Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

12-2019

Modeling Interacting Time-Series Signals

Kantha Girish Gangadhara
kg2605@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Gangadhara, Kantha Girish, "Modeling Interacting Time-Series Signals" (2019). Thesis. Rochester Institute
of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10265?utm_source=repository.rit.edu%2Ftheses%2F10265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Modeling Interacting Time-Series
Signals

by

Kantha Girish Gangadhara

THESIS
Presented to the Department of Computer Science
Golisano College of Computing and Information Sciences
Rochester Institute of Technology

in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science in Computer Science

Rochester Institute of Technology
December 2019

Modeling Interacting Time-Series

Signals

APPROVED BY

SUPERVISING COMMITTEE:

Dr. Ifeoma Nwogu, Advisor

Dr. Matthew Wright, Reader

Dr. Linwei Wang, Observer

Abstract

Many real-life systems consist of multiple information signals which might
be potentially interacting with each other over time. These interactions
can be estimated /modeled using techniques like Pearson Correlation (PC),
Time lagged Cross Correlation (TLCC) and windowed TLCC, Dynamic Time
Warping (DTW), and coupled Hidden Markov Model (¢cHMM). These tech-
niques, excluding cHMM, cannot capture non-linear interactions and does
not work well with multi-variate data. Although cHMM can capture the in-
teractions effectively, it is bound by Markov property and other assumptions
like latent variables, prior distributions, etc. These influence the perfor-
mance of the model significantly. Recurrent Neural Network (RNN) is a
variant of Neural Networks which can be used to model time-series data.
RNN based architectures are the new state-of-the-art for complex tasks like
machine translation. In this research, we explore techniques to extend RNNs

to model interacting time-series signals. We propose architectures with cou-

pling and attention mechanism. We evaluate the performance of the models
on synthetically generated and real-life data sets. We compare the perfor-
mance of our proposed architectures to similar ones in the literature. The
goal of this exercise is to determine the most effective architecture to capture

interaction information in the given interrelated time-series signals.

Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor Ifeoma
Nwogu, for guiding me to endeavor this journey and helping me through this
project. Without your support, this project wouldn’t have been an amazing
research experience. I would like to thank Dr. Matthew Wright and Dr.
Linwei Wang for being on my committee and providing valuable feedback,
which helped me sharpen this thesis.

I would like to thank Fei Xu, a Ph.D. student at the University of Buf-
falo, for putting together a real-life dataset and providing us with extracted
features to work with. Without your contribution, we would not have had a
chance to evaluate our proposed techniques on real-life data.

I would like to thank Parikshit Prashant Shembekar for helping us with
feature extraction on a real-life dataset. I would like to thank my academic
advisor, Rebecca O Connor, for guiding me through the administrative de-

tails of the project and providing the necessary help when in need.

I would like to express my gratitude to Aishwarya Uniyal, my friend and
room-mate, for insightful discussions, and being a source of support and
inspiration throughout this journey.

Finally, I would like to thank my friends and family; this project would

not have been possible without your emotional support.

Contents

1 Introduction
1.1 Motivation
1.2 Related Work

1.3 Hypothesis

2 Background
2.1 Recurrent Neural Networks
2.2 Gated Recurrent Unit
2.3 Encoder-Decoder architecture

2.4 Attention mechanism

3 Methodology
3.1 End to End network (end2end-GRU)
3.2 Coupled GRU (¢cGRU)

3.3 Coupled GRU with Attention mechanism (cGRU-Attention)

13

13

15

20

22

22

25

27

28

31

32

33

35

3.4 Message Passing (MP-RNN) 36
3.5 Coupled GRU Encoder-Decoder (cGRU-ED) 37

3.6 Coupled GRU Encoder-Decoder with Attention Mechanism

(cGRU-ED-Attention) 39
3.7 Implementation details 42
Data 43

4.1 Synthetic data - a pair of coupled Gaussian stochastic processes 43
4.2 Synthetic data with delay 44
4.3 Rapportdata 45

4.4 Surveillance videos for anomaly detection - ShanghaiTech Cam-

pus Dataset 50
4.5 ICT dataset 52
4.6 Data preprocessing: rapport, ICT 55
Experiments and results 56
5.1 Syntheticdata o 57
5.1.1 Hyper-parameter tuning 57
5.1.2 Baseline: end2end-GRU versus cGRU 58
5.1.3 Error variance of models 59
5.2 Synthetic data with delay 62

5.3 Rapportdata 62

5.4 TICT data. 63
5.5 Anomaly detection in videos - ShanghaiTech dataset 64
Conclusion 66
6.1 Conclusion 66
6.2 Future Work 67

List of Tables

4.1

5.1

5.2

5.3

5.4

9.5

0.6

Details of the generated synthetic data

Hyper-parameters for cGRU and optimized values
100 trials on synthetic data with different train/test/validation
splits for each trial oL
25 trials on synthetic with different train/test/validation splits
foreach trial
10 trials on rapport data with different train/test/validation
splits for each trial oo
Results on ICT data using models trained on Rapport data . .

Results on ShanghaiTech dataset

List of Figures

1.1

1.2

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

DTW algorithm comparing two signals 17
A cHMM with two channels 18
An RNN unrolled in time oL 23
Gated Recurrent Unit 27
Encoder-Decoder architecture - machine translation 28
end2end-GRU unrolled in time 33
cGRU unrolled in time 34
cGRU with attention 35
MP-RNN . . o 36
cGRU abstraction 0L 38
cGRU-ED architecture 39
cGRU-ED with attention mechanism 41

A pair of correlated signals with a correlation factor of 0.5001 44

10

4.2

4.3

5.1

5.2

5.3

5.4

9.5

Sample video frame showing the interviewing process between

an interviewee on the left and a retired police officer on the right 48

Description of 18 auction units used for experiments in this

projecto

cGRU training and validation errors for each epoch. The
model was trained using optimized hyper-parameter values in
Table 5.1
end2end-GRU training and validation errors for each epoch.
The model was trained using - LR: 0.01, hidden size: 64,
epochs: 200
Predicted vs actual correlation factors for end2end-GRU (left
side) and ¢cGRU (right side)
Test errors (MAE) for 100 trials on cGRU, cGRU-Attention
and MP-RNN with different train/test/validation splits for
each trial o
Test errors (MAE) for 25 trials on synthetic data with delay,

with different train/test/validation splits for each trial

11

63

Chapter 1

Introduction

1.1 Motivation

Many systems in real-life consist of multiple information signals interacting
with each other over time. Social interactions serve as good examples of such
systems. These include dyadic interactions of a married couple, interrogation
room interaction between the investigator and the crime suspect, corporate
board room meetings, etc, to name a few. The harmony or synchrony in
such interactions is formally known as rapport. Rapport is defined as subtle
mirroring of emotional behavior such as postures, nods, and smiles. Tickle-
Degnen et al. [25] characterize rapport as a composition of the following three

components:

1. Mutual attentiveness: the feeling of intense mutual interest between

participants in a conversation, which creates a focused and cohesive

12

interaction.

2. Positivity: a feeling of mutual friendliness.

3. Coordination

Numerous studies have demonstrated that rapport facilitates negotiations [9],
psychotherapy [20], etc. Aimee et al. [J] state that real-life interactions are
mixed-motive conflicts due to individual self-interests. The collective optimal
outcome of these interactions requires mutual co-operation or rapport. We
might be interested in modeling social interactions for potential outcomes like
quality of interaction, agreement /disagreement between the individuals, etc.
In such cases, modeling interactions in terms of rapport would be successful.

Modeling interactions might be crucial for the potential outcomes we
would be interested in. In this project, we propose neural-network-based
architectures for modeling interacting signals. We study traditional meth-
ods in the literature which can be used to model such systems, and discuss
why they might not be effective in modeling multi-variate signals. We com-
pare our proposed architectures to similar architectures in the literature [21],
which were not necessarily used to model social interactions. As a result,
we evaluate the suitability of these architectures for modeling social interac-

tions. We use synthetically generated and real-life datasets to evaluate the

13

performance of the models we work with.
1.2 Related Work

Modeling interactions have been extensively studied in the literature. Tradi-

tionally, the following techniques have been used,

1. Pearson Correlation (PC): is a measure of linear correlation be-
tween two signals X and Y [3], a value in the range [-1, +1]. A positive
value indicates a positive correlation, whereas a negative value indi-
cates a negative correlation. This measure quantifies global synchrony

between two signals. It can be calculated using,

cov(X,Y)

0x0y

p(X,Y) = (1.1)

where,
cov() is the covariance between X and Y

ox,0y are standard deviations of X, Y respectively

2. Time Lagged Cross Correlation (TLCC): is an extension of Pear-
son Correlation. One of the signals is offset by one timestep at a time

and PC is calculated using equation 1.1.

3. Dynamic Time Warping (DTW): is a measure of similarity be-
tween two temporal signals using an algorithm with defined set of rules

14

and constraints. Figure 1.1 briefly illustrates how the algorithm com-
pares two signals. This technique uses a dynamic programming ap-
proach to align two time-series signals by minimizing a distance met-

ric [5].

. coupled Hidden Markov Model (cHMM): is a probabilistic frame-
work which couples multiple temporal signals [6]. Conventional HMMs
are coupled by taking Cartesian product of their hidden states (figure
1.2). An HMM is a probabilistic model, modeled as a Markov process
with observable variables and unobservable (hidden) states. The for-
mulation is as below,

Let X = {z1,x9,...,2,} be a set of unobservables or hidden states,

and Y = {y1,9s,...,yn} be a set of observables. Then,

o p(yilz;) emission probability for the observable at time step i

o p(zilr; 1) transition probability

A cHMM can be setup by extending the above formulations of a HMM,
as below,

Let X = {xy,29,...,2,} and Z = {z1, 29, ..., 2, } be the hidden states.

15

The coupled transition probabilities are,
p(cijlcio1-1) = ¢(P(1¢z’|$i—1)7 p(2il25-1), p(xilzj-1), p(Zj|$¢_1)>
The coupled emission probabilities are as below,

p(yleiy) = p(ylz:) - p(yl2;)

Figure 1.1: DTW algorithm comparing two signals

The techniques: PC, TLCC, and DTW have the following disadvantages:

e cannot be used for multi-variate data and inference based modeling

e doesn’t capture non-linear interactions

e cannot handle noisy data

The cHMMs have been applied to classify taichi movements [0, 22], under
the assumption that different parts of the body moving in taichi will be
synchronous to each other. The cHMMs are bound by first-order Markov

assumption, which states that the present state (time step t) is dependent

16

A J
x
£l

Figure 1.2: A cHMM with two channels

on the immediate past (time step ¢ — 1) alone, making them restrictive and
limited. This assumption makes them tractable and relatively easy to train.
Whereas this does not hold true for most real-world systems, and hence
cHMMs cannot be used to model such systems.

Recently, neural-network-based architectures have been successfully ap-
plied to model time-series data. The two variants of RNNs, Long Short Term
Memory (LSTM) and Gated Recurrent Units (GRU), have been successful
in learning long term sequences. A few studies have explored methods to
model interactions between a pair of signals by coupling the hidden states of
two recurrent units. These methods try to achieve coupling by concatenating
the hidden states with each other or with the input signal of the succeeding
recurrent step. We mention the studies and discuss their coupling approaches
below.

Liu et al. [19] present an architecture that couples LSTMs to model

sentence similarity amongst pairs. They propose two variants, namely loosely

17

coupled LSTM (LC-LSTM) and tightly coupled LSTM (TC-LSTM). They
use two LSTMs, one for each sentence in the pair, and couple the hidden
states in four directions, inspired by grid LSTM [16] and multi-dimensional
RNN [14]. The hidden states of the LSTMs are concatenated and fed as
the hidden input for the subsequent recurrent steps. Both of these proposed
architectures become highly complex proportional to the length of sequences,
due to multi-directional coupling. This might result in vanishing or exploding
gradients. Also, it is unclear how they keep the hidden dimensions constant
for the recurrent steps post concatenation of the hidden states.

Sun et al. [21] propose Coupled Recurrent Network (CRN), an architec-
ture with two parallel streams of LSTMs. The hidden state of one stream
is concatenated with the input signal of the other stream in the succeeding
recurrent step. They use convolution operations for the LSTM memory cell,
as they work with images. Similar to CRN in terms of coupling, Morais
et al. [21] introduce MPED-RNN with two parallel streams of GRUs for
anomaly detection in videos. They use skeleton trajectories extracted from
the videos and decompose them into two input signals. These signals are fed
to MPED-RNN, an encoder-decoder architecture with a 2-stream encoder for

inputs and two 2-stream decoders for outputs, one for reconstructing input

18

and one for predicting future trajectories. Both CRN and MPED-RNN are
similar and they do not couple the hidden representations directly. Rather,
the hidden states are concatenated with inputs, which introduces complexity
as the number of signals increase.

Inspired by the work of Liu et al. [19], we propose an architecture with
two parallel GRU streams and uni-directional coupling. We use a multi-layer
perceptron (MLP) to couple and reduce the dimensionality of the hidden
states. We hypothesize that using an MLP for coupling would allow for cap-
turing the interactions better. By increasing the complexity of this unit, we
could capture non-linear interactions better. Recent literature has shown
that attention mechanism helps to better retain temporal memory for long
sequences [1]. Inspired by this, we implement a variant of the proposed net-
work with a simple attention mechanism. This causes the network to con-
sider all the hidden states when performing supervised learning tasks such as
classification or regression, and generative modeling tasks. We compare the
performance of our proposed architectures to MPED-RNN [21] on synthetic

and real-life datasets.
1.3 Hypothesis

We hypothesize the following,

19

1. If systems consist of interacting information signals, modeling the in-
teractions might be crucial for supervised learning tasks - classification

and regression

2. Interactions can be modeled by coupling hidden states of RNNs

3. Attention mechanism further improves the learning task of coupled

models

4. The performance of our proposed architectures are comparable to sim-
ilar methods in the literature while being more compact and easily

scalable to complex systems

We build and implement architectures to evaluate these hypotheses by

training them on real-life and synthetically generated datasets.

20

Chapter 2

Background

In this chapter, we will cover the necessary concepts. We describe RNNs and

its variants, and attention mechanism in detail.
2.1 Recurrent Neural Networks

Recurrent neural networks are an extension of conventional feed-forward neu-
ral networks. As opposed to conventional neural networks, RNNs can be used
to model inputs of variable sequence lengths. This is achieved by using a re-
current hidden state. At each time step ¢, the activation of the hidden state
is dependent on the previous time step ¢ — 1.

Consider a sequence X = {1, xs,...,2,} with N time steps, and h; as

the hidden state at time step ¢ such that t € [1,n]. Then, h; is updated as,

0 t=0
= { f(hi—1,x;) otherwise (2.1)

21

A A A A

Why Wy Wy
h f) —»hitl)———» hit) ————»-hit+1)
A Unrolled wh A Wh A Wh A

Wik W W
X x(t-1) X(t) x(t+1)

Figure 2.1: An RNN unrolled in time

This update to the hidden state is implemented as (Figure 2.1),

he = f(Was + Wihe_1) (2.2)

where, f() is a smooth bounded non-linear function such as logistic sigmoid
or hyperbolic tangent (tanh()). The output could either be a variable length
sequence such as Y = y1,¥2,...,Ym, or it could be a fixed number of units
to perform classification or regression.

An RNN can be trained as a generative model to generate sequences.
Given its hidden state and the input for the time step ¢, this model outputs a
probability distribution for the next element in the sequence. When training
such models, a special input/output symbol is used to represent the start

or end of the sequence. In the case of a word-level language model, the

22

start of a sentence would be <S05> and the end of the sentence would be
<FEOS>. The probability distribution of the sequence element is modeled as
a conditional probability distribution over past elements in the sequence, as

below,
p(ze|w1, 2, .. 21) = g(he) (2.3)

where, g() is a smooth bounded non-linear function such as logistic sigmoid
or hyperbolic tangent (tanh()).

An RNN can be used for sequence classification or regression problems.
Throughout this project, we stick to problems of this nature. Consider the
above sequence X = {z1, xs, ...z, }, which maps to a binary class Y € {0, 1}.

The probability distribution can be modeled as a conditional,

p(Y |z, x9,...,2,) = sigmoid(l(h,)) (2.4)

where, [() is a linear function which reduces the dimension of h,, to one.
The same formulation can be used to model a regression problem by removing
sigmoid

RNNs are trained using the gradient-based learning algorithm back-
propagation through time [28] (BPTT). It is an extension of the back-

propagation algorithm [23] to facilitate gradient propagation through the

23

recurrent states. Theoretically, RNNs can capture the temporal dependen-
cies in relatively long sequences effectively. In practice, this has been proven
false [1]. The gradients either explode or vanish when the sequences are long
due to long product chains of partial derivatives. Alternatives like gradient
clipping have been effective in alleviating the exploding gradient problem.
However, the best alternatives so far have been the variants of RNNs - Long
Short Term Memory (LSTM), and Gated Recurrent Units (GRU). Both of
them use additional gates to mitigate the problem and help in learning long-
term dependencies in the sequences. The following section describes GRUs

in detail. We skip LSTMs as they haven’t been used in this project.

2.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) was introduced by Cho et al. [7], inspired by
LSTM. However, it is much simpler compared to LSTMs in terms of imple-

mentation and computation.

A GRU is made up of (Figure 2.2),

e Reset gate: This gate learns to decide how much of the past in-

formation to forget. It resets the past information when the sigmoid

24

activation is close to zero (equation 2.7).

ry = O'(W',‘l't + Urht—l) (25)

e Update gate: This gate controls the amount of information flow from
the previous hidden state to the current state. The model can essen-
tially decide to copy all the past information and eliminate the risk of

vanishing gradient problem (equation 2.8).

2 = U(Wz$t + Uzhtfl) (26)

e Candidate for current activation: The element-wise product of

h;_1 with r; is to decide what to remove from the previous time steps.

};t = tanh(tht -+ Uh(rt . htfl)) (27)

e Current hidden state:

ht = Ztht,1 —+ (1 — Zt)ht (28)

When learning sequences, the update and reset gates pass down the relevant
past information to the future time steps. This alleviates the vanishing gra-
dient problem and learn long-term dependencies better. The performance

has been shown to be comparable to that of LSTMs [3]. For this project,

25

we choose GRUs over LSTMs to leverage its simplicity and computational

advantages.
=) > X >+ —> h
1
1z,
—> + «— X 4—‘ A > X
f
reset: r, update: z, tanh()

—» + %
e
L
>

Figure 2.2: Gated Recurrent Unit

2.3 Encoder-Decoder architecture

Encoder-Decoder architecture is a way of stacking recurrent units for mod-
eling multi-input and multi-output data. A popular example is a word-level
machine translation model (Figure 2.3). The number of words in a source
sentence and the target sentence may or may not be the same. The encoder
contains a recurrent unit that encodes the words in the source sentence into
a fixed-length context vector. The context vector is the last hidden state of

the encoder. The decoder contains a recurrent unit that is initialized with

26

this context vector. The target sentence is decoded one word at a time.

cédmo estds <end=

i

L[}ECOODF U

Context
Encoder vector

T =Start=

Y

how are you

Figure 2.3: Encoder-Decoder architecture - machine translation

2.4 Attention mechanism

The fixed-length context vector of an RNN has the burden of encoding the
temporal information in sequences of arbitrary length. Hence, it might forget
the information about the initial time steps when the sequences are longer.
This problem has been observed in Neural Machine Translation (NMT) tasks.
When translating a long sentence from a source language to a target lan-

guage, the context vector has the burden of encoding temporal information

27

of all the words. Bahdanau et al. [I| proposed attention mechanism to
overcome this problem. Essentially, this mechanism exposes all the hidden
states of an encoder to the decoder. At the time of decoding a word to the
target language, the decoder decides the amount of information to use from
each hidden state by computing a weighted sum of all the hidden states. The
model learns to pay attention to relevant parts of information to make predic-
tions, hence the name. This has been successful in producing state-of-the-art
results in neural machine translation [27].

The formulation we use for this project is from the work of Bahdanau et
al. [1]. We modify the formulation for classification or regression problems.

We use the same notations as earlier.

A d dimensional hidden state h; is reduced to a scalar as below,
€t = a(ht) (29)

Using this, we compute the weight «; for the state h; as,

oy = —0le) (2.10)

N
> j=1 exp(e;)
The above equation is the definition of the standard softmax function, which

is used for training multi-class classification models. This function computes

28

probability distribution such that Zjvzl aj = 1.

We then compute the context vector ¢ as,

N
c=Y_ah (2.11)
j=1

This new context vector is a weighted sum of all the hidden states. The

conditional probability formulation for binary classification changes to,
p(Y | z1, 9, ..., x,) = sigmoid({(c)) (2.12)

where, {() is a linear function which reduces the dimension of ¢ to one.

We can train an RNN with the attention mechanism in an end-to-end
fashion. The function a() and computation of «; together can be parame-
terized as a feed-forward neural network. These parameters are learned in
the back-propagation step. This approach is called self-attention. An RNN
trained in this fashion can be more effective at learning the amount of tem-

poral information necessary for assigning a class label.

29

Chapter 3

Methodology

In this chapter, we introduce our proposed architectures built using GRUs.
Throughout this project, we stick to two interacting signals. For the rest of

the chapter, we consider the following notations,

e Signals S* = {s],s3,...,sL} and S? = {s?,s3,...,s2} are two interact-

ing sequences of equal length

e ¢() is a smooth bounded non-linear function such as logistic sigmoid for
the binary classification problem, or a linear function for the regression

problem
e We use a simplified formulation for a GRU as below,

ht = GRU(I}, ht—l) (31)

In addition to our proposed architectures, we also describe a version of

30

MPED-RNN [21], which we call MP-RNN (Section 3.4). This is a simplified
version of MPED-RNN without the encoder-decoder architecture. We add
appropriate non-linear functions for classification and regression problems.

We compare the performance of our architectures against MP-RNN.
3.1 End to End network (end2end-GRU)

This architecture outlines the simplest way of modeling two time-series sig-
nals (Figure 3.1). It consists of two GRUs, GRU-1 and GRU-2, one for each
signal. The corresponding hidden states are h} and h?. The context vectors
of both the GRUs are concatenated and fed to a function to perform classi-

fication /regression. The formulation is as below,

Hidden states h}, h? are computed as,

h = GRU-1(s;,h;) (3.2)

h? = GRU-2(s7, h? ;) (3.3)
Supervised machine learning problems can be formulated as,

p(Y'|S,5%) = g(Wi * [hy; 1)) (3.4)

n''n

It is evident that this architecture can be used to model sequences of ar-

bitrary lengths. However, this architecture may not capture the local/global

31

lc
o
o
=
=
Y
Y
(2]
o
c
=

; N

lc
i)
=]
[=
o
\J
Y
I
=
[=
r

Figure 3.1: end2end-GRU unrolled in time

temporal interactions between the signals being studied. We use this archi-

tecture as a baseline to evaluate our hypothesis 1.

3.2 Coupled GRU (cGRU)

This architecture is an extension of end2end-GRU (Figure 3.2). The hidden
states of each time step are fed to a Multi-layer perceptron (MLP) with a
non-linear function. The output dimension of this unit is the same as the
dimension of the hidden state of either GRU’s. We call this the coupled
hidden state. This is fed to both GRUs as the input hidden state for the
succeeding time step. The MLP is a standard multi-layered feed-forward
neural network with a non-linear activation function following each layer.

Increasing layers might better capture non-linear local interactions between

32

the signals. The formulation is as below,

Figure 3.2: ¢cGRU unrolled in time

Hidden states h}, h? are computed as,
h{ = GRU-1(s}, H; ;) (3.5)
h? = GRU-2(s?, Hy_,) (3.6)
The coupled hidden state H; is computed as,
Hy = f([hy 5 1)) (3.7)

where, f() is an MLP with a non-linear activation function such as tanh.
Supervised machine learning problems can be formulated using the following

conditional probability function tanh,

p(Y'[S',8%) = g(Wy * Hy) (3.8)

33

3.3 Coupled GRU with Attention mechanism
(cGRU-Attention)

This architecture is an extension of cGRU (Figure 3.4). The coupled hidden
states are used to apply self-attention and create a weighted context vector.

We use the following formulations,

Figure 3.3: ¢GRU with attention

Using equation 2.9, the coupled hidden H; state is reduced to a scalar as

below,

e; = a(Hy)

34

We use equation 2.10 to compute the weight «; for each state H;. We then

compute the weighted context vector C' as (equation 2.10),
N
C = Z OéjHj
j=1
The conditional probability formulation for a supervised learning problem is,
p(Y'[S,8%) = g(C) (3.9)
3.4 Message Passing (MP-RNN)

This architecture is a version of MPED-RNN [21] with Encoder and an ap-
propriate activation function for a supervised learning task. A rectified linear

unit is used as an activation function to convert hidden states to messages.

A
A 201 [
msg
, /
/s,
.’l

Wy,
St ——{a0 — v

\
msg
/
/
/ /
\ / /
| /
\
\ / \
| | ,
\ \
\ \
\ \
\ \
\ \
| ".
2
\ /;'w n
L. - W - I| L.
\ |

/
0 1 \ \
\ \ |
\ | \
\ \ \
1.2 122} 122 1->2|
. .) \) \
m“jz 2 rﬂ:E_?z e 2 m>(}l e n‘."bfjL -

K
52 SL

Figure 3.4: MP-RNN

35

Message signals are computed as,

msg, ? = ReLU(W' ™2 x h}) (3.10)

msg; ' = ReLU(W?*™! % h?) (3.11)

The hidden states h}, h? are computed using message signals as below,
hi = GRU-1([S}; msg;], hy_y) (3.12)
hi = GRU-2([S¢;msg, ?], hi_y) (3.13)
The conditional probability formulation for a supervised learning problem is,
P(y|S*, %) = g(Wh [hy; hi]) (3.14)

3.5 Coupled GRU Encoder-Decoder (cGRU-
ED)

This is a generative architecture similar MPED-RNN [21]. The architecture
is built using ¢cGRUs (figure 3.6). We use an abstraction of cGRU to sim-
plify the illustration of cGRU-ED architecture (figure 3.5). It consists of the

following components,

1. Encoder: encodes a pair of sequences of length 7" into a coupled con-
text vector H,; using,
H, = cGRU(H,_,, S}, 5?)

36

2. Reconstruction Decoder: is initialized with the hidden state HF =

H;. It reconstructs the input pair in the reverse order using,

Hﬁl’ Stl—17 St2—1 = CGRU<HtR7 St17 St2)

3. Prediction Decoder: is initialized with the hidden state H}' = H,,
predicts future pair of length k. The formulation is similar to the

reconstruction decoder, as below,

Ht]:—ka St1+k> St2+k = CGRU(HiLk—u Stl-',-k—la St2+k—1)

1 re
St+1 Sp41

ABSTRACTION

Figure 3.5: ¢cGRU abstraction

37

Figure 3.6: cGRU-ED architecture

3.6 Coupled GRU Encoder-Decoder with At-
tention Mechanism (cGRU-ED-Attention)

This architecture is an extension of cGRU-ED with two self-attention units,
one for each decoder. The formulation of the encoder is the same as that of

the encoder in cGRU-ED. The components of this architecture are as below,

1. Encoder: encodes a pair of sequences of length 7" into a coupled con-

38

text vector H; using,

H, = cGRU(H,_1, S}, S?)

. Reconstruction Decoder: is initialized with the hidden state H[? =
H;. The self-attention unit takes as input [Hy, Ho, . .., H;] and outputs

a weighted context vectors ¢}, ¢ using equations below,

6::]- = G(Sika HJR)

L eoler)
v ea(e)

c = Z oy HY
j
Replacing * = 1,2 yields equations for the appropriate context vector.
This is a slight variation of the formulation by Bahndanau et al. [1],
modified to accommodate two input signals and coupling mechanism.
Using these weighted context vectors, the decoder reconstructs the in-

put pair in the reverse order as below,

Hﬁp Stl—h St2—1 = CGRU(HtRa [StIQ Cﬂ7 [Sf; C?D

. Prediction Decoder: is initialized with the hidden state HX = H,

predicts future pair of length k. The formulation is similar to the

39

reconstruction decoder, as below,

Crih1; = af :+k—1»HJI'D)

exp(er—i-k—l,j)

*
Zk 6xp(et+k_1’k)
* _ * *
Cipk—1 = § :O‘t—l-k—l,jHj
J

P 1 2 P 1 1 2 2
Hi 'y, St+k7 St+k = CGR’U(Ht-i-k—l? [St-i-k—la ct—i—k—l]a [St-i-k—la Ct+k—1])

* JE—
Qppk—1,5 =

1 2
Stak Stk

I 2z
51 51
|ENCODER

Figure 3.7: ¢cGRU-ED with attention mechanism

40

3.7 Implementation details

We used following tools and libraries for our implementations,

e python 2.7

NumPy

SciPy

Matplotlib

PyTorch

Pandas

The architectures are implemented to utilize GPUs for training, if available.
This requires CUDA libraries. The code repository will be made publicly

available for further research and exploration.

41

Chapter 4

Data

In this chapter, we list and describe all the datasets which were used for this

project.

4.1 Synthetic data - a pair of coupled Gaus-
sian stochastic processes

This dataset is made up of pairs of coupled Gaussian stochastic processes
generated using the algorithm presented by Jamali and Jafari [15]. A pair is
generated with a correlation factor in the range [0, 1] and the desired sequence
length. The correlation factor is sampled from a uniform distribution. Figure
4.1 shows an example of a pair generated with a correlation factor of 0.5001.

For our experiments, we generated the data and split it into different sets
as listed in table 4.1.

This algorithm cannot be used to generate - a pair with different sequence

42

— Signal 1
—— Signal 2

T T T T T T T
0 20 40 60 80 100 120 140
Time steps (t)

Figure 4.1: A pair of correlated signals with a correlation factor of 0.5001

Sequence length 100
Number of samples | 10,000
Train split | 8,000
Validation split | 1,000
Test split | 1,000

Table 4.1: Details of the generated synthetic data

lengths, and multi-variate sequences.
4.2 Synthetic data with delay

Real-life interactions might contain a certain amount of delay. To simulate
such scenarios, we incorporate a delay between the pair of signals generated
as described in section 4.1. The following steps illustrate the incorporation

of delay,

43

1. Sample an integer d the range [0, 15] as delay from a uniform distribu-

tion

2. Generate a pair of sequences (57, 53) of length 100 — d with a sampled

correlation factor, using Jamali and Jafari’s algorithm [15]
3. Pad zeros of length d at the beginning of S}

4. Pad zeros of length d at the end of Sy

This dataset contains approximately 667 samples (10000/15) without a

delay, hence containing a good mix of realistic interactions.
4.3 Rapport data

This data was obtained from a study involved in the larger context of de-
ception detection. The goal of the original study was to determine if rap-
port aided or hindered deception detection. A pair of interactants that have
formed rapport tend to coordinate with each other’s body language. How-
ever, when a lie is told - a lie that can affect the nature of the relationship
- it cannot help but disrupt the flow of their interaction. In fact, research
has shown that simply making an accusation of lying toward another creates

a break in the harmonious mirroring of behaviors on both liars and truth-

44

tellers. The original project thus proposed to explore the role of deception
on interactional synchrony and on already established rapport.

For this work, however, we are only interested in detecting whether a pair
of interlocutors have or have not established a good rapport between them.
Hence, we model the interactions as rapport.

The data collection was conducted at the Communication Science Center
(CSC) at the University at Buffalo, SUNY. Each participant in the study
completed the consent process and was then presented with a theft scenario.
The study participants (interviewees) were asked to steal either a ring or a
watch [18, 17] and hide it somewhere in the conference room at the center.
In order to increase the stakes of the situation, the interviewees were pre-
sented with both incentives and punishment for successful or unsuccessful
performance [11, 12]. If successful at convincing the interviewer (blind to
the forced choice of stealing one object) that they did not steal either object,
they received $30. If they were believed on the object they stole only, they
received $20. However, if they were only believed on the object they did not
steal, they received $10. If they were not believed on either object, they did
not receive any money at all and were asked to write an essay about their

unsuccessful performance for the duration of 15 minutes. The interviews

45

took place in an interrogation room at the center, specifically designed to
increase the realistic nature of the procedures. Figure 4.2 is an image of a
sample video frame showing the interviewing process between a retired police
officer and an interviewee. During the interview, both the interviewer and
the interviewee were recorded with a separate video camera capturing their
frontal view. A third camera captured both the interviewer and interviewee
simultaneously in order to preserve spatial information (figure 4.2). Upon
completion of the interview, the participants left the interrogation room to
complete questionnaires that are used as the ground truth.

To investigate the influence of rapport building, each scenario was created
with two between-subject conditions; rapport building or neutral interaction.
In the rapport condition, the interviewer spent approximately 3 minutes be-
fore and in the middle of questioning, interacting with the participant in a
positive manner, shaking his or her hand, smiling and nodding in agreement
where applicable, and actively finding something he has in common with
the participant. In the neutral interaction condition, the interviewer spent
approximately 3 minutes before the questioning about the watch/ring, dis-
cussing very neutral topics such as the weather, how the participants arrived

at the laboratory, etc., while maintaining a very neutral demeanor. The in-

46

terviews were performed by three retired police officers who were accustomed
to high stakes interviews. A total of fifty-nine (N = 59) interviews from the

study were used for experiments in this project.

01:15 C——— 06:59

| IRCTI C- i IS Y @ il

Figure 4.2: Sample video frame showing the interviewing process between an
interviewee on the left and a retired police officer on the right

The first three minutes of the interview involved a discussion about top-
ics unrelated to the missing watch or ring. This first period is referred to as
Baseline 1. The next 3-5 minutes of the interview involved questions about
either the ring or the watch; the next 3 minutes were again involving topics
unrelated to the experiment items and is referred to as Baseline 2. Finally,

the last 3-5 minutes of the interview involved more discussions about the

47

missing experiment items again. In this work, we only focus on the con-

versations that occurred during the Baseline 1 and Baseline 2 time periods,

resulting in roughly 7 minutes of video data for each pair of interactants.
The data cleaning, annotation, and feature extraction were done by the

researchers at CSC. It included the following steps,

1. synchronize the pair of videos captured from the individual frontal view

cameras

2. segment and annotate videos into baselines and critical sections

3. extract segments: Baseline 1 and Baseline 2, and concatenate

4. extract OpenFace features [2] per frame

The data was provided in the form of CSV (comma separated values) files.
We use action units (AU) alone as the input features. Action units (AUs)
correspond to various muscle groups on the face and can range from being
fully activated to not activated [10]. Since the AUs are measured over time,
we could now obtain a collection of behavioral signals based on face dynamics.
Figure 4.3 shows the codes and descriptions of the AUs detected in the videos.

We discarded other features such as head movements (roll/yaw/pitch) and

48

eye gaze directions. The 59 pairs were divided into train: 45, validation: 6

and test: 8.

AU Number hd FACS name v

Inner brow raiser

QOuter brow raiser

Brow lowerer
Upper lid raiser
Cheek raiser

Lid tightener
Nose wrinkler
10 Upper lip raiser
12 Lip corner puller
14 Dimpler

15 Lip corner depressor
17 Chin raiser

20 Lip stretcher

23 Lip tightener

25 Lips part

26 Jaw drop

28 Lip suck

45 Blink

olv|lo|vn|a]ln|-

Figure 4.3: Description of 18 auction units used for experiments in this
project

4.4 Surveillance videos for anomaly detection
- ShanghaiTech Campus Dataset

We utilize the ShanghaiTech Campus dataset [20] to build generative mod-
els for anomaly detection. This dataset contains footage captured from 13
different cameras around the ShanghaiTech University campus. The authors

claim that this is one of the biggest datasets for video anomaly detection.

49

The dataset contains realistic anomaly events such as chasing and brawling.
It includes 13 scenes with 274,515 frames for training and 42,883 for testing
and 130 abnormal events in total. Most of the anomaly events in this dataset
are related to humans, while some events are not. The authors have removed
videos that do not contain human-based anomaly events.

The primary purpose of using this dataset is to compare our proposed
architectures to MPED-RNN [21]. The authors use skeleton trajectories as
features instead of videos themselves. They state that the skeleton features
are compact and highly descriptive about human action and movement, hence
they are sufficient for anomaly detection. The authors have published their
code on GitHub!. This web-page contains a link to the skeleton trajectories
data. We use the data they have published as-is to ensure consistency in our
comparisons. The authors decompose the skeleton features into local and
global features to account for spacial factors and size of the humans in the
videos, as below,

They formulate the problem as an interaction between the local and global
features. Through their experiments, the authors demonstrate that these

signals interact with each other. This dataset serves as a good example for

!skeleton based anomaly detection codebase: https://github.com/
RomeroBarata/skeleton_based_anomaly_detection.

50

https://github.com/RomeroBarata/skeleton_based_anomaly_detection
https://github.com/RomeroBarata/skeleton_based_anomaly_detection

a system other than social interactions, which contains interacting signals.

4.5 ICT dataset

This dataset was collected by Jonathan Gratch from the Institute of Creative
Technologies at the University of Southern California [13]. It was created to
investigate the importance of Contingent feedback in creating feelings of rap-
port. The authors define contingency as nonverbal feedback by the listener,
such as nods or posture shifts that are tightly coupled to what the speaker
is doing at the moment. Non-contingent feedback is defined as the listener
feedback similar in frequency and characteristics to the contingent feedback,
but not synchronous with the speaker’s speech, behavior, or expressions.
This study was conducted with 161 participants (61% women, 39% men).
The authors use a virtual rapport agent alongside face-to-face interactions

with human participants. They study two types of virtual characters:

1. Good virtual listener (Responsive condition): the rapport agent
which synthesizes the head gestures and posture shifts in response to

the real human speaker’s speech and movements

2. A virtual representation of a real listener (Mediated condi-

tion): the rapport agent reproduces actual head movements and pos-

51

ture shifts of a real human listener

This was a between-subjects experiment with four conditions to which the

participants were randomly assigned.

1. Face to Face (20 speakers, 20 listeners): the speaker talked to a

human listener face to face

2. Mediated (20 speakers, 20 listeners): The speaker interacted with
a virtual character imitating the head movements and posture of a

human listener, excluding facial expressions

3. Responsive (12 speakers): The speaker interacted with a virtual
character displaying proper listening behaviors contingent on the speaker’s

speech and head movements. Facial expressions were not generated

4. Non-contingent (12 speakers, 12 listeners): The speaker inter-
acted with a virtual character whose behavior is identical to the re-
sponsive agent, except the behavior was not contingent on the speaker’s
speech or head movements. The speaker was presented with a pre-

recorded behavior sequence in this case.

The participants were told that they would be undergoing a study to evalu-

ate a communicative technology like a web-camera used to chat with friends

52

and family that was developed at the place. The participants were ran-
domly assigned a speaker/listener role. Subjects were made to answer a
pre-questionnaire.

The subjects were led into the computer room where experiments were
conducted. The procedure was explained and the equipment was introduced.
The speaker was tasked to view a short segment of a video clip on sexual
harassment awareness, in the absence of the listener. The speaker was in-
structed to retell the stories in the clip to the listener. He/she sat in front
of a 30-inch computer monitor in the cases - 2, 3, and 4, and interacted with
an animated character displayed on the screen. The speakers were told that
the avatar on the screen represents the human listener. The listener, on the
other hand, was shown a real-time video of the speaker retelling the story.
The speaker completed a post-questionnaire in the absence of the listener
and assigned a score using the provided rapport scale. The speech and video
data were captured and published for research purposes [13]. We changed the
rapport scale to binary labels. The scores in the range [1, 6] were assigned
the label rapport as they corresponded to a certain level of rapport according
to the scale. The rest of the values were assigned with the label neutral.

Although the study resulted in 124 interactions, just 31 of them have

53

recorded videos available for both speaker and listener. Of the 31, we dis-
carded 8 of them as they did not have rapport scores available. This left us
23 videos to work with. Since these were insufficient to train and test our
models, we used these videos as test data for the models trained on rapport

data (section 4.3).
4.6 Data preprocessing: rapport, ICT

Both rapport and ICT datasets are multivariate with 18 features (Action
Units). The rapport videos were recorded at 30 frames per second, so each
7-minute video would have around 12,600 frames. These sequences are very
long for a temporal model. To overcome this potential problem, each video
was divided into non-overlapping chunks of 100 frames. All the chunks of a

video were assigned with the same label.

o4

Chapter 5

Experiments and results

In this chapter, we list and describe the experiments we conducted on each
dataset using all the models and describe results. We use the following loss

functions to train and evaluate all the architectures,

e Mean Absolute Error (MSE):

| N
N > lyi — il
i=1
where,
N is the number of data samples

y; is the actual value

1; is the predicted value

e Mean Squared Error (MAE):
| X
N Z(yz — i)
N

95

e Classification accuracy:

TP+TN
TP+TN+ FP+FN

Measure | Description | Predicted label | Actual label
TP true positives 1 1
FP false positives 1 0
TN true negatives 0 0
FN false negatives 0 1

This metric is used to calculate the binary classification accuracy.
5.1 Synthetic data

We used this dataset for hyper-parameter tuning. We conducted three ex-
periments on this dataset. The following sections describe the experiments
in detail. The models were trained on the train split. The validation split
was used to choose the best model. The best model was tested on the test

split.
5.1.1 Hyper-parameter tuning

In this experiment, we tried different combinations of hyper-parameter values
for cGRU and chose the one with lowest MAE on the test data. Table 5.1 lists
the cGRU hyper-parameters which were optimized. Figure 5.1 shows train-
ing and validation errors (MAE) of the cGRU model with hyper-parameters

corresponding to the lowest MAE.

56

Hyper-parameter | Description Optimal value
Learning rate (LR) | rate of weight updates 0.001
Hidden size number of hidden units in GRU 64
Epochs number of training steps 50

Table 5.1: Hyper-parameters for cGRU and optimized values

Losses

—— training
— validation
0.30 4

0.25 4

0.15 1

0.10 4

T T T T T T
0 10 20 30 40 50
epochs

Figure 5.1: ¢GRU training and validation errors for each epoch. The model
was trained using optimized hyper-parameter values in Table 5.1

We continue to use these hyper-parameter values for experiments on other
datasets. We also considered end2end-GRU for this step. However, end2end-
GRU could not learn with any combination of hyper-parameters. The model

with higher number of epochs resulted in over-fitting (figure 5.2).

5.1.2 Baseline: end2end-GRU versus cGRU

In this experiment, we justify the hypotheses 1 and. We model interactions

by coupling hidden states of the recurrent units (section 3.2). We trained

o7

Losses

—— training
— validation

0.30
0.25 |

@

£ 0201

0.15 4

0.10 4

T T T T T T T T T
0 25 50 75 100 125 150 175 200
epochs

Figure 5.2: end2end-GRU training and validation errors for each epoch. The
model was trained using - LR: 0.01, hidden size: 64, epochs: 200

end2end-GRU and ¢cGRU on the data using hyper-parameters values in table
5.1 for a fair comparison. A plot of predicted vs actual values of correlation
factors was created for both the models. In this case, the more the number
of points closer to the diagonal, the better the model. Figure 5.3 shows that
cGRU has more points closer to the diagonal line.

This shows that cGRU can learn better than end2end-GRU, which val-
idates hypotheses 1, and 2. Hence, modeling interactions are crucial for

supervised learning tasks.

5.1.3 Error variance of models

For this experiment, we run 100 trials with different train/test/validation

splits for each trial. The purpose of this experiment is to compare the per-

58

Predicted vs Actual Predicted vs Actual

Figure 5.3: Predicted vs actual correlation factors for end2end-GRU (left
side) and ¢cGRU (right side)

formance and stability of our proposed models: cGRU, cGRU-Attention with
MP-RNN. We use the same set of hyper-parameters from table 5.1 for all the
three models. Additionally, we use message size as 16 for MP-RNN. We used
the same train/test/validation for all the models in each trial to ensure a fair
comparison.

Figure 5.4 shows a plot of test errors over 100 trials, for all the models.
The table 5.2 lists the mean errors (MAE) with hyper-parameter values. The
performance of cGRU is relatively unstable as we see a few spikes in test er-
rors. This validates hypotheses 3, and 4. MP-RNN consistently outperforms

c¢GRU and ¢cGRU-Attention. This can be attributed to the following factors,

e The synthetic data is uni-variate

e The MP-RNN architecture is relatively complex with two message sig-

59

Test error - all models
0.22

—— ¢GRU - 0.092
—— cGRU-attention - 0.093

0.201 —— MP-RNN - 0.086

0.18

0.16

Test error

0.14 1

0.12 4

0.10 1

0.08 4

T T T T T T
0 20 40 60 80 100
Number or trials

Figure 5.4: Test errors (MAE) for 100 trials on cGRU, cGRU-Attention and
MP-RNN with different train/test/validation splits for each trial

nals

Since cGRU and cGRU-Attention are relatively simple and compact with
a single coupling unit, they are computationally cheaper. These can be easily
scaled to multiple signals. We can further increase layers in the MLP to
capture complex non-linear interactions. Whereas MP-RNN cannot be easily

scaled for multiple signals.

Architecture cGRU | cGRU-Attention MP-RNN
Hidden units 64 64 64 (message:16)
Epochs 50 50 20
Learning rate 1073 1073 1073
Mean MAE (100 trials) | 0.092 0.093 0.086

Table 5.2: 100 trials on synthetic data with different train/test/validation
splits for each trial

60

5.2 Synthetic data with delay

In this experiment, we train our models on the dataset with delay, generated
as described in section 4.2. The purpose of this experiment is to test how
well do these models pick-up delayed interactions. We ran an experiment
of 25 trials on all the models with this data (figure 5.5). Table 5.3 lists the

results with hyper-parameter configurations.

Architecture cGRU | cGRU-Attention MP-RNN
Hidden units 64 64 64(message:16)
Epochs 50 50 20
Learning rate 1073 1073 1073
Mean MAE (25 trials) | 0.091 0.092 0.086

Table 5.3: 25 trials on synthetic with different train/test/validation splits for
each trial

The results show that all the models can learn to capture delayed inter-

actions.
5.3 Rapport data

We used same hyper-parameter configuration listed in table 5.1. Since the
number of data samples were huge due to the pre-processing step (section
4.6), we ran 10 trials with different train/test/validation splits on all three
models. The results are in the table 5.4. In this case, our proposed architec-

ture cGRU-Attention has the best average accuracy over 10 trials. This

61

Test errors - cgru, cgru-attention, mp-rnn

—— cgru-0.091
—— cgru-attention - 0.092
—— mp-rnn - 0.086

0.1101

0.105

0.100 4

error

0.095 1

0.090 1

T T T T T T
0 5 10 15 20 25
Number or trials

Figure 5.5: Test errors (MAE) for 25 trials on synthetic data with delay, with
different train/test/validation splits for each trial

further validates hypotheses 3 and 4.

Architecture cGRU | cGRU-Attention MP-RNN
Hidden units 64 64 64 (message:16)
Epochs 50 20 20
Learning rate 1073 1073 1073
Mean accuracy (10 trials) || 67.5% 77.5% 71.25%

Table 5.4: 10 trials on rapport data with different train/test/validation splits
for each trial

5.4 ICT data

For this experiment, we used the models trained on rapport data to test on
ICT data. Table 5.5 lists the results on all the models. Although numbers
are marginally above chance, they indicate that the models generalize well

to unseen data. In addition, this data was recorded in different conditions

62

for a different purpose. Our model - cGRU-Attention continues to perform

better.

Architecture | cGRU | cGRU-Attention | MP-RNN
Accuracy 56.52% 65.22% 60.87%

Table 5.5: Results on ICT data using models trained on Rapport data

5.5 Anomaly detection in videos - ShanghaiTech
dataset

The purpose of this experiment is to compare the generative versions of
architectures we propose to MPED-RNN [21] and test the capability of
the coupling mechanism for generative tasks. We implement the architec-
tures, cGRU-ED and ¢cGRU-ED-Attention, extensions of cGRU and ¢cGRU-
Attention. MSE is used as the error function to calculate losses for each
individual signal. These architectures are jointly trained to minimize recon-

struction loss and prediction loss, as below,

Ltotal - Lreconstruction + Lprediction (51)

The MPED-RNN was implemented in Keras and TensorFlow [21]. We
implemented a PyTorch version of MPED-RNN. We used the pre-processing
and post-processing snippets from their codebase as-is. The authors use

frame-level ROC AUC to evaluate the anomaly detection in the videos. We

63

couldn’t achieve the numbers claimed in the paper as we didn’t have access to
the hyper-parameters used by the authors. We also saw a drop in ROC AUC
of our PyTorch implementation of MPED-RNN compared to their Keras and

TensorFlow implementation.

Architecture | cGRU-ED | cGRU-ED-Attention | MPED-RNN
ROC AUC 0.6143 0.6239 0.6179

Table 5.6: Results on ShanghaiTech dataset

The results are in table 5.6. ¢GRU-ED-Attention continues to perform

better for generative tasks as well.

64

Chapter 6

Conclusion

6.1 Conclusion

In this project, we explored methods to model interacting time-series sig-
nals. In particular, we were interested in modeling social interactions. We
presented traditional methods and discussed why they would fall short for
modeling multivariate data such as videos. Inspired by similar studies in
the literature, we proposed architectures; cGRU and cGRU-Attention, with
coupling mechanism and self-attention to capture interactions in the data.
We used algorithms to synthetically generate uni-variate data for our exper-
iments. To simulate realistic conditions, we incorporated delays. This data
was used to tune the hyper-parameters of models. We obtained rapport and
ICT datasets to evaluate our models on real-life data, both collected to study

rapport between individuals.

65

We ran multiple trials on all the datasets to understand the performance
stability of all the models. In our experiments, MP-RNN a version of MPED-
RNN [21] performed well on the synthetic data. We attribute this to the
uni-variate nature of the dataset and the complexity of MP-RNN. However,
our proposed architecture, cGRU-Attention, performed better on rapport
and ICT datasets. Our studies indicate that these architectures are suit-
able for modeling social interactions. The compact formulation coupled with
scalability to multiple signals makes our proposed models desirable to model
complex systems. The performance on real-life data further validates this

claim.

6.2 Future Work

In this study, we were successful in modeling interacting sequences of the
same length. The results of our experiments are promising. We would like to
continue this study and develop architectures to model sequences of varying
lengths. This would allow us to model problems like sentence similarity. Al-
though the rapport and ICT datasets were audio-visual in nature, we studied
rapport using visual features alone. We would like to extend our architec-
tures to perform a multi-modal analysis. This would allow us to scale our

models to multiple signals and evaluate the scalability aspect.

66

Bibliography

1]

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv

preprint arXiw:1409.0473, 2014.

Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. Con-
strained local neural fields for robust facial landmark detection in the
wild. In Proceedings of the IEEFE international conference on computer

viston workshops, pages 354-361, 2013.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pear-
son correlation coefficient. In Noise Reduction in Speech Processing,

pages 1-4. Springer, 2009.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-
term dependencies with gradient descent is difficult. IEEFE transactions

on neural networks, 5(2):157-166, 1994.

67

[5]

Donald J Berndt and James Clifford. Using dynamic time warping to
find patterns in time series. In Knowledge Discovery and Data Mining

workshop, volume 10, pages 359-370. Seattle, WA, 1994.

Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden
markov models for complex action recognition. In Computer Vision and

Pattern Recognition (CVPR), volume 97, page 994, 1997.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555, 2014.

Aimee L Drolet and Michael W Morris. Rapport in conflict resolu-
tion: Accounting for how face-to-face contact fosters mutual cooperation

in mixed-motive conflicts. Journal of Ezperimental Social Psychology,

36(1):26-50, 2000.

68

[10]

[11]

[12]

[13]

[14]

[15]

Rosenberg Ekman. What the face reveals: Basic and applied studies of
spontaneous expression using the Facial Action Coding System (FACS).

Oxford University Press, USA, 1997.

Mark G Frank and Paul Ekman. The ability to detect deceit generalizes
across different types of high-stake lies. Journal of personality and social

psychology, 72(6):1429, 1997.

Mark G Frank and Paul Ekman. Appearing truthful generalizes across
different deception situations. Journal of personality and social psychol-

0gy, 86(3):486, 2004.

Jonathan Gratch, Ning Wang, Jillian Gerten, Edward Fast, and Robin
Dufty. Creating rapport with virtual agents. In International workshop

on intelligent virtual agents, pages 125-138. Springer, 2007.

Alex Graves, Santiago Ferndndez, and Jirgen Schmidhuber. Multi-
dimensional recurrent neural networks. In International Conference on

Artificial Neural Networks, pages 549-558. Springer, 2007.

Tayeb Jamali and GR Jafari. Method for generating two coupled gaus-

sian stochastic processes. arXiv preprint arXiv:1602.04697, 2016.

69

[16]

[17]

[18]

[19]

[20]

[21]

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term

memory. arXiw preprint arXiw:1507.01526, 2015.

John C Kircher and David C Raskin. Human versus computerized eval-
uations of polygraph data in a laboratory setting. Journal of Applied

Psychology, 73(2):291, 1988.

F Andrew Kozel, Kevin A Johnson, Qiwen Mu, Emily L Grenesko,
Steven J Laken, and Mark S George. Detecting deception using func-
tional magnetic resonance imaging. Biological psychiatry, 58(8):605-613,

2005.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Modelling interaction
of sentence pair with coupled-lstms. arXiv preprint arXiw:1605.05573,

2016.

Weixin Luo, Wen Liu, and Shenghua Gao. A revisit of sparse coding
based anomaly detection in stacked rnn framework. In Proceedings of
the IEEFE International Conference on Computer Vision, pages 341-349,

2017.

Romero Morais, Vuong Le, Truyen Tran, Budhaditya Saha, Moussa

Mansour, and Svetha Venkatesh. Learning regularity in skeleton trajec-

70

[22]

[23]

[25]

[20]

[27]

tories for anomaly detection in videos. arXiv preprint arXiv:1903.03295,

2019.

lead Rezek, Peter Sykacek, and Stephen J Roberts. Learning interaction
dynamics with coupled hidden markov models. IEE Proceedings-Science,

Measurement and Technology, 147(6):345-350, 2000.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learn-
ing representations by back-propagating errors. Cognitive modeling,

5(3):1, 1988.

Lin Sun, Kui Jia, Yuejia Shen, Silvio Savarese, Dit Yan Yeung, and
Bertram E Shi. Coupled recurrent network (crn). arXiv preprint

arXiw:1812.10071, 2018.

Linda Tickle-Degnen and Robert Rosenthal. The nature of rapport and

its nonverbal correlates. Psychological inquiry, 1(4):285-293, 1990.

Philip Tsui and Gail L Schultz. Failure of rapport: Why psychother-
apeutic engagement fails in the treatment of asian clients. American

Journal of Orthopsychiatry, 55(4):561-569, 1985.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

71

is all you need. In Advances in neural information processing systems,

pages 5998-6008, 2017.

(28] Paul J Werbos et al. Backpropagation through time: what it does and

how to do it. Proceedings of the IEEE, 78(10):1550-1560, 1990.

72

	Modeling Interacting Time-Series Signals
	Recommended Citation

	Introduction
	Motivation
	Related Work
	Hypothesis

	Background
	Recurrent Neural Networks
	Gated Recurrent Unit
	Encoder-Decoder architecture
	Attention mechanism

	Methodology
	End to End network (end2end-GRU)
	Coupled GRU (cGRU)
	Coupled GRU with Attention mechanism (cGRU-Attention)
	Message Passing (MP-RNN)
	Coupled GRU Encoder-Decoder (cGRU-ED)
	Coupled GRU Encoder-Decoder with Attention Mechanism (cGRU-ED-Attention)
	Implementation details

	Data
	Synthetic data - a pair of coupled Gaussian stochastic processes
	Synthetic data with delay
	Rapport data
	Surveillance videos for anomaly detection - ShanghaiTech Campus Dataset
	ICT dataset
	Data preprocessing: rapport, ICT

	Experiments and results
	Synthetic data
	Hyper-parameter tuning
	Baseline: end2end-GRU versus cGRU
	Error variance of models

	Synthetic data with delay
	Rapport data
	ICT data
	Anomaly detection in videos - ShanghaiTech dataset

	Conclusion
	Conclusion
	Future Work

