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Abstract

Many real-life systems consist of multiple information signals which might

be potentially interacting with each other over time. These interactions

can be estimated/modeled using techniques like Pearson Correlation (PC),

Time lagged Cross Correlation (TLCC) and windowed TLCC, Dynamic Time

Warping (DTW), and coupled Hidden Markov Model (cHMM). These tech-

niques, excluding cHMM, cannot capture non-linear interactions and does

not work well with multi-variate data. Although cHMM can capture the in-

teractions effectively, it is bound by Markov property and other assumptions

like latent variables, prior distributions, etc. These influence the perfor-

mance of the model significantly. Recurrent Neural Network (RNN) is a

variant of Neural Networks which can be used to model time-series data.

RNN based architectures are the new state-of-the-art for complex tasks like

machine translation. In this research, we explore techniques to extend RNNs

to model interacting time-series signals. We propose architectures with cou-
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pling and attention mechanism. We evaluate the performance of the models

on synthetically generated and real-life data sets. We compare the perfor-

mance of our proposed architectures to similar ones in the literature. The

goal of this exercise is to determine the most effective architecture to capture

interaction information in the given interrelated time-series signals.
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Chapter 1

Introduction

1.1 Motivation

Many systems in real-life consist of multiple information signals interacting

with each other over time. Social interactions serve as good examples of such

systems. These include dyadic interactions of a married couple, interrogation

room interaction between the investigator and the crime suspect, corporate

board room meetings, etc, to name a few. The harmony or synchrony in

such interactions is formally known as rapport. Rapport is defined as subtle

mirroring of emotional behavior such as postures, nods, and smiles. Tickle-

Degnen et al. [25] characterize rapport as a composition of the following three

components:

1. Mutual attentiveness: the feeling of intense mutual interest between

participants in a conversation, which creates a focused and cohesive

12



interaction.

2. Positivity: a feeling of mutual friendliness.

3. Coordination

Numerous studies have demonstrated that rapport facilitates negotiations [9],

psychotherapy [26], etc. Aimee et al. [9] state that real-life interactions are

mixed-motive conflicts due to individual self-interests. The collective optimal

outcome of these interactions requires mutual co-operation or rapport. We

might be interested in modeling social interactions for potential outcomes like

quality of interaction, agreement/disagreement between the individuals, etc.

In such cases, modeling interactions in terms of rapport would be successful.

Modeling interactions might be crucial for the potential outcomes we

would be interested in. In this project, we propose neural-network-based

architectures for modeling interacting signals. We study traditional meth-

ods in the literature which can be used to model such systems, and discuss

why they might not be effective in modeling multi-variate signals. We com-

pare our proposed architectures to similar architectures in the literature [21],

which were not necessarily used to model social interactions. As a result,

we evaluate the suitability of these architectures for modeling social interac-

tions. We use synthetically generated and real-life datasets to evaluate the
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performance of the models we work with.

1.2 Related Work

Modeling interactions have been extensively studied in the literature. Tradi-

tionally, the following techniques have been used,

1. Pearson Correlation (PC): is a measure of linear correlation be-

tween two signals X and Y [3], a value in the range [-1, +1]. A positive

value indicates a positive correlation, whereas a negative value indi-

cates a negative correlation. This measure quantifies global synchrony

between two signals. It can be calculated using,

ρ(X, Y ) =
cov(X, Y )

σXσY
(1.1)

where,

cov() is the covariance between X and Y

σX , σY are standard deviations of X, Y respectively

2. Time Lagged Cross Correlation (TLCC): is an extension of Pear-

son Correlation. One of the signals is offset by one timestep at a time

and PC is calculated using equation 1.1.

3. Dynamic Time Warping (DTW): is a measure of similarity be-

tween two temporal signals using an algorithm with defined set of rules
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and constraints. Figure 1.1 briefly illustrates how the algorithm com-

pares two signals. This technique uses a dynamic programming ap-

proach to align two time-series signals by minimizing a distance met-

ric [5].

4. coupled Hidden Markov Model (cHMM): is a probabilistic frame-

work which couples multiple temporal signals [6]. Conventional HMMs

are coupled by taking Cartesian product of their hidden states (figure

1.2). An HMM is a probabilistic model, modeled as a Markov process

with observable variables and unobservable (hidden) states. The for-

mulation is as below,

Let X = {x1, x2, . . . , xn} be a set of unobservables or hidden states,

and Y = {y1, y2, . . . , yn} be a set of observables. Then,

• p(yi|xi) emission probability for the observable at time step i

• p(xi|xi−1) transition probability

A cHMM can be setup by extending the above formulations of a HMM,

as below,

Let X = {x1, x2, . . . , xn} and Z = {z1, z2, . . . , zn} be the hidden states.
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The coupled transition probabilities are,

p(ci,j|ci−1,j−1) = ψ
(
p(xi|xi−1), p(zj|zj−1), p(xi|zj−1), p(zj|xi−1)

)
The coupled emission probabilities are as below,

p(y|ci,j) = p(y|xi) · p(y|zj)

Figure 1.1: DTW algorithm comparing two signals

The techniques: PC, TLCC, and DTW have the following disadvantages:

• cannot be used for multi-variate data and inference based modeling

• doesn’t capture non-linear interactions

• cannot handle noisy data

The cHMMs have been applied to classify taichi movements [6, 22], under

the assumption that different parts of the body moving in taichi will be

synchronous to each other. The cHMMs are bound by first-order Markov

assumption, which states that the present state (time step t) is dependent
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Figure 1.2: A cHMM with two channels

on the immediate past (time step t− 1) alone, making them restrictive and

limited. This assumption makes them tractable and relatively easy to train.

Whereas this does not hold true for most real-world systems, and hence

cHMMs cannot be used to model such systems.

Recently, neural-network-based architectures have been successfully ap-

plied to model time-series data. The two variants of RNNs, Long Short Term

Memory (LSTM) and Gated Recurrent Units (GRU), have been successful

in learning long term sequences. A few studies have explored methods to

model interactions between a pair of signals by coupling the hidden states of

two recurrent units. These methods try to achieve coupling by concatenating

the hidden states with each other or with the input signal of the succeeding

recurrent step. We mention the studies and discuss their coupling approaches

below.

Liu et al. [19] present an architecture that couples LSTMs to model

sentence similarity amongst pairs. They propose two variants, namely loosely

17



coupled LSTM (LC-LSTM) and tightly coupled LSTM (TC-LSTM). They

use two LSTMs, one for each sentence in the pair, and couple the hidden

states in four directions, inspired by grid LSTM [16] and multi-dimensional

RNN [14]. The hidden states of the LSTMs are concatenated and fed as

the hidden input for the subsequent recurrent steps. Both of these proposed

architectures become highly complex proportional to the length of sequences,

due to multi-directional coupling. This might result in vanishing or exploding

gradients. Also, it is unclear how they keep the hidden dimensions constant

for the recurrent steps post concatenation of the hidden states.

Sun et al. [24] propose Coupled Recurrent Network (CRN), an architec-

ture with two parallel streams of LSTMs. The hidden state of one stream

is concatenated with the input signal of the other stream in the succeeding

recurrent step. They use convolution operations for the LSTM memory cell,

as they work with images. Similar to CRN in terms of coupling, Morais

et al. [21] introduce MPED-RNN with two parallel streams of GRUs for

anomaly detection in videos. They use skeleton trajectories extracted from

the videos and decompose them into two input signals. These signals are fed

to MPED-RNN, an encoder-decoder architecture with a 2-stream encoder for

inputs and two 2-stream decoders for outputs, one for reconstructing input

18



and one for predicting future trajectories. Both CRN and MPED-RNN are

similar and they do not couple the hidden representations directly. Rather,

the hidden states are concatenated with inputs, which introduces complexity

as the number of signals increase.

Inspired by the work of Liu et al. [19], we propose an architecture with

two parallel GRU streams and uni-directional coupling. We use a multi-layer

perceptron (MLP) to couple and reduce the dimensionality of the hidden

states. We hypothesize that using an MLP for coupling would allow for cap-

turing the interactions better. By increasing the complexity of this unit, we

could capture non-linear interactions better. Recent literature has shown

that attention mechanism helps to better retain temporal memory for long

sequences [1]. Inspired by this, we implement a variant of the proposed net-

work with a simple attention mechanism. This causes the network to con-

sider all the hidden states when performing supervised learning tasks such as

classification or regression, and generative modeling tasks. We compare the

performance of our proposed architectures to MPED-RNN [21] on synthetic

and real-life datasets.

1.3 Hypothesis

We hypothesize the following,

19



1. If systems consist of interacting information signals, modeling the in-

teractions might be crucial for supervised learning tasks - classification

and regression

2. Interactions can be modeled by coupling hidden states of RNNs

3. Attention mechanism further improves the learning task of coupled

models

4. The performance of our proposed architectures are comparable to sim-

ilar methods in the literature while being more compact and easily

scalable to complex systems

We build and implement architectures to evaluate these hypotheses by

training them on real-life and synthetically generated datasets.
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Chapter 2

Background

In this chapter, we will cover the necessary concepts. We describe RNNs and

its variants, and attention mechanism in detail.

2.1 Recurrent Neural Networks

Recurrent neural networks are an extension of conventional feed-forward neu-

ral networks. As opposed to conventional neural networks, RNNs can be used

to model inputs of variable sequence lengths. This is achieved by using a re-

current hidden state. At each time step t, the activation of the hidden state

is dependent on the previous time step t− 1.

Consider a sequence X = {x1, x2, . . . , xn} with N time steps, and ht as

the hidden state at time step t such that t ∈ [1, n]. Then, ht is updated as,

ht =

{
0 t = 0
f(ht−1, xt) otherwise

(2.1)
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Figure 2.1: An RNN unrolled in time

This update to the hidden state is implemented as (Figure 2.1),

ht = f(Wxxt +Whht−1) (2.2)

where, f() is a smooth bounded non-linear function such as logistic sigmoid

or hyperbolic tangent (tanh()). The output could either be a variable length

sequence such as Y = y1, y2, . . . , ym, or it could be a fixed number of units

to perform classification or regression.

An RNN can be trained as a generative model to generate sequences.

Given its hidden state and the input for the time step t, this model outputs a

probability distribution for the next element in the sequence. When training

such models, a special input/output symbol is used to represent the start

or end of the sequence. In the case of a word-level language model, the

22



start of a sentence would be <SOS> and the end of the sentence would be

<EOS>. The probability distribution of the sequence element is modeled as

a conditional probability distribution over past elements in the sequence, as

below,

p(xt|x1, x2, . . . , xt−1) = g(ht) (2.3)

where, g() is a smooth bounded non-linear function such as logistic sigmoid

or hyperbolic tangent (tanh()).

An RNN can be used for sequence classification or regression problems.

Throughout this project, we stick to problems of this nature. Consider the

above sequence X = {x1, x2, . . . xn}, which maps to a binary class Y ∈ {0, 1}.

The probability distribution can be modeled as a conditional,

p(Y |x1, x2, . . . , xn) = sigmoid(l(hn)) (2.4)

where, l() is a linear function which reduces the dimension of hn to one.

The same formulation can be used to model a regression problem by removing

sigmoid

RNNs are trained using the gradient-based learning algorithm back-

propagation through time [28] (BPTT). It is an extension of the back-

propagation algorithm [23] to facilitate gradient propagation through the
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recurrent states. Theoretically, RNNs can capture the temporal dependen-

cies in relatively long sequences effectively. In practice, this has been proven

false [4]. The gradients either explode or vanish when the sequences are long

due to long product chains of partial derivatives. Alternatives like gradient

clipping have been effective in alleviating the exploding gradient problem.

However, the best alternatives so far have been the variants of RNNs - Long

Short Term Memory (LSTM), and Gated Recurrent Units (GRU). Both of

them use additional gates to mitigate the problem and help in learning long-

term dependencies in the sequences. The following section describes GRUs

in detail. We skip LSTMs as they haven’t been used in this project.

2.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) was introduced by Cho et al. [7], inspired by

LSTM. However, it is much simpler compared to LSTMs in terms of imple-

mentation and computation.

A GRU is made up of (Figure 2.2),

• Reset gate: This gate learns to decide how much of the past in-

formation to forget. It resets the past information when the sigmoid
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activation is close to zero (equation 2.7).

rt = σ(Wrxt + Urht−1) (2.5)

• Update gate: This gate controls the amount of information flow from

the previous hidden state to the current state. The model can essen-

tially decide to copy all the past information and eliminate the risk of

vanishing gradient problem (equation 2.8).

zt = σ(Wzxt + Uzht−1) (2.6)

• Candidate for current activation: The element-wise product of

ht−1 with rt is to decide what to remove from the previous time steps.

h̃t = tanh(Whxt + Uh(rt · ht−1)) (2.7)

• Current hidden state:

ht = ztht−1 + (1− zt)h̃t (2.8)

When learning sequences, the update and reset gates pass down the relevant

past information to the future time steps. This alleviates the vanishing gra-

dient problem and learn long-term dependencies better. The performance

has been shown to be comparable to that of LSTMs [8]. For this project,
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we choose GRUs over LSTMs to leverage its simplicity and computational

advantages.

Figure 2.2: Gated Recurrent Unit

2.3 Encoder-Decoder architecture

Encoder-Decoder architecture is a way of stacking recurrent units for mod-

eling multi-input and multi-output data. A popular example is a word-level

machine translation model (Figure 2.3). The number of words in a source

sentence and the target sentence may or may not be the same. The encoder

contains a recurrent unit that encodes the words in the source sentence into

a fixed-length context vector. The context vector is the last hidden state of

the encoder. The decoder contains a recurrent unit that is initialized with

26



this context vector. The target sentence is decoded one word at a time.

Figure 2.3: Encoder-Decoder architecture - machine translation

2.4 Attention mechanism

The fixed-length context vector of an RNN has the burden of encoding the

temporal information in sequences of arbitrary length. Hence, it might forget

the information about the initial time steps when the sequences are longer.

This problem has been observed in Neural Machine Translation (NMT) tasks.

When translating a long sentence from a source language to a target lan-

guage, the context vector has the burden of encoding temporal information
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of all the words. Bahdanau et al. [1] proposed attention mechanism to

overcome this problem. Essentially, this mechanism exposes all the hidden

states of an encoder to the decoder. At the time of decoding a word to the

target language, the decoder decides the amount of information to use from

each hidden state by computing a weighted sum of all the hidden states. The

model learns to pay attention to relevant parts of information to make predic-

tions, hence the name. This has been successful in producing state-of-the-art

results in neural machine translation [27].

The formulation we use for this project is from the work of Bahdanau et

al. [1]. We modify the formulation for classification or regression problems.

We use the same notations as earlier.

A d dimensional hidden state ht is reduced to a scalar as below,

et = a(ht) (2.9)

Using this, we compute the weight αt for the state ht as,

αt =
exp(et)∑N
j=1 exp(ej)

(2.10)

The above equation is the definition of the standard softmax function, which

is used for training multi-class classification models. This function computes
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probability distribution such that
∑N

j=1 αj = 1.

We then compute the context vector c as,

c =
N∑
j=1

αjhj (2.11)

This new context vector is a weighted sum of all the hidden states. The

conditional probability formulation for binary classification changes to,

p(Y |x1, x2, . . . , xn) = sigmoid(l(c)) (2.12)

where, l() is a linear function which reduces the dimension of c to one.

We can train an RNN with the attention mechanism in an end-to-end

fashion. The function a() and computation of αi together can be parame-

terized as a feed-forward neural network. These parameters are learned in

the back-propagation step. This approach is called self-attention. An RNN

trained in this fashion can be more effective at learning the amount of tem-

poral information necessary for assigning a class label.
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Chapter 3

Methodology

In this chapter, we introduce our proposed architectures built using GRUs.

Throughout this project, we stick to two interacting signals. For the rest of

the chapter, we consider the following notations,

• Signals S1 = {s11, s12, . . . , s1n} and S2 = {s21, s22, . . . , s2n} are two interact-

ing sequences of equal length

• g() is a smooth bounded non-linear function such as logistic sigmoid for

the binary classification problem, or a linear function for the regression

problem

• We use a simplified formulation for a GRU as below,

ht = GRU(xt, ht−1) (3.1)

In addition to our proposed architectures, we also describe a version of
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MPED-RNN [21], which we call MP-RNN (Section 3.4). This is a simplified

version of MPED-RNN without the encoder-decoder architecture. We add

appropriate non-linear functions for classification and regression problems.

We compare the performance of our architectures against MP-RNN.

3.1 End to End network (end2end-GRU)

This architecture outlines the simplest way of modeling two time-series sig-

nals (Figure 3.1). It consists of two GRUs, GRU-1 and GRU-2, one for each

signal. The corresponding hidden states are h1t and h2t . The context vectors

of both the GRUs are concatenated and fed to a function to perform classi-

fication/regression. The formulation is as below,

Hidden states h1t , h
2
t are computed as,

h1t = GRU-1(s1t , h
1
t−1) (3.2)

h2t = GRU-2(s2t , h
2
t−1) (3.3)

Supervised machine learning problems can be formulated as,

p(Y |S1, S2) = g(Wh ∗ [h1n;h2n]) (3.4)

It is evident that this architecture can be used to model sequences of ar-

bitrary lengths. However, this architecture may not capture the local/global
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Figure 3.1: end2end-GRU unrolled in time

temporal interactions between the signals being studied. We use this archi-

tecture as a baseline to evaluate our hypothesis 1.

3.2 Coupled GRU (cGRU)

This architecture is an extension of end2end-GRU (Figure 3.2). The hidden

states of each time step are fed to a Multi-layer perceptron (MLP) with a

non-linear function. The output dimension of this unit is the same as the

dimension of the hidden state of either GRU’s. We call this the coupled

hidden state. This is fed to both GRUs as the input hidden state for the

succeeding time step. The MLP is a standard multi-layered feed-forward

neural network with a non-linear activation function following each layer.

Increasing layers might better capture non-linear local interactions between
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the signals. The formulation is as below,

Figure 3.2: cGRU unrolled in time

Hidden states h1t , h
2
t are computed as,

h1t = GRU-1(s1t , Ht−1) (3.5)

h2t = GRU-2(s2t , Ht−1) (3.6)

The coupled hidden state Ht is computed as,

Ht = f([h1t ; h2t ]) (3.7)

where, f() is an MLP with a non-linear activation function such as tanh.

Supervised machine learning problems can be formulated using the following

conditional probability function tanh,

p(Y |S1, S2) = g(WH ∗Ht) (3.8)
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3.3 Coupled GRU with Attention mechanism

(cGRU-Attention)

This architecture is an extension of cGRU (Figure 3.4). The coupled hidden

states are used to apply self-attention and create a weighted context vector.

We use the following formulations,

Figure 3.3: cGRU with attention

Using equation 2.9, the coupled hidden Ht state is reduced to a scalar as

below,

et = a(Ht)
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We use equation 2.10 to compute the weight αt for each state Ht. We then

compute the weighted context vector C as (equation 2.10),

C =
N∑
j=1

αjHj

The conditional probability formulation for a supervised learning problem is,

p(Y |S1, S2) = g(C) (3.9)

3.4 Message Passing (MP-RNN)

This architecture is a version of MPED-RNN [21] with Encoder and an ap-

propriate activation function for a supervised learning task. A rectified linear

unit is used as an activation function to convert hidden states to messages.

Figure 3.4: MP-RNN
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Message signals are computed as,

msg1→2
t = ReLU(W 1→2 ∗ h1t ) (3.10)

msg2→1
t = ReLU(W 2→1 ∗ h2t ) (3.11)

The hidden states h1t , h
2
t are computed using message signals as below,

h1t = GRU-1([S1
t ;msg2→1

t ], h1t−1) (3.12)

h2t = GRU-2([S2
t ;msg1→2

t ], h2t−1) (3.13)

The conditional probability formulation for a supervised learning problem is,

P (y|S1, S2) = g(Wh ∗ [h1t ;h
2
t ]) (3.14)

3.5 Coupled GRU Encoder-Decoder (cGRU-

ED)

This is a generative architecture similar MPED-RNN [21]. The architecture

is built using cGRUs (figure 3.6). We use an abstraction of cGRU to sim-

plify the illustration of cGRU-ED architecture (figure 3.5). It consists of the

following components,

1. Encoder: encodes a pair of sequences of length T into a coupled con-

text vector Ht using,

Ht = cGRU(Ht−1, S
1
t , S

2
t )
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2. Reconstruction Decoder: is initialized with the hidden state HR
t =

Ht. It reconstructs the input pair in the reverse order using,

HR
t−1, S

1
t−1, S

2
t−1 = cGRU(HR

t , S
1
t , S

2
t )

3. Prediction Decoder: is initialized with the hidden state HP
t = Ht,

predicts future pair of length k. The formulation is similar to the

reconstruction decoder, as below,

HP
t+k, S

1
t+k, S

2
t+k = cGRU(HP

t+k−1, S
1
t+k−1, S

2
t+k−1)

Figure 3.5: cGRU abstraction
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Figure 3.6: cGRU-ED architecture

3.6 Coupled GRU Encoder-Decoder with At-

tention Mechanism (cGRU-ED-Attention)

This architecture is an extension of cGRU-ED with two self-attention units,

one for each decoder. The formulation of the encoder is the same as that of

the encoder in cGRU-ED. The components of this architecture are as below,

1. Encoder: encodes a pair of sequences of length T into a coupled con-
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text vector Ht using,

Ht = cGRU(Ht−1, S
1
t , S

2
t )

2. Reconstruction Decoder: is initialized with the hidden state HR
t =

Ht. The self-attention unit takes as input [H1, H2, . . . , Ht] and outputs

a weighted context vectors c1t , c
2
t using equations below,

e∗tj = a(S∗t , H
R
j )

α∗tj =
exp(e∗tj)∑
k exp(e

∗
tk)

c∗t =
∑
j

α∗tjH
∗
j

Replacing ∗ = 1, 2 yields equations for the appropriate context vector.

This is a slight variation of the formulation by Bahndanau et al. [1],

modified to accommodate two input signals and coupling mechanism.

Using these weighted context vectors, the decoder reconstructs the in-

put pair in the reverse order as below,

HR
t−1, S

1
t−1, S

2
t−1 = cGRU(HR

t , [S
1
t ; c1t ], [S

2
t ; c2t ])

3. Prediction Decoder: is initialized with the hidden state HP
t = Ht,

predicts future pair of length k. The formulation is similar to the
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reconstruction decoder, as below,

e∗t+k−1,j = a(S∗t+k−1, H
P
j )

α∗t+k−1,j =
exp(e∗t+k−1,j)∑
k exp(e

∗
t+k−1,k)

c∗t+k−1 =
∑
j

α∗t+k−1,jH
∗
j

HP
t+k, S

1
t+k, S

2
t+k = cGRU(HP

t+k−1, [S
1
t+k−1, c

1
t+k−1], [S

2
t+k−1, c

2
t+k−1])

Figure 3.7: cGRU-ED with attention mechanism

40



3.7 Implementation details

We used following tools and libraries for our implementations,

• python 2.7

• NumPy

• SciPy

• Matplotlib

• PyTorch

• Pandas

The architectures are implemented to utilize GPUs for training, if available.

This requires CUDA libraries. The code repository will be made publicly

available for further research and exploration.
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Chapter 4

Data

In this chapter, we list and describe all the datasets which were used for this

project.

4.1 Synthetic data - a pair of coupled Gaus-

sian stochastic processes

This dataset is made up of pairs of coupled Gaussian stochastic processes

generated using the algorithm presented by Jamali and Jafari [15]. A pair is

generated with a correlation factor in the range [0, 1] and the desired sequence

length. The correlation factor is sampled from a uniform distribution. Figure

4.1 shows an example of a pair generated with a correlation factor of 0.5001.

For our experiments, we generated the data and split it into different sets

as listed in table 4.1.

This algorithm cannot be used to generate - a pair with different sequence
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Figure 4.1: A pair of correlated signals with a correlation factor of 0.5001

Sequence length 100
Number of samples 10,000

Train split 8,000
Validation split 1,000

Test split 1,000

Table 4.1: Details of the generated synthetic data

lengths, and multi-variate sequences.

4.2 Synthetic data with delay

Real-life interactions might contain a certain amount of delay. To simulate

such scenarios, we incorporate a delay between the pair of signals generated

as described in section 4.1. The following steps illustrate the incorporation

of delay,
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1. Sample an integer d the range [0, 15] as delay from a uniform distribu-

tion

2. Generate a pair of sequences (S1, S2) of length 100− d with a sampled

correlation factor, using Jamali and Jafari’s algorithm [15]

3. Pad zeros of length d at the beginning of S1

4. Pad zeros of length d at the end of S2

This dataset contains approximately 667 samples (10000/15) without a

delay, hence containing a good mix of realistic interactions.

4.3 Rapport data

This data was obtained from a study involved in the larger context of de-

ception detection. The goal of the original study was to determine if rap-

port aided or hindered deception detection. A pair of interactants that have

formed rapport tend to coordinate with each other’s body language. How-

ever, when a lie is told - a lie that can affect the nature of the relationship

- it cannot help but disrupt the flow of their interaction. In fact, research

has shown that simply making an accusation of lying toward another creates

a break in the harmonious mirroring of behaviors on both liars and truth-
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tellers. The original project thus proposed to explore the role of deception

on interactional synchrony and on already established rapport.

For this work, however, we are only interested in detecting whether a pair

of interlocutors have or have not established a good rapport between them.

Hence, we model the interactions as rapport.

The data collection was conducted at the Communication Science Center

(CSC) at the University at Buffalo, SUNY. Each participant in the study

completed the consent process and was then presented with a theft scenario.

The study participants (interviewees) were asked to steal either a ring or a

watch [18, 17] and hide it somewhere in the conference room at the center.

In order to increase the stakes of the situation, the interviewees were pre-

sented with both incentives and punishment for successful or unsuccessful

performance [11, 12]. If successful at convincing the interviewer (blind to

the forced choice of stealing one object) that they did not steal either object,

they received $30. If they were believed on the object they stole only, they

received $20. However, if they were only believed on the object they did not

steal, they received $10. If they were not believed on either object, they did

not receive any money at all and were asked to write an essay about their

unsuccessful performance for the duration of 15 minutes. The interviews
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took place in an interrogation room at the center, specifically designed to

increase the realistic nature of the procedures. Figure 4.2 is an image of a

sample video frame showing the interviewing process between a retired police

officer and an interviewee. During the interview, both the interviewer and

the interviewee were recorded with a separate video camera capturing their

frontal view. A third camera captured both the interviewer and interviewee

simultaneously in order to preserve spatial information (figure 4.2). Upon

completion of the interview, the participants left the interrogation room to

complete questionnaires that are used as the ground truth.

To investigate the influence of rapport building, each scenario was created

with two between-subject conditions; rapport building or neutral interaction.

In the rapport condition, the interviewer spent approximately 3 minutes be-

fore and in the middle of questioning, interacting with the participant in a

positive manner, shaking his or her hand, smiling and nodding in agreement

where applicable, and actively finding something he has in common with

the participant. In the neutral interaction condition, the interviewer spent

approximately 3 minutes before the questioning about the watch/ring, dis-

cussing very neutral topics such as the weather, how the participants arrived

at the laboratory, etc., while maintaining a very neutral demeanor. The in-
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terviews were performed by three retired police officers who were accustomed

to high stakes interviews. A total of fifty-nine (N = 59) interviews from the

study were used for experiments in this project.

Figure 4.2: Sample video frame showing the interviewing process between an
interviewee on the left and a retired police officer on the right

The first three minutes of the interview involved a discussion about top-

ics unrelated to the missing watch or ring. This first period is referred to as

Baseline 1. The next 3-5 minutes of the interview involved questions about

either the ring or the watch; the next 3 minutes were again involving topics

unrelated to the experiment items and is referred to as Baseline 2. Finally,

the last 3-5 minutes of the interview involved more discussions about the
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missing experiment items again. In this work, we only focus on the con-

versations that occurred during the Baseline 1 and Baseline 2 time periods,

resulting in roughly 7 minutes of video data for each pair of interactants.

The data cleaning, annotation, and feature extraction were done by the

researchers at CSC. It included the following steps,

1. synchronize the pair of videos captured from the individual frontal view

cameras

2. segment and annotate videos into baselines and critical sections

3. extract segments: Baseline 1 and Baseline 2, and concatenate

4. extract OpenFace features [2] per frame

The data was provided in the form of CSV (comma separated values) files.

We use action units (AU) alone as the input features. Action units (AUs)

correspond to various muscle groups on the face and can range from being

fully activated to not activated [10]. Since the AUs are measured over time,

we could now obtain a collection of behavioral signals based on face dynamics.

Figure 4.3 shows the codes and descriptions of the AUs detected in the videos.

We discarded other features such as head movements (roll/yaw/pitch) and
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eye gaze directions. The 59 pairs were divided into train: 45, validation: 6

and test: 8.

Figure 4.3: Description of 18 auction units used for experiments in this
project

4.4 Surveillance videos for anomaly detection

- ShanghaiTech Campus Dataset

We utilize the ShanghaiTech Campus dataset [20] to build generative mod-

els for anomaly detection. This dataset contains footage captured from 13

different cameras around the ShanghaiTech University campus. The authors

claim that this is one of the biggest datasets for video anomaly detection.
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The dataset contains realistic anomaly events such as chasing and brawling.

It includes 13 scenes with 274,515 frames for training and 42,883 for testing

and 130 abnormal events in total. Most of the anomaly events in this dataset

are related to humans, while some events are not. The authors have removed

videos that do not contain human-based anomaly events.

The primary purpose of using this dataset is to compare our proposed

architectures to MPED-RNN [21]. The authors use skeleton trajectories as

features instead of videos themselves. They state that the skeleton features

are compact and highly descriptive about human action and movement, hence

they are sufficient for anomaly detection. The authors have published their

code on GitHub1. This web-page contains a link to the skeleton trajectories

data. We use the data they have published as-is to ensure consistency in our

comparisons. The authors decompose the skeleton features into local and

global features to account for spacial factors and size of the humans in the

videos, as below,

They formulate the problem as an interaction between the local and global

features. Through their experiments, the authors demonstrate that these

signals interact with each other. This dataset serves as a good example for

1skeleton based anomaly detection codebase: https://github.com/

RomeroBarata/skeleton_based_anomaly_detection.
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a system other than social interactions, which contains interacting signals.

4.5 ICT dataset

This dataset was collected by Jonathan Gratch from the Institute of Creative

Technologies at the University of Southern California [13]. It was created to

investigate the importance of Contingent feedback in creating feelings of rap-

port. The authors define contingency as nonverbal feedback by the listener,

such as nods or posture shifts that are tightly coupled to what the speaker

is doing at the moment. Non-contingent feedback is defined as the listener

feedback similar in frequency and characteristics to the contingent feedback,

but not synchronous with the speaker’s speech, behavior, or expressions.

This study was conducted with 161 participants (61% women, 39% men).

The authors use a virtual rapport agent alongside face-to-face interactions

with human participants. They study two types of virtual characters:

1. Good virtual listener (Responsive condition): the rapport agent

which synthesizes the head gestures and posture shifts in response to

the real human speaker’s speech and movements

2. A virtual representation of a real listener (Mediated condi-

tion): the rapport agent reproduces actual head movements and pos-
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ture shifts of a real human listener

This was a between-subjects experiment with four conditions to which the

participants were randomly assigned.

1. Face to Face (20 speakers, 20 listeners): the speaker talked to a

human listener face to face

2. Mediated (20 speakers, 20 listeners): The speaker interacted with

a virtual character imitating the head movements and posture of a

human listener, excluding facial expressions

3. Responsive (12 speakers): The speaker interacted with a virtual

character displaying proper listening behaviors contingent on the speaker’s

speech and head movements. Facial expressions were not generated

4. Non-contingent (12 speakers, 12 listeners): The speaker inter-

acted with a virtual character whose behavior is identical to the re-

sponsive agent, except the behavior was not contingent on the speaker’s

speech or head movements. The speaker was presented with a pre-

recorded behavior sequence in this case.

The participants were told that they would be undergoing a study to evalu-

ate a communicative technology like a web-camera used to chat with friends
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and family that was developed at the place. The participants were ran-

domly assigned a speaker/listener role. Subjects were made to answer a

pre-questionnaire.

The subjects were led into the computer room where experiments were

conducted. The procedure was explained and the equipment was introduced.

The speaker was tasked to view a short segment of a video clip on sexual

harassment awareness, in the absence of the listener. The speaker was in-

structed to retell the stories in the clip to the listener. He/she sat in front

of a 30-inch computer monitor in the cases - 2, 3, and 4, and interacted with

an animated character displayed on the screen. The speakers were told that

the avatar on the screen represents the human listener. The listener, on the

other hand, was shown a real-time video of the speaker retelling the story.

The speaker completed a post-questionnaire in the absence of the listener

and assigned a score using the provided rapport scale. The speech and video

data were captured and published for research purposes [13]. We changed the

rapport scale to binary labels. The scores in the range [1, 6] were assigned

the label rapport as they corresponded to a certain level of rapport according

to the scale. The rest of the values were assigned with the label neutral.

Although the study resulted in 124 interactions, just 31 of them have
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recorded videos available for both speaker and listener. Of the 31, we dis-

carded 8 of them as they did not have rapport scores available. This left us

23 videos to work with. Since these were insufficient to train and test our

models, we used these videos as test data for the models trained on rapport

data (section 4.3).

4.6 Data preprocessing: rapport, ICT

Both rapport and ICT datasets are multivariate with 18 features (Action

Units). The rapport videos were recorded at 30 frames per second, so each

7-minute video would have around 12,600 frames. These sequences are very

long for a temporal model. To overcome this potential problem, each video

was divided into non-overlapping chunks of 100 frames. All the chunks of a

video were assigned with the same label.
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Chapter 5

Experiments and results

In this chapter, we list and describe the experiments we conducted on each

dataset using all the models and describe results. We use the following loss

functions to train and evaluate all the architectures,

• Mean Absolute Error (MSE):

1

N

N∑
i=1

|yi − ŷi|

where,

N is the number of data samples

yi is the actual value

ŷi is the predicted value

• Mean Squared Error (MAE):

1

N

N∑
i=1

(yi − ŷi)2
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• Classification accuracy:

TP + TN

TP + TN + FP + FN

Measure Description Predicted label Actual label
TP true positives 1 1
FP false positives 1 0
TN true negatives 0 0
FN false negatives 0 1

This metric is used to calculate the binary classification accuracy.

5.1 Synthetic data

We used this dataset for hyper-parameter tuning. We conducted three ex-

periments on this dataset. The following sections describe the experiments

in detail. The models were trained on the train split. The validation split

was used to choose the best model. The best model was tested on the test

split.

5.1.1 Hyper-parameter tuning

In this experiment, we tried different combinations of hyper-parameter values

for cGRU and chose the one with lowest MAE on the test data. Table 5.1 lists

the cGRU hyper-parameters which were optimized. Figure 5.1 shows train-

ing and validation errors (MAE) of the cGRU model with hyper-parameters

corresponding to the lowest MAE.
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Hyper-parameter Description Optimal value
Learning rate (LR) rate of weight updates 0.001
Hidden size number of hidden units in GRU 64
Epochs number of training steps 50

Table 5.1: Hyper-parameters for cGRU and optimized values

Figure 5.1: cGRU training and validation errors for each epoch. The model
was trained using optimized hyper-parameter values in Table 5.1

We continue to use these hyper-parameter values for experiments on other

datasets. We also considered end2end-GRU for this step. However, end2end-

GRU could not learn with any combination of hyper-parameters. The model

with higher number of epochs resulted in over-fitting (figure 5.2).

5.1.2 Baseline: end2end-GRU versus cGRU

In this experiment, we justify the hypotheses 1 and. We model interactions

by coupling hidden states of the recurrent units (section 3.2). We trained
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Figure 5.2: end2end-GRU training and validation errors for each epoch. The
model was trained using - LR: 0.01, hidden size: 64, epochs: 200

end2end-GRU and cGRU on the data using hyper-parameters values in table

5.1 for a fair comparison. A plot of predicted vs actual values of correlation

factors was created for both the models. In this case, the more the number

of points closer to the diagonal, the better the model. Figure 5.3 shows that

cGRU has more points closer to the diagonal line.

This shows that cGRU can learn better than end2end-GRU, which val-

idates hypotheses 1, and 2. Hence, modeling interactions are crucial for

supervised learning tasks.

5.1.3 Error variance of models

For this experiment, we run 100 trials with different train/test/validation

splits for each trial. The purpose of this experiment is to compare the per-
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Figure 5.3: Predicted vs actual correlation factors for end2end-GRU (left
side) and cGRU (right side)

formance and stability of our proposed models: cGRU, cGRU-Attention with

MP-RNN. We use the same set of hyper-parameters from table 5.1 for all the

three models. Additionally, we use message size as 16 for MP-RNN. We used

the same train/test/validation for all the models in each trial to ensure a fair

comparison.

Figure 5.4 shows a plot of test errors over 100 trials, for all the models.

The table 5.2 lists the mean errors (MAE) with hyper-parameter values. The

performance of cGRU is relatively unstable as we see a few spikes in test er-

rors. This validates hypotheses 3, and 4. MP-RNN consistently outperforms

cGRU and cGRU-Attention. This can be attributed to the following factors,

• The synthetic data is uni-variate

• The MP-RNN architecture is relatively complex with two message sig-
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Figure 5.4: Test errors (MAE) for 100 trials on cGRU, cGRU-Attention and
MP-RNN with different train/test/validation splits for each trial

nals

Since cGRU and cGRU-Attention are relatively simple and compact with

a single coupling unit, they are computationally cheaper. These can be easily

scaled to multiple signals. We can further increase layers in the MLP to

capture complex non-linear interactions. Whereas MP-RNN cannot be easily

scaled for multiple signals.

Architecture cGRU cGRU-Attention MP-RNN
Hidden units 64 64 64(message:16)

Epochs 50 50 50
Learning rate 10−3 10−3 10−3

Mean MAE (100 trials) 0.092 0.093 0.086

Table 5.2: 100 trials on synthetic data with different train/test/validation
splits for each trial
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5.2 Synthetic data with delay

In this experiment, we train our models on the dataset with delay, generated

as described in section 4.2. The purpose of this experiment is to test how

well do these models pick-up delayed interactions. We ran an experiment

of 25 trials on all the models with this data (figure 5.5). Table 5.3 lists the

results with hyper-parameter configurations.

Architecture cGRU cGRU-Attention MP-RNN
Hidden units 64 64 64(message:16)

Epochs 50 50 50
Learning rate 10−3 10−3 10−3

Mean MAE (25 trials) 0.091 0.092 0.086

Table 5.3: 25 trials on synthetic with different train/test/validation splits for
each trial

The results show that all the models can learn to capture delayed inter-

actions.

5.3 Rapport data

We used same hyper-parameter configuration listed in table 5.1. Since the

number of data samples were huge due to the pre-processing step (section

4.6), we ran 10 trials with different train/test/validation splits on all three

models. The results are in the table 5.4. In this case, our proposed architec-

ture cGRU-Attention has the best average accuracy over 10 trials. This
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Figure 5.5: Test errors (MAE) for 25 trials on synthetic data with delay, with
different train/test/validation splits for each trial

further validates hypotheses 3 and 4.

Architecture cGRU cGRU-Attention MP-RNN
Hidden units 64 64 64(message:16)

Epochs 50 50 50
Learning rate 10−3 10−3 10−3

Mean accuracy (10 trials) 67.5% 77.5% 71.25%

Table 5.4: 10 trials on rapport data with different train/test/validation splits
for each trial

5.4 ICT data

For this experiment, we used the models trained on rapport data to test on

ICT data. Table 5.5 lists the results on all the models. Although numbers

are marginally above chance, they indicate that the models generalize well

to unseen data. In addition, this data was recorded in different conditions
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for a different purpose. Our model - cGRU-Attention continues to perform

better.

Architecture cGRU cGRU-Attention MP-RNN
Accuracy 56.52% 65.22% 60.87%

Table 5.5: Results on ICT data using models trained on Rapport data

5.5 Anomaly detection in videos - ShanghaiTech

dataset

The purpose of this experiment is to compare the generative versions of

architectures we propose to MPED-RNN [21] and test the capability of

the coupling mechanism for generative tasks. We implement the architec-

tures, cGRU-ED and cGRU-ED-Attention, extensions of cGRU and cGRU-

Attention. MSE is used as the error function to calculate losses for each

individual signal. These architectures are jointly trained to minimize recon-

struction loss and prediction loss, as below,

Ltotal = Lreconstruction + Lprediction (5.1)

The MPED-RNN was implemented in Keras and TensorFlow [21]. We

implemented a PyTorch version of MPED-RNN. We used the pre-processing

and post-processing snippets from their codebase as-is. The authors use

frame-level ROC AUC to evaluate the anomaly detection in the videos. We
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couldn’t achieve the numbers claimed in the paper as we didn’t have access to

the hyper-parameters used by the authors. We also saw a drop in ROC AUC

of our PyTorch implementation of MPED-RNN compared to their Keras and

TensorFlow implementation.

Architecture cGRU-ED cGRU-ED-Attention MPED-RNN
ROC AUC 0.6143 0.6239 0.6179

Table 5.6: Results on ShanghaiTech dataset

The results are in table 5.6. cGRU-ED-Attention continues to perform

better for generative tasks as well.
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Chapter 6

Conclusion

6.1 Conclusion

In this project, we explored methods to model interacting time-series sig-

nals. In particular, we were interested in modeling social interactions. We

presented traditional methods and discussed why they would fall short for

modeling multivariate data such as videos. Inspired by similar studies in

the literature, we proposed architectures; cGRU and cGRU-Attention, with

coupling mechanism and self-attention to capture interactions in the data.

We used algorithms to synthetically generate uni-variate data for our exper-

iments. To simulate realistic conditions, we incorporated delays. This data

was used to tune the hyper-parameters of models. We obtained rapport and

ICT datasets to evaluate our models on real-life data, both collected to study

rapport between individuals.
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We ran multiple trials on all the datasets to understand the performance

stability of all the models. In our experiments, MP-RNN, a version of MPED-

RNN [21] performed well on the synthetic data. We attribute this to the

uni-variate nature of the dataset and the complexity of MP-RNN. However,

our proposed architecture, cGRU-Attention, performed better on rapport

and ICT datasets. Our studies indicate that these architectures are suit-

able for modeling social interactions. The compact formulation coupled with

scalability to multiple signals makes our proposed models desirable to model

complex systems. The performance on real-life data further validates this

claim.

6.2 Future Work

In this study, we were successful in modeling interacting sequences of the

same length. The results of our experiments are promising. We would like to

continue this study and develop architectures to model sequences of varying

lengths. This would allow us to model problems like sentence similarity. Al-

though the rapport and ICT datasets were audio-visual in nature, we studied

rapport using visual features alone. We would like to extend our architec-

tures to perform a multi-modal analysis. This would allow us to scale our

models to multiple signals and evaluate the scalability aspect.
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