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Abstract

Software defined radio (SDR) platforms implement many digital signal processing

algorithms. These can be accelerated on an FPGA to meet performance requirements.

Due to the flexibility of SDR’s and continually evolving communications protocols,

high level synthesis (HLS) is a promising alternative to standard handcrafted design

flows. A crucial component in any SDR is the error correction codes (ECC). Turbo

codes are a common ECC that are implemented on an FPGA due to their compu-

tational complexity. The goal of this thesis is to explore the HLS coding techniques

required to produce a design that targets the desired hardware architecture and can

reach handcrafted levels of performance.

This work implemented three existing turbo decoder architectures with HLS to

produce quality hardware which reaches handcrafted performance. Each targeted

design was analyzed to determine its functionality and algorithm so a C implemen-

tation could be developed. Then the C code was modified and HLS directives were

added to refine the design through the HLS tools. The process of code modification

and processing through the HLS tools continued until the desired architecture and

performance were reached.

Each design was implemented and the bottlenecks were identified and dealt with

through appropriate usage of directives and C style. The use of pipelining to bypass

bottlenecks added a small overhead from the ramp-up and ramp-down of the pipeline,

reducing the performance by at most 1.24%. The impact of the clock constraint set

within the HLS tools was also explored. It was found that the clock period and

resource usage estimate generated by the HLS tools is not accurate and all evaluations

should occur after hardware synthesis.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication systems are continually evolving to meet new standards with

greater throughput over increasingly noisy channels. Software defined radios (SDRs)

provide a current solution to this problem by allowing the radio to be upgraded over

time with new, better algorithms. This can allow an exiting hardware platform to

adapt to new standards and implement new protocols. Error correction codes (ECC)

are an integral component in wireless communications systems that require reliable

data transmissions. Forward error correction codes (FECs) include extra data in the

initial transmissions to allow for error correction, rather than relying on retransmis-

sion which can be costly and undesired. Turbo codes are a common FEC used in

high performance and noisy environments such as deep space communications [5] and

long time evolution (LTE) mobile networks [6] due to their flexibility in performance,

throughput, and resource usage.

Classically, SDR implementations on an FPGA are handcrafted using a hardware

description language (HDL) to describe the desired architecture at the register trans-

fer level (RTL). This poses a challenge with implementation since the process can be

very time consuming and requires specialized hardware engineers with the knowledge

of the language, tools, and hardware platform being targeted. An alternative to the
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CHAPTER 1. INTRODUCTION

standard RTL design approach exists through the use of high level synthesis (HLS).

HLS converts a high level language (HLL) such as C into an RTL hardware model.

This process allows for reduced development times and a simplified design process,

just as the C language and compiler did with assembly programming. The devel-

opment flow for implementing an SDR on an FPGA is shown in Figure 1.1. This

diagram shows how a software library that is compatible with HLS tools could be

tuned and then used to implement an SDR platform without the need for special-

ized hardware knowledge. SDR platforms are commonly implemented on system on

a chips (SoCs) with CPU cores and FPGA fabric. Currently there are open source

libraries for SDRs which are optimized for CPU and SIMD architectures, however, no

such library exists for development on SoCs with CPUs and FPGA fabric. The use

of architecture specific optimizations and reliance on complex data structures involv-

ing dynamic pointers within the current libraries cause incompatibility with current

HLS tools. This results in the need for a new library with the goal of software and

hardware support via HLS.

Figure 1.1: Design flow of an SDR utilizing HLS and open source libraries

HLS has the unique ability to bridge the gap between software and hardware de-

velopment. From the perspective of a software domain, HLS can accelerate designs

by allowing simplified hardware and software co-design. This has especially become

prevalent in the cloud [7]. ie Amazon provides FPGAs for use with their computing

nodes. This has been made accessible by offering similar development environments

to software engineers via C/C++ and OpenCL, made possible by HLS tools. In the
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CHAPTER 1. INTRODUCTION

hardware domain, HLS can be used as an alternative to HDLs to generate high per-

formance designs. Utilizing HLS to replicate the results of an RTL design does come

with the challenge of representing the desired hardware architecture in an HLL. HLLs

do not describe how an operation is implemented in hardware, only its algorithmic

function. Because of this, HLS tools must extract the data and control flow from

an algorithm and generate hardware which implements it. This process can lead to

inefficiencies since the tools may implement an algorithm with generic control logic

to simplify the RTL generation process. To use HLS effectively, the code structure

and design process are crucial to achieving quality hardware.

A case study of prior research shows that handcrafted RTL design flows still

produce higher performing hardware than HLS [8]. The designs which were studied

varied in how HLS was used, either to speedup software or to target the desired

hardware architecture. Other past works also focused on using HLS to improve a

software algorithm [9, 10]. The goal of these works was to use HLS optimizations and

C style changes to produce high performance hardware. This approach can lead to

bottlenecks in the design if there are software constructs that do not translate well

into hardware. Without guiding the HLS tools to the desired hardware architecture,

these bottlenecks can heavily impact the final performance and need to be mitigated.

This work explored the potential of an open source SDR library for HLS devel-

opment and the design process required to produce high performance hardware from

HLS. This was accomplished by modeling three existing handcrafted RTL turbo de-

coder architectures in C from a hardware engineer’s perspective and using HLS to

generate hardware which reaches RTL levels of performance. The resulting hardware

architecture was analyzed for bottlenecks imposed by the HLS tools. These bottle-

necks were then mitigated with code changes and HLS specific optimizations. By

designing with a hardware architecture in mind, and then applying HLS optimiza-

tions, this work explored an alternate design approach to designing with HLS for
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CHAPTER 1. INTRODUCTION

high performance designs. This is especially beneficial to turbo decoders, and SDRs

in general due to the increased flexibility, decreased implementation difficulty, and

fast time to market which an HLS design flow can provide.
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Chapter 2

Background

2.1 Software Defined Radios

Software defined radios are platforms for implementing wireless communication sys-

tems with a combination of hardware and software. In an SDR, components that are

classically implemented in hardware are instead executed on a processing device such

as a CPU or FPGA. This allows an SDR to be more flexible than radio systems built

with application specific integrated circuits (ASICs) or discrete components. The

basic components of an SDR can be found in Figure 2.1.

Figure 2.1: Components of a modern communications system with areas marked as pro-
grammable implemented with software or reconfigurable hardware [1]

6



CHAPTER 2. BACKGROUND

Figure 2.1 shows the main components of a transmitter/receiver radio system.

The sections labeled programmable are implemented in a processor system through

software or a reconfigurable hardware system. The RF chain is also tunable in an

SDR. This leads to a flexible system which can adapt and be upgraded to future com-

munication systems. This can be especially useful for continuously evolving systems,

systems with the need for upgradeability, and research and development of commu-

nication systems. In addition, as radio technology advances, remote systems are able

to stay updated without requiring a hardware replacement.

Ground and in-flight space communications have utilized SDRs. For example, the

Martian Curiosity rover utilized an Elextra and Elextra-lite SDR which allowed for

communications systems to be upgraded in phases [11]. In phase 1 a conservative

approach was used to communicate at 32kbps. Phase 2 upgraded communications

to 128kbps and 256kbps, and finally phase 3 implemented Adaptive Data Rate and

suppressed carrier modulation to increased the communications rate up to 2048kbps,

doubling the mission requirements for data transfer for each day on mars. The unique

ability of an SDR allows the radio to be tuned and adapt while in space. Similarly,

the work presented in [12] discusses other SDR platforms are being created for on-

board space applications by the European Space Agency. Not only are SDRs an ideal

choice for remote systems that must be updated remotely, but they also have benefits

for ground applications. Flexibility is still a benefit to allow for the evolution of

algorithms and protocols vie loading new software on an existing hardware platform.

SDRs also bring adaptability, easy integration, reduced time to market, reduced cost,

lower obsolescence and economics of scale [12].

A key component in many communications systems is Error Correction Codes

(ECC) which ensures that data is reliably transmitted. In Figure 2.1 the ECC com-

ponent is found within the channel encoding block where the data has redundant

information added and is then encoded into a final bitstream. ECC are one of the

7



CHAPTER 2. BACKGROUND

most impactful upgrades to an SDR system as they can improve the reliability and

data rate to overall increase reliable data throughput in a system. For example, the

SDR on the Voyagers space probe was upgraded in-flight to include concatenated

Reed-Solomon error correction which decreased the bit-error rate from 5× 10−3 to

10−6 [13]. Turbo codes are more recently used ECC with better error correction

performance but higher computational complexity. This has resulted in continuous

research to decrease the implementation complexity to reach the throughputs required

by state of the art wireless protocols and fit within small hardware devices.

2.1.1 SDR Platforms and Libraries

SDR Platforms

With the growing capabilities of FPGAs, there are many SDR platforms available

ranging from the hobbyist level to commercial use radios. The RTL-SDK dongle is

an entry level SDR which uses a re-purposed TV Tuner ASIC to convert radio signals

into a digital representation sent via USB to a PC for processing [14]. This device

has a relatively limited input frequency range of 22Mhz to 2.2Ghz. Its processing

capabilities are limited by the computer attached and its bandwidth. The HackRF

One[15] and LimeSDR[16] are more advanced hobbyist grade SDRs which use RF

front ends and FPGAs to stream data over USB. These devices have a 1Mhz-6Ghz

and 110kHz-3.8Ghz frequency range, respectively. The HackRF One only contains

a small CPLD while the LimeSDR contains an FPGA with 40K logic cells allowing

for more advanced algorithms to be offloaded to the FPGA, rather than an attached

computer.

More advanced SDRs exist through the use of SoCs which contain both ARM

CPU cores along with FPGA fabric. The Zedboard SDR II Evaluation Kit includes a

Zedboard and an AD9361 Software-Defined Radio Evaluation Kit RF front end [17].

The Zedboard contains a Xilinx Zynq Z7020 SoC with 2 ARM9 cores with NEON

8



CHAPTER 2. BACKGROUND

support and 85K logic cells. This SDR is tuned for an input frequency between 2.4Ghz

to 2.5Ghz but can be configured from 70Mhz to 6Ghz. A large benefit comes from the

use of an SoC with ARM cores integrated. This allows for a standalone SDR system

that can implement all components of a communications system. The Raptor SDR

builds upon this principle by using the same analog front end with a Xilinx’s ZYNQ

Ultrascale+ XCZU9EG SoC which has a quad-core ARM-A53 processor, dual-core

ARM R5 real time processor, along with 600K logic cells [18]. This is a large upgrade

compared to the Zedboard and can allow for more advanced communications systems

to be implemented.

Xilinx also has SoCs designed for RF applications in the form of the Zynq Ultra-

scale+ RFSoCs [19]. These SoC’s include ARM CPUs and FPGA fabric the same

as the MPSoC, however, the RFSoC’s also include RF digital to analog, analog to

digital, and configurable forward error correction cores on the same chip. This allows

for the potential of a single chip radio solution with a larger degree of reconfigura-

bility. This expands the programmable region within Figure 2.1 to encompass all

components except for the RF Chain. There does not seem to be software defined

radio development boards available yet, however, Xilinx provides evaluation and char-

acterization kits which could be used to explore their use in SDR contexts. Xilinx

also recently released news of the second generation of RFSoCs which can support

5G communications, allowing future SDR platforms to support the newest wireless

protocols in use today [20].

SDR Libraries

SDR platforms are only half of the recipe required to build a wireless communications

system on an SDR. The other half requires the software to implement the encoding

and decoding of data. There are many open source digital signal processing (DSP)

and SDR libraries available to aid in this process, though they focus on CPU based

9



CHAPTER 2. BACKGROUND

architectures. These libraries are ideal for use with SDR platforms which stream data

to a computer for processing. With SoC based platforms these algorithms have the

option of being accelerated in the FPGA fabric, however, libraries to accomplish this

do not yet exist.

GNU Radio [21] is one of the largest open source projects with a graphical coding

interface to build SDR radios. There is support for many signal processing blocks

to build an SDR for many communications systems. Most of the library is written

in C++ and Python making it ideal for CPU based architecture, however, it makes

it difficult to interface with high level synthesis (HLS). The library makes heavy use

of dynamic memory and pointers which HLS does not completely support. It also

leverages many other software dependencies which would make porting to HLS more

difficult.

Liquid-DSP [22] is also a library providing signal processing functions written in C.

This library does not have the overhead of GNURadio and is very portable, however,

it uses a CMAKE build system which is not compatible with current HLS tools. This

library has the potential to be compatible with HLS, however, it would require work

to allow for integration with current tools. The other issue with this library is the lack

of support for turbo codes. There are turbo code libraries including TurboFEC [23]

and AFF3CT[24], however, each library is heavily optimized for SIMD architectures

on X86 and NEON for ARM. This would make posting to HLS difficult due to the

focus on SIMD. AFF3CT also relied on C++11 which the tools do not support yet.

Overall, while there are many open source libraries for HLS, each poses an issue for

potential hardware/software integration. An ideal solution is a library optimized for

both HLS and CPU implementations to allow for hardware and software co-design on

an SoC platform. With an open source library for HLS a new design flow for SDRs

and turbo codes could be created to allow for easy implementation and accessibility

for more engineers.

10



CHAPTER 2. BACKGROUND

2.2 Turbo Codes

Turbo codes are an iterative forward error correction technique with near Shannon’s

limit performance for use in noisy communication channels [5]. Turbo codes have

become one of the defacto ECC used for high throughput and high noise commu-

nications including mobile networks and space communications. It is important to

utilize an ECC, especially an FEC to correct errors rather than have to retransmit

the same data over again until it is received correctly. Retransmissions can be costly,

and take more time than introducing some overhead in the transmission in the form

of an FEC.

Turbo codes define the error correction scheme and the encoding of data in blocks.

On the transmitter side, a turbo encoder is used to generate the encoded bitstream

with parity data and the receiver contains a turbo decoder to correct errors and

extract the original data. Turbo codes are flexible due to configurable block size, the

number of iterations, and the ability to be processed in parallel. This allows them to

be used in a wide array of applications such as high throughput LTE mobile networks

[6], and high noise deep space communications [5]. The turbo code algorithms have

evolved to meet new specifications and performance metrics. For this document, the

LTE turbo code implementation will be explored.

Turbo codes were chosen for this research due to their benefits from an HLS ac-

celerated design process. There is a need for turbo codes to be flexible to meet many

different standards and platforms. Turbo codes are also computationally intensive

and are non-trivial to implement in hardware. There have been many hardware ar-

chitectures proposed throughout the years to increase throughput without sacrificing

the error correcting performance for use in the latest communications systems. Using

HLS could decrease the complexity when improving current designs and therefore

decrease the time to market which can be crucial for meeting the continually evolving
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communications protocols.

2.2.1 Turbo Encoding

Turbo codes encode data at a 1/3 rate, such that the encoded data is 3 times the size

of the original input. The encoded data is made up of the original bitstream, a parity

stream, and a parity stream of the interleaved bitstream. Interleaving is a process to

mix up the bit locations to remove the correlation of position to bit value. The specific

operations performed for interleaving are discussed in a section below. The encoding

operation is performed with a Parallel Concatenated Convolutional Code (PCCC)

with two 8-state constituent encoders and an interleaver (Figure 2.2). In this figure,

ck is bitstream to be encoded, and xk, zk, and z′k are the output bitstream, parity, and

interleaved parity respectively. All shift registers are zero when the encoding process

begins. The bitstream is then processed in the encoder for 0 ≤ k ≤ K − 1 with the

switches in the upper position, where K is the block size of the decoder.

Figure 2.2: Turbo encoder

The LTE specification also terminates the encoder to ensure it ends on a known

12
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state. The first 3 tail bits are used to terminate the first encoder with the upper

switch in the lower position while the second constituent encoder is disabled. The

last three bits are used to terminate the second encoder with the lower switch in the

lower position with the first constituent encoder disabled. The termination bits are

then reordered and concatenated with the bitstream and parity streams.

The interleaver component in turbo codes rearranges the order of the bits within

a block of data. This occurs to allow for a second parity stream to be generated from

a bitstream, but decorrelated from the original data. The design of an interleaver

is crucial to the performance of turbo decoders because the algorithm for decoding

relied on operating on uncorrelated data. In LTE turbo decoders a Quadratic Per-

mutation Polynomial(QPP) interleaver is used. This design provides good decoding

performance with contention free parallel memory accesses to allow for parallel turbo

decoder hardware architectures [25]. The basis of the QPP interleaver is the use of a

polynomial (2.1) to generate the addresses for interleaving memory.

Π(i) = (f1(i+ f2 ∗ i2) mod K) (2.1)

Where i is the index of the bit to interleave and f1 and f2 are the coefficients of

the polynomial. The coefficients change depending on the block size of data and all

coefficients can be found in Table 5.1.3-3 of [6]

2.2.2 Turbo Decoding

Turbo decoding is based on the maximum a posteriori probability (MAP) algorithm,

also known as the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [26]. For turbo de-

coding, two MAP decoders, known as soft-input soft-output(SISO) decoders are used

(Figure 2.3). This figure shows a turbo decoding architecture for the LTE specifi-

cation with two SISO decoders along with the interleaver, deinterleaver, and a hard

decision maker which converts the soft bits into a binary bitstream. The inputs to

13



CHAPTER 2. BACKGROUND

the turbodecoder algorithm are made up of three streams of soft encoded bits, the

bitstream itself, along with two parity streams, one which was generated from the

interleaved bitstream. In Figure 2.3 they are labeled as Λi(Xk),Λi(Zk),Λi(Z ′k) for the

bitstream, parity stream, and interleaved parity stream respectively.

The inputs to the SISO are a systematic stream along with a parity stream and

the output is a log likelihood ratio (LLR) for each bit position. The systematic

stream is a form of the original bitstream with additional information. For SISO1 the

systematic input is V1(Xk) which is the original bitstream, Λi(Xk), added together

with the extrinsic value, W (Xk). For SISO2, the systematic input is Vs(X
′
k) which is

the output of the first SISO, with the extrinsic subtracted from it and then interleaved,

I{Λo
1(Xk) −W (Xk)}. The parity inputs SISO1 and SISO2 are the respective parity

inputs to the turbo decoder, Λi(Zk) and Λi(Z ′k). The extrinsic is the additional

information gathered during the turbo decoding algorithm used after each iteration

to improve the overall LLR for each bit. This is calculated as follows, W (Xk) =

V2(Xk) + DI{Λo
2(X

′
k)}, where DI is the deinterleaving process. Finally, the decision

block takes the output from the final SISO, deinterleaves it and generates a binary

string of ’0’s and ’1’s if the values are negative or positive, respectively.

Figure 2.3: LTE turbo decoder [2]

The SISOs implement the MAP algorithm which is based on calculating the proba-
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bilities of transitions along a trellis, which is a representation of the 8-state constituent

encoders over time. The LTE turbo trellis is shown in Figure 2.4 with an example

input and output when encoding. In this example, an input bitstream of 011 was en-

coded with a parity output of 010. The decoder must work backward with a received

bitstream and parity steam which contains noise. In this case, the probabilities of each

possible state transition through the trellis are calculated, along with the probability

that a state transition occurred moving forward and backward through the trellis,

given its neighbors. The maximum probability among all state transitions is used as

the basis for the overall probability that the input bit was a ”0” or a ”1”. Finally,

the LLR of each bit position is calculated. This alone will correct some errors due to

limited paths through the trellis. The process of interleaving increases the number

of unique paths through the trellis since both the original bitstream and interleaved

bitstream have their own unique path.

The original MAP algorithm within [26] has a large implementation complex-

ity and requires many bits to represent each soft input bit. Because of this, many

suboptimal algorithms have been presented to lower the implementation complexity

including Logarithmic MAP, Max Log MAP [27], Constant Log Map [28], and Linear

Log Map [29]. LTE implements the Max Log Map variant.

MaxLogMap Algorithm

The Max Log MAP algorithm is based on the MAP algorithm in the log domain

with a simplified Jacobian logarithm which is known as the max* function (2.2). The

max* function can be estimated as the maximum of the two input values, and while

this estimation will reduce the performance of the turbo decoder, it also reduces the

implementation complexity to allow for lower area and high throughput designs.

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|y−x|) ≈ max(x, y) (2.2)
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Figure 2.4: LTE turbo code trellis [2]

In the Max Log Map algorithm, a branch metric, along with forward and backward

metrics are calculated to estimate the probabilities of transitions along a trellis to

estimate the original bitstream. The calculation of the branch metric, γ, is based on

the value of the bitstream and/or parity stream depending on the state transition on

the trellis. For each state, there are 2 paths depending on if the input is a 0 or 1,

thus, for each state there are 2 branch metrics calculated as follows in (2.3).

γi,j = V (Xk)X(i, j) + Λi(Zk)Z(i, j) (2.3)

X(i, j) and Z(i, j) represent the binary values within the bitstream and parity stream

where i, j is the transition from state i to state j. In the example of Figure 2.4, the

state transition from 4 to 6 is caused by an input of ”1”. This would result in
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X(0, 4) = 1, since the input was a ”1” and Z(0, 4) = 0 since the parity output is a

”0”. Since the only outcomes of X and Z are ”0” or ”1”, the equation for gamma can

be simplified into four calculations (2.4).

γ0,0 = 0

γ1,0 = V (Xk)

γ0,1 = Λi(Zk)

γ1,0 = V (Xk) + Λi(Zk)

(2.4)

The backward metric, βk(Si) is derived from the values of γi,j along with βk+1(Sj)

for each state transition, Si → Sj from 0 ≤ k ≤ K. βk(Si) is initialized to 0.0 for

each state and is calculated as (2.5) for all other value of k, 0 ≤ k ≤ K − 1. The

backward metrics are then normalized to βk(S0) for each k, βk(Si) = β̂k(Si)− β̂k(S0).

β̂k(Si) = max{(βk+1(Sj1) + γij1) , (βk+1(Sj2) + γij2)} (2.5)

Similarly, the forward metric, αk(Sj) is derived from γi,j along with the prior

forward metric, αk−1(Si) for each state transition Si → Sj from 0 ≤ k ≤ K. α0(Si) for

all states is initialized to 0.0 and for 1 ≤ k ≤ K, αk(Sj) is calculated as in (2.6). The

forward metrics are then normalized to αk(S0) for each k, αk(Si) = α̂k(Si)− α̂k(S0).

α̂k(Si) = max{(αk−1(Sj1) + γij1) , (αk−1(Sj2) + γij2)} (2.6)

Once the branch, forward, and backward metrics are calculated, the final step in

the SISO decoders is to calculate the probability for each state transition (2.7).

Zk(Si → Sj) = αk−1(Si) + γij + βk(Sj) (2.7)

Then the probabilities are summed for the transitions representing an input bit

of a 0 and 1, forming an overall probability for each bit value. These values are

then subtracted to form an LLR for whether the bit is likely a 0 or 1 (2.8). If the
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probability of the ’0’ transition is higher than the ’1’ transition, then the overall LLR

will be negative, which represents a 0 when converted to binary, and vice versa for a

positive LLR.

Λo(Xk) = max
(Si→Sj):Xi=1

{Zk(Si → Sj)} − max
(Si→Sj):Xi=0

{Zk(Si → Sj)} (2.8)

In summary, turbo codes are a common ECC that use a computationally inten-

sive algorithm that is commonly implemented in reconfigurable hardware to meet

throughput requirements. While suboptimal algorithms are utilized for simplified

hardware implementation, the design process for FPGAs is still very time consum-

ing and required highly specialized engineers. HLS provides an alternative design

approach that can allow for a more efficient and more accessible implementation of

hardware architectures, including turbo codes.

2.3 High Level Synthesis

HLS is the process of converting a behavior model of an architecture developed with

an high level language (HLL) into a hardware RTL model. Current tools can convert

C/C++ or OpenCL into synthesizable VHDL or Verilog models. The challenge with

this conversion is that HLLs are sequential in nature, whereas developing with an

HDL, hardware can be implemented in parallel. Tools must extract the control flow

and data flow from software and convert them into parallel hardware with a control

unit. The quality of this process depends heavily on the code structure as many

software optimizations and constructs do not translate well into hardware. Because

of this, care must be taken when developing code for HLS in order for quality hardware

models to be generated.

Current use cases for HLS mainly exist for software oriented engineers to quickly

accelerate software designs. This is especially common in cloud computing envi-

ronments where performance is crucial for new designs. Graphics Processing Units
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(GPUs) and Application Specific Integrated Circuits (ACIS) [30] are also used in the

cloud but GPUs are not suited for all workloads and ASIC’s can be cost prohibitive,

especially for evolving algorithms. FPGAs are becoming more present in the cloud

[7] and there are tools such as SDAccel from Xilinx [31] which can accelerate software

designs with little to no hardware development knowledge. For local platforms on an

SoC, there is also SDSoC from Xilinx [32] which accelerates portions of a software

design within FPGA fabric. The performance may not be as high with HLS based

tools versus a handcrafted implementation, but the design can be completed must

faster and cheaper, while still providing a speedup over software.

2.3.1 HLS Development vs Software Development

While HLS may use an HLL to facilitate describing an architecture, only a subset

of the language may be supported. Common coding constructs used in software

for a CPU architecture may require HLS specific formatting to allow the tools to

produce quality hardware. The main areas which must be modeled differently are

memory accesses and overall program flow. The design process parallels designing a

hardware architecture, as thought must be given to how an algorithm is implemented

in hardware, especially when operations can occur in parallel.

Figure 2.5: High level mapping of CPU architectures and code execution to a hardware
architecture
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This can be demonstrated by comparing how an algorithm is executed on a CPU

versus implemented in hardware. Figure 2.5 demonstrates how, in a simplified model

of a CPU, there is an instruction memory storing the operations to perform, the

data memory holding all values to operate on, and an ALU to do the operations.

In hardware, this translates into a control unit, which defines ”operations” similar

to instructions, memories to store data, and combinational logic to perform ALU

operations suited to a specific application. In hardware, there are many memories

utilized, rather than a single data memory. This is the reason why pointers are not

supported in HLS as they are in software since they don’t actually point to a place

in a single memory space, but define a new memory interface. The limitations when

using pointers will also be discussed in depth later in this document.

General Data Flow

Figure 2.6: General HLS algorithm data flow to produce quality results

The general data flow to produce quality hardware follows a standard pipeline

flow, where data is accessed, operated on, and then stored (Figure 2.6). This order

of operations can be applied to a small portion of a program within a loop as shown

in Figure 2.6, or to an overall program. This helps guide the tools when extract-

ing memory allocations and dependencies, by making them more explicit similarly
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to HDL development. If left implicit and there are other memory dependencies in

an algorithm, the tools may delay the scheduling of operations as it processes code

sequentially. If there is a memory dependency then all operations below are sched-

uled after the dependent operation. This is done to ensure that the final hardware

implemented the same algorithm, though opens an area for optimization.

The approach described above may seem wasteful to a software programmer as it

requires many extra variables and registers to be stored, however, in hardware this

will allow for reading data in parallel and at the cost of only FFs for temporary

storage. This general approach also allows for hardware pipelining, and additional

pipeline parallelism since there must not be inter or intra memory dependencies for

successful pipelining of a design.

Pointers and Multiplexing Data

A common construct in C programming is the usage of pointers to pass data by

reference. While this is very useful in software, care must be taken when programming

for HLS since the tools are limited in pointer support. In HLS pointers are used for

all arrays and can be used for variables as well, however, all pointers must be static

and are therefore immutable and serve only to represent an interface to data. This

limitation exists as the HLS tools must allocate and route to all memory used in a

design.

Multiplexors (MUXs) are heavily used in hardware development to address be-

tween different logic elements. In software this translates to an if-else statement or

function call with different parameters. Figure 2.7 shows an example using multi-

plexors to share an adder resource. Listing 1 shows an example of using multiple

function calls within an if-else to model the MUXs. Another approach is to move

the if-else within the function call and pass all possible values in (Listing 2). While

this approach increases the complexity of modeling a MUX, it allows for more oper-
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Figure 2.7: Simple multiplexer example of sharing an adder hardware resource

ations to occur depending on the select input. This method could also lead to more

optimizations since all operations are within the scope of one function, and the HLS

tools optimize each function on its own [3].

Listing 1 Multiplexing data with a function call

function add(int in1, int in2, int out)
out = in1 + in2

if sel == 0 then
ADD(a,b,c)

else
ADD(x,y,z)

Listing 2 Multiplexing data with if else statement within a function

function add(in1 a, in1 b, in2 a, in2 b, out a, out b, sel)
if sel == 0 then

out a = in1 a+ in2 a
else

out b = in1 b+ in2 b

ADD(a,x,b,y,c,z,sel)

Variable Bounded Loops

A common construct in software and hardware alike is to loop with some conditional

bound. In software, this could be accomplished via a for-loop as in Listing 3. For
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HLS to generate quality hardware, static bounds must be defined for a loop. This

is required to generate the smallest counters and adders required for a loop to be

implemented in hardware. To ensure that this can still occur and have a conditional

bound, a loop with a max iteration bound and an exit condition within will produce

the best hardware (Listing 4). This works by allowing the HLS tools to generate

minimized hardware to work with a bound up to some max while still allowing for

the loop to exit. It is critical for the exit condition to be the last statement within

the loop for the hardware to not waste any cycles. If the exit condition was first, the

check would delay the contents of a function for a full clock cycle, whereas if it is at

the end, the check can occur while the body is being evaluated [33].

Listing 3 Standard software for loop with variable end condition

for x ← 0 to end condition do
Operations

Listing 4 HLS optimized for loop with variable end condition

for x ← 0 to MAX LOOP ITERS do
Operations
if x > end condition then

break;

2.3.2 Limitations of HLS Tools

While HLS tools have been developed to support a large portion of language con-

structs and hardware elements, the current tools still contain limitations which must

be mitigated. One of them, already mentioned, is that all pointers must be static and

many of the benefits of modularity around pointers are lost. Similarly, all memory

must be static as there is no such thing as a heap or stack in hardware like on CPU

based systems. While there are not comparable use cases for dynamic memory in

hardware, support for it may allow current software libraries to be ported to HLS.
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Data dependency is also an area with limitations in relation to the scope in which

the tools look for them. Localized dependencies within a function or loop are nor-

mally captured correctly, however, for complex dependencies the tools tend to be

over cautious and may flash false dependencies. There are directives to allow the pro-

grammer to specify the data dependency for a variable, but this only works within

a small scope. Dependencies between functions using the same memory are limited

in functionality. The tools will optimize and schedule functions if all memory is read

and written in order and only once. Otherwise, the tools default to assuming a de-

pendence and schedule functions sequentially. This poses a large issue for parallel

out-of-order memory access which is contention free. As a result, it becomes chal-

lenging to model a parallel architecture with out-of-order memory access, as simply

duplicating function calls will not work. Breaking up loops with inner loops to add

parallelism allows this to be bypassed, but increases the complexity of the code.

When describing an architecture with an HDL, it is common to make the design

hierarchical. Sections of an algorithm can be implemented as separate entities with

input, output, and control signals. Then a top level design would piece components

together and contain a state machine that controls the design. There may be multiple

levels within a design depending on its complexity. When designing with HLS, the

ability to design hardware with this hierarchy is reduced. Functions in C are clocked

and each one has its own state machine. This can allow subsections of an algorithm

to be implemented, however, no purely combinational functions can be modeled with

hardware reuse. This is possible through the use of the inline directive which allows

the HLS scheduler to duplicate hardware and optimize as if it were inline to the overall

algorithm. This may cause some hardware to be unnecessarily duplicated, however,

this is a trade-off with the use of HLS.
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2.3.3 HDL Design Flow vs HLS Design Flow

Designing a hardware architecture on an FPGA in an HDL versus HLS requires a

different design flow to achieve quality results. A generic flow to produce handcrafted

hardware is shown in Figure 2.8. The first step is to design the architecture which

implements the desired functionality. A hierarchical approach is commonly taken,

building up an architecture from its basic functional units. Once a architecture is

planned out it can then be described in an HDL. The next step is to verify the HDLs

functionality and ensure it implements the architecture as designed. Synthesis, place,

and route then take place which implements the architecture via FPGA primitives.

Finally the design can be evaluated on the FPGA for its area usage, cost and perfor-

mance.

Figure 2.8: General handcrafted RTL hardware design flow for an FPGA

The design flow to produce hardware with HLS changes considerably due to the

tools automating the scheduling and generation of the hardware. The general process

flow to design hardware with HLS is shown in Figure 2.9. The HLS Development

section in the diagram allows for rapid iterations of designs since the tools provide
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Figure 2.9: General HLS design flow from hardware oriented software to a high perfor-
mance hardware design

instant feedback. This is due to the tools ability to process code and make large

changes to the hardware and report on them must faster than a design could with

an HDL. The tools also provide an estimation for evaluating design constraints. A

clock constraint can be set, and an estimated clock is given after C synthesis. Similar

to HDL development, once the HLS tools process the code and produce a hardware

model, the design can be synthesized. After synthesis, the design can then be eval-

uated again. Verification is handled via a C simulation to verify software, and a

co-simulation to verify the generated hardware replicates the functionality.

HLS has the potential to become a high performance tool for hardware design

while also decreasing the learning curve by modeling architectures in an HLL. There

are implicit challenges with this process since software and hardware development

are fundamentally different, however, with a design flow geared towards developing

code which describes hardware, the HLS tools can produce quality hardware. By

modeling turbo decoder architectures in hardware, a complex and continually evolving

algorithm can test this design process and analyze the resulting hardware design.

26



CHAPTER 2. BACKGROUND

2.4 Related Work

The state of HLS is continually improving as tools evolve in processing HLL and

applying hardware optimizations. HLS has demonstrated performance speedups when

compared to software and is in use in cloud environments, however, research continues

into the effectiveness of HLS as an alternative to handcrafting hardware designs. HLS

has the potential to become a faster and easier development method for hardware

design than writing RTL HDL [8, 9, 34, 35].

In 2011, [34] carried out a case study on the AutoPilot HLS tools and examined

its effectiveness of speeding up software. This paper demonstrated that HLS was

able to speedup stereo matching software codes along with common cryptographic

algorithms by up to 126X versus a software implementation. They also concluded

that the design effort to produce hardware designs was less than handcrafting RTL.

Research into HLS with regards to accelerating software has led to uses within cloud

computing environments and is a current use-case for HLS tools. Since the tools are

continually improving and could expand into the hardware development domain, this

thesis looks at using HLS from a hardware engineer’s perspective with the goal of

meeting handcrafted performance.

In 2014, [35] performed a case study on the effectiveness of HLS with regards to

software speedup and the usage of SystemC and SystemVerilog in an HLS accelerated

work flow. This paper concludes that the quality of the results is dependent on both

software and hardware knowledge and a predefined architecture should be in mind

to produce good source code for HLS. This paper explains that no standardized HLL

is defined for HLS and explains that SystemC was the best choice at the time of

evaluation. With the current HLS scene favoring C/C++ or OpenCL for languages,

further research is required to determine the best methods for modeling hardware

in C, rather than the more hardware oriented SystemC. Our work uses C/C++ to
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model turbo decoder architectures, and in the process examines how hardware must

be modeled to produce quality designs.

In 2018 a study of 46 research papers was conducted to determine the quality of

HLS designs compared with HDL design flows, along with the required design effort

[8]. Rather than a self coded case study, this paper looked at other authors and their

efforts to produce quality hardware with HLS. While they concluded that handcrafted

RTL design still outperforms HLS based designs, HLS required less design effort for

the same architecture. One parameter not explored was how each design was modeled

in an HLL to produce quality hardware. This work is an extension of the ongoing

research to produce hardware which can reach handcrafted levels of performance, and

the required design process to facilitate this.

The use of HLS in designing a complete SDR has been explored [36]. In this work,

a full Zigbee radio was implemented with HLS on a Virtex-6 Perseus 6010 platform.

The paper concluded that it is possible to implement an SDR in a C language and that

HLS provides a noticeable design potential for flexible wireless platforms. The work

did not provide performance metrics and focused on the feasibility of implementation.

This thesis focuses on one block within an SDR, but with the goal of matching

handcrafted levels of performance.

The feasibility of developing ECCs within HLS has been explored in various works

such as [9, 10, 37]. In [10] the implementation of low-density parity-check (LDPC)

decoders with HLS was explored. In this paper, HLS architectures were proposed

and successfully implemented with RTL levels of performance, however with higher

logic utilization. This work implements a turbo decoder based on existing hardware

architectures to approach HLS from another perspective. Turbo codes are also more

computationally intensive than LDPC decoders [38] and together with exploring the

design process, this work will help validate and explore the performance of HLS in

more domains.
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In [37] the feasibility of implementing turbo codes with HLS was explored. In

this paper, the goal was to implement a turbo decoder in a rapid manner without

concern for performance. In [9] many revisions of a turbo decoder were implemented

to produce a high performance design. Performance metrics were only compared

to a software design and the design process revolved around improving a software

implementation. This work focuses on hardware architectures and how HLS can

model them and produce a performance that equals that of handcrafted designs.
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Methodology

In order to develop C code which models a hardware architecture, it is crucial to

understand the specific coding style for HLS tools. While it is possible to take a

software implementation of an algorithm and synthesize it in HLS, it will generate

a functional, but suboptimal hardware model. This is due to standard software

constructs not taking full advantage of the hardware. By understanding some HLS

specific guidelines to follow, a software implementation can be improved via code

style changes or through the use of directives to help guide specific hardware to be

generated.

3.1 HLS Design Considerations

3.1.1 HLS Design Flow

Designing a system for HLS tools requires a new design flow compared to standard

software or hardware development. With almost instant feedback from the tools, the

development follows an iterative process with a rapid development cycle compared

to standard handcrafted hardware designs [8]. Without a standard for describing

hardware architectures in HLL, each HLS tool provides unique guidelines and opti-

mization techniques to produce quality results. For this work, Vivado HLS 2018.2

is utilized due to its leading HLS performance for C languages and integration with
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Xilinx’s standard HDL development tools.

The basic approach to designing hardware with HLS begins with a software im-

plementation of an algorithm and continually modifying the design after processing

it through HLS tools until the desired hardware is reached (Figure 3.1). Each design

begins with a C description of the algorithm to be implemented in hardware. Care

must be taken when developing the software implementation to ensure compatibil-

ity with HLS tools especially when using pointers as discussed in Chapter 2. The

code is then modified (1) to ensure that software constructs, which translate well into

hardware, were used along with the addition of directives. Directives are additional

information passed to the compiler which can inform the tools of what hardware to

generate.

Figure 3.1: HLS design flow

After modulations are made to the software implementation, the code is processed

through the HLS tools (2) and the resulting architecture is evaluated (3). Vivado HLS

generates a synthesis report which gives estimations for the clock period, resource us-

age, and design latency. A schedule view of the hardware is also given which can be

useful to find design bottlenecks and analyzing the parallelism of the generated hard-
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ware architecture. Once a design is evaluated, if it does not meet design requirements

or bottlenecks are found, the code can be modified or directives are added (5) and

the design cycle continues until the requirements are met.

The HDL model of the architecture can then be exported for use in Vivado (4).

Part of this process also allows for the design to be synthesized and implemented

within an FPGA to determine the minimum clock period, resource usage, and la-

tency when implemented. Then a final evaluation is performed on the implemented

hardware to determine if all design requirements are met (7). If the final design does

not meet the requirements, then the HLS design process iterates again (8).

3.1.2 Vivado HLS Steps

In Figure 3.1 when processing the code through Vivado HLS many steps can be taken

for design and verification. Both the design and testbench are coded in C/C++, and

an initial round of testing is completed via C simulation. This uses GCC and compiles

it with all of the HLS libraries as software, and can be executed on a CPU for testing.

This is a fast method for verification, though only verifies software functionality and

does not guarantee the hardware generated to be correct.

The next step is C Synthesis. This is where the tools analyze and generate a

hardware model, which implements the C designs functionality. For synthesized de-

signs, Vivado HLS offers tools for analyzing the resulting hardware design. There is

a report generated after synthesis, which gives estimates for minimum clock period

and resource usage. The minimum and maximum latencies are also reported if all

loops have fixed bounds. There are also tools to view the schedule of operations and

resource usage and can be used to find areas for improvement.

After synthesis, a co-simulation can be completed to verify the HDL functionality

using the C testbench. This ensures that the generated HLS model matches the

functionality of the software. The co-simulation will also report the latency of the
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design with provided parameters.

Finally, the design can be exported for implementation. As part of the exporting

process, the design can also be implemented in Vivado to extract the resource usage

and minimum clock period.

3.1.3 Directives

Directives, otherwise known as pragmas, are language constructs that inform the

compiler on how to processes some of its inputs. In the use case of HLS, these

directives are used to inform the HLS tools with more information on how to generate

hardware for specific sections of the design. The need for directives in HLS arises from

the lack of ways to model hardware in software. There are many directives which

Vivado HLS supports, varying from memory organization to pipelining of designs.

Below are the directives utilized in the design process for this thesis.

Array Partitioning

Memory organization is an important design consideration for almost any hardware

design. By default in the C/C++ languages, only the size and shape of memory can

be defined without consideration for how it is accessed in hardware. Vivado HLS

provides a directive for array partitioning to describe how an array is broken up into

memory units depending on how many memory ports are required. By default in

HLS, every array is placed into a form of BRAM with one or two access ports. The

partition directive allows for an array of any dimension to be broken up into multiple

sub-arrays at the hardware level. Figure 3.2 demonstrates the impact of the 3 types

of partitioning: block, cyclic, and complete.

The block type, splits an array up into a specified number of blocks of contiguous

memory, each consuming separate hardware memory. Cyclic is similar, however,

the memory is not-contiguous as it is cyclic based on a specific factor. Finally, the
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Figure 3.2: Array partitioning effect

complete type splits up an array into separate elements, for a 1D array this generates

registers, and for any higher dimensional arrays, it will split them into smaller arrays

of 1 less dimension. In this work, the most common use case for this directive was to

split a small array into registers due to the need for parallel access to all elements.

Another use case of the array partition directive was to split a large array into smaller

arrays to allow for independent memory access, though care must be taken since the

address calculation for the smaller blocks may require additional hardware if not split

on power of 2 boundaries.

Array Reshaping

Depending on the algorithm being implemented, arrays described in C do not always

translate well into a memory layout and interface which is suited for a hardware

architecture. The array reshape directive modifies how arrays are stored. The basic

function of the reshape directive is to change what information is contained within a

word of an array. Figure 3.3 shows the three possible effects of the directive.

Similarly to the array partitioning, there are block, cyclic and complete methods

of reshaping. Reshaping in blocks is a similar operation to partitioning, except the

arrays are combined such that the word length increases, while the overall array

length is split by a configurable factor. This is shown in Figure 3.3 where an array is
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Figure 3.3: Array reshaping effect [3]

reshaped by a factor of two, with each word of the array containing an element from

the first half and one element from the second half of the array. The cyclic reshaping

is similar, but each word of memory contains two contiguous elements of the array.

Finally, complete reshaping converts an array into one large word, which is used for

multidimensional arrays to access an entire row or column in one memory access.

Pipelining

Pipelining is a very hardware specific operation, and there is no software construct

to describe it explicitly. Through the usage of the pipeline directive, and following a

sequential dataflow without interdependencies or loop dependencies, a design can be

pipelined. In a pipeline, the initiation interval (II) is the number of stages before a

new operation can be issued to avoid a data dependency. A target II can be specified

and the tools will reach the closest II to its target based on data dependencies.

Dependence

The dependence directive provides information on loop dependencies such that designs

can be pipelined with the lowest possible interval. This directive is used to flag a false

interdependency which may allow for successful pipelining at a target II. The HLS

tools detect loop carry and loop independent dependencies, however, it can be too

conservative for complex indexing of memory.
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Loop Unrolling

Loop unrolling is similar to software loop unrolling, however, the result is that hard-

ware is replicated. This directive was commonly used to unroll a loop completely to

allow for parallelizing independent operations. This allowed all operations in the loop

to complete in the same number of clock cycles as one iteration, but at the cost of

additional resources.

Inlining

The inline directive removes the hierarchy of function calls as it replaces each function

call with the body of the function. This removes the overhead of calling a function

and gives more freedom to the scheduler but makes analyzing the output of HLS

more difficult to understand. This is due to Vivado HLS preserving the hierarchy in

the analysis tools that allows for each function to be optimized. When inlining, the

hierarchy is lost and the larger algorithm must be examined.

3.1.4 Data Types

When developing code for use with Vivado HLS, there are additional data types added

to extend the C/C++ language for hardware development. For software development,

primitive types are provided with a fixed width. This makes sense for software which

is executed on a fixed width CPU, however, for hardware development, it is advan-

tageous to limit all types to their minimum bit width to save resources. Vivado

HLS provides types with a configurable bit width. For designs using floating point

numbers, fixed point arithmetic can be a saving in computation complexity and re-

source usage. Vivado HLS also provides fixed point types with configurable widths,

quantization modes, and overflow modes.
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3.1.5 Memory Design

Out of Order Memory Access and Dependence

When designing memory architectures with indexes that are not directly based on a

looping variable, it is important to carefully order memory accesses as to not cause

a false dependency, potentially delaying other memory accesses. This can be caused

when an out of order memory accesses uses an index that is stored in another area of

memory. This would form a dependence and care must be taken to ensure no other

memories are flagged as a false dependence.

When the HLS tools analyze C code, it must extract the data dependencies and

use them to schedule the order in which operations occur including which operation

can occur in parallel. When multiple memories are read in a single loop where one

memory access is dependent on another, their order determines the scheduling, even

if memory access after the dependent access, contains no dependencies. This scenario

is demonstrated in Listing 5 and Listing 6.

Listing 5 Memory order with false dependence

1: for k ← 0 to BLOCK SIZE do
2: index = interleaver[k];
3: value2 = array1[index];
4: value3 = array2[k];
5: value4 = array3[k];

Listing 6 Memory order with no false dependencies

1: for k ← 0 to BLOCK SIZE do
2: index = interleaver[k];
3: value3 = array2[k];
4: value4 = array3[k];
5: value2 = array1[index];

In Listing 5, the index for array1 is captured first, and following it array1[] is

read. Array2[] and array3[] are read next, and from a programmers view, the index,

value2, and value3 could be read in the first cycle of this program due to them being
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independent. However, in this case, they would be delayed due to HLS focusing

on dependencies sequentially. Processing down the loop, there is a dependency on

accessing array1 which causes a delay for future operations. Listing 6 solves this issue

by specifically placing all memory accesses which are independent of another memory

access before any dependencies such that they can be scheduled in parallel. The

results of the algorithms are the same, but they will have differing schedules. This

modification was used when memory accesses were unexpectedly delayed and were

commonly traced back to an unintentional memory dependence issue in the code.

Parallel Memory Access

Attention is required when parallelizing algorithms, especially with memory accesses.

Multiple approaches can be taken depending on the exact requirement of a design.

The approach taken for memory organization, in this case, was to reshape a two

dimensional array which required parallel memory access of all elements in a row.

This array was reshaped such that each row was one read of a large word of data.

This allows for the C code to access the memory as an array of two dimensions, but

in hardware, each row is read in one memory access.

3.1.6 Coding Structures

Order of Operations

Due to HLS extracting the parallelism out of a sequential code structure, it is crucial

to ensure the order of operations to allow for the best results. The general design

flow for a system that reads memory, operates on it, and stores memory is shown in

Figure 3.4.

This was especially important for the turbo decoder designs. When memory was

read it was commonly done in blocks, especially in the parallel designs. In order to

ensure that memory was read in large words after reshaping arrays, the memory was
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Figure 3.4: General design flow with multiple memory accesses

read as one large block and stored in local registers to be used in parallel for the

algorithm. This allowed for the scheduling of the algorithmic part of code with no

memory dependencies or read port issues. The algorithm would then store its results

in local memory and a loop would be used on the output to write in blocks if required.

Looping

When looping, there are strict requirements for bounds when using HLS. For the

scheduler to optimize a design, the bounds must be static, though this presents an

issue when a design requires a loop with a variable exit condition. This is achievable

through breaking from the loop after an exit condition, while still preserving static

bounds for the overall loop, as shown in Listing 7.

Listing 7 Loop format with variable exit condition

1: for k ← 0 to 100 do
2: {operations}
3: if k > some variable then
4: break;

In conclusion, the HLS design process possesses some challenges in modeling hard-

ware architectures in a high level language such as C, but following some HLS specific
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constructs can allow for quality hardware to be generated. HLS offers a unique design

process with rapid iterations between modifying code, adding directives and process-

ing though HLS tools to receive feedback. By modeling turbo decoders with the

process outlined in this section, it will be determined if HLS can produce quality

hardware which also reaches handcrafted levels of performance.

3.2 Clock Constraint Exploration

With any hardware design, the clock speed is a crucial design choice to meet perfor-

mance and area requirements. In handcrafted architectures, it is up to the designer to

craft an architecture such that the longest path delay is shorter than the desired clock

period. In the case of HLS, the tools control the scheduling of logic blocks, removing

some control from the designer. To allow the designer to influence the tools, a clock

constraint can be altered to change how the tools schedule a design.

To determine the impact of this clock constraint and the ability of the tools to

meet clock requirements, each design will be subjected to varying clock constraints.

For each design, the clock constraint is varied from 1ns to 10ns in 1ns increments. The

resulting estimates from the HLS tools for area and performance will be examined

as shown in Figure 3.1. These designs will then be synthesized and implemented to

determine the final area and performance. The impact of the clock constraint on the

estimated and actual performance and area will then be compared to investigate the

impact of the clock constraint on the tools. This is useful for designers so they have

an understanding of the impacts of design choices specific to an HLS workflow.

3.3 Methodology

In order to explore the HLS design process when targeting a turbo decoder hardware

architecture, three handcrafted architectures were modeled in C and implemented in
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hardware through HLS. The overall process which facilitates this can be found in

Figure 3.5.

Figure 3.5: Methodology used to replicate handcrafted turbo decoder designs with HLS

The methodology followed in this work is shown in Figure 3.5 and each step is

discussed below:

• Algorithm/Functionality - The algorithm and functionality of the target hard-

ware architecture. In this work it was determined via data flow, scheduling

diagrams, and equations for the algorithm presented in the papers.

• C Code Model - C code is then developed to replicate the algorithm and func-

tionality from the hardware architecture.

• HLS - The C code is then processed through the HLS tools to generate hardware

which implements the functionality of the C code.

• Bottlenecks/Architecture Analysis - The HLS design is then evaluated and if

any bottlenecks are discovered, then the code must be refined and the process

repeats until the hardware models the target architecture. The design is refined

by modifying the C model or adding additional HLS directives.
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• HLS Hardware - The final hardware generated with HLS after all design bottle-

necks are mitigated. The final hardware is then compared with the handcrafted

hardware description based on design performance. In this work, the through-

put of the turbo decoder architectures is used for comparison.
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Architectures

4.1 Design 1: Sequential Decoder

4.1.1 Handcrafted Serial Architecture

The first design implemented with HLS was an LTE serial turbo decoder hardware

architecture proposed in [2]. This architecture will be referred to as the handcrafted

serial architecture (HSA) to differentiate it from the HLS implementation. In this

architecture, the focus is on reduced hardware usage with only one SISO decoder, an

interleaver/deinterleaver memory unit, and a hard decision maker. The block diagram

provided of the HSA in [2] can be found in Figure 4.1. This diagram implements the

LTE decoder in Figure 2.3 and describes how each block in the overall system is

connected so that only one SISO unit is required.

Figure 4.1: Serial turbo decoder block diagram [2]
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The high level block diagram of the architecture only provides some of the required

information to model the hardware architecture. The work in [2] also provided a

timing diagram of the memory operations and calculation units within the system

(Figure 4.2). This diagram gives information on the order of operations and how

many clock cycles each takes. The last piece of information not provided in the

diagram is the computations required for each COMPUTE block, but they can be

derived from the Equations (2.6-2.8).

Figure 4.2: Serial turbo decoder timing diagram [2]

Figure 4.2 is presented with the memory reads and writes in the top section,

denoted as R or W respectively, and the computations in the bottom half. Of note,

the computations of γ and β from 0 to K-1 produce K computations. This means that

a new value of γ and β are calculated every clock cycle. For the second half of SISO1,
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from K to 2K+Delay, γ, α, and L are calculated. Since V2(Xk) is delayed in writing

by Delay clock cycles, and produces an output every clock cycles after Delay, it can

be inferred that a pipeline with initiation interval (II) of 1 was used for computing γ,

α, and L. From the derived architecture, a C model was developed.

4.1.2 Serial Decoder HLS Implementation

To model the handcrafted turbo decoder architecture in C, the general approach of

reading memories, operating on them, and then writing the results to memory was

used. This was carried out for each subsection of the turbo decoding algorithm,

especially for the calculations of the α, β and γ terms. The turbo decoding algorithm

equations were first developed, a combination of the mathematical algorithm and the

timing diagrams provided were used to develop C code.

Algorithm 1 Unrolled calculation of γ (2.3)

gamma0[0] = 0.0;
gamma0[1] = 0.0;
gamma0[2] = parity;
gamma0[3] = parity;
gamma0[4] = parity;
gamma0[5] = parity;
gamma0[6] = 0.0;
gamma0[7] = 0.0;

gamma1[0] = systematic + parity;
gamma1[1] = systematic + parity;
gamma1[2] = systematic;
gamma1[3] = systematic;
gamma1[4] = systematic;
gamma1[5] = systematic;
gamma1[6] = systematic + parity;
gamma1[7] = systematic + parity;

The design of the serial turbo decoder in HLS began with the modeling of the

equations which make up the SISO algorithm in C. The C++ compiler was used,

however, since Vivado HLS only provides arbitrary fixed point data types for C++.
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These data types are optimized for hardware and the HSA uses fixed point operations

for the decoding algorithm. The γ, β and α/LLR terms were each coded in C. The

γ term is simplified for the LTE decoder due to a fixed number of states used in the

encoding process. This leads to (2.4) where only 4 values are calculated. Even though

there are only 4 distinct values, there are 16 γ values to store which are used in the

algorithm For each state and each potential bit input, a γ value is stored and the code

to implement this can be found in Algorithm 1. This could have been implemented

with loops, however, to improve code readability, it was left unrolled.

Algorithm 2 Calculation of β (2.5)

for state ← 0 to NUM STATES do
beta0 = next beta[toState0] + gamma0[state];
beta1 = next beta[toState1] + gamma1[state];
if state == 0 then

beta zero = max(beta0, beta1);
beta[k-1][state] = 0.0; // normalize beta of state 0

else
beta[k-1][state] = max(beta0, beta1) - beta zero; //normalize to state 0

Next the β values were calculated according to (2.5) using a loop over all states

(Algorithm 2). In this algorithm, a probability is calculated for each branch of the

turbo decoding trellis. This trellis is a representation of the state machine used in

the turbo encoder to produce the parity bits. Each branch off of a state within the

trellis represents the transition based on an input of either a 1 or 0, and the larger

probability of each branch is normalized and used as the β term. The β calculation

is recursive moving in reverse through the trellis so the value of the next β is used

in the calculation of the current β. The values of β are also stored in a memory

since the calculation of the LLR value requires all values for β. Finally, β values are

normalized to the β value of the first state within the trellis so the dynamic range of

the fixed point values is not exceeded.

Finally the α/LLR values were implemented in software according to Equations
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Algorithm 3 Calculation of α and LLR (2.6)

for state ← 0 to NUM STATES do
alpha0 = prev alpha[fromState0] + prev gamma0[state];
alpha1 = prev alpha[fromState1] + prev gamma1[state];
if state == 0 then

alpha zero = max(alpha0, alpha1);
alpha[state] = 0.0; // normalize beta of state 0

else
alpha[state] = max(alpha0, alpha1)) - alpha zero; //normalize to state 0

max0[state] = alpha[state] + gamma0[state] + beta[k][toState0];
max1[state] = alpha[state] + gamma1[state] + beta[k][toState1];

out = maxV(max0) - maxV(max1)

2.6-2.8. This calculation is similar to the β calculations, however, it moves forward

through the trellis so the previous α value is used. Another note is that the values

for γ are buffered as the previous γ values are required for the α calculations and the

current γ for the LLR. The maxV operation takes the overall max of the vectors max0,

and max1 which are the maximum probabilities for all branches which represent an

input of a 0 or 1 respectively. The subtraction of these probabilities creates the final

LLR value.

Overall, care was taken to not re-use variables whenever possible to reduce po-

tential false dependencies. This does not translate well into hardware since every

variable is a separate memory, and if a variable is re-used for independent operations,

hardware will be reused inefficiently.

With the core algorithms modeled in C code, the overall design of the turbo

decoder was constructed. The initial approach attempted to implement the SISO as

a function that matched the HSA. The resulting SISO implementation structure is

shown in Figure 4.3. This figure shows how the algorithm is implemented in two main

loops, the first to calculate γ/β and the second to calculate γ, α, and the final LLR

values.
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Figure 4.3: Data flow and looping structure of initial serial turbo decoder architecture
modeled in C

4.1.3 Refining the Design

Once the algorithm was implemented in C, the design was then refined via code

modifications and the addition of directives. The following outlines the modifications

made to achieve the desired architecture.

• For all small local memories, the partition directive was applied with the com-

plete parameter. This ensured that all local memories were implemented as

registers in FF’s. While the tools apply this optimization automatically in

most scenarios, each memory was explicitly partitioned to ensure no scheduling

48



CHAPTER 4. ARCHITECTURES

bottlenecks were created.

• The β memory was reshaped to increase the data in each word of memory. This

was done since each calculation of β requires memory for each state and these

calculations can be performed in parallel. This removes a memory bottleneck

without an increase in the usage of hardware since the block RAMs within an

FPGA are configurable.

• The α and β loops were unrolled completely as each calculation per state is

independent and can occur in parallel.

• The second loop from 0 to K-1 was pipelined to replicate the pipeline within

the HSA.

• The decoder in Figure 4.3 was flattened to include all memory accesses internal

to the SISO function. This was done due to a bottleneck caused by data depen-

dencies with out-of-order memory accesses when interleaving. This caused the

algorithm to perform memory operations and then the SISO algorithm sequen-

tially, whereas the desired functionality was to schedule the SISO algorithm as

soon as the first memory location was available. The resulting architecture after

moving the memory operations within the SISO is shown in Figure 4.4.

• The first loop was unable to be implemented in HLS such that each iteration

completed in one clock cycle, so the loop was pipelined with an initiation interval

of one. This was able to mitigate the bottleneck in HLS to better replicate the

schedule of operations in the HSA.
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Figure 4.4: Improved data flow and looping structure of serial turbo decoder architecture
modeled in C

4.2 Design 2: Parallel Decoder

4.2.1 Handcrafted Parallel Architecture (HPA)

The second design implemented was a parallelized turbo decoder which is based on

the serial decoding architecture modeled in Section 4.1. For this document, this

design from [2] will be referred to as the handcrafted parallel architecture (HPA).
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The basis of this parallel decoder is to split the blocks of data operated on into small

subsets. The SISO units are duplicated with each SISO operating on a subset of data.

The parallel decoder will have some error correcting performance degradation due to

operating on smaller blocks of data, but this is an acceptable trade off when high

throughputs are required. The hardware architecture of this design is very similar

to Figure 4.1 but with multiple SISO blocks. The scheduling of the design is also

very similar to the serial design, and an example for parallelism of two is shown in

Figure 4.5.

Figure 4.5 shows that the scheduling of operations is independent for each SISO,

but memory operations are dependent. The main dependency between each SISO’s

Figure 4.5: Parallel turbo decoder timing diagram [2]
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Figure 4.6: Parallel turbo decoder memory architecture [2]

memory is the interleaving and deinterleaving process. Interleaving is a pseudorandom

process of swapping the position of the bits, and in the LTE specification, a Quadratic

Permutation Polynomial (QPP) interleaver is utilized. This method of generating

addresses to interleave the data will ensure a contention free interleaver as long as the

block size is divisible by the level of parallelism [2]. The requirement of interleaving

the data forces each parallel worker to be dependent on the others external to the

SISO’s. By design of the QPP interleaver, the memory required by all SISO’s is

contained within a row of data when represented as a 2D array (Figure 4.6). The

act of interleaving with a QPP swaps rows of data and reorders the data within the

row. This allows for an efficient interleaving process for parallel architectures while

still maintaining acceptable error correcting performance. The memory architecture

to achieve this requires an array with each word of the array containing the data

elements for each SISO concatenated. For this architecture each data element of
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10bits and with a parallelism of 8, each word of the memory would be 80bits wide

by the block size divided by the parallelism. This allows a similar number of block

rams to be used by the parallel design as the serial architecture. With the overall

architecture changes determined compared to the HSA, an HLS implementation of

the HPA can be developed.

4.2.2 Parallel Decoder HLS Implementation

Modeling the parallel architecture began with the final serial HLS implementation

in C. The main alteration required involving duplicating the SISO’s and modifying

the memory architecture to allow for parallel memory reads. In the HPA, memory is

organized into words such that each address of memory contains the values required

for each SISO concatenated together. In the HPA a 10bit fixed point value is used for

each memory, so for the parallel implementation, each word of memory is 10∗P where

P is the level of parallelism. The data flow of this implementation for a parallelism

of 2 is demonstrated in Figure 4.7.

Figure 4.7: Parallel turbo decoder memory access architecture with a parallelism of two

With standard C this memory architecture would be very difficult to model. Vi-
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vado HLS provides directives that make it possible by abstract the memory architec-

ture from the C code. To implement this, a 2D array in C was utilized to implement

the blocks of memory shown in Figure 4.6. The memory definition and directive

applied are shown in Listing 8.

Listing 8 Directives for implementing a C array to increase the word length

bitstream[BLOCK SIZE/PARALLEL][PARALLEL];
#pragma HLS ARRAY RESHAPE variable=bitstream complete dim=2

The ARRAY RESHAPE directive allows a developer to specify how memory is

organized in hardware. In this case, it reshapes the array completely in the 2nd

dimension. This effectively concatenates each row of the 2D array into a single word

of memory. This allows a single read to receive all data required for all SISO’s since

they are all operating in parallel with the same operations, only on different blocks

of data.

The next challenge arose to duplicate the SISO hardware to effectively parallelize

the architecture. This was accomplished via additional loops that were unrolled

in hardware. Unrolling loops in hardware is the same as duplicating hardware to

parallelize the loops. The final architecture of the parallel decoder in HLS can be

found in Figure 4.8.

The main consideration taken when parallelizing the architecture with loops was

splitting each section of the algorithm up into independent operations and paralleliz-

ing them separately. This was especially important with memory operations due to

the memory architecture. Since the memory contains all memory for parallel SISOs

in one word, one memory read for each bank of memory must occur before all other

operations. If the entire SISO loop was parallelized the tools would flag a false depen-

dency due to the interleaving process and cause sequential operations on the memory

since they are all within one word. The γ, β, and α loops were all parallelized sep-

arately for a similar reason to ensure that dependency paths are clear to the tools.

54



CHAPTER 4. ARCHITECTURES

Figure 4.8: Parallel turbo decoder final architecture block diagram

With this architecture, there is no overhead with loops since they are unrolled com-

pletely to replicate hardware. Loops are utilized like a for-generate statement in an

HDL to easily describe the replication of similar hardware. With this architecture,

throughput parity should be achievable with the HPA.
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4.3 Design 3: Parallel Decoder with Double Buffering

4.3.1 Double Buffering Handcrafted Architecture (DBHA)

The architecture in [4] presents an LTE parallel turbo decoder similar to [2] but

with a double buffer technique to increase the throughput. To implement a double

buffering system, the SISO algorithm was split into two stages, instead of two like in

Design 1 and Design 2. The calculations for α and β were similar, however alpha was

calculated i the first stage and buffered instead of β (Figure 4.9).

Figure 4.9: Parallel extrinsic calculation [4]

The DBHA also mitigates some of the error correcting performance losses due

to parallelizing the algorithm by using the values of the prior iteration for α and

β. This is demonstrated in Figure 4.9. For example, the first iteration for α, all

SISO’s uses α0 as the initial α value, however, the next iterations use values from the

prior iteration to provide a better estimate. This bridges the gap between sub-blocks

which in a serial design would use the values from the same iteration to propagate

α through the trellis. This allows for independence between parallel blocks in the

current iterations without the full error correcting performance loss when operating

on smaller blocks of data.

The largest change compared to the prior designs is the use of double buffering to
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Figure 4.10: Parallel forward and backward metric calculations [4]

operate on two blocks of data. Since the α and β terms are calculated sequentially,

half of the time the hardware for them is not being utilized. This can be improved

by double buffering, at the cost of doubling the memory usage. The scheduling of

the algorithm can be found in Figure 4.11. This diagram shows the α, β, and LLR

operations and how double buffering can better utilize hardware, similar to a pipeline.

Figure 4.11: Double buffering of turbo decoder [4]

The double buffering of the algorithm causes a very similar effect to pipelining

the design into 3 stages. The first, calculating α, next calculating β and the LLR,

and finally interleaving and writing to the output memory. With this design, the

throughput can be doubled with only twice the memory usage and a minimal impact

on logic usage.
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4.3.2 Double Buffering HLS Implementation

Figure 4.12: HLS turbo decoder block diagram for double buffering

The double buffering architecture drew heavily from the HPA’s HLS implementa-

tion. The main requirement was to divide the algorithm into 3 stages and double all

memory (Figure 4.12). For each input, output, and memory buffer between stages,

a double buffer was used which is equivalent to an additional dimension added on to

an array.

To allow for C to scheduling the design, each stage was made its own function.

With each stage as a function, the double buffering algorithm can be implemented in

C with function calls with different memory parameters (Listing 9).

With this method, the HLS tools can schedule each function call to produce

the schedule of operations in Figure 4.11. The development time of this algorithm

was very short compared to the design complexity. Most of this design was able to
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Listing 9 Double buffering implementation in software

memory[2][BLOCK SIZE/PARALLEL][PARALLEL]
alpha(memory[0])
alpha(memory[1])
beta/llr(memory[0])
beta/llr(memory[1])
write llr(memory[0])
write llr(memory[1])

reuse code from Design 2 due to the flexibility of an HLL and the abstraction out of

scheduling the HLS provides. Similar to the addition of the prior designs pipeline to

the first stage, this design required pipeline all stages with an II=1 to replicate the

performance of the DHBA.

59



CHAPTER 4. ARCHITECTURES

4.4 Summary of Designs

Table 4.1: A summary of all design architectures

Design 1

My Design: This design implemented a serial decoder by starting
with a C implementation of the turbo decoding algorithm. The SISO
algorithm was split into two main loops which were both pipelined to
replicate the handcrafted schedule of operations.
Challenges: The first half of the algorithm was unable to be executed
in 1 clock cycle in HLS. The pipeline directive was used with an II of 1
to mitigate with only a small overhead.
Directives: The array partition directive was used to split small mem-
ories into registers to remove bottlenecks. The unroll directive was used
extensively to completely unroll loops to replicate similar functionality.
Finally, the pipeline directive was used to remove bottlenecks in the first
loop and model the pipeline in the second half of the SISO algorithm.

Design 2

My Design: This design parallelized the serial decoder from Design 1.
This was accomplished through additional loops around each operation
which were then unrolled. The memory architecture was also modified
to allow for parallel memory accesses by reading blocks of memory in
one read.
Challenges: The main challenge was the memory design and how to
describe it in C. The memory needed to be accessed in a block of memory
which contained all elements of a row when represented as a matrix.
Directives: The usage of the array reshape partition allowed for a two
dimensional array in C to be implemented in long words in hardware.
This simplified the memory access in the code, while still allowing the
memory accesses to be parallelized for each row and replicate the hand-
crafted design.

Design 3

My Design: This design implemented a parallel decoder with double
buffering to increase throughput. Design 2 was modified to be seg-
mented into three stages instead of 2 with each stage in a separate
function. Then through function calls with multiple memory banks, the
design was double buffered.
Challenges: The only challenge encountered was that each stage of the
design could not be completed in one clock cycles, so similar to Design
1, each stage was pipelined to mitigate this.
Directives: The pipeline directive was used to pipeline each stage to
mitigate bottlenecks.
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Results and Analysis

To evaluate the HLS implementations of the three turbo decoder architectures, the

throughputs are compared between the handcrafted and HLS designs. Latency equa-

tions are provided for Design 1 and Design 2 in [2] and for Design 3 in [4]. With the

design latency and the reported clock speeds, the throughputs can be calculated for

comparison. The reported latencies for Design 1, Design 2, and Design 3 are (5.1),

(5.2), and (5.3) respectively.

LDesign1 = (4 ∗N + 2 ∗Delay) ∗ I [2] (5.1)

LDesign2 = (
4 ∗N
P

+ 2 ∗Delay) ∗ I [2] (5.2)

LDesign3 =
3N

P
∗ (I + 1) + ∆t [4] (5.3)

Where N is the block size, P is the parallelism, I is the number of iterations,

Delay is the delay of 11 cycles in [2] and ∆t is the implementation specific delays [4].

Latencies were calculated for a block size of 6144 and parallelism of eight. Designs

1 and 2 were calculated for three iterations, and Design 3 for eight iterations to

mirror the results from each design’s respective paper. ∆t was not provided for the

implementation in [4], so the best case performance was calculated using ∆t = 0.

With the latency for each design, the throughput of the decoders is calculated with

Equation 5.4. For Design 1 and Design 2, Fclk = 210Mhz and K = 6144, and for

Design 3 Fclk = 250Mhz and K = 12288. Design 3’s block size for the decoder is
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6144, however, due to double buffering two blocks of data are decoded, so K = 12288

is used.

Throughput =
K

L ∗ 1
Fclk

(5.4)

The throughputs of the HLS architectures are compared against the throughput

of the handcrafted architectures within [2] and [4] to gauge the quality of the HLS

implementations. The handcrafted throughputs are calculated according to (5.4)

with the provided latency equation for each design. To provide a fair comparison

since the designs are implemented on different generations of FPGAs, the HLS design

throughputs are calculated with the same clock frequency and parameters as the

handcrafted designs. When designing with HLS, the clock constraint was varied

from 2ns to 10ns, in 1ns increments. The clock constraint which produced a final

clock period lower than the desired clock period and had the smallest latency was

chosen for the best case comparison. The results are shown in Table 5.1 for all design

implementations.

Table 5.1: Results for all handcrafted and HLS designs

Implementations
Design 1 Design 2 Design 3

[2] Serial HLS 1 [2] Parallel HLS 2 [4] HLS 3

Iterations 3 3 3 3 8 a 8 a

Block Size 6144 6144 6144 6144 6144 6144

P 1 1 8 8 8 8

FPGA XC5VFX70T XCZU9EG XC5VFX70T XCZU9EG XC7VX690T XCZU9EG

FPGA Technology 65 nm 16 nm 65 nm 16 nm 28 nm 16 nm

Clock Constraint
(ns)

- 7.0 - 6.0 - 4.0

Clock Frequency
(MHz)

210 210 210 210 250 250

Latency (µs) 351.40 351.40 44.20 44.31 82.94 99.53

Throughput
(Mbps)

17.48 17.48 139.00 138.65 148.15 123.46

% Difference 0.0 0.3 18.2

a Design 3’s iterations are equivalent to a half-iteration of the turbo decoding algorithm.

To analyze the final throughputs for each design, the throughputs are plotted

as bar graphs with the HLS and Handcrafted throughputs next to each other (Fig-
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ure 5.1). This figure allows for the comparison between the designs for their through-

put with matching parameters between HLS and handcrafted designs.
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Figure 5.1: Throughput comparison between handcrafted and HLS implementations

The throughputs for Design 1 and Design 2 are nearly identical between the hand-

crafted and HLS implementations, with the percent difference being 0 for Design 1

and 0.3% for Design 2. This was expected given that the HLS designs were able to

replicate the schedule of operations in the handcrafted architecture. This was accom-

plished by adding an additional pipeline with II=1 to bypass the bottleneck in the

first half of the SISO algorithm. This additional pipeline did add a small overhead

of a few clock cycles which explains the small reduction in throughput for Design 2

due to pipeline ramp-up and ramp-down. Design 3, on the other hand, has a larger

discrepancy between HLS and Handcrafted throughputs. This could be due to how

the architecture of the paper was interpreted. Equation 5.3 gives the latency as 3∗N
P

,

however with the double buffering technique in Figure 4.11, each iteration should

take 4∗N
P

clock cycles to process two blocks of data. [4] may have implemented fur-
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ther optimizations when scheduling the operations to achieve lower latency. Since

the HLS design was based on the diagrams contained within the paper, a comparison

to the ideal scheduling of operations can also be made. The latency equation also

multiplies the iteration latency by I + 1, where I is the number of iterations. With

the alternative latency for each iteration, this will only need to be multiplied by I.

With these modifications, an alternate latency equations is shown in (5.5).

LDesign3 =
4 ∗N
P
∗ I (5.5)

Equation 5.5 models the architecture implemented in HLS more accurately than

the provided equation in [4]. Without the HDL code from the paper, it is difficult to

determine the specific scheduling of their design and how they were able to achieve

a better latency. The throughputs and percent differences were recalculated and are

shown in Table 5.2.

Table 5.2: Alternate handcrafted throughput for Design 3 based on the latency of each
iteration shown in Figure 4.11

Throughput (Mbps)
% Difference

Handcrafted HLS
125.46 123.46 1.2

Figure 5.2 shows the throughput comparison of the HLS to Handcrafted designs

with the alternate latency equation for Design 3. Design 3’s HLS implementation

is must closer to the throughput of the handcrafted. The handcrafted design has a

throughput of 125 Mbps which is slightly larger than the 123.4 Mbps of the HLS

design, though this was expected due to the overhead from the ramp-up and ramp-

down of the pipelines for each stage. For this design, the percent difference is greater

than Design 1 or Design 2 because of the addition of three pipelines to the design to

bypass all bottlenecks in the HLS implementation. This results in a larger overhead

from the pipelines, but the HLS implementations are still only 1.24% off from the

handcrafted design.
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Figure 5.2: Throughput comparison between handcrafted and HLS implementations with
alternate latency for Design 3

The resource usage between the HLS designs was evaluated to determine how

efficiently the HLS tools were able to implement the parallel architectures. The

resource usage for each HLS design from Table 5.1.

Table 5.3: Comparison of resource usage between HLS designs

Implementation Design 1 Design 2 Design 3

Clock Constraint (ns) 7.0 6.0 4.0

BRAM 57 50 187

FF 687 6210 13317

LUT 2114 17355 31536

Latency 73794 9306 24883

Max Clock
Frequency (MHz)

220 210 268

Throughput
(Mbps)

18.31 138.96 132.64

Table 5.3 shows the resource usage for each HLS implementation with the clock

constraints used from the comparison against handcrafted designs above. Design 2 is

a parallelized version of Design 1 and parallelism of 8 was used for collecting data.
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There is a 9X increase in FF usage and an 8.2X increase in LUT usage between Design

1 and Design 2 which is expected due to duplicating the hardware 8 times plus the

overhead with routing and multiplexing memory for a parallel design. The BRAM

usage was close with 57 used for Design 1, and 50 used for Design 2. This variance

can be explained by the tools using more BRAMs due to routing differences when

scheduling the design with different clock constraints. Design 1 used 48 BRAMs for

an 8.0ns clock constraint which is nearly identical to Design 2.

For Design 3 there is a 3.74X increase in BRAM, 2.1X increase in FF and a 1.8X

increase in LUTs compared to Design 2. The increase in BRAM usage is expected due

to double buffering and an additional stage in the decoding algorithm. The storing of

the β and LLR terms dominated the BRAM usage of the decoder, and with double

buffering, two times the memory is used. The LUT and FF usage increases are from

the additional stage since it required additional memory to buffer the data and also

an additional pipeline within the stage.

Overall from the results obtained, an HLS design flow was able to produce designs

that were able to match their handcrafted counterparts. While there was a small

performance loss due to the addition of the pipelines, it is negligible for the design

and could be mitigated with a faster clock depending on design requirements. The

clock speed of a hardware implementation is an important design decision as it had

a direct impact on the resource usage and overall design of a system. For HLS this is

varied via a clock constraint used by the HLS scheduler. To determine how well HLS

can achieve a clock constraint and its impact, each design was implemented with a

clock constraint of 2ns to 10ns in 1ns increments.

5.1 Clock Constraint Impact on Designs

For each design implemented in HLS, the clock constraint parameter was varied and

design metrics were recorded for each stage of the HLS design flow. The clock con-
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straint is a parameter for the HLS tools and impacts the HLS scheduler’s approach

to segmenting an algorithm and implementing it in hardware. This parameter was

varied to help determine if a hardware designer’s intentions with the clock have an

intended impact on the final design.

The data collected for Design 1, Design 2, and Design 3 are within Tables 5.4,

5.5, and 5.6, respectively. For each design, the clock constraint is shown on the very

left and is the only parameter varied. The HLS section gives the estimated resource

usage and clock period from the HLS C synthesis report. Finally, the implementation

section provides resource usage, clock period, and design throughput after hardware

synthesis and place and route.

Table 5.4: Design 1 HLS and implementation results for clock constraints from 2ns to
10ns with a block size of 6144
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2.0 45 2683 7295 4.501 57 1659 2325 2.512 73884 33.10

3.0 45 1742 7187 4.501 57 1133 2436 2.671 73839 31.15

4.0 45 1656 7187 4.501 57 1131 2315 3.017 73821 27.59

5.0 45 1616 7184 7.007 57 922 2206 3.757 73812 22.16

6.0 45 1126 7120 5.191 57 762 2150 4.176 73806 19.93

7.0 45 1066 7057 6.110 57 687 2114 4.546 73794 18.31

8.0 45 1001 7057 6.428 48 623 2117 5.350 73794 15.56

9.0 45 999 7088 7.625 48 733 2293 5.603 73794 14.86

10.0 45 974 7088 8.237 48 695 2294 6.160 73788 13.52

To determine the impact of the HLS tools and the clock constraint on the resulting

implementation, the clock, resources, and throughput are plotted. When designing

with HLS it is important to understand how the clock constraint parameter impacts

the final design. Within the HLS design flow, there are two places where a design can
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Table 5.5: Design 2 HLS and implementation results for clock constraints from 2ns to
10ns with a block size of 6144 with a parallelism of 8

HLS Implementation
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2.0 54 23909 67955 11.102 50 14542 19818 3.036 9388 215.56

3.0 54 16026 67760 11.102 50 9197 19447 2.828 9344 232.51

4.0 54 15399 67696 11.102 50 8802 18350 3.603 9326 182.85

5.0 54 14623 67885 11.102 50 7292 17610 4.343 9312 151.92

6.0 54 12622 67437 11.102 50 6210 17355 4.751 9306 138.96

7.0 54 11414 66933 11.102 50 4954 17643 5.104 9294 129.52

8.0 54 10628 66773 11.102 50 4496 18116 5.742 9294 115.13

9.0 54 10334 66773 11.102 50 4248 17598 5.739 9294 115.19

10.0 54 8797 65589 11.102 50 4669 17922 7.361 9288 89.87

Table 5.6: Design 3 HLS and implementation results for clock constraints from 2ns to
10ns with a block size of 6144 and parallelism of 8

HLS Implementation
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2.0 187 33682 97914 10.612 187 23614 32898 2.994 25030 163.97

3.0 187 22231 97621 10.612 187 16042 32669 2.917 24931 168.97

4.0 187 20000 97333 10.612 187 13317 31536 3.723 24883 132.64

5.0 187 18835 97615 10.612 184 11103 29044 4.372 24856 113.08

6.0 187 15671 97103 10.612 187 9121 28901 5.251 24832 94.24

7.0 187 13828 96599 10.612 187 7185 28060 5.720 24808 86.60

8.0 187 12783 96439 10.612 187 6460 29358 6.149 24808 80.55

9.0 187 10917 95180 10.612 187 6746 29474 7.727 24784 64.17

10.0 187 11249 95692 10.612 187 6542 29436 7.952 24784 62.35
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be evaluated. The first after C synthesis in HLS where the estimated clock period

and resource usage are reported. The second is after the design is exported and it

undergoes hardware synthesis and place and route where the final resource usage and

clock period are reported.
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Figure 5.3: Graph of the clock constraints impact on the designs minimum clock period
reported after HLS synthesis and implementation

To investigate the variance between these evaluation periods, the clock constraint

is plotted against the estimate provided by the HLS tools and the implemented clock

constraint after place and route (Figure 5.3). These figures show that the HLS es-

timate for the clock period is not accurate. For Design 1 in Figure 5.3a, the HLS

estimated clock follows a similar trend to the implemented clock, however gives a
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conservative estimate. For Design 2 and Design 3, however, the estimated clock is a

constant value for all clock constraints and does not estimate the implemented clock.

The implemented clock follows the expected trend of decreasing the clock period, so

this is a result of the estimation, rather than poor scheduling by the tools. To an

engineer using HLS tools, the HLS estimated clock period should not be used in its

current state to gauge the quality of a design. The final implemented clock should be

verified for all evaluation.

The HLS tools also provide estimates for the resource usage within the targeted

FPGA. In order to determine if the estimates are accurate, the estimated and imple-
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Figure 5.4: Bar graph of the clock constraints impact on the FF usage reported after HLS
synthesis and implementation.
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mented resource usage for flip-flops (FF) are plotted in Figure 5.4.

Figure 5.4 shows the HLS estimated and implemented FF usage for each design

with a varying clock constraint. The HLS estimates for the FF usage are greater than

the implemented usage, but still follow a similar trend to the implemented resources.

Based on these results the HLS estimates could be a good indicator of the actual usage

if a scaling factor was applied. The issue with this approach is that the scaling factor

may vary between designs and tool versions and would require further investigation.

Figure 5.4 also demonstrates how the tools approach constrained clocks. From 3ns

to 10ns for all designs, the FF usage rises in small increments. For the 2ns constraint,
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Figure 5.5: Bar graph of the clock constraints impact on the LUT usage reported after
HLS synthesis and after implementation.

71



CHAPTER 5. RESULTS AND ANALYSIS

the clock constraint was not met and as a result, the FF usage spikes in the tools

attempt to lower the clock period. Based on Figure 5.3, this spike has a minimal

impact on implemented clock period. Care must be taken when pushing a design

to its limits since the tools do not limit themselves in the attempt to reach a clock

period. To investigate the impact of the clock constraint on the lookup table (LUT)

usage, the data was plotted in a similar manner (Figure 5.5).

Figure 5.5 shows a similar trend to the FF usage where the HLS estimates are

greater than the implemented resource usage. An unachievable clock constraint does

not impact the LUT usage like the FF usage. This was expected since the designs

were pipelined and to reduce the clock period, more pipeline stages are added, which

use FF’s and not LUTs. While this explains the FF usage increase, it does not mean

that it is acceptable for quality hardware designs. The tools do most of the work

for scheduling, but it is up to the designer to guide the tools with a reasonable clock

constraint to provide a design that meets a set of requirements.

The throughput can also be used as a measure of the tools and their effectiveness.

To investigate this the throughput for each design is plotted against the implemented

clock period and is shown in Figure 5.6. This was done to investigate the quality of

the resulting architectures for each design taking into consideration the clock period

and also the impact on the latency. This is done by calculating the throughput for

each design. From these graphs, it’s clear that a smaller clock period resulted in

higher throughput. The tools were able to change the scheduling of operations based

on the clock constraint and do so without large adverse impacts on the latency. This

can be expected due to all designs making use of pipelining for all stages of the

algorithm. With a pipeline, the clock constraint impacts the number of stages of the

pipeline, without impacting the initiation interval which would have a larger impact

on latency.

Overall, the results presented demonstrate that HLS designs can reach handcrafted
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Figure 5.6: Graph of the implemented clock period’s impact on maximum throughput for
each design. The block size is 6144 and the parallelism is 8 for Design 2 and Design 3.

levels of throughput performance for turbo decoder designs. While the tools adversely

impacted the FF resource usage, this can be controlled by the designer by setting the

clock constraint to a value that the tools can achieve. The flexibly of the HLS tools

makes this process simple and can be automated to search for a desired trade off

of resource usage, throughput, and minimum clock period. In this design process,

the current tools do not provide a good estimate for the clock period or resource

usage. With the tool’s ability to analyze the design with a schedule viewer, rapid

development can still be attained, however, evaluation of the resource usage and clock

must be done after hardware synthesis and implementation, similar to handcrafted

HDL development.
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Conclusion and Future Work

6.1 Conclusions

This work focused on exploring coding techniques and a high level synthesis design

flow to target turbo decoder architectures. By modeling three existing handcrafted

turbo decoder architectures, the HLS implementations could be analyzed. The first

step was extracting each handcrafted architecture from prior research papers. The

algorithm and functionality of each architecture were then implemented in C/C++.

Modifications were then made to the code along with the addition of directives to

guide the tools with hardware specific optimizations. After each round of modifica-

tions, the C code was then processed through the tools and evaluated until the desired

architecture was reached. Bottlenecks due to HLS were mitigated where possible to

ensure that the HLS design could reach handcrafted levels of performance. A final

verification occurred after exporting the design and performing hardware synthesis

to determine the final latency, clock period, and resource usage.

When designing with HLS, a clock constraint can be provided to the tools to

impact the scheduling of the algorithm. A study was performed by varying the clock

constraint for each design to look at its impact on the performance and resource

usage. The accuracy of the estimated clock period and resource usage reported by

the HLS process was also evaluated.
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The overall conclusion of this work is that its possible to achieve handcrafted

levels of performance with an HLS design flow for turbo decoder architectures. The

turbo decoding algorithm is computationally intensive and requires complex memory

accesses which pose a challenge for HLS, however major bottlenecks in HLS were

overcome with the additional pipelines. This mitigation technique was successful for

the turbo decoding algorithm due to few data dependencies, however, its effectiveness

will vary depending on the algorithm targeted.

Care must be taken when using HLS tools for hardware development. Processing

code through the HLS tools produces estimates for the clock period and resource

usage, however, these were found to be inaccurate. For two out of three designs the

estimates clock period was a constant around 11ns, whereas the implemented clock

period varied from 3ns to 8ns depending on the clock constraint. The resource usage

estimates were overall larger than the implemented resource usage and predicted the

trend of the implemented recourse usage. In their current state, their usefulness is

limited and an evaluation of the design should only occur after hardware synthesis.

6.2 Future Work

While this work showed that the turbo decoder architectures were able to be imple-

mented in HLS and achieve handcrafted levels of performance, there is more work

to be done before HLS can replace the standard handcrafted RTL design flow for

hardware. Exploring the use of HLS for implementing other digital signal processing

algorithms to implement a software defined radio in HLS could show domains where

current tools could be utilized. Additionally, further research into development in

HLS vs handcrafting RTL hardware design by implementing a custom turbo decoder

could allow for more insight into the benefits and limitations of HLS.

Finally a major benefit of the HLS tools it’s the quick feedback provided. Unfor-

tunately, the estimates provided by the tools in this work were not accurate or reliable
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enough to be relied upon. Further research into how the estimates are generated or

impacted by design elements could allow a designer to more efficiently use the HLS

tools.
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