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ABSTRACT 

 

The U.S. produces an estimated 63 million tons of food waste per year. Interest from state 

and local governments in diverting unused food from landfills to alternative treatment facilities is 

growing. However, this emerging food waste (FW) stream will face logistics challenges as 

diversion networks expand. Current methods for evaluating challenges are insufficient for 

providing solutions for network development because they do not explore the impacts of variability 

in the food waste management system. This dissertation aims to fill this knowledge gap by 

exploring three key research areas.  

First, variability in FW generation from different types of commercial generators is 

characterized. Empirically collected data is combined with the prevailing FW estimation method 

to characterize how generator attributes, temporal variability, and spatial heterogeneity in FW 

generation could impact development of diversion networks. Results show that representing FW 

generation from commercial sources in New York State with a single annual value is likely 

inadequate for policy and planning purposes due to the uncertainty surrounding anticipated FW 

generation.  

Second, two transportation models are presented to understand how variability in spatial 

locations and generation rates affects FW collection. Results indicate that in residential systems 

with uniform generation rates, increasing spatial density of participants is critical to reducing 

service costs. In commercial systems, the inherent heterogeneity of food waste generation rates is 

important to reduce costs for initial collection services.  

Finally, material inputs and digestate management are incorporated into a FW treatment 

facility siting method. Results show that digestate transportation distance is critical for ensuring 

that land application of digestate does not overload nearby farm fields with phosphorus. This 
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dissertation contributes to the body of scientific knowledge for waste management through the 

creation of novel, generalizable methods that investigate the impacts of variability on logistics 

decisions to inform development of effective food waste management networks. 
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CHAPTER 1 

INTRODUCTION TO FOOD WASTE MANAGEMENT AND LOGISTICS NETWORKS 

 

The production and disposal of food waste (FW) along the food supply chain is a growing 

global concern. In the United States alone, the amount of food wasted in the past decade has been 

estimated between 49 to 89 million metric tons per year (Buzby et al., 2014; Conrad et al., 2018; 

ReFED, 2017). Most FW in the U.S. is disposed at landfills as part of conventional municipal solid 

waste management, a practice that results in an estimated 115 to 160 million metric tons of CO2e 

greenhouse gas emissions per year (Heller and Keoleian, 2015; Venkat, 2011). Recent research 

has focused on alternatives to landfilling, such as anaerobic digestion and composting to add value 

to FW (Ki Lin et al., 2013; Vandermeersch et al., 2014; Zhang et al., 2014). However, shifting to 

a new FW waste management approach requires overcoming information gaps, deployment of FW 

resource recovery technology, and increased voluntary participation by generators.  

 The increasing public desire to manage FW more sustainably than landfilling usually 

manifests itself in two ways. Governments at many levels have limited the landfilling of FW to 

reduce the release of greenhouse gas emissions (GHGs). An increasing number of local 

governments since 2005 have not waited for state-wide legislation or infrastructure development 

for FW management, supporting separate collection of FW for their residents (Yepsen, 2015, 

2014). Additionally, many U.S. state governments in the Northeast have implemented policies 

limiting the disposal of FW from certain food waste generators unless waivers are obtained 

(Connecticut DEEP, 2011; Institute for Local Self-Reliance, 2016; Massachusetts DEP, 2014; 

New York State Senate Assembly, 2019; Vermont Agency of Natural Resources, 2019). For 

example, the New York State (NYS) Food Donations and Food Scrap Recycling Act specifies that 

FW from commercial and institutional facilities generating more than 2,000 lbs a week and are 
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located within 25 miles (40km) must donate or recycle FW via landfill alternatives. Generators 

may petition the state for a one-year waiver if diverting FW will cause undue hardships, such as 

higher management costs from transportation and FW processing. Sparse and underdeveloped 

management infrastructure will ultimately cause slower adoption of FW diversion practices despite 

legislative initiatives. These challenges are not specific to NYS but may be encountered in other 

states that are enacting legislation and do not have the infrastructure in place to offer regional, cost 

effective solutions for FW diversion. This transition is where more research and knowledge are 

needed to develop FW management solutions that do not pose undue hardships upon generators in 

to maximize collection and diversion  

Conversely, demand for FW collection has grown organically from collections of residents 

and businesses, creating opportunities for new or existing waste management companies to provide 

FW collection services (Business for Social Responsibility (BSR), 2013; Isles et al., 2011; 

Papargyropoulou et al., 2014). While the social pressure from both bottom-up and top-down 

sources is critical to ensuring separate FW management becomes a conventional practice, solutions 

to these pressures are often local, only considering what needs to be immediately accomplished to 

satisfy current demand (Levis et al., 2010). As FW management networks grow, they will 

inevitably encounter logistics issues that should be met in part by balancing social, environmental, 

and economic goals.  

 Alternative technologies for FW treatment generally produce fewer GHG emissions 

compared to landfilling (Levis and Barlaz, 2011). However, since nearly all current waste 

collection vehicles are fossil-fuel based (Informinc, 2012; Maimoun et al., 2013), GHG emissions 

from collection and transport of FW reduces the environmental benefits gained from landfill 

diversion. Therefore, minimizing transportation activities while collecting as much FW as possible 
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will help to retain environmental benefits of diversion. Minimizing transportation activities is also 

key to reducing costs of new FW collection services. Since FW management is emerging as a new 

waste management stream, stakeholder values placed on participation in this new system vary. 

Some individuals or businesses may value environmental stewardship more than others, creating 

discrepancies in willingness-to-pay (WTP) for a FW collection service. It is important for 

collection companies and policy makers to understand the characteristics of a service network that 

will promote current and future development while balancing environmental benefits with 

economic feasibility. 

There are characteristics of FW management that set it apart from current municipal solid 

waste (MSW) and recycling networks. Food waste, unlike other materials, is constantly degrading 

during transport and storage, potentially reducing the amount of energy recoverable through 

technological processing (Nilsson Påledal et al., 2017). Energy recovery facilities must coordinate 

with FW generators and collection companies to source a consistent and suitable feedstock 

required for effective treatment facility operation. While landfills exist to accept waste as it is 

delivered regardless of attributes, variability in quantity and quality of organic source material 

outside the control of a collection company may cause operational issues for alternative FW 

treatment technologies (Agyeman and Tao, 2014; Nagao et al., 2012). On the other end of 

treatment, any solid outputs must be managed appropriately, impacting the distribution of products 

or management of any resulting waste streams (Tampio et al., 2016; Westerman and Bicudo, 2005; 

WRAP, 2013). Facilities must ensure that there are distribution pathways for these outputs in place 

or have adequate storage until outputs can be managed appropriately. 

 New methods and insights are needed for the continued and sustainable development of 

FW management networks. Deeper understanding of the variability associated with different 
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components of FW diversion will be instrumental to anticipate and mitigate future logistics 

challenges due to network growth. Appropriate planning based on better system understanding 

will help to reduce potential undue hardships and increase FW landfill diversion from all sizes of 

generators in the future. 

 

DISSERTATION MOTIVATION AND OBJECTIVES 

 

Problem Statement 

Valorization of FW via existing and emerging treatment technologies promises to reduce 

the environmental impacts of FW disposal through diversion from landfills; however, 

oversimplifying logistics issues may show support for policy goals without considering 

environmental, economic, and social balances.  Effective development of FW recovery networks 

requires more information on the variability that could have a considerable impact on decision 

making outcomes. Generation of FW is not a single annual number as often estimated and reported, 

but varies due to generator types, monthly seasonal patterns, and spatial heterogeneity. 

Consideration of spatial and generation heterogeneity within collection networks is crucial for 

characterizing intersections of service demand and economic feasibility. Unlike landfills, 

treatment technologies such as ADs convert FW into products and should consider both input and 

output balances when siting new treatment facilities. Three research questions are posed to 

characterize and address these logistics challenges for developing effective FW management 

networks. 
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Research Questions 

1. How can the variability in commercial FW generation impact development of regional 

management networks? 

Conventional waste management operations literature has emphasized the importance 

considering variation and uncertainty in waste generation and uncertainty for developing effective 

waste management networks. As new FW management systems emerge, similar problems faced 

by conventional waste management are likely to arise. Therefore, the goal of Chapter 2 is to assess 

variability of FW generation from different types of commercial generators while simultaneously 

characterizing temporal and spatial variables. Empirically collected data is combined with the 

prevailing estimation method to characterize how generator attributes, temporal variability, and 

spatial heterogeneity in FW generation could impact development of diversion networks. The 

modeling framework is suitably flexible so that future studies can continue to expand findings 

presented as additional data are collected 

 

2. What are the impacts of spatial and generation heterogeneity on the economic feasibility 

of FW collection services? 

 Reducing transportation activities of FW diversion will reduce GHG emissions and help 

ensure environmental benefits from alternative treatment technologies. Moreover, there is a need 

for research to explore the network characteristics that allow collection companies to offer 

economically feasible FW collection services to potential participants. Chapter 3 analyzes how 

spatial heterogeneity in FW collection networks could impact service fees charged to residential 

customers for curbside FW collection. Chapter 4 presents a novel, ecologically inspired vehicle 

routing model to characterize the effects of FW generation variability on offering affordable FW 
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collection services. Generalizing the effects in spatial and FW quantity heterogeneity will help plot 

a path for companies and planners to sustainably grow FW collection networks. 

 

3. How are new AD siting decisions impacted when management of digestate outputs are 

considered in comparison to conventional material inputs? 

 Literature methods for siting AD facilities focus on minimizing the cost of transportation 

for input feedstock and maximization of revenue from energy products. AD facilities also produce 

digestate that is conventionally managed by application to nearby arable cropland. However, the 

environmental capacity for cropland to accept digestate has not been considered in the current 

body of spatially explicit siting literature. Chapter 5 presents a spatially explicit facility siting 

method that incorporates both material inputs and digestate management to identify potential 

facility sites from a system perspective. Phosphorus quantities in digestate are derived from 

material inputs and compared to crop’s expected capacity to absorb phosphorus during the growing 

season. Areas with excess phosphorus supply or capacity are identified to re-examine the potential 

for new AD facilities to operate effectively.  

 

Novel Contribution 

This research presented contributes to the body of scientific knowledge through the creation of 

novel, generalizable methods that investigate logistical nuances to inform development of effective 

FW management networks. 
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Figure 1-1: Dissertation Framework 
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CHAPTER 2 

VARIABILITY IN COMMERCIAL FOOD WASTE GENERATION AND 

IMPLICATIONS FOR DEVELOPING REGIONAL MANAGEMENT NETWORKS 

 

1. Introduction 

Several U.S. states and cities are phasing in policies restricting landfills as a disposal option 

and mandating that larger commercial and institutional FW generators donate or recycle excess 

food (Manson, 2017). However, implementing this shift in FW management requires 

commensurate build-out of FW collection, transport, and recycling infrastructure (Iakovou et al., 

2010), which in turn requires information for anticipating FW generation over space and time 

(Breunig et al., 2018). Empirical data collection studies have been conducted at the state level to 

support policy mandates (Cascadia Consulting Group, 2015; Draper/Lennon Inc., 2002, 2001; 

Okazaki et al., 2008; Seven Generations Ahead, 2015). Many of these studies rely on similar 

methods for estimating theoretical rates of FW generation from commercial and institutional 

facilities without the need to invest time and labor to collect data from every FW generating 

facility. This method is summarized as follows: 

 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟   

 

Specific activities within each company or organization are identified as being key drivers 

of food being wasted (“generation activity”), and the relative amount of food wasted from that 

activity (“generation factor”) is estimated using limited sets of empirical data collected 

(Draper/Lennon Inc., 2001). These terms are specific to the type of FW generator. For instance, 

the generation activity associated with FW in universities is student enrollment; for supermarkets, 

it is full time employees working in a year. Generation factors quantify the relationship between 
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these generation activities and the expected FW quantities, where a limited number of empirical 

studies and waste audits have established mass of FW per residential student enrolled at a 

university or employee employed at a supermarket.  

Within this general approach, individual studies often quantify the generation parameters 

using different assumptions and underlying data sets, and this variability can make it difficult to 

compare, develop, and apply solutions between different states and regions (Xue et al., 2017). In 

an effort to harmonize FW analyses, the US Environmental Protection Agency (EPA) released the 

Excess Food Opportunities Map, a nationwide inventory of geolocated commercial and 

institutional FW generators (USEPA, 2018). The goal of this database is to develop a standardized 

method for identifying and estimating FW sources for landfill diversion and to translate methods 

developed for one region to another with fewer data discrepancies. The user-friendly nature of this 

estimation methodology is attractive because of its accessible formulation and data inputs; 

however, it is limited due to lack of consideration for uncertainty or system dynamism.  

In reality, FW generation is not static or homogenous. Contributions from supermarkets, 

for example, will differ based on infrastructure, supply chain decisions, and culturally mediated 

food preferences (Fernie, 1995). Relative contributions to total FW generation from different 

actors along the supply chain, such as retail, institutions, and food service, are not consistent 

between regions (Bräutigam et al., 2014). In addition, FW generation commercial sources such as 

supermarkets in Austria and Sweden have been shown to vary seasonally, with peaks appearing in 

the summer and at the end of the year (Eriksson, 2012; Lebersorger and Schneider, 2014) 

Furthermore, FW generation from municipal sources has been shown to vary geographically at 

smaller regional scales (Breunig et al., 2017) and cities (Burnley et al., 2007; Denafas et al., 2014).  
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Capturing these sources of variability in FW generation is critical to putting sustainable 

solutions into action. The total amount and spatial concentration of FW has direct implication to 

the costs of collecting and transporting FW, which in turn influence the cost and adoption of the 

overall FW management system (Gold and Seuring, 2011). The waste management operations 

literature has emphasized the importance of anticipating waste variation and uncertainty for system 

development such as siting of disposal/management facilities (Chang and Davila, 2006; Yeomans 

et al., 2003), logistical operations (Johansson, 2006; Mendes et al., 2013; Mes et al., 2014), and 

waste-to-energy product generation (Alibardi and Cossu, 2015; Cuéllar and Webber, 2010). The 

outcomes of these studies emphasize that waste variability should be characterized to inform 

planning and development, paralleling the challenges that will be faced by FW management 

networks.  

Although several of the studies mentioned previously have characterized specific 

variability in FW generation, the literature generally lacks a consideration of combined effects of 

these dynamics in FW diversion system design and treatment decisions Therefore, the goal of this 

study is to assess variability of FW generation from different types of commercial and institutional 

generators while simultaneously characterizing temporal and spatial variables. One goal is to 

understand the number and type of facilities within a state that contribute the most towards FW 

generation, which will help inform policy targets for diversion. Another goal is to assess how FW 

generation varies month to month, which can inform treatment system designs that will not become 

overwhelmed or under-utilized. Pinpointing where FW comes from spatially can help centralize 

diversion operations near higher geographical concentrations of FW. To our knowledge, this is the 

first study to integrate real data from FW generation with a publicly accessable database of food 

waste estimates for explicitly considering sources and implications of these types of variability. 
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While the case study presented here focuses on a single region (New York State), the modeling 

framework is suitably flexible so that future studies can continue to expand findings presented here 

as additional data are collected.  

 

2. Methodology 

2.1 Methodological Framework 

 The methodology presented here can be used by any region with access to modest FW 

generation data and is useful for regions faced with the challenge of developing FW management 

solutions. The method is demonstrated using data collected within a specific case study region (see 

section 2.2). In short, the approach was to collect both real data from generators within this case 

study region and compare these data to estimates created using available theoretical generation 

quantities (Eq. 1 and described in section 2.3). FW variability was assessed across three 

dimensions: 1) differences in FW produced by generators of varying size or type; 2) monthly 

generation trends and variance from average generation per month; and 3) heterogeneity of FW 

generation amount and location at sub-region and county scales. Fig. 1 summarizes this 

framework. 

   

Figure 2-1. Graphical representation of the variation analysis framework used in this study. Clear boxes 

represent information inputs and shaded boxes represent results. Black arrow lines indicate the study steps. 

Numbers in parentheses and italics relate to relevant sections where the methods are described further. 
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County Month 
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Outputs 

Inputs 
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Collection 
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Characterization Eq. 1 

Eq. 2 

Eq. 3 

County Areas 

(2.2) 

Monthly 
Projections 

(2.3.1) 

(2.3.2) 

(2.4) 

(2.5) 

(2.5) (2.6) 
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2.2 Case Study Region 

New York State (NYS) is chosen as a case study to demonstrate the applicability of the 

methods in capturing variation in FW generation. NYS has significant diversity in regional 

population, including the most populous city in the U.S. as well as smaller cities and rural regions 

over an area of 141,000 km2. Other factors, including regional diversity in agricultural and 

economic activity directly impact food supply, thereby affecting food waste and creating an 

excellent case study on the logistical complexities of commercial FW diversion.  

Due to these challenges, the state has a track record of self-evaluation and investment in 

FW diversion. New York City enacted its own diversion legislation in 2013 (Johnson, 2013). The 

NYS Energy Research and Development Authority is currently supporting established and new 

organics-to-energy anaerobic digestion systems (NYSERDA, 2019) after the release of a statewide 

benefit-cost analysis indicating that FW diversion investment is economically viable (Manson, 

2017). Recently, NYS passed legislation mandating that certain categories of commercial 

generators expected to generate the equivalent of 94t or more of FW annually must donate or 

recycle their FW if nearby landfill-alternative infrastructure is available (Bill S01508, 2019). The 

focus on commercially generated FW is comparable to other states or municipalities seeking to 

develop management networks, just as NYS legislation mirrors that of previously enacted 

legislation from nearby states (e.g., Connecticut DEEP, 2011; Massachusetts DEP, 2014). 
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2.3 Data Sources 

2.3.1 EPA Excess Food Opportunities Map 

Baseline theoretical FW estimates were obtained from the 2015 EPA Excess Food 

Opportunities Map, which accounts for underlying activities that lead to wasted food using the 

method introduced in Section 1, formalized as Eq. 1 below.  

 

 

The theoretical, or anticipated quantity of annual FW generated at a given facility i for generator 

type c is estimated by multiplying the value of its generation activity by its generation factor. For 

instance, a supermarket with 50 employees and a generation factor of 1,360kg/employee-yr would 

be estimated to generate 68t of FW per year. 

This study focused on only those data points from the EPA database that are within NYS, 

representing a total of 30,009 commercial generators who produce an estimated 456,000 metric 

tons of food waste per year. FW generators are divided by industry code, defining their facility 

type within economic sectors. Generator types evaluated in this study are supermarkets, hotels, K-

12 schools, prisons, universities, and other commercial generators. The EPA database provides 

disaggregated estimates of high, low, and edible portions of FW for some generator types. 

However, the low estimates are not consistently reported across generator types, and the edible 

portion estimates even less so. Therefore, high estimates, which are consistently provided in the 

database, are utilized as the baseline data for all subsequent analysis. The full EPA methodology 

for the Excess Food Opportunities Map is documented in Schnitzer et al. (2018). 

 

 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖
𝑐 =  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖

𝑐 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑐 (1) 
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2.3.2 Empirical Food Waste Data 

Supermarkets, universities, and K-12 schools were chosen for empirical data collection due 

to their data availability and anticipated variability in generation rates within an annual timeframe. 

For example, FW generation rates from supermarkets are likely to vary along with seasonal 

produce growing cycles or shopper purchases coinciding with holidays centered around food. 

Educational institutions are expect to vary in FW generation according to when students are 

present during academic terms or off campus during holidays and school breaks.   

Multiple years of monthly or weekly FW diversion data were obtained from three 

supermarkets, three universities, and two K-12 schools in NYS that currently participate in FW 

measurement and/or diversion efforts. Original FW diversion quantities were measured by 

contracted collection services and provided to respective generators. Data for this study were 

provided by each facility via electronic spreadsheets in units of pounds or U.S. tons, which were 

converted to metric tons (t). Temporal resolution of the data (weekly or monthly) varied with each 

facility’s accounting method but were ultimately aggregated on a monthly basis to standardize 

time resolution for analysis. If data were provided for a single entity over multiple years, it was 

assumed that each data point was independent of past years.  

The diversion data collected includes the mass of FW that was separated for pickup by a 

collection service but does not include measurements of FW that was inadvertently disposed. As 

such, data may omit FW that was lost to conventional municipal solid waste routes.  However, the 

assumption was that the sources of variability being studied here would uniformly affect all FW 

generation, including both FW diverted, and FW lost to the conventional waste stream. For 

instance, a 10% increase in FW diverted from one month to the next would imply that total FW 

generation increased 10% for that same time period. This assumption reflects a necessary 
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simplification in a data-scarce field, particularly since estimating that fraction of FW not captured 

by diversion methods would require extensive empirical measurement via waste audits and 

weighing, methods that are cost- and labor-intense and themselves fraught with additional 

uncertainties (Xue et al., 2017).   

Facilities ranged in size and temporal coverage, where data for supermarkets and 

universities spanned multiple years, and data for K-12 schools consisted of a single year. Specific 

identifying information and data about the generators could not be disclosed due to confidentiality 

agreements, but general facility attributes are summarized in Table 1. 

Facility Type Facility size Diversion 

range (t/yr) 

Diversion range  

(t/month) 
Data 

Years 
Location 

Supermarkets      
Supermarket 1 450-750 

employees 

570 - 617 29.9 – 69.7  2015 - 2018 Western NY 
Supermarket 2 196 - 384 9.0 – 43.5 2015 - 2018 Western NY 
Supermarket 3 216 - 323 12.6 – 36.8 2015 - 2018 Central NY 
K-12 Schools      
School 1 850  

students  

9.0 0 – 1.5 2018 Western NY 
School 2 4.8 0 – 0.8 2018 Western NY 
Universities      
University 1 2,200-

16,500 

students 

82 - 85 1.6 – 13.5  2014-2017 Western NY 
University 2 136 - 146 2.3 – 20.9 2015-2018 Western NY 
University 3 173 - 175 2.1 – 23.8 2015-2018 Central NY 

Table 2-1. FW generation at commercial facilities in NYS. The range in monthly FW generation, data 

years, and regional locations are presented. Data have been generalized to protect the anonymity of sources 

due to confidentiality concerns.   

 

2.4 Variability in FW Generators 

 FW generation is expected to vary when looking across generators that have fundamentally 

different attributes, such assize, location, and economic role within the food supply chain. Baseline 

estimation methods (Eq. 1) assume a similarity in FW generation rates among generators within 

the same type, such as hotels. On the other hand, FW diversion legislation groups generators by 

their size, which is commonly measured in terms of annualized generation rates. For example, 
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recently passed NYS legislation mandates that generators producing the equivalent of 94t or more 

FW annually are limited from using landfills (Bill S01508, 2019). Similar policies in other states 

have lowered this regulatory threshold over time, underscoring the importance of understanding 

how FW generation varies as an input for effective policy guidance. 

FW generation in the study region is evaluated across commercial and institutional 

generator types and sizes. Types include supermarkets, hotels, K-12 schools, universities, prisons, 

and “other” generators from the EPA database. Sizes evaluated for generators include those that 

produce between the thresholds of 94t, 47t, and 24t of FW annually. These sizes reflect the 

regulatory thresholds at different stages of policy implementation in other U.S. states adopting FW 

diversion legislation (Connecticut DEEP, 2011; Massachusetts DEP, 2014; Oregon Metro, 2018; 

Rhode Island General Assembly, 2014; Vermont DEC, 2012). The number of facilities belonging 

to each specific generator type was also counted. Comparing the contribution in mass with the 

facility count reveals the degree to which FW generation is concentrated in facilities of a given 

size or type.  

 

2.5 Variability by Month 

Monthly FW generation trends for supermarkets, universities, and K-12 schools were 

calculated using the provided FW diversion data (Section 2.3.2). The annual total of each facility 

for each year was divided by 12 to estimate the average generation per month. The ratio of actual 

monthly FW diverted to the estimated average generation per month is used to determine monthly 

deviation. This concept is summarized in Eq. 2 where i is the facility, y is the year, and m is the 

month. 
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𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑦
𝑚 =

𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖𝑦
𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟 𝑀𝑜𝑛𝑡ℎ𝑖𝑦
 𝑖 ∈ 𝐼, 𝑦 ∈ 𝑌, 𝑚 ∈ 𝑀 (2) 

 

Monthly deviations (dimensionless ratios) for each generator type were geometrically 

averaged to derive a single value representing the relative monthly “anomaly,” or average 

variability in FW generation. These trends represent how FW generation rates for supermarkets, 

universities, and K-12 schools are expected to deviate from their average generations per month. 

Geometric standard deviations were also calculated to show the spread of data collected. 

Since empirical data were only available for a small subset of generators in NYS, the 

monthly anomalies were then integrated with theoretical estimates reported by the EPA database 

to project average monthly generation for schools, universities, and supermarkets across the state 

(Eqn. 3). These projections account for the anomaly in FW trends according to generator category 

(c), month (m), and specific facility (i).  

 

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑖
𝑐𝑚 =  𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑐𝑚 ∗ (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖

𝑐 ∗ 𝐹𝑎𝑐𝑡𝑜𝑟𝑐) 12⁄  𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑚 ∈ 𝑀  (3) 

 

2.6 Variability by County and Region 

 While state-wide estimates of FW generation are useful for supporting policy development, 

implementation of FW management systems will occur at finer spatial scales. There are 62 

counties within NYS, but not all will be responsible for the same quantities and types of FW 

generation. Dense urban areas, like New York City, would likely have concentrated FW 

generation, particularly from the retail and consumer sector. On the other hand, generation from 

rural counties is expected to be less spatially concentrated, but made up of agricultural, food 

processing, and educational FW sources. Understanding these disparities in FW generation is 
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crucial for developing diversion management solutions that can effectively span regions with 

heterogeneous population and economic activity. Moreover, mapping generation estimates can 

assist state-level decision making for targeted FW infrastructure investment and future policy. 

 Development of FW diversion networks will likely stem from similarities to conventional 

solid waste management. Waste management solutions are developed to fulfill the needs of their 

local areas and, except for NYC, do not usually transport waste extreme distances (to avoid 

incurring unnecessary hauling costs). Thus, it is more useful to estimate FW at a regional scale to 

develop sustainable management solutions for individual or clusters of counties. 

 Esri ArcMap 10.6.1 and associated geospatial analysis tools were used to evaluate 

geographically explicit generation rates. Data results from Section 2.5 were combined with 

original facility geolocation data to estimate and map FW generation disaggregated by county. 

County-level FW projections were displayed on a choropleth map to illustrate temporal and spatial 

discrepancies. Generation rates were also normalized per 1,000 people to further interpret data 

relative to both population density and FW generating activities. Generation quantity classes were 

delineated using the default Jenks Natural Breaks method in ArcMap that classifies the data into 

naturally occurring categories (Esri, 2018).  

 

2.7 Data Source Uncertainty  

 Most conventional applications of estimation methodology in the U.S. use only one source 

of industry data to estimate FW generation (Draper/Lennon Inc., 2002, 2001; NYS Pollution 

Prevention Institute, 2017; Oregon Metro, 2018). Although straightforward, using only a single 

source of data ignores the inherent uncertainty in estimating generation rates based on correlation 

alone. Including alternative estimates will contribute to a more complete understanding of 
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variability to plan management solutions accordingly. Thus, two scenarios using alternate data 

sources were compared to the baseline data source estimates.  

 The first alternative data source scenario (Data Source B) depicts lower state-wide monthly 

projections for FW generation. The EPA database includes multiple estimates for many facility 

types. Many facility types include both high estimates, used as the baseline for this study’s primary 

analysis, and lower estimates based on alternative data. Equations 2 and 3 were used to evaluate 

the low estimates within the database as described in Section 2.5 and compare to the baseline 

results from baseline data source.  

 The NYS Pollution Prevention Institute (NYSP2I) created the Organic Resource Locator 

(ORL) database prior to the release of the EPA’s resource using a different activity data set but 

similar estimation methods described by Eq. 1 (NYS Pollution Prevention Institute, 2017). 

Projections from this alternate data source (Data Source C) are compared to baseline projections.  

The ORL does not include locations or estimates for K-12 schools; however, the methodology is 

still applicable and informative. The methods described in section 2.5 are applied to the ORL 

database and monthly projections are calculated for comparison to the baseline.  

 

3. Results and Discussion 

 

3.1 Variability in FW Generators 

Data from the EPA database on New York State FW generators were characterized to 

understand how the proportion of facilities and their theoretical generation estimates contribute to 

FW variability by generator size and type. Size refers to the anticipated amount of FW that a 

facility will generate annually, while type refers to the commercial sector of business, such as 
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supermarkets or universities. Separation of FW generation by facility size revealed the percentage 

of facilities in each size group compared to their percent of anticipated contribution to statewide 

generation (Figure 2).  

 

 

Figure 2-2. Commercial FW generators in New York State, grouped by annual anticipated FW generation 

threshold (y-axis). Generation thresholds correspond to the amount of FW a commercial generator must 

produce to be covered under regulations in NYS and nearby states. The proportional amount of facilities 

between each size threshold are compared to their mass contribution to total state-wide FW generation.  

 

 These results show that less than 5% of the facilities in the study region generate nearly 

60% of the FW. The higher concentration of FW at these facilities supports the legislative 

precedents that target large facilities first and then expand to include smaller generators over time. 

Implementing policy focused on generators producing more than 94t/yr will result in recovery of 

more than half of the FW generated in the study region.  As legislation phases in mandatory FW 

diversion for smaller facility sizes, collection efficiency will decrease due to decreasing 

concentrations. Collecting the remaining FW in the smallest generator group will likely require 

the most expense per unit FW collected. However, diversion costs will likely decrease over time 
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as the FW management network matures and garners economies of scale (Armington and Chen, 

2018).  

Commercial generators were also characterized by type, including the relative 

representation of different types of facilities and their contribution to total FW generation (Fig. 3). 

Supermarkets are shown to be the most common type of facility and contribute the most to annual 

FW generation. The “other” types of generators include smaller markets, specialty food stores, 

retail bakeries, hospitals, and casino restaurants. While these other facilities are present across the 

state in high numbers, they collectively contribute less than 5% to total FW generation. The 

generator types that contain proportionally fewer facilities than their production of FW 

(supermarkets, hotels prisons, and universities) make good candidates for FW diversion policy. 

Mandating diversion for these generator types would affect approximately 50% of commercial 

facilities while capturing 85% of waste generated.  

 

 

Figure 2-3. Commercial generators in NYS, grouped by generator type (y-axis).  The proportional amount 

of facilities of each type are compared to their mass contribution to total statewide FW generation.  
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 The comparison of FW generation by facility type and size provides valuable insights to 

inform policy targets over the regional system. Characterization of FW from commercial 

generators in the UK (WRAP UK, 2018), EU (Monier et al., 2010) and the U.S. (ReFED, 2017) 

have not considered both facility size and type. Other characterizations of U.S. states are similar 

in scope, but only consider facilities above a certain generation threshold (Draper/Lennon Inc., 

2002, 2001; Manson, 2017). The recent NYS legislation mandates diversion for facilities 

generating over the 94t threshold but exempts hospitals and K-12 schools. Applying these 

legislative standards to the data predicts that 4% (1,070) of total facilities will be affected, which 

are responsible for 57% (260,000t) of annual FW generation.  

 

3.2 Temporal Variability 

Empirical data on FW generation and diversion were obtained from three supermarkets, 

two K-12 schools, and three universities from central and western NYS (Table 1). These data were 

analyzed as described in Section 2.5 to calculate monthly anomalies in FW generation for the three 

facility types (Fig. 4). Simply put, these anomalies show the ratio between actual FW generated in 

a given month relative to the average monthly generation (i.e., dividing a facility’s total annual 

FW generation evenly across 12 months). 
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Figure 2-4.  Monthly variability in FW generation relative to the average generation. Monthly anomaly 

values are the geometric average of monthly deviations calculated for each year. An anomaly value of 1 

indicates that actual recorded FW generation in that month is equal to the estimated average generation per 

month, values >1 indicate actual generation that month was proportionally greater than the monthly average 

for the year, while values <1 indicate actual generation is less than the monthly average.  

Supermarket FW generation trends are relatively consistent throughout the year, not 

exceeding a deviation from the mean of ± 0.2 except in the month of September. Actual FW is 

noticeably higher than the estimated average during June, September, and December. The 

observed increases are likely due to a number of interacting factors, including buyer behavior, 

supply chain efficiencies, summer harvest seasons for crops, and multiple food-centric holidays 

and observances at the end of the year (Killeen, 2016). It should also be noted that each of these 

“high” months represents the end of a fiscal quarter, possibly suggesting the influence of inventory 

management practices that do not match customer purchasing behaviors (Oliver Wyman, 2014). 

Results are mixed when compared to other studies. Fresh fruit and vegetable waste  

generation from six supermarkets in Sweden was shown to vary throughout the year, with no 

discernable temporal pattern but a possibility of common generation trends among facilities 
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(Eriksson et al., 2012). However, supermarkets in Austria were shown to generate more fresh 

produce and dairy waste during the summer compared to their own average generation per month; 

however, data were recorded in economic value rather than mass (Lebersorger and Schneider, 

2014). Comparing across studies is particularly challenging due to the wide differences in regional 

climate, food supply chains, and consumer behavior.  Results reported herein confirm the 

understanding that supermarket FW generation varies throughout the year, but raise future research 

questions about the underlying drivers of variation between regions. 

 The K-12 schools included in the study are in session from September to June and recess 

during July and August, coinciding with generation peaks and valleys, respectively. September 

was expected to have higher generation rates due to starting dates early in the month. However, 

after reviewing data, it was found that neither school began diverting their FW until a few weeks 

after school began. This delay raises a limitation in choosing a month-long temporal resolution 

discussed later (Section 3.6). University monthly generation trends generally followed academic 

term (semester) cycles corresponding to when students were attending classes and residing on 

campus. FW generation was higher than average during autumn (Sep-Nov) and spring (Feb-Apr) 

semesters. Attendance in months before and after these periods varies by different university 

calendars, and FW generation trends differ accordingly for Aug, Dec, Jan, and May. FW 

generation is significantly reduced during summer break (Jun, July), but not eliminated, as 

university staff, graduate students, and hosted summer events still contribute to lower levels of FW 

generation.   

Both categories of educational institutions show higher anomaly values in the autumn and 

approximately average generation trends in the spring, coinciding with major events in the 

academic year, such as student move-in, homecoming, warm weather sports and activities, 
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commencement, and move-out. For example, increased generation for universities is seen at the 

beginning of the fall semesters and slowly subsides monthly. One explanation could be that at the 

beginning of each academic year, on-campus meal providers may be learning student preferences 

and behaviors and thus offering more quantity and variety of food, but more research is required 

to support this explanation.  

 The temporal variability results for the eight NYS generators for which real data were 

available (Fig. 4) were then combined with state-wide generator estimates presented in Fig. 3, to 

assess how generator types and monthly variability might interact across a calendar year. These 

results, specific to supermarkets, K-12 schools, and universities, are shown in Fig. 5, which also 

includes static estimates for prisons, hotels, and other FW sources, for which no empirical data 

were available to construct real temporal trend models. 

 

Figure 2-5.  Anticipated monthly estimates of NYS FW generation. Estimates combined empirically 

determined monthly variations for schools, universities, and supermarkets with facility type and size data 

from the EPA database. Monthly variation for hotels, prisons, and other commercial generators were not 

empirically determined, but generic estimates from the EPA database were included to understand overall 

system impacts. The horizontal line indicates the estimate for statement generation without considering 

monthly variation. 
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Variability from educational institutions is expected to have the greatest impact on 

statewide generation (Fig. 4). While these sources only contribute about 19% to total NYS FW 

generation (Fig. 3), the high monthly variability, particularly between summer and fall, was 

enough to drive statewide estimates up or down by as much as 30% in October and November. On 

the other hand, supermarkets show more consistent month-to-month trends, but their contribution 

to net temporal variability is magnified by their significant overall contribution (48% of FW 

generated in NYS as shown in Fig. 3). Variable temporal effects for educational institutions and 

supermarkets largely offset each other during the summer, where the lowest anticipated generation 

rate is in July (32,000t). But additive effects are seen in later months of the year, with the highest 

generation rate observed in December (43,000t), a difference of 25% from low to high months.  

Temporal trends can provide critical inputs for planning effective waste diversion systems. 

However, research must be extended to collect more empirical data on generation trends in other 

regions and for sources not considered here, like hotels, which could alter the monthly peaks and 

valleys of state-wide estimates due to seasonal trends in tourism and travel. The variability in 

system-wide generation revealed in these results echoes findings from past studies on generation 

of organic waste from several European cities, which showed a peak in the spring, generally low 

values in the beginning and middle of the year, and elevated waste produced at the end of the year 

(Denafas et al., 2014). In that study, however, changes in waste generation were different between 

cities, underscoring the importance of considering regionally specific FW generation trends.  

 Waste management companies may face operational challenges associated with seasonal 

and month-to-month shifts in the volume of FW requiring hauling and treatment. For instance, 

estimated FW generation increases approximately 20% between August and September. Such a 

rapid increase might require businesses to quickly expand their waste collection fleet to 



27 

 

accommodate more generation from customers. Alternatively, rapid decreases in material 

availability could pose the reverse problem. In either scenario, maintaining and scheduling an 

incorrectly sized fleet of collection vehicles could lead to inefficient operations (Johansson, 2006), 

introducing instability and added costs into a collection company’s operation and business plans. 

Understanding the variability in FW generation is critical to anticipate potential supply shocks to 

improve network stability and attract future investment (Iakovou et al., 2010).  

 On the other hand, the necessary logistics capacity may exist, but operation and utilization 

of treatment facilities could be impacted. Treatment facilities normally responsible for the FW 

management may not be sized for rapid influx of material, opting instead for onsite storage to 

normalize input flow. Short-term storage of organics may lead to premature degradation of 

material, altering biological treatment systems and affecting quality or quantity of saleable by-

products (Agyeman and Tao, 2014; Lehtomäki et al., 2007). Moreover, open storage and 

uncontrolled degradation of organic material will ultimately release additional greenhouse gas 

emissions and reduce energy recovery potential, negating the original goals of FW diversion. 

While engineering practice usually includes a margin of safety in design, there are currently no 

laws that regulate treatment facilities to operate within designed capacity. Operators are free to run 

their facilities at maximum capacity and deal with the input fluctuations as they occur.  

  

3.3 Spatial Variability 

 Results for generator type and temporal trends shown in the past two sections were then 

combined with spatially resolved information about the locations of commercial FW generators in 

NYS, disaggregated to the county level and presented for each month of the year. While results 
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for all months are shown in the supplemental information file (Table S1), Fig. 6 highlights the 

months with greatest disparity between low (July) and high (December) FW estimates.  

 

 

Figure 2-6.  Anticipated monthly FW generation from commercial facilities within each county were 

summed to show geospatial variation in tons per month (t/m). Darker colors correspond to higher FW 

generation intensity within a county. The maps also designate cities containing populations over 20,000 

people in 2010 are shown, and the most populous county in the state (King’s County.  

 

Counties with highest and most variable FW generation are those with the greatest 

population, typically concentrated in urban centers. However, many NYS counties are rural, and 

their anticipated monthly generation is both lower and more consistent between July and December 

than major urban regions. Nascent NYS FW donation and recycling policies are intended to affect 

generators across the entire state. However, the planning and implementation of such policies is 

carried out at the county level, allowing for development of diversion systems to treat region-

specific challenges using locally available resources. For instance, siting treatment facilities in 

counties with higher FW generation would likely see economic benefits due to shorter 
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transportation distances. Facilities in counties with lower FW generation might partner with 

diversion activities in close, more populous counties to reduce initial investments in transportation 

and hauling infrastructure, which may in turn translate into better overall economic performance 

of the diversion system (Gold and Seuring, 2011). 

 Without spatially resolved FW generation data, a regional diversion system developed to 

suit one region may be inadequate or overdesigned for use by other regions. For example, Monroe 

county and Westchester county are projected to generate approximately 22,000 – 23,000 tons of 

FW annually (Table A2). However, Westchester contains 70% more facilities than Monroe, 

making FW generation more aggregated in Monroe and potentially more efficient to collect (Table 

A3). Furthermore, a breakdown of generation by facility type shows that supermarkets generate 

roughly 55%-60% of FW in each county; however, generation is spread over only 220 facilities in 

Monroe compared to 609 in Westchester. This disparity translates to supermarkets in Monroe 

projected to produce on average 62 tons per year of FW compared to 20 in Westchester. A 

diversion system designed for Monroe county may not work effectively for Westchester county 

where generation rates are anticipated to be lower.  

In contrast, the New York City region will require its own solutions to accommodate FW 

generation from the city as well as the geographically constrained Long Island region due to much 

higher population and generation rates. If management systems are developed in these regions 

separately, the transportation, infrastructure, and policy decisions made will be critical to 

overcoming supply chain logistics issues and implementing effective diversion systems (Gold and 

Seuring, 2011). 

These spatial patterns change further when considering generation normalized to 

population in each of the counties mapped (Figure A3 and Table A4). The general spike in 
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December food waste production persists; however, rural counties tend to generate more FW per 

capita than more populated counties. While FW management systems are typically designed to 

manage a given total mass of material, there are instances when these normalized values may add 

useful insight. For example, counties with higher per capita FW generation may look to other 

counties with similar demographics but lower per capita generation rates to identify systems that 

may help reduce their per capita FW generation rate.  

 

3.4 Data Source Uncertainty 

 Monthly projections from two alternate data sources were compared to the baseline 

analysis to understand potential uncertainty in estimating FW generation. Estimates for each data 

source are separated into facility types and monthly generation projections in the same way as 

shown in Section 3.2. Comparison of the three scenarios with nearly the same categories shows 

similarity in total projections (Fig. 7). While the maximum difference between highest and lowest 

months within the original data source is approximately 25% (Data Source A), the maximum 

difference in generation projections between data sources is 37% (Data Source A and B). The 

increase in uncertainty could exacerbate the transportation, management, and design challenges 

discussed previously.  
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Figure 2-7. Comparison of monthly generation projections from different data sources. (A): Baseline 

analysis using the EPA database. (B): Analysis using lower estimates in EPA database. (C): NYSP2I ORL. 

The ORL does not include K-12 schools in its database, therefore no projections were shown for that 

category. 

  

 The comparison of data sources A and C demonstrate how disaggregated FW projections 

for specific generator types were considerably different despite both data sources resulting in 

similar FW totals. In Data Source C, supermarkets and other generator types contribute the most 

while contributions from hotels and prisons are negligible. Results from Data Source C have 

different implications for policy development, indicating that supermarkets and other types of 

generators are by far the best focus for FW diversion efforts. The higher supermarket estimates 

may also lead planners to design FW management systems in proximity to these FW sources. If, 

however, the distribution of FW is different than expected, then treatment systems and 

transportation network may be less efficient than intended. This insight is true even under the 

baseline scenarios but is more recognizable with a side-by-side comparison of results using 

differing methodologies. The best way to control for this uncertainty is to collect more data to 

inform decision making. However, these scenarios indicate that data source and estimation method 

uncertainty can have tangible effects on FW projections.  
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3.6 Limitations and Considerations 

This study, like the broader field of FW analysis, is limited by the few real data points that 

were available and the associated need to rely on generic estimates from the EPA FW database, 

which itself has incomplete and missing information. For example, the restaurant/food service 

industry was not included in the 2015 values used by the EPA database, although separate 

estimates suggest that while these generators may have low individual FW intensity, they could 

collectively contribute more than 50% of the commercial FW generated in NYS (NYS Pollution 

Prevention Institute, 2017). Future work should expand empirical data by developing replicable 

measurement approaches and tools that can reliably estimate FW generation across different 

regions, for different types and sizes of the generators, and influenced by variable climate, food 

supply chain, or consumer lifestyle factors. In addition, there are key opportunities to harmonize 

state, federal, and private FW databases for greater comparability and comprehensiveness.  

Including additional data samples will create a more accurate and generalizable estimate of FW 

generation.  

 One challenge in estimating FW generation using the prevailing methodologies is that the 

most commonly cited generation activities may only be tangentially linked to generation rates. For 

example, room or employee counts are the common method for estimating annual FW generation 

for hotels. However, other factors such as occupancy rate, on-site restaurant, and access to food 

delivery services are likely to be actual drivers of FW generation. This line of inquiry was explored 

at a preliminary level during data collection for this study. Publicly accessible data was only 

available for the whole U.S. (Statista, 2019) and New York City (NYS & Company, 2019) and the 

average occupancy rates per month from these data are shown in the supplemental information file 

(Figure A4). Although slight trends towards increased occupancy during summary months are 
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shown, these data were not included in the main analysis due to lack of regional specificity. A 

wide discrepancy between U.S. and NYC occupancy rates supports the need to gather regionally 

relevant FW generation data The activity and generation factors underlying FW generation 

estimates may also be difficult or expensive to collect due to the business-sensitive nature and 

scale of preferred data or company unwillingness to disclose waste data, which may be perceived 

negatively by customers.  

 

4. Conclusions 

 This chapter shows that FW generation from commercial and institutional sources in New 

York State cannot be fully represented with a single annual value. Capturing the inherent spatial 

and temporal variability within this system is necessary for developing sustainable policy solutions 

and then deploying required FW collection, hauling, and treatment infrastructure. For example, 

almost 60% of estimated FW is expected to come from only those 4% of total facilities in the state 

that would be currently be covered under a regulation threshold of 94 t/year (2 US tons/week). Of 

this total, supermarkets represent the greatest contribution (48%) of facility types considered here 

but are also the type of generator likely to show seasonal variability in FW amount and spatial 

variability in location based on regional population density.  

In terms of spatial heterogeneity, urban centers were demonstrated to be hotspots of commercial 

food generation, from the perspective of having a high and relatively consistent degree of FW 

generation over time. These systems-level sources of variability point to potential challenges and 

opportunities for optimizing future siting of FW management infrastructure. For instance, 

understanding how FW sources concentrate in particular locations can inform where to prioritize 

incentives and investment for policy implementation and how to choose treatment sites that 
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minimize transportation costs. Reducing the economic cost to participate in FW diversion may 

attract additional participants beyond those required by legislative mandate. Future policy 

enhancements may also offer a pathway to solving FW data gaps discussed here. A requirement 

to report FW generation and activity factors would not only help provide valuable information for 

future research and applied solutions but may also help clarify the underlying drivers of FW 

generation. Ultimately, expanding this field of study is necessary to create more targeted and 

effective policies for reducing and diverting FW for environmental benefits within NYS and across 

the U.S. This chapter considered the challenge of variability from generation sources, but FW must 

also be ultimately be managed somewhere other than a landfill. Alternative management facilities 

need to be available for treatment of FW, which could require the construction of new treatment 

facilities. The actual collection of source-separated FW will likely evolve into a primary waste 

stream over time just as conventional recycling evolved in the U.S. in the 1960s. However, FW 

collection as a new waste collection network is still growing and will likely face challenges of 

economic feasibility. It is important to understand how the variability in FW generation identified 

in this chapter could affect the feasibility of collecting FW from generators and hauling it to 

treatment facilities. 
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CHAPTER 3 

EFFECTS OF SPATIAL HETEROGENEITY ON EXPANSION OF FOOD WASTE 

COLLECTION SERVICES 
 

 

1. Introduction 

The spatial variability of FW generation defined in Chapter 3 will pose challenges for 

collection services. As companies grow their FW collection networks, they will need to identify 

where to expand next. Understanding how spatial variability will affect these expansion decisions 

is critical for maintaining an economically feasible collection service that potential customers will 

be willing to pay for. One category of FW generation Chapter 2 did not consider was household. 

While the state-level legislation mentioned previously has focused on larger consumer facing 

businesses, residential food waste diversion has been ignored in state-level policy and legislation. 

This lack of interest in diverting residential food waste from landfills is problematic if states wish 

to continue reducing the environmental impact of their waste management systems. Moreover, 

variation in residential generation is expected to be small enough that assuming a uniform 

generation rate will not significantly impact collection efforts (Edjabou et al., 2016; Hanssen et 

al., 2016), thus providing an ideal network for understanding how spatial variation effects FW 

collection.  

As of 2014, only 200 municipalities in the US have some form of residential food waste 

collection in place through municipal mandates or private waste collection businesses (Yepsen, 

2015). Increased costs for the addition of curbside food waste collection brings considerable 

challenges that have mostly been overcome by political will (Yepsen, 2014), which is 

unsustainable from a long-term economic perspective. In order to reduce waste collection program 

costs, economies of scale are critical (Bohm et al., 2010). Achieving these economies of scale may 

be difficult for food waste collection due to lower generation rates compared to municipal solid 
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waste (MSW) and recyclable material (New York State Department of Environmental 

Conservation, 2010).  

A main focus of previous waste collection models in the literature is to increase collection 

efficiency by optimizing routing and scheduling for networks at the urban scale (Arribas et al., 

2010; Or and Curi, 1993). Urban residential waste collection poses significant methodological 

challenges due to the large number of individual waste bins to be collected. Also, these models 

neglect food waste generated by suburban areas. Larger regional networks that encompass both 

urban and suburban areas include many logistic dimensions such as transfer stations, time 

constraints, and bin types (Das and Bhattacharyya, 2015; Nuortio et al., 2006; Son and Louati, 

2016). Some studies focus on specific waste materials, such as recyclables, to understand the 

dynamics that specific waste types confer to the collection system (Bing et al., 2014; Rousta et al., 

2015). This practice may parallel dynamics seen in the food waste collection system.  

Relatively few studies focus specifically on the collection of source-separated household 

food waste. Franchetti and Dellinger (2014) and Edwards et al. (2016) study the economic and 

environmental effects that an additional waste collection stream will have on the collection system. 

However, these studies each examine large, mature collection networks and systems, assuming all 

households participate in the collection service. Realistically, households in communities have 

varying values regarding recycling of food waste; therefore, not everyone is willing to participate 

in or pay for the additional service. National surveys in the US focusing on household attitudes 

toward food waste indicate that the majority of people still throw away food even though they feel 

guilty about their actions (Neff et al., 2015; Qi and Roe, 2016). Therefore, understanding the 

effects of participant spatial density on service cost is important for implementing collection 

services sustainably.  
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The overarching objective of this chapter is to provide system-level insights for expanding 

food waste collection. This objective is twofold. First, improvements to transportation costs for 

small start-up scale networks and the implications as service grows and more households 

incorporated in the network are examined. Second, the feasibility of expanding small scale 

residential food waste collection services is assessed by calculating travel and collections costs 

associated with adding new communities. As communities join the collection network, travel time 

and cost per household are expected to decrease, indicating positive returns to scale.  

 

2. Analysis and Modeling Framework 

2.1 Analysis Framework: Decision-making for Service Expansion 

The analysis and modeling framework developed reflects the decision-making process 

faced by start-up food waste collection services early in development. The problem is approached 

by developing a model and analysis framework that solves for the vehicle routing problem (VRP) 

given an a priori set of households and their spatial locations over participation levels that reflect 

expansion scenarios. A new solution to the VRP for each network expansion level (a new 

collection route) is obtained as more households and communities join. 

The VRP is solved using the cluster first, route second heuristic (Laporte, 2009), which 

helps address the high computational resources required of large networks. Under this approach, 

destination nodes are clustered first based on their spatial proximity and the VRP is solved for each 

cluster. A second VRP is performed on the network of centroids of each cluster. For this chapter, 

the clusters are determined (a priori) based on pre-defined neighborhood boundaries, precluding 

the need for a clustering algorithm. The motivation behind this assumption is behavioral. Social 

interaction within communities or neighborhoods likely contribute more towards behaviors such 
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as adoption of curbside composting services (Hopper and Nielsen, 1991; McMillan and Chavis, 

1986). The framework consists of two routing layers: 1) an intra-neighborhood vehicle routing and 

2) inter-neighborhood vehicle routing. Figure 1 illustrates this framework.  

 
Figure 3-1: Modelling Framework 
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Each neighborhood represents a community seeking collection service. The first layer 

solves a VRP for a given neighborhood between households randomly selected to represent 

different levels of collection program participation. The collection vehicle must stop at each 

household and requires a set time duration for collecting the food waste. A solution to the first 

stage VRP will indicate the sequence of household stops, network links traversed, total traversal 

time, and quantity of collected waste is produced.  

In the second layer, an inter-neighborhood VRP is solved for a network of centroids of the 

neighborhoods. Associated with each neighborhood centroid is a total waste collected at that 

neighborhood and travel time determined previously in the first (intra-neighborhood) layer. 

Similarly, the output to the inter-neighborhood VRP includes a collection route that indicates the 

sequence of stops and network link traversed between neighborhoods. This layer also produces the 

total time of the collection route and total quantity of food waste collected by the vehicle.  

 

2.2 Vehicle Routing Problem (VRP) Formulation 

The VRP is formulated as a mixed-integer mathematical program and solved using the cluster first 

and route second heuristic (Laporte, 2009). The neighborhood residential waste collection problem 

is formulated as a capacitated VRP where the decision variables are: 

𝑥ℎ𝑖𝑗
𝑘    - The shortest path travel times nodes h, i, and j for collection truck k.  

𝑦𝑖
𝑘  - The total quantity of food waste in the collection truck k including node i. 

𝑤𝑗
𝑘 - Mass of waste delivered to recycling facility j by collection truck k. 

𝑣𝑗  - The total mass of food waste delivered to recycling facility j. 
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The formulation has the following objective function: 

𝑀𝑖𝑛 =  ∑ ∑ ∑ 𝑐𝑖𝑗 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈(𝐷′,𝑁)𝑖∈(𝐷,𝑁)

+ ∑ 𝑚𝑗

𝑗∈𝑁

 (1) 

The objective function (1) minimizes the truck travel time between pickup 𝑖 ∈ 𝐷, 𝑁 and delivery 

𝑗 ∈ 𝐷′, 𝑁 nodes over the set of vehicles 𝑘 ∈ 𝐾 mobilized in the collection network by summing 

the travel time 𝑐𝑖𝑗  on each traversed link 𝑥𝑖𝑗
𝑘  and the collection time at each pickup node 𝑚𝑗. 

 

Subject to the constraints: 

   ∑ ∑ 𝑥ℎ𝑖
𝑘

𝑖∈𝑁ℎ∈𝐷

= 1 ∀ 𝑘 ∈ 𝐾 (2) 

   ∑ 𝑥ℎ𝑖
𝑘

𝑖∈𝑁

= ∑ 𝑥𝑗ℎ′
𝑘

𝑗∈𝑁 

 ∀ 𝑘 ∈ 𝐾, ℎ ∈ 𝐷, ℎ′ ∈ 𝐷′ (3) 

∑ 𝑥ℎ𝑖
𝑘

ℎ∈(𝐷,𝑁)

= ∑ 𝑥𝑖𝑗
𝑘

𝑗∈(𝑁,𝐷′)

 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (4) 

   ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑁

= ∑ 𝑥𝑗ℎ′
𝑘

ℎ′∈𝐷′

 ∀ 𝑘 ∈ 𝐾 (5) 

   ∑ ∑ 𝑥𝑖𝑗 
𝑘

𝑗∈(𝑁,𝐹)𝑘∈𝐾

= 1 ∀ 𝑖 ∈ 𝑁 (6) 

Constraints (2-6) provide the minimum cost flow constraints that simulate the behavior of the 

collection truck. The truck can only leave the depot once, all households or neighborhoods must 

be visited by only one truck, food waste must be dropped off at the recycling facility, and the truck 

must return to the vehicle depot. 

 

𝑦𝑖
𝑘 ≥ 𝑦ℎ

𝑘 + (𝑞𝑖 + 𝑄)𝑥ℎ𝑖
𝑘 − 𝑄  ∀ ℎ ∈ (𝑁, 𝐷), 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (7) 
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 𝑤𝑗
𝑘 ≥ 𝑦𝑖

𝑘 − 𝑄(1 − 𝑥𝑖𝑗
𝑘 )∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝐷′ (8) 

Constraints (7-8) are modeled after the Miller-Tucker-Zemlin constraints to prevent subtours for 

collection vehicles (Miller et al., 1960). These constraints track the total food waste in the 

collection truck at each stop, ensuring that the sum of the current quantity of food waste in the 

truck and quantity picked up at the household 𝑞𝑖  do exceed truck capacity 𝑄. 

 

∑ 𝑤𝑗
𝑘 ≤ 𝑄 ∀ 𝑘 ∈ 𝐾

𝑗∈𝐹

 (9) 

∑ ∑ 𝑤𝑗
𝑘

𝑘∈𝐾𝑗∈𝐹

= ∑ 𝑞𝑖

𝑖∈𝑁

 (10) 

Constraint (9) ensures the capacity of the collection truck is not violated. Constraint (10) ensures 

waste dropped off equals the total amount of waste collected. 

 

𝑣𝑗 = ∑ 𝑤𝑗
𝑘

𝑘∈𝐾

 ∀ 𝑗 ∈ 𝐹 (11) 

𝑃𝑗
𝑞𝑢𝑜 ≤ 𝑣𝑗 ≤ 𝑃𝑗

𝑐𝑎𝑝 ∀ 𝑗 ∈ 𝐹 (12,13) 

Constraint (11) tracks the total amount of food waste delivered to the recycling facility 𝑗 ∈ 𝐹, and 

Constraint (12,13) ensure that recycling facility quotas 𝑃𝑗
𝑞𝑢𝑜

 are met and capacities 𝑃𝑗
𝑐𝑎𝑝

 are not 

violated. 

 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑗∈(𝑁,𝐷′)𝑖∈(𝐷,𝑁)

+ 𝑚𝑗 = 𝐵𝑘 ∀ 𝑘 ∈ 𝐾 (14) 

𝐵𝑘 ≤ 𝐵𝑘,𝐿𝑖𝑚 ∀ 𝑘 ∈ 𝐾 (15) 
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Constraint (14) equates the travel time between nodes and the pickup time at each node to the total 

travel time for the collection route 𝐵𝑘. Constraint (15) ensures that the total travel time does not 

exceed the maximum travel time set 𝐵𝑘,𝐿𝑖𝑚. All VRPs across scenarios considered in this chapter 

were solved using the IBM CPLEX solution algorithms with a MATLAB interface.  

 

2.3 Model Assumptions, Data Sources, and Limitations 

Assumptions regarding collection and transportation time, household food waste 

generation rates, and operational costs are summarized in Table 1 and discussed.  

 

Item Value Unit Description Reference 

Collection time for 

food waste bins 

0.5 min Time taken to 

collect food waste 

bins at households 

Model baseline 

Travel Speed Variable/ 

Speed Limit 

km/hr Time taken to 

travel along road 

segments 

Speed limits from 

road network 

information. NYS 

GIS clearinghouse      

Food Waste Generation 
   

Low Generation 

(LG) 

.002 t/week 
  

High Generation 

(HG) 

.007 t/week 
  

 

Vehicle Operating Cost 

   

Low Cost (LC) 60 $USD/hr 
  

High Cost (HC) 100 $USD/hr 
  

     

Table 3-1: Assumed Model Parameters 

 

Road network links, nodes and signed speed limits are obtained from the transportation 

network data available at the New York State Geographic Information Systems Clearinghouse 

(NYS Office of Information Technology Services, 2017). ESRI ArcMap is to compute the shortest 
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path travel times between nodes, constituting the travel time matrix used in the VRP formulation. 

Other parameters such as vehicle acceleration and stopping times at intersections were not 

considered. Thus, the results may underestimate the travel time and costs per household. 

In 2010, a residential and commercial solid waste audit was performed in Monroe county, 

NY and included in their Local Solid Waste Management Plan Update (Barton & Loguidice. 

D.P.C., 2015). An average MSW generation rate of 26 kg per household per week was identified 

by this waste audit, with a 6.8% fraction of that MSW identified as food waste equating to 

approximately 2 kg of food waste generated per household per week. Conversely, the New York 

State Department of Environmental Conservation has estimated that food waste generation rates 

are higher, at 20% of the MSW generated by households, equating to 5.2 kg of food waste per 

week based on total waste generated found in the regional waste audit. However, an upper bound 

of 7 kg of food waste per household per week is used to represent increases or spikes in food waste 

generation during the holiday or summer seasons (Lebersorger and Schneider, 2014). All 

households are assumed to generate the same quantity of food waste in each scenario. Food waste 

generation rates vary across households weekly because estimating actual household generation 

rates poses additional challenges not considered in this chapter. 

Transportation costs are estimated in $USD per hour, which is the industry standard 

(personal communications with Waste Management, Inc. and Natural Upcycling). True operation 

costs will vary with fuel prices, weather, salary, and other vehicle maintenance costs not 

considered in this chapter. To account for some cost variability, upper and lower costs are derived 

from correspondence with two local waste collection companies. The current model only 

comprehends a homogeneous vehicle fleets with pre-defined capacities. If preliminary routing 

solutions indicate that smaller vehicles may be more desirable than larger vehicles due to time 
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constraints rather than capacity, those parameters must be changed manually. Realistically, some 

collection vehicles are more suited to residences that produce only a few kilograms of food waste 

a week, while others can pick up larger quantities of food waste from multi-family households. 

 

2.4 Study Area 

The study area is the Town of Penfield, a municipality located near Rochester, NY.  

Regional data for Penfield was used for this chapter, including geocoded household locations and 

traffic road network links. Only single-family households are considered for analysis, constituting 

98% of the total residential parcels in Penfield. The collection vehicle starting depot and delivery 

location are the same facility located just south of the City of Rochester. A map of neighborhoods 

considered within Penfield is shown in Figure 2 and characteristics of the study area are shown in 

Table 2. 
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Figure 3-2: Study Area Penfield, NY 

 

Name 

Area 

(km2) 

Total 

Households 

50 Randomly Selected 

HH  

(% Total) 

Depot to Centroid 

TT (min) 

Penfield, NY 97 12450 N/A N/A 

Neighborhood 7 0.70 280 17.9% 17.4 

Neighborhood 9 14.53 469 10.7% 24.53 

Neighborhood 15 1.95 386 13.0% 14.74 

Neighborhood 34 0.62 221 22.6% 17.94 
Table 3-2: Neighborhood Characteristics 
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2.5 Evaluation Steps 

First, participation from Neighborhood 7 (NH7) and Neighborhood 15 (NH15) are 

evaluated independently to understand characteristics from each neighborhood. Participation 

levels from 5 to 50 households per neighborhood are considered for each neighborhood. Second, 

NH7 and NH15 are combined to create the base service network for the collection program. The 

time for the collection routes for participating households in NH7 are evaluated from 5 to 50 

participants. Then, more participating households from NH15 are added to the network and 

collection times are evaluated. Third, households from NH9 and NH34 are independently added 

to the base network and the collection route times are compared. Comparing the addition of NH9 

to the addition of NH34 indicates how adding neighborhoods with different spatial characteristics 

effect the collection route time. Finally, high/low operational costs in conjunction with high/low 

waste generation rates are applied to the collection service network route solutions to assess 

potential collection costs per ton of material.  

 

3. Results 

3.1 Travel Time in Individual Neighborhoods 

Comparing the final objective function (Eq. 1) values at convergence from NH7 to NH15 

show an increase in total route time and intra-neighborhood time as households are added to the 

network.  
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Figure 3-3: Comparison of Total Route and Intra-HH Travel Times for NH7 and NH15 

 

Figure 3 suggests that increasing the number of participating households increases intra-

neighborhood travel times. The total travel time experienced (intra and inter neighborhood travel 

times) also increases with more participating households. The similarity in mean travel time 

(min/HH) increase between total and intra-household travel times suggests that the rate of increase 

for total travel time is due largely to adding more participants to the network. This is illustrated 

also in Figure 4. 
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Figure 3-4: Comparison of Mean Household Route Times for NH7 and NH15 

 

Figure 4 points to economies of scale as program participation increases. The intra-

neighborhood route time per household remains relatively constant, while the inter-neighborhood 

travel time per household (not shown) decreases, subsequently decreasing total travel time. Each 

neighborhood is a static defined area with fixed boundaries; therefore, as program participation 

continues to increase in any given neighborhood, the participation density also increases. Figure 5 

considers the impact of increasing participant density on travel time per household. 
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Figure 3-5: Travel Time vs Household Density 

 

Graphing the travel time per household against household density in neighborhoods, a 

similar trend emerges indicating reduction in travel time per household as participation increases 

and households are added to service network. Variations in the trend are due to the different road 

networks and collection routes for each scenario. A drastic decrease in travel time per household 

is seen increasing from 0 to 10 participants per km2, showing a “knee” in the curve between 10 to 

20 participants per km2. Including additional participants beyond 20 per km2 marginally reduces 

the travel time per participating household in the neighborhood. Collection trucks require a 

minimal time for waste collection at destinations and therefore are only able to improve route 

travel times up to that limit, which is 30 seconds in this chapter.  
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networks of neighborhoods jointly, building out through an expansion process. To represent and 

model this expansion, once NH7 reaches 50 participants, 50 participants from NH15 are introduced 

to the network incrementally. This expansion scenario continues the trends in for increasing overall 

travel times (Figure 6), but reducing travel time per participant (Figure 7). 

 

 

Figure 3-6: Total Collection Route Times for the NH7 and NH15 Collection Network  
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Figure 3-7: Mean Collection Route Times for the NH7 and NH15 Collection Network 

 

The total travel time of the collection vehicle per participant decreases and the intra-

neighborhood travel time per participant remains consistent as participating households from 

NH15 are added to the service network. The decrease in total travel time per participant indicates 

economies of scale that continue as participants are added from NH15 and consistence in intra-

neighborhood travel time suggests a uniformity in the distribution of households within each 

neighborhood.  

As the food waste collection service grows, these services will consider including more 

neighborhoods. Deciding which neighborhood routes to incorporate into the service may have a 

large impact on the total travel time for collection, ultimately affecting route travel time and 
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of considering these different additions is unclear if potential participants are willing to pay the 

cost for the collection service. A comparison of adding NH9 and NH34 to the base service network 

are compared for total travel time and mean travel time per participating household.  

 

Figure 3-8: Total Collection Route Times of the Expanded NH9 and NH34 Collection Network  
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Figure 3-9: Mean Collection Route Times of the Expanded NH9 and NH34 Collection Network  

 

The addition of NH9 or NH34 to the network have very different effects on both total and 

per participant travel times for the final routes. Spikes in total travel time are shown when NH9 

and NH34 are initially added to the network. The spike for NH9 is larger than NH34 because it is 

a further distance from the base service network. The rate of increase for collection time increase 

for NH9 is also higher than NH34 due to the lower density of households in NH9 causing increased 

travel times between households. 

Adding NH9 initially increases travel time per participant, due to the longer distances 

traveled by the collection truck to the neighborhood, then slowly decreases with the addition of 
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participants from NH34, travel times per participant are equivalent to pre-NH34 addition, and more 

participants lead to further route time reductions. Figure 8 and Figure 9 shows that it is possible to 

temper the initial shocks of adding new neighborhood service areas by recruiting more households 

into the program to justify the longer distance traveled. 

 

3.3 Cost Assessment 

Collection cost is also important to assess from a feasibility standpoint, especially when 

considering potential participants’ willingness to pay for service. However, the variability of food 

waste generation and operational costs present barriers to generalizing costs per ton to a specific 

value. Therefore, upper and lower bounds for generation and operational costs are considered to 

encompass a range of variability in food waste generation and operational costs (Table 2). The 

high-cost scenario combines the high operation cost parameter with the low food waste generation 

parameter, producing the highest cost per ton of food waste collected. The low-cost scenario 

combines low operation cost with high food waste generation, producing the lowest cost per ton 

of collected food waste. Low cost/low generation and high cost/high generation parameter 

combinations are omitted because the cost per ton of food waste collected are intermediate to the 

evaluated high and low-cost scenarios. Regardless of the values of cost and generation parameters, 

collection costs per ton of material are expected to follow decreasing trends as the number of 

participants in the network increase. 
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Figure 3-10: Transportation Costs for the NH7 and NH15 Network 

 

Trends in collection costs per ton of material ($/t) are shown to decrease similarly to 

reductions in mean per participant travel times in the network for NH7 and NH15 but show the 

wide range in potential collection costs. These high and low cost scenarios are extended to 50 more 

households from NH9 or NH34 to show how the addition of these neighborhoods effect total cost.  

 

Cost Scenarios 

100 HH from 

base network 
+50 HH from NH9 

 
+50 HH from NH34 

($/t) Total ($/t) 

Total 

($/t) 

Change 

($/t) 

 Total 

($/t) 

Change 

($/t) 

 (HC,LG) 708 832 +124  638 -70 

 (LC,HG) 142 167 +25  128 -14 
Table 3-3: Cost Scenario Values for Expansion to NH9 or NH34 Network 
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Even under the best scenarios of high food waste generation and low operating costs, 

inclusion of NH9 in the collection network increases the collections cost per ton. However, the 

marginal cost of providing service will continue to decrease as participants are added. 

Alternatively, the inclusion of NH34 in the collection network decreases the total collection costs 

in each scenario. Under higher cost scenario, the additional cost or savings are more pronounced 

in the additional neighborhoods than the lower cost scenario. Therefore, if operating costs and food 

waste generation rates are unfavorable, the company can capitalize on potential savings by 

extending service to neighborhoods that are close and dense to reduce the overall collection costs. 

Inversely, demand for service in in a more rural neighborhood will increase overall costs, but these 

increases can be minimized with low operation costs and high food waste generation.  

 

4. Discussion 

4.1 Effects of Household Density of Neighborhoods 

Results indicate a relationship between the decreases in travel time per household in 

collection routes with increasing household density in neighborhoods. Although this relationship 

is intuitive, there are two interesting insights revealed.  

First, there is a clear trend in the decrease in travel time per households as more households 

are added to the collection route within a given neighborhood. More extensive modeling and study 

is required to further corroborate this result. However, if future work finds consistency across 

similar networks, the relationship can be used to estimate the cost of waste collection without 

solving a VRP for large-scale network with many nodes, which is computationally prohibitive. 

Additionally, the estimation method could be applied to other food waste collection scenarios, 

most notably to a commercial facilities context. Current policy reports that quantify the cost of 
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performing food waste collection from large commercial sources considers only the cumulative 

cost of traveling from each individual generator of waste to the final depot (Manson, 2017). This 

method both models unrealistic waste management behavior and overestimates the cost of 

transportation. Clustering generators together as we did in this chapter and applying a travel time 

relationship to estimate costs is an approximation, but it is more accurate than transportation costs 

estimated in reports like Manson (2017). 

Secondly, reductions in travel time per household are significant up to a critical threshold 

as participants are added to the collection route. At this threshold of participant density, the 

improvements in cost reductions are only marginal compared to the initial growth of the service. 

In the scenarios presented in this chapter, the threshold of participant density appears to be between 

10 and 20 households per km2. After that, decreases in travel time per participant show diminishing 

returns, approaching a stable travel time per participant.  

 

4.2 Effects of Spatial Separation between Neighborhoods in a Service Area 

In the scenarios presented, a system shock occurs as neighborhoods are added to the 

collection network. When initially adding neighborhoods with a few households to the collection 

network, the total travel time and cost per household will spike. The distance of the newly added 

neighborhood from the base network influences the magnitude of the spike, and the density of 

potential customers in the neighborhood influences how quickly the system recovers. Moreover, 

this model reveals a critical mass of participating households that are needed before the collection 

times and costs will return to pre-shock levels. Customers added after this critical mass is reached 

will only continue to reduce the travel time per participant in the network, hypothetically reducing 

the collection costs for all participants in the program.  
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Identifying the critical mass of new participants in each neighborhood will help inform 

program expansion decisions. A company could administer a survey to a neighborhood 

community, and if participation interest reaches the critical mass identified by the routing trends, 

then it would be economical to provide service in that area. After the participant mass is reached, 

revenue generated per customer from additional participants will remain relatively stable. The 

stability allows a startup company to decide if it is worth spending resources on attracting new 

participants in the same neighborhood or focusing on service expansion to other neighborhoods 

 

5. Conclusion 

While past studies have examined residential waste collection and variants of this pick-up 

and deliver problem, none to the knowledge of the authors have considered the network build-out 

of these systems. This chapter presents a residential food waste collection model focusing on the 

impacts of expanding and growing the network both in terms of additional households and 

additional communities for a service provider in the early stages of its development and growth. 

The increases in the overall collection time are most affected by the increases in household 

participation within neighborhoods rather than travel time between neighborhood clusters. 

Increases in household participation lead to an increase in spatial density of participants, 

subsequently reducing the collection time per participant if distributed equally. When household 

density is low (less than 10 households/km2), addition of more participants quickly reduces the per 

household travel time. At higher participant densities, the rate of travel time decreases less quickly, 

indicating diminishing returns on collection time after approximately 10 households/km2.  

Economies of scale are clearly visible as participants are added to the collection network 

of individual and multiple neighborhoods. Decreases in travel time as well as decreases in program 
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cost are visible as more households participate and more food waste is collected. This trend should 

be leveraged by start-up collection programs to assess how economic feasibility will be maintained 

while satisfying service demands from customers.  

Since food waste constitutes a fraction of residential solid waste generation and voluntary 

participation is limited, collection methods will be different compared to municipal solid waste. 

This chapter focused on spatial properties of small collection programs, but there are other 

unanswered questions that should be addressed in future research. The optimal size of collection 

vehicles for food waste programs should be studied because smaller collection vehicles might be 

more suitable for food waste collection due to decreased operation costs and environmental 

impacts. Ultimately, the goal of residential food waste recovery is to reduce the environmental 

impacts of food waste degradation in landfills by diverting food waste to other recycling facilities. 

However, the energy, emissions, and economic balance that includes in-depth transportation 

modeling should be researched to understand these balances more completely.  

Additionally, this analysis does not consider how variability in the quantity of FW 

generation could affect feasibility of collection. At commercial scale, this type of variability could 

present an additional challenge for building out collection networks. Many existing transportation 

estimates of FW collection at this scale simplify transportation behavior to estimate transportation 

costs. However, it is important to model collection networks more realistically so that results are 

more relevant to stakeholders such as collection companies and policy analysis. Chapter 5 

addresses this challenge by presenting a new vehicle routing model to differentiate the effects of 

heterogeneous FW generation from homogenous generation on emerging commercial FW 

collection networks.  
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CHAPTER 4 

ADAPTING ECOLOGICAL MODELS TO INFORM SUSTAINABLE EXPANSION OF 

COMMERCIAL FOOD WASTE COLLECTION BEHAVIOR 

 

1. Introduction 

Chapter 3 characterized how spatial variability in FW generation is important for growing 

early stage service networks. While residential sources are a major contributor to the total FW 

generation, commercial generators are responsible for an equally large portion of FW generation 

(ReFED, 2017). Increasing interest in commercial FW collection is seen in state legislation, where 

commercial collection is perceived to be economical due to higher concentrations of FW discussed 

in Chapter 2. Unlike residences, FW generation from commercial sources vary with activity level 

and facility type. This heterogeneity needs to be assessed and incorporated into FW diversion 

decision-making such that emerging collection networks and policy assistance are most effectively 

implemented to maximize FW collection.  

Decades of VRP operations research and methods have been produced, beginning with 

“The Truck Dispatching Problem” (Dantzig and Ramser, 1959), and extended to create complex 

waste collection routing methods that consider capacity, time-windows, and even lunch breaks 

(Beliën et al., 2012). This literature focuses primarily on cost minimization of mature service 

networks and feasible solution approaches for large-scale networks. However, methods based on 

linear programming for large-scale networks may face exponentially longer convergence issues in 

the final solution as the networks grow (Beliën et al., 2012). Heuristic approaches circumvent the 

need to arrive at exact solutions, shortening the computation time for arriving at sensible routing 

solutions for larger networks (Laporte, 2009). Many of the methods developed focus on obtaining 

final solutions for well-established networks that provide flexibility for exploring numerous ways 

to tackle routing specific scenarios. However, these methods face methodological challenges for 
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understanding or informing contexts where network learning is important, such as emerging FW 

collection networks. Solving network routes using a computerized algorithm gives little 

information about how network characteristics influence service decisions. Therefore, a new 

modeling perspective sensitive to these issues may prove useful, given its comparability in solution 

accuracy to existing heuristics methods. 

 

2. Theoretical Framework 

Inspiration from ecological systems may be able to provide such a starting point for model 

development. Traditional central place foraging concepts (Bell, 1990), specifically, are notably 

similar to the conventional VRP: the truck (foraging animal) begins at a single location, searches 

the area collecting waste/food, and returns to its depot/nest to deliver its collection. Literature on 

optimal foraging behavior is frequently based on marginal value theorem to characterize foraging 

dynamics, which assumes that animals will optimize their own foraging behavior and energy 

budgets (Charnov, 1976a). For example, observations of central place foraging behavior in 

starlings reveals that they not only minimize energy expenditure while foraging, but also maximize 

energy gains from food collected (Brito e Abreu and Kacelnik, 1999; Kacelnik, 1984; Tinbergen, 

2002).  

The application of ecologically inspired heuristics solutions, such as those based on 

marginal value theory and central place foraging, depend on achieving an acceptable accuracy in 

the final solution. The accuracy of ecological models relies on rigor in their collected empirical 

data for informing effective conservation efforts. (Boyd et al., 2014; Godley et al., 2002; Russo 

and Jones, 2003). Likewise, vehicle behaviors and network parameters in FW collection models 
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should be calibrated using data from existing collection services to produce acceptably accurate 

results, which will help make well informed logistics decisions as service networks expand. 

Few waste collection models characterize the effects of variability from waste generation 

on vehicle routing decisions. However, in ecological modeling, observations of foragers can reveal 

how their behaviors are impacted by characteristics and variability of their foraging environment 

(Carvell et al., 2012; Ford et al., 2007; Godley et al., 2002; Olsson et al., 2008). Extending these 

concepts to FW collection can make collection network decisions more robust. Collectively 

drawing vehicle routing inspiration from ecological foraging models can help early FW collection 

responses to variability in FW generation and key governmental policies that may apply outside 

pressures to collection decisions.  

 Social insect foraging behavior in particular offers a unique perspective on vehicle routing. 

Just as fleets of vehicles may work for a single company, many individuals make up a colony of 

bees or ants. Social insects will cooperatively use communication to maximize their foraging 

behavior in the face of imperfect information of food availability and quality (Detrain et al., 1999; 

Harkness and Maroudas, 1985; McIver, 1991; Seeley, 1986; Traniello, 1989). Similarly, a waste 

collection company conceivably coordinates individual truck routes to maximize profits gained, 

while faced with uncertainty on availability and quantity of waste. In fact, as an alternative to 

solving waste collection systems with Mixed-Integer Programming (IP) methods, the 

communication between ants through pheromones has inspired a new class of VRP algorithms 

based on “ant colony” optimization or ACO (Colorni et al., 1992). Under this class of optimization 

trucks are analogous to ants. As trucks continue traveling, “pheromones” are “laid” along their 

travel route, with profitable routes receiving higher levels. Trucks make routing choices based on 

the strength of “pheromones” on paths based on the perceived cost of traveling to the next location. 
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When trucks return from their routes, truck routes are compared, and more weight is given to 

“pheromone trails” with better solutions. 

Unfortunately, current ant colony optimization (ACO) research has followed a similar path 

as conventional VRP methods, exploring better or faster ways to meet the collection demand of 

mature networks (Bautista et al., 2008; Bell and Griffis, 2010; Bell and McMullen, 2004; Mazzeo 

and Loiseau, 2004; Rizzoli et al., 2007; Schyns, 2015; Xiao and Jiang-qing, 2012). Observational 

foraging models have been developed to characterize how food distance and availability relate to 

energy maximization and tradeoffs made by bumblebees (Carvell et al., 2012; Cresswell et al., 

2000). Similarly, economic tradeoffs between travel cost and collection revenue can be applied in 

FW transportation models to maximize profit in emerging collection networks.   

The goal of this chapter is to introduce an ecologically inspired waste collection model to 

understand the effects of heterogeneous FW generation on decisions made in emerging collection 

networks. Current literature on ACO is leveraged to build an agent-based modeling (ABM) 

approach to simulate routing decisions and economic tradeoffs for a fleet of collection vehicles. 

First, the approach is used to emphasize the importance of modeling collection networks with the 

inclusion of collection and travel time. Next, waste collection solutions heterogeneous and 

homogeneous FW generation networks are compared to understand the impact of variability in 

generations. Results from this analysis can be used to inform FW collection in other systems where 

learning processes are important and the evolution of collection routes are of interest. 
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3. Methods 

3.1 Methods framework  

 The methods presented in this paper introduce an ecologically inspired ABM approach to 

solving a VRP for a network of commercial FW generators. The model framework is inspired by 

ecological principles and leverages previous work of ACO methods to determine agent decision 

rules. Monroe County in NYS is chosen as a case study to test the new formulation for a 

hypothetical emerging FW collection service. Solutions to preliminary routing scenarios are 

benchmarked against solutions from a traditional mixed integer program (Mixed IP) formulation 

to ensure the efficacy of solutions. 

 

3.2 Data Collection and Assumptions 

 Commercial FW generators in the study area were identified from the US EPA Excess 

Food Opportunities map described in Chapter 2 (USEPA, 2018). Generators estimated to produce 

80kg/day or more were chosen for analysis. This is equivalent a single, 64-gallon tote bins given 

a FW density of 330kg/m3 (Environment Protection Agency Victoria, 2015; U.S. Environmental 

Protection Agency, 2016). In all, generation rates of 588 commercial generators were extracted 

from the database. The analysis uses three different sized networks randomly generated from 

among the 588 generators. For the smallest test network, six generators were chosen at random as 

a proof of concept for the modeling. A larger network that includes 14 additional generators (20 

in all) were then chosen to test model concepts at a larger scale. Additionally, a separate 100-

generator network is chosen at random to compare FW generation rates. The 6 and 20 generator 

network sizes were chosen to allow the benchmark Mixed-IP formulation to find a solution within 
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a reasonable amount of time (less than three days). Collection is assumed to occur twice a week, 

equating to 3.5 days of FW generation available for pickup at each commercial generator. 

In this study, truck depots where vehicles begin and end their collection tours  also serve 

as the treatment facilities were trucks deliver FW diverted from the landfill. A hypothetical depot 

was chosen at an existing industrial park in the City of Rochester from feasible sites identified in 

Chapter 5. The location is relatively central to many of the generators in the county. An alternative 

depot for a comparison analysis. This location was also identified from the proceeding chapter and 

is in a rural farmland location at the southern edge of the county.  

All trucks in this study are assumed to travel along roads and use road attributes to calculate 

cost. Road network data was obtained from the NYS GIS clearinghouse (NYS Office of 

Information Technology Services, 2017) and contain distance in meters and travel time in minutes 

based on posted speed limits as attributes inherent to each road segment. Travel arcs, the shortest 

path identified between each pair of nodes in the network, and their costs in both distance and time 

were obtained using Esri ArcMap Network Analyst. An origin-destination (OD) distance-cost and 

a time-cost OD matrix were generated for the county-wide network.  

Waste collection trucks vary considerably in capacity and configuration. This study 

assumes a truck capacity of 6 metric tons for Mixed-IP and ABM scenarios. The direct-haul (DH) 

approach uses a different truck capacity based on a method described in section 3.3. For scenarios 

using time as a cost estimator, loading and unloading times of 15 minutes each are assumed at FW 

generators and depots.  

Cost per distance of hauling was assumed to be $2.48/km ($4/mi) based on the method of 

FW transportation used in statewide estimation of FW transportation costs (Hooper and Murray, 

2017; Manson, 2017). Cost-per-hour of truck operation time for waste collection can vary 
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considerably depending on regional factors, but common estimates range from $70/hr to $110/hr 

(Adler, 2004; Bumpus, 1993; James, 2010; Kessler Consulting Inc., 2015; NewGen Strategies and 

Solutions and Louis Berger Group, 2014; River, 2016; RRS, 2017; SHAW Environmental, 2012). 

This study assumes an operational cost of $85/hr. Tipping fees for FW delivery at treatment 

facilities are not included in the analysis. While the combination of hauling cost and tipping fees 

contribute towards the total cost for collection, tipping fees in this study are assumed to pass 

through the hauling company directly to the generator, and therefore do not affect transportation 

behavior. Decoupling the tipping fee from the actual transportation cost presents a clearer 

representation of how FW collection costs change with respect to network characteristics.  

 

3.3 Ecologically Inspired Agent Based Model (ABM) 

3.3.1 Model Overview 

 The ABM was constructed as an alternative to existing heuristic formulation for solving 

the VRP. The truck agent is the main actor for FW collection, with other agents such as generators 

and treatment facility acting simply to provide an environment for trucks to function. The behavior 

of truck agents is inspired by behaviors in ants and is based on existing ACO methods (Bell and 

McMullen, 2004). Additionally, individual truck memory of facility generation rates is introduced 

to simulate how foraging animals would gather information about a foraging area to make future 

decisions. The model was developed in Python. Figure 1 illustrates a simplified flow of behavior 

each truck agent follows.  
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Figure 4-1: Basic ABM formulation behavior of a truck agent. Trucks search out new FW sources to collect 

and return to the depot for delivery. Pheromone trails and truck perceptions of generation quantity are 

updated to reflect influx of new information about FW sources.  

 

 At every cycle, a truck travels a collection route to pick up FW from commercial generator 

nodes. Each cycle consists of a series of steps. Each step begins with choosing the next target for 

the truck, as explained in Section 3.5.2. After a target is chosen, the truck moves to the target. If 

the target is a generator, FW is loaded onto the truck and the truck’s perception of FW generation 

at that generator is updated (Section 3.5.3). If the capacity of the truck or operational time limit 

(time curfew) is exceeded, the truck returns to the depot. Otherwise the truck surveys the network 

to identify the next target for collection.  
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When the truck returns to the depot, it decides whether to ends its route or attempt another 

collection tour. If the route is finished, pheromones along the traveled route for that day and current 

best-known route are updated to reflect laying pheromones along arcs traveled on those routes. 

Pheromone updating is explained in Section 3.5.4. At the end of the cycle after all trucks have 

completed collection routes, generation quantities and truck capacities are reset to their starting 

values, but pheromone levels remain. Cycles are continued until the user specified input is reached, 

then the best solution is chosen.  

This model can be run with different system objectives and constraints, including a cost-

minimization objective, profit-maximization objective, collect-all FW constraint, and return to 

depot constraint. Combinations of these options allow for different scenario assumptions. 

 

2.3.2 Choose Next Target 

 The Choose Next Target sub-model uses the existing level of pheromones along the arcs 

in combination with the cost of along the arc to decide which locations to travel to next. Figure 2 

illustrates the individual pieces of the sub-model. 

 

 

Figure 4-2: “Choose Next Target” sub model. Travel impressions are created for each possible target. The 

truck decides whether to exploit the best arc or explore other potential arcs and moves to the target chosen. 
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 First, the truck surveys possible generators u from its current location i that demand FW 

collection. Then, travel impressions of possible path arcs are created based on the pheromone level 

of connecting arc 𝜏𝑖𝑢 and the inverse of travel arc cost  raised to a weight β for that arc (Eq. A1).  

𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑢 = (𝜏
𝑖𝑢

)(𝜂
𝑖𝑢

)𝛽 ∀ 𝐴𝑟𝑐𝑖𝑢  A1 

In scenarios where revenue is introduced in addition to cost, travel cost is scaled with 

maximum revenue, and then the true revenue is subtracted. (Eq. A2).  

 =
1

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑜𝑠𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒
 A2 

This step is performed to ensure the denominator is never a negative value in cases where 

revenue exceeds cost. In scenarios where only travel cost is considered, no scaling occurs.  

Next, the truck decides to exploit the arc with best impression or explore alternative arc 

choices given the probability of exploitation as ϴ and exploration as 1- ϴ. If exploitation is chosen, 

the arc with the maximum impression is chosen from all arcs identified. If the truck chooses to 

explore, a generator is chosen from a probability distribution of arc impressions generated using 

Eq. A3. After the target is chosen, the truck moves to the target. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑢 = 

𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑢

∑ 𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑢𝑖𝑢
∀ 𝐴𝑟𝑐𝑖𝑢 A3 

   

3.3.3 Updating Generation Perception 

Individual perceptions and working memories of truck agents are modeled to simulate 

retention of FW generation knowledge gained from visiting facilities. This is only implemented 

under profit-seeking scenarios, since cost-minimization disregards FW quantity when determining 

collection routes. The goal of this novel addition is to further simulate information gathering when 

exploring a new environment. For example, first impressions foraging for food in a new area might 
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be mediocre, but worth exploring. As different foraging patches within the environment are 

explored, some patches may be remembered as good and others as bad. Over time foraging in the 

same area, good and bad food patches are solidified in memory and foraging habits should lean 

toward exploiting good patches.  

Each truck agent first assumes that generators in the network produce similar quantities of 

FW, set to a normal distribution around the average generation rate of the network. The mean 

generation of each individual perception is used to generate anticipated revenue for travel 

impression and target choices (Eq A1, A2, A3). When the truck visits a generator, it updates its 

generation perception based on the actual quantity of FW available. The new perception remains 

in memory when creating network travel impressions and is updated after every visit to a generator 

(Figure 3).  

 

 

Figure 4-3: Food waste generator perception update 

 

Generation perceptions are updated using Bayesian inference for a normal distribution with 

unknown mean and known variance. The initial perceptions of each generator constitute the prior 

distribution. A posterior distribution is generated with the real quantity of FW revealed to the truck 

upon visiting the generator. Equations A4 and A5 describe the Bayesian inference process. 
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𝜇′′ =  
𝑣∅ ∗ 𝜇′ + 𝑣′ ∗  𝑆𝑎𝑚𝑝𝑙𝑒∅

𝑣∅ + 𝑣′
 A4 

𝑣′′ =  
𝑣∅ ∗ 𝑣′

𝑣∅ + 𝑣′
 A5 

Where: 

′ Information from prior distribution (µ, σ) 

∅ Information from known distribution (µ, σ) 

′′ Information of posterior distribution (µ, σ) 

µ Mean 

v Standard Deviation 

Sample Sample point used for updating prior distribution (currently the mean of true dist.) 

 

No information was available for estimating the variance of the true generation distributions; 

therefore, standard deviation of FW generation was assumed to be 10% of the mean, then 

converted to variance. Idealistically, variance would be determined based on real FW data 

collected over a period. 

 

2.3.4 Pheromone Update 

 After all trucks have returned to the depot and completed their routes, the objective value 

of the total solution is compared to the previous best solution, and pheromones are updated 

accordingly. Figure 4 illustrates the pheromone updating processes. 

 

Figure 4-4: Pheromone trail updating. Current route and best route objective values are compared. 

Pheromones are updated using Equation A6. 
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 Since the goals is to minimize cost, if the objective for the current set of routes is lower 

cost than the objective from the best-known set of routes, the best-known routes are replaced, and 

pheromones updated. If the current objective is higher than the best objective, pheromones are 

updated for the best routes at full strength, while pheromones for the current route are updated less 

than full strength. The purpose of updating both current and best routes is to enforce the influence 

of the best-known routes while still providing the ability to explore alternative routes, so the 

simulation can continue to search for less-costly route combinations. Pheromones are updated 

according to Eq. A6. 

𝜏′𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗 + (𝛼 ∗ 𝛾)𝐿 A6 

 Pheromones are chemical trails prone to decay from environmental conditions. This 

environmental condition is approximated by the decay rate α of pheromone trails during updating. 

A majority of existing pheromone remains on the arc, while decayed pheromones are replaced 

with new pheromones based on the inverse of the best-known objective value. The parameter γ is 

set to 1 for updating the best routes, while it is given a specified value between 0 and 1 for updating 

current routes. The value L is the inverse of the best objective value identified so far in the 

simulation. Updated pheromones levels are used to evaluate travel decisions on subsequent cycles.  

 

3.4 Benchmarking: Mixed Integer Program (Mixed IP) Baseline 

 A Mixed IP VRP formulation was constructed for this study to solve for the best available 

solution in each scenario for the test networks. The formulation is based on the traditional 

capacitated VRP formulations from literature with the extension that a truck can complete multiple 

tours provided that total travel does not exceed 10 hours for a standard working day based on 

reports of commercial waste collection in municipalities (Houssaye and White, 2013; NewGen 
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Strategies & Solutions, 2016) and discussions with local FW hauling practices. While the 

municipal operations usually limit collection Shifts to 8.5 hours, the private hauling companies 

observed will operate until their scheduled routes are completely collected from, often 10 or more 

hours per day depending on route conditions. Thus, 10 hours was chosen to reflect the workday of 

private hauling services in an emerging network. The Mixed IP solutions serve as benchmarks for 

the ABM formulation. Arc costs identified in Section 3.2 between a pair of nodes are equal 

regardless of direction of travel. The formulation was programmed in MATLAB and scenarios 

were solved using optimization solvers in CPLEX. The remainder of the section will describe the 

objective function and constraints of the basic formulation. 

 

Objective Nomenclature: 

𝑥𝑖𝑗
𝑘    - The decision by truck k to travel arc i, j. {Binary} 

𝑦𝑖
𝑘  - The decision by truck k to collect a quantity of FW from generator i. {Continuous} 

𝑧𝑗
𝑘 - Total load of FW on truck k at node j. {Continuous} 

𝑤𝑗
𝑘 - Mass of waste delivered by truck k to delivery point j. {Continuous} 

Formulation Nomenclature: 

n ∈ N Set of generators 

d ∈ D, D′ Set of vehicle depots, prime indicates delivery location equivalent 

u ∈ U Set of intermediate depot delivery points. Shares locations with depots. 

k ∈ K Set of trucks 

Qk Capacity of truck k 

qn Quantity of waste produced by generator n 

A A large number  

cij Cost of travel arc ij 
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Objective Function: 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈(𝐷′,𝑁,𝑈)𝑖∈(𝐷,𝑁,𝑈)

 M1 

 

Where c is cost in dollars for traveling arc ij based on distance or time specified by inputs. 

D represents the depot for the beginning of the tour, D’ represents the depot for the end of the tour, 

N represents generator nodes, and U represents intermediate delivery locations. For this study, 

intermediate delivery locations share the same location as the start and end depot.  

 

Cost-flow constraints: 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁,𝑈,𝐷′

 ≤ 1 ∀ 𝑖 ∈ (𝐷, 𝑁, 𝑈), 𝑘 ∈ 𝐾 M2 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝑈

− 𝐴 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝐷 

≤ 0 ∀ 𝑘 ∈ 𝐾 M3 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐷,𝑁,𝑈

= ∑ 𝑥𝑗𝑖
𝑘

𝑖∈𝑁,𝑈,𝐷′ 

 ∀ 𝑘 ∈ 𝐾, 𝑗 ∈ 𝑁, 𝑈 M4 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁

= ∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑁 

 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷 M5 

These constraints constitute important continuity of travel rules throughout the network. 

The constant A represents a large number to ensure constraints hold true under specified 

conditions. Constraint M2 dictates that each truck can only traverse an arc once in any route. 

Constraint M3 ties visiting an intermediate facility to leaving the starting depot. Constraint M4 

ensures continuity of travel for nodes other than depots. Constraint M5 ensures that if a truck 

leaves a depot at the beginning of the tour, it must finish its tour at a depot.  

 

Collection constraints: 
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𝑦𝑗
𝑘 −  ∑ 𝑞𝑗

𝑖∈𝐷,𝑁,𝑈

𝑥𝑖𝑗
𝑘 ≤ 0  ∀, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 M6 

∑ 𝑦𝑗
𝑘

𝑘∈𝐾

≤ 𝑞𝑗   ∀ 𝑗 ∈ 𝑁 M7 

∑ 𝑞𝑗𝑥𝑖𝑗
𝑘

𝑖∈𝑁

− 𝑦𝑗
𝑘 ≤ 0  ∀, 𝑗 ∈ 𝑈, 𝑘 ∈ 𝐾 M8 

−𝑄 ≤ 𝑦𝑗
𝑘 ≤ 0  ∀ 𝑗 ∈ 𝑈, 𝑘 ∈ 𝐾 M9 

These constraints describe the behavior of the truck for collection of waste from generators. 

Trucks are not required to load all FW available at a generator in a single stop. The load capacity 

of the truck is denoted by Q, and the quantity of FW for pickup at an individual generator is 

represented by q. Constraint M6 ensures that if a truck visits a generator, it cannot collect more 

than is generated. Constraint M7 limits the total amount of FW collected from a generator across 

all trucks to the generated quantity. Constraint M8 allows for a truck to unload FW at an 

intermediate delivery facility to allow it to make more trips. Constraint M9 ensures that the truck 

cannot drop off more than its capacity and cannot collect FW from an intermediate facility. 

 

Tour continuity constraints: 

𝐴𝑥𝑖𝑗
𝑘 + 𝑧𝑖

𝑘 + 𝑦𝑗
𝑘 − 𝑧𝑗

𝑘 ≤ 𝐴 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ (𝐷, 𝑁, 𝑈), 𝑗 ∈ 𝑁, 𝑈 M10 

𝑧𝑖
𝑘 = 0 ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐷, 𝑈 M11 

𝑧𝑗
𝑘 − ∑ 𝑄𝑥𝑖𝑗

𝑘

𝑖∈𝐷,𝑁,𝑈

≤ 0 ∀ 𝑘 ∈ 𝐾, 𝑗 ∈ 𝑁 M12 

Tour continuity constraints enable the truck to traverse the network in a logical route order. 

Constraint M10 is a sub-tour elimination constraint that combines arc routes with truck load to 
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make sure the current load of the truck plus FW collected at the next location is equal to the trucks 

load at the next location. Constraint M11 dictates that the truck load upon leaving the depot or 

intermediate facility is 0. Constraint M12 limits the load of the truck so that it does not exceed the 

stated capacity at any given node.  

 

Waste Tracking constraints: 

∑ 𝑦𝑖
𝑘

𝑖∈𝑁

−  𝑤𝑘 = 0 ∀ 𝑘 ∈ 𝐾 M13 

𝑤𝑘 −  𝑄 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑖∈𝐷,𝑈

≤  0 ∀ 𝑘 ∈ 𝐾 M14 

∑ 𝑤𝑘

𝑘∈𝐾

= ∑ 𝑞𝑖

𝑖∈𝑁

 M15 

 Waste tracking constraints make sure that waste delivered to the treatment facility remains 

within the bounds of truck capacity and facility generation. Constraint M13 ensures that the total 

quantity of FW delivered to the treatment facility by a truck is equivalent to the waste it collects 

along its route. Constraint M14 limits the total delivered load to the truck capacity multiplied by 

the number of deliveries it makes to depots and intermediate facilities. Constraint M15 requires 

that the total amount of FW delivered to treatment facilities equals the total generation of 

generators in the network. 

 

3.4.1 Mixed-IP Profit Model Modifications 

 The original Mixed-IP formulation presented was constructed with the ability to switch 

between objective functions and collection constraints, explaining why many constraints deviate 

from traditional formulations that only consider satisfying collection demand. First, a term was 
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included in the objective function to account for revenue gained from charging a service fee for 

FW collection. For the objective value, revenue is treated as a negative cost. 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈(𝐷′,𝑁,𝑈)𝑖∈(𝐷,𝑁,𝑈)

− ∑ 𝑓 ∙ 𝑤𝑘

𝑘∈𝐾

 M1’ 

The new terms f is the unit revenue in $/ton charged for collection of FW. To reiterate:  

𝑥𝑖𝑗
𝑘    - The decision by truck k to travel arc i, j. {Binary} 

𝑤𝑗
𝑘 - Mass of waste delivered by truck k to delivery point j. {Continuous} 

 

D and D’ are the starting and ending depot, U represents the delivery facility, N are generators, K 

are the set of trucks, and C is the cost for each travel link.  

Additionally, constraint M15 is updated to reflect the new collection constraint where q is 

the generated FW at each commercial facility. 

∑ 𝑤𝑘

𝑘∈𝐾

≤ ∑ 𝑞𝑖

𝑖∈𝑁

 M15’ 

 

3.5 Defining Collection Behavior 

 Defining and modeling FW collection as appropriately as possible is necessary for results 

to be applicable for stakeholders. Some stakeholders may not have the resources to perform a 

thorough analysis using software that implement a mixed IP formulation of the routing problem, 

and thus may use a simpler heuristic when attempting to estimate FW transportation costs. Two 

conventional rules in these heuristics are: 1) assuming vehicles directly haul FW one way from a 

generator to a treatment facility, and 2) use of distance as a cost basis. While this approach is more 

useful for long-haul freight transportation (Demir et al., 2014), using the direct hauling (DH) 

approach to waste collection does not account for realistic practices such as trip-chaining, where 
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trucks collect waste from multiple customers in a single tour to reduce hauling costs. Additionally, 

estimating cost by distance does not capture the time required to collect waste, or travel speed of 

vehicles along roads. Cost estimation by time is more appropriate for waste collection and is 

commonly used by municipalities and organizations attempting to accurately estimate collection 

costs (NewGen Strategies & Solutions, 2016; NewGen Strategies and Solutions and Louis Berger 

Group, 2014; RRS, 2017; SHAW Environmental, 2012). Therefore, Trip-chaining and time cost 

basis are compared against potential shortcuts to understand the importance of considering realistic 

behavior in models.  

 

3.5.1 Value of Trip-Chaining vs Direct Haul 

This scenario is designed to illustrate the value of chaining pickup destinations instead of 

assuming trucks haul FW directly from each generator to the treatment facility. The DH approach 

is a quick and conceptually simple way to estimate transportation costs for large networks. The 

method instance used for comparison in this study was taken from a NYS economic analysis on 

the impact of implementing FW diversion legislation (New York State Senate Assembly, 2019). 

The report’s method obtains estimated FW generation rates from commercial generators in a 

similar manner to this study, obtains the road distance from each generator to an existing or 

proposed treatment facility, and calculates the cost of transportation given collection rates of twice 

per week given social acceptability for odor control. Long-haul, 20-ton capacity trucks are 

assumed to transport FW, and more trucks are added if the generation rate exceed truck capacity. 

A hauling cost of $4/mile ($2.48/km) is used based on a long-haul transportation cost estimated 

for an analysis of FW collection in New York City (Houssaye and White, 2013). The cost is applied 

per truck regardless of how much capacity a truck has utilized. Each truck begins their trip at the 
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generator and takes the shortest path to the closest treatment facility where FW is delivered. For 

full description of the methods, please refer to “Benefit-Cost Analysis of Potential Food Waste 

Diversion Legislation” (Manson, 2017).  

 Routing solutions from DH and ABM approach using trip-chaining are compared on the 6 

generator and 20 generator networks as proof-of-concept. Total hauling distance is the primary 

cost attribute used for each network since distance is the base transportation cost used in the DH 

approach. Transportation estimates vary considerably with network characteristics such as depot 

location. Therefore, this scenario is tested using two separate depot locations, one near the cluster 

of generators in an industrial park, and one at the southern edge of the study area (Section 3.2). 

Each model’s objective is to minimize the cost of transportation while collecting all FW available 

in the system. This represents the most basic collection case to illustrate discrepancies between 

DH and trip-chaining. 

 

3.5.2 Cost Based on Time 

 As stated previously, cost estimates for transportation based on operation time are more in 

line with municipal and industry practices. Therefore, the cost attributes of models are changed to 

be based on operation time of trucks. Operation time consists of time traveled along arcs between 

nodes with additional collection time of FW at generators. Trucks are assumed to travel at the 

road’s posted speed limit and loading/unloading time is fixed at 15 minutes, representing some 

automation in the system that does not scale with quantity of FW collected. A time limit for each 

truck is also introduced to simulate the number of hours in a workday which the truck must adhere 

to simulate a workday.  

∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑚𝑗

𝑗∈𝑁,𝑈,𝐷′𝑖∈𝐷,𝑁,𝑈

≤ 𝑇 ∀ 𝑘 ∈ 𝐾 M16 



80 

 

 The travel time of arc ij is denoted as 𝑡𝑖𝑗 and the collection/delivery time of each node is 

𝑚𝑗. T indicates the time limit of the route that cannot be exceeded. 

Solutions for the 6 generator and 20 generators test networks with the industrial park depot 

are presented ABM formulations and loosely compared to solutions from Section 3.5.1. Again, all 

FW available in the network must be collected each day.  

 

3.6 Comparing Collection of Variable and Uniform Food Waste Generation Sources 

 Characterizing transportation decisions through an ecological lens requires two 

fundamental changes to conventional VRP models to observe the decision-making behavior of 

trucks. First, the introduction of a profit seeking function is required to mirror how animals forage 

to accumulate a net gain of energy. Second, animals are not scheduled by a third party to eat all 

the food present in the area. Thus, this constraint in conventional models must be relaxed to allow 

trucks to choose which destinations to include in their routes to accumulate profit. The introduction 

of these two changes allows observation of truck decision-making under various environmental 

conditions set by the model user.  

 To first illustrate proof of concept and model efficacy, the ecological model is tested on 

the same 6 and 20 generator networks and solutions are benchmarked against the baseline Mixed 

IP formulation.  

 Next, the model is applied to the 100-generator network using the estimated, heterogeneous 

FW generation rates identified in Section 3.2. The network is first solved using the cost objective 

and collect-all constraint as a reference point to calculate the compensation or material value 

required to break even between cost and revenue. Compensation values are decreased in 

increments of $10/ton until no FW is collected and increased at the same increments until all the 
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FW is collected. In a case where the cost of collection exceeds the reference point cost, but all FW 

is not collected, the reference solution is used and that increment’s compensation value applied to 

calculate profit. This is done because the user can infer that using the reference point solution will 

yield a higher profit than the profit-seeking alternative approach. These analysis steps are repeated 

assuming that each generator in the network produces a uniform quantity of waste, set to the 

average of the heterogeneous network.  

  

4. Results and Discussion 

4.1 Realistic Collection Behavior – Trip-chaining 

 DH vehicle behavior is compared to FW collection via more realistic trip-chaining 

behavior. Figure 5 illustrates the visual differences between solutions using these two methods for 

both 6, 20, and 100 generator test networks assuming the depot is located at the industrial park 

location. Table 1 and Table 1a show numeric data that accompany these routing solutions.  
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Figure 4-5: Visual comparison of direct haul (left) vs trip-chaining solved using the ABM (right) collection 

estimate approaches for the 6 generator (top) and 20 generator (bottom) test networks with the industrial 

park depot location. 
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Table 4-1: Comparison of DH, Mixed-IP, and ABM approach results for distance-cost scenario where the 

depot/treatment facility is located in an industrial park. A * indicates disparity from ABM solution since 

benchmark could not be applied to this scenario.  

 

Approach 

Gen 

# 

Exploit 

Probability Alpha Beta Gamma 

Initial 

Pheromone 

Random 

Seed 

 

Cycles 

ABM 6 0.85 0.1 0.95 0.5 0.000459 1552576418 600 

ABM 20 0.85 0.15 0.95 0.5 0.000159 1552576418 2000 

ABM 100 0.75 0.15 0.85 0.5 0.000249 1552576418 10000 

Table 4-1a: Parameter settings used to find the routing solutions in Table 1 using the ABM approach. 

 

 Results show that using the DH approach for the 6, 20, and 100 generator networks 

generates a higher cost estimation. As the network of collection participants grow, the cost 

disparity will also continue to increase. Planning for FW collection based on assumptions of 

inaccurate collection behavior could lead to over budgeting and poor planning decisions. 

Differences in cost estimates due to generation variability if the DH model was used for future 

scenarios may not be identified.  

 One challenge in forecasting transportation costs is that estimates are dependent on the 

spatial characteristics of the network. Specifically, the depot location can contribute considerable 

variability in the final transportation costs and solution. Figure 6 illustrates collection routes 

Approach 

Gen 

# Cost ($/km) Objective ($) 

% Diff 

from Bench 

 Distance 

(km) 

Collected 

FW (t) 

Solve 

Time (s) 

Benchmark 6 2.485 168.2 -- 67.7 3.2 0.2 

ABM 6 2.485 168.2 0.0% 67.7 3.2 4.7 

DH 6 2.485 181.3 7.8% 73.0 3.2 -- 

Benchmark 20 2.485 360.0 -- 144.9 13.4 84271.5 

ABM 20 2.485 366.3 1.8% 146.6 13.4 57.7 

DH 20 2.485 591.9 64.4% 238.1 13.4 -- 

ABM 100 2.485 1520.0 --*  60.2 1110.7 

DH 100 2.485 2970.0 107.8%* 1194.9 60.2 -- 
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between DH and trip-chaining approaches when the depot is moved further away from the cluster 

center of generators. Table 2 and Table 2a show numeric data that accompany these routing 

solutions. 

 

 

Figure 4-6: Visual comparison of direct haul (left) vs trip-chaining solved using the ABM (right) collection 

estimate approaches for the 6 generator (top) and 20 generator (bottom) test networks using the farmland 

depot location. 
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Approach Gen # 

Cost 

($/km) 

Objective 

($) 

% Diff from 

Bench 

Distance 

(km) 

Collected 

FW (t) 

Solve 

Time (s) 

Benchmark 6 2.485 248.2 -- 99.9 3.2 0.1 

ABM 6 2.485 248.2 0.0% 99.9 3.2 4.7 

DH 6 2.485 435.8 75.6% 175.3 3.2 -- 

Benchmark 20 2.485 550.8 -- 221.7 13.4 96304.1 

ABM 20 2.485 574.2 4.2% 223.0 13.4 58.5 

DH 20 2.485 1321.5 139.9% 531.7 13.4 -- 

ABM 100 2.485 2092.3 --* 840.3 60.2 1112.5 

DH 100 2.485 6128.6 193.5%* 2465.8 60.2 -- 

Table 4-2: Comparison of DH, benchmark, and ABM approach results for distance-cost scenario where the 

depot/treatment facility is located at a farm field at the edge of the study area. * indicates disparity from 

ABM solution since benchmark could not be applied to this scenario. 

Approach Gen # 

Exploit 

Probability Alpha Beta Gamma 

Initial 

Pheromone 

Random 

Seed Cycles 

ABM 6 0.85 0.1 0.95 0.25 0.003384 1552576418 600 

ABM 20 0.85 0.15 0.95 0.5 0.000143 1552576418 2000 

ABM 100 0.75 0.15 0.85 0.5 0.000249 1552576418 2000 

Table 4-2a: Parameter settings used to find the routing solutions in Table 2 using the ABM approach. 

 

 Results from this second analysis indicate the importance of depot location in determining 

transportation costs. Assuming a DH collection approach shows even greater disparity in cost 

estimates compared to the previous scenario where the depot was located in a city space. This is 

relevant for planners who are trying to site new treatment facilities. As will be shown in Chapter 

5, it may be difficult to site treatment facilities in or near cities due to digestate management 

concerns. A more likely location for treatment facilities would be rural areas, away from the 

majority of commercial FW generations. Figure 7 summarizes these findings by illustrating the 

objective values between scenarios. 

 



86 

 

Figure 4-7: Comparing objective values of routing solutions to for 6, 20, and 100 generator test networks. 

IP: Industrial Park Depot. RF: Rural Farm Depot 

 

4.2 Realistic Collection Behavior – Time as a Cost Basis 

 The cost basis of collection was changed from distance to time. A simulated collection time 

of 15 minutes was added at each generator. There is no logical way to model this estimate based 

on distance. Figure 8 compares the resulting objective values cost-by-distance scenarios from 

Section 4.1 and cost-by-time scenarios. Table 3 and Table 3a report relevant numeric results and 

parameters. DH is not used in this analysis.  
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Figure 4-8: Comparison of distance and time ABM route solution objective values for 6, 20, and 100 

generator networks. Time cost objective values is separated into travel time of vehicle on the road and 

collection time incurred at commercial generators. D: Distance cost basis, T: Time cost basis 

 

Approach Gen # 

Cost 

($/hr) 

Objective 

($) 

% Diff 

from 

Bench 

Operation 

Time (hr) 

Collected 

FW (t) 

Break 

Even 

Value 

($/t) 

Solve Time 

(s) 

Benchmark 6 85 232.1 -- 2.73 3.2 72.6 0.1 

ABM 6 85 232.1 0% 2.73 3.2 72.6 4.9 

Benchmark 20 85 700.6 -- 8.24 13.4 52.2 17977.8 

ABM 20 85 716.9 2.3% 8.26 13.4 52.3 62.7 

ABM 100 85 3564.8 --* 41.18 60.2 58.2 389.2 

Table 4-3: Comparison of benchmark and ABM formulations for time-cost scenarios where the 

depot/treatment facility is located in an industrial park. 

 
Table 4-3a: Parameter settings used to find the routing solutions in Table 3 using the ABM approach. 

Approach 

Gen 

# 

Exploit 

Probability Alpha Beta Gamma 

Initial 

Pheromone 

Random 

Seed 

Cycles 

ABM 6 0.85 0.1 0.95 0.5 0.000394 15525764181 600 

ABM 20 0.85 0.15 0.95 0.5 0.000128 15525764181 2000 

ABM 100 0.75 0.15 0.85 0.5 0.000256 15525764181 2000 
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 Although results of distance and time-based solutions are shown side by side in Figure 9, 

only observations can be made about differences between both models because there is no direct 

or common basis for comparison. Unit costs for each model are informed by costs of real systems, 

but they can be altered to reflect other scenarios. However, based on the specific unit costs used in 

these models, solutions show that the overall cost of collection increases substantially when time 

is used as a cost basis.  

Assessment of only the time basis transportation estimates reveals that costs attributed to 

FW collection at commercial generators constitute 64% - 70% of the total collection costs. The 

collection time at each generator regardless of waste quantity is set at 15 minutes in the model. 

This assumption is likely to be low based on personal experience. Because FW is messy, the 

collection bins usually need to be cleaned to satisfy the customer, which takes extra time. However, 

even with the conservatively low collection time estimate, the contribution to overall cost is high. 

This finding presents an opportunity to FW companies to invest in processes to reduce the 

collection time at generators, potentially by employing more automated collection technologies. It 

is also likely that travel time between generators is underestimated due to the modeling approach. 

Trucks are assumed to have instantaneous acceleration, travel exactly the speed limit, and are 

unaffected by traffic. However, even if travel time increased by 100%, collection time at generators 

would still contribute a considerable portion of costs and present an opportunity for savings.  

Observations of truck collection time and travel time appear similar to animal foraging 

activities such as prey handling time and search time (Charnov, 1976b; Olsson et al., 2008). 

Commercial FW can come in many forms, just as prey are not a single size or species of animal. 

The type of prey may determine a specific handling activity by a predator, such as octopuses 
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choosing to pull apart mollusks or choose to expend more energy by drilling through shells (Fiorito 

and Gherardi, 1999; Steer and Semmens, 2003). Likewise, different truck collection methods and 

technologies are used to collect FW in tote bins, larger bins, or liquid containers (Bernstad and la 

Cour Jansen, 2012; Hesselgrave, 2017).  

Drawing parallels between search time in animals and collection vehicles is more difficult 

because of how each of these systems function. The concept of foraging implies imperfect 

information about the system: where food is, what its quality might be, or how much  exists 

(Stephens et al., 2007). On the other hand, mature waste collection networks likely have contracts 

with their customers identifying their location, how often waste should be collected, and the size 

of their collection bin. While there might be some variation in how much waste is generated, there 

is little left to “discover”, thus operations literature has focused on faster ways to solve a specified 

system (Beliën et al., 2012). Depending on routes identified, different vehicle types are allocated 

to service those routes. There may be no need to send a conventional MSW collection vehicle to 

collect the residential FW as was assumed in Chapter 3 since generation rates are smaller. 

Assigning a smaller, more agile vehicle may be able to reduce fuel and labor costs. Therefore, 

current waste collection models may want to allow for assignment of different collection vehicles 

to efficiently collect FW depending on the situation, just as animals may adapt foraging and other 

activity patterns to use energy more efficiently (Asensio et al., 2007; Dell’Omo et al., 2000; Thiel 

et al., 2006; Wikelski and Trillmich, n.d.; Zielinski et al., 1983).   
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4.3 Effects of food waste heterogeneity on collection decisions 

 Combinations of objective functions and collection constraints were assessed on the 

smallest test network to understand how flipping these model switches effect FW collection. 

Figure 9 visually illustrates these effects. Table 4 reports the numeric results.  

 

 

Figure 4-9: Comparison of objective functions and collection constraints on a 6-generator test network.  
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Table 4-4: Comparison of solutions between benchmark and ABM approaches under multiple objective 

and FW collection constraints.  

 

Table 4-4a: Parameter settings used to find the routing solutions in Table 5 using the ABM approach. 

 

 From this example, two  formulations of model parameters, cost-collect all (CA) and profit-

collect partial (PP) approximate two different policy scenarios that could be implemented. The CA 

formulation is similar to a collection mandate, where all FW from identified generators must be 

collected, while the PP formulation allows for FW to be collected in order to maximize service 

profit and may be more similar to an incentive-based policy. Additionally, the CA formulation is 

akin to conventional vehicle routing methods with a cost minimization objective, whereas the PP 

formulation can draw parallels to ecological models. The collection vehicle tries to maximize 

profit over its cycles, just as an animal tries to optimize its foraging behavior to maximize net 

energy (Charnov, 1976a). At a compensation value of $72.6/t in this example, the collection 

company would break even if all FW was collected, but when the collection constraints are relaxed, 

the best collection route excludes one generator to maximize profit. Calculations revealed that if 

Appr. 

Gen 

# 

Obj. 

Type 

Collect. 

Const. 

Cost 

($/hr) 

Fee 

($/ton) 

Obj. 

($) 

Break 

Even 

Fee ($/t) 

% Diff 

from 

Bench 

Travel 

Time 

(hr) 

FW 

(t) 

Solve 

Time (s) 

Bench 6 Cost All 85 0 232.1 72.6 -- 2.7 3.2 0.1 

ABM 6 Cost All 85 0 232.1 72.6 0% 2.7 3.2 4.9 

Bench 6 Cost Partial 85 0 0.0 0 -- 0.0 0.0 0.1 

ABM 6 Cost Partial 85 0 0.0 0 0% 0.0 0.0 4.4 

Bench 6 Profit All 85 72.6 0.0 -- -- 2.7 3.2 0.1 

ABM 6 Profit All 85 72.6 0.0 -- 0% 2.7 3.2 4.7 

Bench 6 Profit Partial 85 72.6 -4.0 -- -- 2.2 2.7 0.2 

ABM 6 Profit Partial 85 72.6 -4.0 -- 0% 2.2 2.7 5.1 

Objective 

Type 

Collection 

Constraint 

Exploit 

Probability A B G 

Initial 

Pheromone 

Random 

Seed 

 

Cycles 

Cost All 0.85 0.1 0.95 0.5 0.000394 15525764181 600 

Cost Partial 0.85 0.1 0.95 0.5 0.000394 15525764181 600 

Profit All 0.85 0.1 0.95 0.5 0.000394 15525764181 600 

Profit Partial 0.85 0.1 0.95 0.5 0.000343 246780520 600 
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the skipped generator produced at least an additional 56kg FW during the cycle, the collection 

vehicle would visit the generator to add to its profits. A small but fundamental effect of generation 

heterogeneity is illustrated on this test network. As the network of potential participants grows, 

this effect is expected to be more pronounced.  

 The PP formulation of the model was applied to the 100-generator network to observe 

effects of heterogeneity in FW generation compared to the same network assuming homogeneous 

generation rates. The effects of collection compensation rates on total waste collected are 

compared (Figure 10). 

 

 

Figure 4-10: Tons of FW collected resulting from compensation rates used to find routing solutions using 

the profit-seeking ABM formulation. Solutions from the same network assuming “natural” heterogeneous 

generation and homogeneous generation are compared.  
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 Immediately noticeable is the S shape of collection curves indicating distinctive collection 

trends. At lower compensation rates, collection of FW from the network is less efficient. As 

compensation values increase, so does the FW that can be economically collected. At some 

compensation rate, an inflection occurs where the economic feasibility of FW collection 

diminishes. While this trend is apparent in both models, generation assumptions change the 

collection behavior. At lower compensation values, more FW from the heterogeneous network can 

be collected than if generation is assumed to be uniform. Moreover, the initial entry point where 

any FW collection is feasible is lower. Upon inspection of the numerical results, it was found that 

these initial collection locations produce the most FW and are critical for providing initial 

collection targets. Without these key participants, distance from the depot is the only deciding 

factor in economic feasibility. Identifying key participants for collection has similarities to 

keystone species in ecology. Although there is considerable debate in the ecological community 

on the implications of this concept (Cottee-Jones and Whittaker, 2012), identifying key species are 

essential to understanding ecosystem effects upon their loss (Power et al., 1996). Similarly, the 

removal of these “keystone” generators does not result in the collapse of the collection network, 

but more compensation is required to facilitate FW collection that is economically feasible to the 

collection company. In summary, assuming a uniform distribution of FW to make initial planning 

efforts easier will be detrimental for identifying early collection opportunities. 

 The cluster-first, route-second heuristic currently employed in operation literature as a 

class of heuristic for partitioning larger problems into smaller, more easily solvable problems. 

Capacitated clustering creates clusters of generators centered around the median of its individuals 

while keeping the total generation within a given capacity constraint (Negreiros and Palhano, 

2006; Zare Mehrjerdi and Nadizadeh, 2013). This method uses only two parameters for clustering: 
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quantity and density of resources. Quantity of the cluster is constrained, while the spatial size of 

the cluster is minimized to reduce potential transportation costs. The results show that this method 

may not be adequate for determining economic feasibility. Although uniformity of food patches 

in the environment is also usually assumed by researchers (Arditi and Dacorogna, 1988; Naef-

Daenzer, 2000; Rozen-Rechels et al., 2015; Steingrímsson and Grant, 2008), additional attributes 

such as quality and distance from the central place are generally important for understanding 

foraging behavior (Olsson et al., 2008). Thus, inclusion of quality in service area clustering may 

also be beneficial.  

 If profit for collection companies is treated analogously to net-energy gained in animals, 

then potential revenue gained from offering collection services to generators could be interpreted 

as the quality of FW.  Circling back to differences in individual values placed on FW collection, 

the WTP of individuals for separate FW collection combined with the quantity could be utilized 

as a quality metric. Clusters or patches of generators could then also be produced based on this 

quality metric and compared to the compensation required (or energy expended) to collect FW 

from that cluster. If the cluster quality exceeds the expenditure required for collection based on 

network properties (Figure 9), then providing service is likely to be economically feasible. 

Alternatively, if the quality does not support initial feasible collection, the disparity could indicate 

the level at which policy intervention or incentive is needed to make collection economically 

feasible.  

 

3.4 Discussion Summary and Considerations 

This study has presented a novel agent-based modeling formulation inspired by ecological 

systems for solving VRPs for FW collection networks. Results from this study show that modeling 
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FW collection considering realistic transportation behaviors alters estimates considerably. By 

considering trip-chaining behaviors rather than simple point-to-point assumptions, cost estimates 

are much lower on the same network. Altering cost estimates based on distance to estimates based 

on time also changes resulting outcomes, even when both estimation methods are rooted in real 

data. Moreover, the heterogeneous generation of FW is important for early adoption of 

economically feasible collection services and assumptions of homogeneity can be detrimental to 

planning efforts. An ecological perspective to modeling approach contributes to understanding 

how to improve FW collection.  

Many additional expansions to the ABM could be considered for future work due to its 

flexibility over Mixed-IP methods in terms of capturing and modeling learning and adaptation 

processes. Exploring and improving the fundamental formulation for ant-colony optimization may 

also yield more consistent simulations. Further refinement of the presented ABM method so that 

solution convergence is more likely would be a considerable improvement over choosing the best 

solution from a series of simulations. One important assumption of these methods is the generation 

and collection of FW occurs on a specifically defined cycle of twice per week. A more likely 

scenario is that weekly collection schedules differ among commercial facilities based on their FW 

generation rates. The ABM model could be extended to simulate daily generation and subsequent 

collection of FW to form a weekly schedule for collection that reduces cost or maximizes profit. 

These and future transportation models can help connect and inform transportation of FW via 

collection services, but currently do not holistically consider what type of treatment facilities may 

be receiving FW from various sources. The models presented in the previous two chapters are 

treatment facility neutral but managing FW sustainably will require the development and siting of 

treatment technologies that provide landfill alternatives. 
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The allure of alternative treatment technologies is the ability to recover energy and 

resources from what was once considered waste. However, unlike landfills, these facilities are not 

designed to sequester material, but rather to convert the material from one form to another. Mass 

reduction of inputs can be low for processes like wet anaerobic digestion that produces a liquid 

output called digestate with some nutrient properties. Understanding the transportation service 

costs associated with locating new facilities will inform overall costs and potential business 

opportunities of future treatment facility siting. Likewise, knowing the locations and economics of 

new treatment facilities will feed back into the transportation models presented to help inform 

collection decisions. The following chapter will consider where to locate treatment facilities 

considering both simple proximity to FW generation, additional organic resources, and the 

capacity to manage the resulting digestate from treatment processes.  
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CHAPTER 5 

CONSIDERATION OF ANAEROBIC DIGESTATE MANAGEMENT TO REDUCE 

ECOLOGICAL RISK IN FACILTY SITING 

 

1. Introduction 

 The FW diversion policies enacted by state governments will not only effect generators of 

waste, but also influence the buildout of infrastructure to treat the new FW waste stream. These 

diversion policies each consist of a spatial component stipulating that the targeted generators are 

limited from landfill disposal if an alternative option is within a specified maximum transportation 

distance, which currently ranges from 15 miles (Institute for Local Self-Reliance, 2016) to 25 miles 

(New York State Senate Assembly, 2019). Maximizing the diversion of FW in NYS will require 

construction of many new facilities to accommodate FW treatment in addition to any other pre-

existing organic material management such as composting of yard waste or management of animal 

manure. Thus, it is important consider the ramifications of statewide infrastructure development 

and the subsequent effects on local municipalities who will ultimately facilitate the construction 

and operation of new facilities.  

Many technologies are available for converting organics to recover resources and energy. 

Anaerobic digestion (AD) technology has gained attention as an option to convert commercial FW 

to value added energy products. Recovery of energy products through AD of commercial FW has 

shown promising recovery rates for economic viability (Banks, 2017; Chiew et al., 2015; Zhang 

et al., 2014) and even greater yields when particle size (Agyeman and Tao, 2014) and synergistic 

effects of co-substrates (Ebner et al., 2016) are considered. The bio-methane produced in AD can 

be used as a replacement for fossil natural gas in electricity generation or compressed and cleaned 

to be used as a fuel.  
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However, the underlying biochemical processes within in AD systems also result in 

secondary waste or byproduct streams. Namely, when organic material breaks down in the absence 

of oxygen, a nutrient-containing liquid residue typically called “digestate” is produced. This liquid 

digestate may have potential for further use as a soil amendment or fertilizer replacement but may 

also represent a waste stream that the AD operating company must bear costs to manage. To 

maximize the economic and environmental benefits of deploying AD for FW treatment, these 

facilities should be sited near sources of commercial FW and near energy or digestate co-product 

markets (Iakovou et al., 2010).  

 Many studies have considered siting AD facilities, and biomass-to-energy facilities more 

broadly. The basic method used for finding potential facility sites is to first excludes sites that do 

not meet minimum land use criteria due to environmental and social concerns. For example, areas 

near wetlands and residences are to be excluded from available locations. Then, feasible sites are 

weighted by preferential factors such as proximity to transmission lines, natural gas pipelines, and 

roads for product distribution (Ma, n.d.; Villamar et al., 2016; Zubaryeva et al., 2012). Further 

economic analysis is completed outside of the method on a site-by-site basis 

On the other hand, studies have also factored in economics from the generator and hauler 

perspective by performing a location-allocation analysis in Esri ArcMap. This operation locates a 

specified number of facilities while simultaneously minimizing the transportation distance from 

the biomaterial or FW source (Delivand et al., 2015; Sultana and Kumar, 2012; Thompson et al., 

2013). Alternatively, custom mixed integer programs have been built that function similarly to 

location-allocation but can consider additional economic criteria for facility placement (Chen and 

Fan, 2012; Mayerle and Neiva de Figueiredo, 2016; Mukherjee et al., 2015). Not all location-

specific methods use optimization algorithms to site facilities. Another method characterizes 
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Euclidean distances of potential sites from input resources, roads, and farmland, then greedily 

selects economically advantageous locations until no potential sites meeting minimum siting 

requirements exist (Sliz-Szkliniarz and Vogt, 2012). While many of these studies consider the 

economics of bringing FW to a treatment facility and then exporting energy products to appropriate 

markets, , the authors know of no studies that specifically consider the downstream management 

of digestate, and the attendant economic or ecological implications, when constructing spatial 

models to inform AD siting decisions.  

 This knowledge gap is particularly critical when the scale and potential impact of digestate 

management is considered.  Liquid and solid mass of inputs are mostly conserved in AD systems; 

thus, large quantities of digestate must be managed appropriately. Currently, a common 

management practice is to land-apply digestate on arable farm fields, which has the joint benefit 

of avoiding costs of treating this liquid effluent while displacing some degree of chemical fertilizer 

that would have been otherwise used. Some literature suggests that digestate substitution performs 

as well as chemical fertilizers (Nkoa, 2014), but others note that performance is dependent on the 

nutrient content of digestate and characteristics of applicable farmland (Dahlin et al., 2015; Delzeit 

and Kellner, 2013; Lukehurst et al., 2010; Peng and Pivato, 2019).  

Another barrier to digestate land application is the transportation that may be required to 

move this heavy, high-water content material from the AD facility to a field that can accept this 

nutrient input. It has been reported that digestate management via land application is not 

economically viable if digestate transportation distance exceeds a maximum of 16-32 km from an 

AD facility (Mouat et al., 2010; WRAP, 2013). It is likely that this distance may be even lower if 

the digestate’s nutrient composition and fertilization quality is not sufficient to fully displace 

fertilizer use and thus does not offset transportation and field application costs. Therefore, digestate 
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management often becomes a bottleneck for increasing biogas and energy production (Fuchs and 

Drosg, 2013).  

Further complicating digestate management are the uncertainties surrounding 

environmental impacts of digestate storage, transport, and field application compared to chemical 

fertilizer use and alternate digestate treatment methods. While global warming potential of 

utilizing digestate is less than chemical fertilizers (Chiew et al., 2015; Ebner et al., 2015; Rehl and 

Müller, 2011), evidence suggests that eutrophication potential could be worse largely due to 

digestate handling (Chiew et al., 2015). Operators seek to minimize these impacts by following 

nutrient best management practices such as applying digestate during months of highest crop 

uptake (Lukehurst et al., 2010; WRAP, 2013). Evidence suggests that managing nutrients based 

on phosphorus content can reduce soil nutrient buildup over multiple years (Maguire, 2009; 

Maguire et al., 2008), thus reducing the risk of phosphorus leaching into surface runoff and 

increasing eutrophication risks of local water resources (Carpenter, 2005; Heckrath et al., 1995; 

Sharpley and Rekolainen, 1997; Smith et al., 1999).  

Since the nutrient content of digestate is directly related to the input material sourced for 

operation (Provenzano, Logan), the capacity of crop fields in the region to accept digestate should 

be directly compared to potential FW inputs to the AD process. Current research and industry 

practice shows FW is often co-digested with animal manure to improve process stability (Xu et 

al., 2018; Zhang and Jahng, 2012), considerably increasing the total quantity of digestate produced 

and complicating it’s potential as a fertilizer replacement. Multiple materials may be sourced to 

optimize biogas yield, leaving the nutrient content of digestate as an afterthought (Mayerle and 

Neiva de Figueiredo, 2016; Nghiem et al., 2017), making digestate’s potential as a fertilizer 

replacement more complicated. Ignoring the potential economic and environmental impacts of 



101 

 

digestate management when siting an AD facility could lead to unforeseen future challenges that 

impede short-term operations and long-term strategic business goals. 

 Therefore, the goal of this study is to evaluate how digestate management constraints may 

influence spatial AD siting models, the ecological tradeoffs of AD deployment, and the broader 

decision-making process on infrastructure buildout for increased FW management. A GIS siting 

model is created to consider multiple scenarios of the FW and manure management system within 

a region. The capacity and eutrophication risks associated with land applying the resulting 

digestate are evaluated to determine effects on AD siting decisions. A system perspective is used 

to include both source material and digestate management for informing developers of potential 

environmental risks. These methods use the best available current data in the study region to 

characterize the balance of inputs and outputs associated with AD facilities.  

 

2. Methods 

2.1 Methods Framework 

 The methods presented in this study are intended to identify potential sites for AD facilities 

sourcing organic material (commercial FW). Esri ArcMap 10.6 was used to complete the 

environmental assessment in the study region using the projected coordinate system UTM Zone 

18N. Analyses are performed on a raster grid of 30 m x 30 m cells covering the study region. In 

short, the model evaluates the magnitude of material inputs available within a sourcing radius of 

each cell and the capacity to subsequently land-apply resulting digestate on crop fields within a 

disposal radius from each cell (Figure 1). Phosphorus is used as the currency for this modeling 

approach because of its necessity for crop growth and potential for environmental impact.  
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First, available facility sites were identified through an exclusionary land assessment 

process (Section 2.3). Next, mass of FW and manure inputs for co-digestion (Section 2.4), the 

resulting digestate phosphorus supply (Section 2.5), and crop field capacity to accept the available 

phosphorus (Section 2.6) are calculated within each specified transportation radius. Finally, the 

availability of nutrients from material supply and the field acceptance capacity are compared to 

generate an environmental information layer for siting consideration (Section 2.7). The baseline 

co-digestion scenario is compared to an AD “process improvement” scenario where digestion of 

FW-only is possible to identify the impacts to locating potential AD facilities (Section 2.8). Due 

to the current economic and infrastructure difficulties of digestate transportation and application, 

two transportation ranges are compared throughout.  

 

 

Figure 5-1: Methods Framework 

 

2.2 Case Study Region  

 New York State (NYS) was chosen as the case study region due to recently passed 

legislation on commercial FW diversion. This analysis zooms in on Western NYS (WNY), where 

many AD facilities intended originally for manure management exist (NYS Pollution Prevention 
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Institute, 2016), and some already source FW to increase biogas yields. The region contains the 

second two most populous cities in NYS and multiple collection companies already source FW for 

established AD facilities. Moreover, the WNY region, comprised of NYSDEC Regions 8 and 9 

(NYSDEC, 2019a), contains approximately 46% of harvested cropland and 38% of dairy cow 

inventory in the state (U.S. Department of Agriculture, 2017). Interest in infrastructure expansion, 

proximity of urban areas to farmland, and availability of resources makes this region an excellent 

test case. 

 

2.3 Siting Exclusions 

2.3.1 Assessment 

 The availability of suitable land for constructing new AD facilities was determined by 

combining multiple exclusionary constraints, such as setback distances to residential locations or 

wetlands, slope grade, and proximity to road access in order to restrict placement of AD facilities 

based on previous literature (Table 1).  
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Feature Type 
Setback in 

Literature 

Setback 

in study 
Literature 

Wetlands 33m – 200m 33m 
(Khan, 2015; Ma, n.d.; NYSDEC, 2019b; Sultana 

and Kumar, 2012; Thompson et al., 2013) 

Protected 

Land 
100m – 1000m 100m 

(Delivand et al., 2015; Khan, 2015; Ma, n.d.; 

Mukherjee et al., 2015; Sultana and Kumar, 2012) 

Open Water 50m – 300m 50m 

(David et al., 2013; Delivand et al., 2015; Khan, 

2015; Ma, n.d.; Mukherjee et al., 2015; Sliz-

Szkliniarz and Vogt, 2012; Sultana and Kumar, 

2012; Thompson et al., 2013) 

Residential 200m – 1000m 400m 
(David et al., 2013; Khan, 2015; Ma, n.d.; 

Mukherjee et al., 2015; Sultana and Kumar, 2012) 

Commercial 300m – 1000m 400m 
(David et al., 2013; Khan, 2015; Sultana and 

Kumar, 2012) 

Highways  50m  

Schools  400m  
    

 
Inclusion in 

Literature 

Inclusion 

in study 
 

Roads 300m 1000m (Mukherjee et al., 2015) 
    

 
Slope Criteria 

in Literature 

Slope 

Criteria 

in study 

 

Slope 2% - 15% 15% 
(David et al., 2013; Khan, 2015; Ma, n.d.; Sultana 

and Kumar, 2012; Thompson et al., 2013) 
Table 5-1: Setback distances, inclusionary distances, and slope criteria for exclusionary features. 

 

Although schools were not included in literature, they are prominent in the study region 

with the potential to affect siting locations. A setback distance for schools equivalent to 

commercial and residential locations were assigned. Instead of a setback distance, roads were 

given an inclusion distance, where potential digesters had to be sited within 1000 m of a road to 

ensure reasonable transportation and construction access. 
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2.3.2 Data Collection and Use 

 The National Land Cover Dataset (NLCD) for 2016 was downloaded to extract wetland 

and open water areas for the study region (MRLC Consortium, 2016). The slope of NYS was 

obtained from Cornell University’s Geospatial Information Repository (CUGIR, 2019). 

Remaining data–including political boundaries, protected land, roads, schools, and parcel types–

were downloaded from the NYS GIS Clearinghouse (NYS Office of Information Technology 

Services, 2017). Data were extracted and clipped to the extent of the study region, and converted 

to raster format comparable with the NLCD data to ensure common analysis geometry. 

 Exclusionary features were imported into ArcMap and Euclidean distances of each cell to 

the closest feature were calculated for each data layer. Cells for each data layer that were deemed 

suitable for site selection were assigned 1, otherwise 0. Data layers were overlaid to align cells 

within the study area, and cell columns were multiplied to calculate a data layer indicating cells 

suitable for development. The land footprint of the smallest standalone AD facility in the study 

region was approximately 120 m x 90 m (10,800 m2) and was designed to process 23,000 metric 

tons of organic material annually (Maringer, 2013). Therefore, groups of cells with a combined 

area less than 10,800 m2 were removed from consideration. 

 

2.4 Food Waste and Manure Sourcing for Co-Digestion 

2.4.1 Assessment Method 

 The supply of commercial FW within a Sourcing Radius of each 30 m x 30 m cell was 

calculated to determine available input materials. A radius of 40km (25mi) was selected based on 

the transportation distance set forth by recently enacted FW diversion legislations (New York State 
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Senate Assembly, 2019). Each cell was evaluated for the annual generation (t/yr) of commercial 

FW within the Sourcing Radius using the Focal Statistics tool in ArcMap. 

 Animal manures are currently considered important for maintaining operational stability 

of AD systems (Zhang et al., 2014). Indeed, many existing AD facilities in the study region already 

co-digest manure with FW sourced from commercial and industrial generators. To reflect the 

potential for co-digestion, a transportation distance for manure of 20km from confined animal 

feeding operations (CAFOs) was used as a base case for co-input material based on the maximum 

distance of manure transport (U.S. Department of Agriculture and Natural Resources Conservation 

Service, 2003). 

 

2.4.2 Data Collection 

 Locations and annual estimates of FW generation rates for commercial generators and 

manure generators for registered CAFOs were obtained from the NYS P2I Organic Resource 

Locator (NYS Pollution Prevention Institute, 2017). Facilities included higher education, 

restaurants, retail, wholesale, hospitality, and corrections facilities from the NYSP2I ORL database 

(NYS Pollution Prevention Institute, 2019). Addresses were geocoded to provide latitude and 

longitude coordinates for analysis.  

 

2.5 Phosphorus Availability 

 Phosphorus was identified as a key nutrient for plant growth and eutrophication risk due to 

run-off from farmland into local water systems. The phosphorus content of inputs was obtained 

for each input material to understand the availability of the nutrient entering the digestion process 
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and post-digestion utilization. Phosphorus content of mixed commercial FW was obtained from 

literature (Table 2). 

Source Value Units 

Solids 

Content 

kg/ton @ 

28% Solids 

(Zhang et al., 2007) 0.52 % dry mass 30% 1.56 

(Banks et al., 2011) 1.90 kg/ton 28% 1.90 

(El-Mashad and Zhang, 

2010) 
4.83 

g/kg TS 28% 
1.35 

(Chiew et al., 2015) 0.32 % dry mass 28% 0.90 

   Average 1.43 

   SD 0.36 
Table 5-2: Values and sources for phosphorus concentrations of mixed commercial FW from literature. 

 

Supply of FW calculated in Section 2.4 was multiplied by the literature value identified in 

Table 2 to convert FW (t/yr) to phosphorus (kg/yr). Phosphorus content of dairy manure was 

obtained and calculated similarly (Table 3).  

 

Source Value Units 

Solids 

Content 

kg/ton @ 

10% Solids 

(Agyeman and Tao, 2014) 0.78 g/L 17% 0.46 

(Lukehurst et al., 2010) 0.50 kg/m3 6% 0.83 

(El-Mashad and Zhang, 2010) 8.38 g/kg TS 14% 0.84 

(Laboski and Peters, 2012) 3.52 lb/1000 gal 10% 0.42 

   Average 0.64 

   SD 0.20 
Table 5-3: Values and sources for phosphorus concentrations of dairy manure from literature. 

 

 Phosphorus in the digestate is assumed to be equivalent to the phosphorus calculated from 

input material. Phosphorus and related compounds are stable, remaining in solid form unlike other 

nutrient, such as nitrogen that is more transient (Maguire, 2009). Although there is some 

conversion of solid mass to the gaseous state like CO2 and CH4, this will not diminish the 

phosphorus quantity in digestate.  
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2.6 Nutrient Capacity of Farmlands 

2.6.1 Crop Nutrient Uptake and Data Collection 

 Estimating nutrient uptake of crops requires knowledge of the crops grown in the region. 

Different crop types have different yield estimates and nutrient requirements. Spatial data and yield 

of crops grown in the region were obtained to estimate crop-specific P uptake. A raster dataset of 

crop locations and types from 2018 was obtained from the CropScape (U.S. Department of 

Agriculture and National Agriculture Statistics Service, 2018). The dataset was clipped to the study 

region, and field and vegetable crop types with a total land area of more than 200 acres (81 ha) 

were extracted from the dataset. CropScape data originates from satellite imagery and cropland 

designation is not always logical (e.g., wheat growing in a public park); to correct this, CUGIR’s 

database of registered agricultural districts are used to retain only crops within registered areas. 

CUGIR maintains a database of registered agricultural districts for permitting and legislation 

(CUGIR, 2019).  

Applying fertilizer to crop fields is a complex process that includes consideration of many 

factors such as anticipated erosion, existing soil phosphorus, and expected crop uptake (Ketterings 

et al., 2003). Phosphorus capacity of crop fields is assumed to be equivalent to the removal of 

crops when harvested. A nutrient steady-state is assumed where erosion and dissolved run off are 

zero and soil phosphorus optimally maintained such that new phosphorus must be applied each 

year for crop growth. While these assumptions considerably simplify fertilization estimates, 

expected phosphorus uptake provides a minimum estimate to replace lost nutrients after harvest. 

Expected phosphorus uptake was obtained from University of Wisconsin Cooperative Extension 

assuming average yield for each crop type (Laboski and Peters, 2012). Crop types were assumed 

to remain the same for the year following the CropScape dataset collected for Section 2.3.3 to 
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estimate phosphorus demand required the following year (Table B1). Anticipated phosphorus 

capacity (uptake) for a hectare of crop per year from Table B1 was multiplied by 0.09 to convert 

ha to 30m cell and the crop specific values were applied to the cropland data layer. 

 

2.6.2 Digestate Transportation and Application 

 Digestate must be transported to fields for application. The total phosphorus capacity of 

fields within a 10 km Transportation Radius from each cell was calculated using the focal statistics 

tool and available fields. This distance is economically feasible in current industry practice (Mouat 

et al., 2010; WRAP, 2013). Since the Transportation Radius considerably impacts the ability to 

manage digestate, sensitivity analyses are performed on this variable. Increasing digestate 

transportation distance means the more potential land available for application.  

 

2.7 Comparison of Digestate Phosphorus and Land Capacity 

 Availability of phosphorus in digestate and capacity of fields to accept phosphorus were 

compared to determine where digestate can be applied without exceeding field capacity to 

minimize potential environmental impacts of digestate land application. Potential digester sites are 

assumed to source all material within the specified Sourcing Radius and have access to all fields 

within the Transportation Radius for digestate application. Phosphorus field capacity is subtracted 

from digestate availability for each cell in the region. A resulting positive value indicates there is 

excess available phosphorus compared to the capacity of fields within the digestate transport 

radius. A negative value indicates remaining capacity of fields.  
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2.8 Economic and Technology Uncertainty 

 Although current AD technology typically relies on animal manure as a stabilizing 

material, future AD processes may no longer rely on the stability of manure and digest FW alone. 

Separating the two systems allows each to focus on processes improvements that increase 

efficiency or specific product goals. Therefore, the siting implications of a FW-only AD 

technology were considered. Even though the two processes are now split, manure management 

must still be considered as farm fields within transport distance from manure-producing facilities 

will first utilize manure as a soil amendment. In this scenario, manure is assumed to be either 

directly applied to farm fields or digested in a system co-located with each CAFO and land applied. 

Both management practices currently exist and result in equivalent land application impacts. The 

closest fields to CAFOs that cumulatively have the capacity to accept the application of raw or 

digested manure are removed from the field data layer. It is assumed that the applied manure will 

satisfy those fields’ annual phosphorus requirements and are no longer available for application of 

digestate derived from commercial FW.  
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3. Results and Discussion 

3.1 Land Exclusion Assessment  

 

 

Figure 5-2: Feasible locations resulting from the land exclusion assessment criteria for NYS (a) and the 

study region (b). The five counties comprising New York City are omitted from the map and assumed that 

no AD facility can be built there.   

 

 After land exclusion criteria were applied to NYS and controlled for the minimum size, it 

was found that 11.1% of the state contained feasible locations for potential AD facilities (Figure 

2). Feasible locations are most prevalent around the center of the state, away from major cities and 

populated areas. The large area of infeasible locations in the north-center of the state is a state park 

protected by the NYSDEC. Areas around NYC and on Long Island show notably lower 

concentrations of feasible locations.  

In the study region (Figure 2b), feasible locations are available in the rural areas outside of 

major cities Buffalo (northwest) and Rochester (north-central), and total 12.1% of land area. Three 

discernable issues were noted in the results of the exclusion assessment. The cluster of feasibility 

on the western edge of the study area is land owned by Native Americans whose land was not 
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included the original land exclusion assessment criteria. On the eastern side of the study area, the 

two dense clusters of feasible areas are a military base (north) and the Finger Lakes National Forest 

(south). Military bases were not included in the assessment criteria, and the national forest is not 

maintained by the DEC and was thus not included in the protected lands data file used for 

exclusion.  

When compared to current location of AD facilities, the assessment was able to show 

feasibility in the general area of facilities, but only showed feasibility on current AD facilities on 

a few occasions. Resulting images from the assessment are not carried through the analysis 

visually, but potential sites should be chosen with this exclusion assessment in mind.  

 

3.2 Manure and Food Waste 

3.2.1 Quantity and Phosphorus Availability 

 Results from the quantification of FW and manure and subsequent phosphorus availability 

from digesting these materials are illustrated in Figure 3.  
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Figure 5-3: Annual manure and FW supply from commercial generators and CAFOs (a) and the quantity 

converted to kg phosphorus/yr (b). Supply contours for FW remain on the combined phosphorus availability 

map to maintain the sourcing focus on FW.  

 

 Based on material inputs alone, siting a new facility in center of the region would be able 

to take advantage of the large quantity of source material (orange triangle). However, it is unlikely 

a single facility could be constructed to utilize all 1.3 million annual tons of manure considering 

that the largest AD facility in the word only processes 335,000 tons of material annually (Silva, 

2018). Furthermore, commercial FW only constitutes 0.4% of the total material at the highest 

concentrated location. As potential sites closer to city centers are evaluated, the ratio of FW to 

manure reaches its peak at the pink star location, where the total material is comprised of 19.8% 

commercial FW.  

Phosphorous follows a similar trend in concentration (Figure 1b) but the higher phosphorus 

content in FW translates to higher contributions to overall phosphorus levels: 0.8% and 35.5% at 
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the space two locations. While the total quantity of FW plus manure may be useful for deriving 

energy products, owners and operators will have to find suitable land for digestate application to 

mitigate the eutrophication risks of phosphorus overapplication. Figure 4 identifies the farmland 

available for digestate application and resulting phosphorus capacities.  

 

3.2.2 Phosphorus Acceptance Capacity of Farmland 
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Figure 5-4: Crop fields identified from satellite imagery that are assumed to need applications of 

phosphorus to grow (a). Manure from CAFOs was assumed to be held for transportation rather than field 

applied, increasing the available fields for digestate application. The sum of digestate application capacities 

of fields within 20km from each cell are calculated for potential digesters (b). Incorporating the uncertainty 

of digestate transport distance, the sum of digestate application capacities of fields within 10km from each 

cell are calculated (c).  

 

 The majority of crops identified in the region consist of corn, grass, hay, soybeans, winter 

wheat, and dry beans, constituting approximately 98% of total cropland and each growing more 

than 10,000ha. Of those crops, corn and hay (60% of total crops) are expected to uptake more than 

30kg/ha of phosphorus during their growing cycle, the highest of all crops considered. These high 

uptake rates and spatial distribution of those crops in the center and eastern portions of the region 

(Figure B1) contribute to the higher concentrations of dark green observed in Figure 3a. Other 

regions that grow these types of crops may also make good candidates for digestate application.  

 When digestate transportation distance is assumed to be 10km (Figure 3c), the location 

with highest phosphorus application capacity is calculated at approximately 625,000kg/yr. When 

digestate transportation distance is increased to 20km, phosphorus application capacity triples in 

many areas. A doubling of feasible transportation (Figure 3b) quadruples the total area that can be 

considered for digestate application and the high concentration of farm fields means that much of 

the new area is available for digestate application.  

 This intermediate result indicates the importance for considering digestate transportation 

distance. Although the concentration of farmland in this region translates to a large increase in 

capacity for digestate application. Other regions looking to develop AD facilities might want to 

emphasize the ability to transport digestate as far as possible.  
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3.2.3 Comparison of Digestate Phosphorus Availability and Farmland Capacity 

 The phosphorus availability of digestate resulting from source material is compared to the 

application capacity of farmland from each cell using phosphorus balances.  

 

 

 

Figure 5-5: Balance of phosphorus for digestate derived from manure and FW is compared to field 

capacities within 20km (a) and 10km (b) of potential digester locations. Positive values indicate excess 

phosphorus availability while negative values indicate excess remaining capacity. Contours indicate 

commercial FW supply from Figure 3a. The site with maximum potential to source FW (star) and maximum 

remaining capacity after digestate produced from sourced inputs is applied to fields in the transport radius 

(circle) are shown to illustrate two siting extremes. 

 

 Comparing phosphorus availability from digestate to application capacity of farm fields 

reveals a range of results. When a 10km digestate transportation distance is assumed, there are 

many locations that show an oversupply of phosphorus (Figure 4b). Many potential sites would 
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not be able to source all of the FW and manure within the specified sourcing distances without 

excess buildup of digestate. While many of the locations are technically available for siting from 

the exclusion analysis, some of the digestate produced would have to be transported further than 

10km to ensure that phosphorus is not overapplied to farm fields.  

 Doubling digestate transportation distance (Figure 4a) appears to not only fix the 

phosphorus oversupply issue for many locations but appears to create excess digestate application 

capacity for nearly all locations. The only location that is still observed to have excess phosphorus 

is in the City of Buffalo on the western side of the region. However, consulting the available site 

locations (Figure 2) shows that there are very few potential sites for new AD facilities within urban 

areas. The major takeaway from this result is that increasing digestate transportation distance just 

by 10km has a considerable positive impact on the ability to manage digestate without overloading 

soil phosphorus. Developers, planners, and policy makers should consider digestate transportation 

distance as a key factor to their siting criteria.  

 Introducing siting preferences based both on source material and digestate disposal 

capacity creates a multi-criteria problem for identifying preferred site locations. Performing a 

spatially explicit analysis allows identification of those locations that might accomplish specific 

objectives set forth by a new AD developer such as maximizing FW supply, maximizing digestate 

disposal capacity, or finding a site that strikes a balance. For example, Figure 4 illustrates sites 

with maximum FW supply and digestate capacity. Layering both input and capacity information 

allows for comparison. For instance, the site with maximum FW supply still has farm fields with 

unmet digestate application capacity after the initial digestate is applied to farm fields within both 

transportation distances.  
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3.3 Food Waste Only Digestion 

3.3.1 Food Waste Supply and Phosphorus Availability 

 Figure 6 illustrates the supply of mixed commercial FW when separated from manure and 

subsequent phosphorus availability of digestate based on methods.  

 

 

Figure 5-6: Annual supply of FW from commercial generators within 40km of each cell (a). Darker 

coloring indicates higher concentration of supply. Annual supply is converted to availability of phosphorus 

(P) in kg and shown via color (b). Contours lines of FW supply are overlaid on the phosphorus availability.  

 

 When commercial FW is considered alone, the landscape of material supply changes 

drastically compared to inclusion of manure. Locations with the most FW supply are those near 

commercial generators located in and around urban centers. Due to the spatial distribution of 

generators, the single location with the most supply of FW (pink star) is outside of a major urban 

center (Buffalo) rather than in the middle of generators. Although not the highest, this trend 

appears similar for Rochester, where the highest concentration of FW supply is just south of the 
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city. This trend likely occurs since both cities border major water bodies. Other cities located on 

the edges of defined geographic boarders might see similar trends.  

 Like in the FW and manure scenario, phosphorus supply from digesting FW follows the 

trend of the material.  

 

3.3.2 Phosphorus Acceptance Capacity of Farmland 

 The capacity of farmland to accept phosphorus from digestate was calculated in the same 

way as for the previous scenario. However, manure is no longer considered for digestion because 

technology improvements have allowed FW to be digested alone. Manure is instead assumed to 

be applied, either directly or through an existing digestion process, to available farmland around 

each CAFO (Figure 7).  
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Figure 5-7: Crop fields identified from satellite imagery that are assumed to need applications of 

phosphorus to grow (a). Fields surrounding CAFOs where application of manure assumed to meet field 

capacity are removed for FW digestate application. The sum of digestate application capacities of fields 

within 20km from each cell are calculated for potential digesters (b). Incorporating the uncertainty of 

digestate transport distance, the sum of digestate application capacities of fields within 10km from each 

cell are calculated (c). 

 

 The resulting capacity available for digestate application from FW only is noticeably 

diminished due to direct manure application on farm land. Both the 10km and 20km transport 



121 

 

distance scenarios show reduced capacity in the center of the region. The eastern portion of the 

region appears only to be slightly affected, likely due to the lower concentration of manure 

produced by CAFOs in the area. 

 

3.3.3 Comparison of Digestate Phosphorus Availability and Farmland Capacity 

Figure 8 shows the expected balance of phosphorus when field application capacity is 

subtracted from phosphorus availability from FW only digestate. 

 

 

Figure 5-8: Balance of phosphorus (P) for digestate derived from FW is compared to field capacities within 

20km (a) and 10km (b) of potential digester locations. Positive values indicate excess phosphorus 

availability while negative values indicate excess remaining capacity. Contours indicate commercial FW 

supply from Figure 3a. The site with maximum potential to source FW (star) and maximum remaining 

capacity after digestate produced from sourced inputs is applied to fields in the transport radius (circle) are 

shown to illustrate two siting extremes.  
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  Eliminating manure from the sourced material considerably decreases the quantity of 

phosphorus in digestate that must be managed, resulting in more remaining capacity of farm fields 

after the initial digestate is applied within 10km of a potential AD site (Figure 7b). Moreover, there 

are now additional sites that show extra digestate application capacity. Increasing the digestate 

transportation distance to 20km results in a similar increase in extra capacity as the FW and manure 

scenario. In fact, direct comparison of the two scenarios with 20km digestate transport reveals the 

spatial distribution of excess capacity to be approximately the same. This occurs due to the manure 

transport assumption of 20km in the first scenario.  

 If technology develops such that commercial FW can be digested without the need for 

manure as a stabilizing material, this analysis indicates that the results are tangible for digestate 

management. There is considerably less phosphorus in digestate to manage, thus allowing more 

flexibility in digestate application. Reduction in eutrophication risks could occur by applying lesser 

amounts of digestate over fields or selecting specific fields with lower runoff potential for land 

application. For the latter to be true, additional environmental analysis is necessary to identify site 

specific risk of surface water runoff.  

 Furthermore, less input material could mean construction of smaller facilities. Manure only 

and co-digesters that currently exist in the region are often millions of dollars due to size. If less, 

high quality material like commercial FW can be sourced instead of lower quality material like 

manure, digesters can be built smaller and cost less. Energy product generation will be more 

efficient due to higher biomethane content (Alexander, 2012; Ebner et al., 2016), and nutrient 

content of digestate may be higher, making it a more valuable fertilizer substitute (Nkoa, 2014). 

The excess digestate application capacity could also be viewed as opportunities to expand 
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operations to source other, high quality materials such as industrial FW, agricultural waste, or even 

serve as a treatment site for residential FW.  

 

3.4 Summary and Limitations 

Consideration of digestate management when identify potential AD sites has shown two 

important conclusions. First, Transportation distance for digestate application has considerable 

impact on the capacity to manage phosphorus content of digestate. Doubling the transportation 

distance in this study translated to a considerable increase in capacity for digestate application on 

farmland. While other regions may not see increases to the degree of this study due to the quantity 

of farmland in the region, the trend is expected to be similar. This part of the FW management 

network could be a key target for policy incentives or process improvements.  

Second, technology that could potentially process FW without the need for manure could 

decrease the cost of infrastructure buildout to meet FW diversion goals. Additionally, the increased 

flexibility in digestate management could provide an opportunity to divert other FW material to 

increase total FW diversion.  

Since this is the first study known to the authors that considers the downstream digestate 

management challenge when siting potential AD facilities, there are many simplifications that 

should be noted.  

There exist additional environmental factors that could impede digestate application on 

cropland. Eutrophication impacts of fertilizer runoff are a prolific issue in the U.S. (Danz et al., 

2007), and digestate may cause similar issues if used in the same manner. More detailed 

environmental risk analysis considering watershed properties and nutrient loading is critical to 

identifying fields where digestate application is least risky. 
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 Application of digestate on crop fields has not been extensively studied in literature from 

an economic risk perspective. Assumptions in this study are preliminary and should be further 

explored and supported. While this study identified the phosphorus demand associated with crop 

yields, the previously mentioned industry reports suggest that applying digestate is less 

economically efficient than raw manure due to its higher moisture content (Delzeit and Kellner, 

2013). The economic ability to apply digestate likely depends on the willingness of a farmer to 

work more even if the AD facility provides compensation for accepting the digestate. Application 

costs could be alleviated by adopting an integrated biogas-digestate optimization approach for AD 

operations could increase the value of digestate (Chen et al., 2012; Linville et al., 2015). 

Alternatively, technologies that remove moisture and concentrate digestate nutrients can be 

utilized to reduce transport and application costs (Fuchs and Drosg, 2013). Ultimately, a thorough 

techno-economic analysis should capture the economic feasibility of various solutions.  

 This chapter used a simplistic assumption of FW collection and transportation to determine 

the distance for sourcing. The transportation distance set forth by NYS legislation is intended to 

identify generators that will be required to manage their FW, not to define collection distances.  

  



125 

 

CHAPTER 6 

CONCLUSION, LIMITATION, AND FUTURE RESEARCH 

 

 As the U.S. moves toward more sustainable practices, diversion of food waste from 

landfills has emerged as a key activity for reducing environmental impacts associated with landfill 

disposal. The U.S. is estimated to have produced at least 63 million tons of food waste in 2015 

from the agriculture, industrial, commercial, and residential sectors (ReFED, 2017). Many state 

and local governments are emphasizing landfill alternatives for food waste management either by 

enacting legislation or supporting collection efforts. Additionally, there are emerging food waste 

management technologies that show promise in recovering energy and resources from food waste 

in addition to reducing the overall contribution to greenhouse gas emissions (Levis and Barlaz, 

2011). However, as management networks emerge, logistics challenges will inevitably arise due 

to the different considerations needed for food waste management that are not encountered in 

conventional municipal solid waste and recycling systems. Therefore, the goal of this dissertation 

was to characterize these unique characteristics to anticipate logistical challenges that might arise 

as food waste management becomes more common.  

 The first step of this research was to characterize variability in food waste generation and 

resulting estimates (Chapter 2). Empirically collected data was used to better inform spatial and 

temporal variability in food waste generation from many types of commercial generators. 

Empirical data was combined with prevailing estimation methods to characterize the magnitude of 

food waste variation at a regional scale.  

 New collection and hauling services that will be required to transfer food waste from where 

it is generated to the new treatment locations. Chapter 3 considered how spatial variability of food 

waste generation can affect collection feasibility. This concept is tested using residential 

neighborhoods to separate spatial density from differences in variability. Additionally, it 
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contributes to insights for collection of food waste from residential neighborhoods, estimated 

significantly contribute to overall food waste generation. Chapter 4 introduces a new ecologically 

inspired vehicle routing model to understand how variability in food waste generation rates at the 

commercial level will affect collection feasibility. Furthermore, this chapter shows how food waste 

specific assumptions support best practices for waste collection modeling to generate results 

meaningful to stakeholders. The ecological perspective of this research allows stakeholders to 

quantify characteristics of emerging collection networks to inform effective food waste collection 

services. 

Managing the source separated food waste from generators may require construction of 

new treatment facilities. While most facility siting research focuses on locating facilities such as 

anaerobic digesters close to food waste sources, appropriate management of low-quality material 

outputs such as digestate is not considered. Chapter 5 is the first known study to consider siting of 

anaerobic digesters that includes the spatially explicit capacity to manage digestate outputs via 

nutrient balance. The phosphorus content of digestate and capacity of agricultural crops to use 

phosphorus were quantified and compared to identify locations suitable for digestion facilities. 

This research shows that including the system perspective when considering the use of new 

technologies is critical to understanding the range of potential challenges that could be 

encountered.  

 

Key Takeaways 

 Development and application of these models and tools advances the understanding of 

logistics challenges that will be encountered as food waste management expands. Major findings 

are summarized below. 
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• Variability in food waste generation will impact FW management policy and network 

development. Anticipating this variability will help local governments coordinate 

management efforts, sourcing FW to maintain more consistent monthly supply and 

consolidating infrastructure development to take advantage of concentrations of FW 

sources. 

 

• New waste-to-energy facilities operate differently than conventional waste management 

infrastructure. It is important to consider the whole system of inputs and outputs when 

identifying new locations for these facilities. Siting anaerobic digestion facilities without 

initial regard for digestate management may cause problems for operation in the future.  

 

• Higher participation density in food waste management is critical to reducing the cost of 

emerging collection services for future participants. Identifying critical points in 

participation density that meet customer expectations will be important for the sustainable 

growth of collection services 

 

• Heterogeneity in food waste generation rates are critical for initially providing less costly 

commercial collection services. Exploiting large generators for initial food waste collection 

is key for the early stages of service development. Assuming that generation rates are 

homogeneous for ease of analysis may delay entry of food waste collection into new 

regions due to inaccurate conclusions of economic feasibility.  
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Research Implications and Recommendations to Stakeholders 

Food waste management in the U.S. is still in its early stages. There are many logistics 

challenges that will be encountered as networks develop nationally. While development has so far 

paralleled conventional waste management practices, there are characteristics unique to food waste 

management that will need to be identified and addresses at the operational and research levels, 

such as concentration and variability FW generation, willingness-to-pay for a new service, and 

post-treatment product application. Generators, transportation companies, and treatment facility 

operators should not be afraid to collaborate with researchers and policy makers to provide data 

and perspectives from the industry.  

Variability in food waste has implications for management strategies. Month-to-month 

variability in different FW sources can cause peaks and valleys in regional generation that could 

overwhelm collection services or cause a lack of FW resources. Concentrations of FW generation 

geographically are important to consider for building out management networks efficiently. 

Communication between stakeholders invested in the system is key so that variability does not 

impact management networks in unexpected ways. Developing flexible systems that incorporate 

information flows may help to accommodate spatial and generation variability in new management 

networks to maintain consistent effectiveness. Anticipating variability through well-constructed 

communication systems able to plan for and reduce the potential impacts. 

Information on the food waste system is scarce, affecting analyses, projections, and 

ultimately decisions. More information is needed on food waste generation at finer resolutions. 

For instance, how stakeholders make decisions and sentiments placed on food waste management 

from all stakeholders. More information will allow for more informed research and decision 

making so that policies and solutions are more relevant and effective. Additional information 
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should be collected on food waste generation rates over long durations to understand temporal 

variation in generation and for treatment facilities to anticipate large, short-term influxes or plan 

for a dearth in material supply. 

Collection and transportation within the food waste network will incur high costs as the 

systems are implemented and grow initially. There is often a mismatch between cost of 

transportation and the budgets, or willingness-to-pay, of stakeholders throughout the transport 

chain. This research shows that these costs are highly related to the concentration of FW generation 

geographically. This research shows that an important way to reduce these costs is to increase the 

quantity of participation in collection service areas. Additionally, targeting larger generators of 

FW are important for the initial service offerings to keep collection costs down so that “undue 

hardships” are not a reason for obtaining diversion waivers. As services expand, policy incentives 

could bridge the initial gap to assist in the buildout of services in order to maximize food waste 

diversion. As collection and transport become less expensive over time, incentives can be phased 

out as service and product markets are established. However, it is important that food waste 

management practices do not become reliant on incentives for operation so that progress is not lost 

as the system matures. 

This research shows that it is important to consider post-treatment use of FW products 

when considering potential treatment sites. Combing FW with manure for wet anaerobic digestion, 

based on this research, could lead to overabundance of phosphorus rich digestate compared to 

available farmland, presenting potential difficulty in siting new treatment facilities in locations 

advantageous to both FW supply and digestate disposal capacity. If technology and processes 

specifically designed for food waste management are the focus of research and policy, less post-

treatment products would need to be managed and siting might be easier. However, the reality is 
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that there are many organic substrates that also benefit from treatment, such as manure, agricultural 

waste, and yard vegetation. Technologies and processes currently used to accommodate food waste 

have been adapted from existing methods used for these other substrates. While these methods 

have initially worked for food waste management, economic barriers due to logistics are being 

encountered as operational networks grow. Products and their management remain the same 

despite the variety of nutrients FW can provide. Focusing on developing food waste specific 

technologies and processes to develop more valuable products will help to overcome logistics 

challenges and provide more economically feasible management solutions. 

  

Limitations and Extensions 

 This research was limited by the quality and quantity of data available, especially in food 

waste generation. Although conclusions and recommendations derived from this research strive to 

be based data and system relationships, the lack of information at many points could alter these 

conclusions. Much of this research can be revisited in the future to solidify and validate 

conclusions when more information is available. The genesis of many methods presented originate 

from considering food waste management from new perspectives. Therefore, these methods should 

be treated as preliminary methods used to identify basic relationships. Improving these methods 

in future research will help to capture more realistic representations of food waste management.  

Implications of this research can be extended to disaster management and planning. Rather 

than planning for long term trends, short-term influxes of material could spike dramatically due to 

impacts from natural hazards. Often when natural hazards occur, electricity can be knocked out 

due to intense environmental conditions or, more recently, intentionally shut off to reduce disaster 

risk. A recent example of disaster risk management is the shut-off of electrical systems in 
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California to reduce forest fire risk (Fuller, 2019). These types of risk management strategies may 

become more frequent due to uncertainties in variable weather conditions due to climate change 

(Aldunce et al., 2015; Birkmann and von Teichman, 2010). Loss of electricity presents an issue 

for FW infrastructure because large quantities of food will spoil in a short amount of time from 

residential, commercial, and industrial sources and will need managing. Developing an 

infrastructure network to be able to adapt to massive influxes of FW in addition to normal annual 

variability could be important for reducing human health risks associated with decomposing and 

putrescible waste (Luther, 2008; Rouse and Reed, 2013). Locating residential clusters and larger 

facilities that may generate large quantities of FW during disasters could be helpful for developing 

management plans. Additionally, anticipating these potential flows of FW may be important to 

development and operation of FW diversion infrastructure. Regional networks could be mandated 

to be able to absorb spikes in FW generation or reduce operating volumes ahead of anticipated 

disaster impacts. The research from this study could help anticipate and plan for influxes of FW 

from disaster related electrical outages rather than reacting after the disaster occurs. 

This research focuses on NYS as a case study for these concepts; however, findings and 

conclusions are intended to be generally applicable outside of the NYS geography. At least in the 

U.S., publicly available databases of FW related information are becoming more available both at 

the national and state levels. These databases generally contain details on potential generators and 

rough approximations of FW generation, but provide a consistent starting point for evaluating FW 

management potential. The methods outlined in this dissertation have utilized these databases as 

foundational components to remain initially applicable to other regions. For instance, Colorado 

could begin to consider FW management statewide. It could apply the methods and findings from 

this research to develop an initial idea of variability in generation, transportation challenges, and 
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potential for treatment technologies using basic and publicly available information. After initial 

evaluation of priorities and focus areas, more regionally specific data from additional studies could 

be included in the methods to enhanced outcomes and findings relevant to the state. These methods 

are also applicable outside of the U.S., as long as there is comparable data or estimates that can be 

obtained. However, data used should be as regionally specific as possible to produce relevant 

outcomes for developing networks for FW management. 

While the focus of this research has been on a popular type of anaerobic digestion 

technology in western NY, this siting method could be applied beyond the technology and regional 

boundaries in this study. While wet anaerobic digestion produces a liquid slurry, processes such 

as dry anaerobic digestion and composting produce drier, soil like products. Instead of availability 

of farm fields as limiting, accessibility of compost markets, for instance, may be a more limiting 

factor. Different treatment technologies may be more useful in different regions and provide 

different material outputs that need to be managed. Eastern NY, for instance, contains fewer AD 

systems due to fewer dairy farms, thus composting FW may become more prolific. Another state 

or region may want to deploy different treatment technologies depending on their sources of FW 

and additional organic substrates available. Multiple technology types can integrate into these 

methods as long as FW inputs and subsequent outputs to/from these technologies are documented. 

Identifying these markets will take on a different approach than characterizing farm fields but 

considering the use of FW post-treatment in facility siting should still be included. 

  This research considered waste generation, transportation, and treatment, focusing on 

specific components from those research areas. Future research should strive to consider these 

components working together to present a more holistic interpretation of food waste management. 

The larger system perspective will allow for other work to explicitly characterize the social, 
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economic, and environmental tradeoffs of the system. Chapter 5 outlined how useful insights from 

models using ecological inspiration could be gained. This can certainly be extended to identify 

how transportation systems might react to the food waste variability identified in Chapter 2 and 

how the process adjusts. Moreover, viewing the food waste system management from an ecological 

lens could provide additional insights for infrastructure buildout that accounts for food waste 

management in the context of learning agents and evolving food waste sources. 
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APPENDIX A 

 

Sample Calculations: 

Equation 1 

 

Supermarket i Generation Activity: 120 employees 

Supermarket Generation Factor: 1,360 kg/employee-year 

 

Theoretical Generation = 120 Emp.∗ 1,360 
kg

Emp.∙ yr⁄ =  163,200 
kg

yr⁄  

 

Equation 2 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑦
𝑚 =

𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖𝑦
𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟 𝑀𝑜𝑛𝑡ℎ𝑖𝑦

 𝑖 ∈ 𝐼, 𝑦 ∈ 𝑌, 𝑚 ∈ 𝑀 (2) 

 

Supermarket i Average Generation per Month (2015): 10,000 kg 

Recorded Quantity in February (2015): 7,000kg 

Recorded Quantity in September (2015): 14,000kg 

 

Deviation in February =  
7,000 kg

10,000 kg
= 0.7 

Deviation in September =  
14,000 kg

10,000 kg
= 1.4 

 

Equation 3 

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑖
𝑐𝑚 =  𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑐𝑚

(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖
𝑐)

12
 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶, 𝑚

∈ 𝑀  
(3) 

 

Anomaly of Supermarket i for February = 0.78 (Geometric Mean of Deviations across years) 

Theoretical Generation from Eq. 1 = 163.2 t/yr 

 

February Projection = 0.78 ∗ 
163.2 t

yr⁄

12
= 10.6 𝑡 

  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖
𝑐 =  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖

𝑐 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝑐 (1) 
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Table A1: Monthly food waste generation projections (metrics tons) for counties in New York 

State using the methodology in Section 2.6. 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Albany 941 981 1106 1043 968 986 907 940 1205 1142 1108 1134 

Allegany 67 81 93 91 76 67 62 65 107 104 98 94 

Bronx 1597 1473 1797 1590 1590 1618 1225 1285 1755 2005 1919 1943 

Broome 384 391 461 421 392 411 359 377 504 478 462 481 

Cattaraugus 140 129 166 139 136 159 127 135 179 166 161 178 

Cayuga 176 170 196 177 174 189 165 171 205 198 194 205 

Chautauqua 286 277 334 295 284 314 266 280 360 339 329 353 

Chemung 217 207 236 215 214 228 200 206 241 241 236 247 

Chenango 66 57 73 61 63 73 56 59 75 75 73 80 

Clinton 210 216 230 226 216 208 196 199 237 244 238 234 

Columbia 128 116 147 122 123 147 121 128 158 142 139 157 

Cortland 107 112 133 122 111 115 102 108 150 138 133 138 

Delaware 59 61 72 66 61 62 52 55 77 77 74 75 

Dutchess 628 625 720 663 635 656 573 595 758 753 730 750 

Erie 2049 1962 2357 2077 2027 2235 1889 1981 2506 2392 2327 2489 

Essex 170 166 178 169 168 175 164 167 182 179 177 182 

Franklin 197 192 208 197 196 203 188 191 212 211 208 214 

Fulton 97 87 109 91 93 110 88 93 114 108 106 118 

Genesee 128 125 147 132 128 137 118 123 156 151 147 154 

Greene 195 188 203 191 192 203 188 191 206 203 201 209 

Hamilton 13 12 13 12 12 13 12 12 14 13 13 14 

Herkimer 82 77 96 82 81 89 71 75 101 100 96 103 

Jefferson 297 280 321 290 292 315 274 283 328 326 320 337 

Kings 2708 2437 3059 2640 2669 2785 2036 2152 2980 3402 3254 3338 

Lewis 30 26 34 28 29 33 24 25 33 35 34 37 

Livingston 150 154 172 163 154 154 141 145 183 180 175 177 

Madison 126 134 159 146 131 134 118 125 179 167 160 165 

Monroe 1751 1687 2051 1794 1734 1938 1637 1725 2217 2064 2006 2167 

Montgomery 70 65 84 70 69 80 62 67 90 85 82 91 

Nassau 2048 1891 2379 2031 2010 2234 1753 1860 2480 2479 2392 2562 

New York 6043 6192 6610 6425 6159 6119 5818 5924 6891 6836 6697 6715 

Niagara 324 303 372 323 319 353 287 302 389 383 371 397 

Oneida 582 558 669 588 574 643 550 577 718 667 652 705 

Onondaga 1049 1012 1244 1081 1040 1167 977 1033 1353 1254 1216 1317 
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Table A1 cont. 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ontario 247 236 292 251 243 279 234 247 318 289 281 309 

Orange 720 666 820 712 709 768 607 640 839 866 836 881 

Orleans 134 126 142 129 131 142 127 130 144 141 140 147 

Oswego 139 141 169 155 144 141 114 120 178 188 179 179 

Otsego 147 155 179 167 152 157 143 150 199 184 178 184 

Putnam 112 96 128 102 106 127 93 100 131 131 127 142 

Queens 2457 2249 2784 2415 2420 2581 1987 2094 2792 3000 2887 3008 

Rensselaer 258 261 320 285 264 280 233 248 352 336 322 338 

Richmond 594 541 676 579 581 635 490 518 685 716 691 730 

Rockland 504 467 572 500 497 531 417 439 579 611 589 614 

Saratoga 451 426 518 451 443 496 414 436 550 522 509 549 

Schenectady 287 267 340 286 280 326 263 280 368 340 330 365 

Schoharie 58 59 71 64 59 62 54 57 78 73 70 74 

Schuyler 53 50 56 52 52 56 51 52 57 56 55 58 

Seneca 104 102 109 104 104 107 99 100 110 112 110 112 

St Lawrence 291 304 351 326 300 309 279 291 387 362 350 361 

Steuben 109 102 121 109 108 110 88 91 120 133 128 130 

Suffolk 2310 2121 2657 2267 2258 2523 1991 2108 2760 2752 2662 2860 

Sullivan 199 192 212 197 197 206 185 189 214 217 213 220 

Tioga 62 53 70 57 59 70 52 56 72 71 69 77 

Tompkins 260 308 342 339 287 264 258 270 397 367 350 343 

Ulster 523 510 576 529 520 555 498 514 603 581 570 598 

Warren 219 211 247 220 216 241 212 221 264 243 239 258 

Washington 148 137 159 141 144 160 138 143 164 159 156 168 

Wayne 107 94 119 100 103 116 89 94 118 124 120 129 

Westchester 1772 1647 2018 1751 1740 1917 1549 1630 2091 2089 2025 2158 

Wyoming 224 216 233 219 220 234 219 222 238 230 229 239 

Yates 21 23 26 26 23 20 16 17 28 31 29 28 
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Table A2: Annual generation rate (metric tons) of facilities in each county extracted from the EPA 

Excess Food Opportunities Map 

County 

Correctional Elementary 

schools 

Hotels 

and 

Motels 

Colleges, 

Universities 

Supermarkets 

and Other 

Grocery  

Other 

Commercial 

Albany  2,652   715   1,992   1,823   5,017   314  

Allegany 0  109   33   364   500   8  

Bronx  3,553   4,242   200   1,484   9,315   1,130  

Broome  7   438   1,162   754   2,694   107  

Cattaraugus 0  207   135   119   1,331   41  

Cayuga  779   166   192   109   953   33  

Chautauqua  350   328   499   330   2,150   87  

Chemung  1,011   226   331   93   996   57  

Chenango  96   122   52   1   528   16  

Clinton  1,456   178   237   277   464   52  

Columbia  262   124   38   36   1,187   47  

Cortland  35   110   189   282   849   17  

Delaware 0  99   132   138   399   30  

Dutchess  2,124   775   727   861   3,356   251  

Erie  1,871   2,439   5,151   1,903   14,408   701  

Essex  775   79   742   40   426   13  

Franklin  1,465   125   190   59   564   28  

Fulton  198   131   69  0  793   30  

Genesee  214   150   287   143   806   58  

Greene  1,150   98   581  0  537   11  

Hamilton 0  7   96  0  49   2  

Herkimer 0  148   121   86   673   27  

Jefferson  983   304   844   69   1,390   90  

Kings  1,145   7,715   1,731   2,066   18,108   3,001  

Lewis 0  73   52  0  242   5  

Livingston  817   143   67   250   670   14  

Madison  87   153   98   373   1,012   36  

Monroe  550   1,953   4,407   1,933   13,689   409  

Montgomery 0  119   38   63   688   14  

Nassau  134   3,902   2,587   1,797   16,656   1,286  

New York  3,042   3,522  43,671   6,823   15,779   3,818  

Niagara 0  504   842   255   2,380   171  

Oneida  1,354   560   713   481   4,197   229  

Onondaga  88   1,244   2,179   1,304   8,777   263  
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Table A2 cont. 

County 

Correctional Elementary 

schools 

Hotels 

and 

Motels 

Colleges, 

Universities 

Supermarkets 

and Other 

Grocery  

Other 

Commercial 

Ontario  44   258   525   246   2,130   49  

Orange  1,047   1,405   827   560   5,063   229  

Orleans  997   96   6  0  524   16  

Oswego 0  315   222   349   949   30  

Otsego 0  116   517   341   990   53  

Putnam 0  244   20    1,095   49  

Queens  1,573   5,621   3,393   1,856   16,739   1,751  

Rensselaer 0  402   263   587   2,224   53  

Richmond  358   1,269   809   394   4,396   303  

Rockland  6   1,049   1,207   412   3,360   331  

Saratoga  524   551   897   354   3,346   134  

Schenectady  142   396   189   254   2,694   87  

Schoharie 0  68   110   126   454   25  

Schuyler  320   34   78  0  199   20  

Seneca  787   71   143   25   240   8  

St Lawrence  955   258   184   641   1,877   25  

Steuben 0  243   436   102   582   26  

Suffolk 0  4,156   3,974   1,643   18,258   1,436  

Sullivan  809   176   715   60   730   26  

Tioga 0  125   79  0  558   11  

Tompkins  79   182   748   1,178   1,612   24  

Ulster  1,359   395   1,935   335   2,451   132  

Warren 0  146   1,116   138   1,354   53  

Washington  897   133   5  0  781   22  

Wayne  219   220   39   5   782   57  

Westchester  1,769   2,939   3,067   1,242   12,656   883  

Wyoming  2,011   80   5  0  614   18  

Yates 0  60   31   77   111   13  
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Table A3: Number of commercial and institutional facilities in each county extracted from the 

EPA Excess Food Opportunities Map 

County 

Correctional Elementary 

schools 

Hotels 

and 

Motels 

Colleges, 

Universities 

Supermarkets 

and Other 

Grocery  

Other 

Commercial 

Albany 13 109 86 22 143 133 

Allegany 0 25 7 3 19 10 

Bronx 12 501 43 12 1140 513 

Broome 1 58 44 6 64 73 

Cattaraugus 1 52 13 4 21 31 

Cayuga 3 34 15 3 21 23 

Chautauqua 2 69 41 3 45 54 

Chemung 3 33 16 3 23 35 

Chenango 1 24 7 1 14 12 

Clinton 2 34 26 4 25 30 

Columbia 2 23 18 1 34 30 

Cortland 1 22 13 1 13 20 

Delaware 0 26 25 1 16 19 

Dutchess 9 115 55 8 123 103 

Erie 7 300 177 24 338 387 

Essex 3 25 56 1 18 15 

Franklin 7 25 28 1 24 16 

Fulton 2 21 11 0 21 21 

Genesee 1 28 21 3 18 20 

Greene 3 18 56 0 17 13 

Hamilton 0 6 22 0 6 1 

Herkimer 0 27 19 2 25 19 

Jefferson 4 44 57 2 39 27 

Kings 11 890 139 51 2200 1312 

Lewis 0 19 9 0 11 7 

Livingston 2 25 12 1 15 20 

Madison 1 29 8 3 15 20 

Monroe 4 252 116 22 220 279 

Montgomery 0 24 7 2 21 14 

Nassau 4 441 129 29 648 730 

New York 17 508 731 97 1173 939 

Niagara 1 66 70 6 50 105 

Oneida 5 82 55 9 84 90 

Onondaga 4 152 95 16 198 187 
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Table A3 cont. 

County 

Correctional Elementary 

schools 

Hotels 

and 

Motels 

Colleges, 

Universities 

Supermarkets 

and Other 

Grocery  

Other 

Commercial 

Ontario 1 36 35 4 20 40 

Orange 6 119 69 6 166 137 

Orleans 3 15 3 0 11 17 

Oswego 0 47 36 2 28 42 

Otsego 0 28 43 3 20 16 

Putnam 0 30 5 0 39 37 

Queens 10 528 157 28 1463 933 

Rensselaer 0 59 23 5 62 60 

Richmond 4 116 22 5 246 233 

Rockland 1 128 33 14 138 141 

Saratoga 2 66 67 4 69 75 

Schenectady 1 55 18 5 78 51 

Schoharie 0 13 10 1 8 10 

Schuyler 1 9 18 0 3 9 

Seneca 2 21 12 1 7 12 

St Lawrence 6 56 20 4 45 30 

Steuben 0 47 36 3 34 35 

Suffolk 4 419 208 14 646 716 

Sullivan 3 28 35 3 45 14 

Tioga 0 24 7 0 11 12 

Tompkins 1 39 46 4 21 25 

Ulster 5 65 66 3 79 82 

Warren 0 22 123 3 28 23 

Washington 5 27 4 0 26 15 

Wayne 1 40 9 1 16 30 

Westchester 7 356 92 25 609 432 

Wyoming 4 17 4 0 15 14 

Yates 0 27 9 1 13 18 
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Table A4: Normalized monthly food waste generation projections (metrics tons) per 1,000 people 

for counties in New York State using the methodology in Section 2.6 based on 2010 population. 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Albany  3.09   3.22   3.63   3.43   3.18   3.24   2.98   3.09   3.96   3.75   3.64   3.73  

Allegany  1.38   1.65   1.89   1.86   1.54   1.36   1.26   1.33   2.18   2.12   2.00   1.92  

Bronx  1.15   1.06   1.30   1.15   1.15   1.17   0.88   0.93   1.27   1.45   1.39   1.40  

Broome  1.92   1.95   2.30   2.10   1.95   2.05   1.79   1.88   2.51   2.38   2.30   2.40  

Cattaraugus  1.75   1.61   2.07   1.73   1.70   1.98   1.58   1.69   2.23   2.07   2.01   2.22  

Cayuga  2.20   2.12   2.45   2.21   2.18   2.36   2.06   2.14   2.56   2.48   2.42   2.56  

Chautauqua  2.12   2.05   2.48   2.18   2.11   2.33   1.97   2.08   2.67   2.51   2.44   2.61  

Chemung  2.44   2.33   2.65   2.42   2.41   2.57   2.25   2.32   2.72   2.71   2.66   2.78  

Chenango  1.30   1.14   1.45   1.20   1.24   1.44   1.11   1.17   1.48   1.48   1.44   1.58  

Clinton  2.56   2.63   2.80   2.75   2.62   2.53   2.39   2.43   2.88   2.97   2.89   2.85  

Columbia  2.02   1.85   2.32   1.94   1.94   2.33   1.92   2.03   2.51   2.25   2.20   2.49  

Cortland  2.17   2.28   2.70   2.48   2.24   2.34   2.07   2.18   3.04   2.80   2.69   2.80  

Delaware  1.24   1.27   1.50   1.38   1.28   1.28   1.09   1.14   1.61   1.61   1.54   1.57  

Dutchess  2.11   2.10   2.42   2.23   2.13   2.20   1.93   2.00   2.55   2.53   2.45   2.52  

Erie  2.23   2.13   2.56   2.26   2.21   2.43   2.06   2.16   2.73   2.60   2.53   2.71  

Essex  4.31   4.21   4.52   4.29   4.28   4.45   4.17   4.24   4.61   4.54   4.50   4.63  

Franklin  3.82   3.72   4.03   3.81   3.79   3.94   3.64   3.71   4.10   4.09   4.04   4.15  

Fulton  1.75   1.56   1.97   1.64   1.67   1.98   1.59   1.68   2.05   1.94   1.90   2.12  

Genesee  2.13   2.08   2.45   2.20   2.13   2.29   1.97   2.05   2.60   2.51   2.44   2.57  

Greene  3.97   3.81   4.13   3.87   3.91   4.13   3.82   3.89   4.18   4.12   4.09   4.25  

Hamilton  2.59   2.46   2.74   2.51   2.53   2.76   2.50   2.56   2.82   2.71   2.68   2.84  

Herkimer  1.27   1.19   1.49   1.28   1.25   1.39   1.10   1.17   1.57   1.55   1.49   1.60  

Jefferson  2.56   2.41   2.76   2.50   2.51   2.71   2.36   2.43   2.82   2.80   2.75   2.90  

Kings  1.08   0.97   1.22   1.05   1.07   1.11   0.81   0.86   1.19   1.36   1.30   1.33  

Lewis  1.11   0.95   1.24   1.02   1.06   1.21   0.88   0.94   1.23   1.31   1.26   1.36  

Livingston  2.29   2.36   2.63   2.50   2.35   2.36   2.15   2.22   2.80   2.75   2.67   2.70  

Madison  1.71   1.82   2.17   1.99   1.79   1.83   1.61   1.70   2.43   2.28   2.18   2.25  

Monroe  2.35   2.27   2.76   2.41   2.33   2.60   2.20   2.32   2.98   2.77   2.70   2.91  

Montgomery  1.40   1.29   1.67   1.39   1.37   1.59   1.24   1.33   1.79   1.69   1.63   1.80  

Nassau  1.53   1.41   1.78   1.52   1.50   1.67   1.31   1.39   1.85   1.85   1.79   1.91  

New York  3.81   3.90   4.17   4.05   3.88   3.86   3.67   3.74   4.35   4.31   4.22   4.23  

Niagara  1.50   1.40   1.72   1.49   1.47   1.63   1.33   1.40   1.80   1.77   1.71   1.83  

Oneida  2.48   2.37   2.85   2.50   2.44   2.74   2.34   2.46   3.06   2.84   2.77   3.00  

Onondaga  2.25   2.17   2.66   2.32   2.23   2.50   2.09   2.21   2.90   2.68   2.60   2.82  
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Table A4 cont. 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ontario  2.29   2.18   2.70   2.32   2.25   2.59   2.17   2.29   2.95   2.68   2.61   2.86  

Orange  1.93   1.79   2.20   1.91   1.90   2.06   1.63   1.72   2.25   2.32   2.24   2.36  

Orleans  3.12   2.95   3.30   3.02   3.05   3.31   2.96   3.03   3.36   3.30   3.26   3.44  

Oswego  1.14   1.15   1.39   1.27   1.18   1.15   0.93   0.99   1.46   1.54   1.47   1.46  

Otsego  2.37   2.49   2.88   2.67   2.45   2.53   2.30   2.40   3.20   2.96   2.86   2.96  

Putnam  1.13   0.96   1.29   1.03   1.07   1.28   0.93   1.00   1.32   1.31   1.27   1.42  

Queens  1.10   1.01   1.25   1.08   1.08   1.16   0.89   0.94   1.25   1.34   1.29   1.35  

Rensselaer  1.62   1.64   2.01   1.79   1.65   1.76   1.46   1.55   2.21   2.10   2.02   2.12  

Richmond  1.27   1.15   1.44   1.24   1.24   1.35   1.05   1.11   1.46   1.53   1.47   1.56  

Rockland  1.62   1.50   1.83   1.60   1.60   1.70   1.34   1.41   1.86   1.96   1.89   1.97  

Saratoga  2.05   1.94   2.36   2.05   2.02   2.26   1.89   1.98   2.51   2.38   2.32   2.50  

Schenectady  1.86   1.73   2.20   1.85   1.81   2.11   1.70   1.81   2.38   2.20   2.13   2.36  

Schoharie  1.76   1.80   2.15   1.94   1.80   1.90   1.65   1.74   2.38   2.23   2.14   2.25  

Schuyler  2.90   2.75   3.06   2.81   2.84   3.07   2.76   2.83   3.12   3.05   3.02   3.18  

Seneca  2.96   2.88   3.09   2.95   2.95   3.02   2.80   2.84   3.11   3.16   3.12   3.18  

St Lawrence  2.60   2.71   3.13   2.91   2.68   2.76   2.49   2.60   3.45   3.24   3.13   3.23  

Steuben  1.10   1.03   1.23   1.10   1.09   1.12   0.89   0.92   1.22   1.34   1.29   1.31  

Suffolk  1.55   1.42   1.78   1.52   1.51   1.69   1.33   1.41   1.85   1.84   1.78   1.92  

Sullivan  2.57   2.47   2.73   2.54   2.54   2.66   2.39   2.44   2.76   2.79   2.75   2.83  

Tioga  1.21   1.04   1.37   1.11   1.15   1.36   1.02   1.09   1.40   1.40   1.35   1.50  

Tompkins  2.56   3.04   3.37   3.34   2.82   2.60   2.54   2.65   3.91   3.62   3.45   3.38  

Ulster  2.87   2.79   3.16   2.90   2.85   3.04   2.73   2.82   3.30   3.18   3.12   3.28  

Warren  3.34   3.22   3.75   3.35   3.29   3.66   3.23   3.36   4.01   3.70   3.64   3.92  

Washington  2.34   2.17   2.52   2.24   2.27   2.53   2.19   2.26   2.59   2.51   2.47   2.65  

Wayne  1.14   1.00   1.26   1.06   1.10   1.24   0.95   1.00   1.26   1.32   1.28   1.38  

Westchester  1.87   1.74   2.13   1.84   1.83   2.02   1.63   1.72   2.20   2.20   2.13   2.27  

Wyoming  5.30   5.12   5.52   5.19   5.22   5.55   5.18   5.28   5.64   5.47   5.43   5.67  

Yates  0.84   0.90   1.04   1.01   0.90   0.79   0.65   0.68   1.09   1.23   1.16   1.09  
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Table A5: 2010 population of New York State counties  

County 

2010 

Population County 

2010 

Population 

Albany  304,204  Ontario  107,931  

Allegany  48,946  Orange  372,813  

Bronx  1,385,108  Orleans  42,883  

Broome  200,600  Oswego  122,109  

Cattaraugus  80,317  Otsego  62,259  

Cayuga  80,026  Putnam  99,710  

Chautauqua  134,905  Queens  2,230,722  

Chemung  88,830  Rensselaer  159,429  

Chenango  50,477  Richmond  468,730  

Clinton  82,128  Rockland  311,687  

Columbia  63,096  Saratoga  219,607  

Cortland  49,336  Schenectady  154,727  

Delaware  47,980  Schoharie  32,749  

Dutchess  297,488  Schuyler  18,343  

Erie  919,040  Seneca  35,251  

Essex  39,370  St Lawrence  111,944  

Franklin  51,599  Steuben  98,990  

Fulton  55,531  Suffolk  1,493,350  

Genesee  60,079  Sullivan  77,547  

Greene  49,221  Tioga  51,125  

Hamilton  4,836  Tompkins  101,564  

Herkimer  64,519  Ulster  182,493  

Jefferson  116,229  Warren  65,707  

Kings  2,504,700  Washington  63,216  

Lewis  27,087  Wayne  93,772  

Livingston  65,393  Westchester  949,113  

Madison  73,442  Wyoming  42,155  

Monroe  744,344  Yates  25,348  

Montgomery  50,219    

Nassau  1,339,532    

New York  1,585,873    

Niagara  216,469    

Oneida  234,878    

Onondaga  467,026    
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Figure A1: Annual FW generation rate and facility breakdown of Westchester County extracted 

from the EPA Excess Food Opportunities Map.  

 

 

 

Figure A2: Annual FW generation rate and facility breakdown of Monroe County extracted from 

the EPA Excess Food Opportunities Map. 
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Figure A3: Monthly (m) anticipated FW generation of commercial facilities within each county 

(t) normalized per 1,000 people. Generation quantities were classified into five categories as 

described in Section 2.6. Cities containing populations over 20,000 people in 2010 are shown and 

Kings county, the most populous county, is identified. 

 

 

 

Figure A4: Average monthly hotel occupancy rates in the U.S. and New York City years 2015-

2018. 
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APPENDIX B 

 

 
Figure B1: map of crop types in WNY 
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CLASS_NAME 

Average 

yield 

range 

per acre 

Unit 

(Imperial) 

P2O5 

Removal 

(lb/unit yield) 

P 

Converted 

(kg/ha) 

P 

Converted 

(kg/0.09ha) 

Corn 180 bu 0.38 33.7 3.036 

Grass/Pasture 2.75 ton 15 17.6 1.587 

Other Hay/Non 

Alfalfa 4.25 ton 15 31.4 2.830 

Alfalfa 6.05 ton 13 38.8 3.491 

Soybeans 60 bu 0.8 23.7 2.131 

Winter Wheat 70 bu 0.5 0.5 0.045 

Dry Beans 25 cwt 1.2 14.8 1.332 

Oats 75 bu 0.29 10.7 0.965 

Potatoes 450 cwt 0.12 26.6 2.397 

Clover/Wildflowers 3.75 ton 13 24.0 2.164 

Cabbage 19 ton 1.6 15.0 1.349 

Peas 3500 lb 0.0046 7.9 0.715 

Onions 500 cwt 0.12 29.6 2.663 

Triticale 3000 lb 0.011 16.3 1.465 

Rye 42.5 bu 0.41 8.6 0.773 

Sugarbeets 12.5 ton 1.3 8.0 0.721 

Squash 14 ton 2.8 19.3 1.740 

Cucumbers 7.5 ton 1.2 4.4 0.399 

Carrots 25 ton 1.8 22.2 1.997 

Barley 62.5 bu 0.4 12.3 1.110 

Sorghum 75 bu 0.4 14.8 1.332 

Buckwheat 1600 lb 0.013 10.3 0.923 

Broccoli 5 ton 2 4.9 0.444 

Lettuce 17.5 ton 2.3 19.9 1.787 

Pumpkins 17.5 ton 2.9 25.0 2.253 

Sunflower 2250 lb 0.012 13.3 1.198 

 

Table B1: Crop phosphorus uptake rates 
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VALUE CLASS_NAME Count_30m Area_ha 

1 Corn 2913069 262176 

176 Grass/Pasture 2762573 248632 

37 Other Hay/Non Alfalfa 2328462 209562 

36 Alfalfa 1578395 142056 

5 Soybeans 1105179 99466 

24 Winter Wheat 398249 35842 

42 Dry Beans 125359 11282 

28 Oats 60488 5444 

43 Potatoes 41479 3733 

58 Clover/Wildflowers 37363 3363 

243 Cabbage 28719 2585 

53 Peas 26368 2373 

49 Onions 16513 1486 

205 Triticale 11170 1005 

27 Rye 10203 918 

41 Sugarbeets 9656 869 

222 Squash 8336 750 

50 Cucumbers 8005 720 

206 Carrots 3863 348 

21 Barley 3216 289 

4 Sorghum 3171 285 

39 Buckwheat 3121 281 

214 Broccoli 2609 235 

227 Lettuce 1204 108 

229 Pumpkins 946 85 

6 Sunflower 935 84 

 

Table B2: Crop types and quantities in WNY 
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Scenario 

Dig Trans 

Distance 

(km) 

Site 

(Extreme) 

FW 

Suppl

y (t/yr) 

Manure 

Supply 

(t/yr) 

P Avail 

(kg/yr) 

P 

Capacity 

(kg/yr) 

P Excess 

(kg/yr) 

FW only 20 Max FW 33,100 -- 47,300 640,800 -593,500 

 20 

Max Dig. 

Cap. 5,200 -- 7,400 

1,583,00

0 

-

1,575,600 

Manure + 

FW 20 Max FW 33,100 

134,10

0 

133,20

0  640,800 -507,600 

 20 

Max Dig. 

Cap. 5,100 

376,20

0 

248,10

0  

1,583,00

0 

-

1,334,900 

FW only 10 Max FW 33,100 -- 47,300 217,100 -169,800 

 10 

Max Dig. 

Cap. 5,200 -- 7,400 526,000 -518,600 

Manure + 

FW 10 Max FW 33,100 

134,10

0 

133,20

0  217,100 -83,900 

 10 

Max Dig. 

Cap. 5,100 

328,90

0 

217,80

0 526,000 -308,200 

Table B3: Numeric comparison of extreme sites under considering uncertainty scenarios. FW = 

Food Waste, Dig = Digestate, Trans = Transportation, P = Phosphorus, Avail = Availability 
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