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ABSTRACT 

In this work, amorphous Indium-Gallium-Zinc-Oxide (IGZO) TFTs with channel lengths 

scaled as small as L = 1 µm are presented which demonstrate excellent electrical characteristics, 

however the traditional metal-contact defined source/drain regions typically require several 

microns of gate overlap in order to provide ohmic behavior with minimal series resistance and 

ensure tolerance to overlay error.  In addition, further scaling the channel length by simply 

reducing the source/drain metal gap is not feasible.  The focus of this study is to investigate 

techniques to realize self-aligned (SA) IGZO TFTs that are not subject to gate-source/drain 

misalignment due to overlay error or process bias. Top gate (TG) co-planar and bottom gate (BG) 

staggered TFTs are fabricated using plasma immersion and ion implantation to selectively form 

conductive IGZO regions, with the channel region blocked by a gate-defined mask.  Among the 

investigated treatments, oxygen plasma activation and ion implanted activation via 11B+ and 40Ar+ 

has been successfully demonstrated. Due to metal gate charging during ion implantation of SA-

TG devices, the characteristics show a significant left-shift whereas SA-BG devices do not show 

this behavior. Electrical results suggest a defect-induced mechanism is involved with 40Ar+ implant 

activation of the S/D regions. However, 11B+ implant activation is attributed to the formation of an 

electrically active donor species involving chemical bonding. Both boron and argon demonstrate 

pronounced degradation in charge injection at higher dose treatments. Finally, a novel lithographic 

strategy which utilizes top-side flood exposure rather than a back-side through-glass exposure has 

also been explored, which would enable SA-BG devices on non-transparent substrates. 
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Chapter 1. INTRODUCTION 

There has been a tremendous upsurge in the display industry over last few decades in the 

growth of Active Matrix Liquid Crystal Display (AMLCD) for Flat-panel Displays (FPDs) due to 

the increasing demand for displays with higher resolution, faster response rate and better quality. 

The active-matrix FPDs use a backplane consisting of Thin-Film Transistors (TFTs) that connects 

the pixels to the addressing lines to create an image on the front surface of display. This section 

provides an overview of the display and TFT technologies currently being used in the FPD 

industry. 

 LIQUID CRYSTAL DISPLAY 

Liquid crystal displays (LCDs) have widespread applications in several hardware products and 

is projected to increase. They use a backlight to illuminate the display panel. The backlight used 

to be generated using Cold-Cathode Fluorescent Lamps (CCFLs) but recently Light-Emitting 

Diodes (LEDs) are being used for their higher efficiency. The glass panel installed over the diffuser 

consists of multiple layers. Two polarization filters oriented at 90° to each other where, the first 

filter polarizes the unpolarized incident light from the source and the second filter blocks out the 

light as it is rotated by 90° with respect to the upper filter. 

A liquid crystal is used in between the two polarizers to rotate the initially polarized light from 

the first polarizer by 90° in order to pass through the second polarization filter. LCD, such as the 

one depicted in Figure 1.1, generally uses a twisted-nematic liquid crystal structure which twists 
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the molecules 90° upon applying a voltage across the crystal which is controlled using a thin-film 

transistor (TFT). This enables rotation of the polarized light and allows it to pass through the 

second polarizer to the front surface of the display. 

 

Figure 1.1: Structure of LCD panel with TFT. Adapted from [1]. 

 PIXEL ADDRESSING 

There are mainly two types of display structures for pixel addressing: Passive-matrix and 

Active-matrix. For passive-matrix display, a grid is created using horizontal and vertical wires. At 

the intersection of each grid an LCD is connected which translates to a pixel. The wires are 

connected to integrated circuits that control the charge to each pixel. To turn on a pixel, the 

integrated circuit sends voltage to the corresponding column and the corresponding row is 

grounded to complete the circuit. This mechanism involving direct addressing of the pixel is 

degraded by two main issues: slow response time and poor voltage control. As a result of poor 
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voltage control, adjacent pixels would also be partially turned on when addressing a particular 

pixel causing Mura effect.  

  

(a) (b) 

Figure 1.2: Circuit diagram for pixel addressing in a) passive matrix LCD and b) active matrix 

LCD.  

 

The active-matrix display provides an improved mechanism by using a thin-film transistor to 

address each pixel and refresh the screen more frequently. Active-matrix displays consist of a 

switching TFT and a storage capacitor. In order to address a pixel, the voltage is sent to the 

appropriate transistor controlling the pixel. The capacitor is then able to retain the charge until the 

next refresh cycle resulting in a faster response time. By using TFT to control each individual 

liquid crystal, it allows a faster on-off of the electrical signal. An example of a simple schematic 

of both mechanisms is shown in Figure 1.2. 

 CURRENT TFT TECHNOLOGY AND LIMITATIONS 

With the advancement in display technology, more stringent manufacturing and performance 

requirements are necessary. Large area uniformity, low-temperature compatibility, transparency 

to visible lights etc. are some of the major concerns. Several challenges emerge with the growing 
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requirements of next generation displays. They are more observable in high pixel density display 

and fast switching speed applications. Both of them require TFTs with high mobility 

semiconductor for an improved current drive to minimize delay times [1].  A common problem 

faced by the display industry is large area uniformity with the increasing demand for larger 

displays. Figure 1.3 illustrates the trend towards larger display panels in the FPD industry. Since 

display panels are advancing towards FPD panel size dimension of 3370 × 2940mm for Gen10+ 

which is 180% larger than Gen 8.5, electrical uniformity becomes essential when fabricating TFTs 

under such circumstances [2].  

 

Figure 1.3: Substrate generations of flat-panel display. Adapted from [3]. 

 

As TFTs are typically fabricated on glass substrates which have a thermal tolerance of around 

600 °C, another challenge is to ensure the fabrication process used for TFTs manufacturing is low 

temperature compatible. Additionally, to offer better resolutions, pixel density needs to be 

increased which lowers the aspect ratio between the pixel and the driving TFT. In such cases, it 

helps if the TFT used is also transparent to visible light. 
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Amorphous hydrogenated silicon (a-Si:H) has been used as an attractive candidate for the TFT 

material as it ensures excellent large area uniformity due to its amorphous structure over last few 

decades. Additionally, hydrogenation helps saturate the dangling bonds and thereby have a lower 

defect density and increased conductivity as doping is made possible. Moreover, it is low-

temperature compatible and can be deposited at temperatures under 350 °C using plasma-enhanced 

chemical-vapor deposition (PECVD). It is also a low cost and a very well understood material to 

manufacture and characterize. 

Table 1.1: Comparison of properties between different TFT channel materials. 

Semiconductor 
𝝁𝑭𝑬 

(cm2/Vs) 

Large Scale 

Uniformity 

Transistor 

Type 

a-Si:H <1 Good NMOS 

LTPS >100 Poor CMOS 

a-IGZO 10-20 Good NMOS 

 

However, due to the low mobility (µFE < 1 cm2/(Vs)) of a-Si:H which restricts high frequency 

response for backplanes, search for alternate materials that can accommodate the increasing 

demand for large displays with better resolution, higher refresh rates and low power consumption 

continues. Two most probable candidates for flexible and transparent display application are low 

temperature polycrystalline silicon (LTPS) and amorphous Indium Gallium Zinc Oxide 

(a-IGZO) as shown in Table 1.1. Although LTPS shows better field-effect mobility (µFE) than 

IGZO due to its grain boundaries in crystalline structure, the electrical uniformity is inferior 

compared to IGZO.  As shown in Figure 1.4, IGZO TFT has received significant attention in a 

variety of applications such as televisions, mobile phones, flexible displays, etc. owing to its 

material properties.  
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Figure 1.4: Mobility requirements for next-generation displays. Adapted from [4]. 

 IGZO PROPERTIES 

IGZO which is an amorphous oxide semiconductor (AOS) has been considered due to its 

high mobility and large-scale uniformity. It also offers low-temperature compatibility, low voltage 

operation, low off-state leakage, low fabrication cost and transparency to visible light. A-Si has 

highly directional sp3 hybridized orbitals which introduces structural randomness (defects) and 

greatly degrades orbital overlap as shown in Figure 1.5a. Carrier transport is controlled by hopping 

between localized tail-states in a-Si. In IGZO, the conduction path is mainly comprised of 

s-orbitals ((n-1) d10ns0) contributed by heavy metal cations which has large radii and spherically 

symmetry as shown in Figure 1.5b. The large overlap between neighboring s-orbitals makes them 

insensitive to bond distortion and allows electrical transportation through band conduction, even 

in an amorphous material [5]. 
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Figure 1.5: Schematic representation of overlapping orbitals. Adapted from [5] 

 

The first report on transparent and flexible TFTs using a-IGZO was published in 2004 [5] as 

shown in Figure 1.6. Since then, it has become the most promising candidate to be adopted in 

the next generation displays. The conductivity of IGZO is attributed to oxygen vacancies and 

hydrogen since both serves as a donor in IGZO [6].  Although people have used different 

composition of IGZO, InGaZnO4 is most widely used because of the improved stability over 

other compositions [7]. 
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Figure 1.6: Electrical characteristics of  first reported IGZO TFT. Adapted from [5]. 

  GOALS & OBJECTIVES 

The goals of this study are to investigate plasma immersion and ion implantation as methods 

for source/drain (S/D) activation in self-aligned (SA) IGZO TFTs, develop an integration strategy 

for the traditional bottom gate (BG) staggered TFT, and understand the associated mechanism of 

activation. The objectives are as follows. 

1. Experiments with activation-last treatments on self-aligned top gate (SA-TG) devices.  The 

SA-TG devices are convenient samples available for preliminary study to establish 

treatment settings (design space) which provides meaningful electrical characteristics.   

2. Develop a process for SA-BG devices on silicon and glass substrates. 
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3. Refined experiments on SA-BG devices which will further optimize treatment combination 

conditions and clarify the interpretation of electrical behavior.  

4. Materials analysis which is needed to support the interpretation of electrical characteristics.  

 DOCUMENT OUTLINE 

Chapter 1 summarizes the recent developments in the display industry and the role of TFT in 

the structure of an active matrix display device. Different materials adapted for thin film transistors 

have been summarized and the advantages of a-IGZO over the other materials have been discussed.  

The conduction mechanism in IGZO along with its electrical and material properties have also 

been discussed. Emphasis is given to the goal and objectives of the study. 

Chapter 2 describes the motivation behind the fabrication self-aligned (SA) IGZO TFTs with 

different electrode configurations. It also sheds light on several different techniques i.e., DUV 

irradiation, plasma treatment, ion implantation that have been adopted so far to realize SA devices.  

Chapter 3 discusses the detailed fabrication process for IGZO TFTs which exhibit excellent 

characteristics for both double gate (DG) and bottom gate (BG) electrode configurations. 

However, limitations of the device electrostatics begin to give way to short channel behavior as 

the devices are scaled to shorter channel lengths. To maintain long-channel operation on scaled 

devices, various process parameters are changed based on TCAD simulation results that shows 

how these parameters and gate electrode configuration influences short-channel behavior. This 

chapter discusses electrical characteristics of the scaled IGZO devices along with the thermal and 

the bias stress stability. Finally, electrical performance of IGZO TFTs fabricated on glass substrate 

have been discussed.  
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Chapter 4 discusses the processes to fabricate SA-TG and SA-BG devices by utilizing pseudo 

SA-BG devices for proof of concept. S/D activation treatments i.e., plasma and ion implantation 

have been used for making IGZO selectively conductive. Boron and argon implanted devices result 

in ohmic contact behavior with TFT results showing DC operation comparable to metal-

overlapped devices. SA-BG devices are also fabricated using backside flood exposure on glass 

substrate. This chapter also proposes a novel method for integration of a SA-BG process using a 

topside flood exposure under optimal exposure conditions. 

Chapter 5 provides a summary of the investigation on the techniques that have been utilized 

towards the realization of SA IGZO TFTs.  
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Chapter 2. BACKGROUND 

Different TFT electrode configurations (BG, TG and DG) has been utilized for suitable 

applications. Scaling the channel length (L ≤ 2 µm) and integrating the devices on glass or 

flexible substrates has shown major impact on the display industry. To achieve submicron IGZO 

TFTs, self-aligned strategy is being explored where the channel length is not defined by the 

metal S/D distance but the gate dimension. It offers the ability to scale down to smaller channel 

lengths without the associated limitations of a channel length defined by the S/D contact regions. 

Non-SA TG coplanar TFTs typically exhibit inferior performance due to high parasitic 

capacitance induced by the overlap between gate and source/drain electrodes (RC delay). Also, 

a decrease in gate capacitance at the edges of the channel adjacent to the S/D is observed in such 

structure as shown in Figure 2.1a. SA coplanar TFTs exhibit superior performance because 

overlap between gate and source/drain electrodes can be eliminated which reduces the parasitic 

capacitance as shown in Figure 2.1b.  

  

(a) (b) 

Figure 2.1: Cross sectional image of (a) non-SA TG TFT and (b) SA-TG TFT. 
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SA structure has many other advantages like better channel length scalability, and better 

process controllability over standard structure which makes it desirable especially for high-

resolution applications [8]. Fabrication of self-aligned IGZO TFTs requires the formation of a 

homojunction between the highly conductive IGZO serving as the S/D regions and the 

semiconducting IGZO serving as the channel region. Among the several different of ways to form 

such a highly conductive IGZO layer, DUV irradiation [9], plasma treatments [10]–[14] and  ion 

implantation [15], [16] are the methods that are currently being used which will be discussed 

briefly in the next few sections.  

 DEEP UV IRRADIATION 

 

 

Figure 2.2: Process flowchart for a coplanar SA-TG a-IGZO TFT with S/D regions formed by 

DUV irradiation energy of 30 J/cm2. Adapted from [9]. 

 

This technique uses deep ultraviolet (DUV) irradiation to define the source/drain (S/D) region 

of SA coplanar IGZO TFTs. Here, the gate mask pattern acted as a DUV shield layer to define the 

source/drain regions for selective DUV irradiation at wavelengths of 185 nm and 254 nm and an 

energy of 30 J/cm2 as shown in Figure 2.2. DUV irradiation-induced increase in oxygen 

deficiencies in IGZO thin film indicates an increase in carrier concentration in the film. The water 
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molecule bond dissociation energy is 497.1 kJ/mol or 5.1 eV [17]. The energies of DUV light of 

185 and 254 nm wavelength are 6.7 and 4.9 eV, respectively. Therefore, 185 nm wavelength DUV 

is likely to decompose the water molecules into H and OH radicals through photochemical water 

dissociation as shown in Figure 2.3a. As a result, the hydrogen can donate electrons in the a-IGZO 

thin film increasing the conductivity of the film. 

 
 

(a) (b) 

Figure 2.3: (a) Photochemical dissociation of water caused by DUV irradiation at 185 nm and (b) 

transfer characteristics of SA-TG a-IGZO TFT with DUV irradiation energy of 30 J/cm2. Adapted 

from [9]. 

 

However, this technique is not compatible for SA-BG devices with top exposure or for SA-BG 

devices via through-glass exposure. Also, H-incorporation during DUV irradiation may lead to 

degraded thermal stress stability as hydrogen can rapidly diffuse into the a-IGZO thin films. The 

electrical properties of the device show field-effect mobility (μFE) of 13.2 cm2/Vs, subthreshold 

swing (SS) of 0.32 V/decade and threshold voltage (VT) of 3.2 V [9]. 
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 PLASMA TREATMENT 

2.2.1 Hydrogen Plasma 

Plasma treatment using H2, O2, Ar etc. can be an effective method to decrease the resistance 

of a-IGZO. However, hydrogen can rapidly diffuse out of the S/D region into the a-IGZO thin 

films at a temperature above 200 °C leading towards large series resistance in S/D regions of the 

device and poor device performance as shown in Figure 2.4. The oxygen vacancies in the S/D 

regions created by argon plasma treatment decrease after thermal annealing, which increase the 

sheet resistance of the S/D regions. Thus, thermal stability becomes the main concern for a-IGZO 

TFTs with S/D regions formed by argon or hydrogen plasma treatments [15].  

 

 

Figure 2.4: Transfer characteristics of the a-IGZO TFTs with S/D regions treated with hydrogen 

plasma under heat treatment at 200 °C. Adapted from [15]. 
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2.2.2 Oxygen Plasma 

In literature [14], O2 plasma has been used for enhancing the performance of a-IGZO TFTs.  

The mobility of the plasma treated device increased by 38% compared to the non-treated device. 

It was suggested that the mobility enhancement was due to reduced oxygen vacancies, changed 

surface morphology and reduced trap density at the surface of the channel layer.  

  

(a) (b) 

Figure 2.5: XPS spectra of O1s (a) with (device A) and (b) without (device B) O2 plasma treatment. 

Adapted from [14]. 

 

Peaks of O1s contain three different peaks including OL, OM and OH corresponding to low, 

medium and higher binding energy as shown in Figure 2.5. The OL component is attributed to the 

O2− ions surrounded by Ga, In and Zn ions, the OM peak corresponds to the deficiently bonded 

oxygen in the IGZO material and the OH peak represents chemisorbed oxygen on the film surface 

[18]–[20]. It can be seen from the figure that both OL and OM decrease while OH increases after 

the O2 plasma treatment which indicates that deficiently bonded oxygen in the IGZO matrix 

decreases resulting into high field effect mobility.   
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2.2.3 Argon Plasma 

In literature [21], it was found that energetic 40Ar+ ion bombardment during plasma treatment 

induces the preferential sputtering of the relatively light atoms from the surfaces of II-VI or III-V 

group semiconductors as a result of the physical momentum transfer between the ions in the plasma 

and the atoms on the material surface. Therefore, the oxygen on the a-IGZO film surface is 

preferentially dissociated by the 40Ar+ ion bombardment and increases the net electron 

concentration by the formation of an oxygen deficient surface layer as compared to the bulk IGZO 

film. 

  

(a) (b) 

Figure 2.6: Transfer characteristics (W/L=50/4 µm) of a-IGZO TFTs (a) with and (b) without Ar 

plasma treatment on the contact regions before depositing the S/D electrode. Adapted from [21]. 

 

The transfer characteristics of a-IGZO TFT with and without 40Ar+ plasma treatment is shown 

in Figure 2.6. An excellent SS of 0.19 V/decade, Ion/Ioff ratio of 108 and µFE of 9.1 cm2/Vs were 

achieved for the a-IGZO TFTs with 40Ar+ plasma treatment. The improvements were attributed to 
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the reduction of the contact resistance between the source/drain electrodes and a-IGZO 

semiconductor.  

 ION IMPLANTATION 

Ion implantation (2H+, 31P+, 19F+ etc) has also been used as an effective technique to decrease 

the resistance of a-IGZO film. S/D regions doped by hydrogen from silicon nitride by PECVD 

suffers from thermal stability issues caused by hydrogen diffusion in the a-IGZO thin films. The 

development of a SA IGZO TFT with good performance and high stability is necessary. Successful 

reports on SA IGZO TFTs with S/D regions doped by implanted arsenic or phosphorus have been 

found in literature which show good electrical performance and high thermal stability [15], [16]. 

2.3.1 Phosphorous Ion Implantation 

In this report, the SA S/D regions were implanted with phosphorus at a dose of 5×1015 cm-2 

and energy of 45 keV using the gate electrode Indium Tin Oxide (ITO) pattern as a mask as shown 

in Figure 2.7. The implanted phosphorus dopant was activated by annealing at 500 °C for 25 min 

in O2 ambient. They exhibited good transfer TFT characteristics at a drain-to-source voltage (Vds) 

of 0.2 V, such as µFE of 5 cm2/Vs, VT of 5.6 V, an SS of 0.5 V/dec, and an ION/IOFF ratio of 6×107 

[16]. 

  



18 

 

 

 

Figure 2.7: Cross-sectional schematic of the proposed a-IGZO TFT with SA-TG structure. 

Adapted from [16]. 

 

The proposed a-IGZO TFT shows much better thermal stability as shown in Figure 2.8 

compared to the S/D regions formed by plasma treatment as shown in Figure 2.4. 

  

(a)                                   (b) 

Figure 2.8: (a) Transfer and output characteristics (shown in the inset) of the SA-TG a-IGZO TFT 

with P doped S/D regions and (b) transfer characteristics under heat treatment at 200 °C. Adapted 

from [16]. 
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2.3.2 Arsenic Ion Implantation 

In this report, the SA S/D regions were masked using gate-electrode ITO pattern and implanted 

with arsenic at a dose of 5×1015 cm-2 and energy of 100 keV. To activate the implanted arsenic 

dopant, an annealing process at 525 °C for 30 min in O2 ambient was performed. The proposed 

mechanism suggested arsenic substitution on the zinc site introducing a donor state. However, a 

potential alternative mechanism could be the defect associated with the presence of arsenic or 

displacements (i.e. oxygen vacancy). Also, oxygen vacancies in the S/D region decreased after the 

thermal annealing followed by the implant which increased the sheet resistance of the S/D region. 

  

(a) (b) 

Figure 2.9: (a) Transfer characteristics of the a-IGZO TFTs (a) with arsenic doped S/D regions 

under heat treatment at 200 °C (W/L=30/16) and (b) with the same channel width but different 

channel lengths. Adapted from [22]. 

 

The a-IGZO TFTs showed good transfer characteristics at Vds of 0.2 V, such as µFE of 

12 cm2/Vs, VT of 3.5 V, SS of 0.5 V/dec, and ION/IOFF ratio of 9 × 107. The gate leakage current 

for the TFTs was ~10 pA. The devices were also thermally stable as seen from Figure 2.9a. 

However, channel length dependence was observed for the proposed a-IGZO TFTs. The TFTs 
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scaled down nicely to channel lengths of L ≥ 4 μm with a small change of the threshold voltage 

and little degradation of subthreshold swing as seen from Figure 2.9b. For 2 μm channel length 

devices, the threshold voltage shifted largely to the left which might be due to the lateral diffusion 

of the arsenic dopant into the channel region.  
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Chapter 3. SCALED IGZO TFT 

An established process for the fabrication of IGZO TFTs exhibits excellent electrical 

characteristics in both BG and DG configurations [23]. The channel length is defined by the S/D 

metal liftoff process, with approximately zero process bias shown in Figure 3.1. This ensures a 

precise channel definition which is needed to approach the lithographic limit. However, limitations 

of the device electrostatics begin to give way to short channel behavior as the devices are scaled 

to channel lengths shorter than those shown in Figure 3.1. With the same IGZO and gate dielectric 

(SiO2) thickness, the DG device shows superior current drive and subthreshold operation, with 

associated tradeoffs in process complexity.   

To maintain long-channel operation on scaled devices, the dielectrics used for the gate and 

back-channel regions are typically adjusted to overcome short-channel effects as lateral 

dimensions are reduced. In addition, the IGZO thickness can also be reduced.  TCAD simulation 

results listed in Table 3.1 shows how these parameters and gate electrode configuration influences 

drain-induced barrier lowering (DIBL), with the subthreshold voltage offset (V) between low 

and high drain bias as a measure of short-channel behavior.      
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Figure 3.1: BG IGZO TFT with channel length L = 4 µm as defined by the S/D lift-off metallurgy 

using negative photoresist (Futurrex NR9g-1500PY) with almost negligible offset from the mask 

definition (i.e. ΔL ~ 0) [24]. 

 

  

                                      (a)               (b) 

Figure 3.2: Transfer characteristics of IGZO TFTs with 100 nm SiO2 gate/passivation dielectric. 

Drain bias conditions are 0.1 V and 10 V.  (a) BG configuration with L = 4 µm and (b) DG 

configuration with L = 2 µm [24].  
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Table 3.1: TCAD simulation of short-channel response to TFT structure and film thicknesses [7]. 

 

 PRELIMINARY STUDY 

The options for scaling are clear; thinner gate dielectric, thinner IGZO, and DG configuration.  

However, the choice among these options must consider process tolerances and interaction effects, 

and impact on device reliability. The BG device with the established process supports a 2 µm 

channel length with long-channel operation, however the gate dielectric (PECVD SiO2) thickness 

must be reduced for a 1 µm channel length device. For an L = 0.5 µm device, the DG configuration 

suppresses short-channel behavior without the need to thin the gate dielectric or the IGZO below 

50 nm.  Thus, the initial focus was on the DG device configuration. Thinning the BG dielectric 

was considered straightforward, however thinning the top-gate oxide required adjustment of the 

O2 passivation anneal used to establish the IGZO semiconductor properties.  This modified process 

was verified on the BG device operation with electrical results shown in Figure 3.4, demonstrating 

consistency with Figure 3.2a.  

      
  Thickness (nm) Gate Lin/Sat  

 L (µm) IGZO Gox Electrode V 

 2.0 50 100 BG 0.02  

 1.0 50 100 BG 0.3  

 1.0 50 50 BG 0.01  

 0.5 50 50 BG 0.4  

 0.5 20 50 BG 0.2  

 0.5 50 50 DG 0.1  
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Figure 3.3: Transfer characteristics of an intermediate stage BG device with W = 24 µm and 

L = 4 µm. The gate oxide thickness remained at 100 nm and the passivation oxide thickness was 

reduced to 50 nm.  Adjustments were made to the O2 passivation anneal; process details provided 

in the experiment section [24].    

At this intermediate stage, the device demonstrated characteristics that were consistent with 

the previously established process. Arriving at the optimal O2 passivation anneal process recipe 

required a significant engineering effort yet appears deceptively trivial in hindsight. At this point, 

the focus shifted towards reducing the gate oxide thickness and evaluating the revised process flow 

on scaled BG devices. The exposure system used for the lithographic processes was limited to an 

image resolution of approximately 1 µm, and thus submicron DG devices were not realized.  The 

outlined treatment listed in Table 3.1 indicates that the revised process flow with a BG device 

configuration should yield long-channel operation. The details of the revised process flow with 

select treatment comparisons are described in the following section. 

 REVISED PROCESS CONDITIONS 

IGZO TFTs were fabricated with BG staggered configuration on a thick isolation oxide 

(~650 nm SiO2) thermally grown on silicon wafers. A 50 nm Mo gate electrode was sputtered and 
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patterned, followed by a 50 nm SiO2 gate dielectric deposited by PECVD (TEOS precursor, 

390 °C). The SiO2 was densified for 2 hours in N2 at 600 C in a furnace. A 50 nm IGZO layer 

was sputter deposited using an InGaZnO4 (1:1:1:4) target in an argon ambient with 7% oxygen, 

followed by mesa pattern and etch using dilute HCl. The S/D contact metal (100 nm Mo-Al 

bilayer) was then sputtered and defined by lift-off technique using Futurrex NR9g-1500PY 

negative photoresist. A second 50 nm PECVD SiO2 layer was then deposited as the passivation 

material.  A 3-hour O2 passivation anneal at 400 °C with a 2-hour controlled ramp-down in O2 

ambient was performed, and immediately followed by an HMDS vapor treatment at 140 °C to 

avoid water adsorption. The devices were then capped with 10 nm Al2O3 film using atomic layer 

deposition (ALD) at 200 °C; alternative ALD deposition temperatures were also investigated. The 

gate and S/D contact windows were patterned and etched using 10:1 buffered HF solution. Figure 

3.4 shows the cross-section schematic and top-down view of the BG staggered device. 

 

 

 

   (a) (b) 

Figure 3.4: (a) Cross-section schematic of BG staggered TFT with ALD capping layer where L 

denotes the channel length. (b) Labeled top-down view of a fabricated BG TFT, with the IGZO 

channel outlined [24]. 
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3.2.1 Scaled IGZO TFTs 

BG devices using the revised process displayed excellent electrical performance, with 

representative transfer characteristics shown in Figure 3.5. The improvement over the 

characteristic shown in Figure 3.3 appears even more than what should be realized by the gate 

oxide thickness reduction alone. In addition to a steeper subthreshold region, there is a notable 

right-shift in the characteristic that supports enhancement-mode operation and suppresses off-state 

leakage. This behavior was demonstrated on device samples which had the ALD Al2O3 layer 

applied immediately after the HMDS vapor treatment, which immediately followed the 400 °C O2 

passivation anneal. The application of an ALD capping layer as a water barrier has been previously 

reported with associated benefits in thermal stability [25]. While all samples received the HMDS 

vapor treatment, the time delay before the ALD capping layer was applied typically varied from 0 

to 2 hours.  

 

  

(a) (b) 

Figure 3.5: Transfer characteristics from BG devices fabricated with the revised process which 

included gate oxide thickness reduction to 50 nm. Excellent performance is demonstrated at 
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This fortunate improvement in subthreshold and enhancement-mode operation seems to be 

associated with back-channel passivation that is absolutely free from adsorbed water molecules, 

indicating the difference is due to procedure rather than process definition.   

3.2.2 Device Modeling of Scaled IGZO TFTs 

The 2 µm channel length device transfer characteristics shown in Figure 3.5 are also shown in 

Figure 3.6 next to the Id-Vds output characteristics. The linear-scale transfer characteristic shown 

demonstrates the typical concave-up characteristic associated with band-tail states (BTS).  The 

influence of BTS is dependent upon both the gate and drain bias conditions and renders traditional 

methods of parameters extraction not applicable. A new device model referred to as BTS2D has 

been recently developed that accounts for the bias-dependent level of trapped charge and free 

channel charge; complete details are described in [26].  

  

(a) (b) 
Figure 3.6: (a) Transfer characteristics and (b) output characteristics of a representative BG 

device with 2 µm channel length. The Y2 axis in (a) shows the low-drain bias measurement on a 

linear-scale, demonstrating the influence of band-tail states on electrical behavior [24]. 

Extraction of the redefined VT as well as other operational parameters that represent the on-

state transfer and output characteristics, and account for BTS and short-channel effects (SCE), was 

2 µm and 1 µm channel lengths, as suggested by Table 3.1[24].   
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performed using nonlinear least-squares regression analysis in MathWorks® MATLAB®. The 

BTS2D model provides an excellent match to device measurements, as shown in Figure 3.7. 

 

 

(a) (b) 

Figure 3.7: BTS2D device model representing the on-state operation of a BG device with 2 µm 

channel length, showing an excellent fit to the linear-mode transfer characteristic (low drain bias) 

and output characteristic family of curves [24].   

 

Table 3.2 shows the mean ± standard deviation of the SS and BTS2D model extracted VT for 

4 µm and 2 µm channel length devices with N = 10 sample size. The variation in VT is relatively 

small and can be explained primarily by thickness variation in the PECVD SiO2 gate dielectric. 

However, the same device die was measured for each device size, thus the difference in VT cannot 

be attributed to differences in sampling or process non-uniformity, neither random nor systematic. 

This length-dependent characteristic shift is counter to short-channel behavior and, although 

subtle, appears to extend to the 1 µm channel length device seen in Figure 3.5. 

Table 3.2: Extracted device parameters (N=10). 

L (µm) VT (V) SS (mv/dec) 

4 0.79 ± 0.18 202.82 ± 31.23 

2 1.07 ± 0.17 191.42 ± 27.78 
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3.2.3 Thermal Stress Stability of Scaled IGZO TFTs 

As mentioned previously, the application of the ALD Al2O3 capping layer as a water barrier 

has been associated with good thermal stability, which is a standard requirement for product 

integration. Thermal degradation at temperatures T ≤ 200 °C typically cause a characteristic left 

shift, and is also reported to be a more pronounced issue on long channel devices [25]. The thermal 

stability of capped BG devices was found to depend upon the deposition temperature of the ALD 

process. Figure 3.8 shows a comparison of BG devices with ALD films deposited at 150 °C and 

200 °C, with electrical characteristics measured following 1-hour thermal stress hotplate 

treatments performed sequentially at indicated temperatures.  

   

            (a)             (b)             (c) 

Figure 3.8: BG devices with ALD Al2O3 capping layer deposited at 150 °C (a) and 200 °C (b & 

c), with channel lengths and 1 hour sequential thermal stress treatment temperatures as indicated. 

The 200 °C ALD temperature maintains good thermal stability on both long and short devices at 

temperature up to 250 °C [24]. 

 

The lower ALD temperature was not adequate in supporting thermal stability on 12 µm 

channel length devices stressed at 200 °C. The same devices processed at higher ALD temperature 

maintained thermal stability up to 250 °C, as did 2 µm channel length device from the same 

sample. It is likely that H2O molecules introduced as one of the Al2O3 precursors were allowed to 

150°C ALD               200°C ALD                           200°C ALD 
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become absorbed into the passivation oxide during the 150 °C ALD process, but were successfully 

suppressed at 200 °C.   

3.2.4 Bias Stress Stability of Scaled IGZO TFTs 

The BG devices were also subjected to gate bias-stress conditions performed at room 

temperature to evaluate the resistance to the degradation of electrical characteristics. Positive bias-

stress (PBS) and negative bias-stress (NBS) tests involved setting the gate voltage to ±10 V with 

S/D at reference ground. Devices used for bias-stress testing had a channel length of 4 µm, 

however the applied stress conditions did not present significant lateral electric fields, and thus the 

response would not have a strong dependence on channel length. Transfer characteristics were 

measured immediately following 1 hour applied stress, with results shown in Figure 3.9.   

  

Figure 3.9: Two separate BG devices showing effects of PBS and NBS applied at VG = ±10 V 

with S/D at reference ground. The post-stress measurements were taken immediately following 

1 hour stress duration.  The PBS effect is virtually negligible, whereas the NBS effect indicates 

the influence of carrier traps. Both PBS and NBS effects were completely reversible [24]. 

 

PBS                                                                                       NBS 
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Both PBS and NBS induced an observable response that was completely reversible following 

4 - 5 hours of relaxation time. The PBS response was very slight at pico ampere current levels; 

negligible by most standards. The NBS response demonstrated distortion and spreading which 

indicates an influence of carrier traps. The NBS depletion of channel electrons has the opportunity 

to interact with the entire IGZO layer and associated interface regions. A negligible effect of NBS 

in the absence of illumination has been claimed [27], [28], although the applied NBS E-field in 

this work (2 MV/cm) is higher than these reports. A model presented by Chowdhury, Migliorato 

and Jang [29] proposes a weak-bond neutral oxygen vacancy defect state that is susceptible to 

reconfiguration as a double-donor oxygen vacancy defect (VO
2+) during NBS with above-bandgap 

illumination, or NBIS. This or a similar mechanism may be operative even without illumination 

due to the high E-field present. Note that in this work the degree of lateral left-shift is relatively 

small; the transfer characteristic separation is not due to SCE, but rather is attributed to the 

inhomogeneity of donor-like trap states [23].  

 IGZO TFTS ON GLASS SUBSTRATE 

Most of the TFT applications will require fabrication on glass substrate. In our previous studies 

the devices were fabricated on thick oxide on Si wafer. To ensure the compatibility of our TFT 

process on glass substrates the scaled devices were fabricated on Corning NXT glass wafers. In 

this process the devices were fabricated with the revised process flow with both 100 nm and 50 

nm gate oxide described in 3.2 except for the initial thermally grown oxide. As shown in Figure 

3.10, the TFTs showed excellent transfer characteristics in long (L ≥ 4 µm) and short channel 

devices. The short channel devices exhibited steeper subthreshold slope.  
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(a) (b) 

Figure 3.10: Long (solid line) and short (dashed line) channel devices fabricated on Corning NXT 

glass substrate with (a) 100 nm and (b) 50 nm gate oxide respectively. 

 SUMMARY 

Scaled BG devices with a reduction in gate oxide thickness to 50 nm demonstrated excellent 

electrical characteristics at channel lengths as small as L = 1 µm. Thickness adjustment of the 

PECVD SiO2 passivation layer required re-engineering the O2 passivation anneal. While this 

change at the back-channel was not needed for improved electrostatic control on the BG device, it 

presents an optimized process for a scaled top-gate dielectric on a DG device structure. The 

specific details of the ALD Al2O3 capping layer, both process and procedure, where shown to be 

important in supporting enhancement-mode BG device operation with steep subthreshold 

characteristics and excellent thermal stability up to 250 °C. An associated trend of increasing VT 

at decreasing channel length is under further investigation. The scaled process also maintained 

good stability when subjected to PBS and NBS, with complete recovery to initial characteristics. 
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The scaled process is also fully compatible with glass substrate as excellent transfer characteristic 

has been observed for both long and short channel devices with steeper SS for shorter devices. 

Both the BG dielectric and the IGZO thickness could be reduced further to enable shorter 

channel length, however the DG device structure presents a conservative approach towards 

submicron dimensions that supports low variation and reliability. Unfortunately, DG devices with 

channel length below 1 µm were not realized due to limitations in the S/D patterning and metal 

lift-off processes. While such techniques can be used for nanoscale devices, the lift-off defined 

channel region with lithographic alignment tolerances to ensure gate-S/D overlap presents 

significant scaling challenges. A self-aligned gate process scheme utilizing ion-implanted S/D 

regions would support scaling trends similar to silicon device technology. To achieve submicron 

devices, self-aligned strategy combined with high-k dielectric can be used.  
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Chapter 4. SELF ALIGNED IGZO TFT 

Self-aligned channel regions in thin-film transistors have advantages in reduced parasitic 

capacitance and stage delay, and a reduction in overhead real estate. A common method used to 

fabricate self-aligned a-Si:H TFTs is to utilize a through-glass exposure of photoresist which is 

blocked by the opaque metal bottom-gate electrode [30], [31]. This process does not require an 

additional photomask or lithographic alignment, and thus supports low production cost. Sputtered 

IGZO has been introduced into flat panel display product manufacturing, exhibiting a channel 

mobility of approximately an order of magnitude higher than a-Si:H.  The working source/drain 

(S/D) electrodes in IGZO TFTs can be direct metal contact regions to the IGZO, without the need 

for additional processes such as doping to render the IGZO conductive. Proper metallurgy and 

annealing processes can provide ohmic behavior with minimal series resistance [32], however this 

usually requires several microns of gate-to-S/D overlap in order to ensure such behavior. Various 

self-aligned channel strategies have been demonstrated that either utilize a TG structure [15], [33], 

or a through-glass exposure for BG configurations. The TG or associated BG feature must protect 

the channel region during S/D formation.   

Techniques previously discussed in Chapter 2 that have been used to selectively form 

conductive IGZO regions include hydrogen diffusion [34], hydrogen plasma treatment [10]–[12], 

argon plasma treatment [13], [21] , and arsenic implantation [15]. In this work the activation of 

IGZO S/D regions by O2 plasma and ion implantation using 31P+, 19F+, 40Ar+, and 11B+ has been 

investigated on SA-TG devices, designated Treatment Last (TL).  Activation behavior due to 40Ar+ 

implant would be associated with ionized defect states, such as oxygen vacancies [13], [21] 
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whereas activation behavior due to the other implanted ions would be associated with either 

ionized defect states and/or the implanted element serving as an electrically active species.  

Following the S/D activation treatment, annealing was done to explore the possibility of enhanced 

activation or thermal instability.  However, due to metal electrode oxidation, no devices remained 

operational. Further investigation on integrating an activation enhancement anneal using an 

anneal-last strategy is in progress.  

Boron and argon implanted devices resulted in ohmic contact behavior with TFT results 

showing DC operation comparable to metal-overlapped devices. SA-BG devices were also 

fabricated using backside flood exposure on glass substrate. In order to enable SA-BG staggered 

devices using top side flood exposure on Si substrate, a lithographic process is under development 

which utilizes the reflection from the underlying electrode, creating a mirror image of the gate 

electrode in positive photoresist above the IGZO channel region. This pattern definition, or 

extension thereof, can then be used to protect the channel region during subsequent S/D formation 

process.  Experimental details and results for all these new techniques to realize SA device 

structures are described in this chapter.   

 SA-TG CO-PLANAR TFT 

The SA-TG process shown in Figure 4.1 began with a thick isolation oxide (~500 nm SiO2) 

thermally grown on a silicon wafer as the starting substrate. A 50 nm IGZO layer was sputtered 

using an InGaZnO4 (1:1:1:4) target in an argon ambient with 7% oxygen, and then patterned and 

etched using dilute HCl. The S/D contact metal (100 nm Mo/Al bilayer) was sputtered and 

patterned using a lift-off process.  A 50 nm PECVD SiO2 layer was then deposited as the gate 

dielectric. 
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(a) Thick oxide growth 

 

(b) IGZO MESA definition 

 

(c) S/D contact metal (Mo/Al sputter) 

 

         (d) Passivation & anneal/Passivation open 

 

(e) TG (Flash Al) 

 

(f) IGZO S/D treatment 

 

 

(g) Top-down view of a fabricated SA-TG IGZO 

TFT 

 

Figure 4.1: (a-f) Step by step cross-sectional schematic of SA-TG (Type-TL (Treatment Last)) 

device, where the textured and non-textured IGZO represents implanted and non-implanted 

regions, respectively.  Note that in this process scheme (type-TL) the implant is blocked in both 

channel and S/D metal contact regions and (g) top-down view of a fabricated SA-TG IGZO TFT. 
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This was followed by 3 hr O2 anneal at 400 °C with 2 hr controlled ramp-down in O2 ambient. 

The devices were then capped with 10 nm Al2O3 film using ALD at 200 C. The S/D contact 

regions were opened using 10:1 buffered HF. The TG electrode was then defined using evaporated 

Al with a lift-off process. Finally, the active S/D regions of the samples were then treated using 

ion-implantation or O2 plasma. Figure 4.1g shows an image of a fabricated SA-TG device with 

S/D gaps of 4 µm visible over the outlined mesa region between the TG and the S/D metal contacts. 

4.1.1 Oxygen Plasma Treatment 

It is known that oxygen vacancies (Vo) act as donors in the IGZO film [5], thus it is crucial to 

optimize the channel region to achieve ideal characteristics. In this work, O2 plasma was used to 

treat the underlapped IGZO regions in a similar fashion as previously investigated using argon 

plasma which attributed enhanced conductivity to the preferential dissociation of oxygen on the a-

IGZO film surface by the 40Ar+ ion bombardment due to its relatively high sputtering yield [21].  

However, in this case, the IGZO is covered by protective passivation layers which prevent direct 

plasma exposure, thus a change in conductivity would likely be associated with induced dielectric 

charge or IGZO/passivation interface charge in the S/D gap regions.       

The parameter settings of power and exposure time were 0.3 kW and 1, 2, and 5 minutes, 

respectively. The insight gained by showing the "non-activated" device operation is the lateral 

position of the characteristic in comparison to the "activated" device as shown in Figure 4.2a.  The 

device characteristics are left shifted from standard TG device, with the amount of VT shift (at ID 

= 10-10 A) and the low-drain current (taken @ VG = 10 V) increasing with immersion time as 

shown in Figure 4.2b. The devices showed increased current with plasma immersion time which 

clearly indicates improvement in charge injection into the channel. Note that this is contrary to the 
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mechanism that is suggested in literature where it is described that O2 plasma reduced oxygen 

vacancies, changing the surface morphology and reducing the trap density at the surface of the 

channel layer [14].  The associated shift in VT progressively worsened with plasma immersion 

time. The VT shift may be recoverable by O2 anneal, although this would be counterproductive to 

maintaining a high carrier concentration. This technique is also not compatible with SA-BG 

devices since the O2 plasma will etch the protective photoresist over the channel region. Plasma 

treated a-IGZO TFTs also suffer from thermal stability issues [34]. Hence, alternative strategy 

using ion implanted S/D activation is discussed in the following section.  

 
 

(a) (b) 

  

Figure 4.2: (a) O2 plasma treated SA-TG device characteristics with L = 6 µm before (solid line) 

and after (dashed line) the treatment with t = 2 min and and 0.3 kW power and (b) the amount of 

shift in Vg at Id = 1×10-10 A and the increase in Id at Vg = 10 V and VDS = 0.1 V  observed based 

on the plasma immersion time. The device width is 24 µm and the Vd is 0.1 and 10 V respectively 

with 4 µm underlap between TG and S/D contact metal. 
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4.1.2 Ion Implantation 

In this study, SA-TG and SA-BG co-planar TFTs has been fabricated using ion implantation 

technique to selectively form conductive IGZO regions, with the channel region masked by the 

gate electrode or associated pattern transfer. Several different species have been explored as shown 

in Table 4.1. Implant energies were chosen to ensure that a significant fraction of the dose resides 

in the IGZO film. The implant profiles were simulated using SRIM ion-matter interaction software 

[36], with a simulated distribution example shown in Figure 4.3.  Only the implantation of boron 

and argon ions has been demonstrated to successfully “activate” IGZO.  

Table 4.1: Design of experiments for ion-implantation treatment to realize SA-TG TFTs. 

Species Energy (keV) Dose (cm-2) Beam Current (µA) 
31P+ 80 4×1015 100 
19F+ 60 2×1015 30 
11B+ 35 4×1015 50 

40Ar+ 80 
2×1015 

80 
4×1015 

 

 
 

Figure 4.3: Representative SRIM analysis of 11B+ implanted with energy E = 35 keV into IGZO 

beneath a 50 nm screen SiO2 layer. The 50 nm screen oxide represents the gate dielectric above 

the IGZO.  The IGZO material model was specified to have a compositional ratio of 

In:Ga:Zn:O = 1:1:1:4 and density of 6.1 g/cm3 [37]. The simulation shows that approximately 

40 percent of the implanted dose resides within the IGZO film, which translates to an average 

boron concentration of approximately 3.2×1020 cm-3 [35]. 
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4.1.2.1 Phosphorus and Fluorine Implantation 

SA-TG TFTs were implanted using 31P+ and 19F+ ions to activate the IGZO S/D regions. In 

both cases following the high-dose implants the device characteristics were shifted and distorted, 

with current levels below the initial non-implanted condition. The phosphorus implanted devices 

did not show any S/D activation and ~10 V left shifted transfer characteristics from standard TG 

devices was observed as shown in Figure 4.4a. It was initially hypothesized that this may be due 

to the devices being subjected to thermal stress during ion-implantation, however further results 

suggest a different origin that will be discussed.  

  

(a) (b) 

Figure 4.4: Comparison of SA-TG device characteristics for L = 6 µm with before (solid lines) 

and after (dashed lines) (a) 31P+ implant with energy E = 80 keV and dose ϕ = 4×1015 cm-2 and 

(b) 19F+ implant with energy E = 60 keV and dose ϕ = 2×1015 cm-2. Here, the device width is 

24 µm and the Vd is 0.1 V and 10 V respectively with 4 µm underlap between TG and S/D contact 

metal. 

 

4.1.2.2 Argon Ion-Implantation 

While argon plasma has been used to form selectively conductive IGZO regions, no work has 

been published with 40Ar+ ion implantation into IGZO to make SA devices. In this work, 40Ar+ 
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ions have been implanted in the SA-TG devices at the very last step with two different doses. The 

activated S/D region became markedly conductive from the  = 2×1015 cm-2 implant, as shown in 

Figure 4.5a, albeit with a significant left shift.  The electrical characteristic degradation at the 

higher dose ( = 4×1015 cm-2) shown in Figure 4.5b happens to be more pronounced at the shorter 

channel length devices. A degradation in source injection results in current saturation and 

translates to poor current modulation in the transfer characteristics.  

  

(a) (b) 

Figure 4.4: Comparison of 40Ar+ implanted SA-TG device characteristics with L = 6 (red dashed 

line) and L = 12 µm (black solid line) with (a)  = 2×1015 cm-2 and (b)  = 4×1015 cm-2  and energy 

E = 80 keV. Here, the device width is 24 µm and the Vd is 0.1 and 10 V respectively with 4 µm 

underlap between TG and S/D contact metal.  

 

Terada-Muta (T-M) analysis was done on 40Ar+ implanted SA-TG devices with  = 2×1015 cm-

2 [38], with the T-M plot shown in Figure 4.6. The common intersection of extrapolated 

characteristics occurs at ΔL ~ 1.67 µm and a series resistance RSD ~ 0.68 kΩ. The amount of series 

resistance equates to approximately one-fourth the measured sheet resistance of 2.75 kΩ/sq, which 

is close to the one-third estimation based on the device structure layout.  The origin of free 
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electrons is not certain yet and there was no annealing following the implant process. Previous 

work in [21] suggests that the oxygen in the a-IGZO film surface is preferentially dissociated by 

the 40Ar+ ion bombardment due to its relatively high sputtering yield. Hence, the carrier 

concentration increases most likely due to the formation of oxygen vacancies in a-IGZO film.   

 

Figure 4.5: T-M analysis for 40Ar+ implanted SA-TG devices using channel length of 6, 12, 18 µm 

devices. The resistance is calculated at Vg = 2, 4, 6, 8, 10 V with drain voltage at 0.1 V. The 

extracted parameters are ΔL = 1.67 μm and RSD = 0.68 kΩ for 24 μm wide device. 

 

4.1.2.3 Boron Ion-Implantation 

Boron-doped ZnO has been studied as a potential candidate in solar cell and solid state lighting 

[39]–[41] as a transparent conductive electrode. The ZnO:B film has low resistivity, high 

transparency and broad-band photoluminescence [39]. However, the doped regions were not 

formed selectively; no transistor characteristics were shown in these studies. Compared to 

polycrystalline ZnO, IGZO has better uniformity and stability due to its amorphous nature. This 

work is the first report of SA IGZO TFTs that have had selectively doped S/D regions formed via 

boron ion implantation [35].  The high-dose ( = 4×1015 cm-2) 11B+ implant was done at 35 keV 
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which is the lower energy limit of the ion implanter used. The boron implanted IGZO had a 

measured sheet resistance Rs ~ 9 k/sq, which assuming an electron mobility µn = 10 cm2/(Vs) 

translates to an electron concentration of n ~ 1.4×1019 cm-3.  This suggests an activation level of 

approximately 4% of the boron atoms present if in fact the mechanism involves boron behaving 

as an electrically active species, although the level of electrical activation is most likely higher 

considering mobility degradation due to implant damage and/or the presence of dopant ions. Note 

that there was no annealing following the implant process, and the relationship between boron and 

free electrons is not yet certain. However, results strongly suggest that boron is participating as an 

electrically active species, as will be discussed further in later portions of this chapter.   

The Id-Vgs transfer characteristics of the SA-TG TFT both before and after the boron implant 

are shown in Figure 4.7a, along with a comparison to a standard TG coplanar non-SA device. The 

SA-TG TFT prior to implant has significant series resistance which severely limits current flow. 

The boron implant increases the on-state current by more than two orders of magnitude and 

supports ohmic contact behavior and steep subthreshold operation.  

The SA-TG characteristic exhibits a shift of approximately -4 V in comparison to the standard 

TG device with metal electrode overlaps, as shown in Figure 4.7a.  The magnitude of shift is 

somewhat less in comparison to the results of other ion species; the origin of which remained 

uncertain.  A similar left-shift was observed on implanted TG coplanar devices with metal blocking 

all IGZO regions, thus it is related to the implant process and not the presence of implanted boron 

atoms. 
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(a) (b) 

Figure 4.6: (a) Comparison of device characteristics, SA-TG 11B+ implanted ( = 4×1015 cm-2) 

device with L = 6 µm (dashed lines) and standard co-planar TG device with L= 4 µm (blue solid 

line) and 4 µm underlap between TG and S/D contact metal. Here, the device width is 24 µm 

and Vd is 0.1 V and 10 V respectively. After 11B+ implant, the Id-Vgs curves are showing improved 

although left shifted characteristics. (b) SA-TG device characteristics with L= 6 µm after 11B+ 

implant ( = 4×1015 cm-2) in log scale (dashed line) and linear scale (solid line) [35]. 

 

To analyze the influence of generated heat during ion-implantation, 11B+ was implanted using 

two different beam currents. From Figure 4.8a, it can be seen that the implant with relatively low 

beam current (20 µA) is left-shifted slightly less in comparison to the higher beam current (50 µA) 

implant; nonetheless the lower beam did not resolve the issue.   

T-M analysis was done on SA-TG devices [38], with the T-M plot shown in Figure 4.8b. The 

common intersection of extrapolated characteristics occurs at ΔL ~2 µm and a series resistance 

RSD ~ 8.5 kΩ. The lateral straggle from the boron implant has a negligible influence on the 

effective channel length, however the L value incorporates process biases that are unique to the 

gate-defined channel length of the SA-TG device. The amount of series resistance equates to 

approximately “one square” of sheet resistance, which is higher than the device layout would 
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suggest.  Regardless, the contact behavior is ohmic and has a minor influence on device behavior 

as shown in Figure 4.7b.   

 

 

(a) (b) 

 

Figure 4.7: (a) Comparison of SA-TG device characteristics for L = 6 µm 11B+ implanted 

( = 4×1015 cm-2) device with 20 µA (solid line) and 50 µA (dashed line) beam current. (b) T-M 

analysis for 11B+ doped ( = 4×1015 cm-2) SA-TG devices using channel length of 3, 6, 18 µm 

devices. For T-M analysis, the resistance is calculated at Vg = 2, 4, 6, 8, 10 V with drain voltage 

at 0.1 V [35]. The device width is 24 µm and the Vd is 0.1 V and 10 V respectively with 4 µm 

underlap between TG and S/D contact metal.  The extracted parameters are ΔL = 1.99 μm and 

RSD = 8.5 kΩ. 

 

In addition to the SA-TG devices demonstrating left shifted characteristics, they also suffered 

from thermal instability during subsequent hotplate treatments, causing further shifting and 

distortion.  This is presumably due to residual water reacting with the top metal gate during any 

successive high temperature steps [25].  These topics were further investigated on the BG 

self-aligned structure that does not include a top-gate metal feature that is likely operative in these 

noted issues.   
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 SA-BG STAGGERED TFT 

Traditional BG staggered TFT configuration has also been explored which utilizes back-side 

through-glass exposure. Several different ion species have been explored as well to make IGZO 

selectively conductive as shown in Table 4.2. Both 11B+ and 40Ar+ ion implantation has 

demonstrated good TFT transfer characteristics. Here, the dose values were chosen based on 

previous SA-TG device results including a higher dose value for 11B+. 

Table 4.2: Design of experiments for ion-implantation treatment to realize SA-BG TFTs. 

Species Energy (keV) Dose (cm-2) Beam Current (µA) 

11B+ 35 
4×1015 50 

8×1015 85 

40Ar+ 80 2×1015 100 

 

4.2.1 Pseudo-SA BG Lithographic Process  

The SA-BG process was investigated using a “pseudo” self-aligned process.  It is not truly 

self-aligned; rather it mimics a self-aligned device concept where the channel was protected from 

ion implant by using a BG photoresist pattern with special attention to overlay.  The process flow 

had several steps common to the standard staggered BG process, with top-side exposure using BG 

mask to protect the channel region from S/D activation techniques on silicon wafers. This is done 

to ensure that the SA-BG strategy will work with the implanted species. A 50 nm Mo gate electrode 

was sputtered and patterned on a thick isolation oxide (~650 nm SiO2) thermally grown on silicon 

wafers, followed by a 50 nm SiO2 gate dielectric deposited by PECVD (TEOS precursor, 390 °C). 

The SiO2 was densified for 2 hours in N2 at 600 °C in a furnace. A 50 nm IGZO layer was sputter 

deposited using an InGaZnO4 (1:1:1:4) target in an argon ambient with 7% oxygen, followed by 

mesa pattern and etch using dilute HCl. The S/D contact metal (100 nm Mo-Al bilayer) was then 
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sputtered and defined by lift-off technique using Futurrex NR9g-1500PY negative photoresist. A 

second 50 nm PECVD SiO2 layer was then deposited as the passivation material. The wafer was 

coated with AZ MIR 701 positive resist following an HMDS vapor prime at 140 °C and 

over-exposed for 5 sec using BG mask which left resist on top of BG polygon with careful attention 

to overlay, thereby protecting the IGZO channel region. The alignment of the BG polygon is 

critical for the appropriate activation of the underlapped S/D region. Note that the overexposure 

ensures the resist polygon is inside the original gate definition. After exposure, the resist was 

developed for 45 sec in Microposit MF CD-26 developer solution and hotplate baked for 60 s at 

140 °C. The wafer was then ion implanted for S/D activation and resist was removed after the ion 

implantation using lift-off technique.  

 

 

 

 
(a) (b) 

Figure 4.8: (a) Cross-sectional schematic and (b) top-down view of pseudo-SA BG device, where 

the textured and non-textured IGZO represents implanted and non-implanted regions, 

respectively. Note that in this process scheme, the implant is blocked in the channel region only 

and the alignment of the BG pattern is critical.  



48 

 

A 3-hour O2 passivation anneal at 400 °C with a 2-hour controlled ramp-down in O2 ambient 

was performed, and immediately followed by an HMDS vapor treatment at 140 °C to avoid water 

adsorption. The devices were then immediately capped with 10 nm Al2O3 film using ALD at 

200 °C after annealing to minimize exposure to air ambient. Finally, the gate and S/D contact 

windows were patterned and etched using 10:1 buffered HF solution. Figure 4.8 shows the cross-

section schematic and top-down view of the pseudo SA-BG device. The device characteristics 

shown in Figure 4.9 represents a 11B+ implanted pseudo-SA BG device with E = 35 keV and 

ϕ = 4×1015 cm-2.  The characteristics do not experience the pronounced left-shift demonstrated by 

SA-TG devices.  This implies that the origin of the left-shift was due to metal electrode charging 

during the implant, subjecting the gate dielectric to electrical stress and inducing positive bulk 

oxide charge.  The pseudo-SA BG characteristics are left shifted compared to the standard non-

SA BG device characteristics shown in chapter 3 (Figure 3.6a), however the shift is relatively 

minor (V ~ 1 V). 

 
Figure 4.9: 11B+ implanted ( = 4×1015 cm-2) pseudo-SA BG device characteristics with 

L = 12 µm. The device width is 24 µm and the Vd is 0.1 and 10 V respectively with 4 µm underlap 

between BG and S/D contact metal. 
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4.2.2 SA-BG Lithographic Process Using Backside Flood Exposure 

The SA-BG process investigated had several steps common to the SA-TG process flow, with 

back-side flood exposure through glass. Figure 4.10 shows cross-sectional schematics of the SA-

BG lithographic process. Using a glass substrate, a 50 nm thick Mo gate electrode was sputtered 

and patterned, followed by a PECVD SiO2 gate dielectric which was densified for 2 hours at 

600 °C in N2. A 50 nm IGZO layer was sputtered using an InGaZnO4 (1:1:1:4) target in an argon 

ambient with 7% oxygen, and then patterned and etched using dilute HCl. The S/D contact metal 

(100 nm Mo/Al bilayer) was then sputtered and patterned using a lift-off process. A 50 nm PECVD 

SiO2 passivation oxide was then deposited, followed by the O2 anneal and Al2O3 capping layers 

described previously. The wafer was then coated with AZ MIR 701 positive resist following an 

HMDS vapor prime at 140 °C. Back-side illumination with broadband spectrum was done using 

Suss MA150 Contact Aligner and a black absorbing layer was used to avoid reflections.  After 

exposure, the resist was developed for 45 sec in Microposit MF CD-26 developer solution and 

hotplate baked for 60 s at 140 °C.  The samples were then ion implanted for S/D activation.  Finally, 

the resist was removed, and the S/D contact regions were opened using 10:1 buffered HF. 
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(a) BG definition (e) Passivation oxide/ Passivation anneal 

 

 
(b) BG dielectric (TEOS) (f) Positive resist & back side flood exposure 

 
 

(c) IGZO MESA definition (g) S/D treatment on IGZO 

  
(d) S/D contact metal (Sputter Mo/Al) (h) Resist removal/Passivation Open 

 

 

Figure 4.10: Step by step cross-sectional schematic of SA-BG device, where the textured and non-

textured IGZO represents implanted and non-implanted regions, respectively.  Note that in this 

process scheme the implant is blocked in both channel and S/D metal contact regions. 
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Figure 4.11 shows the resist profile with and without backside flood exposure. Resist was 

remaining everywhere without the backside flood exposure whereas resist was only remaining on 

top of BG polygon with the backside flood exposure. 

  

(a) (b) 

Figure 4.11: BG pattern (a) without backside flood exposure and (b) with backside flood exposure. 

Note that, resist is remaining everywhere without the backside flood exposure whereas resist is 

only remaining on top of BG polygon with the backside flood exposure. 

 

4.2.2.1 Boron Ion-Implantation 

In this experiment, 11B+ was implanted with 35 keV energy at two different doses (4×1015 cm-

2 and 8×1015 cm-2). The initial results were similar to the characteristics of pseudo-SA-BG devices. 

From the transfer characteristics for SA-BG 11B+ implanted (4×1015 cm-2 dose) device shown in 

Figure 4.12a, it was observed that there is a left shift in the characteristics for 6 µm device 

compared to the 12 µm device. From the T-M analysis, RSD is ~ 23 kΩ and ΔL is 3.6 µm as shown 

in Figure 4.12b. Thus, the effective channel length for a 6 µm device is only ~2.5 µm, however 

the origin of the left shift in the transfer characteristics is still in question and will be discussed 

further.   
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Figure 4.12: (a) Comparison of 11B+ implanted SA-BG device characteristics with L = 6 µm 

(dashed line) and L = 12 µm (solid line) with ϕ = 4×1015 cm-2 into 4 µm underlap regions between 

resist mask and source-drain metal. The device width is 24 µm and Vds is 0.1 and 10 V and (b) T-

M analysis for 11B+ implanted SA-BG devices using channel lengths of 6, 12, 18 µm devices. The 

resistance is calculated at Vg = 4, 6, 8, 10 V with drain voltage at 0.1 V. The extracted parameters 

are ΔL = 3.58 μm and RSD = 23.4 kΩ. 

The large ΔL is mainly due to the subtractive wet-etch for the bottom gate patterning. As seen 

from microscope images of the SA-BG devices in Figure 4.13a, the gate pattern has ~2 µm offset 

from the mask defined gate length.  

  

(a) (b) 

 

Figure 4.13: (a) SA-BG IGZO TFT with channel length L = 6 µm with effective channel length 

of L = 4 µm as defined by the subtractive wet etching using positive photoresist with 2 µm offset 

from the mask definition (i.e. ΔL ~ 2 µm) and (b) SA-TG IGZO TFT with channel length 

L = 6 µm as defined by the S/D lift-off metallurgy using negative photoresist (Futurrex NR9g-

1500PY) with almost negligible offset from the mask definition (i.e. ΔL ~ 0). 
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The SA-TG devices as shown in Figure 4.13b do not have any offset since the TG is patterned 

by lift-off using NR9g-1500PY negative resist with almost no offset as shown previously in Figure 

3.1. 

After subjecting the devices to 175 °C hot-plate bake for an hour, there was a slight shift in the 

transfer characteristics of the 12 µm long device as shown in Figure 4.14a, which became 

significant as the cumulative time was increased to 2 hours and finally 4 hours.  The standard non-

SA devices did not exhibit any left shift upon thermal stress testing, which suggests this left shift 

in SA-BG devices is due to B entering the channel region and behaving as a donor species.  Figure 

4.14b is an adjusted overlay of the original and 4 hour hot-plate bake characteristics, and shows 

that the thermal stress response is only a shift, and is not a reduction in channel length.  This 

suggests that the active boron species in the S/D regions remains stable, however inactive boron 

may be more mobile and provide a relatively low dose throughout the channel region.   

   

(a) (b) (c) 

Figure 4.14: (a) Comparison of 11B+ implanted SA-BG device characteristics with (a) L = 12 µm 

and ϕ = 4×1015 cm-2 before (solid line) and after (dashed lines) successive 175 °C bakes, (b) 

adjusted overlay of the original and 4 hour hot-plate bake characteristics and (c) L = 12 µm with 

ϕ = 8×1015 cm-2. The device width is 24 µm and the Vd is 0.1 and 10 V respectively with 4 µm 

underlap between BG and S/D contact metal. 
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This may also be the origin of the left-shifted characteristics of the 6 µm device shown in 

Figure 4.14a, which has a much shorter effective channel length and could experience thermal 

diffusion during the implant due to heat generated.  When the dose was doubled to 8×1015 cm-2, 

the transfer characteristics degraded as shown in Figure 4.14c. This suggests that 4×1015 cm-2 dose 

was already at or above the limit of B solid solubility in IGZO and additional B doping (8×1015 

cm-2) created interstitial point defects in the underlapped region. The devices exhibited degradation 

in charge injection from source to the channel that is pronounced at low drain bias (0.1 V) as shown 

in Figure 4.14c. It should be reinforced that the channel was not implanted; this was only an effect 

of the additional implant in the S/D region. 

4.2.2.2 VT Adjust 

  

(a) (b) 

Figure 4.15: Comparison of low dose (ϕ = 2×1012 cm-2) 11B+ implant on ϕ = 4×1015  cm-2 11B+ 

implanted SA-BG device characteristics for VT adjust with (a) L = 6 µm and (b) L = 12 µm. The 

device width is 24 µm and the Vd is 0.1 and 10 V respectively with 4 µm underlap between BG and 

S/D contact metal. 
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Here, the entire IGZO mesa (IGZO channel and conductive IGZO S/D with 4×1015 cm-2 dose) 

is subjected to a low dose (2×1012 cm-2) ion implant at E = 35 keV in order to adjust the VT. 

However, all the devices exhibited > 5V left shifted characteristics as shown in Figure 4.15. 

4.2.2.3 Argon Ion-Implantation 

Argon was implanted to realize SA-BG devices with 80 keV energy and 2×1015 cm-2 dose, with 

transfer characteristics shown in Figure 4.16.  As in the case of boron-implanted SA-BG devices, 

the transfer characteristics do not show the left shift associated with SA-TG devices.  The initial 

characteristics after implant exhibited a slight crossover effect, which is attributed to localized 

defects in the transition between the active S/D regions and the channel. This cross-over was not 

apparent on SA-TG devices due to the large amount of gate oxide induced charge which dominated 

the electrical behavior.  It was also not present on boron implanted SA-BG devices.   

After the 175 °C hot-plate bake for an hour, the characteristics degraded as shown in Figure 

4.16. The current degradation suggests “deactivation” due to instability of the argon-induced 

activation mechanism.  The Gate Induced Drain Leakage (GIDL) behavior is pronounced after 

thermal stress, suggesting the creation of secondary defects.  There is no characteristic left-shift 

associated with the argon implanted SA-BG devices, which is consistent with a defect-induced 

activation mechanism rather than an electrically active argon species.  These remaining defect 

effects would have to be eliminated for argon implant to be used in a self-aligned device strategy.   
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Figure 4.16: Comparison of 40Ar+ implanted SA-BG device characteristics with L = 12 µm, 

E = 80 keV and ϕ = 2×1015  cm-2 before (solid line) and after (dashed line) 175 °C bake for an 

hour.  

4.2.3 SA-BG Lithographic Process Using Topside Flood Exposure 

The SA-BG with topside flood exposure investigated had several steps common to the SA-BG 

with backside flood exposure process flow, with a top-side flood exposure and optical thin-film 

interference used to produce a “reflection gate” electrode to serve as an implant mask.  Using the 

same oxidized silicon substrate described previously, a 50 nm thick Mo gate electrode was 

sputtered and patterned, followed by a PECVD SiO2 gate dielectric which was densified for 2 

hours at 600 °C in N2. A 50 nm IGZO layer was sputtered using an InGaZnO4 (1:1:1:4) target in 

an argon ambient with 7% oxygen, and then patterned and etched using dilute HCl. A 50 nm 

PECVD SiO2 passivation oxide was then deposited, followed by the O2 anneal and Al2O3 capping 

layers described previously. The wafer was then coated with AZ MIR 701 positive resist following 

an HMDS vapor prime at 140 °C. Top-side illumination at g-line (λ = 436 nm) with an irradiance 

of ~ 100 mW/cm2 was done using an exposure array to determine the resulting contrast between 

photoresist lying above the field and gate regions.  After exposure, the resist was developed for 
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45 sec in Microposit MF CD-26 developer solution and hotplate baked for 60 sec at 140 °C.  Figure 

4.17 shows cross-sectional schematics of the SA-BG lithographic process. 

  

(a) (b) 

Figure 4.17: Cross-sectional schematic of a SA-BG lithographic process (a) after exposure and 

(b) after develop [35]. 

 

A preliminary indication of the feasibility of the “reflection gate” process was observed during 

the IGZO mesa lithographic process, which under standard exposure conditions resulted in 

underexposure over the BG electrode outside of the mesa region while the field area was 

completely cleared of photoresist. This was then recognized as a potential method for integration 

into a SA-BG process using a topside flood exposure under optimal exposure conditions. Because 

of the involvement of interface reflections and thin-film interference the process was found to be 

extremely sensitive to differences in film thickness and optical properties. For this process to work 

correctly, the photoresist must mirror the BG polygons with complete coverage. 

An exposure array with short time increments (Δt = 0.03 s) was used for open field exposures 

on resist-coated BG structures in search of settings that would yield acceptable image contrast with 

minimal edge exclusion. Select results are shown in Figure 4.18, along with the exposure times 

used on the projection stepper system.   
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Figure 4.18. Photoresist-coated BG structures that were flood exposed for times indicated; all 

samples exhibit significant edge exclusion. The short exposure time of sample#1 did not clear the 

field region, whereas the long exposure time of sample#3 resulted in partial clearing of photoresist 

over the planar BG region [35]. 

 

The results shown in Figure 4.18 suggest that an exposure time of ~ 2.4 sec may clear the field 

of photoresist while maintaining the self-aligned BG image, shown by sample # 2. However, all 

samples exhibited an edge exclusion, which would result in a significant change in channel length 

dimension and large gate-S/D overlaps.  In addition, the photoresist thickness loss in areas where 

it did remain may not provide an adequate implant masking layer. The BG image integrity over 

the mesa is the only region of importance for S/D implant blocking.  Unfortunately, a suitable 

process window was not identified within the experimental conditions used. More experiments 

which investigate other parameters such as the develop process conditions (e.g. time, 

concentration) are required.   

 SUMMARY 

Investigation on new techniques towards the realization of SA IGZO TFTs has been presented 

in this chapter. The non-traditional definition of the term “activation” has been used to indicate the 
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creation of ionized donors and associated free electrons from the applied process itself. Oxygen 

plasma has been demonstrated as an effective activation technique for SA-TG devices. Results 

suggested that the increase in O2 plasma immersion time shifts the characteristics to the left 

compared to the non-treated one, as well as increases the current. This shift and rise indicates 

improvement in source charge injection; unfortunately the VT shift ensures depletion-mode 

operation. These results guided efforts towards ion implantation as an alternative strategy for S/D 

regions formed selectively, with the channel region masked by the gate electrode (TG) or 

photoresist proxy (BG). Several different ion species were investigated including 40Ar+, 11B+, 31P+ 

and 19F+ as shown in Table 4.3.  The damage level indicates the relative amount of displacements 

(i.e. vacancies) induced by the implant.  While the resulting chemical bonding arrangement 

involving the ion species has not been determined, the interpretation of chemical involvement 

indicates the expected chemical role in promoting electrical activation.     

Table 4.3: Interpretation of implanted species. 

Implant Species Damage Level 
Chemical Involvement 

(Interpreted) 

40Ar+ High Null 

31P+ High Negative 

19F+ Low Negative 

11B+ Low Positive 

 

Argon implanted activation appeared to be consistent with creation of donor-like defect states 

without chemical participation (e.g. oxygen vacancy defects). Phosphorus and fluorine treatments 

did not support free carriers. Boron implanted activation appeared to be consistent with boron 

participating as an electrically active species supporting free electrons. Both argon and boron 

resulted in a significant left-shift in SA-TG devices which was attributed to metal gate charging 
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during the ion implant process, which was not observed on SA-BG devices. Both species 

demonstrated degraded charge injection at higher level dose treatments which was attributed to 

high level defects and/or inactive species which degrades S/D activation behavior.  

Boron implanted devices exhibited a characteristic left-shift via hotplate baking at 175 °C 

which was not observed on non-SA devices. The shift is apparent on short-channel devices without 

baking, presumably due to heat generation during ion implantation. It is attributed to some fraction 

of boron with high diffusivity spreading throughout the channel region and expressly not 

associated with a reduction in channel length or performance degradation. The shift due to low-

dose boron VT adjustment was much larger than expected (~ 3-4x), indicating that both defect and 

chemical roles may be operative.  

Argon implanted SA-BG initial characteristics exhibited a slight crossover effect, which was 

attributed to localized defects in the transition between the active S/D regions and the channel. 

This cross-over was not apparent on SA-TG devices due to the large amount of gate oxide induced 

charge which dominated the electrical behavior. Argon implanted devices exhibited performance 

degradation via hotplate baking at 175 °C without any associated lateral shift, which is attributed 

to defect state reconfiguration. This current degradation indicates less donor states for charge 

injection and pronounced GIDL suggests creation of deep states that facilitate band-to-band 

tunneling.  

Overall, boron implanted SA-BG devices demonstrated superior performance over SA-TG and 

argon implanted devices, with equivalent transfer characteristics as the standard (non-SA) BG 

staggered device. A novel lithographic technique has also been described with the potential of 

enabling SA-BG devices using topside exposure; process development is ongoing. 
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Chapter 5. CONCLUSION 

This chapter provides a summary of the results and findings in the self-aligned TFT 

investigation, and how a self-aligned device structure will enable submicron scaling of IGZO 

TFTs. The main goal of this work was to fabricate SA-TG and SA-BG IGZO TFTs with different 

S/D activation techniques. While exposure to oxygen plasma demonstrated successful activation 

in a SA-TG device, a significant lateral left-shift was observed in the transfer characteristics due 

to induced dielectric charge and/or interface charge in the channel region. This strategy was not 

pursued for the BG structure since it involves a photoresist mask incompatible with the oxygen 

plasma process.    

Implantation of select ion species was successful in demonstrating self-aligned IGZO TFTs. 

This is the first report of the use of either implanted boron or argon for selective activation of the 

source drain regions.  Similarities and differences in the specific behavior of boron and argon 

activated SA devices were described in detail in Chapter 4.  The interpretation of various electrical 

results is summarized by the following conclusions: 

 SA-TG devices experienced a significant left-shift which was associated with charging 

of the metal gate electrode mask, thus subjecting the passivation dielectric to a higher 

electric field and the creation of bulk and/or interface charge.  SA-BG devices did not 

experience this issue. 

 Argon implant activation involves a defect-induced donor mechanism, likely involving 

oxygen vacancy defects and/or passivation with hydrogen.  The resulting TFTs 
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demonstrate slight slow-trap behavior, with pronounced degradation following thermal 

stress treatments below 200 °C suggesting the formation of secondary defects.  

 Boron implant activation involves formation of an electrically active donor species 

involving chemical bonding with a fraction of boron atoms present.  These active 

regions remain fixed during thermal treatments, however unbound boron atoms may 

be mobile at thermal treatments below 200 °C and result in low active donor 

concentrations in the channel region, thus responsible for a left-shift in transfer 

characteristics.  

 Both boron and argon species demonstrated pronounced degradation in charge 

injection at higher dose treatments.  While the activation mechanisms are interpreted 

to be distinctly different, the additional defects associated with high-dose treatments 

result in similar degradation behavior.   

Boron implanted SA-BG devices demonstrated superior performance over SA-TG and argon 

implanted devices, with equivalent transfer characteristics as the standard non-SA BG staggered 

device.   The devices are subject to thermal VT shift related to the presence of boron, however the 

mechanism is distinctly different than that attributed to the presence of water at the back-channel 

region [25].  Minimizing thermal exposure would limit the influence of this mechanism.  

Alternatively, this mechanism may be a method for the selective formation of depletion-mode 

NMOS devices for improved circuit performance. Refinements in this self-aligned device strategy 

will enable the ability to scale to smaller channel lengths without the associated limitations of a 

channel length defined by the S/D contact regions.   

Further studies must be done to investigate alternative integration strategies, such as 

performing the boron S/D implant prior to the 400 °C O2 furnace anneal.  Material characterization 
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of the doping process must be done to establish the role that boron has in supporting free carriers 

in IGZO.  X-ray Photoelectron Spectroscopy (XPS) for [Vo] comparisons, and Secondary Ion Mass 

Spectroscopy (SIMS) for channel region analysis, are in progress. Additional techniques need to 

be identified to characterize bonding and ionization state; a significant challenge at species < 1% 

atomic concentration.  

Advancements in self-aligned S/D activation techniques, in combination with the application 

of a high- gate dielectric for improved channel control, and process development for gate 

patterning and etch processes, will enable high-performance submicron IGZO TFTs with minimal 

parasitic resistance and capacitance.   
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