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Abstract

The goal of this thesis is the development of LambdaNet, a new type of network archi-

tecture for the performance of unstructured change detection. LambdaNet combines

concepts from Siamese and semantic segmentation architectures, and is capable of

identifying and localizing the significant differences between image pairs while simul-

taneously disregarding background noise. Changes are marked at the pixel level, by

interpreting change detection as a binary (change/no change) classification problem.

Development of this architecture began with an evaluation of several candidate

models, inspired by other successful network architectures and layers, including VGG,

ResNet, and the Res2Net layer. Once the best performing LambdaNet architecture

was determined, it was extended to incorporate a multi-class version of change de-

tection. Referred to as directional change, this technique allows segmentation-based

output of change information in four different classes: No change, additive change,

subtractive change, and exchange.

Lastly, change detection is not the only unstructured operation of interest. One

of the most successful unstructured techniques is that of artistic style transfer. This

method allows information from a style image to be merged into a supplied content

image. In order to implement this technique, a new variant of LambdaNet was de-

veloped, called LambdaStyler. This network is capable of learning multiple artistic

styles, which can then be selected for application to the desired content image.

iv
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Chapter 1

Introduction

1.1 Motivation

Deep convolutional neural networks (CNNs) have proven to be useful for processing

data with very high dimensionality [6] [8] [9]. They have become the backbone of

many advanced applications, such as self-driving vehicles [10], image-based medical

diagnostics software [9], and other image analysis tasks. One of the applications of

CNNs is the ability to automatically identify changes between pairs of images [3].

This extremely time consuming activity was once relegated exclusively to humans, as

it required a complex set of skills including object detection (finding objects of in-

terest), contextual analysis (determining what changes are important), and semantic

segmentation (separating relevant changes from the remainder of the image).

Existing approaches generally fall into one of two categories, either structured or

unstructured techniques. Structured methods, such as those of Daudt, et al. [3],

are designed to look for specific types of changes in image pairs, as indicated by

labelled ground truth maps. Unstructured methods, like those of Amin, et al. [11],

tend to focus on low-detail, large-scale changes and have little to no ground truth.

LambdaNet attempts to bridge this gap, creating a compromise between structured,

object specific change detection, and unstructured, general change detection.

LambdaNet is a new type of Siamese change detection network, capable of pro-

1



CHAPTER 1. INTRODUCTION

cessing directional change information and increasing accuracy through the use of the

Res2Net multiscale layer [4]. First, it incorporates change “directionality” into the

output segmentation map, in order to identify areas of an image where objects were

added or removed, rather than marking them as a generic change. Second, the new

Res2Net backbone layer can enhance the performance of other network architectures

through the utilization of multiscale information. This thesis extends the Res2Net

encoder into a Res2Decode network. Finally, in order to demonstrate LambdaNet’s

suitability for other unstructured operations, LambdaStyler was developed as a ver-

sion of the network capable of performing artistic style transfer.

1.2 Related Work

Pixel-wise change detection is a critical topic of research, due to its wide variety of

applications, ranging from agriculture to surveillance to national defense. However,

when performed by a human, it is also extremely time consuming, since it requires

a high degree of attention to detail. As a result, there have been many attempts to

automate this process, with varying degrees of complexity.

The first and simplest technique for change detection is image subtraction. Changes

between images can be seen by taking the present image and subtracting a reference

image from it. Any non-zero pixel value is then assumed to be a change. However, in

order to remove unimportant changes, possibly caused by lighting variation or shad-

ows, a threshold is necessary. Manually selecting this value is difficult, as setting the

threshold too low would result in background noise being marked as a change, while

a too large threshold would cause important changes to be missed. Therefore, a series

of automatic thresholding techniques were developed [12] based on image statistics

to programmatically select an appropriate value.

A variation on image subtraction for change detection is image ratioing. Using

this technique, the present image is divided by a reference image [13]. If the ratio

2



CHAPTER 1. INTRODUCTION

value is close to 1, then the two pixels are highly similar. If it is significantly larger

or smaller, then it is likely that a change has occurred. However, this technique also

suffers from the same issue that plagues image subtraction, in that a threshold for

change/no change must still be selected.

Furthermore, both the subtractive and ratiometric techniques are susceptible to

other forms of outside influence, the most significant being sensor variation. First, if

the sensor is changed, even within the same make and model, the calibration difference

may result in erroneous detections. Second, if sensor replacement is necessary, then

it may not be possible for the new device to be located in exactly the same manner

as the original. This would induce a shift in registration between images captured in

the old configuration versus the new configuration. This shift would be interpreted

as a change by either of these methods.

At the other end of the spectrum, deep learning-based techniques have also been

used for unstructured change detection. In the work of Amin, et al. [11], an AlexNet

[14] architecture pre-trained on ImageNet [15], was utilized for unstructured change

detection. By passing pairs of images through the network and extracting the ac-

tivation maps, it is possible to create a binary change map. This is accomplished

by bilinearly upsampling the variously-sized maps and concatenating them together

along the channel-wise dimension. A Euclidean distance measurement is then made

between the two activation map stacks and thresholded in order to obtain a final

binary change map.

However, while simple to implement, this method also has drawbacks. Since it

relies purely on Euclidean distance and thresholding to determine a change, it is void

of any semantic content. This means that it is not capable of determining whether

the change that occurred was a car moving or the leaves of a tree blowing in the

background. As a result, these types of techniques are more suited to extremely

large scale changes, such as those seen in satellite imagery, as opposed more detailed

3



CHAPTER 1. INTRODUCTION

changes that would be of interest in a street-level scene.

In order to assess its efficacy, LambdaNet is compared against the top performing

models on the Change Detection 2014 results database. The selected models include

SuBSENSE (Self-Balanced SENsitivity SEgmenter) [16], CwisarDH [17], and IUTIS

(In Unity There Is Strength) [18] variants. The first method, SuBSENSE, operates

on a combination of RGB and local binary similarity patterns (LBSPs) [19]. LBSPs

work by dividing the image into individual cells of a pre-determined resolution. The

center of each cell is taken as the reference and compared to all surrounding pixels in

the cell. If the reference is greater than the neighbor pixel, then a zero is recorded. In

all other cases, a one is recorded. This yields a single number describing that location.

By sampling known areas of background and foreground, a series of reference samples

can be catalogued. By collecting additional LBSP descriptors and RGB pixels and

comparing them to the reference set, a classifier can determine if that local region of

the image experienced a change.

Next, the CwisarDH [17] method, also referred to as a weightless neural net-

work, relies on the WiSARD (Wilkie, Stoneham, Aleksander Recognition Device),

a hardware-based neural network that operates using RAM lookup tables. These

lookup tables store the outputs of the trained classification functions, which are eval-

uated as memory accesses. By summing the responses from the individual lookup

tables, a similarity score can be generated indicating how close the test sample is to

the contents of the training set. CwisardDH itself combines this WiSARD module

with a per-pixel history buffer, which stores information about prior observed frames.

When a pixel changes significantly, the associated buffer is flushed. If the change

remains long enough to fill the buffer, then the system is retrained on that data,

effectively converting that change into part of the background representation.

Finally, IUTIS [18] relies on genetic algorithms to construct an optimal configu-

ration of other change detection methodologies. These chosen methodologies include
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SuBSENSE [16], CwisarDH [17], and others. This algorithm combines the output

of these different change detection methodologies together via a series of operations,

including erosion and dilation filtering, median filtering, logical operations, and ma-

jority voting. The system randomly combines and evaluates configurations, while

pruning poorly performing models, until a top performing network of operations is

found.

1.3 Contributions

The main contributions of this thesis are:

• A LambdaNet architecture that explores alternatives to VGG-based network

architectures, including Res2Net and pre-trained encoders, to enhance the ac-

curacy of unstructured change detection.

• Creation of a Res2Net-based decoder architecture for LambdaNet to better

utilize multiscale information generated by the Siamese encoders.

• Four class change detection, consisting of the classes No Change (NC), Additive

Change (AC), Subtractive Change (SC), and Exchange (EC). This encodes “di-

rection” information into the network’s output, identifying changes as additions,

removals, or swaps.

• Conversion of the LambdaNet architecture into a LambdaStyler network, capa-

ble of performing artistic style transfer.

Publications:

• B. Blakeslee, A. Savakis, “LambdaNet: A Fully Convolutional Architecture

for Directional Change Detection,” in Electronic Imaging 2020, Jan 2020.
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• B. Blakeslee, R. Ptucha, and A. Savakis, “Faster art-cnn: An extremely fast

style transfer network,” in 2018 IEEE Western New York Image and Signal

Processing Workshop (WNYISPW) , Oct 2018, pp. 1–5.

1.4 Thesis Organization

This thesis is organized in six chapters. Brief information about each chapter is

mentioned below:

• Chapter 1. Introduction: Contains the motivation for the thesis topic, a re-

view of current literature regarding change detection and style transfer, and the

thesis’s primary contributions.

• Chapter 2. Background Work: Provides an overview of prior methods in change

detection and style transfer, along with a description of the datasets utilized for

training and evaluation.

• Chapter 3. Methodology – LambdaNet: Details the techniques utilized to en-

hance the selected change detection network architectures. Also covers the

details of the evaluation metrics utilized to quantify performance of the net-

works.

• Chapter 4. Methodology – LambdaStyler: Details the conversion of LambdaNet

to the LambdaStyler architecture.

• Chapter 5. Results: A comparison of results with the current state-of-the-art

methodologies, with respect to the aforementioned performance metrics. Also

contains qualitative analyses of any novel unstructured behavior.

• Chapter 6. Discussion: A summary of the work performed and associated

results, with a brief discussion of future work opportunities.
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Chapter 2

Background

This chapter details the associated datasets used in this work and the related topics

that form the inspiration for LambdaNet. Section 2.1 describes the datasets used to

analyze LambdaNet. Sections 2.2 and 2.3 cover the areas of semantic segmentation

and Siamese networks, respectively. Section 2.4 provides an overview of Res2Net, a

multi-scale network layer that aids in recognizing objects of different sizes. Section 2.5

gives a brief summary of the general goals of unstructured change detection. Finally,

Section 2.6 describes the area of artistic neural style transfer.

2.1 Datasets

The primary dataset used in the development of LambdaNet was the Change Detec-

tion 2014 (CD2014) dataset [1], which consists of 53 videos split across 11 categories.

These videos were captured at either street level or from an elevated position in a

variety of resolutions and conditions, including heavy snowfall, day and night scenes,

and locations with high levels of background noise. They also vary in the modalities

they were captured with, including RGB and thermal imaging technologies.

Labelling these images takes the form of a set of semantic segmentation maps, with

one map corresponding to each frame of the video. The labels themselves are class-

agnostic, in the sense that each pixel is labelled as either a change or no-change event,

rather than explicitly labelling each pixel with a class name. Additional secondary
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information is also labeled in the ground truth change masks such as a shadow region,

unknown region (due to motion blur around moving objects), or a “Don’t Care”

region. Figure 2.1 shows a variety of sample images from the dataset, along with

their corresponding ground truth masks.

Figure 2.1: Sample images from the Change Detection 2014 [1] dataset. (Best viewed in
color.) The left column contains sample images, while the right column consists of pixel

level ground truth. Several other annotations are also present in the truth frames. In each
of the truth frames, the target changes are labelled with white pixels. Surrounding the

target pixels is a thin border of light grey, indicating a “Don’t Care” region to account for
motion blur. The truth frames in rows 2 and 3 also contain a large block of dark grey

pixels, indicating a portion of the image outside the region of interest. Finally, in the row
3 truth image, the darkest grey region marks a shadow cast by the target object. This

shadow also has a thin border of “Don’t Care” light grey pixels.
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2.2 Semantic Segmentation

Semantic segmentation is critical to the LambdaNet architecture, as it allows for

the precise, pixel-level localization of changes between image pairs. One of the first

deep learning-based semantic segmentation techniques is the deconvolutional network,

introduced by Noh, et al. [2]. This network created the concept of a fully convolutional

autoencoder. The encoder portion of the network, responsible for reducing the input

image down to an intermediate form, is based on the VGG-16 architecture, developed

by K. Simonyan, et al. [8]. However, rather than output a classification label for the

image, the output of this encoder is then fed into a mirror image of the VGG-16

encoder. The decoder then expands the input back to the original dimensionality,

assigning a class label for each pixel in the image. This process is shown graphically

as Figure 2.2.

Figure 2.2: Architectural overview of the deconvolutional network. [2]

This network architecture is enabled by the use of two special operations: the

unpooling and deconvolutional layers. While the unpooling layer is not utilized in

LambdaNet due to architectural constraints, the deconvolutional layer plays a key

role. This layer allows for the network to learn an upsampling function that expands

a single pixel into a region of pixels via a learned filter. This operation is detailed

graphically in Figure 2.3.
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Figure 2.3: Comparison of convolution and deconvolution operations [2].

2.3 Siamese Networks

LambdaNet is also inspired by Siamese deep neural networks. Popularized by Koch,

et al. [20] for one-shot learning, Siamese networks take their name from their symmet-

ric construction, placing identical network components in parallel. This makes them

well-suited for comparison-oriented applications. Operating by passing two data sam-

ples to their parallel structure, they generate a pair of intermediate outputs. These

outputs can then be compared to each other. This comparison can take many forms,

ranging from a simple Euclidean distance equation to a more complex trained deci-

sion network, such as in Rahman, et al. [21]. In the most extreme case, the decision

network can be entirely replaced with a deconvolutional decoder, as in the case of the

change detection network developed by Daudt, et al. [3]. Figure 2.4 shows a pair of

example Siamese networks, with additional feedforward connections.
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Figure 2.4: Example Siamese network architectures, featuring additional feedforward
connections [3].

2.4 Res2Net Multi-Scale Network Layer

LambdaNet is a composite network, meaning it is constructed from pieces of other

networks, such as VGG-16 [8]. Recently, a promising new backbone architecture

was proposed: Res2Net [4]. This architecture allows for the improved integration

and processing of multi-scale information. Multi-scale information allows for the

network to learn to recognize a single object at many different sizes. This property

is particularly useful for change detection, as changes between image pairs can be of

any size. Qualitatively, this results in a nested set of receptive fields, shown in Figure

2.5, causing the network to be more sensitive to variations in the size of objects of

interest.
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Figure 2.5: Nested receptive fields (multi-scale visual representation). Dotted lines of
different colors represent different receptive field sizes [4].

This behavior is brought about through a series of operations, shown in Figure 2.6.

First, the input activation map is convolved with a 1x1 set of filters to yield activation

map X. Activation map X is then split into S (in this case four) groups, along the

channel dimension. (E.g.: If S = 4 and the activation map has MxN elements and

64 channels, this operation results in four MxN blocks with 16 channels each.) The

activation map Y represents an output buffer with the same dimensions as X for the

multi-scale convolution represented by the kernels K. Block X1 is passed through to

the corresponding Y1 slot. Block X2 is convolved with kernel K2 and placed in slot

Y2. However, the left pointing arrow indicates that the output of this convolution

(Y2) is also summed with block X3, before being convolved with kernel K3 and the

output placed in slot Y3. This process repeats for slot Y4. The multiscale behavior

originates from the forking connections after the individual kernels, labeled as K.

Forking and chaining kernels together in this manner results in a series of receptive

fields of multiple sizes sharing a common center point. The activation map Y is then

convolved with a 1x1 set of filters to yield activation map Z. Finally, the activation
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map Z is then summed with the input activation map to yield the output activation

map O.

Figure 2.6: Detail view of Res2Net module [4].

2.5 Unstructured Change Detection

Change detection itself has also been an area of interest in deep learning research. Re-

cent research in this area has focused heavily on leveraging Siamese networks. How-

ever, some of these approaches, such as that of Varghese, et al. [22], focus on class-

based change detection. Their technique utilizes the VL-CMU-CD dataset [23], which

is a semantic segmentation change detection dataset, labeled with 11 different object

classes. Other techniques, such as Daudt, et al. [3], treat this domain as a binary

classification problem, labeling each pixel as either “Change” or “No Change”.

A subset of this research area is unstructured change detection. Under this
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paradigm, the comparisions between images become more generalized. Rather than

focusing on identifying specific change targets, such as cars or pedestrians, the goal is

to identify any significant change in an image, regardless of whether it was explicitly

labelled. These significant changes can take the form of objects, such as people or

cars, or background structures, such as buildings. Simultaneously, it must be able to

reject insignificant changes caused by background noise, such as the leaves of trees

blowing in the wind. In the most extreme case, unstructured change detection can

be applied to the landscape itself, searching for changes in geography or land cover,

as in Chianucci, et al. [24].

2.6 Artistic Neural Style Transfer

Artistic neural style transfer is the act of taking a content image, usually a photo-

graph, and a style image, usually a painting, and combining them into a single image

containing the characteristics of both inputs. Qualitatively, if the content image is a

portrait and the style image is an abstract texture, then the output of the network

would be the portrait rendered in the style of the supplied texture.

This type of style transfer can be accomplished in two ways, either via an iterative

technique or by a variety of feedforward methods [6] [25] [26]. The iterative method,

developed by Gatys, et al. [5], treats style transfer as an optimization problem and is

shown as Figure 2.7. First, the content and style images are fed through a pre-trained

VGG16 network. However, rather than save the classification output, a set of selected

activation maps are saved. In the case of the content image, this is usually a single

layer from late in the loss network, so as to focus on the objects. For the style image,

this is a set of maps from both shallow and deep levels of the loss network, in order

to capture a wide variety of frequency content. A noise image is then passed into the

network and the same set of activation maps are saved. These maps are then used to

compute a weighted linear combination of the content and style loss functions. These
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formulas are shown as Equations (2.1) to (2.5). Symbol definitions are provided in

Table 2.1.

Figure 2.7: Illustration of iterative style transfer [5].

Variable Definition

Lcontent(P ,X, l) Content loss between the original image activation maps P
and the generated image activation maps X at layer l

F l
ij Activation map of X at layer l

P l
ij Activation map of P at layer l

Gl
ij Gram matrix of generated image at layer l

El Contribution of layer l to style loss
Nl Number of feature maps at layer l
Ml Number of elements in feature map at layer l
Al

ij Gram matrix of original image at layer l

Lstyle(A,X) Style loss between the original image A and the generated
image X

wl Weight of style loss at each layer l
Ltotal(P ,A,X) Total loss function
α, β Content loss weight and style loss weight, respectively

Table 2.1: Definition of variables utilized in Equations (2.1) through (2.5).
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2
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∑
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(Gl
ij −Al

ij)
2 (2.3)

Lstyle(A,X) =
L∑
l=0

wlEl (2.4)

Ltotal(P ,A,X) = αLcontent(P ,X) + βLstyle(A,X) (2.5)

The content loss, shown as Equation (2.1), is effectively a mean squared error be-

tween the activation map of the content image and the activation map of the generated

image. However, the style loss computation requires several steps. First, Equation

(2.2) is used to compute the Gram matrix for both the style image and the generated

image. This creates a matrix that correlates which style components activate together

in the loss network. The mean squared error is again used in Equation (2.3) to mini-

mize the differences in style between the style and generated images. Equation (2.4)

is an optional term, which can be used to weight the style contributions of individual

layers of the loss network. Finally, Equation (2.5) is the weighted linear combination

of both the content and style losses.

A modified version of the standard backpropagation algorithm is then performed

on the network. In this case, the weights of the network are frozen and the gradient

updates are carried through all the way to the input image. This results in the slow

refinement of the noise image into an image containing visual elements from both the

content and style images.

Figure 2.8 shows the alternative method for stylization, based around a feedfor-

ward technique, created by Johnson, et al. [6]. This can vary based on the type
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of network used, but generally it uses an architecture based around a residual au-

toencoder. During training, this network is connected to the same network used in

the iterative technique of Gatys, et al. [5]. Training proceeds by first applying the

content and style images to the loss network and saving their respective activation

maps. The content image is then applied to the residual autoencoder, the output

of which is then fed into the loss network. Again, the same activation maps are

saved and the loss function is computed. The gradients are then backpropagated

through the loss network, whose coefficients remain frozen, before flowing into the

residual autoencoder. It is here that the coefficients are updated. After a sufficient

number of training epochs, the residual autoencoder will have learned to impart the

characteristics of the chosen style image into any image applied to its input.

Figure 2.8: Illustration of feed-forward style transfer [6].
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Methodology – LambdaNet

This chapter provides greater detail on the architecture methodologies used to develop

LambdaNet. Section 3.1 examines the initial networks, while Section 3.2 details the

various configurations of the Change Detection 2014 [1] dataset that were used to

evaluate the network. Section 3.3 gives a summary of the evaluation metrics used to

quantify the network’s performance. Section 3.4 covers the experimental process that

was followed to determine the highest performing version of the network. Section 3.5

covers the modifications that were made in order to incorporate “directional” change

into the network architecture.

3.1 Exploration of LambdaNet Architectures

Since LambdaNet is a new type of architecture, based around a fusion of elements from

Siamese networks and autoencoders, the first step was to determine the architecture

for the system. A generic view of the network is shown as Figure 3.1.

LambdaNet is composed of three different components, the encoders, the fusion

node, and the decoder. In this architecture, the encoders have shared weights and

are responsible for generating an intermediate feature map representation. Since the

encoder output is taken from the final layer, this feature map representation will focus

mostly on the “objectness” of targets in the input images and ignore the edge-based

information.
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Figure 3.1: Abstracted view of the LambdaNet architecture.

This feature map pair is then passed to the fusion node, which is responsible

for concatenating these maps into a single representation. This unified map is then

passed to the decoder segment, which is responsible for separating the content of the

unified map into a binary change map, indicating the differences between the images.

Under this architecture, both the encoder and decoder may be learned, or pre-trained

encoders may be used with a learned decoder. No learning takes place in the fusion

node.

This abstracted architecture leads to several different possible concrete realiza-

tions. We focus on a set of the most common network archetypes, predominantly in-

spired by VGG16 and ResNet. Preliminary experimentation revealed that the quality

of the change segmentation was dependent on the scale of the target in question. Thus,

multiscale information was integrated into LambdaNet, using the Res2Net module.

These six configurations are shown as Figure 3.2.
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(a) Full VGG (FVGG): End-to-end
trained version of LambdaNet, based on

a VGG encoder/decoder structure.

(b) Hybrid VGG (HVGG): Hybrid
version of LambdaNet, based on a VGG
encoder pre-trained on ImageNet and a

learned VGG decoder.

(c) Full Residual (FRES): End-to-end
trained version of LambdaNet, based on

a residual encoder/decoder structure.

(d) Hybrid Residual (HRES): Hybrid
version of LambdaNet, based on a VGG
encoder pre-trained on ImageNet and a

learned residual decoder.
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(e) Full MultiScale (FMS): End-to-end
trained version of LambdaNet, based on
a VGG encoder/decoder structure, with

internal learned multiscale layers.

(f) Hybrid MultiScale (HMS): Hybrid
version of LambdaNet, based on a VGG
encoder pre-trained on ImageNet, and a

learned VGG decoder and multiscale
layer.

Figure 3.2: Initial six concrete implementations of LambdaNet.

As the initial evaluation is framed as a binary classification problem, the binary

cross-entropy loss function was chosen for training, as shown in Equation (3.1).

Ln = −wn[yn · log(xn) + (1− yn) · log(1− xn)] (3.1)

One particular challenge in working with the Change Detection 2014 [1] dataset is

that the distribution of change and no change classes is extremely unbalanced in favor

of the no change class. Preliminary testing showed that the LambdaNet architecture

learned the no change class much more effectively that it did the change class. In

order to correct for this class skew, an additional weighting factor was used in the
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loss function, which is detailed in Equation (3.2).

ChangeWeight = ln

(
TotalClassCount

ChangeClassCount

)
(3.2)

Furthermore, an additional regularization method was employed to prevent over-

fitting of the network. This consisted of a random swap applied to the input images

to ensure that the reference and target images were applied equally to both inputs.

This mitigates overfitting in the decoder by preventing the concatenation from always

passing the encoder’s activation maps in the same order to the decoder segment. In

the case of the target-target dataset configuration, it can also be viewed as a form of

data augmentation, as the pattern of object removals and additions will be randomly

reversed.

3.2 Dataset Configuration

The next step in developing LambdaNet was the configuration of the Change Detec-

tion 2014 [1] dataset. Three different setups were used, reference-target, target-target,

and category holdout. Each of these setups all held the same set of image/truth pairs.

However, each configuration possessed either a different pairing of input images or a

different style of training/validation split, detailed below.

3.2.1 Reference-Target Splits

Under the reference-target training methodology, the data took the form of a triplet

consisting of reference, target, and ground truth images. The reference image was

selected to contain absolutely no marked change targets. In cases where this was

not possible, a reference image was chosen with the change target almost completely

out of frame. Meanwhile, the target image contained all objects of interest. As a
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result, the ground truth image was the target image’s corresponding ground truth

map. Functionally, this treated the reference image as a conditional input, which

influenced the semantic segmentation of the target image, producing a predicted

change map with respect to the reference input.

Reference Images Target Images Ground Truth Maps

Figure 3.3: Sample triplet entries for the reference-target split configuration. The left
column is the reference image, the center column is the target image, and the right

column is the ground truth segmentation map. Note that rows 2 and 3 both contain
dynamic background elements (trees, fountains) that are unlabelled.

In terms of the split configuration, all 53 videos from the dataset were placed into

a single pool, configured for nine-fold cross validation. This entailed splitting the

pool into nine random groups of six videos each. (Since 53 is a prime number the

final validation group had five videos.) One group was then chosen as a validation

set and all other videos placed in the training set. This process was repeated nine

times, such that the entire dataset was represented in the total of the validation

splits. This allowed nine different versions of the network to be trained, simulating the
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ability of the network to be tested on every video in the dataset, while simultaneously

guaranteeing that there was always a version of the network that had never seen a

particular video before.

3.2.2 Target-Target Splits

The next dataset configuration created was the target-target split. This method of

organization also took the form of a triplet, except in this case both input images

contained marked change targets. This required an additional pre-processing step:

The fusion of two ground truth maps into a single image via a logical OR operation.

This resulted in a single truth image containing change targets from both input im-

ages. The dataset was then configured in the same nine-fold cross validation manner

as the reference-target configuration.

Past Target Images Current Target Images Fused Ground Truth Maps

Figure 3.4: Sample triplet entries for the target-target split configuration. The left
column is the prior target image, the center column is the present target image, and the

right column is the fused ground truth segmentation map. Note that row 2 has
overlapping targets and row 3 contains no change targets.
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3.2.3 Category Holdouts

The final dataset configuration was that of a category holdout. In this case, the

training triplet was structured in the same manner as the reference-target splits.

However, rather than choose the same nine-fold cross validation setup, eleven-fold

cross validation was used instead. This was because the Change Detection 2014 [1]

dataset contains eleven categories of videos. For each split configuration, a single

category was used as the validation set, while all other categories were placed in

the training set. This ensured that there was always an entire class of videos that

remained unseen by at least one version of the network.

3.3 Evaluation Metrics

This section covers the metrics that were chosen to evaluate the LambdaNet architec-

ture. These metrics were selected based on their utilization in the Change Detection

2014 [1] contest, in order to enable direct comparison to existing methods. Intersec-

tion over union was also selected, as it provides a direct measure of the quality of the

change segmentation. Table 3.1 contains the abbreviations and symbol definitions

used in the following formulas.

Name Abbreviation Definition

True Positive TP Correct change classification
True Negative TN Correct no change classification
False Positive FP Incorrect change classification
False Negative FN Incorrect no change classification
False Positive Rate FPR See Section 3.3.1
False Negative Rate FNR See Section 3.3.2
Percent Wrong Classification PWC See Section 3.3.3
Intersection over Union IoU See Section 3.3.8

Table 3.1: Listing of abbreviations used in metric equations.
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3.3.1 False Positive Rate

The False Positive Rate measures the fraction of no change pixels that were incorrectly

marked as changes. The denominator consists of the total number of no change

pixels, expressed as the sum of incorrect change classifications and correct no change

classifications. This can be seen in Equation (3.3).

FPR =
FP

FP + TN
(3.3)

3.3.2 False Negative Rate

The False Negative Rate performs similarly to that of the False Positive Rate. In

this case, the denominator contains the total number of change pixels, defined as the

sum of correctly classified changes and changes that were erroneously marked as no

change. This is shown as Equation (3.4).

FNR =
FN

TP + FN
(3.4)

3.3.3 Percent Wrong Classification

Percent Wrong Classification measures the total percentage of incorrectly classified

pixels. The numerator consists of the total number of incorrectly classified pixels,

while the denominator contains the total number of pixels. This is detailed in Equa-

tion (3.5).

PWC = 100 ∗ FN + FP

TP + FN + FP + TN
(3.5)
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3.3.4 Specificity

Specificity is responsible for computing the fraction of no change pixels that were

correctly classified as no change. In this case, the denominator is the total number

of no change pixels. This is detailed in Equation (3.6).

Specificity =
TN

TN + FP
(3.6)

3.3.5 Recall

Recall operates similarly to specificity, in that it measures the fraction of correctly

marked change pixels. Here, the denominator is the total number of pixels marked

as change. This can be seen in Equation (3.7).

Recall =
TP

TP + FN
(3.7)

3.3.6 Precision

Precision calculates what fraction of pixels that were predicted to have changed were

actually valid changes. For this case, the denominator is the total number of pixels

marked as change, irrespective of that classification’s correctness. This can be seen

in Equation (3.8).

Precision =
TP

TP + FP
(3.8)
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3.3.7 F1 Score

When the precision and recall are combined as a harmonic mean, it yields the F1

score. This metric distills the precision and recall metrics into a single ratio. The

formula is shown as Equation (3.9).

F1Score =
2 ∗ Precision ∗Recall
Precision+Recall

(3.9)

3.3.8 Intersection Over Union

The intersection over union (IoU) measures the amount of overlap between the pre-

dicted segmentation map and the ground truth segmentation map. The numera-

tor quantifies the intersection where both segmentation maps indicate change. The

denominator sums the correct change classification with both missed changes and

wrongly marked changes to encompass the union of these two maps. This ratio is

shown as Equation (3.10).

IoU =
TP

TP + FN + FP
(3.10)

3.4 Evaluation of LambdaNet Architectures

The next step to determining the network architecture was to select the data splits

that would be used for evaluation. The reference-target and target-target dataset

configurations each contain nine splits, while the category holdout configuration con-

tains eleven splits, for a total of twenty-nine possible dataset configurations. With

six different architectures to evaluate, this would require training 174 models, which

is computationally intractable.
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As a result, inspiration was drawn from the domain of genetic algorithms. In order

to judge the most fit architecture, the F1-Score (Equation (3.9)) was chosen as the

optimizing metric. The rationale behind this decision is that the F1-Score combines

both precision (Equation (3.8)) and recall (Equation (3.7)) into a single metric, both

of which measure the accuracy of the change segmentation. Precision measures the

ratio of correctly marked changes to the total number of marked changes, while recall

measures the ratio of correctly marked changes to the total number of changes in the

ground truth.

Rather than evaluate all possible options, a single data split was chosen at random

from the target-target configuration. This split was chosen, as it encompasses a middle

ground between the reference-target and category holdout modes. It allows for testing

network behavior under the conditions of additive, subtractive, and target exchange

conditions, while simultaneously ensuring that the network is tested on videos it has

not seen before. This split comprised stage 1 testing and was used to train and

evaluate all six initial architecture configurations. These models were then ranked

according to the F1-Score. The top 50% of models were then selected, yielding three

architectures for stage 2 testing.

Stage 2 testing consisted of training and evaluation on a wider variety of data

splits from all possible configurations, including reference-target, target-target, and

category holdout modes. In each case, two splits were selected randomly from each

mode. These six splits were then used to train and evaluate the top three models

from stage 1 testing. The resulting models were then grouped based on the split they

were trained on. For each of these six splits, the three models were then ranked by

their F1-Score.
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(a) Hybrid Single Multiscale Residual
(HM1RES): Hybrid version of LambdaNet,

based on a VGG encoder pre-trained on
ImageNet, and a learned multiscale and

residual decoder pair.

(b) Hybrid Double Multiscale Residual
(HM2RES): Hybrid version of LambdaNet, based

on a VGG encoder pre-trained on ImageNet,
coupled to a learned multiscale layer and residual

decoder.

(c) Hybrid Triple Multiscale Residual
(HM3RES): Hybrid version of LambdaNet, based

on a VGG encoder pre-trained on ImageNet,
coupled to a learned multiscale layer and

multiscale layer/residual decoder pair.

Figure 3.5: Final three candidate models for LambdaNet.
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As the stage 2 testing ended with an effective tie between the hybrid ResNet and

hybrid Res2Net architectures, a third stage of testing was performed using the stage

2 splits. In stage 3, the ResNet and Res2Net architectures were combined into three

new candidate models, shown in Figure 3.5. Once again, the models were sorted by

their F1-score, with the model that placed first most being selected. This model is

shown as Figure 3.5c.

3.5 Directional Change Detection

Once the LambdaNet architecture of Figure 3.5c was finalized, it was then extended

from a binary change detection system into a multi-class change detection system.

Under this paradigm, four classes are used to denote change at the pixel level: No

change, additive change, subtractive change, and exchange. These classes are de-

rived from both the per-frame pixel classification, in addition to which frames, either

reference or target, the change occurs in. This class labelling is detailed in Table 3.2.

The generation of the new ground truth data was accomplished via a logical-OR-

like operation between pairs of binary change masks. One mask was designated as the

reference mask, while the other was taken as the target mask. The operation detailed

in Table 3.2 was then applied to obtain the fused multi-class ground truth. The source

masks were then reversed and the same operation applied. This was necessary, as

in the binary change classification case the inputs were randomly swapped with a

50% probability to ensure that the architecture would not overfit. However, in this

case, swapping the inputs would lead to the input images being inconsistent with

the ground truth, as the additive and subtractive change classes would be reversed.

Sample training triplets are shown as Figure 3.6.
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Classification Color Definition

No Change Black Pixel is not a change target in either reference or
target frame

Additive Change Red Pixel is not a change target in the reference frame,
but is a change target in the target frame

Subtractive Change Blue Pixel is a change target in the reference frame, but
is not a change target in the target frame

Exchange Green Pixel is a change target in both the reference and
target frames

Table 3.2: Definitions and color coding for multi-class change detection.

Past Target Images Current Target Images Color Ground Truth

Figure 3.6: Sample colorized triplet entries for multi-class change detection. The left
column is the prior target images, the center column is the current target images, and the
right column is the fused ground truth segmentation map. Rows 1 and 2 use the same two

swapped images to illustrate the directionality of the change. Red indicates additive
change, while blue indicates subtractive change. Rows 3 and 4 are organized in the same
manner, but are chosen to include the third exchange class in green. Note that depending
on the order of the images, the additive and subtractive change regions are reversed, while

exchange remains constant. Black indicates no change.
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However, this reprocessed data contains the same class imbalances present in the

binary classification case. As a result, a set of weighting factors was also computed

for this configuration using Equation (3.2). This computation was performed on each

of the three change classes, with the no change class being weighted as 1.

Finally, since this is no longer framed as a binary classification problem, the loss

function was changed to a more general cross-entropy loss, shown as Equation (3.11).

Training then proceeds normally, as in the binary classification case.

LCE = −
M−1∑
c=0

yc log(pc) (3.11)
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Methodology – LambdaStyler

4.1 Multiple Style Transfer with LambdaStyler

Given that the primary thrust of LambdaNet is to develop an architecture that is ca-

pable of performing unstructured change detection, this network was modified to de-

termine its suitability for another unstructured technique: Fast style transfer. Based

on the work of Johnson, et al. [6], it is known that a residual autoencoder is able to

efficiently transfer a single style of artwork onto a provided content image. Drawing

inspiration from this, an end-to-end trainable version of LambdaNet was constructed,

called LambdaStyler. This architecture is shown as Figure 4.1.

The goal of this architecture is to perform multiple style transfer. Traditional

fast style transfer [6] is restricted, such that the transformation network only learns a

single artistic style. Under multiple style transfer, a single network is trained to impart

one of many selectable styles to the content image. During inference, the reference

input is designated as the content image input, while the target input is reserved for

the style image. The network then evaluates imagery in the same manner as in the

change detection case. The encoders reduce the input images to activation maps,

which are then concatenated, and passed into the decoder section, which merges the

maps into the final stylized image. By changing the style image, different styles can

be imparted to the content image.
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Figure 4.1: LambdaStyler: An end-to-end trainable architecture, based on a residual
autoencoder.

Training is accomplished using a variation on the process used in the work of

Johnson, et al. [6]. A VGG16 encoder trained on ImageNet is connected to the out-

put of LambdaStyler as a perceptual loss function, while the same style and content

loss functions detailed in Equations (2.1) to (2.5) were used. The difference is that

instead of training on a single style image, multiple styles are used. Each pair of style

and content images are first fed into the loss network, saving the respective activa-

tion maps. This same pair of images are then fed into the LambdaStyler network.

This output is then passed through the VGG16 encoder and the style and content

maps saved. These maps are then used to compute the total loss for the network.

Backpropagation proceeds through the VGG16 loss network (whose coefficients are

frozen) and into the LambdaStyler network, where the coefficients are updated. In

order to prevent overfitting, the input images are randomly swapped. The result is

a network that is able to merge two input images into a single stylized output. This

modified training architecture is shown as Figure 4.2.

35



CHAPTER 4. METHODOLOGY – LAMBDASTYLER

Figure 4.2: Training architecture for the LambdaStyler.

Training is accomplished using a selection of style images, in conjunction with the

MS-COCO dataset [7], which form the content images. LambdaStyler was trained

to impart one of four distinct styles to the provided content images, shown as Figure

4.3. Sample content images are shown as Figure 4.4.

Figure 4.3: Style images used in training of LambdaStyler. Upper left is Udnie, by
Francis Picabia. Upper right is Rain Princess, by Leonid Afremov. Lower left is Mosaic

(artist unknown). Lower right is Candy (artist unknown).
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Figure 4.4: Sample content images from MS-COCO [7] used in training of LambdaStyler.

These images are paired together before being applied to the network inputs,

where training occurs according to the above procedure. Once training is complete,

the loss network is discarded. At this point, content images can be stylized by setting

the desired style target and applying content images to the reference input.
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Results

This chapter provides information on the results obtained from LambdaNet and

LambdaStyler. Section 5.1 provides the sequence of results, for both imagery and

metrics, which detail the evolution of the network architecture. Section 5.2 details

the overall performance of the selected LambdaNet model. Next, Section 5.3 presents

the results for multi-class directional change detection, detailing both imagery and

metrics. Finally, Section 5.4 presents the results of LambdaNet’s conversion to Lamb-

daStyler.

5.1 Finalized LambdaNet Architecture

Subsection 5.1.1 details the initial evaluation of all six of the candidate models. Sub-

section 5.1.2 shows the subsequent selection of the top performing models, along with

results from more in-depth testing. Subsection 5.1.3 covers the final refinement steps

and the associated results for the selected version of LambdaNet.

5.1.1 Stage 1 Testing

The first stage of testing was designed as a coarse evaluation of the individual im-

plementation’s performance on the Change Detection 2014 dataset [1], in order to

quickly eliminate the lowest performing models. Due to the volume of results and the

desire for a quantified measure of performance, the primary method of evaluation is
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the F1 Score, presented as Table 5.3. The abbreviations used in the following results

tables are given in Tables 5.1 and 5.2.

Abbreviation Definition Description

FVGG Full VGG VGG-based network that contains learned
encoders and decoders

FMS Full Multi-Scale Multi-scale network that contains learned
encoders with Res2Net layers and learned
decoder with Res2Net layer

FRES Full ResNet ResNet-based network that contains learned
encoders and decoder

HVGG Hybrid VGG VGG-based network with pre-trained VGG
encoders and learned decoder

HMS Hybrid Multi-Scale Multi-scale network that contains pre-trained
VGG encoders and learned decoder with
Res2Net layer

HRES Hybrid ResNet ResNet-based network that contains
pre-trained VGG encoders and learned
ResNet decoder

Table 5.1: Listing of network abbreviations used in results tables.

Abbreviation Definition

Config Configuration
Spec Specificity
FPR False Positive Rate
FNR False Negative Rate
PWC Percent Wrong Classification
F1 F1-Score
Prec Precision
mIoU Mean Intersection Over Union

Table 5.2: Listing of metric abbreviations used in results tables.

39



CHAPTER 5. RESULTS

Config Recall Spec FPR FNR PWC F1 Prec mIoU

FMS 0.5984 0.9796 0.0204 0.4016 3.4896 0.5667 0.5382 0.3954
FRES 0.5815 0.9740 0.0260 0.4185 4.0954 0.5199 0.4701 0.3513
FVGG 0.6856 0.9650 0.0350 0.3144 4.5609 0.5341 0.4375 0.3644
HMS 0.6657 0.9864 0.0136 0.3343 2.5817 0.6629 0.6601 0.4958
HRES 0.7065 0.9833 0.0167 0.2935 2.7253 0.6641 0.6265 0.4971
HVGG 0.6323 0.9858 0.0142 0.3677 2.7701 0.6352 0.6380 0.4654

Table 5.3: Metric results for Stage 1 evaluation of LambdaNet. Top performing models
by F1 Score are in boldface. Abbreviations can be found in Tables 5.1 and 5.2.

As seen in Table 5.3, the uniformly highest performing models were the hybrid

variants of LambdaNet (HVGG, HMS, and HRES). These models combine encoders

pre-trained on ImageNet, with VGG, residual, and multi-scale decoder types. The

hybrid models exhibit improved performance, due to the wider sensitivity of the pre-

trained encoders, which are capable of extracting information about a larger variety of

objects. On the other hand, the fully end-to-end trained architectures (FVGG, FMS,

and FRES) lack this increased sensitivity, as they only have access to the information

contained within the dataset. This information is limited to only a few object types,

including cars, pedestrians, and a handful of miscellaneous objects, such as boxes and

signs.

Qualitatively, the results shown in Table 5.3 show that for the same test image the

change segmentation is much more irregular for the end-to-end models than for the

hybrid models. This is further reflected in the higher mean IoU scores for the hybrid

models. This can be observed in the test images shown as Figure 5.1. Furthermore, it

can be observed that unstructured change detection behavior is beginning to emerge

in some of the architectures, particularly in the end-to-end VGG and multi-scale, and

the hybrid residual network.
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(a) Test image from end-to-end trained
VGG-based network (Figure 3.2a).

(b) Test image from hybrid trained
VGG-based network (Figure 3.2b).

(c) Test image from end-to-end trained
residual network (3.2c).

(d) Test image from hybrid trained residual
network (Figure 3.2d).

(e) Test image from end-to-end trained
multi-scale network (Figure 3.2e).

(f) Test image from hybrid trained
multi-scale network (Figure 3.2f).

Figure 5.1: Sample test images from evaluated architectures.

5.1.2 Stage 2 Testing

The second stage of testing was developed to more intensively evaluate the top per-

forming architectures from Stage 1, these being the hybrid versions of the VGG,
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residual, and multi-scale networks. Again, the F1 score was chosen as the primary

metric for network evaluation, supplemented with a qualitative examination of se-

lected test images.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HMS 0.8283 0.9712 0.0288 0.1717 3.6421 0.7085 0.6190 0.5486
HRES 0.7263 0.9789 0.0211 0.2737 3.4591 0.6917 0.6603 0.5287
HVGG 0.6795 0.9806 0.0194 0.3205 3.5532 0.6714 0.6636 0.5054

Table 5.4: Metric results for Stage 2 evaluation of LambdaNet, utilizing reference-target
split C. Top performing models by F1 Score are in boldface. Abbreviations can be found

in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HMS 0.4762 0.9944 0.0056 0.5238 1.3255 0.5140 0.5584 0.3459
HRES 0.4319 0.9967 0.0033 0.5681 1.1627 0.5224 0.6608 0.3535
HVGG 0.4774 0.9917 0.0083 0.5226 1.5827 0.4704 0.4636 0.3075

Table 5.5: Metric results for Stage 2 evaluation of LambdaNet, utilizing reference-target
split G. Top performing models by F1 Score are in boldface. Abbreviations can be found

in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HMS 0.7852 0.9803 0.0197 0.2148 4.5590 0.8207 0.8595 0.6959
HRES 0.8336 0.9833 0.0167 0.1664 3.6549 0.8584 0.8846 0.7519
HVGG 0.8175 0.9732 0.0268 0.1825 4.7459 0.8207 0.8239 0.6959

Table 5.6: Metric results for Stage 2 evaluation of LambdaNet, utilizing target-target
split B. Top performing models by F1 Score are in boldface. Abbreviations can be found

in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HMS 0.7858 0.9796 0.0204 0.2142 3.1486 0.7399 0.6992 0.5872
HRES 0.7038 0.9868 0.0132 0.2962 2.9332 0.7323 0.7632 0.5777
HVGG 0.8281 0.9757 0.0243 0.1719 3.2756 0.7424 0.6728 0.5903

Table 5.7: Metric results for Stage 2 evaluation of LambdaNet, utilizing target-target
split D. Top performing models by F1 Score are in boldface. Abbreviations can be found

in Tables 5.1 and 5.2.
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Config Recall Spec FPR FNR PWC F1 Prec mIoU

HMS 0.6470 0.9757 0.0243 0.3530 3.5610 0.5552 0.4862 0.3842
HRES 0.7867 0.9512 0.0488 0.2133 5.4458 0.4981 0.3644 0.3316
HVGG 0.7282 0.9632 0.0368 0.2718 4.4860 0.5272 0.4132 0.3580

Table 5.8: Metric results for Stage 2 evaluation of LambdaNet, utilizing category
holdout split “Intermittent Object Motion”. Top performing models by F1 Score are in

boldface. Abbreviations can be found in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HMS 0.7466 0.9898 0.0102 0.2534 1.9187 0.7411 0.7356 0.5886
HRES 0.7384 0.9930 0.0070 0.2616 1.6333 0.7688 0.8018 0.6244
HVGG 0.7445 0.9910 0.0090 0.2555 1.8072 0.7518 0.7594 0.6024

Table 5.9: Metric results for Stage 2 evaluation of LambdaNet, utilizing category
holdout split “Shadow”. Top performing models by F1 Score are in boldface.

Abbreviations can be found in Tables 5.1 and 5.2.

Examination of the results in Tables 5.4 through 5.9 show a diversity of top

performing models. The hybrid multi-scale architecture places first in F1 Score twice,

while the residual architecture places first three times, and the VGG architecture

places first once. However, closer examination of Table 5.7 shows that the margin

between the VGG-based model and its runner up, a multi-scale architecture, is only

0.0025 points difference. Compared to the other top performing models, which in

nearly all cases best their runners up by an order of magnitude larger difference, this

can be considered a tie. As a result, there are an equal number of first place finishes

for the residual and multi-scale architectures.

5.1.3 Stage 3 Testing

Stage 3 testing evaluates the merging of residual and multi-scale architectures, ac-

cording to Figure 3.5, utilizing the same data splits used in stage 2 testing. Metric

results are shown in Tables 5.10 through 5.15.
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Config Recall Spec FPR FNR PWC F1 Prec mIoU

HM1RES 0.7419 0.9795 0.0205 0.2581 3.3212 0.7048 0.6712 0.5441
HM2RES 0.7462 0.9705 0.0295 0.2538 4.1442 0.6580 0.5885 0.4904
HM3RES 0.7261 0.9796 0.0204 0.2739 3.3925 0.6958 0.6679 0.5335

Table 5.10: Metric results for Stage 3 evaluation of LambdaNet, utilizing random
reference-target split C. Top performing models by F1 Score are in boldface.

Abbreviations can be found in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HM1RES 0.4628 0.9968 0.0032 0.5372 1.1085 0.5514 0.6820 0.3807
HM2RES 0.4583 0.9963 0.0037 0.5417 1.1648 0.5367 0.6475 0.3668
HM3RES 0.5377 0.9970 0.0030 0.4623 0.9785 0.6180 0.7265 0.4472

Table 5.11: Metric results for Stage 3 evaluation of LambdaNet, utilizing random
reference-target split G. Top performing models by F1 Score are in boldface.

Abbreviations can be found in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HM1RES 0.8354 0.9814 0.0186 0.1646 3.7959 0.8540 0.8734 0.7452
HM2RES 0.8286 0.9826 0.0174 0.1714 3.7829 0.8534 0.8797 0.7443
HM3RES 0.8243 0.9864 0.0136 0.1757 3.5126 0.8618 0.9029 0.7572

Table 5.12: Metric results for Stage 3 evaluation of LambdaNet, utilizing random
target-target split B. Top performing models by F1 Score are in boldface. Abbreviations

can be found in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HM1RES 0.7551 0.9865 0.0135 0.2449 2.6711 0.7632 0.7715 0.6171
HM2RES 0.7192 0.9865 0.0135 0.2808 2.8737 0.7405 0.7631 0.5879
HM3RES 0.7979 0.9825 0.0175 0.2021 2.7978 0.7648 0.7343 0.6191

Table 5.13: Metric results for Stage 3 evaluation of LambdaNet, utilizing random
target-target split D. Top performing models by F1 Score are in boldface. Abbreviations

can be found in Tables 5.1 and 5.2.

Config Recall Spec FPR FNR PWC F1 Prec mIoU

HM1RES 0.7831 0.9615 0.0385 0.2169 4.4671 0.5463 0.4195 0.3758
HM2RES 0.8024 0.9665 0.0335 0.1976 3.9133 0.5848 0.4601 0.4133
HM3RES 0.7939 0.9627 0.0373 0.2061 4.3084 0.5587 0.4310 0.3876

Table 5.14: Metric results for Stage 3 evaluation of LambdaNet, utilizing category
holdout split “Intermittent Object Motion”. Top performing models by F1 Score are in

boldface. Abbreviations can be found in Tables 5.1 and 5.2.
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Config Recall Spec FPR FNR PWC F1 Prec mIoU

HM1RES 0.7819 0.9886 0.0114 0.2181 1.8991 0.7517 0.7238 0.6022
HM2RES 0.7877 0.9882 0.0118 0.2123 1.9140 0.7517 0.7188 0.6021
HM3RES 0.7938 0.9920 0.0080 0.2062 1.5271 0.7927 0.7915 0.6565

Table 5.15: Metric results for Stage 3 evaluation of LambdaNet, utilizing category
holdout split “Shadow”. Top performing models by F1 Score are in boldface.

Abbreviations can be found in Tables 5.1 and 5.2.

As can be seen in Tables 5.10 to 5.15, the highest performing architecture is the

hybrid residual network with three multiscale layers (HM3RES), shown in Figure

3.5c. This particular architecture performed best in terms of F1 Score on four of the

six chosen data splits. Furthermore, the Mean Intersection over Union (mIoU) metric

is also positively correlated with the F1 Score. This indicates that not only is the

change detection accuracy of the network improved, but the change segmentation is

also more uniform and less prone to having voids, as seen in Figure 5.1.

5.2 Performance of Selected LambdaNet Model

Qualitatively, there is also a wide array of significant behavior in both the structured

and unstructured change domains. One of the most important behavioral observations

is the concept of negative segmentation. Negative segmentation occurs when the

network segments a region of an image, due to the absence of a particular object.

Figure 5.2 shows a sequence of video frames from the reference-target split C of a

man cleaning snow from his vehicle, including an example of negative segmentation.

Each frame’s caption contains a brief analysis of the predicted image.
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(a) This frame shows a man cleaning
snow off his car. The person is a

structured change, while the cleared
windshield is an unstructured change.

(b) Here, the man has moved behind his
vehicle, but is still partially visible.

(c) In this case, the man is now opening
his car door. As this change is labelled in

the ground truth, it is considered
structured.

(d) The man has now opened the door
of his car. This change is considered a

structured change.

(e) These change detections are purely
unstructured. The car’s windshield is

clear and has been marked as a change.
In addition, the two points below the
windshield are marked from the car’s

activated headlights.

(f) This frame contains both structured
and unstructured changes. The primary
structured change is the detection from
the car pulling away down the driveway.

The vehicle’s prior location is also
segmented.

Figure 5.2: Sequence of video frames showing a man cleaning snow off his car, then
driving away. (Legend: Upper Left = Reference Image, Upper Right = Target Image,

Lower Left = Ground Truth, Lower Right = Change Prediction.)
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This behavior is present in other videos, as well. Figure 5.3 shows a child clearing

bottles off a table. This particular video was filmed using a thermal camera. Further-

more, this video was taken from a differently trained version of LambdaNet, where

all thermal videos were withheld from the training set. Despite this, the network is

not only still able to indicate structured changes in the image pairs, but is also able

to mark unstructured changes.

(a) The child begins clearing the table. She
is considered a structured change, as she is

marked in the ground truth image.

(b) The child has begun to clear off the
table. The network is beginning to register

small unstructured changes as a result.

(c) The child has moved most of the bottles
off the table, causing the unstructured

change marks to grow in size. A number of
bottles appear along the bottom row of the

prediction as structured changes.

(d) The child has completed clearing the
table. The new locations of the bottles are

shown as structured changes along the
bottom of the predicted image. The large
change mark is a negative segmentation,

indicating the removal of the bottles, which
is an unstructured change.

Figure 5.3: Sequence of video frames showing a child clearing bottles from a table.
Video is shot with a thermal camera. (Legend: Upper Left = Reference Image, Upper

Right = Target Image, Lower Left = Ground Truth, Lower Right = Change Prediction.)
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This unstructured behavior is a result of the Siamese-type architecture of the

network, combined with a common decoder. Standard semantic segmentation net-

works usually operate only on a single image at a time and learn a function mapping

regions of the input image into specific class domains. LambdaNet operates in a

different manner, eschewing class-based ground truth in favor of a simpler binary

labelling scheme of change or no change, reducing its dependence on semantic data.

Since the change marks indicate differences between the image pairs, the common

decoder in LambdaNet instead learns a separation function that ignores common ele-

ments between images and only highlights their differences. Further examples of this

behavior are shown in Figures 5.4 to 5.7.

(a) A man walking with a briefcase. He is a
structured change, while his shadow is

unstructured.

(b) Example of LambdaNet marking a
purely structured change.

(c) Example of LambdaNet marking a
purely structured change.

(d) Two men walking side-by-side. The
change from the men is considered

structured, while shadows are unstructured.

Figure 5.4: A video of people walking past a storefront. LambdaNet is not trained on
shadows. (Legend: Upper Left = Reference Image, Upper Right = Target Image, Lower

Left = Ground Truth, Lower Right = Change Prediction.)
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(a) Note that even from an elevated angle,
the “Don’t Care” region still obscures many

possible targets.

(b) This issue extends to objects inside the
region of interest, such as the blue van.

Figure 5.5: Video of parked and moving cars taken at a low frame rate. (Legend: Upper
Left = Reference Image, Upper Right = Target Image, Lower Left = Ground Truth,

Lower Right = Change Prediction.)

(a) A man carries a bag to the sofa. All
changes are structured.

(b) The man sits on the sofa. All changes
are structured.

(c) Another man sits on the sofa next to a
briefcase. All changes are structured.

(d) A man walks past the sofa with several
objects on it. All changes are structured.

Figure 5.6: Video of people moving objects onto and off of a sofa. (Legend: Upper Left
= Reference Image, Upper Right = Target Image, Lower Left = Ground Truth, Lower

Right = Change Prediction.)
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(a) An empty table and chair. No changes
are present.

(b) A man sits down with a laptop. Both
are marked as a structured change.

(c) The man shifts position. Both him and
the laptop are marked as structured

changes.

(d) The man has left the scene with the
laptop. Residual thermal traces are marked

as unstructured changes.

Figure 5.7: Video of a man working on a laptop at a table. Video shot on thermal
camera. This trained architecture of LambdaNet was not trained on thermal videos.
(Legend: Upper Left = Reference Image, Upper Right = Target Image, Lower Left =

Ground Truth, Lower Right = Change Prediction.)

However, because the significant differences between images are indicated by a

human labelling the training dataset, this also grants the network the ability to dis-

tinguish which changes are not important, such as background noise of leaves blowing

on trees. An example of this type of insignificant change rejection is shown as Figure

5.8.
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Figure 5.8: Example image with dynamic background of leaves blowing in the wind.
Note that these changes are not marked as significant.

The quality of segmentation depends on how the network is trained. Figure 5.9

shows the same image from two differently trained versions of the network. Figure

5.9a was evaluated on a version of LambdaNet that had no boats in the training split,

while Figure 5.9b was evaluated on a version of the network that had some example

boats. However, neither network had seen this video before. In the case of Figure 5.9b,

the segmentation quality is visibly improved, showing enhanced definition in the sail,

along with the inclusion of the hull in the change segmentation. This is also reflected

in the metrics for the two networks, indicating that mixing in a small amount of

information on a specific desired target object with a larger body of unrelated change

pairs can yield a significant improvement in the network’s ability to recognize changes.
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(a) Change pair images of a boat,
evaluated with a LambdaNet not trained on
images with a dynamic background. Most
dynamic background images take place on

water, and therefore feature boats.

(b) Change pair images of a boat, evaluated
with a LambdaNet trained on images with a
dynamic background. Since some images of
boats are now included in the training set,

segmentation quality is improved,
specifically in regards to the boat’s hull.

Figure 5.9: Identical change pairs evaluated on LambdaNets with different training
splits.

Finally, Table 5.16 lists the selected LambdaNet architecture metrics against com-

peting change detection methodologies. This table was generated by evaluating the

chosen LambdaNet architecture on all eleven category splits of the Change Detection

2014 dataset, via eleven-fold cross validation. The average of each metric was then

computed and used to generate Table 5.16.

Method Recall Spec FPR FNR PWC F1 Prec

IUTIS-5 [18] 0.7849 0.9948 0.0052 0.2151 1.1986 0.7717 0.8087
SuBSENSE [16] 0.8124 0.9904 0.0096 0.1876 0.6780 0.7408 0.7509
CwisarDH [17] 0.6608 0.9948 0.0052 0.3392 1.5273 0.6812 0.7725
LambdaNet-HM3RES 0.6088 0.9810 0.0190 0.3912 2.7590 0.5520 0.5578

Table 5.16: Overall metric results comparing LambdaNet to other change detection
techniques. Abbreviations can be found in Tables 5.1 and 5.2.

LambdaNet does not achieve state of the art performance. This is likely due to

a confluence of several factors. First is that the decreased performance is specific to

only a few categories; however, those drops are significant. Table 5.17 shows the F1

Scores of all methods for each category, organized as a matrix. Due to the dataset
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chosen, one category bears special consideration, “Camera Jitter”. This category

comprises videos where the camera is shaking. In one case, however, the shaking is so

severe that it leads to the deregistration of the image. While LambdaNet does have

some capacity to handle this issue, in the most extreme cases, it is unable to recover.

This comparision is shown as Figure 5.10.

(a) Video of badminton players. Minor
camera shaking is present between reference

and target frames.

(b) Video of cars driving down the road.
Note that the shaking is so severe that

deregistration of the image occurs.

Figure 5.10: Comparison of LambdaNet’s resiliency to a shaking camera.

IUTIS-5 SuBSENSE CwisarDH LambdaNet

BW 0.8248 0.8619 0.6837 0.7429
BL 0.9567 0.9503 0.9145 0.8284
CJ 0.8332 0.8152 0.7886 0.5443
DB 0.8902 0.8177 0.8274 0.4539
IOM 0.7296 0.8986 0.5753 0.5586
LF 0.7743 0.6445 0.6406 0.4459
NV 0.529 0.5599 0.3735 0.4850
PTZ 0.4282 0.3476 0.3218 0.1226
SH 0.9084 0.8986 0.8581 0.7926
TH 0.8303 0.8171 0.7866 0.7153
TR 0.7836 0.7792 0.7227 0.3823

Table 5.17: Table comparing F1 Scores for all methods for each video category.
Significantly lower F1-Scores for LambdaNet are marked in boldface. (Legend: BW =

BadWeather, BL = BaseLine, CJ = CameraJitter, DB = DynamicBackground, IOM =
IntermittentObjectMotion, LF = LowFramerate, NV = NightVideos, PTZ =

PanTiltZoom, SH = Shadows, TH = Thermal, TR = Turbulence)
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Second, the Change Detection 2014 dataset is geared primarily towards structured

change detection. As a result, the algorithms in Table 5.16 are all structured meth-

ods. LambdaNet operates in a mixed-mode between structured and unstructured

methodologies. Due to this behavior, any structured change that LambdaNet detects

will be scored correctly, but any unstructured change detection will cause the network

to be penalized in the metric scores.

Third, there is a shortcoming in the labelling of the Change Detection 2014

dataset. Almost a quarter of the videos have associated ground truth that is marked

with large “Don’t Care” regions. In many of these regions, there are change targets,

such as cars, that are present but not marked as a change. In other cases, a change

target may be partially “obscured” by a “Don’t Care” region, resulting in a change

target that is only partially labelled. This is particularly problematic, as LambdaNet

still learns classes intrinsically, even though all objects are only labelled as binary

changes. This means that at least some of LambdaNet’s learned object definitions

may be of incomplete objects. If all change targets inside the “Don’t Care” regions

could be labelled, it may decrease the number of voids seen in the change maps.

This is particularly true when comparing images of people and cars. People are of-

ten segmented with fewer voids than cars are, as seen in Figures 5.2 and 5.4. This

causes a significant drop in accuracy for categories like “Dynamic Background,” as

they feature cars prominently. Examples of this type of labelling are shown in Figure

5.11, while an example failure from the “Dynamic Background” category is shown as

Figure 5.12.
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(a) Example of a car being marked as “No Change” due to its location in a gray “Don’t
Care” region.

(b) Example of a car fully in-frame, labelled as both “Change” and “No Change”, due to
the presence of a “Don’t Care” region.

Figure 5.11: Examples of labelling issues caused by the presence of large “Don’t Care”
regions in the Change Detection 2014 ground truth.

Figure 5.12: Change detection failure for cars in the “Dynamic Background” category.
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Fourth, LambdaNet itself is sensitive to changes in scene illumination. This is

likely related to the network’s ability to detect unstructured changes, which appears

to operate at some level on color differences. This can cause significant detections

to occur solely due to lighting, as shown in Figure 5.13, where a change detection

is marked due to a darker location in the target image. This occurs frequently in

the “Night Videos” category, as many of these videos feature extreme glare from car

headlights or streetlights and would account for the poor performance in this category.

Figure 5.13: Video frame from a highway exit ramp at night. Erroneous change
detection was caused by extreme glare from the headlights of oncoming traffic.

Lastly, LambdaNet struggles to identify changes between objects that are ex-

tremely small and/or occluded, as shown in Figure 5.14. This is particularly concern-

ing, as these are the situations that a human would also find the most difficult. This

is likely related to issues with ground truth labelling. In particular, the “Low Framer-

ate” and “Turbulence” video categories consist entirely of extremely small automotive

change targets.
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Figure 5.14: Samples where LambdaNet misses a change, due to small object size and
partial occlusion.

However, there are two techniques which may be able to boost accuracy perfor-

mance. First would be to generate custom reference background images in a pre-

processing step. This would ensure that these images would be free from any target

objects that could cause false detections. The second method involves the incorpo-

ration of an auxiliary network in parallel with LambdaNet. This network would be

responsible for generating semantic segmentation maps of objects of interest, while

LambdaNet focuses on identifying changes between the image pairs. The outputs

of these networks could then be correlated, such that structured changes could be

marked via a high resolution segmentation map. This would effectively suppress the

unstructured portion of LambdaNet’s behavior, allowing for a fairer comparison with

the structured methods. Both of these operations could be performed with the work

of Savakis, et al. [27].

More extreme changes to the dataset may also be helpful. A significant number of

video frames in the Change Detection 2014 [1] dataset are unlabelled. One option may

be to utilize a semantic segmentation network to label these frames automatically.

This data could then be used as a training set for LambdaNet, which would fully elim-

inate the issues caused by the restrictive “Don’t Care” regions during training. The

already labeled images from the dataset would then be relegated to a validation set,

maintaining the ability to compare results with existing change detection methods.
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5.3 Directional Change Performance

This stage of testing focused on the selected architecture for LambdaNet, shown in

Figure 3.5c, when extended to the directional change domain. Quantitative analy-

sis is primarily driven by Table 5.18, which compares directional change detection

performance with the overall performance of the binary change detection version of

LambdaNet, trained on random target-target splits.

Change Class Recall Spec FPR FNR PWC F1 Prec mIoU

Binary (BC) 0.7292 0.9752 0.0248 0.2708 3.6564 0.6682 0.6395 0.5137
Additive (AC) 0.5940 0.9916 0.0084 0.4060 1.7904 0.6150 0.6447 0.4504
Subtractive (SC) 0.6329 0.9910 0.0090 0.3671 1.7296 0.6288 0.6399 0.4660
Exchange (EC) 0.4217 0.9888 0.0112 0.5783 0.3831 0.2452 0.1955 0.1556
Average 0.5495 0.9905 0.0095 0.4505 1.6343 0.4963 0.4934 0.3573

Table 5.18: Overall metric results comparing the directional change LambdaNet to
binary change LambdaNet. Binary line indicates the baseline binary change detection

version of LambdaNet, trained on the same random target-target dataset splits. Average
line indicates the average metrics for additive change, subtractive, change, and exchange.

Abbreviations can be found in Tables 5.1 and 5.2.

Table 5.18 was generated by first treating each directional change class as a one

versus all binary classification problem. This means the Additive Change (AC) met-

rics were computed as the positive binary class versus the negative classifications of

No Change (NC), Subtractive Change (SC), and Exchange (EC). This process was

repeated for the subtractive and exchange classes. This method was chosen, as it al-

lows for the direct comparison of each directional class with the baseline of the binary

change version of LambdaNet.

Inspection of Table 5.18 shows that the AC and SC metrics compare favorably

with the binary LambdaNet’s version of change detection. This is especially true for

the specificity, false positive rate, percent wrong classification, F1 score and precision.

Somewhat concerning is the lowered recall and mean intersection over union (mIoU)

and elevated false negative rate. This is indicative that there may be a larger number
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of voids in the directional change segmentations than in the binary change segmen-

tations. Furthermore, the similarity of the AC and SC metric scores indicate that

LambdaNet has learned both of these directional classes equally well. Unfortunately,

the EC class performs poorly across the board, indicating that the directional change

scheme has severe difficulties identifying object swaps. Overall, though, the primary

source of accuracy degradation is the EC class, due to unstructured changes. This

is borne out qualitatively in the results images, shown in Figures 5.15 through 5.22.

Figure 5.15 shows pedestrians on a sidewalk.

(a) Image pair showing a man in a suit
marked as a blue subtractive change and a

woman as a red additive change.

(b) Reversal of input images in Figure
5.15a. Note that the segmentations are

similar, but the directionality is reversed.

Figure 5.15: Video of pedestrians walking and biking on pavement. (Legend: Upper Left
= Reference Image, Upper Right = Target Image, Lower Left = Ground Truth, Lower

Right = Change Prediction.)

Both the frames chosen in Subfigures 5.15a and 5.15b are the same; however,

they are reversed between the two results images. This shows that the directional

change scheme can correctly identify additions and removals from a pair of images.

Furthermore, the segmentations of the man and woman are similar to their reversed

counterparts. This provides further indication that LambdaNet is not biased in per-

formance towards additive or subtractive change.
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(a) The co-location of the two men is
marked as a green exchange.

(b) Reversal of input images in Figure
5.16a. Note that the exchange marking is

largely unchanged.

Figure 5.16: Video of two men walking down a hallway. Each one occupies the same
spot at a different time. (Legend: Upper Left = Past Target Image, Upper Right =

Current Target Image, Lower Left = Ground Truth, Lower Right = Change Prediction.)

Figure 5.16 shows an example of the Exchange class identifying an object swap.

In the case of this exchange, the two change targets are located nearly on top of

each other. As a result, this interaction is marked almost exclusively as an exchange

of targets. Even when the target frames are reversed, this exchange region remains

constant, which is consistent with the intuitive understanding of an object swap.

For the final case, Figure 5.17 shows an object exchange, where the two objects

are offset from each other. In this case, the standing man’s head is considered a

subtractive change, while his extended arms in the sitting position are an additive

change. However, where these two entities overlap is an exchange. When these target

images are reversed, the additive and subtractive change markings reverse, which

is consistent with Figure 5.15. Furthermore, the exchange region stays relatively

constant, which is also consistent with Figure 5.16.
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(a) A man sits down in a chair. (b) Reversal of input images in Figure
5.17a.

Figure 5.17: Thermal video of a man sitting with a laptop in a library. (Legend: Upper
Left = Reference Image, Upper Right = Target Image, Lower Left = Ground Truth,

Lower Right = Change Prediction.)

Prior figures focused exclusively on tracking structured changes with the direc-

tional change methodology. The following image sets target unstructured directional

changes in images analyzed with LambdaNet. Figure 5.18 revisits the video of a child

clearing a table under the directional change paradigm.

(a) Child marked as structured additive
change. Bottles are marked as an

unstructured change, which is both additive
and an exchange.

(b) Reversal of input images in Figure
5.18a.

Figure 5.18: Video of a child removing bottles from a table. (Legend: Upper Left =
Reference Image, Upper Right = Target Image, Lower Left = Ground Truth, Lower Right

= Change Prediction.)

Figure 5.18 illustrates the unstructured change detection behavior first exposed in
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the binary classification form of LambdaNet is still present in the directional change

version of the network. However, it also appears that while this desired behavior is

still present, it is not strongly associated with a particular change class, as evidenced

by the mix of classes used to mark the moved bottles. This can also be seen in Figure

5.19.

(a) Men marked as structured additive
change, while their shadows are

unstructured. Note all three classes are
present in the unstructured change.

(b) Reversal of input images in Figure
5.19a.

Figure 5.19: Video of men walking down the sidewalk. (Legend: Upper Left = Reference
Image, Upper Right = Target Image, Lower Left = Ground Truth, Lower Right = Change

Prediction.)

The directional change version of LambdaNet also shares the same drawbacks

as the binary change version. Its unstructured behavior is still penalized in the

same manner as in the binary case, while the labelling issues with the “Don’t Care”

regions in the ground truth still lead to incomplete learned representations. This is

particularly visible in the ground truth image in Figure 5.20 and yields a lower quality

segmentation for the structured change of the vehicles.

Furthermore, the illumination sensitivity and small object issues are still present

for the directional change version of LambdaNet. This can be seen in Figure 5.21.
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(a) Cars passing each other at different
times on the same street.

(b) Reversal of input images in Figure
5.20a.

Figure 5.20: Cars driving down a two way street at different times. (Legend: Upper Left
= Past Target Image, Upper Right = Current Target Image, Lower Left = Ground Truth,

Lower Right = Change Prediction.)

(a) All cars are missed as change
detections.

(b) Reversal of input images in Figure
5.21a. Note lighting creates a false additive

change detection.

Figure 5.21: Cars driving off a highway exit at night. (Legend: Upper Left = Reference
Image, Upper Right = Target Image, Lower Left = Ground Truth, Lower Right = Change

Prediction.)

There is one additional issue with the directional change version of LambdaNet

that is not present in the binary version, which involves the unstructured detections.

In some cases, a structured change will occur in the same spatial region as an un-

structured change. This is especially apparent in Figure 5.22.
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(a) Inability of the network to process a
structured change (child) and unstructured

change (bottles) in the same location.

(b) Reversal of input images in Figure
5.22a.

Figure 5.22: Directional change is unable to track co-located structured and
unstructured changes. (Legend: Upper Left = Reference Image, Upper Right = Target

Image, Lower Left = Ground Truth, Lower Right = Change Prediction.)

In this situation, the network is unable to distinguish which pairs of changes belong

with which classes. This is likely due to the complexity of the change taking place.

LambdaNet is attempting to process this region as a single change, when in reality it

is two different changes taking place concurrently. These two changes would be the

girl’s presence in front of the bottles and the absence of some of the bottles. This

results in an extremely incoherent segmentation, as LambdaNet is trying to operate

in both the structured and unstructured domains simultaneously. From a standpoint

of novel behavior, this is desirable. However, due to its inconsistent operation, it is

also detrimental to the collected performance metrics for structured change detection.

5.4 Performance of LambdaStyler

Due to the subjective nature of artistic style transfer, this section focuses on a qual-

itative analysis of LambdaStyler’s output. Figure 5.23 shows a set of sample output

triplets for both LambdaStyler and the Fast Residual technique [6]. These results

were generated using the same style and content weights used for the Fast Residual

case, which were 1e10 and 1e5, respectively. Figure 5.23 shows that the LambdaStyler
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network effectively transfers both high and low frequency information, in addition to

color, from the target style into the content image. In the case of the Udnie painting,

which is largely composed of flat regions and pastel colors, the content image has had

its colors muted, with most of the high frequency content of the content image also

being removed. This manifests as a loss of detail in regions such as the blue blanket

and the dog’s fur. These regions have been rendered into pastel “panels”, similar in

structure to the large, flat regions in Udnie. This behavior is very similar to that

found in the Candy and Rain Princess paintings.

The results of Mosaic are particularly interesting, due to the style elements that

were transferred. Mosaic is painted in a style evocative of stained glass, with a focus

on heavy, dark outlines around regions of bright, flat color. When used as a style

image, the expected color and frequency information is applied to the content image.

However, edge information was also utilized, in the form of thick black outlines that

were applied to the objects in the content image. This was done in spite of the fact

that there is no explicit edge information processed during training.

In general, the output of LambdaStyler compares favorably with that of the fast

residual autoencoder technique of Johnson, et al. [6]. Figure 5.23 shows sample

output from the fast residual technique, with the same content and style images

utilized for the LambdaStyler evaluation. The transferred style for each network is

qualitatively very similar, especially with respect to Udnie (Figure 5.23a) and Rain

Princess (Figure 5.23c). However, there is one important difference in how these

results were generated. In the case of the fast residual autoencoder, generating each

of these four stylized images requires four independently trained stylization networks,

as one network can only learn one style. With LambdaStyler, only one network needed

to be trained to generate imagery using all four styles.

LambdaStyler also exhibits an additional unique behavior. In each of the stylized

images shown in Figure 5.23, each one has a fixed style artifact present. Figure 5.24
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(a) Output of LambdaStyler and Fast Residual networks using
the Udnie style image.

(b) Output of LambdaStyler and Fast Residual networks using
the Candy style image.
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(c) Output of LambdaStyler and Fast Residual networks using
the Rain Princess style image.

(d) Output of LambdaStyler and Fast Residual networks using
the Mosaic style image.

Figure 5.23: Sample output of LambdaStyler and Fast Residual networks. (Legend:
Upper Left – Style Image, Upper Right – Content Image, Lower Left – LambdaStyler

Output, Lower Right – Fast Residual Output)
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shows the image artifacts present for each style. In every case, except for Udnie, the

output image accrues repeating elements from the style image in the corners of the

output. (For Udnie, these artifacts take the form of a black and green set of blobs

nearer the center.) This is particularly clear in the case of Mosaic, where the upper

right corner of the image always contains the exact same pattern.

However, closer inspection shows that none of these inserted artifacts are actually

present in the style image, meaning that they are generated by the network itself,

and may not result from overfitting. This is readily apparent in the Candy output

images, as elements such as the red curve in the upper right corner or the flowers

along the bottom edge, do not appear in the style image. In an attempt to remove

these artifacts, a hyperparameter search was undertaken. This search varied the style

weight from 1e5 to 1e10 (content weight was kept fixed at 1e5) and the number

of epochs were swept from 2 to 10. While some tuning was able to eliminate the

artifacting, specifically setting the style weight and content weight to be equal at 1e5,

this generated an output image which was almost identical to the content image.

As a result, this artifacting may be intrinsic to the LambdaStyler architecture.

Under fast style transfer, such as that of Johnson, et al. [6], the information from

the style image is imparted to the content image over the entire network. Under the

LambdaStyler, the first half of the network is used to encode the content and style

images down to a pair of intermediate representations, which are then merged at the

fusion node. This leaves only half of the network weights available to merge the two

representations together. The artifacting may be a result of this bottleneck fusion,

as the remaining half of the network is insufficient to fully merge the two images

together.
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(a) Sample of LambdaStyler artifacting on Udnie style image
(far left). Note black and white striped blob in upper right

corner and green blob in lower left corner of the output
images.

(b) Sample of LambdaStyler artifacting on Candy style
image (far left). Note the presence of the same “flowers” in
the upper corners and bottom edge of the output images.
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(c) Sample of LambdaStyler artifacting on Rain Princess
style image (far left). Note the common texture elements in

the corners of the output images.

(d) Sample of LambdaStyler artifacting on Mosaic style
image (far left). Note the common geometric patterns in the
upper right corner and bottom edge of the output images.

Figure 5.24: Illustration of artifacting in LambdaStyler network. (Legend: Top Row –
Content Images, Lower Left – Style Image, Lower Center and Lower Right – Stylized

Outputs from LambdaStyler)

Finally, an untrained style image was used as an input to the LambdaStyler.
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This image was The Starry Night by Van Gogh, shown in Figure 5.25. The results

of this stylization are shown as Figure 5.26. As expected, LambdaStyler does not

perform as well on untrained styles. While it does succeed in transferring some level

of color information, it largely fails to incorporate any textures from the style image

into the content image. This is especially apparent when compared to the stylization

performed using the trained Udnie image. In the case of this image, a large amount of

low frequency information is incorporated into the content image, flattening several

high frequency regions, such as the dog’s fur. When using the Starry Night painting,

none of the high frequency brush strokes are incorporated into the content image.

Qualitatively, it appears that LambdaStyler is shifting the mean of a region of the

content image to the average of the corresponding area of the style image. This is

readily apparent, as in the style image, there is a bright yellow moon in the top right

corner. In both the stylized images shown in Figure 5.26, there is a bright yellow shape

shown in that same location. As a result, it does not appear that LambdaStyler is

currently able to transfer unknown styles.

Figure 5.25: The Starry Night by Van Gogh.
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Content Images Stylized Images

Figure 5.26: Sample outputs of LambdaStyler, when using an untrained style image.
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Discussion

Development of the proper network architecture for LambdaNet was critical to the

performance of the final trained models. In order to arrive at an effective architecture,

a set of base models were created featuring elements from other commonly used CNNs,

including VGG (both untrained and pre-trained) and ResNet architectures. Since it

was observed that the size of objects often played a significant role in the quality

of the output segmentation map, multi-scale information was also included, in the

form of the Res2Net layer. An approach, inspired by genetic algorithms, was then

used to evaluate and remix these various network components into a new network

configuration, capable of recognizing both structured and unstructured changes in

image pairs at multiple scales.

Next, this finalized architecture was modified to perform directional change de-

tection. Under this paradigm, a change is not only characterized by the presence or

absence of an object in the image pair, but also in which frame, either reference or tar-

get, the object appears in. This results in four different possible classes: No change,

additive change, subtractive change, and exchange. This classification scheme allows

objects to be tracked based on how they enter or leave a scene.

Finally, to confirm LambdaNet’s suitability for generally unstructured operations,

a custom version of the architecture was developed for the purpose of performing

artistic style transfer. Called LambdaStyler, this network is capable of applying a
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variety of styles to a provided content image. Selection of the style is performed

by using an image of a painting as the target image, while supplying a photograph

as the reference image. Training is performed utilizing a perceptual loss network to

balance the quantities of style and content information present in the output image.

Once complete, this loss network is discarded and content images can be stylized by

providing the appropriate artistic input.

Based on the demonstrated results, the following conclusions can be drawn:

• LambdaNet is a viable network architecture for performing binary change de-

tection.

• Incorporation of encoders pre-trained on ImageNet, along with the addition of

mutliscale elements into the network architecture, provide a significant accuracy

boost.

• The Siamese portion of LambdaNet, with its parallel encoder and common

decoder architecture, allow the network to extract additional unstructured, un-

labelled change information from the image pairs.

• The combination of structured and unstructured change detections mean that

LambdaNet operates in a mixed-mode, performing both structured and un-

structured change detection.

• LambdaNet is also able to be effectively extended to perform directional change

detection, where structured and unstructured changes are marked according to

the order in which change targets are added or removed from the image pairs.

• LambdaNet can be easily modified into LambdaStyler to perform artistic style

transfer, which is a fully unstructured operation.

• LambdaStyler is able to learn multiple unrelated artistic styles in a single net-

work and effectively apply them to any content image.
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6.1 Future Work

This work focused primarily on the development of a high-performing LambdaNet

architecture for structured and unstructured change detection using labelled change

maps. Further experimentation with the architecture revealed that it was also capable

of performing other unstructured operations, such as artistic style transfer. In the

case of style transfer, no actual labelled ground truth is required, due to its reliance on

a loss network during training to balance the contributions from the content and style

images. Future work may attempt to fuse these two domains, eliminating the need

for labelled change pair training data by using a modified loss network to compute

the relevant changes between input image pairs.
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