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Abstract

Sclerotinia sclerotiorum, or white mold, is a fungus that infects the

flowers of snap bean plants and causes a subsequent reduction in snap bean

pods, which adversely impacts yield. Timing the application of white mold

fungicide thus is essential to preventing the disease, and is most effective when

applied during the flowering stage. However, most of the flowers are located

beneath the canopy, i.e., hidden by foliage, which makes spectral detection of

flowering via the leaf/canopy spectra paramount. The overarching objectives

of this research therefore are to i) identify spectral signatures for the onset of

flowering to optimally time the application of fungicide, ii) investigate spectral

characteristics prior to white mold onset in snap beans, and iii) eventually link

the location of white mold with biophysical (spectral and structural) metrics

to create a spatially-explicit probabilistic risk model for the appearance of

white mold in snap bean fields. Spectral angle mapper (SAM) and ratio and

thresholding (RT) were used to detect pure vegetation pixels, toward creating

the flowering detection models. The pure pixels then were used with a sin-

gle feature logistic regression (SFLR) to identify wavelengths, spectral ratio

indices, and normalized difference indices that best separated the flowering

classes. Features with the largest c-index were used to train a support vector

machine (SVM) and were then applied to imagery from a different growing
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season to evaluate model robustness. This research found that single wave-

length features in the red (600-700 nm, with a peak at 680 nm) discriminated

and predicted flowering up to two weeks before visible flowering occurred,

with c-index values above 90%. Structural metrics, such as leaf area index

(LAI), have been proven to correlate with white mold incidence, so linear and

multivariate regressions were used to ingest spatial- and spectral-related fea-

tures, derived from the imaging spectroscopy data, and predict ground truth

LAI data. These features included raw spectral reflectance values, pixel den-

sity, normalized difference index (NDVI), green normalized difference index

(GNDVI), and the enhanced vegetation index (EVI). Indicators in the green

and red-red edge portion of the spectrum exhibited coefficients of determina-

tion (CoD) greater than 0.7. The spatial and spectral indices had CoDs and

root mean squared errors (RMSE) ranging from 0.422-0.565 and 0.817-0.942,

respectively. The top 28 features were used in a multivariate regression to

predict LAI and the results showed a maximum adjusted CoD of 0.849, with

an RMSE of 0.390. Future work should include raw reflectance values, LAI

correlated spectral features, as well as auxiliary in-field measurements (degree

days, average rainfall, average temperature) in the creation of a white mold

risk model.
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Chapter 1

Introduction

Snap beans represent the fifth largest crop in the United States in terms

of acres planted [3], and New York State is the second largest producer of fresh

market and processing snap beans [4]. However, like many board-acre crops,

snap beans are susceptible to a variety of biological stressors, with the most

detrimental disease being the fungus Sclerotinia sclerotiorum, also known as

white mold. White mold infects the flowers of the snap beans, thereby caus-

ing premature pod abscission and contamination from mycelia, which has a

significant impact on crop yield. In fact, Shah et al. (2002) and McCreary

et al. (2016) found snap beans to be among the most susceptible to white

mold among the bean varieties [5][6]. White mold control is centered around

protecting the flowers of the snap beans, since the white mold spores en-

ter the plants via the open flowers [5][6]. Some options for control include

widening crop row spacing and decreasing plant populations (density), the use

of nitrogen fertilized irrigation, and selection of upright snap bean varieties.

However, when used alone, these methods have proven to be insufficient in

preventing infection and ”method intensity/level” are inversely proportional

to yield [7][8][9][10][11]. Other pro-active methods for white mold control in-
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clude the application of prophylactic fungicide when 10% of the individual

bean plants have at least one flower; however, research by Lehner (2017) cites

sub-optimal timing of the fungicide as the leading cause of white mold con-

tamination [12]. To this end, select research has been devoted to create risk

models for bean crops and associated fungal diseases, focused mostly on more

advanced statistical techniques or modeling approaches.

Multivariate analysis, for example, has been used to create white mold

risk models for soy and snap bean fields [13][14]. Environmental factors, such

as consecutive days with rain and average temperature, have shown strong

correlations with white mold severity [14]. McDonald and Boland (2004) dis-

cussed a New York-based disease forecasting system for white mold in snap

beans, based on canopy density, soil moisture, and precipitation [15]. Logis-

tic Regression [16] also has been applied to predict risk of white mold in soy

bean [17], grey leaf spot [18], and Stewart’s wilt on corn [19]. For example,

Harikrishnan and del Ŕıo (2008) used climate variables and logistic regression

modeling to predict white mold risk on dry bean in North Dakota [20]. The

authors obtained a true positive ratio and accuracy of 0.79 and 0.91, respec-

tively, for white mold predicted-observed incidences. However, environmental

models like the above-mentioned are constrained heavily by the deployment

of accurate in-field weather monitoring equipment [21], and the outputs of the

risk models are on a per-field basis. Our intent thus was to develop spatially-

explicit, remote sensing spectral-based indicators of white mold risk that could
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be incorporated in such risk models, toward wall-to-wall decision support infor-

mation products, which would enable judicious and cost-effective white mold

management strategies. The first step in such a remote sensing approach en-

tails accurate detection of the flowering bean plants.

The flowers of the snap beans are primarily located beneath the canopy

of the plant; therefore, spectral detection of snap bean flowering at the canopy

level is of primary interest. Research by Sankaran et al. (2010) and Mahlein

(2013) concluded that spectroscopy-based disease signatures exist, with the

near-infrared (NIR) spectral regions being particularly useful [22][23]. Mul-

tivariate analysis and machine learning techniques have been used to classify

diseased plants before using spectral data sets. Examples include Rumpf et

al. (2010) [24], who used ground-based spectroradiometers and support vec-

tor machines (SVM) to classify Cercospora leaf spot, powdery mildew, and

leaf rust on sugar beets with accuracies that ranged from 85.7-96.5%, and De-

lalieux et al. (2007), who used a single-feature logistic regression (SFLR) over

a wavelength range from 350-2500 nm to detect biotic stress (Venturia inae-

qualis) in apple trees. Authors of the latter study found c-index values greater

than 0.8 when classifying diseased plants, at stages well before the infection

became visually identifiable (one week after infection). Early work by Hughes

et al. [2] used a combination of SFLR and SVM to create probability maps

for snap bean flowering. This research thus aims to extend past work on snap

bean flowering detection towards prediction.
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The second step toward development of a comprehensive white risk

model entails an assessment of canopy structure, i) via spectral features that

are correlated with leaf area index (LAI) or ii) direct assessment of plant struc-

ture, e.g., structure-from-motion (SfM) and light detection and ranging (lidar)

approaches. Here we focus on the first approach, i.e., spectral-based assess-

ment of canopy structure and complexity, with a number of previous studies

that have shown the potential of such an approach. For example, Durbha et

al. (2007) used data from the multi-angle imaging spectroradiometer (MISR)

instrument, along with ground truth LAI measurements of wheat, to establish

regressions between LAI (dependent variable) and the NIR and red bands. R2

values ranged from 0.83-0.96, with root mean square errors (RMSE) between

0.20-0.99 [25]. Examples in forest ecosystems abound, with Berterretche et

al. (2005) using ordinary least-squares regression to investigate relationships

between reflectance values from Landsat ETM+ data and ground truth LAI

from boreal forests. Results showed R2 values of 0.52 and 0.47 for bands 5

(1.55-1.75 µm) and 7 (2.08-2.35 µm), respectively [26]. Bands 3 and 4 (0.63-

0.69 µm and 0.76-0.90 µm, respectively) from Landsat-5 TM data were used

by Chen et al. (1996) to establish linear regressions between normalized differ-

ence vegetation index (NDVI) and ground-truth LAI for boreal conifer forests

[27]. Results yielded R2 values of 0.5 and 0.42 for late spring and mid-summer

data, respectively. Research by Colombo et al. (2003), for a more expansive

set of crops, used satellite data from IKONOS to find regressions between

spectral vegetation indices and LAI for different types of vegetation (forests,
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plantations, vineyards, soy beans, and corn). R2 values varied between 0.6-0.8

for the individual vegetation types and 0.33 across all types of vegetation [28].

This result by Colombo et al. (2003) lends itself to the idea that spectral-to-

LAI regressions could be crop specific. The aim of our research therefore is

to use linear and multivariate regression techniques to find relationships be-

tween raw reflectance values, spectral vegetation indices, and spatial features

to estimate LAI in snap beans towards a spatially-explicit mold risk model.

The specific, overarching objectives of this research were to i) identify

spectral signatures for the onset of flowering to optimally time the application

of fungicide, ii) investigate spectral characteristics prior to white mold onset in

snap beans, and iii) link the location of white mold with biophysical (spectral

and structural) metrics to eventually create a spatially-explicit probabilistic

risk model for the appearance of white mold in snap bean fields. The next

chapter (Chapter 2) focuses on the discrimination and prediction of flowering

in snap beans, as well as a first step toward relating spectral features to struc-

tural metrics, such as LAI. The study conclusions are presented in Chapter

3. Each chapter will reference the past studies, described above, in order to

contextualize our results. We hypothesized that detection of flowering occur-

rence will be possible using a select, downsampled set of spectral variables,

even at the plant canopy-level, and also that white mold infection may cause

distinct physiological impacts in impacted plants, with such impacts allowing

for discrimination across visible and NIR wavelengths. If successful, such a
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flower detection algorithm, canopy structure assessment, and eventual mold

prediction approach could contribute to more judicious application of preven-

tative measures, resulting in reduced environmental impacts, increased yields,

and optimized profits at the farm-level.
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Chapter 2

Toward development of a UAS-based white

mold risk model for snap beans: Flowering

detection/prediction and plant canopy

structure assessment

Snap beans are susceptible to a detrimental fungus called Sclerotinia

sclerotiorum, or white mold, which infects the flowers of the snap beans [5][6].

Disease prevention is centered around protecting the flowers of the snap beans

while the plants are flowering, and ensuring that the within-plant incubation

environment is not conducive to mold growth. Prevention methods, related to

manipulation of plant canopy structure, such as widening crop row spacing,

decreasing plant density, using nitrogen fertilized irrigation, and the selection

of upright snap bean varieties, have been found to be inadequate in disease

prevention and reduce crop yield [7][8][9][10][11]. Other methods for white

mold control include the use of fungicide. White mold can infect the flowers of

snap beans within four days of flowering; therefore, research by Lehner (2017)

cites sub-optimal timing of the fungicide application as the leading cause of

white mold [12]. To this end, creating/implementing methods to predict and

create risk models for disease (white mold in particular) is focused on using
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statistical, multivariate, and machine learning based techniques.

Some research utilizes multivariate analysis to create white mold risk

models for soy and snap bean fields using environmental factors, such as con-

secutive days with rain, average temperature, canopy density, and soil mois-

ture[13][14][15]. Linear models such as logistic regression [16] also has been

implemented to create predictive white mold models for soy bean [17], grey

leaf spot [18], and Stewart’s wilt on corn [19]. Research by Harikrishnan and

del Ŕıo (2008), for example, used a combination of climate variables and logis-

tic regression to predict incidence of white mold on dry bean in North Dakota

[20]. A true positive ratio and accuracy of 0.79 and 0.91, respectively, was

obtained for white mold predicted-observed incidences by the authors. These

results, while promising, are restricted by the need for accurate in-field weather

monitoring systems [21], and the predictive results from the models are on a

per-field basis. Our intention was to create a remote sensing spectral-based

solution for white mold risk that is spatially-explicit.

Research in spectroscopy-based remote sensing of vegetation shows that

disease signatures exist, with the near-infrared (NIR) spectral regions being

particularly useful [22][23]. Many researchers use ground based spectrora-

diometers to collect spectroscopy data for disease prediction. Such an example

is work performed by Rumpf et al. (2010) who used support vector machines

(SVM) to classify Cercospora leaf spot, powdery mildew, and leaf rust on sugar

beets with accuracies that ranged from 85.7-96.5% [24]. Specifically, research
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by Delalieux et al. (2007), who used a single feature logistic regression (SFLR)

over a wavelength range from 350-2500 nm to detect biotic stress (Venturia in-

aequalis) in apple trees is of particular interest for this work. Delalieux found

c-index values greater than 0.8 when predicting diseased plants a week after

infection, but before physical sign of infection were visible.

Research has also shown that there is a strong correlation between LAI

and white mold incidence [29]. Estimating bio-metrics related to vegetation

from spectral data is a proven technique [30][31][32]. Rouse et al. have shown

correlations greater than 89% between spectral features and moisture con-

tent, percent green estimate, and green biomass. Research centered around

the spectral estimation of LAI specifically utilizes imagery from space-borne

spectroradiometers. Research by Durbha et al. (2007) used data from the

multi-angle imaging spectroradiometer (MISR) instrument along with ground

truth LAI measurements of wheat to find relationships between NIR and red

bands with LAI. R2 values ranged from 0.83-0.96 with root mean squared

errors (RMSE) between 0.20-0.99 [25]. Landsat ETM+ data was used by

Berterretche et al. (2005) along with ground truth LAI from boreal forests

to find an ordinary least squares regression to go from spectral to LAI space.

Results showed R2 values of 0.52 and 0.47 for bands 5 (1.55-1.75 µm) and 7

(2.08-2.35 µm), respectively [26]. Landsat-5 TM data (bands 3 and 4; 0.63-

0.69 µm and 0.76-0.90 µm, respectively) was used by Chen et al. (1996) to

find linear regressions between normalized difference vegetation index (NDVI)
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and ground truth LAI for boreal conifer forests [27]. R2 values of 0.5 and 0.42

were achieved for late spring and mid-summer data, respectively. Satellite

data from IKONOS was used by Colombo et al. (2003) to find regressions

between spectral vegetation indices and LAI for different types of vegetation

(forests, plantations, vineyards, soy beans, and corn). Results for R2 values

varied between 0.6-0.8 for individual types of vegetation and 0.33 across com-

bined vegetation types [28]. Colombo et al. concluded that spectral-to-LAI

regressions should be crop specific. With that in mind, our research uses lin-

ear and multivariate regression techniques to find relationships between raw

reflectance values, spectral vegetation indices, and spatial features to estimate

LAI in snap beans towards a spatially-explicit mold risk model.

The methods in this chapter extends earlier work by Hughes et al.

[2] and uses a combination of SFLR, linear and multivariate regressions, and

SVM to create discriminating and predictive probability maps for snap bean

flowering at the canopy level as well as spectral estimates for LAI for the

eventual inclusion in a white mold risk model.

2.1 Data Collection

A DJI Matrice-600 UAS, mounted with a Headwall Photonics Nano

imaging spectrometer (272 bands; 400-1000 nm; FWHM slit image of 6 nm),

was used to collect the imaging spectroscopy data of the snap beans. High

frequency flights were flown at the New York State Agricultural Experiment
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Station, operated and monitored by Cornell University, during seasonal peri-

ods when portions of the snap bean fields were flowering. Snap bean plants

were planted at three different periods during the growing season, starting

the first week of June (early) and with mid and late plantings starting two

and four weeks after, respectively. This allowed for different flowering stages

to be captured during a single UAS flight. 22 flights on 10 different days at

42◦52′26.4”N 77◦01′37.2”W , and 22 flights on eight different days at

42◦52′26.4”N 77◦01′48.0”W were flown throughout the 2017 and 2018 season,

respectively. The flights were flown with ground sampling distances (GSD;

spatial resolution) that ranged between 1.25-4.5 cm. Ground truth flowering

data from Cornell was collected on the same day as the UAS flights. The time

difference between ground truth assessment and UAS flights was less than a

day.

we used an AccuPAR PAR/LAI Ceptometer Model Lp-80 to collect in-

field estimates of LAI. These ground truth LAI measurements are based on how

much of the incident sunlight is transmitted through the canopy, with known

or estimated parameters, such as the fraction of photosynthetically active radi-

ation (PAR), leaf absorbtivity, and zenith sun angle used to estimate final LAI

values [33][34][35]. ** Ethan, describe the AccuPar protocol in more technical

detail ** Ground truth LAI and imaging spectroscopy data were collected on

August 2, 6, and 23, 2018 at the New York State Agricultural Experiment

Station, operated by Cornell University ( 42◦52′26.4”N 77◦01′48.0”W ). Each
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flight captured the spectra of all three plantings (early, mid, and late) with

GSDs ranging from 2-3 cm. Each planting had ten plots, thus resulting in

90 plots of ground truth LAI for use in our spectra to LAI regressions. The

ground truth LAI collection protocol included taking 8 LAI measurements

with the Lp-80 and averaging those LAI measurements to obtain an average

LAI for the plot. Plot average spectra and ground truth LAI were used to cre-

ate regression to go from some feature space (i.e. raw reflectance, normalized

difference vegetation index, enhanced vegetation index, etc.) to LAI space.

Figure 2.1 and 2.2 below show the analysis workflow, which will be

described in detail in the following sections.
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Figure 2.1: Data Collection/Processing Flow Chart for Flowering
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Figure 2.2: LAI Data Collection/Processing Flow Chart for Spectral-based
LAI Regression

2.2 Conversion to Reflectance

Light and dark calibration panels were placed in the field during the

flights to convert the raw spectroscopy imagery from digital counts to re-

flectance. This was done by using a SVC hand-held spectroradiometer (334-

2508 nm; 2 nm resampled bandwidths) to collect ground truth reflectance

spectra of the light and dark calibration panels and the two-point empirical

line method of calibration (ELM) [36]. Converting the imagery into reflectance

is paramount, because it removes the dependence on the illumination condi-

tions (sun angle, clouds, etc.), which makes it possible to compare spectral

data from different days, irrespective of such varying illumination conditions

[37].
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2.3 Classifying Vegetation

2.3.1 Vegetation vs. Background Classification

Another important step in the data processing pipeline is to separate

the vegetative spectra from that of the background (soil). One way to do this

is to use the spectral angle mapper (SAM) approach [38]. SAM is a supervised

classification technique that computes the cosine between a sample spectrum

and that of a reference. Classification is then made through the application of

an angular threshold, i.e., the user-specified threshold is used to classify pixels

in terms of their multi-dimensional spectral angle, relative to the reference

pixel. SAM is relatively insensitive to changes in illumination, as well as

phenological variability, because the algorithm compares the direction of the

vectors [38][39]. Reference reflectance spectra of snap beans were extracted

from the imagery and used to separate vegetative pixels from soil using SAM.

Equation 2.1 below shows the formulation for SAM, where S is the

sample spectrum and R is the reference spectrum. 1 − cosθ was used in this

work, therefore a smaller threshold is more strict (i.e., the sample and refer-

ence spectra are more similar). For this work a threshold of ∼0.01 was selected

for flowering and ∼0.025 for leaf area index regressions using Otsu’s method.

Otsu’s method chooses a threshold (the angle) that maximizes inter-class vari-

ance, in this case the variance between vegetation and the ground.[40].

cos θ =
S ·R
‖S‖ ·‖R‖

(2.1)
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2.3.2 Extracting Pure Vegetation Pixels for Flowering

Once the locations of vegetation-only spectra have been identified, we

need to locate pixels in the snap bean canopy that contain pure, or high-signal,

vegetative spectra. The goal is to find vegetative pixels that are not self-

shadowed, mixed with the background (”mixed pixels”), or contain leaves that

are not perpendicular to the sensor. Healthy vegetation absorbs red energy for

photosynthesis, while being highly reflective in the near-infrared, due to inter-

cellular leaf structure [41]. Therefore, we used a traditional ratio approach

between a near-infrared (NIR) and a red band to filter out the ”spectrally

impure” pixels in the canopy and locate the healthy, sunlit, and spectrally pure

vegetation pixels. This method is called Ratio and Thresholding (RT), where

RT computes the average and standard deviation of the ratios of the vegetative

pixels and then returns the pixels that contain ratios greater than the average

plus the standard deviation, as modulated by a user-defined constant. For

this work a multiplier of zero was selected (which means the threshold is equal

to the average of all the ratios calculated for the vegetative pixels). This

multiplier was used because it classified pixels at the center of the canopy,

while preserving the most samples. Pseudocode for RT can be found in Figure

2.3.
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Algorithm 1: Ratio and Thresholding

image = array with shape samples x features
numerator and denominator are input wavelengths
for i samples do

ratio[i] = image[i, numerator] / image[i, denominator]
end for
avg = mean(ratio)
std = std(ratio)
threshold = avg + multiplier · std
indices vegetation = where(ratio > threshold)
indices background = where(ratio < threshold)
vegetation = image[indices vegetation, :]
background = image[indices background, :]
return vegetation, background

Figure 2.3: This figure contains psuedocode for Ratio and Thresholding. This
method was used for finding pure pixels for flowering.

2.4 Identifying Spectral Features for Flowering

The next step in the analysis is to identify key spectral features that

will best separate the binary classes (flowering vs. not-flowering, will flower

vs. not-flowering). Single spectral features, e.g., individual wavelengths, were

fit using a logistic regression [1][2] to accomplish this. In other words, single

spectral features could be the raw reflectance values at a single wavelength, ra-

tio indices (RIs), or normalized difference indices (NDIs). The RIs and NDIs

used in this work have been found to exhibit correlations with chlorophyll

content and water stress [1], and are listed in Table 2.1. RI simply refers to

the ratioing of reflectance values at two different wavelengths. NDI is simi-

lar to RI, except that the reflectance values at the two different wavelengths
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are subtracted in the numerator and normalized by their sum in the denom-

inator; this approach has been shown to be more robust against illumination

changes, while also standardizing the index value between 0 and 1. These

metrics arguably are simplistic in nature, but have been shown to be effective

in identifying spectral-biophysical correlations, since they typically highlight

inverse reflectance behavior for two wavelength regions, e.g., the normalized

difference vegetation index (NDVI) and the photochemical reflectance index

(PRI) [42][43][44][45].

RI =
Rλn

Rλm

(2.2)

NDI =
Rλn −Rλm

Rλn +Rλm

(2.3)

where n and m denote the different wavelengths.

The discriminating performance of each feature was found by calcu-

lating the c-index, the false positive (classification) rate (FPR), and the false

(classification) negative rate (FNR). The c-index is equal to the area under

the receiver operator curve (ROC), where a c-index score of 0.5 implies ran-

dom discriminating performance, and a c-index of 1 is considered perfect class

separation. Specifically, an acceptable model will have a c-index of 0.8 or

more [46]. The FPR is the number of false positives, divided by the sum of

the number of false positives and true negatives. The FNR is the number of
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false negatives, divided by the sum of the number of false negatives and true

positives. These metrics are indicative of errors of commission and omission,

respectively [47].

FPR =
FP

FP + TN
(2.4)

FNR =
FN

FN + TP
(2.5)
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Table 2.1: The wavelengths below were used to create ratio indices (RI) and
normalized difference indices (NDI), which subsequently were used as features
in the single feature logistic regression (SFLR) analysis. This table is adapted
from Delalieux et al. (2009)[1], and was used previously by Hughes et al.
(2018) [2].

Ratio Indices
Numerator Rλn (nm) Denominator Rλm (nm)

430 680
440 690
550 800
605 760
672 550
675 700
695 420
695 670
695 760
710 760
740 720
750 550
750 705
750 710
800 550
800 635
800 680

(a)

Normalized Difference Indices
Numerator Rλn (nm) Denominator Rλm (nm)

415 435
680 430
750 660
750 705
750 445
800 635
800 680

(b)
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2.5 Spectral Vegetation Features for LAI

The next steps involved the creation of features that we can feed to our

regressions and subsequent models in addition to single reflectance spectra,

following the identification of pure vegetation pixels. A range of established

vegetation indices were used to augment raw reflectance, single-wavelength

analyses. Canonical normalized difference vegetation index (NDVI) was se-

lected as one such an index candidate, since it is highly correlated with green

biomass and vegetation moisture content [30].

NDV I =
RNIR −RRed

RNIR +RRed

(2.6)

Where RNIR and RRed are the down-sampled reflectance spectra from

800-1000 nm and 600-700 nm, respectively. Green normalized difference veg-

etation index (GNDVI) is similar to NDVI, except that it has proven to be

more sensitive and highly correlated to chlorophyll content [31].

GNDV I =
RNIR −RGreen

RNIR +RGreen

(2.7)

Where RNIR and RGreen are the reflectance spectra at 750 nm and

550 nm, respectively. The enhanced vegetation index (EVI) was developed to

optimize the vegetation signal in cases with high biomass, which is an area

where NDVI has been shown to saturate (reduced sensitivity at high biomass

and LAI levels) [32].

20



EV I = 2.5 · RNIR −RRed

RNIR + 6 ·RRed − 7.5 ·RBlue + 1
(2.8)

Where RNIR, RRed, and RBlue are down-sampled reflectance spectra

from 841-876 nm, 620-670 nm, and 459-479 nm, respectively. Finally, we

decided on a feature related to 2D green leaf area, which we calculated by

finding the density of classified vegetative pixels per region of interest. The

assumption was that regions with more vegetation-per-area could have a micro-

climate that is more conducive to mold occurrence [29].

Pixel Density =
Classified V eg. P ixels

Total Number of P ixels
(2.9)

2.6 Flowering Model Development

It is important in machine learning to ensure that the size of the training

and testing sets are close to equal, thereby avoiding the challenges associated

with over- or underfitting [48]. For this research, the training and testing data

sets were created from a random sample of the full set and were split 50-50.

This resulted in testing and training class sizes on the order of 4,700 samples

for flowering. Features with the largest c-index subsequently were used to

train a support vector machine (SVM) with a radial basis function (rbf) [49];

a SVM finds a (multi-dimensional) hyper-plane that maximizes the distance

between classes [50][51][52][53].
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The discriminating flowering model was created using data from July

19th, 2018 (3 cm GSD), where the snap beans from the early-planting were all

visibly flowering, and the snap beans from the late-planting were not flowering,

and would not flower until August 15th, 2018. The model then was applied to

data from the early- and late-planting from July 19th, 2017 (3 cm GSD), where

the early-planting was flowering at 100 % and the late-planting was flowering

at a 0% level. The predictive flowering model, on the other hand, was created

using data from July 19th, 2018, where the snap beans from the mid-planting

were not visibly flowering and would not do so until August 2nd, 2018 (i.e.,

two weeks later), and snap beans from the late-planting wouldn’t be visibly

flowering until August 15th (i.e., four weeks later). This latter model then

was applied to mid- and late-planting data from July 19th, 2017, where the

mid-planting was at 28% flowering (not 100% flowering until two weeks later)

and the late-planting was at a 0% flowering level (not 100% flowering until

four weeks later). The models were applied to data from the previous year

to evaluate feature and model robustness, or prediction stability over time,

across the two growing years.

2.7 Leaf Area Index Regression

We implemented a traditional least-squares regression [54] between each

single reflectance feature and the ground truth LAI, in order to identify how

well each feature performed at predicting LAI. The coefficient of determination
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(CoD) and root mean squared error (RMSE) were used to determine how well

the least-squares regression fit the data. It should be noted that because LAI

is a dimensionless quantity the RMSE is also dimensionless.

We subsequently used the reflectance spectra with the top 24 highest

CoD, along with pixel density, NDVI, GNDVI, and EVI to fit a multivariate

regression model. 28 features were selected because adjusted R2 values de-

creased rapidly after 30 features. A multivariate regression model with the

least absolute shrinkage and selection operator (LASSO) was used because it

encourages sparse models (fewer output parameters) and is widely used in re-

mote sensing literature related to forestry and vegetation [55][56][57]. LASSO

is a linear model that is equivalent to fitting N number of independent regres-

sions with each feature having its own L1 penalty [58], where L1 regularization

adds a penalty term equal to the absolute value of the magnitude of the co-

efficients. This approach limits the size of the coefficients [59]. Alpha is a

parameter that you define in the application of LASSO that is multiplied by

the L1 penalty; for example, an alpha of 0 would result in LASSO being an

ordinary least-squares fitting approach.

As is common with multiple regression, the CoD, or R2, must be ad-

justed to measure the portion of the variance in the dependent variable ex-

plained by the independent variables where over-fitting is penalized. This

implies that the adjusted CoD typically will be smaller than the standard

CoD.
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Adjusted CoD = 1− (1−R2)
n− 1

n− p− 1
(2.10)

Where R2 is the CoD, n is the sample size, and p is the number of

predictor variables.

2.8 Results and Discussion for Flowering

The c-index, FPR, and FNR from the SFLR for wavelengths (raw re-

flectance), RI, and NDI features for flowering discrimination can be found in

Figures 2.5-2.7. Figure 2.5a shows c-indexes well above 0.8 in the red portion

of the spectrum (600-700 nm) with a peak around 680 nm. This region is es-

pecially important in biophysical assessment of vegetation, since it is heavily

impacted by plant vigor (photosynthesis) and inter-cellular structure of leaves;

specifically, one often can observe a shift to longer wavelengths of the red egde

position for healthy vegetation, and an opposite shift for stressed/unhealthy

plants [60][61]. Some RI and NDI features yielded c-index values close to 1.0,

but these models, when applied to data from the previous year, were sensi-

tive to noise. We attributed this behavior to the compounding of variance

from each feature in the RI or NDI (uncertainties add in quadrature)[62], and

interaction with the model’s decision or classification hyper-plane.

The c-index values for the flowering predictive SFLR (Figures 2.8-2.10)

look very similar to that of the discrimination model (peak class separability

from 600-700 nm with a peak at 680 nm), aside from small changes in the
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NIR and green portions of the spectrum. This implies that the snap beans

have already undergone the phenological change to initiate flowering, even

though the flowers are not yet visible; it should be noted that the flowers only

visibly emerged two weeks later. Figure 2.4 shows that the average early and

mid plant canopy level spectra are almost the same especially at reflectance

values before 760 nm, and that the snap beans become more absorptive in

the red (∼ 680 nm) and reflective in the NIR (730-1000 nm) when the snap

beans prepare to flower. The phenological change in the snap bean effectively

causes an increase in the red edge slope (680-740 nm). This implies that

one is able to predict the onset of flowering two weeks in advance, using the

selected spectral features. We believe the small increase in the green and small

decrease in the NIR spectral regions in Figure 2.8a, approximately 2% and 5%,

respectively, are due to variance induced during the conversion to reflectance

and also inherent canopy spectral variability, even for a set of arguably pure

canopy-level pixels [36][63]. These results bode well for using a UAS-based,

spectral analysis approach to determine within-field crop locations for directed

fungicide applications, targeted on flowering locations.

The wavelength feature with the largest wavelength c-index (680 nm)

was used to train a SVM with a rbf kernel and then applied to data from July

19th, 2017, to create spatially-explicit flowering probability maps or ”heat

maps”. A probability map was used, instead of a traditional classification

map, to highlight the fact that the model works best at the center of the
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canopy, where mixed and self-shadowed pixels are less abundant. Again, only

a single feature was used for each model. This is due to the practicality

(cost-effective, operational simplicity) and availability of multispectral UAS

platforms, i.e., sensors with a much reduced set of wavelength bands when

compared to imaging spectroradiometers. Imaging spectroradiometer systems

spectrally oversample the area of interest in a general sense, which implies a

large set of independent wavelength variables that are collected at relatively

high cost; both these characteristics effectively are addressed in multispectral,

limited-band, application-focused systems. To that end using the SFLR c-

index results could be a useful approach via which to select the width of

bandpass filters when engineering multispectral, applied solutions. A future

study could perform a spectral convolution (downsampling of the spectroscopy

data) with band center at the peak (680 nm) with a bandpass width of ∼40

nm to investigate the applicability of a multi-spectral solution.

Figure 2.11 shows the performance of the discrimination model on test

images from the 2018 growing season, where 100% (Figure 2.11a) and 0%

(Figure 2.11b) of the snap beans are flowering, respectively. The model shows

that the probability of flowering is close to 1.0 at the center of the canopy

in validated flowering instances and zero for flowering and not flowering test

images.

Figure 2.12 shows the performance of the predictive model on on test

images, where the snap beans will be flowering in two weeks (Figure 2.12a)
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and flowering in 4 weeks (Figure 2.12b), respectively; note that neither of the

images exhibited visible flowering. The model is in effect querying whether

or not the snap beans will flower in two weeks. Here the results are similar

to the discrimination model, where probability at the center of the canopy is

close to 1.0 and zero for flowering in two weeks, for Figures 2.12a and 2.12b),

respectively. It should be noted that the test images in Figures 2.11-2.12 were

not used in the training or testing of the models.

The models related to actual and early flowering detection are promis-

ing and important. Snap bean growers in effect can use an operational mul-

tispectral sensor, with defined spectral (wavelength) features, to accurately

identify within-field locations where pro-active fungicide applications should

be focused. Such an approach arguably will contribute to optimized disease

management - management interventions can be optimized in terms of appli-

cation levels, locations, and reduction in any potential groundwater or stream

impacts.

While we believe we are observing a phenological change, it is possi-

ble for chlorophyll and inter-cellular structure to change due to environmental

or physciological impacts, other than those associated with flowering. Envi-

ronmental stressors can impact red-edge behavior such as red edge slope and

position ** Ethan - citation? ** . More data therefore should be collected from

different field locations to ensure the robustness of the model. Other future

work towards model robustness should include the implementation of indepen-
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dent calibration panels for verification of reflectance data fidelity. Uncertainty

in the conversion from raw digital counts to reflectance will negatively affect

the interaction between classes and the hyper-plane of our model.
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Figure 2.4: Canopy Level Spectra for Early, Mid, and Late Plantings
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(a) c-index from wavelength single feature logistic regression for flowering discrim-
ination; note the discrimination levels in the 600-700 nm spectral region, i.e., the
red absorption trough and adjacent reflectance rise in the red edge region, toward
700 nm
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(b) False positive and false negative rates for wavelength single feature logistic re-
gression for flowering discrimination; again note the associated lower false prediction
rates in the 600-700 nm spectral region (see Figure 2.5a above)

Figure 2.5: This figure shows the c-index, false positive, and false negative
rates for each of the wavelengths used to separate the classes flowering vs.
not-flowering. Features in the NIR red edge have the largest c-index and
lowest false positive and false negative rates. These regions are known to be
impacted by photosynthesis and the inter-cellular structure of leaves.
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(a) c-index for Ratio Index Single Feature Logistic Regression for Flowering Dis-
crimination; the combination of green and red (visible) and NIR wavelengths seem
especially effective in discriminating flowering from non-flowering plants
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(b) False Positive and False Negative Rates for Ratio Index Single Feature Logistic
Regression for Flowering Discrimination

Figure 2.6: This figure shows the c-index, false positive, and false negative
rates for each of the ratio indices (RIs) used in the single feature logistic
regression to separate the classes flowering vs. not-flowering. Ratio indices
with wavelengths in the green, red, red edge, and NIR have the largest c-index
and lowest false positive and false negative rates. This is due to photosynthesis
absorption (red spectral region) and the inter-cellular structure (NIR spectral
region) of the leaves.
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(a) c-index for Normalized Difference Index Single Feature Logistic Regression for
Flowering Discrimination
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(b) False Positive and False Negative Rates for Normalized Difference Index Single
Feature Logistic Regression for Flowering Discrimination

Figure 2.7: This figure shows the c-index, false positive, and false negative rates
for each of the normalized difference indices (NDIs) used in the single feature
logistic regression to separate the classes flowering/not flowering. Indices with
wavelengths in the red to red edge, and the broader NIR had the largest c-index
and lowest false positive and false negative rates.
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(a) c-index for Wavelength Single Feature Logistic Regression for Flowering Predic-
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(b) False Positive and False Negative Rates for Wavelength Single Feature Logistic
Regression for Flowering Prediction; the red, red edge, and NIR spectral regions
again exhibit the best performance for flowering discrimination

Figure 2.8: This figure shows the c-index, false positive, and false negative
rates for each of the wavelengths used to separate the classes flowering in two
weeks/flowering in four weeks. Features in the NIR red edge region have the
largest c-index and lowest false positive and false negative rates. The values
are very similar to the discrimination model shown in Figure 2.5. We believe
the snap beans have already undergone the phenological change and notable
differences in the NIR and green c-indexes are due to the variance in conversion
to reflectance and the canopy. 32
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(a) c-index for Ratio Index Single Feature Logistic Regression for Flowering Predic-
tion; note that similar spectral regions were identified as was the case for flowering
discrimination, with the inclusion of select blue-green spectral regions
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(b) False Positive and False Negative Rates for Ratio Index Single Feature Logistic
Regression for Flowering Prediction

Figure 2.9: This figure shows the c-index, false positive, and false negative
rates for each of the ratio indices (RIs) used to separate the classes flowering
in two weeks/flowering in four weeks. Features that contain wavelengths in
the NIR red edge region and the broader NIR have the largest c-index and
lowest false positive and false negative rates. These results look similar to that
of the discrimination model in Figure 2.6. Differences include a small increase
in features that contain green wavelengths.
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(b) False Positive and False Negative Rates for Normalized Difference Index Single
Feature Logistic Regression for Flowering Prediction

Figure 2.10: This figure shows the c-index, false positive, and false negative
rates for each of the normalized difference indices (NDIs) used to separate the
classes flowering in two weeks/flowering in four weeks. Features that contain
wavelengths in the NIR red edge and broader NIR regions have the largest
c-index and lowest false positive and false negative rates. These results look
similar to that of the discrimination model in Figure 2.7. Differences include
a small increase in features that contain blue wavelengths.
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(a) Discriminating flowering model on a flowering test image
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(b) Discriminating model on a not-flowering test image

Figure 2.11: This figure shows the results of the flowering discrimination model
using a single NIR red edge feature on flowering and not-flowering test images.
The model yields probabilities of close to 1.0 and zero at the center of the
canopies for flowering and not-flowering images, respectively.
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(a) Predictive flowering model on an image that will flower in two weeks
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(b) Predictive flowering model on an image that will flower in four weeks

Figure 2.12: This figure shows the results of the flowering predictive model
using a single NIR red edge feature on images that will flower in two a) and
four b) weeks. The model yields probabilities of close to 1.0 and zero at
the center of the canopies for flowering at two and flowering at four weeks,
respectively.
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2.9 Results and Discussion for LAI Spectral Regression

Figure 2.13a shows that the CoDs from the single reflectance feature

least-squares regression exhibited values larger than 0.7 in the red-red edge

(∼600-690 nm) and green (∼507-518 nm) spectral regions, with a maximum

CoD at 510 nm, equal to 0.76. These wavelengths are important indicators of

plant physiology in terms of chlorophyll absorption and inter-cellular structure

absorption/reflectance features (biomass, vigor, etc.) [30][31][60][61]. Figure

2.13b, in turn, shows the data and fit of the regression between reflectance

spectra at 509.872 nm and ground truth LAI. The trend shows that as the

reflectance at 509.872 nm increases, the LAI decreases. This feature has a

RMSE of 0.61. Figures 2.14a-2.15b show the data and fit between pixel den-

sity, EVI, NDVI, and GNDVI. CoDs and RMSE values ranged from 0.42-0.57

and 0.817-0.942, respectively. These features, along with the top 24 single

reflectance features, were used in the subsequent LASSO regression.

Figure 2.16 shows the results for the CoD and adjusted CoD as a func-

tion of alpha level (0.0001-2, by 0.0005 increments). Figure 2.17a and Figure

2.17b show how the number of explanatory features changes with alpha, and

how the number of features impacts the RMSE. We observed that a small

alpha yields the largest adjusted CoD (0.85), using all 28 features, and the

smallest RMSE (0.39). As alpha increases, the adjusted CoD decreases, the

number of features decreases, and the RMSE increases. Figure 2.16 shows a

rapid drop in performance before 0.01 alpha, while the number of features is
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reduced from 28 to 5; from there the decrease in performance is more gradual.

Future work should include the use these LAI correlated features along

with other auxiliary environmental variables (degree days, average rain fall,

temperature, etc.) in the creation of a white mold risk model.
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(a) CoD from the linear regression of single reflectance spectra
and ground truth LAI
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(b) Regression for spectra at 509.872 nm and ground truth LAI

Figure 2.13: Figure 2.13a shows the resulting CoD from fitting single re-
flectance spectra to ground truth LAI with 509.872 nm having a CoD and
RMSE of 0.76 and 0.609, respectively. Figure 2.13b shows the model fit and
residual distribution around the fitted regression.
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(a) Regression for pixel density and ground truth LAI
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(b) Regression for EVI and ground truh LAI

Figure 2.14: Figure 2.14a shows the data and fit when using pixel density as a
predictor of LAI, with CoD and RMSE values of 0.57 and 0.817, respectively.
Figure 2.14b, on the other hand, shows the data and fit for EVI as a predictor
of LAI, with CoD and RMSE values of 0.48 and 0.898, respectively.
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(a) Regression for NDVI and ground truth LAI
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(b) Regression for GNDI and ground truth LAI

Figure 2.15: Figure 2.15a shows the data and fit of NDVI as a predictor of
LAI, with a CoD and RMSE of 0.42 and 0.942, respectively. Figure 2.15b
shows the data and fit of GNDVI as a predictor feature for LAI. with a CoD
and RMSE of 0.50 and 0.879, respectively.
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Figure 2.16: The CoD and adjusted CoD from the LASSO regression as a
function of the alpha model parameter. As alpha increases, the CoD and
adjusted coefficient of determination decrease. With alphas around 0.001-
0.01, we see CoDs and adjusted CoDs near 0.8, with a maximum adjusted
CoD of 0.85.
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regression, as a function of alpha.
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(b) The RMSE of the LASSO regression as a function of the
number of explanatory features.

Figure 2.17: Figure 2.17a shows that as alpha increases, the number of ex-
planatory features decreases, while Figure 2.17b shows that as the number of
features increases, the RMSES decreases. We can see the LASSO model with
28 features yields a low RMSE of 0.39.
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Chapter 3

Conclusions

It is well know that Sclerotinia sclerotiorum, or white mold, has a signif-

icant impact on snap bean yield, with especially the flowering crop stage being

sensitive to mold inoculation, while dense canopy structures are conducive to

subsequent mold growth. The timing of fungicide application, i.e., to coin-

cide with the snap bean flowering stage, thus is essential to limiting disease

impacts, along with an assessment of plant canopy structure, to serve as an

indication of mold risk after inoculation. In fact, previous studies have shown

that mold occurrence is tightly coupled to denser canopy structures [29], i.e.,

the closed-canopy structures are conducive to white mold incubation. This in

turn implies that i) accurate detection of actual flowering occurrence or even

more ideal, predicting the onset of flowering, would be beneficial to optimized

management of white mold, and that ii) image-based structural assessment

could contribute to eventual mold risk model development. Our objectives for

this work therefore were to identify spectral signatures for the onset of flower-

ing in snap beans and use the same imagery to assess leaf area index (LAI),

an indicator of plant canopy structural complexity. We used existing (spectral

angle mapper, SAM; published indexes) and new methods (ratio thresholding,
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RT) to filter the canopy for pure, sunlit pixels. A combination of SAM and

RT were used to identify pure pixels in order to create predictive models for

flowering. We were able to not only discriminate, but also predict flowering at

two weeks prior to flowering onset, using single red wavelength features, with

c-index values above 90%, using these methods. These wavelength/spectral

features are known for their physiological coupling to plant health, photosyn-

thetic activity, and inter-cellular structure [41][42][43][44][45].

Our structural models models, in turn, were based on both direct, raw

reflectance features, as well as spectral indices that have been shown to be

correlated to plant structure, e.g., leaf area index (LAI). Plant-level leaf struc-

ture/layering (LAI) were measured in situ and then modeled by performing

linear and multivariate regressions between spatial and spectral features. Our

work found that a single reflectance feature at 510 nm yielded a CoD of 0.76

and an RMSE of 0.609. Other features, including pixel density, EVI, NDVI,

and GNDVI had CoD and RMSE values that ranged between 0.42-0.57 and

0.817-0.942, respectively. We then included 28 spatial and spectral features in

a multivariate regression to predict LAI,and obtained an adjusted CoD of 0.85

and RMSE of 0.390. This arguably represents successful outcomes for both

objectives: We could accurately detect and predict flowering onset and also

assess canopy structural complexity. Both of these outcomes eventually can

be used to develop a comprehensive mold risk model, although this final effort

is beyond the scope of this thesis.
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Future work could include a spectral convolution study to investigate

the robustness of a multi-spectral solution (band center at 680 nm, bandpass

width ∼40 nm), the placement of independent calibration panels in the field

to assess the fidelity of the conversion to reflectance, and the incorporation

of spectral reflectance values, LAI correlated spectral features, and auxiliary

environmental factors (degree days, average rainfall, average temperature, etc.)

into a single white mold risk model.

The key take-aways from this study was that highly accurate actual

and/or predictive (two week in advance) flowering maps can be created for

pro-active white mold management in snap beans, along with proven, accurate

assessments of plant canopy structure, for improved risk modeling. These

results bode well for eventual implementation toward more directed, judicious

application of fungicide, which in turn will have significant impacts in terms of

a reduced environmental footprint and optimization of yield/profit. It remains

essential, however, that UAS-based solutions to pest management in crops

focus on operational solutions, i.e., solutions that are distilled from expensive,

research-grade equipment to accessible, low-risk, and cost-effective automated

platforms.
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Appendix A

Mold Detection and Prediction Using Imaging

Spectroscopy

A.1 Introduction to Mold Detection and Prediction

This appendix contains an additional exploration of whether or not

we can differentiate diseased from healthy plants, i.e., we wanted to take the

methods outlined in this thesis and apply them directly to the spectral detec-

tion and prediction of white mold. The mold trials contained 40 plots (see

Figure A.1), 20 inoculated with the white mold disease (highlighted in yellow)

and 20 control plots (not inoculated; highlighted in blue). The plots were 10

feet long and one row wide. These plots were monitored by Cornell University

collaborators and were used in a fungicide efficacy experiment. That implies

that plants were inoculated with mold and then treated with fungicide, to eval-

uate how the fungicide affected white mold incidence at the end of the season

(August 15th, 2018). Another challenge to our mold detection study was that

only eight of the 20 plots inoculated with mold exhibited white mold incidence

greater than 50%. This significantly reduced the size of the training/testing

sets. While this experiment wasn’t designed with spectral detection and pre-

diction of disease in mind, we wanted to determine if the methods outlined in
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this thesis, which were effective at predicting flowering onset, could also detect

and predict disease.
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Figure A.1: Location of the Mold Trials 2018 Season. Yellow and blue regions
indicate inoculated and uninoculated with mold, respectively.
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A.2 Detection of Pure Pixels

SAM and RT should not be used to detect pure pixels of diseased plants

that contain mold, since the selected vegetation spectra may not approximate

that of a healthy plant anymore. The vegetation classification and pure pixel

extraction therefore is performed in a single step. To accomplish this, we

assume that pixels with the largest broadband spectral power, i.e., when we

integrate the reflectance spectrum over the wavelength range and then divide

it by the number of wavelengths, represent healthy plants. The result is a

number that represents the average reflective power (ARP) of each pixel. The

”brightest” pixels, or the pixels with the most power, are the most representa-

tive of the pure pixel spectra. Next, similar to the RT approach, ARP extracts

all the pixels that are above the average, plus the modulated standard devi-

ation. A multiplier of zero again was selected for ARP, since it resulted in

a threshold that selected center-of-canopy pixels, while preserving the most

samples. Psuedocode for ARP can be found below in Figure A.2.

A.3 Features and Model Development for Mold Detec-
tion and Prediction

Raw reflectance, RI, and NDI features (from Figure 2.1) were used

along with a SFLR [46] to separate the classes that contain or do not contain

mold, and will/won’t contain mold in the future, i.e., for the predictive step.

The top performing feature was used along with a SVM [49][50][51][52][53]
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Algorithm 2: Average Reflective Power

image = array with shape samples x features
start and end refer to the wavelengths you want to keep
n = feature length of shortened image
short = image[:, start:end]
for i samples do

arp[i] = sum(short[i, :]) / n
end for
avg = mean(arp)
std = std(arp)
threshold = avg + multiplier · std
indices vegetation = where(arp > threshold)
indices background = where(arp < threshold)
vegetation = image[indices vegetation, :]
background = image[indices background, :]
return vegetation, background

Figure A.2: This figure contains psuedocode Average Reflective Power. These
methods were used for finding pure pixels for mold detection.
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to discriminate mold. Top LAI-correlated features, from our spectra-to-LAI

study also were used along with a SVM to predict mold.

The discriminating mold model was created using data collected on

August 15th, 2018 (3 cm GSD). Two plots, where greater than 80% of the

plants exhibited white mold, and two plots, where the plants had 0% mold,

were used to create the model. The model then was applied to a plot where 78%

of the snap beans contained mold, and a plot where 0% of the plants contained

mold. It should be noted that our ground truth dataset contained significantly

fewer samples than was the case for the flowering model development; case-

in-point, we were able to use 8x more training data for flowering (∼4,700

samples) than for mold detection (∼700 samples). This could result in poorer

model performance, over-and-above the complexities related to biophysical

changes in vegetative growth, associated with either flowering and mold events.

Finally, our expectation was that mold would cause a change in canopy-level

reflectances, when compared to each stage’s counterpart, i.e., non-mold.

The top N features from the LASSO regression (LAI-correlated fea-

tures) then were used to train and test a SVM with a radial basis function

[49] on data from August 6, 2018 in the mid planting; this was done in order

to create the predictive white mold occurrence model. Two plots with white

mold incidence above 76% and two control plots (0% white mold incidence)

were used to train the model. The model was then applied to test plots with

white mold incidence of 78.3% and 0%, respectively. The reason that August
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6 is an important date, is based ont he fact that 100% of the snap beans were

flowering in the mid-planting and on August 15, 2018, some of these snap

beans were diseased with mold. We wanted to evaluate whether the features

correlated with LAI can predict the occurrence of the disease, when applied

to flowering snap beans.

A.4 Results and Discussion for Mold Discrimination
and Prediction

All of the c-indexes for mold discrimination were below 0.8; in fact, the

values were closer to 0.5, which implies random/chance discrimination. The

sensitivity and specificity plots show that the SFLR exhibited either high false

positive rates (FPR) or false negative rates (FNR). This is indicative of models

that are largely guessing whether or not the snap bean plant contains mold or

not. In Figure 8b we see that, for wavelengths between 400-700 nm, the model

has a false negative rate of approximately 1.0, which means that the number

of true positives is zero, i.e., the model is consistently guessing no-mold, even

if this is invalid. The results from the SFLR for mold can be found below in

Figures A.3-A.5. This result was contrary to our hypothesis, i.e., that white

mold would have a distinct physiological impact on plants, which would be

observable via canopy-level spectral indicators. We attributed this outcome

to high within-group spectral variability, although this needs to be verified in

future research.
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Figure A.6 contains test images where the mold discrimination model

was applied. The results show that the model cannot distinguish between

snap beans that contain no mold and regions where 78% of the plants ex-

hibited mold. This is an unexpected result, in that it seems that imaging

spectroscopy of the snap bean canopy, collected via an UAS platform, is un-

able to differentiate between healthy and diseased plants. This must imply

that the spectral variability induced by white mold are small, relative to the

variance in the canopy. This outcome is supported by Vigier et al. (2004), who

attempted to separate soy beans diseased with white mold one month before

the harvest, using ground-based spectroradiometers at a height of 2.25m above

the canopy. Their results show that there is a larger difference in canopy spec-

tra between growing seasons, than between diseased and healthy beans [64].

Machado et al. (2015) also used a ground-based spectroradiometer to measure

the reflectance of snap bean leaves diseased with white mold in a lab setting.

The results showed that, even under ideal laboratory conditions, the difference

between plants with a disease severity index (DSI) of 0 and 50 was far less

than a 3% reflectance change [65]. Finally, Martinez-Martinez et al. (2018)

concluded that the spectrum of beans diseased with angular leaf spot could

not be discriminated from healthy beans with a ground-based spectroradiome-

ter from heights greater than 1m [66]. Although such studies corroborate our

findings, it arguably is of limited, other than academic importance; i.e., once

white mold is observed in the snap bean crop, the crop yield already will have

suffered significantly.
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Using 28 LAI correlated features (CoD=0.85, RMSE=0.39), we trained

a SVM with a radial basis function to predict white mold. Training data

consisted of two images that contained 76% white mold and two images that

contained 0% white mold. The model then was applied to test images that

contained 78.3% mold and 0% mold. The results from the applied model can

be found below in Figure A.7a and A.7b. The results of the applied model

both yield average canopy probabilities for mold of less than 50%. This means

the hyper-plane that was fit using the training data was unable to separate the

two classes. This was attributed to the limited amount of mold vs. no mold

ground truth data (i.e., only three plots with white mold incidence greater

than 75%). The mold/no mold class sizes are significantly smaller than the

flowering data sets, which resulted in more successful models. As stated before,

plots were inoculated with mold and then treated with select fungicides. This

potentially is another factor that could be negatively affecting our results,

since the white mold incidence is suppressed via fungicide applications and as

such did not occur naturally. Stated differently, if we were trying to identify

naturally predictive features for mold, but are either forcing or encouraging

the mold to occur, then the selected features may not be representative at all.

We concluded that the disease signatures we are trying to identify are

variable, relative to the variance of the canopy, and obviously more variable

than the flower discrimination work outlined in Chapter 2, which was also

corroborated by other research [64][65][66]. Therefore, future research should
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include the use of larger data sets with snap beans naturally diseased with

white mold (i.e., not inculcated with disease and then treated with fungi-

cide). This aid in the development of a SVM hyper-plane model to separate

predictive classes. Averaging spectra over the canopy also decreases our abil-

ity to detect/predict small signatures, so an automated system with smaller

GSDs, such as a terrestrial imaging platform, could increase our ability to

detect/predict disease in the field.
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(a) c-index for Wavelength Single Feature Logistic Regression for Mold Discrimina-
tion; note that no spectral features exceed the 0.8 c-index detection level
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(b) False Positive and False Negative Rates for Wavelength Single Feature Logistic
Regression for Mold Discrimination

Figure A.3: This figure shows the c-index, false positive, and false negative
rates for each of the wavelengths used to separate the classes mold vs. no-
mold. Features that contain wavelengths in the NIR region have the largest
c-index and lowest false positive and false negative rates. However, the results
are close to random/chance discrimination. The results in b) show that from
wavelengths in the 400-700 nm region, the model has a false negative rate of
almost 1.0 and a false positive rate of almost zero. This means the model
consistently guesses no-mold.
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(a) c-index for Ratio Index Single Feature Logistic Regression for Mold Discrimina-
tion; again there are no spectral features, ratio indices in this case, that exceed the
0.8 c-index detection threshold
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(b) False Positive and False Negative Rates for Ratio Index Single Feature Logistic
Regression for Mold Discrimination

Figure A.4: This figure shows the c-index, false positive, and false negative
rates for each of the ratio indices used to separate the classes mold vs. no-
mold. All the features have a c-index less than 0.6 (close to random/chance
discrimination). The results in b) show that features have large false positive
rates and low false negative rates. This means the model is biased towards
consistently guessing that mold is present.

59



415
, 43

5

680
, 43

0

750
, 66

0

750
, 70

5

750
, 44

5

800
, 63

5

800
, 68

0

NDI Indices

0.4

0.5

0.6

0.7

0.8

0.9

1.0

c-In
dex

NDI c-Index

(a) c-index for Normalized Difference Index Single Feature Logistic Regression for
Mold Discrimination
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(b) False Positive and False Negative Rates for Normalized Difference Index Single
Feature Logistic Regression for Mold Discrimination

Figure A.5: This figure shows the c-index, false positive, and false negative
rates for each of the normalized difference indices (NDIs) used to separate
the classes mold vs. no-mold. All the features have a c-index around 0.5
(random/chance discrimination). The results in b) show that features have
large false negative rates and low false positive rates, which implies that the
model is biased towards guessing no-mold.
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(a) Discriminating mold model on a mold test image
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(b) Discriminating mold model on an image with no mold
present

Figure A.6: This figure shows the results of the mold discrimination model
using a single NIR feature on images that have mold a) and no-mold b). The
model yields probabilities of close to 0.5-0.6 for mold and no-mold examples. It
is evident that the model cannot reliably discriminate between the two classes.
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(a) The outcome for 28 LAI-correlated features, when
used to fit a SVM to predict mold and applied to an
image containing 76.2% white mold incidence.
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(b) the result for 28 LAI-correlated features, when used
fit a SVM to predict mold and applied to an image
containing 0% white mold incidence.

Figure A.7: Figures A.7a and A.7b show the probability maps from the SVM
trained on LAI-correlated features to predict mold nine days before occurrence.
The test images in Figures A.7a and A.7b contains 78.3% and 0% white mold
incidence, respectively. The figures show that the average probability for mold
over both canopies is approximately 48%.
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A.5 White Mold Detection/Prediction Conclusions

We found that applying the successful flowering detection and predic-

tion methods to mold discrimination and prediction was unsuccessful. The

spectral and estimated structural metrics were not conducive to disease detec-

tion (contains mold/does not contain mold) and prediction (will contain mold/

will not contain mold). We believe that the low sample size for diseased snap

beans, the concurrent fungicide efficacy trials, the inherent spectral variance

of the canopy, and spectral averaging over the canopy pixels led to the di-

minished success of our ability to detect and predict mold occurrence. Future

work should include an increased number of mold monitored plots, naturally

occurring white mold incidence (no fungicide applications), and potentially

a terrestrial-based method for imaging spectroscopy data acquisition, which

would reduce the GSD and averaging over canopy pixels.
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