the field of using GANs 

to generate high resolution images. A number of studies explored techniques to generate high 

definition images using GANs. We have gone from low quality and pixelated images, to high 

quality, realistic-looking images in a very short time period. There has been substantial research 

in using GANs to synthesize images, such as NVIDIA with their Progressive GAN [2] or Google 

with BigGAN [16]. These techniques are now being extended to speech datasets. 



 
 

6 

In recent times, voice conversion using GANs is becoming increasingly popular. Several 

groups have explored voice conversion methods using GANs with cycle consistency loss.  Gao et 

al. [17] introduced the DiscoGAN architecture to handle varying length speech samples. Speech 

samples unlike image samples are not fixed length. They often vary vastly based on several factors 

such as number of words in the utterance, how fast or slow a person speaks, and even emotions 

attached to the word being uttered. Speech samples are often modified to be of equal length, either 

by time-warping or cropping/padding. Gao et al. [17] use the method of cropping/padding to 

normalize the length of all their samples. 

Various other teams of researchers experimented with voice transformation using GAN 

architectures, such as CycleGAN [18]. Hosseini et al. [19] used CycleGAN for voice 

transformation on a dataset with asynchronous data, i.e., data where the two speakers are not 

speaking the same utterances.  This model uses multiple independent discriminators, each in-

charge of discriminating different frequency bands. While Gao et al. [17] focused on transforming 

from one gender to another, Hosseini et al. [19] trained their model on data from one gender and 

tested it on data from another gender.  

Kaneko et al. [20] used a modified architecture of CycleGAN, with the CNN layers 

replaced with gated-CNN layers, and added an identity-mapping loss.  They exploit the ability of 

gated-CNN layers, which allow parallelization over sequential data, to model the sequential and 

hierarchical structure of speech signals, e.g., voiced and unvoiced segments, and phonemes and 

morphemes. Cycle-consistency loss constrains the structure; however, it may not always produce 

a mapping between phones that will maintain the linguistic content. The identity-mapping loss is 

used by Kaneko et al. [20] to force the generator to preserve the linguistic content of the 

utterances.  



 
 

7 

There have been several works focused on using GANs for speech synthesis and speech 

enhancement as well, i.e., denoising of noisy speech samples. Donahue et al. [21] demonstrated a 

GAN architecture for speech synthesis based on the Deep Convolutional GAN (DCGAN) 

architecture [3]. The DCGAN architecture was modified to use one-dimensional filters of size 25 

instead of using two-dimensional filters of size 5 × 5. Similar modifications were made throughout 

the architecture, where the filters were modified to be one-dimensional instead of two-

dimensional. They were successfully able to generate speech samples on a spoken 0-9 dataset, as 

well as on other audio datasets such as a dataset with drum sounds and piano sounds.   

Pascual et al. [22] used GANs to reduce noise in utterances. The network resembles an 

auto-encoder architecture, with an encoder and decoder as a generator. The layers are all 

comprised of fully-connected layers and skip connections, connecting each encoder layer to its 

analogous decoder layer. The discriminator differentiates between a fake clean sample and a real 

clean sample.  



 
 

8 

 Chapter 3 

Background 

3.1 Under-Resourced Languages:  

Besacier et al. [23] define the term ‘under-resourced language’ as languages with one or 

more of the following shortcomings: a language that does not have a unique writing system, or 

one which does not contain a stable orthography. These languages have little presence on the web. 

While many languages have linguistic experts studying the language, under-resourced languages 

generally lack linguistic expertise. A common misconception about under-resourced languages is 

that they are the same as minority languages. A Minority language is one that is spoken by a 

minority of the population of any region/country. On the other hand, under-resourced languages 

are languages that lack resources to support the culture, literature or teachings of the language. 

There are some minority languages that are quite well resourced, and there are some low-

resourced languages that are official languages of their country and are spoken by a majority of 

the people.  

 

 

 

 

 

 

 

 

 

  



 
 

9 

3.2 Automatic Speech Recognition (ASR): 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. Components in an ASR system. 

This section describes the parts of a traditional ASR system. A general ASR system has 

four main components: 1) Feature Extraction; 2) Acoustic Modeling; 3) Language Modeling; and 

4) Lexical Modeling.  

3.2.1 Feature Extraction 

The front-end of any ASR system is the feature extraction phase, which takes as input the 

audio signal, and outputs the digital representation of the audio signal. Raw audio can be directly 

given as input to the ASR system, or it can be converted to the frequency domain, and either 

passed as spectrograms, or a feature extraction technique can be applied on the frequency domain 

representation of the audio signal. Various feature extraction techniques include: Mel Frequency 

Cepstral Coefficients (MFCC), Linear Prediction Coefficients (LPC), Perceptual Linear 

Training speech 
data 

Acoustic 
models of 

speech units

 

 Training 
Speech Data 

Feature 
extraction 

Speech decoder 

Training text 
data 

Statistical 
language model 

Lexical model 
(pronunciation 

vocabulary) 

SPEECH 
SIGNAL 

W = w1,….wn  

ACOUSTIC 
FEATURES 

O = o1,….or  

TEXT 
OUTPUT 



 
 

10 

Prediction Coefficients (PLP), and bottleneck layer features (Multi-Layer Perceptron (MLP) 

outputs, specifically using autoencoders) etc.  

3.2.2 Acoustic Modeling 

An Acoustic Model (AM) is used in ASR to represent the relationship between an audio 

signal and the corresponding phonemes, characters, or words. AMs build statistical 

representations of meaningful speech units based on its input. Traditionally, ASR models were 

built using Hidden Markov Models (HMM). The most basic form was where each phoneme was 

modeled using separate HMMs, and the probabilities of the HMM were modeled using Gaussian 

Mixture Models (GMM). More recent approaches model the feature extraction, acoustic model 

and phoneme decoding system into the same end-to-end deep network. The acoustic model is 

specific to the language that is being modeled, as the phonemes differ from language-to-language.  

The acoustic model can however, be generalized over different accents of the same language using 

speaker normalization techniques.  

3.2.3 Language Modeling 

  Once the acoustic model outputs the sequence of phonemes/characters/words 

corresponding to the input utterance, the language model makes corrections based upon prior 

probabilistic statistics. The Language Model (LM) is a probability distribution over a set of 

words, describing the probability of sounds/characters/words occurring together in sequence. 

The language model, like the acoustic model, is generally collected on large written corpus, 

which is independent of the acoustical corpus, and dependent on the language being modeled. 

The sequence probabilities differ immensely from language-to-language.  

 



 
 

11 

3.2.4 Lexical Modeling 

The Lexical Model (Dictionary) plays a crucial role in any ASR system, as it acts as a 

bridge between the audio based acoustic model and the text-based language model. The lexicon 

has a two-fold role to play in an ASR system: 1) It contains the list of all words that can possibly 

be recognized by the ASR model, and 2) It helps traditional HMM models in building decoder 

models for each phoneme. The dictionary has two parts to it: 1) the words that the ASR system 

can recognize; and 2) the phoneme composition to produce the words. It is often crucial to include 

all possible words and phonemes in a language in the lexicon to obtain good performance of the 

ASR system.   

3.3 Mel Frequency Cepstral Coefficients (MFCC)  

The Mel Frequency Cepstral Coefficient (MFCC) is a popular feature representation 

method used for speech signals. It is based on the concept of Cepstrum, which represents the 

power of a signal. The steps involved in calculating the MFCCs of a speech signal are as follows: 

3.3.1 Pre-emphasis: 

The first step in the MFCC feature extraction process is to increase the energy content of 

the signal in the high frequencies. This is performed as the spectrum (the spectrum of the 

waveform is the summation of sinusoids, each with a particular amplitude and phase) for voiced 

segments has less energy at higher frequencies than at lower frequency. This is called a Spectral 

tilt. Sounds like [r], [g], [j], and [b] are voiced and sounds like [s], [p], [k] and [t] are unvoiced. 

The main difference between the two are, in voiced sounds the vocal folds vibrate, and in unvoiced 

sounds they don’t. They are mostly uttered from the front end of the vocal tract. Boosting high-

frequency energy gives more information to the acoustic model. This helps in improving phone 

recognition performance.  

 



 
 

12 

3.3.2 Windowing: 

Speech is an aperiodic signal and its properties change with time. Therefore, information 

is extracted from a small enough signal region where the speech signal seems relatively stationary, 

improving the spectral information for phone recognition. However, when computing the Discrete 

Fourier Transform (DFT), it assumes that the small signal region is one period of a continuous 

periodic signal. In the case of speech signals, the aperiodic nature may cause discontinuities. 

These discontinuities can affect the spectrum by showing up as high frequency components which 

don’t appear in the original signal. These effects can be minimized using a technique called 

windowing. Windowing suppresses the amplitude of these discontinuities that occur at the 

boundaries of each signal region. It is usually done using the Hamming window, as it performs 

better than rectangular window in the calculation of MFCCs. Hamming window causes the side 

lobes to be suppressed significantly compared to the main lobe making the results cleaner and 

better suited for frequency-selective analysis. 

 

3.3.3 Discrete Fourier Transform: 

We then extract spectral information from the windowed signals using Discrete Fourier 

Transform to obtain the energy of the signal at different frequency bands.  

3.3.4 Mel Filter Bank and Log: 

Human hearing is not uniformly sensitive to all frequency bands. It is more sensitive to 

lower frequencies than to higher frequencies. This property can be modeled using mel-scale. A 

mel is a unit of pitch [24]. The mel-scale is more closely related to human hearing than a time-

frequency domain representation like the spectrogram, as human perception of frequency is more 

non-linear than linear. As mentioned in section 3.3.1, the mel-scale performs pre-emphasis on 

higher frequencies, which is not performed while constructing the spectrogram. Finally, the log 



 
 

13 

levels of each of the mel spectrum values are computed. Logarithmic scaling compresses higher 

frequencies.  

3.3.5 The Cepstrum: 

Speech is created by the glottal source output being passed through the vocal tract, which 

has a filtering characteristic because of its ability to form various shapes [24]. The cepstrum is 

used to separate the glottal source from the filter.  For phone detection, it is more important to 

extract details on the vocal tract filtering than the glottal source output. The cepstrum is calculated 

by finding the inverse DFT of the Mel filter bank output.  

A typical cepstrum has a large peak at the fundamental frequency F0 which represents the 

glottal pulse, and higher harmonic components at lower amplitudes which represent the vocal 

tract filters. By using the cepstrum values between the second and the thirteenth peak and ignoring 

the fundamental frequency peak, we can separate the source from the filter. 

Cepstral coefficients do not capture the energy information. So, we add an energy feature 

to it. The energy of samples in any given frame is the sum of the squares of the samples over time 

[24]. Consider a signal x, which is windowed from time t1 to t2. The energy for this signal can be 

found as: 

																																																																											𝐸 = $ 𝑥(𝑖))
*)

+,*-

																																																																			(1) 

  

Speech signals are not constant as the slope of formants changes from stop burst to release. 

So, we want to add these variations in the features. For each of the 13 cesptral values, a delta or 



 
 

14 

velocity value is added. The delta values correspond to a change between frames in the 

corresponding cepstral/energy feature. It can be calculated as:  

																																																													𝑑(𝑡) =
𝑐(𝑡 + 1) − 𝑐(𝑡 − 1)

2 																																																								(2) 

 

Where d(t) represents the delta value, and c(t) is the cepstral value at time t. Similarly, 13 

double delta features are added, which correspond to the change between frames in the 

corresponding delta values. 

3.4 The Deep Speech model 

Deep Speech is an ASR system developed by Baidu research. It focuses on making an 

end-to-end ASR deep learning system. The architecture combines various parts of the complex 

ASR pipeline to make a simpler pipeline. These end-to-end pipelines are more robust to noisy 

speech, combining the pre-processing step, the acoustic model and the decoder. Unlike traditional 

ASR systems, Deep Speech does not model noise, reverberation, or speaker variation using hand-

crafted methods. Raw spectrogram data is fed into the model and it directly learns to compensate 

for these effects. The paper experiments with noise addition as a method of data augmentation. 

The input method is spectrograms sampled at 16 kHz and output is at character level, which is 

then corrected using a separately trained language model. The model is a five-layer recurrent 

neural network, where the first three layers as well as the last layer are non-recurrent, while the 

fourth layer is bidirectional recurrent. Each layer contains 2048 hidden units per layer. The model 

is trained on 12000 hours of English data, comprising various types of datasets (conversational as 

well as read).  



 
 

15 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Deep Speech ASR model [9]. (Reproduced without permission) 

 

  



 
 

16 

Chapter 4  
 

Generative Adversarial Networks 

4.1 Generative Adversarial Networks Preliminaries  

Generative Adversarial Networks (GANs) are generative models introduced by 

Goodfellow et al. [1]. The framework comprises of a combination of two neural networks, a 

generator and a discriminator, each with different roles, going against one another to generate 

real looking images from a distribution that it is trained on. The generator tries to generate 

images that resemble images from a real distribution of one particular class. The role of the 

discriminator is to classify the images as being a real (an image from the real distribution of 

images of the class) or a fake image (an image generated by the generator which resembles the 

characteristics of an image from the real distribution). The generator and the discriminator are 

trained together, with the generator getting better every iteration at generating real looking 

images that fool the discriminator; and the discriminator getting better every iteration at 

discerning between real and fake images. When we get to the point where both the generator 

and discriminator feel they are at an optimal training position, we call that Nash equilibrium. 

GANs belong to the class of models called generative models. There are two broad kinds 

of machine learning models: Generative models and Discriminative models. Discriminative 

models, like Support Vector Machines, learn decision boundaries from the data. Generative 

models on the other hand learn the intrinsic probability distributions from the given data. 

Generative models used in GANs, use input space probability distributions to generate synthetic 

input samples.  

 



 
 

17 

4.2 CycleGAN 

Image-to-Image translation is a method that transforms images from one distribution of 

images to another without changing the background features, i.e., the other features in the images 

that do not pertain to either domain are kept recognizably the same. The barrier for this application 

however, is that there is a dearth of datasets that contain paired images, i.e., an (X,Y) pair of 

images, where X is a sample from distribution A and Y is a sample from distribution B, that 

correspond to a 1:1 mapping between the two images with all features remaining the same except 

the distinguishing feature that discriminates between the two domains. This can be overcome by 

developing methods that can transform images from one domain to another without the need for 

paired images.  

Figure 3. Image of domain transformation of images using CycleGAN [18]. (Reproduced without 

permission) 

CycleGAN [18] performs unpaired image-to-image translation, i.e., image translation 

without the need for (X,Y) paired images. The advantage of CycleGAN lies in being able to learn 

transformations without a one-to-one mapping between training data in source and target 

domains. CycleGAN eliminates the need for paired images by first transforming the image into 



 
 

18 

the target domain, and then transforming the target image back into the source domain. A cycle-

consistency loss is introduced to drive the network to such a behavior, such that transforming a 

particular image from the source domain to the target domain and back, reproduces the same 

sample from the source domain, to ensure that the structure of the object (in the image) being 

transformed is retained, and only the distinguishing features are changed. 

 

Figure 4. Data flow in CycleGAN [18]. (Reproduced without permission) 

CycleGAN uses two generators and two discriminators to be able to translate between the 

two domains. Consider two domains, A and B. One generator transforms from domain A to domain 

B, say G, and the other transforms from domain B to domain A, say F. Each generator has a 

corresponding discriminator, which is responsible for determining if it is receiving a real image 

in the domain from the dataset, or a fake one being generated by the generator. 

The way CycleGANs are able to learn translations without having explicit A/B training 

images involves introducing the idea of a full translation cycle to determine how good the entire 

translation system is, thus improving both generators at the same time. In a nutshell, consider an 

image I1 from domain A. This image is passed through a generator, G, which transforms this 

image from domain A to domain B. This new generated image, I1’, is then passed through another 



 
 

19 

generator, F, which converts the image back to domain A from domain B, I1cyclic. The aim is to 

minimize the distance between the latent representation of I1 and I1cyclic.  

 

 

 

 

 

 

 

Figure 5. Full translation cycle in CycleGAN [18]. (Reproduced without permission) 

4.3 DiscoGAN and Difference between CycleGAN and DiscoGAN 

Kim et. al [25] performed similar research in unpaired image-to-image translation. 

However, the focus of this paper involved transforming patterns from an object of one domain, to 

the object of another. For example, transferring the patterns on a bag onto a shoe. DiscoGAN and 

CycleGAN have very similar network architectures. DiscoGAN also has a pair of GANs that map 

data from one domain to another and back. A reconstruction loss is used to measure the 

reconstruction accuracy of the original image after the two transformations. The two papers use 

the original formulation of the loss function of GANs as their basis for the loss function for the 

style transfer GAN.  

However, the differences between the two networks lies in the fact that DiscoGAN uses 

two reconstruction loss computations, one for each GAN, while CycleGAN uses one cycle-

consistency loss.  



 
 

20 

4.4 VoiceGAN 

Voice impersonation is a complex phenomenon that involves producing a target voice that 

convincingly represents the impression of naturally having been produced by the target speaker. 

It is usually aimed at mimicking the pitch among many other perceivable signal properties and is 

not the only transient factor.  

Consider the case where a human impersonator learns to mimic the voice of another 

person. In most cases, the source impersonator learns to mimic elements such as the voice quality 

of the target speaker. This is however a hard-to-measure aspect, and is often characterized by 

nasality, roughness etc., and these aspects allow measurable comparisons between speakers.  

VoiceGAN aims to achieve automatic generation of impersonations by style transfer 

between two speakers. Many conventional methods of voice transformation modify the 

instantaneous characteristics of a given signal. While these methods are effective, they fall short 

in being able to capture unmeasurable and unquantifiable elements of voice.  They are also heavily 

reliant on parallel recordings of the source and target speakers. 

4.4.1 Image vs Speech samples 

Before going into voice impersonation by generation, it is useful to look at some of the 

fundamental differences between image and speech datasets.  

1. Unlike images, speech samples vary in length across the dataset, i.e. they are not fixed in 

duration of sample. Speech samples generally cannot be scaled to have the same duration, as 

resampling may affect stylistic features. 



 
 

21 

2. Generation of time-series data like speech is far from straight-forward when compared to 

images. Naïve implementations may result in loss of linguistic, stylistic or even intelligible 

content.  

4.4.2 VoiceGAN model changes 

VoiceGAN is an extension of DiscoGAN, which was designed to perform style transfer 

in the image domain. To be able to apply a DiscoGAN on speech data, the data must be pre-

processed to a picture-like representation.  DiscoGAN does this by utilizing spectrograms. Some 

of the changes that were made to the architecture of DiscoGAN to be able to perform style transfer 

on speech data are detailed below. 

4.4.2.1 Retaining linguistic information 

Linguistic information is contained mainly in the spectral envelope of samples, and this 

must be retained to be able to reconstruct the speech sample and maintain the linguistic content. 

For this, the reconstruction loss was modified as: 

 

																																									𝐿constA= a𝑑(𝑥ABA, 𝑥A) 	+ 	b𝑑(𝑥AB, 𝑥A)                                        (3) 

The term d(xAB, xA) attempts to retain the linguistic information in the intermediate states 

as well, and d(xABA, xA) attempts to retain the linguistic information after the reconstruction has 

been performed.  

 

 



 
 

22 

4.4.2.2 Variable-length input generator and discriminator 

As mentioned before, speech data unlike image data, isn’t of a fixed size. The architecture 

of DiscoGAN must also be altered to handle this variable-length input. In DiscoGAN, the 

generator contains a fully convolutional layer between the encoder and decoder, and this can be 

used as a mechanism to handle variable-length input, and hence the generator does not need to be 

modified. The discriminator, however, requires a modification. The max-pooling performed in 

the discriminator of DiscoGAN is replaced with an adaptive pooling layer in VoiceGAN, as 

shown below. 

a) Generator of VoiceGAN    b) Discriminator of VoiceGAN 

Figure 6. Generator and Discriminator of VoiceGAN [17]. (Reproduced without permission) 

4.4.2.3 Style Embedding Model 

A second discriminator was also added to discriminate between style information in the 

input data to ensure that the style information is contained in the generated sample. This 

introduces a new component into the loss function as follows. 

 

       LDSTYLE-A = d(DS(xA), labelA) + d(DS(xAB), labelB) + d(DS(xABA), labelA)        (4) 

                                      LDSTYLE = LDSTYLE-A + LDSTYLE-B                                                   (5) 

 

Therefore, the total discriminator loss becomes, 

                                         LD = LDA + LDB + LDSTYLE                                                       (6) 



 
 

23 

4.5 StarGAN – VC 

While VoiceGAN [17] converts speech samples from one speaker to another using non-

parallel data, two limitations of the VoiceGAN network are, 1) the network takes inputs as single-

frames; and 2) it creates one-to-one mappings between classes. StarGAN-VC [26], a voice 

conversion network derived from the StarGAN, helps overcome these two limitations by being 

able to create many-to-many mappings, using just one generator G to convert samples between 

categories, and being able to process inputs as feature sequences instead of single-frames, by 

modifying the Generator CNN to be fully convolutional.  

The discriminator as well as domain classifier are designed in such a way that they classify 

segments of the sequences, instead of the whole sequence. They leverage the idea of PatchGAN 

[27], which classifies whether local segments of input sequences are real or fake. The objective 

function used to train the StarGAN-VC model is described below.  

4.5.1 Objectives 

 

           

 

 

 

 

 
Figure 7. CycleGAN-VC [28]. (Reproduced without permission)                                                                    



 
 

24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. StarGAN-VC [26]. (Reproduced without permission) 

 

Figure 7, shows the network for voice conversion that is derived from CycleGAN. The 

input to the network is the VCC 2016 dataset, with one male and one female speaker. The 

utterances are divided into 216 short parallel sentences. CycleGAN-VC uses a cycle-consistency 

adversarial network, along with a gated convolutional neural network (CNN) as the generator. 

The adversarial loss in this case, helps in mitigating the smoothing effect created by the generator 

while converting between two classes. The CycleGAN is trained with an identity-mapping loss 

function. Figure 8, shows the StarGAN-VC voice conversion network. In this network, the 

generator G takes acoustic feature sequences as input. These feature sequences are a set of 

concatenated one-hot encoded vectors, that correspond to the speech attributes comprising of one 

or more classes. The discriminator network D, and the domain classifier C, are identical to that of 

VoiceGAN or CycleGAN-VC. The training objectives used to train the model are similar training 

objectives as in VoiceGAN. 



 
 

25 

4.5.1.1 Adversarial Loss 

The adversarial loss is similar to the adversarial loss defined in [1], and is: 

 

            LADVD(D) = – Ec~p(c), y~p(y|c)[log(D(y,c))] – Ex~p(x), c~p(c)[log(1 - D(G(x,c),c))]        (7) 

                                 LADVG(G) = – Ex~p(x), c~p(c)[log(D(G(x,c),c))]                                    (8) 

 

LADVD(D) is low when D correctly classifies the speech samples in the dataset as real and those 

generated by G as fake. LADVG(G) is low when G is able to deceive D into thinking that the image 

generated by G is real. 

4.5.1.2 Domain Classification Loss 

The domain classification loss takes care of checking which domain or category the output 

belongs to, and is: 

 

                                     LclsC(C) = – Ec~p(c), y~p(y|c)[log(pC(c|y))]                     (9) 

                                 LclsG(G) = – Ex~p(x), c~p(c)[log(pC(c|G(x,c)))]                                    (10) 

 

The above two equations are low when they correctly classify the utterances as belonging to a 

certain class c.  

4.5.1.3 Cycle Consistency Loss 

Cycle Consistency loss maintains the linguistic information in the utterances, by reducing 

the distance between the converted sample and the original sample. 

 

                         Lcyc(G) = E c’~p(c), x~p(x|c’), c~p(c))[||G(G(x,c),c’) – x||r]                             (11) 

                                Lid(G) = E c’~p(c), x~p(x|c’) [||G(x,c’) – x||r]                                         (12) 



 
 

26 

The final objective functions are: 

                                                          ID(D) = LADVD(D)                                                 (13) 

                                                           IC(C) = LclsC(C)                                                   (14) 

                      ID(G) = LADVG(G) + lcls LclsG(G) + lcyc Lcyc(G) + lid Lid(G)                   (15) 

ID(D) is low when D correctly classifies the speech samples in the dataset as real and those 

generated by G as fake. IC(C) is the domain classification loss, and it checks and classifies the 

samples input to their respective classes. This ensures that the samples being generated are similar 

to the ones in the input data distribution. The generator loss is a linear combination of the 

adversarial loss for generator, which is high when the generator can synthesize samples very 

similar to the distribution of the input data, the cycle consistency loss, and the identity mapping 

loss, which makes sure that the linguistic information between the input and the transformed 

output is the same.  

4.6 StarGAN-VC v/s VoiceGAN 

StarGAN-VC is derived from CycleGAN, which has one cycle-consistency loss, while 

VoiceGAN is derived from DiscoGAN which has two reconstruction losses. The advantage of 

having one combined loss over two separate losses is that, all the domains are mapped to one 

latent space, as opposed to multiple latent spaces. This has the advantage of performing many-to-

many mappings, and the sample size for each class need not be very large. Another advantage of 

StarGAN-VC over VoiceGAN is that, the discriminator is borrowed from PatchGAN, which 

classifies patches of the output spectrogram as real or fake, as opposed to the whole sample. This 

has the added advantage of processing different lengths of samples. Therefore, there is no 

cropping that has to be performed for the voice samples, and this eliminates any artifacts that arise 

when combining cropped samples back together into one speech sample.  



 
 

27 

Chapter 5 
 

Raw audio, spectrograms and MFCCs 

A spectrogram is a basic input method in audio analysis and other applications. It is an 

important representation of audio data as human hearing is based on a real-time spectrogram. 

The spectrogram is a popular choice of audio representation used in the development of sound 

synthesis algorithms. Spectrograms are useful in synthesis models when trying to approximate 

time-domain representation of signals based on their frequency domain representation, as 

matching the spectrogram often corresponds to matching the sound extremely well.  

This chapter focuses on understanding raw audio, spectrograms, MFCCs and how to 

convert to and from one type of input method to another. This is often useful when using 

generative modeling methods such as Generative Adversarial Networks (GANs) [1] for various 

applications. 

5.1 What is the raw audio format? 

The raw audio format is an audio file format that contains uncompressed audio in the 

raw form. The samples represent the amplitude values of the speech signal with respect to time.   

5.2 What are spectrograms? 

 Like many real-world signals, speech signals vary over time. While performing spectral 

analysis on speech signals, it is often assumed that the signal frequency content is stationary 

only over a short period of time. To be able to extend this analysis to longer signals, we need to 

be able to combine analysis over a series of short time slots. A spectrogram is built from a 

sequence of frequency spectrums, by stacking them together in time.  



 
 

28 

Spectrograms are visual representations of signal strength over time at various 

frequencies present in a particular speech sample. Spectrograms are two dimensional graphs, 

with the two dimensions being time on the horizontal axis and frequency on the vertical axis.  

5.2.1 Wideband and Narrowband spectrograms 

 There are two broad categories of spectrograms that can be calculated based on the range 

of the pass band frequencies of the sampling filter applied to the raw audio signal. If the 

sampling bandpass filter is of short duration (~300Hz) the spectrogram is said to have a wide 

bandwidth and displays good temporal resolution, but poor frequency resolution. On the other 

hand, if the sampling bandpass filter is of long duration (~45Hz), the spectrogram is said to have 

narrow bandwidth and has good frequency resolution, but poor time resolution. 



 
 

29 

Figure 9. Wideband spectrogram. [29]  (Looks like good frequency, but quantized time) (Reproduced without 

permission) 

Figure 10. Narrowband spectrogram. [29]  (Looks like poor frequency, but good time) (Reproduced without 

permission) 



 
 

30 

In Figures 9 and 10, the top row of Figure 9 has speech signals windowed using a window 

size of short duration (~3ms). Due to the size of the window, the waveform can be thought of as 

representing one period of the full sample. The top row of Figure 10 has speech signals windowed 

using a window size of longer duration (~20ms). Due to the size of the window, the waveform 

can be thought of as representing the entire sample. 

 

In Figures 9 and 10, the signal on the top row in both figures correspond to the waveform 

of the speech signal in time domain. The bottom row in Figure 9 corresponds to the wideband 

spectrogram of the signal (using a bandwidth of 300Hz), where the temporal information, i.e., the 

individual vocal fold pulses can be seen clearly. The bottom row in Figure 10 corresponds to the 

narrowband spectrogram of the signal (using a bandwidth of 45Hz), where the frequency 

resolution, i.e., the individual formant information at each timeslot can be seen clearly.   

5.3 Computing the spectrogram 

 Consider a signal ‘x’ of length N samples. To calculate the spectrogram of this signal, it is 

first split into overlapping segments of length M where M < N. The Fourier transform of each of 

the segments is computed and stacked together in time to obtain the spectrogram.  

The parameters required for calculating the spectrogram of a signal are: 

1. The FFT size that needs to be used for each frame – a common choice of FFT size is a 

value which is a power of 2 (e.g. = 512). 

2. The sampling frequency of the signal – a common choice of sampling frequency is 8 kHz.  

3. The window length to compute the FFT of each frame of the signal – a common choice 

for window length is 20ms. This is short enough for the window to contain typically only one 

phoneme. (Note: The spectrogram of a signal is calculated as a stacked spectrum of many 

segments of the signal, where each of these segments represent a frame. The segments are 



 
 

31 

processed using the conventional FFT algorithm, which performs windowing of the signal to 

isolate the phonemes) 

4. Number of samples of overlap – typically at least 50% overlap. 

5. Window type – usually chosen to be Hamming, due to its property of being able to 

attenuate the sidelobes, making it better suited for frequency selective analysis. 

Typical spectrograms show log-magnitude intensity (dB) of the frequency signal versus 

linear time. This is useful as the human hear perceives changes in frequency logarithmically at 

higher frequencies, as compared to lower frequencies where they are perceived linearly, and this 

is reasonably well modelled by spectrograms.  

5.3.1 Input values to Deep Speech 

The input to the Deep Speech model are MFCCs, with the following parameters: 

1. Window length = 25msec 

2. Window step = 10msec (which makes overlap of 15msec) 

3. Number of Cepstral coefficients being used = 13 (+ 12 delta features and 1 energy feature 

+ 12 double delta features and 1 energy feature; as described in chapter 3.) 

4. FFT size = 512 

5. Sampling rate = 16 kHz 

6. Window type = Hamming window 

5.4 Converting spectrogram to raw audio 

The spectrogram of a waveform represents the magnitude distribution of the Fourier 

transform of the signal. While there is some phase information inherently retained in the 

spectrogram, a lot of the information is lost. The phase information plays a crucial role in being 

able to reconstruct a signal effectively. But with lost information, a good way of obtaining the 



 
 

32 

time domain representation of the signal is to find a signal whose Short Time Fourier Transform 

(STFT) is close to the STFT of the signal that was originally used to construct the spectrogram.  

Consider a signal xn, which needs to be reconstructed from its spectrogram. Let X(mS, ω) 

represent its STFT, where S is the sampling frequency, ω is the frequency (= 2πf) and m is the 

current time. Let the window used for STFT be denoted by w(n), which is of length L. By 

definition STFT is, 

																																																		𝑋(𝑚𝑆,𝜔) = 𝐹[𝑥(𝑚𝑆, 𝑙)] = 	 $ 𝑥(𝑚𝑆, 𝑙)𝑒@+A*																											(16)
C

D,	@C

 

Where, x(mS, l) = w(mS – l) * xn and 𝐹[𝑥(𝑚𝑆, 𝑙)] represents the Fourier transform of x(mS, 

l).  

Consider an arbitrary STFT, Y(mS, ω), which denotes the STFT of y(mS, l), where, 

																																																									𝑦(𝑚𝑆, 𝑙) =
1
2𝜋G 𝑌(𝑚𝑆,𝜔)𝑒+A*𝑑𝜔																																					(17)

J

A,	@J
 

𝑌(𝑚𝑆,𝜔) can be obtained by minimizing the distance between X(mS, ω) and 𝑌(𝑚𝑆,𝜔), 

using the following formula, 

														𝐷[𝑥(𝑛), 𝑌(𝑚𝑆,𝜔)] = 	 $
1
2𝜋	G |𝑋(𝑚𝑆,𝜔) − 𝑌(𝑚𝑆,𝜔)|)	𝑑𝜔																									(18)

J

A,	@J

C

O,	@C

 

This squared error between X(mS, ω) and 𝑌(𝑚𝑆,𝜔) is decreased at each iteration to obtain 

the reconstructed signal. The authors in [30] solve this equation using Parseval’s theorem and by 

setting the gradient w.r.t x(n) to 0. The result is, 

																																																					𝑥(𝑛) =
∑ 𝑤(𝑚𝑆 − 𝑛)𝑦(𝑚𝑆, 𝑛)C
O,	@C

∑ 𝑤)(𝑚𝑆 − 𝑛)C
O,	@C

																																												(19) 

 



 
 

33 

The i+1st estimate of xi+1(n) is obtained by taking the STFT of xi(n), by replacing the magnitude 

of Xi(mS,w) with the magnitude of Y(mS, w), and then finding the signal whose STFT is closest 

to the modified STFT.  

5.5 Computing MFCCs from a spectrogram 

One method to compute MFCCs from a spectrogram would be to go from spectrogram to 

raw audio and then compute the MFCCs from the raw audio. But as a spectrogram is already in 

the frequency domain, it is possible to go directly from spectrograms to MFCCs, without the 

intermediate step of going into the time domain. 

We start with the output of DFT, and calculate the log levels of each of the spectrum values 

using the following formula, 

																																																														𝑀(𝑓) = 1125 ∗ 𝑙 𝑛 W1 +
𝑓
700Y																																															(20) 

 

Where, M(f) is the mel spectrum value of frequency value f.  

The next step is to take the inverse DFT of mel filter bank output, which is called the 

cepstrum. Use the cepstrum values between the second and the thirteenth peak ignoring the 

fundamental frequency peak. Add the energy feature to it. The energy of samples in any given 

frame is the sum of the squares of the samples over time. Finally, add the delta and double delta 

features.  



 
 

34 

Chapter 6 

Thesis Proposal 

6.1 Problem Statement 

The aim of this thesis is to examine the effect of different augmentation techniques and to 

examine the effectiveness of GANs in voice transformation and its limitations. Various speech 

data augmentation techniques such as noise augmentation, pitch augmentation as well as speed 

augmentation will be experimented with.  Each will be analyzed under different conditions using 

different control variables, to determine which of the augmentation techniques works well for the 

dataset, and which of them don’t. Voice conversion as an augmentation technique can also be 

used improve the robustness of a speech recognition model to a dataset. The information gained 

from the study on the limitations of GANs in the field of voice conversion will aid this research 

further in collection of data, specifically, in understanding the conditions required for the data to 

be collected in, so that the GAN can effectively perform voice transformation. 

6.2 Datasets 

6.2.1 Seneca dataset 

The Seneca dataset is a 315-minute corpus of natural conversation American Indian 

Seneca.  270 minutes of annotated audio data are used for training and randomly selected 45 

minutes of annotated audio data are used for testing. The dataset was annotated and aligned using 

Praat [31]. The dataset was recorded as long conversations between two speakers. An utterance 

is considered as one sentence spoken by each speaker. Every sample, which consists of multiple 

sentences, is broken down into utterances (or single sentence samples), and the annotation is done 

at the utterance level. In Figure 11, the top row represents the speech signal waveform. The second 

row is the spectrogram representing the speech signal with the red dots representing the formants, 



 
 

35 

the yellow line representing the intensity of the signal and the blue line representing the pitch of 

the signal. The last row represents the annotation of each utterance.  

The lexicon consists of 3,498 Seneca words. The corpus used to create the language model 

consists of 1,843 utterances that consists of transcribed data as well as text found online, such as 

Seneca to English dictionaries that could be used as input to create the language model. 

The Deep Speech model requires csv files as inputs which contain the file name and file 

path, the file size and the transcription. The audio files are required to be in .wav format. Code 

was written to compile the audio file paths, size and transcription into a csv file, as well as to 

convert the audio files into .wav format.  

Figure 11. Sample annotation in Praat. 

 

 

 



 
 

36 

6.2.2 Free Spoken Digits dataset 

The free-spoken digits dataset [32] is a corpus of three speakers uttering the words zero 

through nine, with each speaker uttering each word 50 times. Overall, the dataset contains 1500 

utterances of zero through nine by three speakers. The utterances are recorded at 8 kHz sampling 

frequency, which is often characteristic of cellphone microphones. The lexicon for the dataset is 

10 words, zero through nine. The utterances are less than a second long. 

Of the three speakers, two were chosen as the two domains. The dataset was split 90:10 

train to test split.  

6.2.3 LibriSpeech 

The LibriSpeech corpus [33] is an English dataset of approximately 1000 hours of English 

being read. The dataset was developed by Daniel Povey and Vassil Panayotov. The dataset is part 

of the audiobooks from LibriVox project. The utterances are sampled at 16 kHz sampling 

frequency. The utterances range between 12-20 seconds long. 

6.2.4 Tensorflow Speech Recognition Challenge Dataset 

The Tensorflow Speech Recognition Challenge Dataset [34] contains 65,000 one second 

long utterances of 30 short-words such as ‘right’, ‘left’, ‘go’, ‘stop’, ‘one’, ‘two’ and so on, spoken 

by thousands of people. The utterances are sampled at 16 kHz sampling frequency. Each class of 

utterance contains thousands of samples of men and women speaking the word. Each utterance in 

this dataset is just one word. 

 



 
 

37 

6.2.5 Voice Conversion Challenge 2018 Parallel Dataset 

The Voice Conversion Challenge 2018 dataset [35] is a challenge for voice conversion, 

i.e., converting the utterance of a source speaker to that of a target speaker without changing the 

content of what was spoken. It contains synchronous data, i.e., both speakers speaking the same 

utterances. It has two male and two female speakers with 81 utterances of each speaker. The 

utterances are sampled at 22 kHz. The utterances range between 4-5 seconds long. 

6.3 Language Model 

The language model file, ‘lm.binary’ file was created using the KenLM software [36]. The 

input to the software is the Seneca corpus, which is a text file that contains the transcribed 

utterances and other Seneca data from the internet, including the Seneca to English dictionary. 

The data is organized as one utterance per line. KenLM evaluates and prunes language models 

with modified Kneser-Ney smoothing algorithm [37]. KenLM offers two data structures: Probing 

and Trie. Probing is the default setting on the software and is the faster of the two, while the trie 

data structure uses the least memory, has the best memory locality and is fairly fast. The trie data 

structure takes longer to build than probing.   

6.4 Data Augmentation 

6.4.1 Noise Addition 

The simplest form of data augmentation used for speech signals is adding noise to the 

speech signal at a given signal-to-noise ratio (SNR). Noise addition to a speech signal can be done 

several ways.  Two popular methods are: 

a. Generate a random vector (of normal distribution) of length equal to the speech wave. This 

vector of random numbers can then be added to the speech signal.  

b. Introduce background noise signals, for e.g.: birds chirping, rain, subway etc.  

 



 
 

38 

When using this method, it is important that the start time of the noise file is random.  This 

prevents regular and predictable sounds such as a door banging or a guy laughing at the same 

point in every file. The noise signal must be scaled using a signal-to-noise ratio that provides 

maximum intelligibility. The procedure is described below.  

Consider a speech signal sampled at frequency fs Hz, with samples S = {s1, s2, s3, …, sn}, 

and a noise signal sampled at frequency fs Hz, with samples N = {n1, n2, n3, …, nn}, where N is the 

total number of samples in the signal, while ni is the ith sample of the signal. The number of 

samples, the length of the two signals, and the sampling frequency must be the same to add the 

two signals. The SNR in this case would be, 

 

																																																																𝑆𝑁𝑅 = 10𝑙𝑜𝑔-^
𝐸𝑠𝑝𝑒𝑒𝑐ℎ
𝐸𝑛𝑜𝑖𝑠𝑒 																																																						

(21) 

where, 

																																																																			𝐸𝑠𝑝𝑒𝑒𝑐ℎ =$𝑠(𝑖))
b

+,^

																																																												(22) 

and 

																																																																			𝐸𝑛𝑜𝑖𝑠𝑒 =$𝑛(𝑖))
b

+,^

																																																														(23) 

Where ESpeech and ENoise are the energies of the speech signal and the noise signal 

respectively. Upon choosing the required SNR, the scaling factor K, for the noise signal can be 

calculated as,  

																																																																					𝐾 = e
𝐸𝑆𝑝𝑒𝑒𝑐ℎ

10
fbg(hi)

-^

																																																																	(24) 



 
 

39 

Where ESpeech is the energy of the speech signal and SNR (dB) is the required SNR. Once 

the scaling factor K has been found using (11), with Espeech from (9) and a chosen SNR value 

(the SNR value is chosen such that the speech content is understandable even after being 

augmented by adding noise), the speech samples and the scaled noise samples can be added 

together to get the new augmented signal:  

																																																										𝑥(𝑖) = 𝑠(𝑖) + (𝐾 ∗ 	𝑛(𝑖))																																																	(25) 

Where x(i) is the samples of the new signal, s(i) is the speech signal samples and 𝑛(𝑖)  is 

the scaled noise signal samples. 

6.4.2 Pitch Augmentation 

Pitch is defined as the rate at which the vocal folds vibrate. There could be various other 

reasons for change in pitch including thickness of the vocal folds and change in emotion such as 

anger or excitement, but the rate of vibration of vocal folds is the most influential.  

Pitch augmentation involves raising or lowering the pitch of the audio sample by 

resampling the audio file. The file is resampled in octaves. Increasing the pitch by half an octave 

increases the speed of the speech sample proportionally as well. The sampling rate fs can be 

mapped to a new sampling rate fs’ using (8), 

																																																																															𝑓𝑠l = 𝑓𝑠 ∗ 2m																																																												(26) 

Where x is a randomly chosen pitch shift in octaves. For example, a shift in the pitch of 

the speech sample sampled at 16000 Hz by half an octave (tritone) is 16000 Hz * 2^.o ~ 22600 Hz. 

The new sampling rate for the given speech sample is set as 22.6 kHz. As the number of samples 

remain the same but are played back at a higher sampling rate, the speed of the speech sample 

increases with the pitch. The speech sample is then resampled at the original sampling rate of 16 

kHz. This method of pitch shifting is called the chipmunk method of pitch shifting. 



 
 

40 

6.4.3 Speed Augmentation 

Speed augmentation involves changing the speed of playback of the speech sample to a 

higher or lower speed. The speed of the speech sample can be increased by resampling the 

utterance at a higher or lower sampling frequency.  

6.5 Research Questions 

The research questions that will be the focus of this thesis are: 

• Does transfer learning on a pre-trained model help improve a model's robustness towards 

resource constrained languages? 

• Does sample augmentation help improve the model's robustness and result in lower Word 

Error Rate (WER)? 

• Which augmentation technique, among the ones being used (noise addition, pitch, speed, 

voice conversion), is optimal in making the ASR model more robust towards Seneca?  

• Which of the current Generative Adversarial Network (GAN) technologies is best for 

voice conversion?  

• What are the limitations of using GANs in performing voice conversion? 

  



 
 

41 

Chapter 7 

Design of Experiments 

 7.1 Problem Statement and Hypothesis 

The aim of this thesis is to examine the effect of different augmentation techniques and to 

examine the effectiveness of GANs in voice transformation and its limitations. We hypothesize 

that training the ASR system end-to-end on just Seneca data would not perform very well, as the 

dataset size is small and the representation of each word in the data may not be enough for the 

model to learn the phone-to-character mapping. However, when transfer learned from a model 

that has been previously trained on the English dataset, the ASR should be more robust towards 

Seneca, as many of the phones which make up Seneca are similar to those used in English.  

Generative Adversarial Networks (GANs) are highly sensitive to the datasets they are 

being trained on. VoiceGAN converts speech data from one domain to another. The domains may 

be male and female, or two distinct speakers. We hypothesize that the conditions for GANs to be 

able to successfully generate intelligible voice conversions is stringent. The inter-domain 

variation must be large, and the intra-domain variation must be limited, i.e., the samples that 

belong to one domain must have less variance, and the samples belonging to different domains 

must have high variance. We hypothesize that VoiceGAN will work best on datasets that have a 

lot of training samples, and a small lexicon. As the size of the lexicon increases, the number of 

mappings the GAN must make increases as well, and this increase would need to be bolstered by 

the number of representations of each phoneme. The data would also need to be clean, as noise 

can make the GAN generated samples noisier.  

 

 



 
 

42 

7.2 Design of Experiments 

7.2.1 Deep Speech Experiments 

As our aim is to determine if transfer learning and augmentation can improve the 

robustness of the ASR systems towards the Seneca language, we performed the following 

experiments in order to determine if: 1) transfer learning on a pre-trained English model would 

help reduce word error rate (WER), 2) augmentation helps improve the WER, and 3) which 

augmentation method among the ones described contributes the most towards improving the 

robustness of the model. 

 

Experiments Transfer Learning Augmentation Parameters 

Seneca only No No augmentation – 315 

minutes of Seneca only data.  

Yes - transfer learned on 

pretrained English model, 

trained on Mozilla’s 

common voice dataset. 

No augmentation –315 

minutes of Seneca only data. 

All augmentation  Yes - transfer learned on 

pretrained English model, 

trained on Mozilla’s 

common voice dataset. 

Augment-15: 315 minutes of 

Seneca only data plus 15 

augments/sample (of each 

sample), randomly sampled 

from the set of augmentation 

methods, and associated 

variables available. 



 
 

43 

Yes - transfer learned on 

pretrained English model, 

trained on Mozilla’s 

common voice dataset. 

Augment-25: 315 minutes of 

Seneca only data plus 25 

augments/sample (of each 

sample), randomly sampled 

from the set of augmentation 

methods, and associated 

variables available. 

Noise only Augmentation  Yes - transfer learned on 

pretrained English model, 

trained on Mozilla’s 

common voice dataset. 

Augment-10: 315 minutes of 

Seneca only data plus 10 

augments/sample (of each 

sample), randomly sampled 

from the set of associated 

variables available. 

Pitch only Augmentation  Yes - transfer learned on 

pretrained English model, 

trained on Mozilla’s 

common voice dataset. 

Augment-10: 315 minutes of 

Seneca only data plus 10 

augments/sample (of each 

sample), randomly sampled 

from the set of associated 

variables available. 

Speed only Augmentation  Yes - transfer learned on 

pretrained English model, 

trained on Mozilla’s 

common voice dataset. 

Augment-10: 315 minutes of 

Seneca only data plus 10 

augments/sample (of each 

sample), randomly sampled 

from the set of associated 

variables available. 

Table 1. Experiments performed. 

 



 
 

44 

Table 2. Controlled Variables and Possible Values for each Augmentation method. 

 

Table 1., shows the order of experiments performed to determine if our hypotheses 

regarding augmentation experiments on Deep Speech are valid.  

1. We first begin by training the Deep Speech model end-to-end on Seneca data only, to 

determine our baseline result. All further experiments will be evaluated based on this 

baseline result.  

2. The next step is to determine if transfer learning the Seneca data on a pre-trained English 

model helps improve the robustness of the model. Hence, we train Deep Speech on a larger 

English dataset and then fine-tuned the model on the Seneca data. The model is fine-tuned 

on all the layers.  

3. We then augmented the data using the augmentation methods described above. We 

performed two experiments in this method, one with more augments than the other to 

determine if more augmentations per sample would improve the robustness of Deep Speech 

toward the dataset.  

4. Finally, we ran experiments on each of the augmentation techniques independently to see 

which of the techniques contributed more towards improving the robustness of the ASR 

model. 

Augmentation Method Control Variables Possible values 
Pitch Different levels of pitch 

augmentation 
0.10 octave, 0.15 octave, 
0.20 octave, 0.25 octave, 
0.30 octave  

Number of augmentations 
per sample 

10, 15 and 25 

Speed Different speed 
augmentations 

0.75x, 0.80x, 0.85x, 0.90x, 
0.95x, 1.00x, 1.05x, 1.10x, 
1.15x, 1.20x, 1.25x 

Number of augmentations 
per sample 

10, 15 and 25 

Noise Addition Signal-to-Noise ratio 30db 
Different noise samples Beach, Bicycle, Birds, 

Doing the dishes, Cat, 
Exercise bike, Fan, 
Running-tap, Rain, Subway 

Number of augmentations 
per sample 

10, 15 and 25 



 
 

45 

7.2.2 Griffin-Lim Algorithm Experiments 

Before using VoiceGAN to perform voice conversion, we must determine if it is possible 

to convert from raw audio to spectrograms and then go back from spectrograms to raw audio. 

To convert from spectrograms to raw audio, we will use a method called the Griffin-Lin 

algorithm. We must determine if the Griffin-Lim algorithm is effective in performing 

transformation from spectrograms to raw audio. The experiments in Table 4. were planned to 

determine the effectiveness of the Griffin-Lim algorithm: 

 Table 3. Experiments testing the effectiveness of the Griffin-Lim algorithm. 

If we observe the outcomes in Table 3, the Griffin-Lim algorithm can be used as a 

reconstruction technique. The method adopted would be to construct the spectrograms from the 

raw audio sample, and then reconstruct the audio sample from the constructed spectrogram using 

the Griffin-Lim algorithm. 

7.2.3 VoiceGAN Experiments 

As our aim is to determine the limitations of VoiceGAN in producing voice converted 

samples, our experiments are designed to determine if: 1) training the model on long utterances, 

of the order of 12-20 seconds, would produce intelligible outcomes, 2) training the model on 

Experiments Dataset Expected outcome 
Raw audio-Spectrogram-Raw 
audio 

LibriSpeech As the samples in the 
dataset are clear 
utterances, the output 
must be clear as well, but 
sounding more 
mechanical. 

Raw audio-Spectrogram-Raw 
audio 

Free 0-9 dataset As the samples in the 
dataset are noisy 
utterances, the output 
might be noisier than the 
input and sounding more 
mechanical. But as long as 
the utterances are 
intelligible.  



 
 

46 

shorter utterances, of the order of 4-5 seconds, would produce intelligible outcomes, and 3) 

training the model on short utterances, of the order of 1-2 seconds, would produce intelligible 

outcomes, and 4) training the model on one word utterances would produce intelligible 

outcomes. The experiments below in Table 5, are ordered in such a way as to find the limitations 

of various methods. 



 
 

47 

Dataset Length of 
Utterances 

Data split Model 
Specifications 

Spectrogram 
Specifications 

LibriSpeech 20 seconds Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, time-
warped, image-

scaled for pixels to 
range between 0-

255 
LibriSpeech 4-5 seconds Train:Test::90:10 Reconstruction 

Loss: 0.3, 
Feature Map 

Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, time-
warped, image-

scaled for pixels to 
range between 0-

255 
LibriSpeech 1 second Train:Test::90:10 Reconstruction 

Loss: 0.3, 
Feature Map 

Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, time-
warped, image-

scaled for pixels to 
range between 0-

255 
LibriSpeech 1 second Train:Test::90:10 Reconstruction 

Loss: 0.3, 
Feature Map 

Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.2, 

Feature Map 
Loss: 0.7, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.4, 

Feature Map 
Loss: 0.5, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.5, 

256 × 256, 
cropped/padded, 



 
 

48 

Table 4. Experiments to determine the limitations of GANs on voice conversion. 

Feature Map 
Loss: 0.4, and 
Delta Loss: 0.1 

image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.6, 

Feature Map 
Loss: 0.3, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.7, 

Feature Map 
Loss: 0.2, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 1 second Train:Test::90:10 Reconstruction 
Loss: 0.8, 

Feature Map 
Loss: 0.1, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 2 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Free 0-9 dataset 2 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

512 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

512 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second Train:Test::90:10 Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 



 
 

49 

The experiments in Table 4 are designed to test several constraints on the VoiceGAN 

architecture. They test the ability of VoiceGAN to model long utterances as well as short 

utterances, as short as one word. They test the limitations on how much of the cycle-consistency 

loss (referred to as reconstruction loss here) must be used for training the data, as the cycle-

consistency loss exerts constraints on maintaining the structure and content of the utterances. 

The more the cycle-consistency loss, the more the architecture focuses on keeping the structure 

and content intact, due to which it may fail to successfully produce a voice converted utterance 

of the source speaker to the target. Finding the right amount of cycle-consistency loss is critical. 

The experiments also test the ability of VoiceGAN to generate higher resolution spectrograms. 

These experiments can be used to understand of the limitations of this architecture at the voice 

conversion task.  

The results of these experiments can be further used in determining the ideal condition 

for future data collection.  Based on this analysis, augmented samples of Seneca were produced 

using VoiceGAN to test the hypothesis that GAN generated augmented samples can be used to 

improve robustness of Deep Speech towards Seneca.  

 

 

 

 

 

 

 

 

 

 

 



 
 

50 

7.2.4 StarGAN-VC Experiments 

The experiments around StarGAN-VC are focused around augmenting the speech 

samples. The augmented samples along with the Seneca speech samples will be passed through 

the Automatic Speech Recognition Engine to determine how the augmentation technique helps 

in reducing the word error rate. The experiments that were run are shown in Table 5. 

 

Table 5. StarGAN-VC experiments to determine the augmentation performance. 

  

Dataset Length of 
Utterances 

Data split Epochs 

Seneca + StarGAN-

VC augmented 

Variable Train:Test::90:10 20 

Seneca + All 

augmentation (Pitch 

+ Speed + Noise 

addition + StarGAN-

VC voice converted 

samples) 

Variable Train:Test::90:10 20 



 
 

51 

7.3 Morpheme Error Rate v/s Word Error Rate 

While word error rate is a good performance metric on languages like English, it is not the 

best evaluation metric for languages like Seneca. Seneca is a polysynthetic language, and words 

are made up of prefix – root word – suffix combinations. There are endless combinations of words 

that can be made with this morphological typology. To evaluate the effectiveness of an ASR 

system on Seneca, it is more useful to use Morpheme Error Rate (MER) rather than WER. Each 

word can be divided into its constituent morphemes using tools and methods that can find 

morpheme boundaries. We can use (27) below to find the MER. This is more useful in languages 

like Seneca than WER, as often recognized words are often in error by only a single character, 

yet have most of the morphemes correct.  If we knew the morpheme boundaries, we would 

calculate MER in addition to WER.  The collection of morpheme boundaries and usage of MER 

should be considered in the future. 

 

																																										MER =
𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑜𝑟𝑝ℎ𝑒𝑚𝑒𝑠 																												(27)			 

7.4 Motivation behind chosen augmentation methods 

  There are four augmentation methods used for the experiments: noise addition, pitch 

augmentation, speed augmentation and voice conversion. The naïve noise addition, pitch 

augmentation and speed augmentation were chosen, as several works showed that augmentation 

using these techniques made the ASR models more robust toward languages like Assamese. Voice 

conversion has been gaining visibility in recent years, and there are several deep models that 

successfully perform voice transformation. While not many researchers have experimented with 

voice conversion as a technique for augmentation, it changes the characteristics of the utterance 

without changing the content, and therefore, is a good augmentation technique for ASR 

applications. Due to the Seneca dataset being skewed in the sample size for each speaker, only 



 
 

52 

two speakers had enough data to be used to train these networks, one male and one female. 

Therefore, the voice conversion performed was a male to female voice conversion.   



 
 

53 

Chapter 8 

Results and Inferences 

8.1 Deep Speech 

8.1.1. Data Augmentation 

8.1.1.1 Noise Addition 

The figure below shows a chosen speech file before and after addition of noise. 

Figure 12. The figure on top is the wav file before addition of noise and the figure below is the wav file 

after addition of noise. Noise sample used: White Noise. 

Figure 12 shows the waveform of raw speech, before and after the addition of noise. The 

row on the top shows the waveform before the addition of noise, and the row at the bottom 

shows the waveform after the addition of noise. The noise sample used here for augmentation 

is white noise. Figure 13 shows the waveform of raw speech, before and after the addition of 

noise, where the noise sample is sounds of dishes being washed. The difference in the 

waveforms reflects difference between adding white noise and adding noise that doesn’t affect 

the speech waveform overall, but rather appears as artifacts during the silence periods. 

 

 

 



 
 

54 

 
Figure 13. The figure on top is the wav file before addition of noise and the figure below is the wav file after 

addition of noise. Noise sample used: Sounds of dishes being washed. 

8.1.1.2 Pitch Augmentation  

Figure 14. The figure on top is the wav file before pitch augmentation and the figure below is the wav 

file after pitch augmentation. 

Figures 15 and 16 show the difference in the spectrograms of the signal before and after 

pitch augmentation. It is clear from the figures that after pitch augmentation by half an octave, 

the length of the speech file reduces (speeds up), and the frequencies have shifted upwards 

causing a rise in the pitch.  



 
 

55 

 

Figure 15. Spectrogram of wav file before pitch augmentation. 

Figure 16. Spectrogram of wav file after pitch augmentation. 



 
 

56 

8.1.1.3 Speed Augmentation 

Figure 17. The figure on top is the wav file before augmentation, the figure in the middle is the wav file 

after pitch augmentation and the figure on the bottom is the wav file after speed augmentation. 

Figure 17 shows the speech waveform with pitch augmentation and speed augmentation, 

where both look the same, however, the spectrograms reflect the difference in the two. The 

spectrogram of the speed augmented sample doesn’t have a shift in the frequency domain, while 

the spectrogram of the pitch augmented sample does, even though the length of the two files 

change proportionally. 

 

 

 

 

 



 
 

57 

Figure 18. Spectrogram of wav file before augmentation. 

Figure 19. Spectrogram of wav file after speed augmentation. 

 



 
 

58 

8.1.2 Deep Speech Results and Inference 

Experiments Augmentation Parameters Average WER 

Seneca only No augmentation – 315 

minutes of Seneca only data. 

No transfer learning on 

pretrained English model. 

95.03% 

No augmentation – transfer 

learned on pretrained English 

model, trained on Mozilla’s 

common voice dataset. 315 

minutes of Seneca only data. 

70.43% 

All augmentation (with 

model transfer learned 

from a pretrained English 

model, trained on Mozilla’s 

common voice dataset) 

Augment-15: 315 minutes of 

Seneca only data plus 15 

augments/sample (of each 

sample), randomly sampled 

from the set of augmentation 

methods, and associated 

variables available. 

68.33% 

Augment-25: 315 minutes of 

Seneca only data plus 25 

augments/sample (of each 

sample), randomly sampled 

from the set of augmentation 

methods, and associated 

variables available. 

65.84% 



 
 

59 

Noise only Augmentation 

(with model transfer 

learned from a pretrained 

English model, trained on 

Mozilla’s common voice 

dataset) 

Augment-10: 315 minutes of 

Seneca only data plus 10 

augments/sample (of each 

sample), randomly sampled 

from the set of associated 

variables available. 

95.32% 

Pitch only Augmentation 

(with model transfer 

learned from a pretrained 

English model, trained on 

Mozilla’s common voice 

dataset) 

Augment-10: 315 minutes of 

Seneca only data plus 10 

augments/sample (of each 

sample), randomly sampled 

from the set of associated 

variables available. 

73.83% 

Speed only Augmentation 

(with model transfer 

learned from a pretrained 

English model, trained on 

Mozilla’s common voice 

dataset) 

Augment-10: 315 minutes of 

Seneca only data plus 10 

augments/sample (of each 

sample), randomly sampled 

from the set of associated 

variables available. 

66.65% 

Table 6. Deep Speech results. 

Table 6 shows the results of Deep Speech experiments. Training the Deep Speech model 

on just the Seneca data end-to-end, resulted in a Word Error Rate (WER) of 95.03%. The dataset 

being small, is not enough for the model to learn all the phoneme to character mappings with a 

high level of confidence. The model is left guessing at times, causing the accuracy to suffer. 

Training on a pretrained English model helps the model improve its ability to make predictions 

with higher confidence. The large English dataset provides enough data for the model to learn 

the mappings between phones and characters and transfer learning on such a model fine-tunes 



 
 

60 

these mappings to the Seneca language, improving the accuracy as well. Another way to 

improve a model’s robustness towards a small dataset is data augmentation. As seen in Table 6, 

data augmentation improves the WER. Adding 15 augments per sample improved the WER 

from 70.43% to 68.33%. Furthermore, adding 25 augments per sample improved the WER to 

65.84%. This demonstrates that adding more augments per sample improves the robustness of 

the model towards a small dataset.  

Further experimentation done to determine which augmentation method improved the 

model the most revealed that speed augmentation improved performance the most. Noise 

augmentation reduced the performance over the baseline. White noise could have contributed 

to the loss in performance, as it distorts the speech sample to a large extent where it becomes 

unintelligible.   

8.2 Griffin-Lim Algorithm experiments 

The Griffin-Lim algorithm aids in the reconstruction of raw audio samples from 

spectrograms. Our aim was to evaluate if the Griffin-Lim algorithm is effective in this 

reconstruction process, and to find out if the utterances are intelligible after the reconstruction. 

The results are shown using the spectrograms below.  

 

 

 

 

 

Figure 20a. Spectrogram of the original utterance in the LibriSpeech dataset. 



 
 

61 

 

 

 

 

 

 

Figure 20b. Spectrogram of the Griffin-Lim reconstructed utterance in the LibriSpeech dataset. 

Figures 20a. and 20b. show the result of a wavfile reconstruction using the Griffin-Lim 

algorithm. It can be seen that the algorithm produces a good reconstruction of the sample. This 

provides some evidence that the Griffin-Lim algorithm is a good method of wave reconstruction 

from the magnitude spectrum alone and can be used to reconstruct samples after the GAN 

performs voice transformation. 

 

8.3 VoiceGAN results 

The results and observations of all the VoiceGAN experiments have been summarized 

in the below sections using images of spectrograms and their reconstructions for results and 

tables for observations. A final section on inference summarizes the observations into the 

effectiveness of VoiceGAN to produce intelligible voice transformation samples.  

 

 

 



 
 

62 

8.3.1 LibriSpeech results and observations 

 Table 7. VoiceGAN results with LibriSpeech. 

 

  

Dataset Length of 
Utterances 

Model 
Specifications 

Spectrogram 
Specifications 

Observations 

LibriSpeech 20 seconds Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, time-
warped, image-
scaled for pixels 
to range between 

0-255 

A common observation 
was that, the model’s 
output was muffled and 
unintelligible data. This 
was probably due to the 
following aspects: 
• Large dataset 
• Too many words, and 

too few repetitions of 
each word. 

• Cropping samples to 
shorter utterances 
reduces the 
intelligibility of each 
utterance. 

o Each sample 
corresponds to 
a phoneme 
like utterance. 

 

LibriSpeech 4-5 seconds Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, time-
warped, image-
scaled for pixels 
to range between 

0-255 
LibriSpeech 1 second Reconstruction 

Loss: 0.3, 
Feature Map 

Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, time-
warped, image-
scaled for pixels 
to range between 

0-255 
LibriSpeech 1 second Reconstruction 

Loss: 0.3, 
Feature Map 

Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 



 
 

63 

8.3.2 Free 0-9 dataset results and observation 

Dataset Length of 
Utterances 

Model 
Specifications 

Spectrogram 
Specifications 

Observations 

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Best model 
Produces fairly 
intelligible 
utterances, and 
also performs 
significant voice 
transformation. 

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.2, 

Feature Map 
Loss: 0.7, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

The 
reconstructions of 
the voice 
transformed 
samples are poor.  

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.4, 

Feature Map 
Loss: 0.5, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Produces fairly 
intelligible 
utterances, and 
also performs 
significant voice 
transformation. 

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.5, 

Feature Map 
Loss: 0.4, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Produces fairly 
intelligible 
utterances, and 
also performs 
significant voice 
transformation. 

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.6, 

Feature Map 
Loss: 0.3, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Produces fairly 
intelligible 
utterances, and 
also performs 
significant voice 
transformation. 

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.7, 

Feature Map 
Loss: 0.2, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Produces fairly 
intelligible 
utterances, and 
also performs 
significant voice 
transformation. 

Free 0-9 
dataset 

1 second Reconstruction 
Loss: 0.8, 

Feature Map 
Loss: 0.1, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

The 
reconstructions of 
the voice 
transformed 
samples are poor.  



 
 

64 

Table 8. VoiceGAN results with Free 0-9 dataset. 

  

Free 0-9 
dataset 

2 second Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

The 
reconstructions of 
the voice 
transformed 
samples are poor.  

Free 0-9 
dataset 

2 second Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

512 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

The 
reconstructions of 
the voice 
transformed 
samples are poor.  



 
 

65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Best Model results  a) Spectrogram of original utterance of speaker A; b) Spectrogram of original 
utterance of speaker B; c) Spectrogram of transformed utterance of speaker A to B; d) Spectrogram of transformed 

utterance of speaker B to A; e) Spectrogram of transformed utterance of speaker AB to ABA; f) Spectrogram of 
transformed utterance of speaker BA to BAB. 

 
 



 
 

66 

The figures shown above are the results of voice transformation and reconstruction using 

the VoiceGAN algorithm. The figures are a direct reproduction of the output of the GAN, and 

therefore, they do not contain labels for the axes. The x-axis in figure 21 is time and y-axis is 

frequency. Figure 21a and 21b are the spectrogram of the original utterance of speaker A and B 

respectively. In these figures, the formants are clearly observable as the brighter yellow patches. 

These formants are one of the major distinguishing factors between speakers. Figures 21c and 

21d are the spectrograms of the utterances after voice transformation. Figure 21c is the 

spectrogram of the voice transformed utterance from Speaker B to Speaker A, and Figure 21d 

is the spectrogram of the voice transformed utterance from Speaker A to Speaker B. VoiceGAN 

is able to model the general sense of a spectrogram, but is not able to model the formants clearly, 

and also creates artifacts of its own, leading to a noisy utterance. A consequence of this is that, 

if the input samples are noisy, then the noise in the output samples is further amplified as 

VoiceGAN adds artifacts to it, which appears as noise in the time domain. The best model was 

able to produce an intelligible, albeit, a noisy sample. Figure 21e and 21f are the spectrograms 

of reconstructed wavfiles. In these figures as well, we observe that VoiceGAN is not able to 

model formants and it creates artifacts which interfere as noise in the reconstructed sample.  

  



 
 

67 

8.3.3 TSRC results and observations 

Table 9. VoiceGAN results with TSRC. 

 

 

 

 

 

 

 

 

 

 

Dataset Length of 
Utterances 

Model 
Specifications 

Spectrogram 
Specifications 

Observations 

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

These 
experiments were 
performed on 
short utterances 
of the word 
‘right’, uttered by 
approximately 
2000 speakers, 
with a skewed 
distribution of 
male and female 
speakers. The 
utterances were 
however noisy 
and this led to 
interference in the 
reconstructed 
samples. The 
output samples 
were poor and 
unintelligible.  

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

512 × 512, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

Tensorflow 
Speech 

Recognition 
Challenge 

dataset (TSRC) 

1 second 
Shorter 

dataset of 
clean words 

Reconstruction 
Loss: 0.3, 

Feature Map 
Loss: 0.6, and 
Delta Loss: 0.1 

256 × 256, 
cropped/padded, 
image-scaled for 
pixels to range 
between 0-255 

<TBD> 



 
 

68 

8.3.4 StarGAN-VC augmentation results with DeepSpeech 

 

Table 10. StarGAN-VC augmentation results with DeepSpeech on the Seneca Dataset. 

Table 9. shows the results for DeepSpeech experiments with voice converted samples 

from the StarGAN-VC voice conversion network. The experiments conducted were designed to 

first determine if augmenting samples with StarGAN-VC helped in reducing WER from the 

baseline, and then if including voice conversion as an augmentation methodology in the pool of 

other augmentation methods proved useful in reducing the word error rate (WER). The WER is 

Experiments Augmentation 
Parameters 

Average WER 

Seneca + 

StarGAN-VC 

augmented 

Augment-25: 315 

minutes of Seneca 

only data plus 25 

augments/sample (of 

each sample), 

StarGAN-VC 

augmented data 

60.03%  

Seneca + All 

augmentation 

(Pitch + Speed + 

Noise addition + 

StarGAN-VC voice 

converted samples) 

Augment-25: 315 

minutes of Seneca 

only data plus 25 

augments/sample (of 

each sample), 

randomly sampled 

from the set of 

augmentation 

methods, and 

associated variables 

available. 

48.23% 



 
 

69 

lower with more augmentation samples from the voice conversion network, as well as the with 

other augmentation methods. This is probably because StarGAN-VC produces high quality 

converted samples of the original speech sample (without the need for parallel data). This 

automatically adds more samples in the dataset for the model to learn from.  

 8.3.5 Inference 

Some deductions made from the above experiments are as follows: 

1. When the lexicon of the dataset is large, the frequency of utterances of each word in the 

lexicon needs to be large as well, as the model needs to learn the spectrogram 

representations of each word in the sample set. 

2. GANs require datasets to have less variation within a class, and higher variation between 

classes, to be able to perform style transfer satisfactorily. The datasets that we were 

experimenting with had higher intra-class variation and lower inter-class variation. 

3. The quality of the input samples effects the quality of output samples. A noisy input sample 

might produce a noisy output sample, as a GAN trained on images cannot differentiate 

between noise and speech in spectrograms.  

4. The sampling frequency plays an important role as well when representing speech as 

spectrograms to GANs. It was observed that the GAN performed better with 16 kHz 

samples as opposed to 8 kHz samples.  

5. Newer models like StarGAN-VC which use CycleGAN as their base network perform 

fairly well on speech samples of varying size.  In addition, StarGAN-VC does not require 

parallel data from both speakers to be able to convert between samples. This is particularly 

important, for if we had to provide parallel data, then this form of augmentation would be 

difficult to increase the data size.  

 

 

 



 
 

70 

Chapter 9  

Conclusion and Future Work 

9.1 Conclusion 

The aim of this thesis was to examine the effect of different augmentation techniques and 

to examine the effectiveness of GANs in voice transformation and its limitations. We 

hypothesized that training the ASR system end-to-end on just Seneca data would not perform very 

well, as the dataset size is small and the representation of each word in the data may not be enough 

for the model to learn the phone-to-character mapping. However, when transfer learned from a 

model that has been previously trained on the English dataset, the ASR should be more robust 

towards Seneca, as many of the phones which make up Seneca are similar to those used in English. 

We also hypothesized that the conditions for GANs to be able to successfully generate intelligible 

voice conversions is stringent. The inter-domain variation must be large, and the intra-domain 

variation must be limited, i.e., the samples that belong within a domain must have small variance, 

and the samples belonging to different domains must have larger variance.  

The results that were observed in our experiments show that augmentation helps in 

improving the robustness of a model toward small datasets. The augmented datasets showed lower 

error rates as opposed to those datasets that contained purely Seneca data. Training the Deep 

Speech model on just the Seneca data end-to-end, resulted in a Word Error Rate (WER) of 

95.03%. The dataset being small, is not enough for the model to learn all the phoneme to 

character mappings with a high level of confidence. The model is left guessing at times, causing 

the accuracy to suffer. Training on a pretrained English model helps the model improve its 

ability to make predictions with higher confidence, as the large English dataset provides enough 

data for the model to learn the mappings between phones and characters and transfer learning 



 
 

71 

on such a model fine-tunes these mappings to the Seneca language. Another way to improve a 

model’s robustness towards a small dataset is data augmentation. Adding 15 augments per 

sample improved the WER from 70.43% to 68.33%. Furthermore, adding 25 augments per 

sample improved the WER to 65.84%. This demonstrates that adding more augments per sample 

improves the robustness of the model towards a small dataset.  

VoiceGAN is one of many GANs present today that perform speech style transfer, i.e., 

voice transformation from one speaker to another. While experimenting with VoiceGAN as our 

base style transfer GAN we observed that the size of the lexicon and the frequency of words 

occurring in the dataset are directly proportional. VoiceGAN does not perform well with 

datasets with larger lexicons and with longer utterances. Our model performed the best when 

we experimented with an utterance length of 1 sec with zero padding on either side. The zero-

padding was found to create an isolation of sort to the utterances, aiding the GAN in creating 

clearer utterances, as opposed to when the utterances were scaled to be of the same length. We 

found that our hypothesis that GANs require larger inter-class variation and lesser intra-class 

variation stood true. With single utterance datasets, the model performed better on dataset with 

one male and one female speaker (TSRC) as opposed both male speakers (0-9 Free dataset). 

The quality of the input sample plays an important role in GAN training, as a noisy input sample 

creates interference with the generated output samples as well.  

  



 
 

72 

9.2 Future Work 

While some areas of exploration were looked into in this thesis, some of the future 

extensions into this work include: 

• Transfer learn a deep speech recognition model using a language that is lexically closer 

to Seneca than English. While English shares a few consonants and vowels with Seneca, 

there are various vowels and consonants in Seneca, such as ö, ä and ë that don’t exist in 

the English language. Another difference between the two languages is the 

morphological typologies. Seneca is a polysynthetic language, while English is an 

analytical language. There are various languages, such as Arabic and the other Iroquoian 

languages, which are closer to Seneca in terms of morphological typology and 

phonology, which have larger datasets than Seneca. Pre-training models on these 

languages, and then fine-tuning them on Seneca, will help make the models far more 

robust, as the model learns similar phoneme-character mappings to Seneca.  

• Find if multi-task learning systems, learnt on similar languages (some large datasets and 

some small datasets), can improve model robustness towards resource constrained 

languages. 

• Find if semi-supervised learning can improve model robustness towards resource 

constrained languages.  

• Find how many augmentations is too many, and if the model breaks down beyond a 

certain number of augmentations per sample. 

  



 
 

73 

References 
 

[1]  I. Goodfellow, J. Pouget-Abadie, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. 

Bengio, "Generative Adversarial Networks," in NIPS, Montreal, Canada, 2014.  

[2]  T. Karras, T. Aila, S. Laine and J. Lehtinen, "Progressive growing of GANs for improved 

quality, stability and variation," in ICLR, New Orleans, 2018.  

[3]  A. Radford, L. Metz and S. Chintala, "Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks," in ICLR, San Juan, Puerto Rico, 2016.  

[4]  C.-C. C. a. T. S. a. Y. W. a. R. P. a. P. N. a. Z. C. a. A. K. a. R. J. W. a. K. R. a. K. G. a. N. 

J. a. B. L. a. J. C. a. M. Bacchiani, "State-of-the-art Speech Recognition With Sequence-to-

Sequence Models," in ICASSP, 2018.  

[5]  T.-S. N. J. N. M. M. A. W. Ngoc-Quan Pham, "Very Deep Self-Attention Networks for 

End-to-End Speech Recognition," arXiv preprint arXiv:1904.13377, 2019.  

[6]  M.-Y. H. X. L. Yangyang Shi, "End-to-end Speech Recognition Using a High Rank 

LSTM-CTC Based Model," in ICASSP 2019-2019 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), 2019.  

[7]  W. C. M. N. Sara Sabour, "Optimal completion distillation for sequence learning," arXiv 

preprint arXiv:1810.01398, 2018.  

[8]  K. I. R. S. ̈. H. N. Albert Zeyer, "Improved training of end-to-end attention models for 

speech recognition," arXiv preprint arXiv:1805.03294, 2018.  

[9]  A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, 

S. Sengupta, A. Coates and A. Y. Ng, "Deep Speech: Scaling up end-to-end speech 

recognition," arXiv preprint arXiv:1412.5567, 17 December 2014.  



 
 

74 

[10]  N. Jaitly and G. Hinton, "Vocal tract length perturbation (VTLP) improves speech 

recognition," in ICML Workshop on Deep Learning for Audio, Speech and Language, 

Altanta, GA, 2013 Jun 16.  

[11]  X. Cui, V. Goel and B. Kingsbury, "Data augmentation for deep neural network acoustic 

modeling," IEEE/ACM Transactions on Audio, Speech, and Language Processing, pp. 

1469-1477, 23 September 2015.  

[12]  A. Ragni, K. Knill, S. Rath and M. Gales, "Data augmentation for low resource languages," 

in Fifteenth Annual Conference of the International Speech Communication Association, 

Singapore, 2014.  

[13]  N. Kanda, R. Takeda and Y. Obuchi, "Elastic spectral distortion for low resource speech 

recognition with deep neural networks.," Automatic Speech Recognition and 

Understanding, pp. 309-314, 8 December 2013.  

[14]  T. P. V. Ko, D. Povey and S. Khudanpur, "Audio augmentation for speech recognition," in 

Sixteenth Annual Conference of the International Speech Communication Association, 

Dresden, Germany, 2015.  

[15]  E. Helander and J. Nurminen, "On the importance of pure prosody in perception of speaker 

identity," in Interspeech, Antwerp, Belgium, 2007.  

[16]  A. J. D. a. K. S. Brock, "Large scale gan training for high fidelity natural image synthesis.," 

in ICLR, 2019.  

[17]  Y. Gao, R. Singh and B. Raj, "Voice Impersonation using Generative Adversarial 

Networks," in International Conference on Acoustics, Speech, and Signal Processing, 

Calgary, Alberta, 2018.  

[18]  J.-Y. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired Image-to-Image Translation using 

Cycle-Consistent Adversarial Networks," in International Conference on Computer Vision, 

Venica, Italy, 2017.  



 
 

75 

[19]  E. Hosseini-Asl, Y. Zhou, C. Xiong and R. Socher, "A Multi-Discriminator CycleGAN for 

Unsupervised Non-Parallel Speech Domain Adaptation," in Interspeech, Hyderabad, India, 

2018.  

[20]  T. Kaneko and H. Kameoka, "Parallel-Data-Free Voice Conversion Using Cycle-

Consistent Adversarial Networks," CoRR, vol. abs/1711.11293., 2017.  

[21]  C. Donahue, J. McAuley and M. Puckette, "Adversarial Audio Synthesis," in ICLR, New 

Orleans, 2018.  

[22]  S. Pascual, A. Bonafonte and J. Serra, "SEGAN: Speech Enhancement Generative 

Adversarial Network," in Interspeech, Stockholm, Sweden, 2017.  

[23]  L. Besacier, E. Barnard, A. Karpov and T. Schultz, "Automatic speech recognition for 

under resourced languages: A Survey," Speech Communication, pp. 85-100, 2014 January.  

[24]  D. Jurafsky and J. Martin, Speech and language processing, London: Pearson, 2014.  

[25]  M. C. H. K. J. K. L. J. K. Taeksoo Kim, "Learning to Discover Cross-Domain Relations 

with Generative Adversarial Network," in International Conference for Machine Learning, 

Sydney, 2017.  

[26]  H. K. T. T. K. &. H. N. Kameoka, "STARGAN-VC: NON-PARALLEL MANY-TO-

MANY VOICE CONVERSION WITH STAR GENERATIVE ADVERSARIAL 

NETWORKS," in IEEE Spoken Language Technologies, 2018.  

[27]  P. J.-Y. Z. T. Z. a. A. A. E. Isola, "Image-to-image translation with conditional adversarial 

networks.," in IEEE conference on Computer Vision and Pattern Recognition, 2016.  

[28]  T. a. H. K. Kaneko, ""Cyclegan-vc: Non-parallel voice conversion using cycle-consistent 

adversarial networks."," in 2018 26th European Signal Processing Conference 

(EUSIPCO). IEEE, 2018., 2018.  

[29]  L. Rabiner and R. Schafer, Digitial processing of speech signals, New Jersey: Prentice-hall, 

1978.  



 
 

76 

[30]  D. Griffin and J. Lim, "Signal estimation from modified short-time Fourier transform," 

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 2, pp. 236-

243, 1984.  

[31]  P. Boersma and D. Weenink, "PRAAT: Doing phonetics by computer (Version 5.3.51)," 

January 2007. [Online].  

[32]  Z. Jackson, "Free spoken digits dataset," Github, Jerusalem, 2018. 

[33]  V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "LibriSpeech: An ASR corpus based 

on public domain audio books," in ICASSP, Brisbane, Australia, 2015.  

[34]  Kaggle, "Tensorflow speech recognition challenge dataset," Kaggle, 2017. 

[35]  J. Lorenzo-Trueba, J. Yamagishi, T. Toda, D. Saito, F. Villavicencio, T. Kinnunen and Z. 

Ling, "The Voice Conversion Challenge 2018: database and results," The Centre for 

Speech Technology Research, The University of Edinburgh, UK, 2018. 

[36]  R. Kneser and H. Ney, "Improved backing-off for m-gram language modeling," in 

International Conference of Acoustics, Speech, a nd Signal Processing, Detroit Michigan, 

1995.  

[37]  K. Heafield, I. Pouzyrevsky, J. Clark and P. Koehn, "Scalable modified Kneser-Ney 

language model estimation," 51st Annual Meeting of the Association for Computational 

Linguistics, vol. 2, pp. 690-696, 2013.  

 
 

 


	Improving Automatic Speech Recognition on Endangered Languages
	Recommended Citation

	Microsoft Word - KruthikaSimha_ThesisDoc.docx

