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Abstract 

In nucleate pool boiling, a thin film is formed under the nucleating bubble in the region where 

the solid, liquid and vapor phases meet. This is called the three-phase contact line region. High 

rates of heat transfer have been observed in this region. Researchers have developed a pool 

boiling apparatus with laser interferometry and artificial nucleation sites to observe the changes 

in thickness, frequency, velocity and the dynamic contact angle of the microlayer. Similarly, 

multiple meniscus studies have been conducted to observe the characteristics of microlayer in 

pool boiling and various other applications such as ink jet printing, miniature heat pipes, spray 

cooling and drop wise condensation. In this research we look at the effect of temperature on 

dynamic micro contact angle and contact line velocities on a heated and polished copper surface. 

An apparatus was designed to oscillate a meniscus on the same copper surface. The meniscus 

was fed liquid to compensate for the evaporation thus making the meniscus stable. A laser source 

and an optical camera were incorporated to analyze the three-phase contact line region. The 

effect of the perimeter of the base of the meniscus and frequency of oscillating meniscus was 

studied. Contribution of contact line heat transfer was reported, and characteristics of microlayer 

formed in the contact line area of an oscillating meniscus were observed over one oscillation 

period. 
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1. Introduction 

In today’s rapidly advancing world, technology is moving towards achieving more efficient 

systems. Effective heat transfer is a major concern in electronics, nuclear and power generation, 

and other industries where the devices must be maintained in a specific range of operational 

temperatures. In the electronics industry, for example, devices operate at a higher power density 

due to the advances in miniaturization of electronic components. In the nuclear industry, the 

nuclear core must be maintained far from the melting temperature of the core material to 

prevent a possible nuclear catastrophe. In the power generation industry, the increasing demand 

of electric energy pushes engineers to increase the efficiency of the heat transfer processes. This 

requires a high amount of energy transport at small temperature differences, especially at small 

scales. This pushes the conventional heat transfer methods to extract high amounts of energy. 

Air cooling and single-phase liquid cooling are used to dissipate low amounts of heat off the 

system to meet their operational limits. Newer technologies like two-phase heat transfer are 

known to have heat transfer coefficients as large as 100, 000 W/m²-K as compared to 10,000 

W/m²-K in single phase cooling. Table 1 shows the comparison of heat coefficient values by 

various methods and of various fluids. The ability to have such high heat transfer coefficients 

demands the advancement of research in this field. 

Boiling involves a phase change which can dissipate large amounts of heat due to the formation 

of vapor bubbles which carry a large amount of heat with them. However, boiling is a very 

complex and chaotic phenomenon which is very difficult to study. 
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Table 1. Heat transfer coefficient for different modes of heat transfer 

Process Fluid 
Heat Transfer Coefficient 

(W/m2-K) 

Natural Convection Air 2 – 25 

Water 50 – 1000 

Forced Convection Air 25 – 250 

Water 100 – 20,000 

Pool Boiling Water 2,500 – 100,000 

 

1.1. Boiling 

Boiling has proven to be an effective way of cooling. It is a phenomenon in which a fluid 

undergoes the phase change from a liquid to a gaseous state. The latent heat of a liquid is much 

greater than the sensible heat. Hence a two-phase cooling is accompanied by large amounts of 

heat transfer. Boiling can further be classified as pool boiling and flow boiling. In pool boiling, a 

stagnant pool of liquid is heated by a heater surface. The main source of heat transfer in pool 

boiling is due to the bubble growth which remove heat from the surface as they grow and depart. 

Flow boiling consists of incoming liquid on the heater surface which then changes its phase, 

taking heat off from the surface. Even though flow boiling is related to very high amounts of heat 

transfer, there exists many challenges such as pressure drop and non-uniform flow rates that 

cause instability in the system. However, both pool boiling and flow boiling processes are limited 

by a phenomenon known as Critical Heat Flux (CHF), the situation in which the entire heater 

surface gets covered with a thin layer of vapor. When the surface hits this point, the temperature 

of the heater surface jumps up by a few hundred degrees in a very short time. The result of this 
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can be potentially dangerous and can melt down the heater surface and system. Figure 1 shows 

a typical pool boiling curve.  

 

 

Figure 1. Pool Boiling Curve 

 

The boiling curve is divided in four regimes – 

1. Natural Convection 

2. Nucleate Boiling 

3. Transition Boiling 

4. Film Boiling 
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1. Natural Convection 

The first region is where the heat transfer takes place through natural convection. The bulk liquid 

in the vicinity of the heater surface is comparatively hotter than the rest of the pool above it. This 

gives rise to the natural flow of liquid due to the difference in the temperature. The wall 

superheat (difference between saturated liquid and surface temperature) is not significant for 

the nucleation of bubbles on the heater surface. As the temperature is increased and the liquid 

attains its saturation temperature, the nucleation of bubbles starts. This point is called the Onset 

of Nucleate Boiling (ONB). 

 

2. Nucleate Boiling 

As the temperature rises further, more bubbles are observed at various locations on the heater 

surface. The nucleation sites also get activated with the temperature rise. This results in higher 

heat flux and higher heat transfer coefficients. This region is called partial nucleate boiling. The 

region between the points ‘c’ and ‘a’ (as indicated in Figure 1) is called developed nucleate 

boiling. With further increase in the surface temperature the frequency of bubble nucleation 

increases. This increase in bubble formation results in coalescence of bubbles forming vapor 

columns at certain locations. As the heat flux is increased further, the vapor bubbles start 

coalescing upward and sideward. With further increase in the temperature Critical Heat Flux 

(CHF) is reached (‘a’). As point ‘a’ is reached, a vapor blanket is formed on the surface as a result 

of coalescence of bubbles. The temperature of the surface shoots up. In real-time situation, the 

transition boiling period is extremely low and the curve directly jumps from point ‘a’ to ‘b’ (as 

indicated in Figure 1).  
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3. Transition Boiling 

Once the vapor film collapses, the curve rapidly transfers from region 4 to 2 through the region 

3. This is known as transition boiling. It is very difficult to achieve a steady state as the wall 

superheat increases with increase in the heat flux. 

 

4. Film Boiling 

The region 5 shown in Figure 1 is called film boiling as the heat is conducted to the bulk liquid 

through a vapor film and the temperature of the surface is very high as the heat transfer through 

vapor is very poor. When the heat flux is steadily decreased, the wall superheat also decreases. 

With enough decrease in the surface temperature, the vapor blanket collapses, and the curve 

enters into transition boiling region. 
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1.2. Contact Line Region 

The three-phase contact line is where the three phases intersect – solid, liquid, and gaseous in a 

nucleating bubble. A microlayer is formed under when a bubble nucleates on a heated surface. 

This is explained in detail in the literature review section. Recent advancements in contact line 

have concluded that high heat transfer rates take place in this microlayer region (Figure 2). The 

contact line can be divided in the four regions – the adsorbed film region, transition region, 

intrinsic meniscus region, and macro convection region. 

 
Figure 2. Schematic of different region of contact line [1]. 

 

The adsorbed film region and the transition region can also be called the thin film region, while 

the macro region comprises of intrinsic meniscus region and macro convection region. In the 

adsorbed region, there is no evaporation due to high disjoining pressure which is due to Van der 

Waals forces between the molecules of the liquid and solid and thus, it doesn’t contribute in the 

growth of the bubble. In the transition region, the thickness of the film is comparatively more 

than that in the adsorbed region and hence, due to increase in the distances of the liquid-solid 

molecule, the disjoining pressure and the Van der Waals forces are low and strong evaporation 
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rates are observed. A sharp curvature in the intrinsic meniscus region gives rise to capillary forces 

at the liquid-vapor interface and gives rise to high heat fluxes in this region. These high 

evaporation rates are because of low resistance to evaporation due to increased thickness of the 

film. Similarly, due to even lower thickness and reduced disjoining pressure, even higher rates of 

evaporation are observed. The thickness of the film increases and the resistance to evaporation 

also increases as we go towards the macro-convection region. Therefore, a low evaporation rate 

is observed. 
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1.3. Interferometry 

Researchers have tried out various methods using special equipment to find the thickness of the 

microlayer. Because interferometry is easy to use compared to other methods like using a 

thermal analyzer, depth sensors, infrared etc., it has been selected for this research. The 

thickness of the meniscus is the thickness of the contact line region beneath the bubble. The 

measurement of the thickness using interferometry consists of a laser source, collimating lens, 

and high-power microscope. Interferometry relies on the interference and diffraction patterns 

due to the net change of the phase of the rays that are refracted from the secondary medium. 

For example, from Figure 3 consider the incident ray at point A which is partly reflected and partly 

refracted into the liquid. The ray (AB) hits the bottom of the surface and is reflected in the liquid. 

When the ray hits the surface, it again goes under reflection and refraction due to change of 

refractive indexes of the mediums (liquid and surface). The refracted ray (BC) is in phase with the 

reflected ray (AD) when the distance travelled by the ray in liquid (A to C) is equal to integral 

multiple of wavelength and a bright band is seen. When the phase difference is an integral 

multiple of half wavelength, the dark band is seen. As the temperature of water increases, the 

refractive index of water reduces and thickness  (t) increases. 
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Figure 3. Concept of Interference. 

2𝑡𝑛𝑤 = 𝑚𝜆 −  𝑓𝑜𝑟 𝑏𝑟𝑖𝑔ℎ𝑡 𝑏𝑎𝑛𝑑𝑠                                               (1) 

2𝑡𝑛𝑤 = (𝑚 +  
1

2
) 𝜆 − 𝑓𝑜𝑟 𝑑𝑎𝑟𝑘 𝑏𝑎𝑛𝑑𝑠                                          (2) 

Where, t = thickness at location m, n1 = refractive index of air, nw = refractive index of water,   

nw > n1 and 𝜆 = wavelength of light.  

 

Figure 4. Interferometry in microlayer. 

 

Assuming the contact line is the 0th dark band and the bright band is the first bright band, 

substituting m = 1 and m = 0 in equations 1 and 2 respectively leads to the following:  

2𝑡1𝑛𝑤 = (
1

2
) 𝜆                                                                 (3) 

𝑡1 𝑡2 𝑡3
 
 

n1 

nw

w 
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2𝑡2𝑛𝑤 = 𝜆                                                                     (4) 

𝑡2 −  𝑡1 =  
λ

2𝑛𝑤
                                                                (5) 

The increase in distance between successive dark and bright band is given by the difference t2-t1. 

If we consider the microlayer to be a like an air wedge created by two glass pieces raised at a 

height h at one end, then 2𝑡 = 𝑚𝜆 can be used to calculate the thickness at the order of band M 

as shown in the Figure 5. Here, M is the order of black fringe. 

 

Figure 5. Similarity between interference pattern in an air wedge and microlayer. 

This theory is used to calculate the thickness of the film. Here, t is the thickness of the liquid film, 

m is the fringe order and 𝜆 is the wavelength of light in air, and nw is the index of refraction of 

the liquid. Since the thickness of the fringes is constant, due to the constant increase in thickness 

(constant slope), the fringe spacing, Δx, is given by the following equation.  

∆𝑥 =
𝜆

2𝑡𝑎𝑛𝜃
(6) 

Microlayer Vapor 

Heater Surface 

Refracted Ray Reflected 
Ray 

Liquid 

Bulk 
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1.4. Contact Angle 

Contact angle is the angle measured through the liquid at the liquid-solid interface. It quantifies 

the wettability of the surface by liquid via Young’s equation. Depending on the nature of the 

surface, it can be a hydrophobic or a hydrophilic surface (as shown in Figure 6). When a liquid 

completely wets the surface, it is called a hydrophilic surface. The contact angles in this case are 

low. Alternatively, when the liquid does not wet the surface, it is a hydrophobic surface. The 

contact angles are high on hydrophobic surfaces. Typically, surfaces with a contact angle less than 

90° are the hydrophilic surfaces and the surfaces having contact angle between 90° and 180° are 

the hydrophobic surfaces. The factors such as surface morphology, surface roughness are further 

used to vary the nature of the surfaces [1]. 

 

Figure 6. Contact angles for hydrophilic and hydrophobic surfaces. 

 

  

Hydrophobic Solid Hydrophilic Solid 
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1.5. Contact Angle Hysteresis 

When a water drop encounters a solid surface, it forms a droplet that is a section of the sphere 

at a measurable contact angle with the surface. An everyday example of this can be seen in 

raindrops on the leaves or hood of a car. It is important to remember that when measuring the 

contact angle of a pair it is always measured from inside the liquid (Figure 7). When these droplets 

of water evaporate in an unsaturated environment or carefully withdrawn from the surface using 

a syringe, the contact line starts to recede. The volume and surface area of the droplet decreases 

with a constant receding contact angle QR (as shown in Figure 7a). This is a characteristic of 

surface topography and chemistry. Similarly, if the surface is cooler with a temperature below 

the dew point of the liquid or water then the liquid starts to condense on the surface. The droplet 

volume and surface area grow over time with a constant contact angle QA (as shown in Figure 

7b). This is called the advancing contact angle, which is also a characteristic of surface topography 

and chemistry. A semi-stable droplet forms a contact angle with the surface with a value which 

is in between the advancing contact angle QA and receding contact angle QR. Hence, it is 

important to report both – advancing and receding contact angle when defining the contact angle 

characteristics if a liquid-solid pair.  

 
Figure 7. (a) Advancing and (b) Receding contact angle [2]. 

  

a b 
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2. Literature Review 
 

Many of the industrial processes and cooling systems which are under development or already 

available commercially depend on two phase flows. Two phase systems are better performing as 

stated in the introduction. Two phase applications like pool boiling, flow boiling, thin film boiling, 

and heat pipes all have vapor bubble nucleation which is in contact with the solid, liquid, and the 

vapor interface called as the triple contact line. If we consider a process of evaporation of a sessile 

droplet, it can also be a thin film covering a solid surface. The thickness of this film can be as low 

as approximately 10 nm [3]. This is called the adsorbed region. It has been stated that the heat 

fluxes in the contact line region make a significant contribution to the overall heat transfer in the 

system [4]. Microlayer evaporation was first proposed by Snyder and Edwards [5] as a significant 

contributing factor during the process of boiling which was later quantified by Cooper and Lloyd 

[6] by measuring the temperatures on the heater surface. This was emphasized by Demiray and 

Kim [7] and Raghupathi and Kandlikar [8]. 

2.1. Meniscus Evaporation 

Stationary menisci has been the focus of for many of the previous studies in which menisci were 

formed inside a quartz cuvette, at the open end of a capillary tube, between two parallel plates, 

at the intersection of two plates and on the surface of the plate inserted in liquid at an angle. 

Wayner[9] in 1978 stated that viscous flow of liquid in the contact line region affects the profile 

of an evaporating meniscus significantly. Theoretical analysis was conducted based on the 

assumption that fluid flow was caused due to London-van der Waals dispersion forces and 

concluded that change was due to viscous forces only and surface roughness did not have any 
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effect. The meniscus was divided into three regions for the analysis – 1. Range of thin film near 

the contact line was 0 to 500 Å. 2. Intrinsic meniscus region ranged from 0.05 to 10 microns and 

3. outer intrinsic meniscus where the thickness was greater than 10 microns.  

Holm and Goplen[10] observed very high heat transfer rates near the contact line. This was 

presented by using dropwise condensation to show that surface heat transfer coefficients are 

ten times greater than heat transfer coefficients obtained from condensation process. In another 

study, Holm and Goplen used partially filled capillary grooves with liquid to form triple line region 

and showed that heat transfer is increased due to liquid flow in grooves as a result of capillary 

action. Characteristics such as - 1. Heat transfer from grooved plate, 2. Temperature drop in walls 

separating grooved plates and 3. Difference in temperatures of wall and surrounding vapor.  

A mathematical model was formulated using the Young-Laplace equation, Van Der Wahls forces, 

Marangoni convection and non-equilibrium contact line conditions of a meniscus in a capillary 

tube by Swanson and Herdt[11]. In 1994, Hallinan et al[12] studied the effects of micropores of 

a heat pipe wick and characterized it by interfacial shape, temperature distribution and 

dispersion number on an evaporating thin film meniscus. Khrustalev and Faghri[13] developed a 

mathematical model for a meniscus in a capillary tube. It consisted of steady state, two-

dimensional energy and momentum equation for liquid and vapor. Assumptions like constant 

wall temperature were made as the surface conductivity is very high as compared to the liquid. 

Kim and Wayner[14] used null ellipsometry and image processing and analyzing techniques to 

analyze evaporating thin film. Kelvin -Clapeyron model was used to estimate mass flux and 

interferometry images were used to plot pressure fields. Octane evaporative meniscus was 

formed in a closed circular cell. Some of these studies are explained in the next section. 
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2.2. Microlayer Evaporation 

Many researchers have studied the important topic of microlayer evaporation formed under the 

bubble during the nucleate pool boiling process. Various methods were adopted to investigate 

the shape, size, and thickness but the results to date have been limited and thus further 

investigations are necessary for an even better understanding. Microlayer thickness has been 

measured using various methods like optical interferometry, temperature measurement of the 

heater surface using precise thermocouples, infrared imaging techniques etc. A microlayer under 

a nucleating bubble is shown in the Figure 8. A setup was designed to create a similar scenario 

but in an unsaturated environment to study the microlayer evaporation. 

     

Figure 8. Microlayer in a steady meniscus. 

Judd and Hwang [15] briefly summarizes the developments in this topic, starting with Sharp [16] 

confirming the presence of a microlayer and measured the thickness using a mercury arc lamp as 

a monochromatic source of light. Further interferometric studies such as Voutsinos and Judd [17] 

used dichloromethane and McGregor and Jawurek [18] studied the experimental errors in the 

interferometric techniques using methanol as a working fluid. They were able to conclude that 
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the measurement error was less than 0.5%. Koffman and Plesset [19] studied ethanol in a 

subcooled boiling environment. Gao et al. [20] used a similar concept to measure the microlayer 

thickness with laser extinction method. Building on Cooper’s [21] work in which a model is 

derived to calculate the heat transfer through the microlayer and bubble growth, Cooper and 

Lloyd [6], Van Owerkerk [22] derived an equation for heat transfer from an evaporating liquid 

film over a solid surface. A fundamental analysis and equation predicting the microlayer thickness 

was presented on a receding liquid interface by Cooper and Lloyd [6]. Adding to these studies, 

Graham and Hendricks [23] incorporated the transient conduction model in the microlayer heat 

transfer model recognizing the dynamic nature of microlayer in bubble growth and evaporation. 

Kim and Wayner [14] experimentally and theoretically evaluated the heat transfer details in the 

contact line region using null ellipsometry and interferometry using octane as working fluid. Holm 

and Goplen [10], in 1979 stated that high heat transfer rates were observed near the three phase 

contact line. They used drop-wise condensation to show that heat transfer coefficient obtained 

were a magnitude greater than film condensation. Dhavaleswarapu et al. [24] in 2007 found that 

95% of heat is transferred in the 30% of interface close to contact line. 

Laser interferometry has been the most widely adopted technique for measuring the thickness 

of the microlayer under bubbles in nucleate boiling. However, this technique can only provide 

information about the thickness and must be coupled with high speed visualization and a strict 

control of the heated surface to obtain bubble structure and microlayer heated wall 

temperature. All the works reporting microlayer thickness have used a transparent surface 

heater, which makes suitable visualization from the bottom. However, in boiling applications, 

bubbles nucleate from metallic surfaces, for example copper or aluminum and using an optical-
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grade coated surface may not reveal bubble growth characteristics relevant to further 

understand boiling processes.  

     

Figure 9. Utaka's [21] apparatus for microlayer beneath a nucleating bubble. 

Utaka et al. [25] studied the microlayer beneath a growing bubble. A pool boiling setup was used 

with a quartz glass with a 2 mm diameter hole for injecting air. The plate was heated by nitrogen 

gas jet heater. The heat flux value was calculated using the method in[26]. A He-Ne laser with 

632.8 nm was used as a light source. Figure 9 shows the apparatus used in this experiment. 

Utaka’s group was able to conclude that the microlayer has a wedge shape but also a bended 

shape in a relatively larger radius and the heat flux had a very little effect on the initial microlayer 

thickness. In previous studies, Utaka et al. [25] were able to conclude that microlayer thickness 

increased linearly with increase in distance from the inception site, the initial microlayer for 

water was 0-9 µm thick and was twice as thick than the microlayer for ethanol. They also provided 

a relationship between the distance from the inception site and microlayer thickness as –  

𝛿0 = 4.46 ×  10−3𝑟𝐿 for water          (7) 

𝛿0 = 10.2 ×  10−3𝑟𝐿 for ethanol               (8) 



27 
 

where, 𝛿0 is initial microlayer thickness in microns and 𝑟𝐿 is distance between bubble site and 

measurement location in millimeters. 

 

Figure 10. Thickness Profile – Utaka[25]. 

Similarly, Gao et al. [20] used a pool boiling setup with Pyrex glass with ITO coating as the heating 

surface bonded with copper sheets for joule-heating and ethanol as the working fluid. A laser source 

of wavelength 632.8 nm was used as the monochromatic source to record the fringe patterns 

beneath the nucleating bubble. They setup a relationship of dimensionless dry spot radius with a 

growth rate of the nucleating bubble with dimensionless time as shown in equation 1. A correlation 

of micro-contact angle was established with ethanol vapor bubble growth time from the equation 9. 

𝑟𝑑

𝑟0
𝑑

= 𝐴(
𝑡

𝑡𝑑
)𝑚(

𝜌𝑣

𝜌𝑙
)𝑛                             (9) 

where 𝑟𝑑 is the radius of dry spot, t is the bubble growth time, 𝜌𝑣 is the density of vapor, and 𝜌𝑙 is the 

density of saturated liquid. 
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Figure 11. Goa et al [20]. - Schematic and thickness profile of the microlayer. 

 

The schematic of the apparatus is as shown in the Figure 11. The thickness profile of the microlayer 

evolution over time at heat flux of 32.4 kW/m2. 
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2.3. Sessile Drop Evaporation 

Drop evaporation occurs in a medium with different temperatures and saturation conditions 

giving rise to convective circulation in the water droplet. Hence, there is no uniform temperature 

gradient in the droplet. Heat transfer in an evaporating droplet can occur in the form of 

conduction, convection or radiation. When the droplet evaporates in air, it follows a process of 

diffusion at air-drop interface and the rate of diffusion is limited depending on the concentration 

of the vapor molecules in free air. The equation for diffusion is given by –  

                 −
𝑑𝑚

𝑑𝑡
= 4𝜋𝑅2𝐷

𝑑𝑐

𝑑𝑅
                       (10) 

where, m is the mass in kg, t is the time in s, R is the radial distance from the center of the droplet 

(m), D is the diffusion coefficient (m²/s) and c is the concentration of the vapor (kg/m3). If we 

assume the boundary conditions c = cs when R = Rs and c = 𝐶∞ when R = 𝑅∞(𝑅∞ is the distance 

of a point at distance very far from the center), integrating equation 10 gives the rate of 

evaporation as –  

−
𝑑𝑚

𝑑𝑡
= 4𝜋𝑅𝑠𝐷(𝐶𝑠 − 𝐶∞)                                   (11) 

where RS is the radius of the spherical droplet from the center to the surface and CS is the 

concentration of vapor at the sphere surface (at RS distance). 

It is found that the interaction of liquid with the solid is found to vary with different surface 

geometries, material and hydrophobicity of the material. On an ideal (flat, horizontal, rigid, solid) 

surface, the equilibrium contact angle is given by Young’s equation [27] as a function of surface 

tensions between solid-liquid, liquid-gas and solid-gas interfaces. When a droplet is placed on a 
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surface, depending on the nature of the surface, there can be partial or complete wetting. During 

complete wetting, the droplet sits flat on the surface and the contact angles tend to 0°, while the 

partial wetting has measurable contact angles. This gives us the measure of the hydrophobicity 

of the surface. 

For real surfaces, the equilibrium contact values vary between the advancing and the receding 

contact angle depending on the heterogeneities of the surface [28]. The equilibrium contact 

angle is obtained at thermodynamic equilibrium i.e. when no mass transfer takes place. Birdi [29] 

pointed out that the evaporation behavior of the droplet with contact angle greater than 90° is 

different than if the contact angle is less than 90°. It was found by Bourges-Monnier and 

Shanahan [30] that, for droplets with contact angle less than 90° the contact line is pinned and 

mass transfer due to evaporation is linear with time. While Cazabat [31] showed, for a non-

wetting case, the mass transfer due to evaporation is non-linear. Thus, this demonstrates the 

effect of hydrophobicity on evolution of droplet profile. Shanahan [32] compared the droplet 

evaporation time to the hydrophobicity of the surface, depending on whether it is a constant 

radius evaporation or constant contact radius evaporation. In constant radius evaporation, the 

evaporation leading to a constant volume evaporation curve with time, while in a constant 

contact angle, the radius decreases, and it follows a power law. It is a competition between the 

pinning and the depinning forces. The pinning forces are due to the chemical and surface 

heterogeneities. The depinning forces are due to the deviation from equilibrium caused by 

evaporation (loss of mass). The deviation from equilibrium governs the pinning and the depinning 

of the triple contact line [33].  
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Figure 12. (a) Representation of a pinned droplet. Radius is fixed, contact angle and height decrease 
with time. (b) Representation of triple line jump [29]. 

 

In order to study these pinning and depinning effects, Deegan et al. [34] studied the evaporation 

process with colloidal particles and nanoparticles in the fluid. We know that these colloidal and 

nanoparticles are drawn to the periphery during the evaporation to leave a stain we call the 

‘coffee ring effect’. These particles are known to promote the pinning of the contact line. To 

better understand the effect of these particles with one another, Moffat et al. [35] found that 

addition of TiO2 nanoparticles to ethanol promoted stick-shift behavior, not due to irregularities 

on the surface but due to nanoparticles accumulating at the contact line.  
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Figure 13. Evaporation of an ethanol droplet with TiO2 nanoparticles [29]. 

 

Some researchers like Li et al. [36] focused their research on the flow of nanoparticles in a droplet 

during evaporation. Flow inside a 0.1μL droplet was observed to be circulatory. This flow was 

found to be induced by pinning and depinning of the contact line. Silica particles were used, and 

it was found by the authors that the flow can be controlled by changing the concentration of 

nanoparticles or reducing surface tension by adding surfactants. Anderson et al. [37] proposed 

that on an ideal surface, the contact line recedes while the contact angle remains constant. On 

the other hand, Sefiane and Tadrist [38] found that, initially the contact angle reduces while the 

contact line is pinned until a limiting value is reached. After the limiting value is reached, the 

contact line recedes. Researchers have related the depinning force to the initial contact angle, 

angle before jump, and surface tension of liquid. 
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From this review, it is clear that microlayer evaporation and interaction of triple contact line with 

the surface is a complex phenomenon. With reduction in contact angle while the contact line is 

pinned, the height of the droplet is reduced which reduces the resistance to evaporation.  

More such examples include ink-jet printing [39,40], spraying of pesticides[41], micro/nano 

fabrication[42,43], thin film coatings [44], biochemical assays[45], spray cooling [46], deposition 

of DNA/RNA micro-arrays[47–51], and manufacture of novel optical and electronic materials [52] 

in the last decades. 
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3. Objectives 

As seen from the literature, various ways have been used to understand the phenomenon of 

microlayer evaporation. Most research that has been carried out to understand microlayer 

evaporation has a pool boiling setup with a transparent heater surface as ITO glass that enables 

the use of laser source from the bottom of the surface. Surfaces transparent to infrared have 

been widely used to capture thermal images of the surface to calculate the temperature 

difference between the microlayer and bulk liquid. Thermocouple arrays have been designed and 

attached to the surface to calculate the heat flux in the microlayer region. The aim of this study 

is to estimate the contribution to the heat transfer from the contact line region of a steady and 

oscillating meniscus. Along with this test,  an evaporating sessile droplet on an opaque, smooth 

and reflective surface (Copper) was tested using interferometry and results were compared to 

the data reported in the literature. From high speed images on the evaporating droplets contact 

line velocity, dynamic contact angle and thickness profile of the evaporating thin film of water in 

an open-air system can be calculated. 

In a pool boiling system when nucleation starts a microlayer is formed beneath the vapor bubble. 

The bubble oscillates at various frequencies and contact angle. The interferometry setup was 

combined with oscillating meniscus setup to analyze these parameters to gain insight on 

microlayer characteristics. 
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4. Experimental Apparatus  

 

4.1. Interferometry Setup 

The experimental setup is shown in the Figure 14. The He-Ne laser is used as a coherent source 

and has a power of 10 mW and a wavelength of 𝜆 = 632.8 nm. As the cross-section of the beam 

may not be a perfect circle, it is passed through an iris of a perfectly circular cross-section. The 

rays then pass through a collimating lens which focuses the rays on a focusing lens to increase 

the diameter of the laser beam. As the diameter of the ray exiting from the collimating lens is 0.5 

mm, it needs to be expanded and amplified. The KEYENCE microscope captures the interference 

pattern. All the optical instruments need to be perfectly aligned for accurate measurements. 

Figure 15 shows the apparatus – Optical camera (interferometry), collimating lens test chip, 

syringe dispenser. 

   

 
Figure 14. Schematic of the setup. (a) Liquid supply through syringe pump. (b) Using the laser source for 

interferometry. The syringe is moved out of the path. 

 

 

(a) (b) 
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Figure 15. A close view of the chip and heater. 
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4.2. Experimental Apparatus – Oscillating Meniscus 

The schematic of the setup is as shown in Figure 16. A stepper motor was connected to L293D 

microcontroller. The circuit was set up on a bread board and interfaced with an Arduino board. 

A potentiometer was connected to vary the speed of the stepper motor. Two syringes are 

connected with a three-way tube to allow flow of the distilled water which is the working fluid. 

One of the syringes is setup on a syringe pump which controls the movement of the piston in the 

syringe cylinder. This pump is interfaced with LabVIEW on a computer to achieve precise and 

accurate flow rates. The piston of the second syringe is connected to a reciprocating mechanism 

connected to the shaft of the stepper motor. As the stepper motor turns, the piston of the syringe 

moves up and down to vary the flow rate of the meniscus thus formed on the surface. 

The interferometry and the oscillating meniscus setup were combined to analyze the microlayer 

that forms in a moving meniscus. 

 

Figure 16. Schematic of apparatus for oscillating meniscus. 

 

(a) (b) 
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Figure 17. Schematic of combined apparatus - interferometry and oscillating meniscus 
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4.3. Chip Polishing 

In order to obtain a good display of fringes the chip needed to be reflective and smooth. In order 

to make the test chip smooth and reflective, it was first ground and then polished. The test chip 

was polished using a Tegra Pol polishing machine on which different disks of reducing roughness 

and three of each grinding and polishing disc were used progressively. 

Grinding operation started with using the Struers MD Piano 220 disc. The number denotes the 

grit size of each disk. Struers MD Piano 500 was the second disc used for the grinding operation. 

Struers MD Piano 1200 was the third disc used for the final grinding operation. Water was used 

as a lubricant during the grinding process. These discs have a resin bonded diamond surface. 

For the polishing operation, a polishing cloth and water-based diamond suspension was used as 

the abrasive. Struers MD Plan was used for the first operation. This is a polishing cloth made of 

coated woven polyester and water-based diamond suspension containing diamond particles 

which are 9 microns in diameter. Similarly, MD Dac was used for the second operation along with 

Struers Dac 3 abrasive which contains diamond particles of size up to 3 microns in diameter. MD 

Dac is a satin woven acetate cloth. For the last polishing operation MD Floc polishing cloth was 

used with NapB1 which contains suspended diamond molecules whose size is up to 1 micron in 

diameter. 

The surface was found to have surface roughness below 0.5 microns with a smooth and reflective 

finish. 
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4.4. Test Section 

The test section is a flat copper chip which has been polished to under 0.5 microns roughness. 

Figure 18 shows the test sections used in these experiments. A cylindrical test chip was 

manufactured after the preliminary tests to fit the size of the polishing machine slots. This 

assisted in lowering the polishing time. All the preliminary tests were performed on the square 

chip. 

 

Figure 18. Test section - not to scale.  
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4.5. Methodology 

A cartridge heater plate was connected to a power supply and kept below the test copper chip. 

A layer of thermal paste was applied to the connecting surface to have a thermally conductive 

layer in between and to avoid any air gap. The chip was provided with a hole on the side near the 

upper surface which was used to connect to the thermocouple for the measurement of the 

surface temperature. The heater supplies voltage across the cartridge heater, which is in contact 

with the copper chip. The copper chip gets heated due to conduction. The temperature is 

measured using a thermocouple. A needle connected to the syringe dispenses the liquid on the 

surface. As the surface is hot, the droplet evaporates, starts to recede, and interference patterns 

are seen. These interference patterns are recorded using the microscope and analyzed in 

MATLAB to calculate the thickness of the film. 
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4.6. Data Acquisition 

The data acquisition from the setup was through two K- type thermocouples. One thermocouple 

was inserted into the test section at a distance of 2 mm from the top surface, which was the 

polished, smooth surface used for the testing. The second thermocouple was inserted in the 

meniscus and the temperature of the meniscus was captured. Both the thermocouples were 

inserted into a Fluke 52 II digital thermometer. The Kent Scientific syringe pump was interfaced 

with a LabVIEW program on a desktop and the flowrate was controlled manually. A video of the 

evaporating droplet and the evaporating meniscus was captured using two KEYENCE cameras. 

One of the optical cameras was in top view, illuminated by a red, coherent laser source and the 

second was from the side view illuminated by white light. These videos were processed in 

MATLAB to calculate the volume of the meniscus and thickness profile of the receding 

evaporating droplet.  

 
Figure 19. Positions of thermocouples for measurement of temperature of surface and meniscus. 
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4.7. Method to calculate the thickness of the film with MATLAB 

A MATLAB program was developed to analyze the recorded videos and process them to find the 

thickness profile, micro-contact angle and contact line velocity of the receding and advancing 

contact line during the process of evaporation. The algorithm of the MATLAB program is as 

follows –  

1. Set the variable values. Wavelength 𝜆and refractive index of water, nW (depending on 

water temperature), initial frame value, frame step. Where, nW is the refractive index of 

water. 

2. Open the initial frame as an image. Select the area in the image to enlarge where the 

fringes are clear. 

3. Mark the black fringes, starting from the contact line in the direction of the center of the 

receding droplet. Press enter to end the frame sequence. 

4. The program loops and opens the frame after skipping the number defined by the frame 

step. 

5. This process is repeated until the droplet disappears or the fringes are no longer clear 

enough to be analyzed. 

6. A thin pin of known thickness was kept under the microscope and measured to find the 

pixel to width ratio for all the distance calculations. 
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Figure 20. Droplet as seen through the optical lens. 

Figure 20 shows the full view of a droplet on a copper surface. The image is in greyscale. The 

radius of the droplet is interpolated using a least square method, by plotting points on the 

circumference of the droplet. When zoomed in, only about a quarter of the droplet is visible on 

the screen, as shown in Figure 21(b). The schematic in Figure 21(a) shows an actual droplet and 

the area of the droplet visible on the screen. 

 

Figure 21. (a) Area of the droplet seen on the screen. (b) Points marked on the contact line to 
interpolate the radius at t=0s. 

 

(a) (b) 

t = 0s t = 1.33s 



45 
 

At t = 0s, the position of the contact line is shown in Figure 21(a), while the position of contact 

line after t = 1.33s is shown in Figure 21(b). All the dark fringes are marked with points and 

thickness profile at that position is calculated using the equation - 

2𝑡 = 𝑚𝜆                                                                          (12)  

 
Figure 22. Thickness profile corresponding to Figure 15(a) and 15(b), for surface at 40°C. 

 

Figure 22 shows the thickness profile corresponding to images shown in figure 21(a) and 21(b). 

For series t = 0 sec in the above plot, every marker point is a dark fringe at a distance from center 

of the droplet shown on x-axis. First marker is on the contact line and is farthest from center of 

the droplet. The center of droplet is estimated by marking points on the contact line using least 

square method.  

The reduction in contact angle as seen between the series at time t = 0 sec and t =1.33 sec can 

be seen. This is seen as the contact line is pinned and thin film stretches and thins out even more. 
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4.8. Validation of Interferometry 

A microscope slide of dimensions 25 mm x 75 mm placed on top of a silicon wafer of the same 

dimensions. A silicon wafer with a known thickness of 320 µm is then placed in between the slide 

and the silicon wafer to create an air gap as shown in the Figure 23. Hence, we obtain a triangle 

of the dimensions as 75 mm base (x) and 320µm as height (y). Due to the difference in the 

traveled distance of the optical rays AD and ray BC in Figure 3, bright and dark fringes of constant 

thickness are seen, which are equally spaced. As the thickness of the fringes is constant due to 

constant slope, the following equation gives the film thickness by marking the dark bands(m)- 

𝑡 =
𝑚𝜆

2𝑛𝑤
 𝑚 = 1,3,5..          (13) 

 

 

Figure 23. Experiment on air wedge for validation. 
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Figure 24. Fringe spacing measurements. 

 

This analytical result is compared with the fringe spacing obtained using the experimental setup. 

The experimental result for film thickness is ∆𝑥𝑒𝑥𝑝 = 76.44μm. The discrepancy between the 

analytical and experimental approaches is given by:  

%𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  |
∆𝑥− ∆𝑥𝑒𝑥𝑝

∆𝑥
| × 100 = 3.07%    (14) 

The value of the deviation is low, and it can be concluded that the experimental approach used 

is capable of accurately predicting the thickness profile from interference patterns.  
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4.9. Uncertainty Analysis 

The total uncertainty comprises of two parts; bias error and precision error: 

Total Uncertainty,  𝑈 = √𝑈𝑏
2 + 𝑈𝑝

2          (14) 

Bias error is the difference between expected measurement value and the true measurement 

value. So, bias errors are the errors due to calibration while precision errors are due to the 

sensitivity of the testing instruments. 

 

Figure 25 Bias and Precision uncertainties 

In this experiment, it was important to understand the uncertainty associated with temperature 

and volumetric flow rate as the estimation of heat transfer is performed using these values. 

Thermocouple was calibrated in a hot cell at known temperatures and the thermocouple 

readings were noted. Bias uncertainty was calculated by obtaining the deviation of the resulting 

values from the preset values on hot cell and the values were used by calibrating using the 

equation. Precision uncertainty was calculated by repeating the experiment multiple times and 

calculating standard deviation of the results. The standard deviations were multiplied by 2 to 
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account for 95% of the deviation. Total uncertainty was 0.1°C after the thermocouple was 

calibrated using the bias uncertainty. 

Bias Uncertainty = 2 × √
∑(𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑙𝑢𝑒−𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠
     (15) 

Precision Uncertainty = 2 × √
∑(𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑙𝑢𝑒−𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑢𝑒𝑠
      (16) 

 

Figure 26 Bias uncertainty in thermocouple 

 

Uncertainty measurement for flow rate was accomplished by applying the constant flow rate to 

the syringe pump for 20 minutes and initial and final position of the bore tip of syringe piston 

was marked by capturing images. These images were processed using high speed image analysis, 

and error was calculated for each flow rate. This was repeated 5 times for each flow rate. Same 

formulae and method to calculate uncertainty as described for thermocouple was used while 

calculating the volumetric flow rate uncertainty. The uncertainty was observed to be 10% at the 

lowest flow rate and reduced as the flow rate increased. 
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Mass flow rate was calculated using the density. 

�̇� = 𝜌�̇�            (17) 

Propagation of volumetric flow uncertainty in mass flow rate was calculated using the following 

equation –   

𝑈�̇� = √∑ (
𝜕�̇�

𝜕𝜎𝑖
𝑈𝜎𝑖

)
2

𝑛
𝑖=1             (18) 

𝑈�̇�

�̇�
= √(

𝜕�̇�

𝜕𝜌
𝑈𝜌)

2
+(

𝜕�̇�

𝜕�̇�
𝑈�̇�)

2

�̇�2
                                                 (19) 

The uncertainty for the density (𝑈𝜌) was evaluated by calculating the change in density values at 

temperature values including the uncertainty.  

𝑈𝜌 = |𝜌𝑇 ± 𝜌𝑇±𝑈𝑇
|            (20) 

The expressions are then rewritten in terms of the function of interest, ṁ 

     
𝜕�̇�

𝜕𝜌
=  �̇� =

�̇�

𝜌
            (21) 

     
𝜕�̇�

𝜕�̇�
=  𝜌 =  

�̇�

�̇�
                                                                            (22) 

These equations are substituted in (19) 
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𝑈�̇�

�̇�
= √(

�̇�

𝜌
𝑈𝜌)

2
+(

�̇�

�̇�
𝑈�̇�)

2

�̇�2 =  √
�̇�2

𝜌2 𝑈𝜌
2+

�̇�2

�̇�2 𝑈
�̇�
2

�̇�2                             (23) 

𝑈�̇�

�̇�
= √

𝑈𝜌
2

𝜌2 +
𝑈

�̇�
2

�̇�2                           (24) 

Using the uncertainty in �̇�, the uncertainty in heat transfer rate was calculated. Heat transfer 

rate can be caluclated using following equation –  

𝑞 = �̇�ℎ𝑓𝑔                         (25) 

𝑈𝑞 =  √ (�̇�𝑈ℎ𝑓𝑔
)2 + (ℎ𝑓𝑔𝑈�̇�)2          (26) 

The uncertainty in ℎ𝑓𝑔 i.e. (𝑈ℎ𝑓𝑔
) was calculated using the uncertainty in temperature 

measurement by evaluating the change in ℎ𝑓𝑔 values at temperatures including uncertainties. 

𝑈𝑞

𝑞
= √

𝑈ℎ𝑓𝑔
2

ℎ𝑓𝑔
2 +

𝑈�̇�
2

�̇�2             (27) 

For all the values, uncertainty calculated for heat transfer was less than 10%.  
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5. Results 

The thickness profile of an evaporating droplet was analyzed using the mentioned MATLAB 

program. Micro-contact angle, contact line velocity was calculated using the thickness profile and 

the displacement of the contact line with time, respectively. 

Advancing and Receding contact angle and Surface Roughness for all the tests -  

The surface was polished to under 1 µm roughness and a laser confocal microscope was used to 

measure the surface roughness. A goniometer was used to measure the advancing and receding 

contact angles of distilled water on the polished copper surface. The advancing and receding 

angles were found to be 85.3° and 20.2° respectively. The average surface roughness of the 

surface was 0.18 µm. 

 

 

Figure 27. Advancing and Receding contact angle on polished copper surface. 
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5.1. Thickness Profile of Thin Film Evaporation at Various Temperatures 

A droplet of volume 2 µL was dispensed using the dispensing pump on the heated surface. The 

droplet takes a semi-circular cap shape and the contact line is pinned. Height of the droplet 

reduces until a certain critical value at which the Young’s forces are imbalanced. At this point, 

the contact line starts to recede, and the height remains at a similar value. The videos were 

captured when the contact line started to recede. Figure 28 shows the process of evaporation of 

a droplet.  

 
Figure 28. Four stages of drop evaporation. 

 

Figure 29 shows the receding contact line on a heated copper surface at frame no. a)F = 0, b)F= 

140, c)F = 252. 

1. 2. 

3. 4. 
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Figure 29. Evaporation of thin film a = frame 0, b = frame 140, c = frame 252. 

 

 

Figure 30. Thickness profile of an evaporating thin film at 23.8 °C corresponding to figure 29. 

 

 The contact angle during the evaporation cycle reduces towards the end of the drop life. This is 

indicative of thinning and stretching of the film. Similar plots were achieved for temperatures 

between 23 °C  to 70 °C . 
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Table 2 Comparison of thickness profiles from the literature. 

 

 

In the literature almost all the studies are done with a pool boiling setup with an artificial 

nucleation site on the heater surface. In such cases, the heater surface is often transparent to 

light and is projected from bottom of the surface as shown in Figure 9. In this study, the optical 

camera and the laser source both were above the opaque surface. The surface used as heater 

surface was a polished copper surface. From Table 2, we can see that the values obtained are 

comparable to the data published in the literature. Hence, with this method we can use opaque, 

mirror finished surfaces to study the microlayer properties of liquids and the interactions of liquid 

with the heater surfaces. 

Author Working Fluid 
Contact 
Angle 

Max Measured 
Thickness 

Satbyoul Jung & Hyungdae Kim[53] 
Di water on ITO 

film 
0.25°  3.3 µm 

Ming Gao, Lixin Zhang, Ping Cheng, 
Xiaojun Quan[20] 

Ethanol on ITO 
film 

2.24° 4  µm 

Hyungdae Kim, Jacopo 
Buongiorno[54] 

Di Water on Si 
wafer 

0.30° 3.5 µm 

Zhihao Chen, Atsushi Haginiwa, 
Yoshio Utaka[25] 

Di water on 
Quartz 

0.75° 5.5 µm 

Present Study 
Di Water on 
polished Cu 

1.70° 5.5  µm 
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5.2. Contact Line Velocity and Contact Angle vs Surface Temperature 

 

Figure 31. Average contact angle (AVG CA) and average contact line velocity in an evaporating thin film. 

 

The micro-contact angle and the contact line velocity was plotted against the surface 

temperature. The contact angle tends to decrease with increase in the temperature while the 

contact line velocity increases sharply as the temperature of the heater surface increases. 
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5.3. Conversion of Partial Pressure to Wall Superheat 

To account for the humidity in testing of static and oscillating meniscus a wall super heat value 

was calculated on the basis of humidity percentage and ambient temperature. To calculate the 

saturation temperature of water at the partial pressure conditions, a psychrometric chart was 

referred. The relative humidity was recorded during all the experiments and this was converted 

into wall superheat by subtracting the saturation temperature from the surface temperature.  

 

𝑇𝑑 =  𝑇 −
100−𝑅𝐻

5
                              (28) 

where, 𝑇𝑑 is the dew point temperature, 𝑇 is the air temperature and 𝑅𝐻 is the relative 

humidity. At the dew point temperature, the air is saturated and therefore we can write, 

𝑇𝑑 = 𝑇𝑠𝑎𝑡                      (29) 

Therefore, wall superheat  

ΔT = Twall - Tsat                      (30) 
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5.4.  Evaporation of Static and Oscillating Meniscus 

The evaporation rate of an oscillating meniscus was analyzed. Meniscus was imparted with a 

frequency of 0 Hz, 0.6 Hz, 1.2 Hz, 1.8 Hz and 2.4 Hz. The meniscus associated with 0 Hz frequency 

does not oscillate and is termed as a static meniscus. 

A meniscus was formed as shown in Figure 32 and a constant flow rate was imparted such that 

the volume of the meniscus remained constant with time. Volume of the meniscus was calculated 

using volume of revolution by measuring the height, radius and estimating a second-degree 

polynomial for the outer curve.  

  
Figure 32. Static meniscus from side view and Volume of Revolution 

 

The equation for volume of revolution is –  

          ∫ 𝜋𝑟2𝐻

𝐶
𝑑ℎ                         (31) 

∫ 𝜋(𝑎ℎ2 + 𝑏ℎ + ℎ)2𝐻

𝐶
𝑑ℎ      (32) 

 

 

H 

 

 

Needle 

C 
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5.5. Volume of Static meniscus Over Time 

 

Figure 33. Volume of static meniscus over time. 

 

As the volume of the evaporating meniscus was constant with a constant flow rate of water, the 

evaporation rate can be calculated.  

�̇� = 𝜌𝑚̇                        (33) 

Total heat flow can be calculated using the following equation – 

          𝑞 = �̇�ℎ𝑓𝑔 + �̇�𝑐𝑝                        

(34) 

where, �̇�= volumetric flow rate in m3/s, 𝜌 = density of distilled water in kg/ m3, 𝑚̇ = mass flow 

rate in kg/s. 
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5.6. Oscillating Meniscus Volume 

The volume of the oscillating meniscus is calculated and plotted over time in the same way as in 

the case of the static meniscus. For the oscillating meniscus, the minimum position of the 

meniscus was chosen to calculate the volume using volume of revolution. Figure 34 shows the 

minimum and maximum position of the meniscus. The volume change over time was recorded 

for all frequencies. 

 

Figure 34. Minimum and maximum positions in an oscillating meniscus. 
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Figure 35. Meniscus volume at minimum position of an oscillating meniscus at 0.6 Hz frequency. 

 

 

 

Figure 36 Meniscus volume at minimum position of an oscillating meniscus at 0.6 Hz frequency 
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5.7. Calculation for determining Heat Transfer Coefficient 

Assuming meniscus is a cylinder of uniform temperature equal to the surface temperature. Heat 

transfer to the cylinder tip is assumed negligible. 

Properties –  

Diameter, D = Average of smaller and larger diameter in mm 

Static meniscus, Air velocity in room, V = 0.01 m/s – natural convection 

Thermal conductivity, k = 26.3 x 10-3 W/m-C 

Kinematic Viscosity, ν = 15.89 x 10-6 m2/s 

Prandtl Number, Pr = 0.707 

Prandtl Number at water temperature, Prs = 0.705 

Using Zukauskas relation - 

𝑁𝑢 = 𝐶𝑅𝑒𝐷
𝑚𝑃𝑟𝑛(

𝑃𝑟

𝑃𝑟𝑠
)

1

4           (35) 

Since Pr < 10, n = 0.37 

Table 3 Constants of Nusselt Number equation for circular cylinder cross flow – Zukauskas relation 

ReD C m 

1 - 40 0.75 0.4 

 

𝑅𝑒𝐷 =
𝑉𝐷

ν 
            (36) 

 

ℎ = 𝑁𝑢𝐷
𝑘

𝐷
            (37) 

H is generally in the range 5 to 100 for such applications. H is sensitive to the air velocity ℎ ∝ 𝑉𝑚 
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5.8. Heat transfer through Surface Area and Contact Line of meniscus 

Mass transfer rate through the surface area of the meniscus was calculated using the following 

equations –  

�̇� =  ℎ𝐷 (𝑊𝑠,𝑤 − 𝑊𝑎𝑖𝑟 ) × 𝐴𝑟𝑒𝑎                        (38) 

𝑊𝑠,𝑤 is humidity ratio of saturated water and 𝑊𝑎𝑖𝑟 is the humidity ratio of air. 

From Lewis relation, assuming Lewis number = 1, 

     ℎ𝐷 =  
ℎ

𝑐𝑝𝑚
                   (39) 

Where, �̇� is the mass transfer rate (kg/m2-s), ℎ𝐷 is the diffusion coefficient (kg/m2-s) and 𝑐𝑝𝑚 is specific 

heat at film temperature (kJ/kg°C) . 

𝑊𝑠,𝑤 = 0.622 ×
𝑃𝑤,𝑠

𝑃−𝑃𝑤,𝑠
              (40) 

𝐶𝑝 = 𝐶𝑝,𝑎 + 𝐶𝑝𝑤𝑊𝑚                                  (41) 

𝐶𝑝 is specific heat at mean humidity ratio, 𝐶𝑝,𝑎 is specific heat of air and 𝐶𝑝𝑤 is specific heat of water. 

As observed by Raghupathi and Kandlikar[55] and Kandlikar et. al.[56] that increasing the contact 

line length by adding microgrooves on a plane and tubular surface increased the wetted surface 

area CHF by 1.5 times. They claimed that additional contact line around microgrooves act as a 

reservoir to supply liquid to the evaporating microlayer in the contact line region of an 

evaporating bubble in pool boiling. Present study calculates the contribution of heat transfer in 

the contact line region of an evaporating meniscus which is similar to a region between two 

evaporating bubbles as shown in figure 8. 
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Heat transferred through the surface area of the meniscus from convection can be compared 

against the heat transfer through the contact line by subtracting the calculated total �̇� from 

equation 38 and subtracting it from the total mass coming in the system(equation 34). Total mass 

flowing into the system is known from the rate of flow of water through the syringe dispenser. 

Heat transfer rates were calculated and plotted for HTC(h) = 10 W/m2°C and 20 W/m2°C as these 

values of HTC give a good range of heat transfer values. It was found that contribution of contact 

line heat transfer was approximately 96% - 85% and 4% - 85% heat was transferred through the 

surface of the meniscus for h = 10 W/m2°C and contribution from contact line was 82%-55% and 

18%-45% from the surface of the meniscus for h = 20 W/m2°C.  

 

Figure 37 Percent Heat transfer through Surface Area (SA) of meniscus and Contac Line (CL) region, H in 

W/m2°C 
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5.9. Heat Flux vs. Wall Superheat and Effect of Diameter – Static Meniscus 

When contact line heat transfer values were plotted for different diameters, it was observed that 

as the surface temperature went up, the evaporation rate increases and hence the flow rate of 

the water coming into the meniscus increases. A test was done to analyze the effect of the 

footprint area of the meniscus. Three base - diameters were tested at each temperature. 

 

Figure 38. Effect of diameter on heat flux vs wall superheat. 

 

 

Figure 39. Circumferential heat transfer vs wall superheat. 
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From the Figures 38 and 39, we can see that though the heat flux increases with an increasing 

surface temperature and decreasing diameter, the heat per diameter length is constant at any 

given temperature for a stable meniscus. 

 

5.10. Effect of Frequency on Oscillating Meniscus 

The oscillating meniscus was imparted four frequencies – 0.6 Hz, 1.2 Hz, 1.8 Hz and 2.4 Hz. It is 

clear from the Figure 40 that as the frequency of oscillations is increased, the heat transfer rate 

per unit base length for all the curves – coincide. This shows that the contact line heat transfer 

per unit length of the contact line is constant for all frequencies at given temperature at of the 

surface.

 

Figure 40 Heat transfer per base length for various frequencies and effect of contact angle on the heat 
transfer per unit base length. 
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5.11. Characteristics of Microlayer in an Oscillating Meniscus 

As the meniscus oscillates, it thins out near the contact line area due to being pinned. The 

variation in the thickness of microlayer was captured at 250 frames/second and over one 

oscillation cycle. A similar profile was observed for meniscus oscillating at 1.2 Hz. It was difficult 

to achieve a steady meniscus at higher frequencies of 1.8 Hz and 2.4 Hz that thinned out enough 

to produce a microlayer. The slope of the thickness profile was calculated, and this gave the 

variation in contact angle values of the microlayer corresponding to Figure 41. As the bulk liquid 

recedes, the contact angle decreases at first and then when the bulk liquid starts to flow in the 

microlayer, the contact angle increases. This is shown in Figure 43.  

 
Figure 41. Evolution of microlayer in an oscillating meniscus. 
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Figure 42. Thickness profile of microlayer formed in an oscillating meniscus at 60 °C – 0.6 Hz. 

 

 

 

Figure 43. Variation of micro contact angle in the microlayer of an oscillating meniscus in one 
frequency. 
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At lower temperatures, there was no pinning of the contact line and hence no microlayer was 

observed. The contact line moved back and forth with the oscillations as shown in Figure 44. 

 

 

 

 

Figure 44. Maximum and minimum position of contact line at t = 0s and t = 0.6s - 0.6 Hz, 30 °C. 
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6. Conclusion 

Tests were conducted on a polished, heated copper chip with roughness less than 1 µm to 

analyze the microlayer and contact line heat transfer of distilled water in an open-air system. 

Multiple tests were conducted like sessile droplet evaporation and static meniscus evaporation.  

A system was designed and fabricated to impart oscillations to the meniscus to understand the 

effects of oscillations and contact angle to an evaporating steady meniscus of DI water on the 

copper heater surface. 

1. A system was designed and manufactured to form a steady and oscillating meniscus using 

a stepper motor and piston in a syringe. 

2. This system was combined with the existing interferometry system to analyze the 

microlayer in the contact line area of the meniscus. 

3. Sessile drop evaporation was observed under a red laser of wavelength λ = 632.8 nm 

under an optical lens at temperatures of surface varying from ambient to 70 °C. The 

droplet reduces in height and a thin film evaporation is seen with a thickness measured 

using the concept of interferometry. The fringe patterns at higher temperatures were not 

clear due to rapid motion of the receding contact line. 

4. The micro, dynamic contact angle of the thin film was recorded along with the thickness 

profile and the receding velocity of the contact line. It was observed that as the surface 

temperature increased, the average contact angle value over the life of the thin film tends 

to increase. The velocity of the contact line increased sharply with an increase in surface 

temperature as well. The thickness values ranged from 0 to 5.5 µm. 
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5. Static and oscillating meniscus were tested. Meniscus was fed water at a rate constant to 

the evaporation to keep the net volume of the meniscus constant. 

6. It was observed that the heat transfer per unit base area of the meniscus went down with 

increase in the diameter while the heat transfer per unit length of base of the meniscus 

was constant for a given temperature, humidity and varied diameters of the meniscus. 

7. The contribution of contact line heat transfer was approximated by theoretical 

predictions to be around 96%-85% and the heat transferred from the surface was around 

4%-15% for heat transfer coefficient of 10 W/m2°C and the contribution of contact line 

heat transfer was 82%-55% and contribution of convective heat transfer was 18%-45%  

for a heat transfer coefficient of 20 W/m2°C. 

8. The effect of frequency was analyzed on the rate of evaporation of a static and oscillating 

meniscus and it was found that frequency had negligible effects on the heat transfer per 

unit base length of the evaporating meniscus. 

9. The microlayer formed in the contact line area of the oscillating meniscus was analyzed 

and the thickness values were calculated. The thickness values were in the range 0 to 5.5 

µm. 

10. Variation in micro contact angle was recorded using the thickness profile of the microlayer 

in oscillating meniscus.  
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7. Future Work 

A test setup was put together in this experiment to obtain the contribution of heat transfer 

through the contact line of the meniscus and characteristics of a microlayer in an evaporating 

droplet and in the contact line region of the meniscus on a highly polished and heated copper 

surface.  

It will be interesting to see the results with improvements in the test setup by keeping it under a 

controlled atmosphere. A glass cube can be incorporated which can have a controlled 

environment parameter like humidity, temperature and a cleaner air like argon gas inside the 

cube. Such controlled condition cubes are called environment chambers.  

An array of thermocouples can be used instead of the copper surface to accurately measure the 

heat transfer rates over the complete oscillation cycle. This will allow the measurement of the 

change in temperature of the surface during the receding and the advancing stage of the contact 

line. 

An infrared camera can be used on an infrared transparent surface to estimate the heat flux 

around the contact line area and measure the change in temperatures in a way similar to the 

proposed array of thermocouples. 

The variation in the flow rate is sensitive to the temperature of the surface, and the sensitivity 

increases with increase in the temperature. To get even more accurate results the temperature 

of the surface can be controlled with a feedback loop connected to the supply and the joule 

heated cartridge. A comparison with different surfaces and different fluids like ethanol will help 

understand the topic better. 
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Tests surfaces can be varied and other surfaces like – Hydrophilic, hydrophobic, transparent 

surfaces with film heating can be adopted to view the thickness from bottom of the surface at 

higher temperatures.  
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