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Abstract 
 
 

Deep learning has enabled great advances in the field of natural language processing, 

computer vision and pattern recognition in general. Deep learning frameworks have been 

very successful in performing classification, object detection, segmentation and translation. 

Before objects can be processed, a vector representation of that object needs to be created.  

For example, sentences and images can be encoded with a sent2vec and image2vec 

function respectively in preparation for input to a machine learning framework. Neural 

networks are able to learn efficient vector representation of images, text, audio, videos and 

3D point clouds. However, the transfer of knowledge from one modality to the other is a 

challenging task. In this work, we develop vector spaces that can handle data that belongs 

to multiple modalities at the same time. In these spaces, similar objects are tightly clustered 

and dissimilar objects are far away irrespective of their modality. Such a vector space can 

be used in retrieval of objects, searching and generation tasks. For example, given a picture 

of a person surfing, one can retrieve sentences or audio bites of a person surfing.  We build 

a Multi-stage Common Vector Space (M-CVS) and Reference Vector Space (RVS) that 

can handle images, text, audios, videos and 3D point cloud data. Both, the M-CVS and 

RVS can handle the addition of a new modality without having to change the existing 

transforms or architecture. Our model is evaluated by performing cross modal retrieval on 

multiple benchmark datasets. 
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Chapter 1 
 
 

Introduction 

 

 
1.1 Introduction 

Deep learning has shown great ability to perform targeted tasks like image classification, 

segmentation, object detection, and language translation. With the extensive availability of data 

and increased understanding of loss functions, neural networks are able to generate a good 

understanding of images, text, audio signals and videos. Convolutional Neural Networks 

(CNNs) have become the default model for computer vision tasks that were traditionally done 

using handcrafted features. CNNs architectures are now used for image classification, image 

segmentation, and object detection. Further, CNNs can be used as an image encoder, 

compressing a very high dimensional image into a small dimensional vector. Recurrent Neural 

Networks (RNNs) such as Long Short Term Memory (LSTMs) have proven to perform well 

in sequential tasks like language translation and caption generation. Within the past few years, 

Generative Adversarial Networks (GANs) have been shown to generate realistic-looking 

images from input noise vectors. The unique selling point of all these deep learning 

architectures is that they are able to learn the necessary parameters to accomplish real-world 

tasks. These deep architectures along with their learned parameters have been shown do a better 

job of most tasks when compared to the traditional machine learning methods paired with 

handcrafted features. Often, the deep architectures are able to develop a deeper understanding 

of the data which may not be easily perceptible to a human being.  

These deep neural networks have shown incredible ability in targeted tasks in uni-modal 

settings like image classification or sentence to sentence translation. However, converting 

from one modality to another still remains a challenge. The work by Wu et al. [27] and 

Huang and Peng [26] show the ability to transfer from the image to text domain while [28] 

shows how we can transfer from audio to video domain. Vendrov et al. [24] and You et al. 

[25] show how images and text can be retrieved at the instance level whereas the works in 

[20, 21, 22, 23] show category level retrieval on images and text. Qi et al. [8] and Qi and 

Peng [10] showed cross modal retrieval using different learning techniques. Srivastava et al. 

[54] trained a Boltzmann machine that translates information from one modality to another. 
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More recently, adversarial loss functions and self-supervised learning techniques have been 

successfully shown to perform retrieval. 

 

1.2 Motivation  

Any data processed or stored by a computer ultimately needs to be converted into a binary 

format. These binary numbers are the most basic representations of data for computers. 

Similarly, vectors are the most basic structures of objects or concepts for machine learning 

models. Vectors are nothing but a list of numbers on which operations could be performed. 

These vectors will be used as the input and outputs to the deep neural networks used in this 

research.  

Data originating from any modality (image, text, video, etc.) is first and foremost converted to 

a vector representation before being fed to a deep neural network. It is therefore very important 

that these vector representations of data are robust and are able to relay as much information 

about the input data as possible. Even if a model architecture is highly optimized and robust, 

unless the input data vectors are efficient, the model may end up failing.  

This work aims to form efficient vector representations not only for a unimodal setting but also 

a multimodal setting where data belonging to different modalities can seamlessly interact with 

each other. The transfer of knowledge from one modality to the other is done through the 

medium of this common embedding space that we define.  

We develop an architecture that is able to handle any number of modalities, and experiments 

will be conducted with up to five modalities. This work describes multiple ways in which a 

multimodal system can be built and provides a way of mapping new modalities into the model 

without having to change existing transformations and inferences. This work also compares 

different ways to formulate such a network and develops an understanding of the various 

pitfalls that these models face.  

Such a model can be used for remote sensing applications where a vast range of sensors pick 

up data in different modalities to perform tasks like object detection and activity recognition. 

For example, a satellite can scan the ground and pick up passive signals like RGB images, 

infrared images, hyperspectral images as well as active signals like LIDAR point clouds, 

Synthetic-aperture radar (SAR) images etc. Similarly, sensors on the ground can pick up other 

information about the environment. Our model can then be used to help transfer contextual 

information from one modality to the other. Our model can also help in providing redundancy in 
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case of failure of any of the modalities. Similarly, such a model proves useful in mapping medical 

imagery data from sources like X-Rays, MRIs, CT Scans, ultrasounds etc.  

The models we develop can be further used to train a network that takes in an input from one 

modality and generates synthetic data in a different modality. Such generation of data can prove to 

be helpful in under sampled modalities. 

 

1.3 Contributions 

The main contributions of this thesis work can be summarized as: 

 Extend the Common Vector Space (CVS) framework into two new architectures- the 

Multi-stage Common Vector Space (M-CVS) and the Reference Vector Space RVS 

and compare the three networks. 

 Implement stage wise training of neural networks to see effect on performance of 

retrieval. 

 Achieve robust transfer of information across multiple modalities using the same 

network architecture. 

 Gain insight into the pros and cons of different training strategies. 
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Chapter 2 
 
 

Background 

 

 
2.1 Deep Learning 

Deep learning is a branch of machine learning that deals with artificial neural networks which 

contain many weights or parameters, and often many hidden or intermediate layers. Deep 

learning works best when vast amounts of data and computing resources are available. It has 

provided massive breakthroughs in the fields of computer vision and language modeling. Deep 

learning architectures have a significant advantage over traditional methods that involve 

handcrafted features because the features are learned by the architecture. Additionally, the 

formulation of smarter loss functions has meant that deep learning can be used for a variety of 

tasks like image segmentation, object detection, and language translation. 

 

2.2 Convolutional Neural Networks 

Convolutional neural networks (CNNs) form the backbone of modern computer vision 

processing and have helped advance the field of image processing. CNNs are able to effectively 

extract and learn features from gridded data structures like images or video frames. The 

evolution of CNNs from VGG-Net [2] to more complex architectures like the Inception [5] and 

ResNet [6] have helped achieve state-of-the-art results on multiple benchmark datasets like the 

CIFAR10 [7] and ImageNet [17]. CNNs perform very well in image classification [2, 18, 6, 

19], image segmentation [4], and object detection [3].  

CNNs generally consist of three basic operations: convolution, pooling, and fully connected 

layers. The convolution layers use filter kernels to perform convolution operations on the input 

before passing it on to the next layer. The pooling layers down sample the input that it receives 

whereas the fully connected layers form multi-layer perceptron layers to finally arrive at the 

sample classification.  At a high level, the convolution and pooling layers extract a salient 

hierarchy of features, and the fully connected layers perform the classification.  One reason 

this architecture is so powerful is that both the features and classifier components are learned 

simultaneously through a process called backpropagation. 
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The convolution operation typically preserves the output dimensions of the input provided 

necessary padding of the original input is done. On the other hand, pooling decreases the 

dimensions of the data. Average pooling and max-pooling are the two most popularly used 

pooling techniques. Figure 1 shows a typical CNN architecture for an image classification 

setting. An input image passes through various convolution and pooling layers. Finally, it is 

flattened out to form a single vector. This single vector is then passed through multiple fully 

connected layers after which a final layer performs classification. The connections between 

layers use non-linear activation functions like the sigmoid, tanh and relu so that the network 

can learn some very complex patterns. 

 

 
Figure 1: Typical CNN architecture. An image passes through multiple convolutions and filtering operations before 

being passed through fully connected layers and classified into a one out of several classes. 

 

Equation (2.2.1) explains the convolution operation.  𝐼(𝑥_𝑟,𝑥_ℎ,𝑐)
𝑙

 is the image at the x_rth and 

x_hth pixel at the cth channel for the lth layer of the network. The image I is convolved with a 

filter kernel K to get the output of the convolution operation M. 

𝑀(𝑖,𝑗,𝑘)
𝑙 =  𝐾𝑎𝑏𝑐𝐼(𝑥_𝑟+𝑎,𝑥_ℎ+𝑏,𝑐)

𝑙−1     (2.2.1) 

 

 
Figure 2: Convolution Operation. Left – Input array; right – convolution kernel. 
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In Figure 2, the input array (image) is convolved with the filter to form a new output array. 

This filter is a matrix of parameters that are learned during backpropagation in a CNN.  The 

learning of many such filters along with the fully connected layers enable the CNN to learn 

abstract concepts.  

 

Figure 3: Max poling operation in a convolutional neural network. 

 

Figure 3 shows a max-pooling operation where the maximum value of the cells belonging to 

the same color is passed to the next layer.  

Videos are essentially a sequence of images and hence, CNNs are useful for encoding videos 

too. Karpathy et al. [31] showed an efficient way to encode videos into their vector 

representations. Recent works like [32, 33] show different ways in which videos can be 

encoded into a vector representation for tasks such as classification or segmentation. 

 

2.3 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) along with Long Short Term Memory (LSTMs) units and 

Gated Recurrent Units (GRUs) help encode and decode sequential data. These RNNs have the 

ability to retain important information in the sequence. They are used extensively to represent 

textual data. RNNs are used in tasks like image captioning and sentence encoding. 
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Work in natural language processing has led to the development of architectures that are able 

to perform tasks like image captioning [14 15] and video summarization [16]. Kiros et al. [13] 

showed how sentences can be encoded into vectors.  

 

Figure 4: A recurrent neural network consisting of many sequential cells that take input from the previous state and also 

the current input to predict the output at each time step. 

 

In the Figure 4, x1, x2…xt are the inputs for time step t = 1 to t and y1, y2…yt is the predicted 

next outputs. 

    ℎ𝑡 = 𝑓(𝑊ℎℎℎ𝑡−1 + 𝑊ℎ𝑥𝑥𝑡)   (2.3.1) 

 

    𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑆ℎ𝑡)    (2.3.2) 

 

    𝐽(𝑡)(𝜃) = ∑( 𝑦𝑡𝑖 𝑙𝑜𝑔𝑦𝑡𝑖)    (2.3.3) 

 

The above equations describe the working of the RNNs. The information about the previous 

time steps is held in (2.3.1) where ht is calculated based on ht-1. h0 is set to a vector of zeros. A 

sigmoid activation is then applied to the final summation as seen in (2.3.2). In (2.3.3), the loss 

is calculated at each time step to find out the error between the input word and the predicted 

word.  



16 | P a g e  

 

RNNs face the problems of vanishing gradients and hence LSTMs and GRUs have become the 

default way to model sequential data.  

 

A. Long Short Term Memory (LSTM) 

The vanishing gradient problem with RNNs is overcome using LSTMs and GRUs. LSTMs are 

able to selectively remember both long and short-term information. They were introduced in 

[34] which outperformed vanilla RNNs. 

 

Figure 5: LSTM cell with input, output and forget cells that allows it to retain important information. [62] 

 

𝑖𝑡 = 𝜎(𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖 )           (2.3.4) 

 

𝑓𝑡 = 𝜎(𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊𝑓  )    (2.3.5) 

 

𝑜𝑡 = 𝜎(𝑥𝑡𝑈𝑜 + ℎ𝑡−1𝑊𝑜  )    (2.3.6) 

 

Ć𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑈𝑔 + ℎ𝑡−1𝑊𝑔 )           (2.3.7) 

 

𝐶𝑡 = 𝜎(𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ć𝑡 )           (2.3.8) 
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ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) ∗ 𝑜𝑡            (2.3.9) 

 

 

Equations (2.3.3) – (2.3.9) describe the mathematics of the LSTM cell. Figure 5 shows the 

internal diagram of the LSTM cell. Here, I, f, o shown indicate input, forget and output gates 

respectively. W indicates the recurrent connection from the previous hidden state and the U is 

the weight matrix that transforms the inputs to the current hidden layer. The sigmoid function 

converts all the values to (0, 1) and helps define the information that can flow through the 

gates. Ć𝑡 is the hidden state while C is the internal memory unit. This memory unit helps to 

combine the current inputs and context from the previous hidden states to generate a better 

vector representation of the input. It is this vector representation that we generally use to encode 

our text data.   

 

B. Gated Recurrent United (GRU) 

GRUs is a variant of LSTMs which have fewer parameters and easier to train on. It was 

introduced by Cho et al. [35]. Figure 6 shows the structure of a GRU. 

 

Figure 6: A GRU unit which has comparatively fewer parameters and is easier to train 

and tune. [62] 

 

𝑧𝑡 = 𝜎(𝑥𝑡𝑈𝑧 + ℎ𝑡−1𝑊 𝑧 )     (2.3.10) 

 

𝑟𝑡 = 𝜎(𝑥𝑡𝑈𝑟 + ℎ𝑡−1𝑊𝑟 )      (2.3.11) 
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ĥ𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑈ℎ + (𝑟𝑡 ∗ ℎ𝑡−1)𝑊ℎ )    (2.3.12) 

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ĥ𝑡 )    (2.3.13) 

 

Equations (2.3.10) – (2.3.13) describe the mathematical operation of the GRUs. The r is the 

reset gate while z is the update gate. The reset gate measures how much of the new input will 

be combined with the memory and the update gate defines how much of the previous memory 

will be kept. Assigning reset to 1 and update to 0, we have the original RNN model. 

 

2.4 Multi-modal and Cross-modal Retrieval 

Cross-modal retrieval has gained significant traction in the last decade due to the availability 

of vast amounts of data. The information retrieval from one modality to another is a challenging 

task because of the difference in their statistical properties. Most traditional techniques involve 

the formulation of a latent space in which the properties of the two modalities can be matched. 

Canonical Correlation Analysis (CCA) [53] is one technique that learns to maximize the 

correlation of the data belonging to different modalities. 

More recently, with the development of deep learning techniques, the field of cross-modal 

retrieval has seen tremendous development. Deep learning has helped improve the way in 

which data can be encoded into vectors. Similarly, models have been built that have transferred 

knowledge across multiple modalities. Most work in the multi-modal space restricts itself to 

only two modalities. There are two types of works in the cross-modal retrieval space: 1) cross-

modal hashing [36, 37] which maps the data into a common space in a computationally efficient 

manner which would make retrieval faster; and 2) real-value based cross-modal retrieval which 

uses different loss functions to perform retrieval.  

Zhang et al. [60] developed a framework that generated vector representations of sentences 

while Sah et al. [61] used multiple captions to generate images from common vector 

representations. Deng et al. [45] performed cross-modal hashing using a triplet based hashing 

network and Wu et al. [46] showed the use of adversarial training by using cycle consistency 

loss function. The task of real-value based retrieval can be modeled in different ways. Qi et al. 

[8] used the triplet loss function to form triplets (anchors, positive, negative) samples and train 
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a model whose objective function ensured that the encoded vector representation of anchors 

and their corresponding positive samples lie close in the latent space, while the encoded vector 

representation anchors and negative samples are pushed far away. Feng et al. [22] used 

correspondence auto encoders while Qi and Peng [9] used reinforcement learning to perform 

cross-modal retrieval.  

Zhen et al. [43] used a combination of a modality invariance loss, linear classifier, intermodal 

and intramodal discriminative loss to perform retrieval as shown in (2.4.1) and (2.4.2) and 

(2.4.6) respectively.  Figure 7 shows the architecture used by the DSCMR [43] model. The 

image and text are passed through separate CNNs and their feature vectors are extracted. The 

losses described in (2.4.1), (2.4.2) and (2.4.6) are then calculated on these common space 

vectors. 

𝐿𝑖𝑛𝑣 =
1

𝑁
||𝑈 − 𝑉||𝐹     (2.4.1) 

 

𝐿𝑐𝑙𝑎𝑠𝑠 =
1

𝑁
||𝑃𝑇𝑈 − 𝑌||𝐹 +  

1

𝑁
||𝑃𝑇𝑉 − 𝑌||𝐹     (2.4.2) 

 

𝐿𝑖𝑛𝑡𝑒𝑟 =
1

𝑁2 ∑ (log (1 +  𝑒Ѓ𝑖𝑗) − 𝑆𝑖𝑗
𝛼𝛽

Ѓ𝑖𝑗  )
𝑁

𝑖,𝑗=1
       (2.4.3) 

 

𝐿𝑖𝑚𝑔 =
1

𝑁2 ∑ (log (1 + 𝑒Ф𝑖𝑗) − 𝑆𝑖𝑗
𝛼𝛼Ф𝑖𝑗  )

𝑁

𝑖,𝑗=1
        (2.4.4) 

 

𝐿𝑡𝑥𝑡 =
1

𝑁2 ∑ (log (1 +  𝑒𝜃𝑖𝑗) − 𝑆𝑖𝑗
𝛽𝛽

𝜃𝑖𝑗  )
𝑁

𝑖,𝑗=1
         (2.4.5) 

 

𝐿𝑚𝑜𝑑𝑎𝑙 = 𝐿𝑖𝑛𝑡𝑒𝑟 + 𝐿𝑖𝑚𝑔 + 𝐿𝑡𝑒𝑥𝑡                                    (2.4.6) 

 

Where: 

 Ѓ𝑖𝑗  is the cosine distance between two data points belonging to different modalities. 
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 Ф𝑖𝑗  is the cosine distance between two data points belonging to image modality. 

 𝜃𝑖𝑗  is the cosine distance between two data points belonging to text modality. 

 𝑆𝑖𝑗
𝛼𝛼 , 𝑆𝑖𝑗

𝛼𝛽
, 𝑆𝑖𝑗

𝛽𝛽
 are indicator functions whose value is 1 if the two elements are of 

same class and 0 otherwise. 

 

Figure 7: The DSCMR [43] architecture consisting of three sepearate loss functions to perform cross modal 

retrieval. 

 

Xu et al. [42] used adversarial loss functions and built an architecture that converted a 4096-

dimensional vector representation to a 200 dimension vector using fully connected layers. Peng 

et al. [47] created an architecture that was able to retrieve images from their outline sketches 

and vice-versa. Works in [55, 56] show the use of retrieval of data from one modality to the 

other at the granular level where the input query is able to retrieve its corresponding ground-

truth sample of the other modality.   

Many image captioning works like [39, 40] use attention mechanism to better align words and 

image regions. Similarly, the attention mechanism proposed by Lee et al. [41] can be used for 

a better correlation between vectors belonging to different modalities. Attention models 

provide important context to different parts of the input text and the different regions of the 

image. This idea can be extended to other modalities as well if attention is applied to multi-

dimensional feature vector that is formed after the encoding network. 

In our work, we focus on the CUB-Birds [58], Pascal [50], NUSWIDE [49] datasets have data 

belonging to two modalities and also extend the ability of our model to handle up to five 

modalities where we test our model on the XMedia [47, 48] and XMediaNet [51, 59] datasets. 
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2.5 Metric Learning Loss Functions 

The backbone of all deep learning applications is to define an appropriate loss function for the 

required task. Metric learning is a type of learning that is able to map similar representations 

of data between two or more modalities. Metric learning involves the process of formulating 

pairs of positive and negative data to achieve the required alignment in the data. The following 

are some of the popular metric learning loss functions that have been developed. 

 

A. Contrastive Loss Function [38] 

Introduced by Hadsell et al. [38], the contrastive loss function calculates the distance between 

the encoding of the image and the text data points. The goal of the loss function is to have the 

negative pairs at least a distance of margin away from the positive pairs where the distance 

calculated is the Euclidian distance between two points. 

 

𝐿𝑐 =
1

2𝑁
∑((𝑦)𝑑2 + (1 − 𝑦) 𝑚𝑎𝑥(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑,  0)2)           (2.5.1) 

Where  

 d is the distance between image and sentence pair 

  y is 1 if the two samples are similar and 0 if they are dissimilar. 

 

B. Triplet Loss Function [12] 

The triplet loss function forms triplets of data instead of pairs that are formed by the contrastive 

loss. Schroff et al. [12] developed this loss where an anchor, positive and a negative sample is 

selected. The objective of the loss function is to minimize the distance between the anchor and 

the positive sample while keeping the distance between the anchor and negative sample at least 

a margin apart, where the margin is similar to that used in the contrastive loss. The distance 

function used in the triplet loss is the Euclidian distance. Figure 8 depicts the different 

circumstances when the triplet loss will be updated. 

 

𝐿𝑇 =
1

2𝑁
∑  𝑚𝑎𝑥(0, |𝑓𝑎

𝑖 − 𝑓𝑝
𝑖|

2
 − |𝑓𝑎

𝑖 −  𝑓𝑛
𝑖|2  + 𝑚𝑎𝑟𝑔𝑖𝑛)          (2.5.2) 
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Where  

 fa
i is the feature embedding of the anchor 

 fp
i is the feature  embedding of the positive sample 

 fn
i is the feature embedding of the negative sample 

 

 

Figure 8 Cases for the triplet loss. Loss is only updated in the bottom two cases when the negative is closer to the positive 

and the anchor. 

 

C. Adversarial Loss Function [57] 

Adversarial loss functions have been successfully able to generate images from noise vectors 

using discriminator and generator networks. There are two goals of adversarial training: 1) to 

train a discriminator network that is unable to distinguish between real and fake data, and 2) 

train a generator network that can seamlessly generate fake samples of data that will be able to 

fool the discriminator. 

 

(𝑚𝑖𝑛 𝐺, 𝑚𝑎𝑥 𝐷) 𝐿(𝐷, 𝐺) =  𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 𝐷(𝑥)] +  𝐸𝑥~𝑝𝑧(𝑧)

[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] 

   (2.5.3) 

Where  

 D – Discriminator whose goal is to be able to distinguish between real and fake data 
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 𝐺 – Generator whose goal is to build a network that is very good at fooling the 

discriminator 

 x, z – real and generated samples 

 

 

2.6 Semi-Hard Negative Mining 

In practice, it is easy to find pairs of positive and negative samples that are a margin distance 

apart. Since these pairs already satisfy the underlying condition, they will not contribute to the 

loss calculation. Semi-hard negative mining used by Schroff [12] et al. is a technique where 

the harder of the negative samples are used to calculate the loss and allow for better and faster 

convergence of the network.  

 

The negative samples can be categorized as below:  

 hard – they are closer to the anchor than positive samples 

 Semi-hard – they lie within margin distance from the positive samples 

 easy negatives – they lie beyond the positive samples 

 

The selection of easy negatives results in a loss value of zero whereas the selection of hard 

negatives results in a loss value that could be too high for the model to handle. Therefore, the 

semi-hard negatives are just the right negative samples that can help our model converge.  
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Chapter 3 
 
 

Methodology 

 

 
In this section, we introduce the various architectures and networks that will be used in this 

research and explore the differences between them.  Figure 8 describes an ideal transformation 

that will happen with a common vector representation. Initially, when the model is randomly 

initialized, we see that all the points in the space are scattered without any clusters being 

formed. The right half of Figure 9 depicts how the space looks after training the model and 

minimizing the loss values for the entire model. The different colors in the figure represent the 

various modalities of data like images, text, audio, video, etc. whereas the shapes represent the 

categories (cars, boats, people, tigers, etc) associated with these data points.  

The training process yields a transformation function for any given data point into the vector 

space. A test sample will undergo the same transformation and will be projected into the space. 

Ideally, the test sample should lie very close to other samples of the same category.  

 

 

Figure 9: The vector space before (left) and after (right) training. The colors represent the different data modalities and 

the shapes represent the categories. 
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3.1 Common Vector Space (CVS) 

The common vector space architecture (CVS) takes in data belonging to different modalities 

and dimensions and maps them on to a lower-dimensional common embedding space. The 

CVS model is developed for two modalities and extended up to five modalities. The CVS uses 

different encoders to extract feature vectors and uses fully connected neural networks to map 

into the common space. Figure 8 shows the architecture overview of the CVS model with five 

input modalities.  CNNs are used as the default encoding network for images and videos, audios 

are encoded using MFCC features whereas text data can be encoded using a bag of words 

model or a sentence-to-vector representation such as SkipThoughts [13].  

These encoders convert a higher dimensional data from fully connected layers, into a vector 

representation to further reduce the dimensions of these vectors. To simplify, (3.1.1) shows the 

generic transformation of the input into the CVS representation. X is the input data which could 

either be images, text, video, audio or 3D, E is the common vector space representation, WE is 

the encoder weight matrix, and WT is the weight matrix that transforms the feature vector into 

the common embedding vector representation.  

  

𝐸 = 𝑊𝑇(𝑊𝐸𝑋)      (3.1.1) 

 

Figure 10 depicts the architectural set up of the CVS model. In Figure 9, the vector 

representations are indicated by hi, ht, ha, hv and h3d. Each modality has its separate encoder 

that converts the raw data into a vector representation. These vector representations are of 

different dimensions. For example, hi is a 4k vector from ResNet [6], while ha is a 29 

dimensional MFCC feature, and so on. To bring all modalities to the same dimensions, we add 

two fully connected neural network layers, each containing 512 neurons. These layers along 

with the attention layer are initialized randomly and trained to minimize the total loss of the 

system. 
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Figure 10 Architecture for the CVS model. Data belonging to different modalities will get encoded into vectors after which 

they are projected into the common embedding space using fully connected layers. 

 

Once the input data is projected onto the CVS, we use the cross-entropy loss function to perform 

classification and use metric learning losses simultaneously to cluster the samples. In this 

embedding space, the points are rearranged such that the total entropy of the system is 

minimized. In the CVS, objects that belong to the same category are mapped close to each 

other and well separated from objects that belong to some other category irrespective of their 

modality.  

For example, the images, text, and videos of an elephant will be well separated from the 

images, audio, and video of a plane. The objective of the training is to minimize the inter-

cluster distance and maximize the intra-cluster distance. The distance between any two vectors 

can be calculated as the Euclidian distance as shown in (3.1.2) or the cosine distance between 
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two vectors as shown in (3.1.3). Figure 11 gives us an intuitive idea of how cosine distance 

works. The cosine distance gives importance to the angular rotation between two vectors and 

gives a similarity score. 

 

 

Figure 11 Cosine distance between two vectors in a 2D representation. 

 

𝑑 =  ||𝑓𝑖 − 𝑓𝑗||2
2
                                  (3.1.2) 

 

𝑑 =
cos (𝑓𝑖 ,𝑓𝑗 )

||𝑓𝑖 ||.||𝑓𝑗 ||
                                  (3.1.3) 

 

A. Loss Functions 

The CVS uses three loss functions to minimize the entropy of the common space. These 

loss functions are common across the variations of the model that we describe in Sections 

3.2 and 3.3. Figure 12 shows the adversarial loss function in this context of this model. The 

adversarial loss function has two separate loss values that are back propagated. The image 

reconstruction loss tries to minimize the difference between the input image embedding 

and the output image embedding while the sentence reconstruction loss minimizes the 

difference in the sentence embeddings.  
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Figure 12: The adversarial loss function is calculated by comparing the generated and input images and 

sentences. 

 

Equation (3.1.4) describes the classification loss for the CVS model where 

 n is the total number of the samples,  

 y is the ground truth 

 f(s) is the sigmoid function as shown (3.1.5). 

 

𝐿𝑐 = −
1

𝑛
  ∑ (𝑦𝑖 𝑙𝑜𝑔 𝑓𝑖(𝑠) + (1 − 𝑦𝑖) (1 − 𝑙𝑜𝑔 𝑓𝑖(𝑠))

𝑛

𝑖=1
)        (3.1.4) 

 

𝑓(𝑠) =
𝑒𝑠𝑖 

∑ 𝑒
𝑠𝑗 

𝐶

𝑗

                                     (3.1.5) 
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A modified version of the triplet loss described in Section 2.5 is used in (3.1.6). The triplet loss 

we implement has two parts: inter-modal and intra-modal triplet loss. The loss is calculated for 

two modalities at a time. The inter-modal loss consists of the triplets between the two 

modalities. The intra-modal loss will calculate the triplet loss for the data points belonging to 

the same modality. We use a weighted sum of these losses to calculate the total triplet loss.  

 

𝐿𝑡 = ∑ 𝛾1 ∑  𝑚𝑎𝑥(0, |𝑓𝑎
𝑥 −  𝑓𝑝

𝑥|
2

 − |𝑓𝑎
𝑥 −  𝑓𝑛

𝑥|2  + 𝛼1)

𝑖,𝑠,𝑣,𝑎,3𝑑

𝑥,𝑦

+ 

𝛾2 ∑  𝑚𝑎𝑥(0, |𝑓𝑎
𝑦

−  𝑓𝑝
𝑦

|
2

 − |𝑓𝑎
𝑦

−  𝑓𝑛
𝑦

|2  + 𝛼2) + 

𝛾3 ∑  𝑚𝑎𝑥(0, |𝑓𝑎
𝑥 −  𝑓𝑝

𝑦
|

2
 − |𝑓𝑎

𝑥 −  𝑓𝑛
𝑦

|2  + 𝛼3)  

      (3.1.6) 

 

Where: 

 |𝑓𝑎
𝑥 −  𝑓𝑝

𝑥|
2
is the distance between the anchor and positive sample. 

 |𝑓𝑎
𝑥 −  𝑓𝑛

𝑥|2is the distance between the anchor and negative sample. 

 α1, α2, α3 are the margins for the triplet loss. 

 γ1, γ 2, γ 3: are the individual weights of the 3 losses. 

 

A weighted combination of Lc and Lt and are used in (3.1.8) to calculate the total toss of the 

system where α and 𝛽 are individual weights given to these two loss terms. We observe that 

the adversarial loss does not improve the model much. In fact, when used individually, it is 

unable to perform at the required level. We further discuss this phenomenon in Chapter 5. 

 

𝐿 = α𝐿𝑐 +  𝛽𝐿𝑡            (3.1.7) 

 

B. Training Strategy 

Similar to most deep learning networks, the CVS is trained in batches. In the implementation 

of the triplet loss, for any iteration, an anchor, positive and negative sample is selected. Since 

the CVS model can handle up to five modalities, this selection happens in batches continuously 

till we have traversed through the entire dataset. In the CVS setting, all the information for all 
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the modalities is given to the model at the initial stage. If new data is to be added to the network, 

the entire network has to be re-trained. 

In the CVS setting, we will always need (
𝑛
2

) attention blocks where n is the total number of 

modalities. In the case of n = 5, we need 10 attention blocks. 

Such a training methodology means that the CVS architecture can only be built once we have 

all the data that is going to be used.  

 

C. Aligned Attention 

Attention has proven to be an effective mechanism in aligning two vectors. The alignment 

provides a way to map local features across the two modalities. Attention has shown to be 

effective in tasks such as image captioning [39, 40]. For a given duplet of vectors, attention 

calculates a similarity score et
(i) for every feature in the vector where i is the ith  feature and t is 

time step. Computation of et
i is shown in (3.1.7) 

 

 𝑒𝑖
𝑡 = 𝑊𝑇(𝑊𝑎ℎ𝑡−1 + 𝑈𝑎𝑣𝑖 + 𝑏𝑎)           (3.1.8) 

 

Where  

 ht-1 is the previous hidden state. 

 Vi is the ith feature. 

 Wa, Wt, Ua, ba are all learnable parameters. 

 

et
i is then passed through a softmax layer as (3.1.8). The final feature is a weighted combination 

of all the N input features as shown in (3.1.9). 

 

𝑎𝑖
𝑡 =

exp (𝑒𝑖
𝑡)

∑  exp (𝑒𝑘
𝑡)

𝑁

𝑘=1

        (3.1.9) 

 

𝜃𝑡(𝑉) = ∑ 𝑎𝑖
𝑡𝑁

𝑘=1
𝑣𝑖      (3.1.10) 
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𝜃𝑡(𝑉) is used as the final output of the attention layer which transforms the input vector into a 

new aligned vector that is better aligned with each other.  

In the multi-modal CVS setting, the output of the encoder network is fed to the attention model. 

The attention model as shown in Figure 13 takes in two input embeddings and transforms into 

an attended embedding. These embeddings are L2 normalized at the output stage before being 

projected into the CVS space. For any given two modalities, there has to exist one attention 

block between them. This pairwise attention block ensures that a pair of data points that belong 

to the same class are well aligned.  Equation (3.1.10) shows how two input embeddings are 

converted to a single value at any given time step.  

 gi – input embedding of modality 1. 

 gs – input embedding of modality 2. 

 gis – the element-wise product of gi and gs. 

 Wi, Ws, We – learned weights. 

 

Equation (3.1.12) passes 𝑒𝑖𝑠
𝑡  through a softmax layer. 𝑒𝑖𝑠

𝑡
 is the same dimension as the CVS 

dimension. ∑ exp (𝑒𝑖𝑠
𝑡 ) is a scalar quantity that is the sum of all the elements in the 𝑒𝑖𝑠

𝑡
  

vector. Thus, equation (3.1.12) provides the softmax functionality. In the attention mechanism, 

we insert a ResNet like skip connection so that the weight matrices just have to learn the 

difference between the input and the output and not the entire transformation itself. This 

reduces learning time and improves results in our experiments and is a key component of the 

aligned attention block.  

 

𝑒𝑖𝑠
𝑡 = 𝑊𝑒𝑡𝑎𝑛ℎ(𝑔𝑖𝑊𝑖 + 𝑔𝑠𝑊𝑠 + 𝑔𝑖  . 𝑔𝑠𝑊𝑖𝑠)           (3.1.11) 

 

𝛼𝑖𝑠
𝑡 =

exp (𝑒𝑖𝑠
𝑡 )

∑ exp (𝑒𝑖𝑠
𝑡 )

               (3.1.12) 

Equation (3.1.13) and (3.1.14) shows the output of the attention block. The 𝛼𝑖𝑠
𝑡

 is multiplied 

with the input and added to the output.  

 

𝑔𝑖 =  𝑔𝑖 + 𝛼𝑖𝑠
𝑡  . 𝑔𝑖              (3.1.13) 
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𝑔𝑠 =  𝑔𝑠 + 𝛼𝑖𝑠
𝑡  . 𝑔𝑠             (3.1.14) 

 

 

Figure 13 Aligned attention block which takes in two inputs and gives two corresponding outputs. 

 

D. Limitations of the CVS Model 

The CVS model has some limitations: 

 Every time a new modality is added to the CVS, the entire architecture will be reset 

and we need to restart training from scratch.  

 There is no provision in the structure of the CVS to perform incremental stage-wise 

training.  

 Since the model will re-train, we lose traction of the existing inferences. This makes 

the CVS model inflexible to the addition of new modalities. 

We try to address some of these issues by introducing Multi-staged Common Vector Space 

(M-CVS) and Reference Vector Space (RVS) respectively, in Sections 3.2 and 3.3. 

 

3.2 Multi-Staged Common Vector Space (M-CVS) 

The Multi-Staged Common Vector Space (M-CVS) is a space that is the same as the CVS 

except the training procedure is different. The objective here is still the same as the CVS and 

similar objects and concepts will lie close to each other in this M-CVS. To overcome the 

shortcomings of the CVS model, we develop a training strategy that builds the CVS 

architecture in a stage-wise manner. The M-CVS model network is able to add newer 

modalities of data in a stage-wise manner without having to retrain or change the existing 

network architecture. This means that the M-CVS model can be initially trained on two 
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modalities and at a later time, an additional third, fourth and fifth modality can be added 

without having to change the original two modality network. 

In the M-CVS model, the updating of weights in the back-propagation is controlled such that 

only weight matrices belonging to the new modality of data are updated whereas the other 

weights remain unchanged. For such an architectural setup, n new attention blocks are added 

in every stage.   

Figure 14 shows the architecture of the multi-stage CVS model. The data belonging to different 

modalities passes through separate encoding networks and fully connected layers before being 

passed into the M-CVS layer. In every subsequent stage, newer modalities along with the new 

attention blocks are added. For example, in stage 2, the video modality is added to the M-CVS 

model and an additional two attention blocks are introduced. The attention block used in the 

M-CVS model is the same as described in Chapter 3.  

 

A. Training Strategy 

The M-CVS model uses the same feature extractors as the CVS model. The advantage of 

defining the M-CVS is that it allows the addition of new information to the vector space without 

disturbing existing information in the space. For instance, if the image and text modalities were 

present in the M-CVS, the addition of the video modality will not affect the existing 

transformation between the images and text modalities.  
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Figure 14 Architecture for the Multi-Stage CVS Model. Every additional stage takes n new attention blocks. 

3.3 Reference Vector Space (RVS) 

The Reference Vector Space (RVS) is again, conceptually the same as the CVS and the M-

CVS. The RVS goes one step further in restricting the number of attention blocks required at 

each stage. The main idea of the RVS is to be able to have one transformation for every 

modality into the common embedding space. The RVS is inspired by the International Color 

Consortium’s device independent profile connection space where inputs from multiple sources 

are mapped to a common reference color specification that allows easy transfer from one color 

space to any other. 

In the RVS, we define one reference modality to which all other modalities will be mapped to. 

This allows the mapping of all new modalities through this singular reference modality. Similar 

to the CVS and the M-CVS architecture, the goal is to have similar objects and concepts lie 

close to each other in clusters that are well separated from groups of other concepts and objects 

in the RVS. Figure 15 shows the architecture set up of the RVS model where only one 

additional attention block is required to map the new modality into the RVS. 
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A. Aligned Attention for RVS 

The attention mechanism developed for the RVS model is such that there are only n 

attention blocks for n modalities. In the CVS model, there were (
𝑛
2

) attention blocks 

whereas, in the M-CVS model, there are n additional blocks for a newly added modality. 

For the RVS model, there is only 1 additional attention block added per new modality. 

Figure 16 describes the modified attention mechanism for the RVS. Equation 3.3.1 

describes the calculations for the aligned attention for the RVS.  

 

 

Figure 15 Architecture for the RVS model which has 1 attention block for every data modality present in the RVS. 
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Figure 16 Attention mechanism for the RVS model. 

 

We use a similar attention model as described in Chapter 3 but modify it to satisfy the 

needs of the RVS. We break down the We from 3.1.11 into two parts Wie and  Wse where 

Wie is the reference weight that does not change after the initial training. However, Wse 

changes after the addition of every modality. So, for each additional modality that is added 

to the architecture, we will add a new Wse .  

𝑒𝑖𝑒
𝑡 = 𝑊𝑖𝑒𝑡𝑎𝑛ℎ(𝑔𝑖𝑊𝑖 + 𝑔𝑠𝑊𝑠 + 𝑔𝑖  . 𝑔𝑠𝑊𝑖𝑠)          (3.3.1) 

 

𝑒𝑠𝑒
𝑡 = 𝑊𝑠𝑒𝑡𝑎𝑛ℎ(𝑔𝑖𝑊𝑖 + 𝑔𝑠𝑊𝑠 + 𝑔𝑖  . 𝑔𝑠𝑊𝑖𝑠)         (3.3.2) 

 

𝛼𝑖𝑒
𝑡 =

exp (𝑒𝑖𝑒
𝑡 )

∑ exp (𝑒𝑖𝑒
𝑡 )

               (3.3.3) 

 

𝛼𝑠𝑒
𝑡 =

exp (𝑒𝑠𝑒
𝑡 )

∑ exp (𝑒𝑠𝑒
𝑡 )

               (3.3.4) 

 

Equations (3.3.5) and (3.3.6) show the output of the attention block. The 𝛼𝑖𝑠
𝑡

 is multiplied 

with the input and added to the output.  

 

𝑔𝑖 =  𝑔𝑖 + 𝛼𝑖𝑒
𝑡  . 𝑔𝑖              (3.3.5) 



37 | P a g e  

 

 

𝑔𝑠 =  𝑔𝑠 + 𝛼𝑠𝑒
𝑡  . 𝑔𝑠             (3.3.6) 

 

 

3.4 Stage Wise Learning for Multi Modal Embeddings 

To overcome the limitations of the lesser number of multi-modal datasets, we develop a model 

that performs the stage-wise addition of information into the vector space. The subsequent 

addition of new information can be considered as the new modalities that are being added to 

the space.  In the stage-wise learning method, we train our model on subsets of the dataset and 

then incrementally keep adding additional information into the model. The stage-wise learning 

technique can be thought of as a way of pre-training the network. For example, in the first 

stage, we add information about only 10 classes and train the model. In the subsequent stage, 

we use the model from the previous stage and add new class information to the network by 

training it for these additional new classes. We evaluate this model on two sets of data: 

1. A subset of the test data which included only the information from the first stage of training. 

2. The entire holdout test dataset. 

In ‘1.’, we expect the recall scores to decrease across the stages whereas the model becomes 

more generalized. In the first stage, it would have overfitted on the initial classes it was trained 

on but as the stages progress, the overfitting problem will be resolved. In ‘2.’, the model will 

initially perform poorly on the entire test set because it has seen very few classes and the model 

is not robust. However, as the training stages progress, we can see it improving because as the 

model sees more classes, it starts performing better on the test dataset. We limit our work and 

experiments in this architecture to the image and text modalities only.  



38 | P a g e  

 

 

Figure 17: Step by step implementation of stage-wise learning. 

 

A. Training Strategy 

The training strategy is described in Figure 17. Consider a training set containing N categories. 

We divide these categories into groups of K categories each. In the first stage, K categories are 

trained. In the subsequent stages, further K categories are added to the network. At each stage, 

the loss is calculated with respect to the K categories that are being added.  

 

 

 

 

 

 

 

 

 

Stage 1: 

Train on first 
k modalities

Stage 2:

Add a new 
set of k

modalities

Stage 3:

Add a new 
set of k

modalities
…

Final Stage:

Add the last 
set of 

classes to 
the 

architecture
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Chapter 4 
 
 

Implementation 

 

 
4.1 Datasets 

We use multiple multi-modal datasets to test our architecture. Commonly, most datasets consist 

of two modalities. We evaluate the CVS, M-CVS and RVS space on two multimodal datasets 

and the CVS on the two cross modal datasets. 

 

A. XMedia [11, 47] and XMediaNet [51,59] 

The XMedia dataset contains five different modalities of data. It contains images, text, audio, 

video and 3D point data. The number of samples in each of the modalities is stated in Table 1. 

XMedianet is an extension of the XMedia dataset which has the same modalities of data but 

with more data points. The numbers in Table 1 indicate the training and testing split for both 

the datasets. The XMedia and XMediaNet dataset come as pre-extracted features as shown in 

Table 2. The 200 categories in the XMediaNet dataset are classified into primarily two parts: 

animals and artifacts. While animals like elephant, owl, honey bees make up 48 out of the 200 

categories, the artifacts make up the remaining 152 categories including things like violin, 

airplane, shotgun, camera, etc. Figure 18 and Figure 19 display samples from the XMedia and 

XMediaNet datasets respectively. 
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Figure 18: Example from the XMedia [11, 47] dataset. 
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Table 1: XMedia and XMediaNet dataset statistics. Figures indicate the number of training and testing samples. 

 XMedia XMediaNet 

Image 4000, 1000 32000, 8000 

Text 4000, 1000 32000, 8000 

Video 400, 100 8000, 2000 

Audio 800, 200 8000, 2000 

3D 400, 100 1600, 400 

Categories 20 200 

 

 

 

Figure 19 Example from the XMediaNet [51, 59] dataset. 
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Table 2: XMedia and XMediaNet Features and their dimensions. 

 XMedia XMediaNet Dimensions 

Image CNN CNN 4096 

Text Bag of Words Bag of Words 2048 

Video CNN CNN 4096 

Audio MFCC MFCC 29 

3D LightField LightField 4700 

 

B. Nuswide [49] and Pascal [50] 

The Nuswide and Pascal datasets contain images and their corresponding text data. Each of the 

images and text samples belongs to one category and we perform retrieval for an input query 

image or text. Figure 20 displays samples from the Nuswide dataset and Table 3 describes the 

dataset statistics for the Nuswide and Pascal datasets. 

 

Figure 20: Sample images from the Nuswide dataset. [49] 

 

C. Birds [58] 

We show zero-shot retrieval on the Birds dataset to evaluate the performance of the stage-wise 

learning model. The Birds dataset contains 150 categories for training and 50 unseen categories 

for testing. The goal of the zero-shot retrieval is to understand if the model is able to perform 

well on unseen categories and if the clusters that are being formed are robust or not. For the 

stage-wise learning methods, we split the Pascal and Nuswide datasets into groups of five 

classes and implement stage-wise learning on these groups. Additionally, we also report 
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stagewise learning scores for the zero-shot learning on the Birds dataset. Table 4 describes the 

dataset statistics for the Birds.  

 

Table 3: Pascal and Nuswide dataset statistics. Figures indicate the train and test splits. 

 Pascal Nuswide 

Image 800, 200 8000, 2000 

Text 800, 200 8000, 2000 

Categories 10 20 

D.  

 
Table 4: Train and test split for the Birds dataset used to perform zero-shot retrieval. 

 Birds 

Train 8855, 2933  

Categories 150, 50 

 
 

4.2 Implementation 

We implement cross-modal retrieval on these datasets using gradient descent based techniques 

where the goal is to minimize the loss functions described in Section 3. We pre-extract the 

vector representations of all our data. We use ResNet architecture to extract the image features 

and SkipThoughts to extract the text features for the cross modal retrieval task. For the 

multimodal retrieval task, we use the features enlisted in Table 2.  We use Tensorflow on 

Nvidia GPUs to perform all our experiments and use a 512 dimension common embedding 

space. Our batch size is fixed at 128 with a learning rate of 0.001. For the triplet loss, we set 

all the margins (α1, α2, α3) to 1.0. We set γ1, γ2, γ3 to 0.25 and 0.25, 0.5 respectively.  

 

A. Evaluation Metric 

Precision, recall, F1 score, accuracy are some of the most popular model evaluation metrics. 

In a task like retrieval, we want to measure the precision of our model for every query. In case 

of multiple queries, we want to define a metric that that represents the performance of the 

model for all the queries. That is why, mean average precision is the chosen metric in the area 

of information retrieval.  
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We calculate the average precision value for the top K queries. 

 

    𝐴𝑃 =
1

N
∑ (𝑝(𝑟). 𝑟𝑒𝑙(𝑟))

𝐾

𝑛=1
   (4.2.1) 

 

Where: 

 N is the number of relevant data samples in the retrieved results. 

 p(r) is the precision at r and rel(r) is a flag that indicates if the retrieved result is a 

match or not. 

The mAP is obtained by averaging the AP of all the queries. We report the mAP at 50 (K = 50) 

on all our experiments.  

 

B. Intuitive Understanding of mAP 

Retrieval is primarily the task of searching for information that is very similar to the query. 

Figure 21 depicts an intuitive way of understanding how this metric is calculated. Mean 

average precision is a standard metric used to measure the performance of a retrieval system. 

Let Q be a user query, G be a set of labeled data in our common embedding space and d(i,j) be 

a measure of the similarity between two objects i,j. Let G’ be the ordered set of G according to 

the function d(i,j) and k be an index of G’. 

 

Figure 21: A visualization of mean average precision. 

 



45 | P a g e  

 

 

 

In the above query, the average precision for the Q is given by: 

 

𝐴𝑃 =
(1.0 + 0.5 + 0.6)

3
 

 

Similarly, the AP is calculated for the queries in the test set and mAP is the average of all 

the APs. 
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Chapter 5 
 
 

Results and Analysis 

 

 
5.1 Results 

In this section, we compare all the implementations discussed in Chapter 3 on the datasets 

discussed in Chapter 4. We report mAP@50 scores and different visualizations to analyze our 

results.  

 

A. CVS Model: Pascal and Nuswide 

We evaluate our CVS model on the Pascal and the Nuswide datasets. We observe that the 

addition of the aligned attention mechanism improves retrieval as is evident from the scores. 

The aligned attention gives an improvement of 15% over the baseline CVS model.  

 
Table 5: mAP scores for the Pascal and Nuswide dataset. 

Dataset Method img2txt txt2img 

Pascal 

UNSCM 0.304 0.282 

Deep-SM 0.446 0.478 

ACMR 0.535 0.543 

DCKT 0.582 0.587 

MCSM 0.598 0.597 

CBT 0.602 0.583 

DSCMR 0.710 0.722 

Baseline CVS 0.591 0.567 

CVS + Aligned Attention 0.660 0.671 

Nuswide 

UNSCM 0.312 0.354 

CCL 0.506 0.535 

CSGH 0.542 0.569 

ACMR 0.544 0.538 

SC ACMR 0.545 0.448 

DCKT 0.556 0.584 

UGACH 0.631 0.641 

DSCMR 0.611 0.615 

  Baseline CVS 0.450 0.485 

  CVS + Aligned Attention 0.574 0.676 
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B. CVS Model: XMedia and XMediaNet (2 modalities) 

Table 6 displays the scores on the XMedia and XMediaNet when it is trained only on image 

and text modalities.  

Table 6: mAP scores for the Xmedia and XMediaNet dataset. 

Dataset Method img2txt txt2img 

Xmedia 

CBT 0.516 0.464 

CM-GAN 0.567 0.551 

Baseline CVS 0.895 0.902 

CVS + Aligned Attention 0.908 0.950 

XmediaNet 

CBT 0.516 0.464 

CM-GAN 0.567 0.551 

Baseline CVS 0.536 0.495 

CVS + Aligned Attention 0.598 0.583 

 

 

C. CVS Model: Xmedia and XMediaNet (5 modalities) 

Table 7 represents the scores on the XMediaNet when it is trained on all the modalities. The 

scores for images and sentences are much higher because of the higher number of training 

samples in each of these modalities. The larger corpus of training data for these two modalities 

means that the model is able to generalize well across a large spectrum of data. The same 

cannot be said about videos as it has fewer samples to train on (see Table 2). 

 
Table 7: mAP scores for the images, text, and video for the XMediaNet dataset. 

Attention  I S V 

No 

I  0.688 0.417 

S 0.616  0.347 

V 0.306 0.281  

Average 0.442 

Yes 

I  0.775 0.605 

S 0.685  0.504 

V 0.395 0.383  

Average 0.558 

 

Table 8 shows the scores on the XMedia when it is trained on all the modalities. Similar to the 

XMediaNet dataset, the scores of images to sentence and sentence to image retrieval are high 

owing to the vast amount of training data that is present in these two modalities.  
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Table 8: Cross modal retrieval scores (mAP) for the five modalities in the XMedia dataset. 

Method Q - R  I     T     A     V     3D   

CVS 

 I    - 0.895 0.759 0.606 0.624 

 T    0.902 - 0.763 0.550 0.637 

 A    0.504 0.480 - 0.293 0.446 

 V    0.138 0.317 0.253 - 0.153 

 3D   0.436 0.580 0.412 0.129 - 

 Avg  0.494 

CVS + 

Attention  

 I    -     0.908 0.708 0.801 0.731 

 T    0.95  -     0.743 0.828 0.769 

 A    0.416 0.477 -     0.341 0.42 

 V    0.49 0.481 0.366 -      0.434 

 3D    0.58 0.545 0.457 0.558  -      

 Avg  0.600 

 

 

To coalesce the twenty different retrieval scores, we evaluate a model based on the average 

performance across all these modalities. We observe that the CVS model with the aligned 

attention works best and gives an average retrieval score of 0.6. The 3D and audio modalities 

have fewer samples and low dimensionality respectively and hence the scores for these two 

modalities are comparatively lower. Figure 22 describes the decrease in the total loss as training 

progresses. 

 

 

Figure 22 The total loss for the CVS model as a function of the epochs visualized on Tensorboard. 
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D. M-CVS Model: Xmedia and XMediaNet (5 modalities) 

In the M-CVS model, we implement a four-stage learning approach for the XMedia dataset. The 

four stages help build the model such that each new stage does not affect previous stages of training. 

The four stages of training are described below. 

 Stage 1: Train images and text modalities. 

 Stage 2: Perform incremental addition of the video modality. 

 Stage 3: Add audio modality to the architecture. 

 Stage 4: Add 3D modality to the stage-wise learning architecture. 

The scores reported in Table 9 are the scores after the fourth stage of training. These scores are 

comparable with the CVS model.  

 

Table 9: Cross modal retrieval scores(mAP) for the M-CVS model on the XMedia datadset. 

Method Q - R  I     T     A     V     3D   

S2UPG 

 I     -    0.27 0.265 0.264 0.394 

 T    0.275  -     0.242 0.242 0.338 

 A    0.274 0.244  -    0.207 0.363 

 V    0.225 0.193 0.168 -    0.267 

 3D   0.345 0.275 0.329 0.276 -       

 Avg  0.273 

SCVM 

 I     -    0.903 0.406 0.532 0.655 

 T    0.889  -     0.507 0.549 0.722 

 A    0.438 0.527  -    0.313 0.37 

 V    0.553 0.58 0.302 -    0.45 

 3D   0.603 0.679 0.37 0.426 -       

 Avg  0.539 

M-CVS 

 I    - 0.897 0.531 0.809 0.782 

 T    0.943 - 0.538 0.840 0.822 

 A    0.508 0.513 - 0.202 0.505 

 V    0.521 0.211 0.318 - 0.282 

 3D   0.616 0.627 0.338 0.537 - 

 Avg  0.567 

 

In the XMediaNet dataset, we perform just a 2 stage of training for the training. In stage 1, we train 

image and text modalities and then add the video modality. While this model doesn’t perform as 

well as the CVS model, it still performs better than the CVS model without the aligned attention 
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mechanism. Figure 23 shows the decrease in the metric loss across subsequent epochs for the M-

CVS model. 

 

Table 10: mAP scores for images, text, and video for XMediaNet dataset. 

 I S V 

I - 0.777 0.457 

S 0.673 - 0.349 

V 0.227 0.260 - 

 

 
Figure 23: The metric loss for the M-CVS model with respect to the total epochs. 

 

 

E. RVS Model: Xmedia and XMediaNet (5 modalities) 

Similar to the CVS and the M-CVS, we perform stage-wise training, but now introduce a reference 

modality and train all other modalities with respect to that modality. For example, we assign image 

as a reference modality and in stages 1, 2, 3 and 4, we train this reference with text, audio, video 

and 3D point clouds respectively. 

We evaluate the RVS architecture on the XMedia and XMediaNet dataset and observe that the 

architecture remains highly constrained because of the lack of the update of the parameters. Since 

the RVS contains only one attention block in each subsequent stage of training, our model doesn’t 

generalize to all modalities across all the classes.  

In our setting, we set the image branch to be the reference modality and the scores are shown in 

Table 11. If we change the reference modality to the text modality, we observe a slight increase in 
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the average score as shown in Table 11.  However, in comparison with Tables 8 and 9, we can 

observe that the RVS doesn’t perform as well as the CVS or the M-CVS model. This can be 

attributed to the fact that the CVS and the M-CVS models are more flexible and have more 

modality-specific parameters than the RVS model. Figure 24 shows the decrease in category loss 

across epochs for the RVS architecture. 

We experiment with changing the reference modality to text and as shown in Table 11. 

 

Table 11: Cross modal retrieval mAP scores for the XMedia dataset. 

Method Q - R I T A V 3D 

RVS 

(image is 

reference) 

I - 0.909 0.439 0.806 0.208 

T 0.945 - 0.148 0.090 0.095 

A 0.285 0.071 - 0.147 0.155 

V 0.539 0.078 0.185 - 0.143 

3D 0.116 0.045 0.134 0.147 - 

Avg 0.284 

RVS 

(text is 

reference) 

I - 0.942 0.610 0.844 0.265 

T 0.902 - 0.136 0.074 0.185 

A 0.047 0.051 - 0.144 0.155 

V 0.535 0.113 0.177 - 0.145 

3D 0.085 0.118 0.134 0.174 - 

Avg 0.291 

 

 

Figure 24: The decrease in the cross entropy loss with respect to the total number of 

epochs in the RVS model. 
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F. Stagewise Learning 

The stage-wise learning model is evaluated on the Pascal, Nuswide and Birds dataset. In the stage-

wise learning for these datasets, we consider a setting where different classes are introduced into 

the model at different stages. For comparing the stage-wise learning technique, we evaluate our 

model on two test sets. The first is the holdout test set that belongs to the classes that were 

introduced in the first stage and the second is to test our model on the entire held out test set. This 

allows comparison of two things: 1) sensitivity to addition of new data to the model, and 2) the 

robustness of our model to be able to retain what is learned in a previous stage. In this experiment, 

we incrementally add new classes to the model at each stage but do not fine-tune the model for the 

previously existing stages of training. For instance, in the Pascal dataset, we try the following stage-

wise training technique. Table 12 describes the method of splitting the datasets for training across 

multiple stages.  

 

Table 12: Stage wise learning methodology for the Pascal and Birds dataset. 

Stage Train on classes Eval on (Part 1) classes Eval on (Part 2) 

1 1-5 Test samples from 1-5 Entire test set 

2 6-10 Test samples from 1-5 Entire test set 

3 11-15 Test samples from 1-5 Entire test set 

4 15-20 Test samples from 1-5 Entire test set 

 

Using the above technique, we observe that the retrieval for the classes that were trained in the first 

stage decrease over time as shown in Table 13. This is expected because as we introduce more 

classes into the space, we expect the model to perform a little worse on the data that was present in 

the first stage of training in exchange for better generalization. Similarly, we observe that the 

retrieval scores on the entire holdout test set start increasing as we increase more class information 

into the space across the four stages. However, this sort of training technique is still not efficient as 

compared to the CVS model where we directly train all the data points together.  

On the zero shot retrieval on the Birds dataset, we observe that the model gets stuck in a local 

minima and fails to learn across stages as can be seen in the decrease in scores on the holdout test 

set across the four stages. 
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Table 13: Stage-wise learning retrieval scores on Pascal and Birds dataset. 

Dataset   
5 

Categories 

10 

Categories 

15 

Categories 

20 

Categories 
CVS 

Pascal 

Eval On  Stage1 Stage 2 Stage 3 Stage 4 - 

5 categories from Stage 1 i2t 0.857 0.836 0.844 0.810 - 

5 categories from Stage 1 t2i 0.903 0.889 0.895 0.845 - 

All 20 categories i2t 0.385 0.399 0.401 0.446 0.639 

All 20 categories t2i 0.420 0.470 0.490 0.500 0.650 

Dataset   
40 

Categories 

40 

Categories 

40 

Categories 

30 

Categories 
CVS 

Birds 

Eval On  Stage1 Stage 2 Stage 3 Stage 4 - 

5 categories from Stage 1 i2t 0.423 0.419 0.378 0.376 - 

5 categories from Stage 1 t2i 0.287 0.282 0.273 0.277 - 

All 50 categories i2t 0.349 0.365 0.341 0.361 0.538 

All 50 categories t2i 0.248 0.247 0.238 0.237 0.589 

 

 

5.2 Ablation Analysis 

A. Attention Ablation Analysis 

The aligned attention consists primarily of three weight matrices: Wi, Ws and Wis. The Wi and 

Ws cater to the intramodality attention alignment and Wis caters to the intermodality alignment. 

Our experiments show that both the intermodality and intramodality attention mechanisms are 

important and not having all three weight matrices in the attention mechanism degrades the 

scores significantly. Figure 25 shows the effect of eliminating these weight matrices on the 

results. The scores for the retrieval significantly reduce if we omit either of the weight matrices. 

This shows that our attention mechanism does reasonably well in minimizing the loss within 

the same modality and also across two modalities. 
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Figure 25 Effect of all the 3 components of attention. 

 

 

Figure 26 depicts the increase the in total attention blocks as we keep adding more modalities 

to our model. The CVS model will need to train a lot more attention modules when compared 

to the M-CVS and the RVS model. 

 

Figure 26: The total attention blocks that need to be trained when we add a new modality. 
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B. Timing Analysis 

Figure 27 indicates the time taken per iteration for the CVS and the M-CVS model to train. 

The CVS model restarts training from scratch every time a new modality is added and it is 

shown in the extra time that the model takes per iteration as it has to update more parameters. 

On the other hand, in the M-CVS model, we can observe that the time at each subsequent stage 

is lesser because only the new parameters of the new modality network branch are updated and 

the existing networks remain unchanged. 

The additional time taken to train a new modality is a function of the size of the training data 

and the size of the feature vector. The time taken by the M-CVS model to go from three to four 

modalities is less in terms of the milliseconds per iteration. This is because the fourth modality 

that is added to the model is the audio branch and this branch has only 29 dimensions in the 

XMedia dataset. Owning to such low dimensionality, the total number of parameters in the 

fully connected layers is much lesser when compared to the other modalities and hence we 

can’t see such a small increment in the time taken during training. 

 

 
 

Figure 27: The time per iteration for the CVS and the M-CVS model as we increase the number of modalities 

added to the model. 

 

C. Adversarial Loss Functions 

We attempted to include image reconstruction loss and sentence reconstruction loss into our 

model. The objective of this loss function was to reconstruct the 512-dimensional input vector 
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representation. It was observed that the addition of such a loss function was not very helpful to 

the model as indicated in Figure 28. The loss value explodes and our model does not converge. 

However, if we include the metric losses and the classifier in our model, we are able to still 

perform retrieval. 

 

 

Figure 28: Non converging of the reconstruction loss for the image and text modality. 
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Chapter 6 
 
 

Conclusions 

 

 
6.1 Conclusions 

We present a technique for the transfer of information from one modality of data to another by 

using various common embedding spaces. This work provides an analysis of the different ways 

in which one can train a multi-modal neural network architecture and measure its performance. 

The methods discussed in this work can be used at different stages of learning or can also be 

used as an initializing for a multi-modal network that can be fine-tuned later.  

 

6.2 Discussions 

To summarize our findings,  

 The CVS model can be used to train architectures where the entire data that needs to 

be projected is available beforehand.  

 Adding any new modality into the CVS model at a later stage would require re-training 

the entire model from scratch.  

 To avoid this problem, we use M-CVS model that performs stage-wise addition of 

modalities into the embedding space.  

 This helps preserve existing transformations while being able to robustly add new 

modalities. 

 Stage wise learning technique is promising but fails to generalize as well as the CVS 

model.  

 We introduce a RVS model that uses one of the modalities (image and text were both 

explored) as the common embedding from which all other modalities must map to.  
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6.3 Future Work 

The primary research of this thesis work was based on search and retrieval applications. The 

datasets available for the multi-modal networks are limited in number and have a lot of 

discrepancies. The model we build is not trained end-to-end. Some possible directions for 

extending this work are: 

 Expand the scope of the network to generate samples of one modality from another 

using generative adversarial networks. For example: given an input image, we can 

make our model produce audio, video, 3D point cloud or a text using the common 

embedding space. This can be done using some sort of adversarial training. 

 Implement end-to-end training of the model where the encoder layers are not frozen 

and we can update the weights in those layers as we learn the embedding weights. This 

can help improve our results but will come at a computational cost. 

 Test our model on more multi-modal datasets with access to the raw data to perform 

end to end training including using multiple layers from the CNN, RNN, etc. to extract 

features instead of simply relying on the final fully connected layer of the neural 

network. 
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