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ABSTRACT 

 

High rates of technological innovation and consumer adoption in the consumer electronics sector has 

led to increasing concerns about the potential implications on resource consumption and waste generation. 

Despite growing public and policy attention on recycling as a strategy to curb resource demand and waste 

management impacts, less than 50 percent of end-of-life electronics are recovered for recycling in the 

U.S. A critical barrier to sustainable management of electronics is the lack of data and tools to proactively 

estimate consumption and waste flows, to create solutions that respond to the dynamic nature of this 

product sector. For sustainable solutions to keep pace with the rapid rate of innovation, they must be 

informed by comprehensive and proactive research, that not only quantifies material flows in electronics 

but also investigates associated economic, environmental and social implications. 

 

This dissertation aims to fill this knowledge gap through three interconnected lines of inquiry. First, 

a baseline material footprint analysis is conducted to retroactively estimate the material consumption and 

waste generation associated with household electronic product consumption in the U.S. from 1990 until 

present.  Results from this analysis contradict the long-standing assumption that e-waste is a rapidly 

growing waste stream in the U.S. In fact, the net material footprint of electronics has begun to decline, 

mainly due to consumers phasing out large Cathode Ray Tube TVs in favor of lighter flat panel 

technologies. While the analysis shows decline in potential e-waste toxicity from traditional hazards like 

lead and mercury, it also raises new issues of concern for e-waste management. Notably, results show 

high resource potential in the emerging e-waste stream with new opportunities to recover scarce metals 

not currently recycled.  

 

Second, a predictive material flow model based on historic product adoption behavior was 

developed, to enable future forecasts of resource and waste flows so that stakeholders can create proactive 

– rather than reactive – solutions. Adoption forecasts for emerging technologies show increasingly fast 

windows of product innovation and uptake. In other words, new electronics are likely to have rapid 

uptake in the market but may be quickly replaced by subsequent product innovations. The forecasts also 

suggest that waste flows for mature products like CRTs, desktops, monitors and flat panel TVs will 

continue to be a major issue for the short term, with declining contribution to the U.S. e-waste stream in 

the future. Material flow estimations predict increasing prevalence of critical materials in e-waste 

underscoring a need to shift e-waste management mechanisms from ‘mass’ to ‘materials’, or in other 

words, from an emphasis on ‘waste diversion’ to a new focus on ‘resource retention’.  
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Finally, a comprehensive set of sustainability metrics were created and applied to assess the 

economic, environmental and social impacts for the wide spectrum of materials used in electronics. 

Material metrics help identify key material hotspots and prioritize new solutions for reducing resource 

demand and waste management challenges. This dissertation contributes novel data and modeling tools 

that can aid stakeholders across the electronics industry in making informed decisions in product design, 

policy planning and material recovery in electronics.  
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CHAPTER 1: Introduction  
 

Consumer electronic products have fundamentally changed the way society communicates, accesses 

information, and entertains. Electronic product sales generated over US$225,000 Million in the United 

States in 2017 (CEA, 2017). Electronics owned in US households have become increasingly diverse since 

2000 (Ryen et al., 2014) with each household owning more than 11 devices, of which at least four are 

connected to the internet (Mars et al., 2016). This growth and diversification in electronics consumption 

has led to both public and scientific concerns about the potential implications on material demand for 

product manufacturing and end-of-life product management. (Lundgren,2012). 

E-waste management has been predominantly deemed as a waste diversion mechanism in the U.S., since 

traditional electronics were assessed to contain hazardous materials like lead, mercury and cadmium 

(Chen et al., 2011; Kiddee et al., 2013), which have the potential to cause environmental as well as human 

health hazards if not managed properly at end-of-life. However, modern electronics also contain valuable 

metals such as gold, silver, platinum and rare earth elements (Christian et al., 2014; Friege, 2012), the 

recycling of which can bring economic benefits while offsetting the environmental impacts of virgin 

metal mining. In recent years, circular economy has introduced an alternative model to the traditional 

take-make-waste flow model of resources (Kirchherr et al., 2017; Korhonen et al., 2018) and brought 

attention to the potential for urban mining in the electronics sector (Zeng et al., 2018a). Urban mining, 

which is the process of retrieving valuable materials from end-of-life products, has been evaluated as a 

strategy to mitigate resource demand and e-waste (Brunner, 2011; Eygen et al., 2016; Zeng et al., 2018a), 

but the current e-waste management system is far from realizing these benefits.  

E-waste Management System in the US 

 

The U.S. does not currently have a federal mandate to recycle electronic waste. However, some states 

have enacted legislation mandating the collection and recycling of a select category of products (Figure 

1.1). Among the 25 states and District of Columbia that have implemented some type of e-waste 

legislation in US, only 15 have imposed landfill bans which prohibit the disposal of electronic devices at 

solid waste landfills (EPA, 2016; Westgate, 2017). Most states follow the extended producer 

responsibility (EPR) model, where the financial obligation of the product recovery and recycling is passed 

on to manufacturers who sell products into that state. California is the exception, as it uses the advanced 
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recycling fee model in which consumers pay retailers a small fee at the time of product purchase that is 

deposited into a fund intended to pay for statewide recycling.  

Under the EPR financial model, the state defines a set of devices to be collected for recycling and sets 

mass-based collection targets for each manufacturer, to reflect their market share in the state  (Kang and 

Schoenung, 2005a). Common product categories ‘covered’ under state laws include TVs, monitors, 

laptops, desktops and printers. While the product categories covered for recycling in different states 

differ, they mostly reflect mature electronics – devices which have already saturated the market, and 

which may have begun to decline or even be no longer sold, omitting emerging products whose material 

opportunities and risks are unknown. As with ‘covered products’ states also differ in the list of ‘covered 

entities’ which refers to the consumer groups who can bring back their used products for recycling under 

that state EPR system. All the state level programs collect e-waste from households, while some include 

small business and non-profits (ERCC, 2017). Large businesses are usually not included for end-of-life 

product recovery in state programs. However, industry experts suspect that even the recovered devices are 

generally shipped overseas to developing countries (Lee et al., 2018) by recyclers for cheap labor, where 

the products are disassembled in informal settings with no safety standards, placing the workers at risk of 

hazardous material exposure (Drayton, 2007; Grant et al., n.d.; Perkins et al., 2014). Due to this lack of 

effective e-waste management policies and recycling infrastructure, the end-of-life product recovery rate 

for recycling in U.S., is still less than 50% (U. S. Environmental Protection Agency, 2016), while the 

remaining share of end-of-life electronics continue to stay in landfills or in storage in households.  

 

Figure 1.1. States in the U.S. with e-waste legislation 
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Owing to the variability in product scope and covered entities, it is difficult to compare state level 

collection rates. However, e-waste collection per capita of a few states (Table 1.1) for which e-waste 

collection data was publicly available for the latest years show that even though huge variability exists in 

collection rates, there is a general decline in e-waste collection in the recent years (ERCC, 2018). As state 

e-waste departments comment that the decline in collection rates is due to changes in TV waste 

(Connecticut Department of Energy and Environmental Protection, 2017) as light flat panel TVs replace 

large Cathode Ray Tube (CRT) in the waste stream, the implications of this observed trend on e-waste 

management is huge as CRTs have been the focus of e-waste polices due to its toxic lead content.  As 

traditional products targeted by e-waste policies start to decline, and new technologies with unknown 

sustainability implications enter the waste stream, there is need to re-evaluate the waste management 

strategies. 

States in the U.S. E-waste collection rate (lb /capita) from year 2009-2016 
  

2009 2010 2011 2012 2013 2014 2015 2016 2017 

Minnesota 5.79 6.59 6.27 6.6 6.01 6.52 7.29 6.58 5.63 

North Carolina 0.83 0.96 2.5 4.39 3.63 3.83 3.84 2.85 
 

Oregon 4.96 6.31 6.69 6.84 7.06 6.91 7.41 6.51 5.81 

Washington 5.78 5.92 6.18 6.3 6.48 6.28 6.03 5.14 4.17 

Michigan 
 

0.8 1.95 2.79 3.05 2.6 2.58 2.08 1.62 

Wisconsin 
 

3.66 6.15 6.83 6.75 6.48 5.16 5.48 5.42 

Table 1.1. Trends in annual e-waste collection rates (per capita) in U.S. States. 

Shifting perspectives in e-waste management: Waste diversion to Sustainable Material Management 

(SMM) 

 

Historically, e-waste management represented diversion of toxic waste from landfill and recycling large 

components for economic benefits. However, the implications of e-waste management are bound to 

change, as newer consumer technologies enter the waste stream. In contrast to the products currently 

making up most of the U.S. e-waste, modern electronics are characterized by high functionality in sleek 

product designs, which is enabled by diverse suite of metals that includes metals such as gallium, 

tantalum and REEs. Portability is another key feature of newer electronics, which is realized using lithium 

ion batteries (LIBs) that rely on critical metals like cobalt and lithium. Adding to the demand of these 
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metals in electronics is the growing adoption of clean energy technologies such as electric vehicles which 

employ LIBs and wind turbines which use REEs. Risk to supply disruptions of these metals, as clean 

energy technologies are deployed significantly within the global clean energy economy, has resulted in 

many countries designating these metals to be ‘critical’ (Lusty and Gunn, 2014). The geographical 

concentration of production of critical metals is another factor that adds to the significance of mineral 

security or supply security. Given that consumer electronics are a major consumer of these ‘critical 

metals’, electronics recycling benefits gain an added dimension- as a path to mineral security. These 

emerging material trends call for sustainability material management strategies not just at product end-of-

life, but throughout the material lifecycle in a product, including sourcing and production (U.S. EPA, 

2009). 

To facilitate sustainable materials management in the electronics sector, e-waste policy implementation 

can become more effective, if it is informed by present and near-term forecasts of e-waste flows and 

composition. Similarly, product design and manufacturing would benefit from better predictive capacity 

about which materials may be available from recycled and which materials may be in high demand due to 

consumption in other competing technologies. Development of recycling technologies and infrastructure 

would also benefit from near term forecasts of waste flows and its sustainability implications. In any of 

these cases, proactive insight is necessary, but fundamentally limited by a lack of data or even the 

predictive tools that can forecast resource use and waste generation in the electronics sector.  

While there is considerable amount of literature on product and component level material flows (Babbitt, 

2009; Kahhat and Williams, 2012; Yu et al., 2010) and associated environmental impacts (Boyd and 

Hernandez, n.d.; Duan et al., 2008; Heller, 2002; Kahhat and Williams, 2011; Meyer and Katz, 2016; 

Teehan and Kandlikar, 2013; Tukker and Jansen, 2006), a comprehensive analysis that involves the whole 

community of products in electronics is lacking. A key challenge in modelling product and material flows 

in electronics, is the evolving nature of electronics, where new products are continuously added to the 

product community and subsequently into the waste stream. This lack of material flow data is a key 

barrier in evaluating and employing sustainability strategies in the sector. However, planning holistic 

sustainable material management strategies not only requires up-to-date data on material demand and 

waste flows in electronics sector, but also knowledge about the potential environmental and economic 

challenges and opportunities, associated with the use of primary and secondary materials in product 

manufacturing.  

 



5 
 

Dissertation Objective 

 

This dissertation aims to answer the overarching research questions of 1) ‘How does the dynamic nature 

of technological progress and consumer trends affect the material consumption and waste generation in 

the consumer electronics sector and 2) How can sustainable material management strategies effectively 

respond to these changes. Through the compilation and analysis of historical product adoption data, 

product material profiles and material specific sustainability metrics, this research creates quality data and 

novel modeling tools, that lays the foundation for sustainable materials management in electronics, by 

informing key stakeholders about potential sustainability risks and opportunities. The novelty of this 

research is that, it improves the state of knowledge on material implications of electronics use in the US, 

by presenting the most up-date and comprehensive material flow analysis for electronics and by 

quantifying associated sustainability risks and potential solutions. This dissertation will also be the first to 

explore the implications of electronics material flow on e-waste policies in the US. 

The research was carried out through three interconnected investigations, which are detailed below and 

shown schematically in Figure 1.2. 

Research Question 1: What is the current material footprint of electronics in United States? 

Approach: Conduct a comprehensive material flow analysis for all common electronics owned in US in 

the last 28 years; Understand the trends in the overall mass and material profile of electronics 

consumption and waste generation; and identify key sustainability challenges and opportunities. 

Research Question 2: How can we enable future material flow forecasts in electronics? 

Approach: Use characteristics of historic electronic adoption behavior to forecast future product 

scenarios; Develop parametrized MFA (material flow analysis) models with predictive capability built on 

historic trends in product adoption or sales. 

Research Question 3: How can we minimize sustainability impacts of materials used in consumer 

electronics? 

Approach: Develop a comprehensive set of sustainability metrics for materials contained within 

electronic products; evaluate the evolving demand and waste of these materials from economic, 

environmental and social perspectives; Explore potential solutions to minimize sustainability risks 

associated with material use in electronics. 
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Figure 1.2. Overview of Research Structure 
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CHAPTER 2: A baseline material footprint analysis for the consumer 

electronic sector in the U.S. 
 

1. Introduction  
 

Over the last decade, scientific studies (Charles et al., 2017; Cucchiella et al., 2015; Eygen et al., 2016; 

Herat, 2007; Kaya, 2016; Kumar et al., 2017; Ogunseitan et al., 2009; Perkins et al., 2014; Wang et al., 

2013; Zeng et al., 2018b) and media reports have claimed electronic waste to be one of the ‘fastest 

growing waste streams’. While it is intuitive to expect that “e-waste” will grow in parallel with expanding 

electronic product consumption and decreasing product lifespans, this assertion has not been rigorously 

analyzed, particularly over a time scale that would reflect nascent electronic consumption trends. Material 

studies on electronic waste are important to the sustainability field (Zhang et al., 2017, Kiddee et al., 

2013; Robinson, 2009), since the products making up electronic waste may contain scarce metals such as 

cobalt and rare earth elements (Christian et al., 2014; Cucchiella et al., 2015; Işıldar et al., 2017,Dutta et 

al., 2016), alongside hazardous materials like lead, mercury and brominated flame retardants (Adeyi and 

Oyeleke, 2017; Chen et al., 2011; Kiddee et al., 2013). Sustainable solutions for consumer electronics do 

exist, including material substitution (Boks and Stevels, 2014), recycling (Cucchiella et al., 2015; Kang 

and Schoenung, 2005b; Kaya, 2016; Zeng et al., 2018a), and refurbishment (Bakker et al., 2014; 

Zlamparet et al., 2017); but are challenged by the system’s dynamic nature, wherein waste management is 

fundamentally “backwards looking,” focused on products coming out of use, rather than the new products 

and evolving suite of materials being added to households over time. 

While academic literature has begun to focus more on broad consumer trends (Borthakur and Govind, 

2017; Pérez-Belis et al., 2015), most studies have focused on single products such as mobile phones 

(Golev et al., 2016; Guo and Yan, 2017; Li et al., 2015; Pengwei et al., 2018), computers (Kahhat and 

Williams, 2012; Petridis et al., 2016; Steubing et al., 2010; Streicher-porte et al., 2005; Yang and 

Williams, 2009; Yu et al., 2010) and televisions (Gusukuma and Kahhat, 2018), to evaluate product-level 

consumption trends and end-of-life management strategies. In reality, consumers do not purchase and use 

individual devices in isolation, rather adopting these products into an ecosystem of devices that 

collectively meet their needs for communication, productivity, and entertainment (Ryen et al., 2014). 

Capturing the resource and waste implications of this complex, interacting system requires a detailed 

understanding of how technological innovation and consumer product adoption change over time 

(Kasulaitis et al., 2018a; Ryen et al., 2014). Existing literature is largely focused outside the US 
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(Cucchiella et al., 2015; Habuer et al., 2014; Hagelüken and Corti, 2010; Liu et al., 2006; Parajuly et al., 

2017; Wang et al., 2013; Zeng et al., 2016), has a narrow product scope (Miller et al., 2016), and/or has 

become outdated due to lack of data (Duan et al., 2013; Kasulaitis et al., 2018b; Mars et al., 2016; Miller 

et al., 2016). For example, e-waste reports by the U.S. Environmental Protection Agency (U. S. 

Environmental Protection Agency, 2016) stop in 2014 and eventhough another report by National Center 

for Electronics Recycling (Mars et al., 2016) projected e-wasteflows till year 2020, attendant material 

impacts were not analyzed. While the need for updated, systematic material studies on electronics was 

pointed out by past research, (Kasulaitis et al., 2018a) which analyzed the influence of dematerialization 

on e-waste until 2010, literature has not kept up with real changes in product consumption. 

Without up-to-date, holistic analyses of resource use and waste generation in the electronic product 

sector, proposed interventions and management strategies may not result in the intended sustainability 

benefits. For example, state e-waste policies in the U.S. historically have been motivated by the goal of 

keeping hazardous materials like lead and mercury out of landfills (Williams et al., 2008). As a result, 

these policies focus on large TVs and computers, which can contain hazardous substances in elevated 

concentrations, but which are predicted to actually decline in the waste stream going forward, as 

consumers move towards lightweight mobile devices (Althaf et al. 2019). Without a rigorous empirical 

basis for regulatory coverage, policy instruments are not typically responsive to the changing mix of 

products or the shifting focus away from toxicity and towards material scarcity, carbon footprint, and 

economic value. To fill this knowledge gap, we aim here to evaluate the material consumption and e-

waste generation associated with changing product consumption trends, with the goal of identifying 

emerging sustainability challenges and opportunities for science-based solutions. 

2. Methods  

2.1. MFA Model 

 

To model the material flows from common electronics in US, we applied the methodology of Material 

Flow Analysis (MFA), which applies mass balance principles to estimate yearly waste flows of products 

from annual sales and lifespan probability of products. A key innovation here is the application of 

material flow modeling to the entire portfolio of electronic products consumed in U.S. households over an 

almost 30-year period. The MFA model estimates product waste flows in each year as follows: 

𝑊𝑊𝑝𝑝,𝑡𝑡 =  � 𝐿𝐿𝑝𝑝,𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 × 𝑆𝑆𝑝𝑝,𝑡𝑡−1                                                            𝐸𝐸𝐸𝐸. 1 
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where 𝑊𝑊𝑝𝑝,𝑡𝑡  is the waste flow of product 𝑝𝑝 in year 𝑡𝑡, 𝐿𝐿 is the probability that a product 𝑝𝑝 will reach its end-

of-life after a lifespan of 𝑖𝑖 years, 𝑆𝑆 is the annual product sales into US households for each year, and 𝑛𝑛 is 

the maximum lifespan. 

Product lifespan probabilities were modelled using the Weibull distribution since it is the most widely 

used approach for capturing product obsolescence rates (Gu et al., 2018; Habuer et al., 2014; Miller et al., 

2016; Oguchi et al., 2008). The probability density function of a Weibull distribution is represented as 

𝑓𝑓(𝑡𝑡, 𝑎𝑎, 𝑏𝑏)  =  
𝑎𝑎
𝑏𝑏

�
𝑡𝑡
𝑏𝑏

�
(𝑎𝑎−1)

𝑒𝑒−�𝑡𝑡
𝑏𝑏�

𝑎𝑎

                                                 𝐸𝐸𝐸𝐸. 2 

where 𝑎𝑎 is shape parameter and 𝑏𝑏 is the scale parameter. Here we define product lifespan as the total time 

it resides in a household, whether in use or in storage, until it becomes available for end-of-life 

management by reuse, recycling, or discarding. Mean and maximum product lifespan estimates from 

literature (refer to Appendix A, Table 2) were used to compute the shape parameter a and scale parameter 

b. The model estimates product waste flows by units based on annual sales units; unit sales are then 

converted to mass sales by applying average mass of each product sold in each year. Flows of interest in 

this study are product consumption or inflow to US households (in sales units or sales mass), and annual 

product waste flows from households in units and mass. To disaggregate total product mass into specific 

materials and components, material composition data were obtained by extensive product disassembly 

(n>80 products) and literature search. 

 

2.2. Data Collection 

 

The MFA model study scope included 20 common products sold in US households from 1980 to 2018, 

which includes TVs, monitors, audio-visual products and mobile products (refer to Appendix A Table 1 

for product scope). The products were chosen to represent the typical product ecosystem owned in 

average US households. The model inputs included annual sales data of all products from 1980 to 2018, 

average mass and mean and maximum lifespan of products sold each year. Refer to Appendix file Table 

S8 for annual sales data of all 20 products included in the study scope. These data included compilations 

of manufacturer reported sales and shipment data and consumer purchase surveys provided by the 

Consumer Technology Association (CTA) and collaborators (e.g., IDC product sales data provided 

courtesy of the National Center for Electronics Recycling). 
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Product mass: Average product mass in each year was estimated through a combination of data from 

literature, direct weighing of sample products in the lab, and data compilations provided by the National 

Center for Electronics Recycling, who monitor product weight as part of e-waste compliance efforts in 

several U.S. states. Since product mass may change over time for some products, mass averages were 

calculated to reflect the weighted averages reflecting consumption of given size products, mass of 

different sizes, and averages across multiple products measured. For smaller products such as cameras 

and phones, product mass was held constant over time due to a lack of observed temporal trends and 

some data limitations. For larger products which represent major contribution to waste flow mass and 

underwent significant change in average mass due to expanding screen sizes and technology driven 

dematerialization, such as TVs, monitors and laptops, a dynamic mass estimate was applied. Refer to 

Appendix A, Table 3 for the average mass of products for which static mass estimate was applied and the 

associated data sources.  For products with yearly mass data from multiple data sources, a fitted trend was 

used to estimate the dynamic mass input while for products which lacked data from multiple source, mass 

trend was built on the single reliable data source. Refer Appendix A, Table 4 for dynamic mass estimates 

for CRT displays, flat panel displays and laptops. 

Average material profile of products:  Average material composition of products was determined 

empirically to assess base materials (e.g., copper, plastics, steel, plastics) and components (e.g., batteries, 

printed circuit board, display glass) via disassembly of representative products in each of the 20 product 

categories. Due to lack of product availability and safety concerns, material composition for CRTs is 

adopted from published literature (Townsend et al., 2004) (Refer to Appendix file, Table. 5 for product 

material profiles). While the composition of lithium ion batteries was characterized by lab scale 

disaggregation study, composition of components such as PCB, LCD and CRT modules were adopted 

from literature to estimate the flows of key materials of value and concern, like gold, indium, cobalt, lead 

and mercury.  

Indium content in flat panel glass (0.023175%) (Boundy et al., 2017) and lead content in CRT glass 

(9.82%) (Monchamp et al., 2001) are adopted from literature, while average lithium (2.14%) and cobalt 

content (12.5%) in LIBs are estimated from lab scale battery disassembly. Average lead content in printed 

circuit boards is assumed to be 1.7% till year 2008, reducing to zero by 2010. The average gold content in 

PCBs (0.06%) was estimated through compilation of over 50 data points from over 25 published studies. 

Mercury content in LCD displays with CCFL backlights was calculated based on average mass 

percentage of mercury per kg of CCFL lamp (0.04%) (McDonnell and Williams, 2010) and the weight of 

CCFL lamps in LCD displays estimated from a combination of lab scale product disassembly data and 

published literature. E-waste concentration of other metals such as REEs, Ta, Sn, Ga, Pd and Ag as 
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estimated based on their mass contribution per product reported in literature (Cucchiella et al., 2015). 

Refer to Appendix A, Tables 6 and 7 for calculations for mercury content in LCD TVs and monitors. 

Uncertainty Analysis: Variability exists in key model inputs such as product lifespan and average 

product mass. Uncertainty analysis was used to capture the uncertainty in study results associated with 

assumptions in lifespan probability, average mass of products sold yearly, and choice of products 

included in the study. Parameters to generate Weibull and lognormal distributions were calculated from 

mean lifespan and standard deviation lifespan inputs of products. For mass uncertainty analysis, the 

minimum and maximum data points from the available mass range was used for products with static mass 

assumptions (Refer to Appendix A, Table 3). For dynamic mass products the uncertainty range was 

estimated by calculating the average percent difference of different data points to the estimated average 

trend. These maximum and minimum mass values estimated encompass typical changes in product size 

over time and variability in product model and design. Product scope uncertainty analysis was carried out 

by including six additional products not initially included in the study due to their recent emergence in the 

electronics ecosystem (and lack of detailed material composition data). Refer to Appendix A, Table 8 and 

9 for sales and mass data, respectively, for the additional products). 

3. Results  
 

The results presented here are determined using high quality electronic product adoption and material 

composition data, providing the most up to date and comprehensive material footprint analysis of 

electronics. 

3.1. The net material footprint of e-waste in the U.S. has begun to decline 

 

Residential e-waste in the US is shown here to be in decline, with a net mass reduction of 16% since its 

peak in 2015 (Figure 2.1). The dominant contribution to e-waste is from display technologies, including 

legacy and modern TV and monitors, which collectively make up to two-third of the total e-waste mass. 

The observed decline in e-waste is attributed mainly to technological substitution of heavy CRT (cathode 

ray tube) displays by lighter LCD (liquid crystal display) and LED (light emitting diode) technologies, 

which provide an approximately 75% mass reduction per product. CRT displays in the waste stream 

peaked in 2010, just a few years after the digital transition in television broadcast signals and the rapid 

switch to digitally enabled flat panel TVs. While CRT displays have declined in the waste stream since 

their peak, these devices still make up almost one third of the total mass of e-waste coming out of U.S. 
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households. It is expected that CRTs will persist as an e-waste management challenge in the near future, 

as consumers indicate that they keep them as secondary TVs in basements and guest bedrooms and often 

do not know how or where CRTs should be recycled (CTA, 2016). 

However, the contribution of flat panel display devices to total e-waste is becoming increasingly 

significant, even surpassing CRTs with about 38% contribution to the total waste stream mass (Figure 

2.1). Flat panels often have higher failure rates and shorter lifespans (Kalmykova et al., 2015), leading to 

more frequent replacement cycles. These findings highlight the need for proactive implementation of 

waste strategies that can effectively reclaim materials contained in new products while still safely 

managing legacy devices. CRT displays in e-waste emerged as a critical waste management problem due 

to the potential release and toxicity of the lead they contain, leading to policy and technology solutions 

aimed at keeping them in productive use. However, reuse and recycling pathways diminished along with 

consumer demand for these TVs, and the lack of economic incentive for recycling coupled with ban on 

waste exports created a disruption to the e-waste industry, including criminal cases associated with 

stockpiling or illegally exporting CRT waste (Singh et al., 2016). With nearly half a million metric tons of 

CRT devices estimated here to enter the consumer e-waste stream in 2018, there remains a pressing need 

for open-loop recycling and end of life management strategies. 

 

Figure 2.1. Declining trend observed in annual waste flow (in metric tons) of commonly owned products 

in U.S. households. It is to be noted that MFA scope includes only 20 common product categories 

(Appendix A, Table 1) which represent product ecosystem in an average U.S. household.   
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These recent trends in e-waste flows can be attributed to a combination of natural technological progress 

and consumer shifts in product adoption behavior. Figure 2.2 shows the underlying consumption trends 

over the last few decades as annual product inflows to U.S. households in terms of in terms of sales or 

inflow units (top) and mass of each product categories sold (bottom).These time series reflect a dramatic 

dematerialization of the consumer electronics ‘ecosystem’ in U.S. households. Until the early 2000s, 

consumers were buying fewer products, but the dominant technologies were large, heavy, and made 

sizable contributions to total resource consumption. This trend then reversed after the technological 

transition to digital display devices in 2008, which completely replaced CRT displays from the market. 

Even after flat panel TV prices fell and device adoption resurged to previous levels, the product sector 

never matched the resource consumption in the CRT era.  

 

Figure 2.2. Electronics consumption trends in the U.S. in the last 28 years (stacked bar charts), 

represented by annual product sales or inflow units (top) and annual product sales mass or inflow mass to 

households (bottom). 

 

Other recent trends in dematerialization and product light weighting also contributed to declining 

electronic product material intensity. Light metals such as aluminum and magnesium together with plastic 

replaced heavier steel product casings and structural components. In addition, overall product 

consumption by unit also began to plateau and decline, largely due to device convergence, wherein multi-
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functional mobile devices, like smart phones, have replaced many products consumers would have owned 

separately before, like MP3 players or digital cameras included in the category ‘other mobile products’. 

Figure 2.2 shows the effect of this device convergence on disaggregated product consumption flows, 

where the declining trend in product sales coincides with the increase in phone and tablet adoption, which 

made up to one-third of total sales in recent years. Even though smart phones now make up 48% of the 

total annual product consumption by sales, their relatively low mass compared to larger devices leads to a 

mass contribution of less than 5%. 

These findings, which highlight the changing product mix in e-waste, have implications for e-waste 

policy development and implementation in the U.S. At present in the U.S., 25 states and the District of 

Columbia has laws mandating residential e-waste collection and recycling and almost every state e-waste 

policy are mass-based targeting larger products in the system for recovery (Electronics TakeBack 

Coalition, 2015). While a mass-based end-of-life product recovery mechanism can be effective in waste 

diversion, the decreasing dominance of larger products and increasing prevalence of lighter 

multifunctional products with critical metal content in the waste stream, indicates the need to reconsider 

the established e-waste management strategies. For example, if we consider the most common products 

covered by state policies for recovery such as TVs, monitors and computers, they reflected 48% of the 

total e-waste product unit flows in year 2000 but only 25% of the flows in 2018. Even though the decline 

in mass contribution of these products are not as steep (around 5%), the changing e-waste product mix 

imply new material management opportunities and challenges in the sector. 

3.2. Complexity and resource potential are high in the emerging e-waste stream, while toxicity 

from traditional materials of concern is on the decline. 

 

While declining resource consumption and waste generation are positive sustainability outcomes, these 

trends are not without economic, environmental, and social tradeoffs. The innovations responsible for 

device convergence and product light weighting have been achieved by increased use of designs and 

components that may limit recycling, and technologies that rely on potentially scarce minerals that are often 

mined in socially and geopolitically regions (Mars et al., 2016).  

Figure 2.3 illustrates how the changes in product flows have affected the material profile of e-waste over 

the last 28 years. E-waste materials are disaggregated into broad categories that include base metals like Fe, 

Al and Cu, plastics and complex components such as lithium-ion batteries, display modules, and PCBs 

(printed circuit boards). E-waste material profile shows decreasing dominance of CRT glass and increasing 

presence of components like batteries and flat panel display glass which are key constituents of portable 
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electronics and flat panel TVs respectively. These complex components present barriers to sustainable 

waste management, as there are limited recycling infrastructure and commercial-scale technologies in the 

US for recovering materials from these components. Increase in product complexity imparted by high 

functionality, portability and miniaturization in newer products in the waste stream, in turn restricts the 

economic feasibility of material recovery due to reduced ease of disassembly (Vanegas et al., 2018). End-

of-life management of lithium ion batteries, which now constitute 24 thousand metric tons in the residential 

e-waste stream are especially challenging due to their hazardous characteristics from use of flammable 

liquid electrolytes (Winslow et al., 2018). However, the importance of recycling these components will 

continue to grow, as they contain metals such as cobalt and indium, which have been categorized as critical 

resources, due to their physical scarcity and their importance for numerous economic activities, including 

clean energy, electronics, medical, and defense sectors.  

 

Figure 2.3. Changes in e-waste material profile from US households over the last 28 years. Figure shows 

decreasing dominance of CRT glass and increasing presence of complex components like batteries and 

flat panel display modules. 

 

One sustainability concern surrounding e-waste management is the potential for hazardous materials 

contained in these products to impact human and environmental health if managed improperly during 
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recycling or disposal. Lead contained in printed circuit boards and CRT glass and the mercury found in 

LCD displays with CCFL (Cold Cathode Fluorescent Lamp) backlighting are two key hazards. As TV 

technology has shifted to LED-lit flat panels, both products, and the materials they contain, have begun to 

decline. As a result, lead content in e-waste has undergone significant reduction in the last 10 years (Figure 

2.4), while mercury content has only recently started to decline, particularly after 2016 when LCD TVs 

peaked in the waste stream. Over 95% of the lead in e-waste was attributed to CRT glass, and the declining 

presence in the waste stream is due to technological progress and natural substitution by newer products as 

discussed earlier. The remaining fraction was attributed to lead solders previously used in PCB components. 

This fraction has largely been eliminated due to policy intervention, such as the RoHS (Restriction of 

Hazardous Substances) directive, which mandated lead-free PCB fabrication since 2010. 

    

Figure 2.4. Declining in e-waste toxicity from lead and mercury. Lead flows represents waste flows from 

PCBs (printed circuit boards) and CRT glass. Mercury flows represent waste flows from CCFL lighting 

in LCD TVs and monitors. 

 

The e-waste stream also represents a potential source for obtaining materials that are critical to modern 

technology. Due to increased adoption and reduced lifespans of mobile technologies like laptops, tablets, 

and smartphones that use lithium ion batteries (LIBs), cobalt concentration in the waste stream has steadily 

increased (Figure 2.5). Cobalt is a key component of LIB cathodes, both for electronics, and for many 

electric vehicle battery chemistries. As both sectors grow, secondary sources will be an increasingly 

important input for lithium ion battery manufacturing (Singh et al., 2016), particularly to alleviate social 
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concerns over cobalt extraction in vulnerable regions including the Democratic Republic of the Congo 

(Olivetti et al., 2017). As the electronics ecosystem is increasingly dominated by products with flat panel 

and touch screens, there is also increased demand for indium (as indium tin oxide, used as a transparent 

conductive coating). While it is only present in small concentrations within a given product, its overall 

concentration in the e-waste stream has steadily risen (Figure 2.5). Indium has been a recent target for 

sustainability due to its physical scarcity, high cost, and widespread use in growing applications of 

transparent electrodes, as used by photovoltaic panels and high efficiency windows (Laurenti et al., 2016). 

The concentration of cobalt (0.21%) and indium (0.001%) in e-waste in 2018 is still lower than observed 

ore concentration (Sverdrup et al., 2017) (5% and 0.005%, respectively at the high end), but these materials 

are potential future priorities for recycling, particularly to create a domestic supply in the U.S., as 

geographical concentration and fluctuating commodity value of these metals may lead to economic 

uncertainty in the electronics industry. 

 

Figure 2.5. Increasing resource potential in the waste stream. Critical (cobalt, indium) and precious (gold) 

metal flows highlight potential for material recovery in the emerging waste stream. 

 

On the other hand, gold content in the aggregate e-waste stream (0.0051%) is over ten times higher than its 

ore concentration (Sverdrup et al., 2017) (0.0003%). Historically, the global e-waste recycling system has 

relied on the economic value of gold, which is typically recovered through PCB smelting. However, gold in 

e-waste has begun to decline in concert with to the overall dematerialization trends observed, from a peak 

of 93 metric tons in 2014 to current estimates of 73 metric tons in 2018 for the U.S. residential sector. Gold 
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is also becoming more dilute and dispersed across products, which increases the labor and processing costs 

associated with managing e-waste (Kasulaitis et al., 2018b).  

Similar to gold, higher concentration in e-waste than their ores are observed for other precious metals such 

as silver and palladium, which are mostly found in PCBs in electronic products (Figure 2.6). However, as in 

the case of cobalt and indium, e-waste content of other critical metals in electronics such as rare earths 

elements (REEs), lithium, tin, tantalum and gallium are lower when compared to their ores. But since many 

of these metals are identified to be critical materials by the U.S. Department of Energy (Energy, 2011), it is 

necessary to plan for policy instruments, recycling technologies and infrastructure that can effectively 

reclaim these resources from end-of-life electronics. 

 

 

Figure 2.6. Concentration of materials of interest in emerging electronic waste (results for year 2018) in 

comparison with their average concentration in ore deposits (Sverdrup et al., 2017). For most materials 

except precious metals (Pd, Ag and Au), e-waste concentration is much lower compared that in their 

respective ores. 
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3.3. Theoretical potential to close the loop on critical materials is high 

 

The implications of the changes in e-waste material footprint on the viability for closed loop recycling or 

circular economy is tested theoretically by matching the mass of key materials contained in new products 

sold and used products entering the waste stream within the same years (2008 and 2018) as shown in Figure 

2.7. In 2008, the demand for most raw materials far exceeded the amount of the same materials contained in 

the waste stream, meaning that even with aggressive recycling initiatives, the electronics industry would 

still be reliant on extracting virgin raw materials. In 2018, however, the total mass of indium, cobalt, gold, 

and plastics contained in e-waste far surpassed the cumulative demand for each of those materials contained 

in new products being sold. Thus, the potential exists for a closed-loop circular economy through material 

recovery.   

However, just because theoretical circularity potential exists does not guarantee that a closed-loop 

material recovery pathway will be viable. Critical metals like cobalt and indium are characterized by low 

recycling rates, due to a lack of policies that target the products that contain these materials, absence of 

widespread commercial recycling technologies and infrastructure, complexity in product design, and 

material dilution and dispersion in the e-waste stream. Technologies do exist to recover these materials 

but face a challenging pathway to achieve full scale deployment. In addition, electronic product designs 

are optimized to meet consumer demands for low cost products with maximum functionality while 

maintaining ease of assembly and manufacturing. To meet resource demand through circular economy, 

product designs need to be revisited to facilitate ease of material recovery. One goal of the extended 

producer responsibility model underlying e-waste policies in the U.S. is to shift waste management costs 

back to producers, thus creating motivation for design and material selection that leads to enhanced 

recycling. This outcome has not been realized however, outside niche markets (e.g., Fairphone (Reuter et 

al., 2018)). In the case of plastics, the potential for recovery has increased over the years as the plastic 

content in e-waste grew from 24% to 30% since year 2000 (Figure 2.3). At present, around half a million 

metric tons of plastic is available for recovery from e-waste generated annually from U.S. households. 

However, there are many challenges in e-plastic recycling, the main being contamination in the waste 

stream due to the wide range of plastics used in electronics and the use of brominated flame retardants 

which are added to e-plastics to enhance their resistance to fires. Nonetheless, the recent bans and 

subsequent disruption in e-plastic export market to Southeast Asian countries, stresses the need to develop 

domestic recycling systems. 
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Figure 2.7. Comparing annual material inflow or demand with waste flows show that potential to close 

the loop exists at least theoretically for all materials (gold, cobalt, indium and e-plastics) tested. 

3.4. Uncertainty Analysis 

 

This study benefited from high quality product sales data and the largest database available on electronic 

product composition. However, additional sources of uncertainty in this analysis may stem from data 

limitations around product mass and lifespan values. Lifespan uncertainty was assessed by comparing waste 

flows calculated using both Weibull and lognormal lifespan distributions , both of which are commonly 

used to assess e-waste flows (Babbitt et al., 2009; Petridis et al., 2016). Uncertainty around product mass 

values were assessed via ranges reflecting maximum and minimum observed product masses and sensitivity 

to products included in the study scope were tested by including six newer devices to the 20 baseline 

products. None of these sensitivity analyses showed any fundamental difference to the trends shown here 

for material consumption and e-waste generation (Appendix A, Figures 1a, 1b, and 1c). However, the trends 

reported here will certainly continue to change in the future. Related research has shown that electronic 

product adoption and replacement cycles are consistent over time, and that these patterns can be used to 

predict future waste challenges for emerging products (Althaf et al., 2019). In addition, the underlying 
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material flow model can be adapted to include new products as the electronic product ecosystem evolves 

over time. 

4. Discussion  
 

The current e-waste management system in the US is backwards looking, optimized for large legacy 

products with a focus on diverting wastes from landfill. However, technological innovation has 

fundamentally changed the products purchased and discarded, along with the materials they contain. Given 

the evolving nature of the electronic product ecosystem, up-to-date estimation of resource consumption and 

e-waste generation is necessary to make informed decisions for sustainable resource management. Such 

comprehensive analysis is rare, mainly due to the need for exhaustive data collection on product adoption 

that are required. Through the application of product material profiles studied and characterized through lab 

disassembly of over 80 different products and highly resolved product sales and lifespan data, this study 

reports the most current material footprint analysis for electronics in the U.S., enabling the identification of 

immediate challenges and opportunities for integrating sustainable materials management and circular 

economy approaches in electronics. 

Analysis results break the long-standing assumptions about e-waste, by reporting a declining trend in 

overall mass and hazardous material concentration. At the same time, there is increased product 

complexity and material diversity in the emerging electronics system, imparted by the high adoption of 

multifunctional light weight products that employ a wide spectrum of materials from the periodic table. 

Most of these materials (such as REEs, Co and In) embedded in the complex designs of modern-day 

consumer electronics are considered to be critical mineral resources by global economies. As smaller 

complex products start dominating the waste stream, the relative dilution and dissipation of the materials 

in the waste stream also increase, creating new challenges in the retrieval of valuable materials. For 

example, more than 150 smartphones will need to be processed to recover the same amount of gold (from 

PCBs) that can be recycled from a single CRT TV. Product design complexities will further add to the 

difficulty of material recovery, negatively affecting the economics of recycling if appropriate 

technologies are not employed. Product and material diversity, and the dynamic nature of the emerging e-

waste stream uncovered in this study highlights the need to invest in recycling technologies that are not 

only efficient enough to reclaim the valuable materials contained in small amounts per product, but also 

resilient to the changes in the system.  

Given the changing dynamics in mineral commodity markets due to import policies and other market 

forces, this study is timely, as e-waste management based on recycling could expand opportunities to 
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ensure domestic supply of many scarce materials such as Co, In and rare earth elements, which are 

currently sourced mostly from China, a geopolitical competitor of the U.S (Habib et al., 2016). These 

findings point to a needed shift in focus in our e-waste management mechanism from ‘mass to materials’ 

and from ‘waste diversion to resource retention’. Such a paradigm shift can only be enabled through joint 

effort from all stakeholders, where policy makers change incentive structures and collection targets; 

recyclers create and scale-up adaptive material recovery technology; and manufacturers adopt product 

designs that maximize recycled content and facilitate easy product disassembly and recycling. While the 

baseline MFA in this chapter advances the knowledge on material footprint of electronics, the analysis is 

mostly retrospective. To plan for material management systems that are resilient to the changes in 

electronics landscape, proactive insights about material flows in the system are necessary. The next 

chapter addresses this need for predictive capability in material flow models for electronics. 
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CHAPTER 3: Predictive material flow models for the consumer 

electronic system 
 

1. Introduction 

 
Baseline MFA for electronics in chapter 1 showed that unprecedented innovation and increased consumer 

demand for faster, sleeker, and smaller devices have drastically changed the electronics landscape in the 

last decade. Large, single function products have been replaced with multifunctional portable products 

(Erinn G. Ryen et al., 2014) and electronic components are increasingly integrated into accessories, 

clothing, appliances, and fitness products (Perera et al., 2015). Industry groups predict that consumers 

will increasingly adopt smart home technology products including thermostats and security systems, 

while at the same time maintaining high ownership levels of traditional products like smart phones and 

televisions (Consumer Technology Association, 2017). 

 

While the evolution and expansion of consumer electronics has enabled social, education, and 

communication advances, it has also created new sustainability challenges (Balde et al., 2017). Electronic 

products are characterized by environmental impacts across all life cycle stages, from raw material 

extraction to end-of-life product management (Kohler and Erdmann, 2004). The functionality of modern 

electronics is realized through a mix of complex components composed of precious, scarce and base 

metals (Cucchiella et al., 2015; Tansel, 2017), which are extracted through energy intense processes 

leading to significant upstream emissions (Dutta et al., 2016). MFA results in chapter 2 showed that there 

is increased prevalence of critical materials such as cobalt and rare earth elements in the e-waste stream, 

which are in high demand in electronics and other sectors such as electric vehicle manufacturing and 

clean energy technologies, indicating huge potential for material recovery in the emerging e-waste stream. 

Given rapid innovation cycles, increasing consumer adoption, and declining product lifespans in the 

electronics sector (Bakker et al., 2014), critical material consumption and waste generation is bound to 

increase in future. Therefore, consumer electronics are ripe for a transformation via the circular economy, 

to minimize resource consumption, extend product lifespan through reuse, repair and remanufacturing 

(Bakker et al., 2014; Reike et al., 2018; Zlamparet et al., 2017), and close the loop on material supply 

chains (Işıldar et al., 2017a; Zeng et al., 2018a). 
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Circular solutions may offer sustainability benefits for electronics, but they also face obstacles to 

widespread adoption (Mars et al., 2016). As the electronic product “ecosystem” grows, the number, type, 

and diversity of devices requiring circular management also expand (Erinn G. Ryen et al., 2014). This 

complexity can confound product repair, upgrade, disassembly, and material identification and 

segregation, all of which are labor-intense processes further slowed by product heterogeneity and lack of 

standardization (Cucchiella et al., 2015). Where materials are recovered, recycling economics often hinge 

on a few low-volume, high-value materials, such as gold, which are increasingly diluted in the e-waste 

stream due to product light-weighting trends (Kasulaitis et al., 2018a). The presence of hazardous 

materials like lead and mercury in complex components like older printed circuit boards and display units, 

also can limit recovery efforts (Chen et al., 2011; Kiddee et al., 2013). In addition, shrinking product 

lifespans (Babbitt et al., 2009) are effectively narrowing the window in which circular innovation can be 

deployed, leaving our e-waste management system to be “backwards looking” - focusing on legacy 

devices that have been in the market for a long time, even while new products are emerging in the waste 

stream (Babbitt et al., 2017).   

 

These factors underscore the importance of creating circular economy (CE) strategies that are agile and 

responsive to the evolving demand for and waste from consumer electronics consumption. CE 

interventions in electronics should respond to key leverage points that maximize resource efficiency and 

minimize environmental burden, through green product design, creation of reuse markets, development of 

material recovery technologies to improve use of recycled materials in products, and policies to 

effectively engage multiple stakeholders in resource conservation and recovery activities (Bocken et al., 

2016; Gaustad et al., 2018; O’Connor et al., 2016). Green product design strategies include design for 

longevity (Bakker et al., 2014), ease of disassembly (Vanegas et al., 2018) and reduced use of critical and 

environmentally intense materials (Boks and Stevels, 2014). However, for most of these CE interventions 

to create proactive - rather than reactive - solutions, they must be attuned to future resource demand and 

waste generation.  

 

Take for example the case of current U.S. e-waste policy implementation. The product categories that are 

most commonly covered under each state’s policy mostly reflect mature product categories that have 

already saturated the market, omitting emerging products whose material opportunities and risks are 

unknown (Electronics TakeBack Coalition, 2015). Near term forecasts of consumer discards can inform 

e-waste policies, especially in setting the scope of products to be covered under the policies and 

establishing realistic annual e-waste collection targets. Similarly, new product design would benefit from 

better predictive capacity about which materials may be available from secondary sources (e.g., used 
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electronics in a closed-loop scenario) and which materials may be scarce due to consumption in other 

competing industries. In any of these cases, proactive insight is necessary, but fundamentally limited by a 

lack of the predictive tools and data needed to forecast physical flows in the evolving electronics sector, 

which is key in circular economy implementation (Kalmykova et al., 2018). 

 

Therefore, this paper addresses the question: How do we proactively plan and deploy CE strategies for the 

rapidly evolving electronic product sector? This challenge is addressed by creating and validating models 

to forecast product sales and e-waste generation and then using these models to identify issues and 

opportunities for circular economy in the electronics sector. To this end, historic product adoption data is 

studied to generalize the factors that govern product adoption trajectories and then applied to the model 

based on established e-waste estimation methods from literature, to generate near term forecasts for both 

mature and emerging products. The paper is organized as follows: Section 2 reviews forecasting literature 

that guided the development of the model. Section 3 describes the methodology, including model 

development, validation, and application to inform CE planning. Subsequent sections discuss results and 

broader implications.  

2. Literature Review 

 

E-waste estimation methods in the literature include input-output models, factor models, time series, 

econometric analysis, and direct waste analysis (Li et al., 2015; Wang et al., 2013). Among these, 

material flow analysis (MFA), which is an extension of input-output modeling, is widely used and an 

appropriate choice for CE planning, as it enables estimation of the product and material demand and 

management of secondary resources (Kalmykova et al., 2018). MFA estimates the stocks and flows of 

materials within a defined temporal and spatial system, commonly using data on commodity flows into 

the system and their discard rates (Brunner and Rechberger, 2004). In most e-waste literature, MFA 

applications are typically static or retrospective (Kasulaitis et al., 2018; Li et al., 2015, Miller et al., 2016, 

Wang et al., 2013), due to the nature of available data. However, CE planning requires a more proactive 

approach, thus requiring forecasts of product adoption and obsolescence. Such information is not 

commonly available, but potentially can be approximated according to models of product adoption cycles.  

Forecasting product adoption is commonly achieved using the “S-shaped” logistic curve, or sigmoid 

curve, to describe a product market adoption cycle (Fisher and Pry, 1971; Kucharavy and Guio, 2015, 

2011; Marchetti and Nakicenovic, 1979; Meyer et al., 1999; Yang and Williams, 2009). The three 

parameter logistic curve commonly used in socio-technical systems (Kucharavy and Guio, 2011), has its 

roots in ecology, where it was originally used to model population growth of biological species 
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(Lefkovitch, 2018). While the logistic curve describes a product’s growth until it reaches market 

saturation, it does not capture the entire market life cycle, which includes an inevitable decline due to 

substitution by competing technologies. The Norton-Bass model, which includes logistic distribution as a 

special case, captures both adoption and substitution leading to a product’s decline (Norton and Bass, 

1987). This approach has been applied to forecasting consumer electronics, including LCD TVs (Tsai 

(2013), mobile phones, computers (Islam and Meade (1997), and desktop displays (Lu et al. 2015). 

However, as pointed out by Tseng et al. (2009), the Norton-Bass model is mostly suited for modeling 

direct substitutions by successive generations of technology, which is not always observed in consumer 

electronics, particularly in the case of disruptive innovation. The Fisher-Pry model (1971) has also been 

applied in electronics forecasting, an approach that uses a two-parameter logistic model to describe 

technology substitution (Cho and Daim (2016). The logistic Fisher-Pry model was extended by Marchetti 

and Nakicenovic (1979) to include mutliple generations of energy technologies, based on the assumption 

that technologies grow and decline at logistic rates. This model has been used to study adoption of music 

media (Meyer et al., (1999) and OLED TVs (Tseng et al., 2009). While these studies show that logistic 

growth-decline is an apt approximation to describe product adoption cycles, these models are again reliant 

on knowledge of subsequent generational replacements. 

In reality, replacement cycles and product innovation in consumer electronics are challenging to predict, 

as decline of one technology generation is not always predicated solely on substitution by the next 

generation. In many cases, functional convergence leads to decline of many single function devices due to 

simultaneous substitution by a single new multifunctional product. For example, the decline of digital 

cameras, camcorders, and MP3 players was driven by the advent of smartphones, which would not be 

otherwise predicted as a successive generation of those products. Similarly, in the case of AV (audio-

visual) media, the decline of Blu-rays and DVD players was triggered by the advent of new streaming 

media services, rather than a new product generation (Figure 1 in Appendix B illustrates the technological 

shifts and substitution in AV products). Therefore, to integrate product adoption cycles in electronics 

forecasting, it is necessary to develop modeling capability that can capture adoption trends on a product-

by-product basis, even in the absence of information about subsequent generations of technology. 

The methods applied in this chapter build on the foundation of models described above, through use of 

the logistic growth and decay curves that have been applied to technology adoption broadly and e-waste 

forecasts specifically. One new contribution is the construction of these curves independently, without the 

specification of an unknown successive replacement technology required to trigger product decline. 

Another contribution is the focus on emerging electronic technologies that are not yet widely adopted. 

Literature examples have provided several demonstrations of forecasting waste flow from specific 



27 
 

product categories that already comprise a major part of the e-waste stream, such as computers  (Kahhat 

and Williams, 2012; Petridis et al., 2017; Rahmani et al., 2014; Yang and Williams, 2009; Yu et al., 

2010), or on products with known hazards, such as cathode ray tube (CRT) TVs (Gusukuma and Kahhat, 

2018). However, for CE planning, it is equally important to forecast adoption for newer technologies, 

requiring modeling advances in data-scarce cases.  

 

3. Methodology 

 

Baseline MFA in Chapter 2 indicated that the material footprint of consumer electronics is changing due 

phasing out of Cathode Ray Tube (CRT) TVs and increased adoption of mobile technologies. This 

chapter’s objective is to present an MFA model developed to proactively inform key leverage points that 

can enable CE solutions for electronics. For example, for mature products that are declining or no longer 

sold in the market, a critical circular economy challenge is how to recover and manage these products 

over the remainder of their life cycle, particularly if no demand exists for their reuse or for their 

component materials. Another challenge is to understand how e-waste policy implementation might be 

affected by the decline of these products in the waste stream. For emerging products, which may have 

unforeseen sustainability risks, but that are not typically covered by e-waste policies or prioritized for 

greener product design, projections are essential to model timing and magnitude of potential resource 

demand or the extent to which circular material systems can provide these resources with secondary or 

closed-loop supply. In addition, it is necessary to understand how CE planning might address the 

interactions of mature and emerging products in scenarios of technology substitution. Thus, the predictive 

MFA model was developed with the aforementioned CE challenges in mind. The overarching approach 

was to use historical sales data to construct logistic curves of product adoption and decline, and then 

apply these curves to project future product consumption and waste flows (Figure 3.1), as explained in 

more detail in the following subsections. 
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Figure 3.1. Conceptual framework of the methodology adopted in this study to enable proactive CE 

planning in electronics sector. Gray boxes and arrows represent data inputs collected from literature and 

electronics industry sources. All other boxes and arrows represent model calculations and outputs. 

3.1. MFA Model Framework 

 

The MFA model (Equation 1) estimates annual waste flows using product sales and lifespan probability 

distributions.  

𝑊𝑊𝑝𝑝,𝑡𝑡 =  � 𝐿𝐿𝑝𝑝,𝑖𝑖
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 × 𝑆𝑆𝑝𝑝,𝑡𝑡−1                                                            𝐸𝐸𝐸𝐸. 1 

where 𝑊𝑊𝑝𝑝,𝑡𝑡  is the waste flow of product 𝑝𝑝 in year 𝑡𝑡, 𝐿𝐿 is the probability that a product 𝑝𝑝 will reach its end-

of-life after a lifespan of 𝑖𝑖 years, 𝑆𝑆 is the annual product sales into US households for each year, and 𝑛𝑛 is 

the maximum lifespan. 

Product Sales: Based on findings from the literature review described above, product sales (Sp,t) were 

approximated by a three-parameter logistic curve (Equation 2), which includes phases of product growth, 

saturation, and then decline in the market, similar to the approach of Marchetti and Nakicenovic (1979) 

and Meyer et al., (1999).  
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Here, a product’s sales over its entire market cycle can be described by the time it takes to reach peak 

adoption (tpeak), the maximum adoption level or peak sales units (a), growth and decay rates (b1 and b2), 

and growth and decay midpoints, which are the times at which the curve reaches the inflection point of 

a/2 (c1 and c2). For simplicity, the parameter b is replaced by the equation ln(81)/ Δt, where ∆𝑡𝑡 is the 

time required for the logistic curve to grow from 10% to 90% of the carrying capacity (for b1) or decay 

from 90% to 10% (for b2), a simplification demonstrated by Meyer et al. (1999).  Additional information 

on the estimation of parameters a, ∆𝑡𝑡, and c is provided in section 3.2. 

 

The choice of logistic curve was verified by testing Equation 2 against real product sales data Ten 

products were selected that had high quality sales data spanning the entire period between the product’s 

entry into the market to present (or to the point at which it was no longer sold). These data were provided 

by the Consumer Technology Association as reported in chapter 1 Appendix. The growth and decline 

curve for each product was tested against candidate distributions using a least squares estimation 

approach as implemented in MATLAB. Goodness of fit parameters, including R-squared, SSE (sum of 

squared errors) and BIC (Bayesian Information Criterion- a popular criterion for model selection among a 

finite set of models, using maximum likelihood estimation) were used to confirm that logistic curves were 

the best distribution to represent adoption cycle of electronics (See Appendix Table 7).  

 

Lifespan Probability Distribution: The other key input to the forecasting MFA model according to 

Equation 1 is the lifespan probability distribution for each product. A Weibull distribution is applied here, 

as it is the most commonly used distribution to model lifespan of electronics in literature (Bakker et al., 

2014; Gu et al., 2018; Habuer et al., 2014; Oguchi et al., 2008). The Weibull PDF (probability density 

function) is given below: 

 

       𝑓𝑓(𝑡𝑡, 𝛾𝛾, 𝛼𝛼) =  𝛾𝛾
𝛼𝛼
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(𝛾𝛾−1)
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𝛼𝛼�

𝛾𝛾

                                 𝐸𝐸𝐸𝐸. 3    

 

where γ is the shape parameter, α is the scale parameter and t is the time. The shape and scale parameters 

describing the distribution are computed from mean and maximum product lifespan estimates from 

literature (see Appendix B, Table 1). In this study, lifespan is defined as the total time that a product 

resides within a household during its first life, after which it becomes available for end-of-life 

management, which may include reuse, recycling for material recovery, or discarding.  
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3.2. MFA model parameters for mature products 

 

Parameterizing the model described in Equations 1 and 2 is relatively straightforward for mature 

products, because past sales data are readily available. The 11 products considered in the mature product 

category are: CRT (Cathode Ray Tube) monitors, CRT TVs, desktop computers, printers, laptop 

computers, LCD (liquid crystal display) monitors, LCD TVs, Plasma TVs, LED (light emitting diode) 

monitors, LED TVs, and tablets.  For these products, parameter estimation was carried out by fitting the 

three-parameter logistic curve to each product’s unit sales over time. Depending on the product, different 

degrees of the market life cycle are covered by the available sales data, ranging from only a few years (for 

LED displays) to a full life cycle (for CRT TVs). In all cases, parameters were extracted from the 

product-specific logistic curve based on least squares estimation. (See Appendix B Table 2 for logistic 

parameters extracted for each product in the mature category).  

 

The application of the MFA model to mature products is particularly important from the standpoint of 

assessing e-waste policy in relation to CE planning. The mature products analyzed here are those that are 

most commonly covered by e-waste legislation in U.S. states. The MFA results describe waste flows in 

units of products, which were then translated to overall waste stream magnitude based on each product’s 

average mass. Mass results help relate the waste projections to mass-based collection or recycling targets 

used by most states in the U.S. Product mass estimations were determined using literature and 

disassembly as described in Babbitt et al. (2017) and are summarized in Appendix B Table 3.  

3.3. MFA model parameters for emerging products 
 

In the case of emerging products, for which historic adoption data is scarce, the guiding approach in 

estimating parameters for logistic forecasting was to analyze how past products behaved in the market, 

identify trends in the underlying logistic curve size and shape, and then extend these trends to products 

recently introduced. The historic sales data of over 15 products (Table 3.1), which entered the market 

between 1962 and 2009 were compiled, and the key parameters that describe their logistic market 

trajectory (time to peak, sigmoid midpoint and Δt) were extracted. One of the clear relationships revealed 

was that these parameters were inversely related to year of market entry. In other words, innovation 

cycles, or the time between a product entering the market and reaching saturation at peak sales, are 

shrinking in a steady and predicable way. Curve fitting to this temporal trend was tested to determine if 

year of market entry could effectively predict time to peak and growth rate, resulting in an exponential 

curve (R2 = 0.82) as shown in Figure 3.2, where Tp is the time until a product reaches its peak sales and 
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Ym is the year the product enters the market. To validate this trend, the predicted exponential curve was 

compared against a different set of 10 products (also shown in Table 3.1) that were not part of the original 

curve formulation. This strong agreement was consistent for exponential curves relating year of market 

entry to other necessary logistic parameters, including growth rate and sigmoid midpoint (See Appendix 

B Table 4 and Appendix B Figures 2 and 3). Thus, most of the parameters required to construct the 

logistic sales curve (Equation 2) for emerging products can be predicted by specifying only the year in 

which that product first is sold in the market. 

 

 
Figure 3.2. The time between a product entering the market and reaching its peak sales volume is shown 

here to clearly decline over time. A predictive relationship is built using filled circles and then validated 

by comparison against additional products (open circles). 

 

The other parameter required to apply the logistic model (Equation 2) is a, the carrying capacity, or in 

terms of electronic products, the maximum level of product sales. For emerging technologies, this 

parameter is difficult to anticipate, given the unpredictable nature of technological progress and the rate at 

which consumer attention flickers from one gadget to the next. However, past product behavior can again 

inform projections of future product trends. In this case, the type of product (and the functions it provides) 

was observed in historical sales data to be strongly related to the maximum peak sales. Some products, 

like phones, are owned by individuals, rather than households, and are seen to be commonplace in 

modern work and life, which is supported by high sales rates (over 1.5 smartphones were purchased per 

average U.S. household in 2018). On the other hand, stationary, home-based AV equipment is shared 
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among members of a household and the saturation point for ownership will be lower (about 0.2 VCR or 

DVD players purchased per household in the year that each of these products’ sales peaked).  

 

Products  Year of market entry Time to peak 

 CRT TV 1962 38 

 VCR 1977 23 

Desktop CPU 1980 19 

 CRT monitor 1980 19 

Printer 1980 28 

Telephone Answering 

Devices 1982 23 

Digital camcorders 1985 25 

Satellite Set-Top Boxes 1986 27 

Basic mobile phone 1989 19 

Laptops 1994 17 

DVD player 1997 9 

 Digital cameras 1997 14 

MP3 player 1999 8 

LCD monitor 2000 7 

LCD TV 2000 9 

Portable Navigation Devices 2001 7 

Plasma TV 2002 8 

Cable Set-Top Boxes 2003 9 

Smart phone 2003 13 

VoIP Adapters 2003 6 

IPTV 2004 8 

 Blu-ray player 2006 7 

Digital Photo Frames 2006 3 

Tablet 2009 4 

LED TV 2009 8 

LED Monitor 2009 5 

Table 3.1. Products used to identify temporal trends in parameters describing logistic product adoption 

curves. Products shaded in gray were used to construct predictive trends while remaining products were 

used to validate the resulting curves. 
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To determine the carrying capacity of a logistic curve for an emerging product, the peak sales per 

household was tabulated for all products listed in Table 3.1, and grouped under categories that describe a 

product’s form or function: Computing (including computers, monitors, and printers); TVs (including 

multiple technologies of CRT, LCD, LED, and plasma); Home media (VCR, gaming consoles, etc.); 

Small mobile devices (MP3 players, digital cameras, portable navigation systems, etc.); and Phones 

(including basic and smartphones and tablets). A full list of products assigned to each category and their 

peak sales is provided in the Appendix B Table 5. These data are summarized in Figure 3.3, which 

visually illustrates the ranges in peak sales observed. Most product categories demonstrated consistent 

ranges of adoption peaks. One exception was for those products that were ultimately only adopted to a 

limited degree (maximum sales of only about 0.05 – 0.1 products per household even in the highest sales 

year). These products, which represent a scenario of “limited adoption,” included devices like Plasma 

TVs and e-readers, both of which were quickly outcompeted by products seeing “mainstream adoption,” 

such as LCD TVs and tablets, respectively. The limited and mainstream adoption ranges assigned to each 

product category is presented in Appendix B Table 6.  

 

 
Figure 3.3. Ranges of peak sales (in units sold per U.S. Household) for products according to functional 

categories. Median values are shown as a line across each box. 

 

Using the approximations described above, the logistic adoption parameters for an emerging product 

could be generated by using only two pieces of information: 1) the year of market entry, which was 
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estimating by extrapolating the curve shown in Figure 3.2 to determine time to peak; and 2) the type of 

product it was (as best represented by product categories listed above), which would establish ranges of 

the curve’s maximum sales in either a trajectory of mainstream or limited adoption. 

 

To demonstrate the MFA model’s applicability in forecasting resource demand from emerging products, 

it was applied to four case study products that represent a spectrum of new electronic technologies: 1) 

fitness trackers; 2) smart thermostats; 3) drones; and 4) OLED (organic light emitting diode) TVs. Fitness 

trackers were modeled as small mobile devices; smart thermostats and drones as home media products; 

and OLED TVs within the TV category. While fitness trackers and drones are fundamentally new 

products, smart thermostats represent a case such that a “non-smart” alternative already exists, and 

adoption would be related to replacement of legacy systems. Based on these observations, emerging 

products were modeled under both potential trajectories: limited adoption, which constrained a, or peak 

sales, to between 0.05 - 0.1 products sold per household; and mainstream adoption, which set peak sales 

to be equivalent to the mean value observed for the product category to which each of these devices is 

categorized, including an uncertainty range of +/- 10%.  

 

3.4. MFA model application to study interactions of mature and emerging technologies 

 

Finally, the potential usefulness of the predictive model to study interactions of mature and emerging 

technologies for CE planning in situations where technology substitutions occur, was demonstrated using 

the case of TV technologies. TVs are the most commonly covered device across all U.S. state e-waste 

policies and have historically been a primary focus of hazard-based e-waste management, due to lead 

contained in CRT glass and the mercury contained in fluorescent-lit LCD displays. OLED TVs represent 

a natural innovation in display technology that has been progressing over multiple generations, and 

therefore the forecasts of OLED TV adoption were coupled with logistic models of past TV technology, 

and the potential evolution of e-waste in the TV category was projected for the next 15 years, a time 

period selected to reflect the long lifespans of these products within the household. Perfect substitution of 

OLED for LED technology was assumed, based on similar observation of each past TV technology 

generation.  

4. Results  
 

The key outcome of this study is the development of an MFA model based on logistic forecasting that can 

be used to predict flows of products with abundant historic data and for those with scarce adoption data, 
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to inform proactive CE strategies. The following sections detail the results for model validation and then 

demonstrates the model’s applicability in addressing key data challenges in circular economy planning in 

electronics. 

4.1. Model Validation  

 

The use of a three-parameter logistic curve in modelling adoption cycle (growth and decline) of products 

was tested against real sales curves of existing electronics products. Logistic was the best distribution of 

those compared, based on goodness of fit parameters such as SSE, R square and BIC. The full list of 

curve fitting statistics is reported in Appendix B Table 7. The forecasting capability of the MFA model is 

validated by comparing model generated e-waste flows of CRT monitors, Desktops, Printers, LED 

monitors, LCD TVs and Laptops with waste flows estimated using actual annual sales data from 2000 to 

2018. Results (Figure 3.4) shows that forecast results are in strong agreement with those generated from 

real data, with less than 5% error in cumulative flows across products. Waste flows forecasted five years 

forward show how the models capture the effect of product market decline on e-waste estimations.  

 

 
Figure 3.4. Comparison of e-waste flows estimated using the three-parameter model of logistic sales to e-

waste flows calculated directly from real sales data of the products. E-waste flows reflect annual outflows 

from U.S. households in thousands of units. Line plots indicate forecasting model results while scatter 

plots indicate waste flows estimated from real sales data. 
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Waste flow forecasts in Figure 3.4 predict that CRT monitor units in the residential e-waste stream will 

soon be insignificant, which should help alleviate concerns about lead exposure during their downstream 

management. However, in the short term, few opportunities exist for closing the loop on these materials, 

as no demand exists for product reuse or CRT glass recovery. Waste flow forecasts for computing and 

display technologies like laptops and LCD TVs and monitors show that these products have likely 

reached their peak and will start slowly declining in the waste stream. In five years, laptops and printers 

are forecasted to decrease 20% from their current waste flow while LCD TVs are predicted to decline to 

more 50% from their current waste flow. Desktop computers are expected to sharply decline (40%) in the 

waste stream in the next five years, which is expected to have interactive effects on monitors, which are 

typically purchased to use with desktop computing. A comparison with waste flow forecasts by past 

studies (Mars et al., 2016) show that while our model results deviate more for some products such as 

laptops and printers (MFA results are -38%), results are close to past estimations for desktops (-14% ), 

flat panel monitors (+7%), and TVs (-7%).  While desktop waste flows estimated by the MFA model for 

year 2010 differed by less than 1% (-0.03% from low adoption scenario) from those reported by Miller et 

al (2016), monitor waste flows deviated by more than 20% (-26% for flat panel monitors and -20% for 

CRT monitors) from the study which applied the same sales-lifespan MFA method. Here the difference in 

estimations for monitor waste flows is likely due to our underlying assumption that monitor adoption 

follows a 1:1 ratio with desktop sales, based on input from consumer technology industry experts (Babbitt 

et al. 2017) rather than using real monitor sales data, which is available to a limited degree but does not 

account for monitors sold with desktops as a package. Other deviations in waste flow units from past 

estimations could be attributed to uncertainties associated with lifespan assumptions, as definition of 

product lifespans vary in different studies (Babbitt et al. 2009). 

 

While model forecasts are impacted by lifespan uncertainties, the trends of this and other studies are 

consistent, and the downward trend in forecast e-waste flows is unlikely to change, as it is primarily 

driven by inflows to households in the way of new sales, which have begun to decline for all mature 

products studied. These results have significant implications to e-waste policy planning, as the products 

analyzed here fall under the commonly covered devices in U.S. state e-waste policies.  

4.2. Forecasting implications to U.S. e-waste policy  

 

Under extended producer responsibility (EPR ) policies adopted for end-of-life management of 

electronics in most US states, collection targets are set based on manufacturers’ share of covered products 

in the waste stream, as determined by sales-adjusted mass estimates (Electronics TakeBack Coalition, 
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2015). The process of setting collection targets often relies on observed trends in past years’ product 

collection rates as the main factor in determining the next year’s recovery goals (Oregon E-Cycles 

Program, 2018). Neither states nor manufacturers typically have the modeling capability to predict future 

waste flows, limiting their ability to set appropriate targets or plan for end-of-life management. Therefore, 

the predictive MFA model offers significant utility for these stakeholders in its ability to project e-waste 

flows over a near-term time horizon. To assess how this model might be used by policy stakeholders, it is 

applied to commonly covered devices in U.S. state policies, which include mature products such as TVs, 

monitors, computers and printers, to estimate their cumulative waste flows in the U.S. (Figure 3.5). These 

estimates were generated using the logistic forecasting model for a 15-year period, which includes recent 

past and six years beyond the present. Note that the model predicts the total mass of products coming out 

of households, which may then go into reuse, recycling, or discard pathways.  

 

 
Figure 3.5. Application of predictive model to inform e-waste policies, demonstrated through estimation 

of cumulative waste flows of devices commonly covered for recovery under state e-waste legislations. 

Chart shows the decline in mass flows of commonly covered devices. (FP: Flat Panel, which includes 

LCD and LED displays; CRT: Cathode Ray Tube). 

 

E-waste flow forecasts in Figure 3.5 suggest that the mature products that are currently the focus of state 

e-waste policies are beginning to decline in the waste stream, a trend expected to continue in the next 

several years. This trend is largely attributable to the changing mix of display technologies, where heavy 

CRT TVs and monitors are no longer sold and slowly empty from consumers’ households, while being 
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replaced with lighter products such as flat panel displays and tablets. These results point to potential 

sustainability benefits of reducing the overall amount of e-waste requiring management, particularly 

devices which contain hazardous materials such as CRT (lead) and LCD displays (mercury). On the other 

hand, the shift introduces new uncertainties for the recycling industry, which has long been established 

around processing large products with high potential for disassembly and component and material 

recovery.  Further, the decline of mature products will be offset to a degree by other products that are now 

emerging or growing, but that are not covered under such policies. For example, smartphones, which are a 

small contribution to e-waste by mass, contain a high concentration of valuable materials including gold, 

cobalt, and lithium (Cucchiella et al., 2015).  In addition, TVs, which show significant dynamism within 

this policy case, contain indium, a scarce material for which very limited recycling is currently possible 

(Buchert et al., 2012).  

 

As policy is a key enabler of the circular economy, e-waste regulations are expected to increase the ability 

to repair and reuse products or recover materials that can be returned to functional use in new devices. 

However, the forecasted decreasing trends in cumulative waste flow suggest that states will need to 

fundamentally shift from product collection and recovery targets based on mass alone.  Already, states 

have informally reported declining collection rates (Rubinstein 2018), and at least one state, Illinois, is 

moving away from mass targets to convenience-based systems, which emphasize consumer access to e-

waste collection points. It is challenging to benchmark these forecasts to other studies, as most literature 

applies a retrospective rather than prospective approach. Comparison of e-waste flow estimates with past 

studies (Powell and Chertow, 2018; U. S. Environmental Protection Agency, 2016b) show comparable 

trends in the lead-up to peak waste flows (estimated in Figure 3.5 to be 2016-2017). However, it should 

be noted that results presented here are for the U.S. residential/consumer sector only, and so the 

magnitude of flows will naturally be smaller than the above-mentioned studies, which include residential 

and commercial sectors together. A direct comparison of results to a U.S. Environmental Protection 

Agency (2011) study, which applied the same sales-lifespan method for e-waste estimations from 1990 to 

2010, is provided in Appendix B Figure 4, confirming consistency in trends for the overlapping period. 

4.3. Forecasting implications of emerging technologies  

 

The predictive MFA model was applied to four case study products that represent a wide array of 

emerging technologies for which data are scarce and near-term forecasting is necessary to identify 

potential opportunities and risks for CE planning. For each of the emerging technologies (fitness trackers, 

smart thermostats, drones, and OLED TVs) both mainstream and limited adoption trajectories were 
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projected based on the peak sales ranges for the product categories to which these technologies most 

closely align. The forecasts, shown in Figure 3.6, were generated using only the year of market entry (as 

predictor of logistic parameters associated with growth rate and time to peak sales) and the product 

category (as predictor of the maximum sales). 

 

 

 
Figure 3.6. Forecast sales of emerging products: fitness trackers, smart thermostats, drones and OLED 

TVs. Comparison of possible mainstream and limited adoption scenarios (which include a range of peak 

sales) with the actual available sales data suggests which of the two adoption trajectories each product 

may follow. 

 

Forecast results, compared against the limited real sales data that are available (See Appendix B Table 

13), show that among the products studied, drones and fitness trackers have reached or may soon 

approach their peak. As per the adoption forecasts, fitness trackers have entered mainstream adoption in a 

manner consistent with other small mobile products and have reached the maximum carrying capacity or 

peak sales to households. On the other hand, drones appear to be unlikely to enter mainstream adoption as 

a household product. Annual sales of fitness trackers, which are currently around 22 million units, are 
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unlikely to go above 35 million units, while maximum annual sales of drones are unlikely to go above 10 

million units, if these products follow the trends of past products in their respective categories. The smart 

thermostat results suggest that they are still in the growth phase, but as a home product, the annual sales 

will likely peak at less than 25 million units, even if they enter mainstream adoption. Even though it is too 

early to confirm which adoption scenario OLED TVs will follow, the mainstream ranges are more likely, 

given past TV turnover and a recent peak of LED TV sales, which is usually a harbinger that a substitute 

product is beginning to invade the market niche.  

 

These case study findings, which can easily be extended to any electronic product with limited amount of 

information, have significant implications for circular resource management. Many of these products 

contain complex components like lithium-ion batteries, which contain critical materials that are in high 

demand in other sectors, including electric vehicle manufacturing. In the case of emerging display 

technology OLEDs, which contains display units that employ thin, organic carbon-based films for 

lighting (Bagher, 2017), the implications on resource consumption and end-of-life management are 

unknown. This uncertainty underscores the need for forecasts that predict likely material implications. As 

discussed before, whether a technology will achieve mainstream adoption depends on similar competing 

technologies in the market. In the case of TVs, another emerging technology is also beginning to grow: 

QLEDs (Quantum Dot LEDs) are a variation of display technology recently introduced that may 

ultimately compete for market share with OLEDs. QLED displays are typically constructed using indium 

or cadmium-based nano-structured materials, for which additional environmental risks are unknown 

(Bagher, 2017).   

4.4. Forecasting interactions between mature and emerging products  

 

TV technology evolution is a unique case because it allows for a direct assessment of how product 

interactions, technological shifts, and substitution cycles ultimately influence e-waste flows and resource 

demand. From a circular economy standpoint, this information is critical to understand the capacity for 

closed-loop systems, in which materials are recovered from one type of product and returned to another of 

the same type. Such an approach may be most useful in products containing unique materials, such as the 

cobalt contained in mobile products’ batteries, or the rare earth phosphors used in LED-lit flat panel TVs. 

As technology shifts, gaps open between increasing secondary material supply from products that have 

peaked and the demand for secondary materials by the product starting to emerge (Kasulaitis et al. 2018). 

This dynamic is illustrated in Figure 3.7 by coupling the waste flow forecasts of OLED TV with those of 

mature TV technologies presented in section 4.1.  
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TV technology forecasts are important to CE planning because these products are characterized by high 

mass, contain materials of interest, and form a significant part of the e-waste targeted for collection by 

state e-waste policies. The technology shifts in this product category have historically created challenges 

in their waste management, due to changing material profiles. Currently, CRT displays continue to persist 

in the waste stream, but no closed-loop solutions exist. As these products are no longer on the market, 

there is no demand in the electronics sector for the materials or components they contain. LCD TVs, 

which contain mercury in the cold-cathode fluorescent lamps used for backlights, have also peaked in the 

waste stream and are beginning to decline. The forecasts suggest that these TV technologies (LCD and 

CRT) will become insignificant in the waste stream in five-to-ten years, whereas LED TVs will make up 

a significant fraction of the waste flow. These forecasts highlight the need to prepare for end-of-life 

management of LED and OLED TVs to recover critical materials like indium (contained in flat panel 

displays) back into the manufacturing pipeline. It is to be noted that we have assumed maximum adoption 

scenario of OLED TVs in this analysis and have not considered influence of a competing technology like 

QLED in the market, which may bring its own challenges in end-of-life management of TVs as their 

displays are based on cadmium and indium nanostructured materials (Bagher, 2017; Chopra and Theis, 

2017; Scalbi et al., 2017). These results emphasize the utility of the forecasting MFA model in 

understanding the implications of interactions between mature and emerging products in the material 

profile of the waste stream and associated circular economy strategies. 

  

 
Figure 3.7. The evolving U.S. TV waste flow, reflecting multiple generations of new technology 

substitution, and its implication on reducing the e-waste stream due to light weighting over time. 
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5. Implications to CE planning 

 

Applying the forecasting MFA to mature and emerging electronic products provides insights on key 

factors for effective CE planning, given the evolving nature of the e-waste stream and rapid pace of 

technological innovations. For example, the e-waste stream undergoes dematerialization when new 

technologies have significantly lower mass than products they substitute, especially in the case of TVs. 

The mass contribution of TVs in e-waste is forecasted to diminish 50% in the next five years, mainly due 

to dematerialization trends (Babbitt et al. 2017). Another key trend is the decline in TV technologies that 

contain hazardous materials like lead and mercury, where lead from CRTs is forecasted to reduce to less 

than 5 thousand metric tons by 2025, from the current level of 70 thousand metric tons in the e-waste 

stream.  On the other hand, increased demand is expected for potentially scarce materials like indium due 

to continued growth of flat panel display technologies. However, combining the TV forecasts with 

literature estimates of indium content per TV (Buchert et al., 2012) suggest that indium in the waste 

stream from LCD and LED TVs may actually exceed its demand in these technologies by more than 30% 

within 5 years, due to increased adoption of lighter TV technologies. These trends suggest great potential 

for circular strategies that would close the loop on scarce materials in flat panel TVs.  

 

Similar potential for circularity is observed in critical metals like cobalt and lithium, found in lithium-ion 

batteries that are key components of mobile electronics. For example, adoption and waste flow estimates 

of laptops show that cobalt contained in laptop batteries in the U.S. e-waste stream outweighs its demand 

in batteries for new laptop computers, a product where sales are slowing while batteries are also 

becoming lighter and more material efficient. In fact, the projected cobalt waste flow from laptops (> 

1,000 metric tons in year 2021) is likely to soon exceed the combined cobalt demand for batteries in 

laptops and drones (< 900 metric tons in 2021). (See Appendix B Tables 8-12 for the data and 

calculations used in these informal estimates). While these trends in material flows where material 

content in e-waste exceeds its demand, indicate theoretical potential to close the material loop in 

electronics, it is limited at present by lack of effective recycling technologies and infrastructure. This 

highlights the need to enable other circular economy strategies that extend product and component 

lifespan, such as product reuse, repair, refurbishment and remanufacturing. The methods developed in the 

present study can support these CE strategies through estimations of product waste-flows which represent 

the products available after primary use, for life span extension or material recovery measures. However, 

consumer education and implementation of effective e-waste policies and collection systems are key in 

ensuring circular end-of-life pathways to recover used products from consumers, for enabling all aspects 

of CE including reuse, repair, remanufacturing and recycling (Gaustad et al., 2018).  
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The study findings also imply the need to shift the focus of end-of-life management of electronics away 

from mass-based diversion mechanisms and towards a broader perspective on sustainable materials 

management. The projected trends in e-waste generation emphasize the need to move away from the use 

of policy where all materials are treated equally, to explore alternate methods for setting collection 

targets, such as those based on environmental or economic savings associated with the circular economy. 

However, planning for such policy targets requires product level sustainability analysis, the key barrier 

being the lack of comprehensive knowledge on environmental and economics tradeoffs associated with 

material use and material recovery, topics that will be addressed in the next chapter.  

6. Conclusions 

 

For material management strategies to keep pace with the rapid pace of innovation in the electronics 

sector, proactive tools are needed to generate near term forecasts of resource demand and e-waste flows. 

This study contributes a novel method for informing circular economy planning in the electronics sector. 

The key contribution of this model is the use of historic sales data for over 25 products to create future-

oriented sales curves that can then be used to forecast demand and waste flow of products irrespective of 

their historic data availability. While material flow forecasts for emerging products based on generalized 

trends can be burdened with uncertainty, this study takes the view that we cannot wait until data are 

perfected, or otherwise, proactive opportunities to implement material management strategies will be lost.  

 

This model is flexible, and with appropriate validation, can be used to study any new product category, 

since only the year of market entry and the functionality category of the product is required to estimate 

peak sales range and forecast the adoption curve. For example, to forecast adoption scenarios of an 

upcoming consumer technology such as a smart mirror or smart shades, the peak sales range of ‘Home 

Media’ functional category and the potential market introduction year could be applied to the MFA 

model. However, the high rate of innovation and demand for multifunctionality in electronics may 

eventually create a need to develop newer functional groups, to accommodate the consumer adoption 

patterns of future technologies that may not fall in the existing 5 categories. The MFA model also 

provides a scaffold on which other material management metrics can be built, coupling product flows 

with material profile data and sustainability impacts associated with specific materials. However, there is 

lack of comprehensive data on sustainability implications of material use in electronics, a key knowledge 

barrier in prioritizing material management strategies in the sector. Chapter 4 addresses this exact data 

gap. 
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CHAPTER 4: Modeling and minimizing sustainability impacts of 

materials used in consumer electronics 
 

1. Introduction  

 

Consumer electronics are made up of a broad spectrum of materials that includes base metals like copper 

and steel, precious metals like gold and PGMs (platinum group metals), as well as many critical metals  

(Cucchiella et al., 2015). In addition to these valuable metals, complex components in electronics are 

known to contain toxic materials like lead, mercury and cadmium (Chen et al., 2011; Kiddee et al., 2013). 

Historically, sustainability concerns have focused on these materials’ potential toxicity, due to the 

presence of lead in Cathode Ray Tube (CRT) displays and potential value at end-of-life, primarily 

associated with gold in printed circuit boards (Perkins et al., 2014) Cucchiella et al., 2015). Therefore, 

significant effort has been aimed at reduced use of toxic substances as well as recovery of materials of 

high economic value. For example, e-waste policies in most U.S. states set mass-based targets that are 

related to the market share of product manufacturers within a given state (Electronics TakeBack 

Coalition, 2011). Such a system ends up targeting high mass products like TVs, monitors, and desktop 

computers, which are where most hazardous and valuable materials are concentrated, and which help 

meet the collection targets. Mass-based e-waste management systems serve their purpose when the goal is 

waste diversion and economic material recovery. However, new material concerns are emerging in the 

electronics sector due to rapid rate of technological innovations and consumer adoption, which continue 

to add new products with unknown material implications to the waste stream.  

Material flow analyses in Chapter 2 and 3 showed that the traditional electronic products targeted by e-

waste policies in the U.S. are declining in the waste stream, and there is increased prevalence of newer 

technologies not yet covered by regulation. Newer electronics are characterized by compact size, 

multifunctionality, and complex and difficult-to-recycle product designs, which introduce new 

uncertainties for the recycling industry which has long been established around processing large products 

with high potential for disassembly and material recovery. The multifunctional capabilities of these 

modern-day electronics are enabled through a broad spectrum of materials (Christian et al., 2014), which 

include rare earth elements (REEs) and many critical metals. The touch enabled displays of modern 

mobile electronics rely on potentially scarce materials like indium, while the lithium-ion batteries that 

power these products contain critical metals like cobalt and lithium (Christian et al., 2014; Pengwei et al., 

2018). Materials like cobalt and REEs, are not only key enablers of modern electronics, but are also in 
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high demand for a wide array of applications in defense and clean energy technologies such as electric 

vehicles and wind turbines (Dutta et al., 2016). Global demand for these materials is expected to continue 

strong growth, as the emerging clean technology market enters mainstream adoption.  

Due to their economic importance and supply risk, most raw materials in electronics are increasingly 

added to the growing list of ‘strategic minerals’ or ‘critical materials’ by global economies. For example, 

cobalt, a key ingredient in lithium ion batteries used for energy storage in electronics and other 

applications, is included in the U.S. Department Of Energy critical mineral list (USGS, 2018) and the 

European Union’ Critical Raw Material list, and was recently categorized as a strategic mineral by the 

DRC (Democratic Republic of the Congo), the leading cobalt producing country. Similarly, REEs such as 

neodymium, dysprosium and europium which are key constituents of permanent magnets and electronic 

displays (Buchert et al., 2012) have been included in the U.S. DOE critical mineral list due to their 

importance in clean energy technologies and increasing supply risk due to production concentration in 

China (U.S. Department of Energy, 2011). Compounding the metal supply risks are the supply chain 

vulnerabilities due to geopolitical competition (Gemechu et al., 2017) and social-political situations in the 

countries that are leading producers of critical materials (Young, 2018). In addition to supply risk due to 

increased demand and geographically concentrated production, the environmental implications of 

material use in electronics has also emerged to be a key concern, as mining sector employs energy intense 

processes and are a significant contributor to global warming (Tost et al., 2018).  

These emerging material concerns in electronics highlight the need for holistic sustainable material 

management (SMM) in the sector, rather than narrow focus on a few materials for end-of-life recovery. 

SMM approach seeks most productive use of resources to reduce environmental impacts, conserve 

resources, and reduce costs, for overall long-term system sustainability (U.S. EPA, 2009). Holistic SMM 

strategies would divert toxic waste from landfills, bring economic benefits through recycling, and 

minimize environmental impacts, while ensuring domestic supply security of materials that have been 

recognized to be critical to national security and economic growth. SMM strategies that have been 

explored in the literature include material substitution (Graedel et al., 2015b), dematerialization (Petrides 

et al., 2018) and recycling (Cucchiella et al., 2015; Friege, 2012; Zeng et al., 2018a). However, it is 

important to make informed choices in prioritizing these sustainability strategies and the materials to 

target in electronics, as they involve tradeoffs in economic and environmental benefits. For example, in 

product design choosing a material substitute for environmental benefits without considering its scarcity 

aspects may minimize environmental impacts at the expense of supply security. Therefore, it is necessary 

to quantify every potential material sustainability risk and opportunity using measurable metrics, to 
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identify hotspots in the system, from material sourcing to end-of-life management so that potential 

solutions can be explored.  

A wide body literature exists on material criticality (Erdmann and Graedel, 2011; Jin et al., 2016), which 

includes a study by Graedel et al., (2015), which estimated metal criticality based on supply risk, 

vulnerability to supply restriction and environmental implications (Graedel et al., 2012), and an Oko-

Institute report (Buchert et al., 2009) which performed material criticality assessments based on supply 

risks, recycling restrictions, and demand growth. Past research has explored the criticality of specific 

materials such as rare earth elements (Nassar et al., 2015a), indium (Ylä-mella and Pongrácz, 2016), 

copper (Nassar et al., 2012), and iron (Nuss et al., 2014), and has looked into the implications of metal 

use in specific applications such as clean energy technologies (Elshkaki and Graedel, 2013; Grandell et 

al., 2016; Månberger and Stenqvist, 2018; Nassar et al., 2016), photovoltaics (Goe and Gaustad, 2014), 

and lithium ion batteries (Olivetti et al., 2017). 

While the scientific literature is rich in data on diverse aspects of material sustainability such as 

geological scarcity (Henckens et al., 2016; Sverdrup et al., 2017), price (Leader et al., 2019), 

environmental impacts of production (Nuss and Eckelman, 2014; Weng et al., 2016; Zaimes et al., 2015), 

potential for material substitution (Graedel et al., 2015b), and recycling rates (Graedel et al., 2011), these 

data are spread across many different studies and have not yet been synthesized specifically for the 

electronic product sector. To prioritize material specific sustainability efforts for consumer electronics, 

there is the need for comprehensive data on material sustainability that can answer key questions such as: 

Which materials are used in electronics and in what quantities? How and where are these materials 

obtained? Which materials pose the highest sustainability risks? And, what is the potential for material 

recovery through recycling?  

To answer these questions, this study for the first time compiles, analyzes, and interprets the social, 

economic, and environmental implications of materials in consumer electronics. This research involved a 

multi-step process, from characterizing common materials used in electronic product manufacturing and 

identifying key metrics to quantify sustainability risks of materials use in products, to collecting data to 

parameterize these and synthesizing the findings to identify key areas of concern and explore potential 

solutions. In terms of investigating alternate solutions, one objective was to understand the degree to 

which recycling, which is a central part of most e-waste policy, can minimize sustainability concerns 

relative to other strategies that have different levels of technical feasibility. The key contribution of this 

research is the compilation and contextualization of material specific sustainability information for 

electronics and the evaluation of SMM strategies. 
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2. Methods 

 

The goal of the study was to develop and apply a comprehensive set of sustainability metrics for materials 

used in consumer electronics, to enable the identification of key materials of concern and evaluation of 

potential solutions. The methodology adopted to achieve the research goal involved multiple steps. 

1) Characterizing common materials in electronics to include in study scope. 

2) Identifying key metrics that can capture economic, environmental and social sustainability risks 

across the life cycle of materials used in electronics and collecting data to parameterize these 

metrics. 

3) Analyzing and synthesizing the material metrics data to identify hotspots (key materials of 

concern) in each sustainability dimension. 

4) Evaluating the potential for recycling and other sustainability solutions for their potential to 

minimize these impacts. 

 

The following subsections describe each of the steps in the methodology in detail. 

 

2.1. Characterizing common materials in electronics 

 

Common materials contained in consumer electronics was characterized through review of published 

studies on materials in electronics. Primarily, a literature search on recycling potential of electronics, 

especially complex components in electronics such as printed circuit boards, display units and batteries, 

was used to narrow down the list of key materials to be included in the study scope (Buchert et al., 2012; 

Cucchiella et al., 2015; Işıldar et al., 2017b; Wang and Gaustad, 2012). A similar approach of literature 

search on reuse potential of e-plastics was used to identify different types of polymers found in 

electronics (Mills and Tatara, 2016). Consumer electronics materials included in this study scope are 

presented in Table 4.1. Materials are grouped into base metals, precious metals, critical metals, rare 

earths, hazardous materials and different types of polymers.  
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Base metals Precious metals Critical metals REEs Polymers 

Al Au Sb La ABS 

Cu Ag Ba Ce HIPS 

Mg Pd Co Pr PA 

Fe Pt Ga Nd PS 

Ni Rh Gr Sm PC 

Zn Ru In Eu PVC 

Ti Rh Li Gd PMMA 

Hazardous metals 
 

Mn Y   

Pb 
 

Ta Tb   

Hg 
 

Te Dy   

Cr 
 

Sn Ho   

Cd 
 

V            Tm   

  
  

Yb   

  
  

Lu   

Table 4.1. Material list included in study scope. Precious metals ruthenium (Ru), iridium (Ir) and Osmium 

(Os) belong to platinum group metals, and rare earth elements (REEs)- scandium (Sc), erbium (Er) and 

promethium (Pm) are omitted from the study due to lack of data availability.  

 

2.2. Identifying key metrics to measure sustainability risks of materials in electronics 

 

To develop material sustainability metrics, economic, environmental and social implications of material 

use were considered. Table 4.2 summarizes the sustainability aspects considered in the study and the 

metrics used to quantify each one of them. A wide array of data sources such as journal articles, reports, 

data from government websites, and results from the application of modeling tools such as Simapro LCA 

software and MFA model developed in Chapter 2 were used to parametrize the sustainability metrics. 

Additional detail on the selection and definition of each metric, units of measurement, and data sources 

are given in Appendix C Table 1. 
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Sustainability aspects Metrics to measure sustainability  

Economic 

Global reserves 
 Ore concentration 

Annual mine production 
Static index of depletion 

Production % as byproduct 
Geographical concentration of production (HHI) 

Price  
Price volatility 

Import Reliance 
Electronics sector consumption 

Environmental 

Global Warming Potential 
Cumulative Energy Demand 
Mineral Resource Demand 

Toxicity 

Social Socio-Political Index of Producer Countries  

Table 4.2. Metrics used to measure economic, environmental and social sustainability risks associated 

with material use in electronics. 

The economic implications of material use in electronics are quantified considering both the direct 

economic costs of material choice and indirect issues that may have an influence on material cost. Direct 

economic metrics include material price, fluctuations in price (measured as 5-year coefficient of 

variation), annual production, and material consumption in electronic sector. Indirect economic metrics 

capture factors that affect the economics of materials more broadly, such as material scarcity, 

geographical concentration of material production, and import reliance in the U.S. Material scarcity 

metrics are key in economic assessment of materials, since price fluctuations are dependent on supply 

risks and disruptions. Material scarcity is quantified using five different metrics: global reserves, ore 

concentration, annual production, static index of depletion, and the extent to which a material is only 

produced as a by-product. Global reserve is the working inventory of supply of economically extractable 

mineral commodity (U. S. Geological Survey). The static index of depletion of a material is calculated as 

the ratio of its global reserves to annual production. The index of depletion is subject to change, as new 

material reserves are discovered over time and annual production or demand of materials also may 

increase or decrease. However, the metric gives an indication about near-term supply risk due to its 

geological scarcity.  
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Another scarcity metric that has economic implications is the byproduct production percentage. When 

materials are recovered only as byproducts, it is challenging for production to keep up with demand since 

the byproduct material production is driven by the demand and production of its parent or host metal 

(Nassar et al., 2015b). This may lead to supply scarcity and price fluctuations of byproduct materials. 

Geographical concentration of production is another factor that presents economic risks as material 

production concentrated in a few countries increases the risk of supply disruptions and price hikes. In this 

study geographical concentration of production is quantified using the ‘Herfindahl-Hirschman Index 

(HHI)’, a statistical measure of market concentration (Brown, 2018). Import reliance in the U.S., 

expressed as the percentage of total consumption., is used to evaluate material economics from the U.S. 

perspective, as high reliance on imports of a material implies potential for supply risk and price 

fluctuations in the country. The consumption by the electronics sector is measured as the percentage of 

total material produced annually that is used in electronics sector. It should be noted that, due to the level 

of aggregation in the source data, this estimate includes products like appliance and commercial 

electronics, and not consumer electronics alone. 

The environmental implications of material production are quantified through five metrics that reflect a 

cradle-to-gate life cycle perspective: global warming potential (GWP), mineral resource demand (MRD), 

cumulative energy demand (CED) to produce per kg of each material, and potential eco-toxicity (supply 

chain and direct freshwater ecotoxicity). GWP quantifies the supply chain greenhouse gas impact, while 

CED measures the net energy and fuel resources associated with extracting and producing a material. 

MRD analyzes the life cycle input of mineral resources associated with extracting and producing a 

material. Supply chain ecotoxicity quantifies the potential toxicity of a wide array of chemicals emitted 

into freshwater systems in a materials’ production chain, while direct toxicity represents the potential 

toxic effect of a metal if it were to be directly released to a freshwater ecosystem. Data were obtained 

from the eco-invent database in Simapro 8 LCA software and from literature sources.  

Social implications of material production are evaluated using quantitative and qualitative measurements. 

Quantitative measurement of social aspects of material sustainability is performed by extending the 

previously presented assessment of geographical production concentration (HHI) to factor in the potential 

for political instability in the producing countries. Social sustainability is estimated by weighting the HHI 

of materials using the World Governance Indicator of Socio-Political Stability and Absence of Violence 

(WGI-PSAV) index, which is a method used in literature to measure the risk to supply disruption of 

materials due to the socio-political instability in producer countries (Goe and Gaustad, 2014).WGI PSAV 

index score which rates political stability of countries on a scale from poor (-2.5) to good (+2.5) is 

collected from World Bank website. Another consideration to identify social hotspots is whether materials 
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in electronics belong or are similar to a class of materials called ‘conflict minerals’ due to social conflicts 

associated with their production. 

2.3. Identifying material hotspots (key materials of sustainability concern) in electronics 

 

A combination of quantitative and qualitative assessments was used to identify key areas of concern in 

each aspect of sustainability. The first step was to identify materials that presented highest risk in each 

metric by creating heat maps color coded through conditional formatting as: darkest blue color for top 90th 

percentile and lightest blue color for the bottom 10th percentile, in terms of sustainability risks. The next 

step was to narrow down key materials of concern in each aspect of sustainability- economic, 

environmental and social. Material hotspots were identified by qualitative evaluation by considering three 

factors: the risk level of materials in each metric, its consumption in electronics sector and its relevance to 

U.S. economy as understood from import reliance.  

2.4. Evaluating the potential for sustainability solutions  

 

Once sustainability data were compiled, alternate sustainability strategies were assessed for their ability to 

minimize the identified risks. Recycling was a key opportunity considered here, given its central place in 

e-waste policy in the U.S. and globally. Quantitatively evaluating recycling potential is challenging, as 

there is limited and inconsistent data about material-specific recycling rates. The recycling rate of a 

material depends on its properties and its content in waste, in addition to many systems-level factors such 

as waste management policy, waste recovery infrastructure, consumer collection rates, and performance 

of available recycling technologies. Publicly available ‘recycling rate’ data do not often consider all these 

factors and therefore may not always reflect the actual recycling rate of a material that enters its end-of-

life. Data on recycling rate of materials from used electronics is even more limited. 

Here, the range of metrics used to evaluate recycling potential are recycling efficiency in the U.S., 

secondary material use in the U.S., the concentration of dilution of a given material in the e-waste stream, 

and the potential for material circularity in electronics. Recycling efficiency (referred to as ‘end-of-life 

recycling rate’ or  EOL-RR in Graedel et al., (2011)) is defined here as the amount of old scrap recovered 

and reused, relative to the amount available to be recovered and reused (after collection), or the 

percentage of total waste generated (not specific to electronics sector) that is recycled in the U.S.  

Recycling efficiency represents the existing technology and infrastructure in the US to recycle a material, 

though not specific to electronics sector. Secondary material use (referred to as recycled content or RC in 
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Graedel et al., (2011)) is the percentage of recycled material that makes up the total material consumed in 

the U.S. annually. This metric represents the market potential for recycled material in the U.S. (not 

electronic specific) and include both post-consumer scrap and prompt scrap that is recovered during 

material extraction and processing steps. USGS data as reported by Graedel et al., (2011) is used for 

recycling efficiency and secondary material use for most materials except REEs, gallium, indium, lithium, 

mercury, tellurium, rhodium, ruthenium , iridium and osmium. For these materials, consensus recycling 

statistics from expert knowledge as reported by Gradeal et al (2011) is used for the study.  

Material dilution is calculated as the ratio of the mass of a material in the e-waste stream relative to the 

total mass of electronic waste flow in the same year. Material dilution is estimated from MFA results for 

year 2018 as described in Chapter 2 and represents the potential challenge extracting a material from the 

waste stream due to its concentration relative all other materials and products in the waste stream. 

Theoretical circularity potential is also calculated using MFA results from Chapter 2 for year 2018, as the 

ratio of end-of-life waste material relative to material demand in the same year for new electronics. 

Circularity potential reflects the theoretical ability to achieve ‘closed-loop’ circularity in electronics 

through recycling.  Appendix C Table 2 reports definitions of metrics used to define recycling potential 

and the data sources.  

However, recycling is not the only sustainable solution available, and may not be the optimal choice for 

some materials. Functional substitution of scarce materials with other suitable materials has been 

discussed in literature, as a strategy to deal with material availability constraints in a high demand 

scenario (Graedel et al., 2015b). Material substitution and dematerialization can be a potential solution for 

environmental and social risks as well. Therefore, substitutability of key materials of concern in 

electronics is investigated as a potential sustainability solution. Supply chain diversification is another 

strategy that can minimize potential supply disruptions due to production concentration. However, the 

potential to enable alternate supply chain for a given material depends on its geological availability in 

other geographic locations. Therefore, metrics such as global reserves and geographical production 

concentration are used to analyze the potential for alternate supply chains for key material hotspots.  

The results of the study are organized as six subsections. Sections 3.1, 3.2 and 3.3 present the key 

findings of economic, environmental and social assessment of electronic material sustainability, 

especially metals. Section 3.4 analyzes the potential for recycling as a sustainability solution for material 

hotspots while section 3.5 discusses alternate solutions such as material substitution and alternate supply 

chains for key materials of concern among metals. It is to be noted that the sustainability analysis of 

plastics used in electronics is conducted using a limited set of metrics due to data unavailability and 

therefore study findings for different types of plastics used in electronics is presented in a separate 
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section. Section 3.6 presents the sustainability analysis of plastic use in electronics as a case study. For 

plastics, price and annual production are included as economic metrics while and GWP, CED and MRD 

are included as environmental metrics. Data for environmental metrics for plastics is extracted from Eco 

invent database in Simapro LCA software while data for other metrics are adopted from Ashby (2013). 

3. Results 

 

The sustainability profiles of consumer electronic materials assessed through economic, environmental 

and social aspects, the key hotspots identified, and potential solutions are discussed in detail in 

subsections below. Results for metric measurement for each sustainability aspect are presented as heat 

maps where the darkest blue represents the greatest risk, and the lightest blue represents lowest risk. Gray 

indicates that no reliable data were available or included.  This representation is used throughout the 

results sections (absolute results in Appendix C Tables 3 to 6) Metric data for individual rare earths is 

provided when data is available, otherwise represented in general as REEs. Platinum group metals such as 

Ir, Ru and Os are not included in most tables due to data unavailability. 

3.1. Economic aspects of material sustainability 

 

The economic aspects of material sustainability measured using 10 different metrics is presented as two 

heat maps in Table 4.3a and Table 4.3b. Table 4.3a presents metrics measuring scarcity or physical 

availability of materials while Table 4.3b represents metrics that directly measures material economics 

such as price and price volatility, in addition to material consumption in electronics sector as well as the 

reliance of U.S. economy on imports of each material.  
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Table 4.3a. Measuring economic aspects of sustainability measuring using metrics: global reserves 

(metric tons), ore concentration (%), annual mine production (metric tons), static index of depletion 

(years), geographical concentration of production (HHI) and material production percentage as byproduct 

(%). Annual mine production is for year 2017.  Data sources: USGS Mineral Commodity Summaries; 

Henckens et al (2016), Sverdrup et al (2017), Goe & Gaustad (2014), Nassar et al., (2015b). 
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Table 4.3b. Measuring economic aspects of sustainability using metrics: price, price volatility (5 year 

coefficient of variation), import reliance in U.S. in 2017 (% of material consumption in U.S.) and material 

consumption in electronics sector (% of total material consumed in a year; electronics sector includes 
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both electrical and electronics applications). Data sources: USGS Mineral Commodity Summaries, 

Graedel et al (2015b). 

The key materials of concern identified through the synthesis of economic sustainability profiles of 

materials presented in Table 4.3a and 4.3b are REEs (rare earth elements), indium, and gallium. Indium 

and gallium emerged to be a concern due to geological scarcity and price, while REEs emerged to be an 

issue due to price volatility and geographical concentration of production. The geographic concentration 

metric HHI calculated using production contribution of different countries is always positive, with higher 

values indicating a more concentrated production. Table 4.3a highlights REEs to pose highest risk in 

production concentration, indicating high positive HHI. Another factor that compounds the economic 

sustainability risks of REE and gallium production is that they are produced only as byproducts during the 

processing of the major metals (REEs- Iron Ore, Gallium- Aluminum), making it difficult to increase 

their supply in response to rapid changes in demand (Nassar et al., 2015b). See Appendix C Table 4 for 

details on material production as by-product. A material with high positive HHI value and high % 

production as byproduct, represents high risk to supply and therefore can be considered as a material of 

high concern in economic sustainability, which is the case for REEs. Even though many other materials 

such as gold, platinum group metals (PGMs), cobalt, and antimony showed potential risks in terms of 

price, scarcity and production concentration, REEs, indium and gallium are highlighted as economic 

hotspots since in addition to their high risks in other metrics, they represent high rate of consumption in 

electronics sector and high import reliance in U.S., both factors indicating the importance of these 

materials in electronics industry and in the U.S. economy.  

Nearly 85% of indium produced globally is used in the ITO (indium tin oxide) layer of flat panel displays, 

primarily for electrically conductive purposes (USGS, 2018). The global production of REEs are also 

mainly driven by the electronics sector, especially REEs such as Nd (neodymium), Dy (dysprosium) and 

Eu (europium). Nearly two-thirds of total Nd and Dy produced is used in permanent magnets, whereas 

nearly 100% consumption of Eu which has exhibited high price volatility among materials in electronics, 

can be attributed to its use in lamp phosphors (See Appendix C Table 8 for major use sectors of 

materials). Gallium production is also significantly connected to electronics as 67% of gallium produced 

is used in integrated chips in electronics.  

The geographical concentration of material production is an important aspect that presents economic risks 

to sustainability for all the material hotspots. Figure 4.1 which presents production distribution of 

materials in electronics, highlights the dominance of China in material sourcing especially in the case of 

REEs, a group of metals identified to be an economic risk. The geographical distribution of mine 

production shows that more than 50% of most of the materials is produced in less than two countries, with 
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China being the primary producer in most cases. This high production concentration introduces supply 

chain risk due to excessive control that the producing countries exert on material production. In the event 

of political instability, policy barriers, or natural disaster, the supply chain is more vulnerable to 

disruptions that may present sustainability risks by increasing material price or decreasing availability. 

The HHI (geographic concentration of production) column in economic metric heat map (Table 4.3a) 

quantifies the production concentration of materials and helps identify materials with high supply risk due 

to lack of supply diversity. REEs with a high HH Index have emerged to be key materials of concern 

while PGM (platinum group metals), critical metals such as antimony, vanadium, tellurium, magnesium 

and battery materials such as cobalt, lithium and graphite also present economic risks to sustainability 

from supply chain vulnerabilities due to their production concentration. 

 

Figure 4.1. Geographical distributions of mine production of common materials in electronics, showing 

top four producing countries in 2017. Data Source: USGS, Mineral Commodity Summaries, 2018. 
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Quantifying economic sustainability aspects for the broad range of materials used in electronics, shows 

that different materials present risks in different factors of material economics. However, holistic 

evaluation of economic sustainability profiles of materials highlights a few hotspots that need 

consideration in evaluation of sustainability strategies in electronics. Table below (Table 4.4) summarizes 

the key findings of economic sustainability assessment of materials. 

Economic Hotspots High Risk Factors 

REEs 

Production concentration, 
 High price volatility, 
Byproduct (100%- Fe) 

High consumption in electronic sector: 
(Dy-100%; Nd-76%- magnets), (Eu-100%-phosphors), (Sm-73%-battery alloy) 

Indium 
Geological Scarcity 

Price 
High consumption in electronic sector (84%- Flat panel displays) 

Gallium 

Geological Scarcity 
 Price 

 Byproduct (100%-Al, Zn) 
High Consumption in electronic sector (67%-IC chips) 

Table 4.4. Economic hotspots in electronics. 

3.2. Environmental aspects of material sustainability 

 

The environmental aspects of material sustainability measured using 4 different metrics: global warming 

potential (GWP), cumulative energy demand (CED), mineral resource demand (MRD) and freshwater 

ecotoxicity is presented as a heat map in Table 4.5. The heat map highlights materials with potentially 

high resource demand and environmental impact due to extraction and refining stages. The key materials 

of concern identified to be environmental hotspots are precious metals, REEs and critical metals indium, 

gallium, lithium and tantalum.  
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Table 4.5. Measuring environmental aspects of sustainability using metrics- GWP, CED, MRD and 

freshwater ecotoxicity. Data Source: Simapro Eco invent database. 
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Precious metals such as gold, palladium, platinum and rhodium are clearly the materials with highest 

environmental impact when considering impacts per unit mass of material produced. REEs and the 

critical metals such as indium, gallium, lithium and tantalum also have significant impact on the 

environment, while most base metals, which are used in large quantities in electronic products have lower 

impact to the environment.  REEs and critical metals are identified to be environmental hotspots in 

electronics despite their impact being much lower than precious metals, since the production of these 

metals are largely driven by electronics sector. Precious metals are also considered as hotspots as their 

environmental impacts are almost 50 times more than other high impact materials in electronics (See 

Appendix C Table 6 for data on environmental metrics), indicating that even though there are used in 

small amounts in products they may have higher contribution to total environmental impact of most 

products. This also means that sustainability strategies in precious metal use in electronics have the 

potential to bring huge environmental benefits to the sector. 

For example, a single product may only contain trace amount of precious metals, but their individual 

impacts may be high enough to be significant at the product scale. See Appendix C Figure 1, where this 

effect is demonstrated by comparing where the relative contribution of materials to total mass as well as 

total carbon footprint of a typical laptop. Figure 1 in Appendix C shows that in an average laptop, even 

though the mass contribution of precious metals such as Au, Pt and Pd is insignificant when compared to 

base metals like aluminum and plastics, their contribution to total carbon footprint of the product is high. 

Lithium used in batteries also stands as a hotspot as its impact is high while mass contribution is 

insignificant. These results indicate need to explore sustainability strategies to minimize the 

environmental risks associated with these material challenges.  

The high global warming potential and cumulative energy demand of the material hotspots are mostly due 

to the high energy intensity of extraction processes used to recover these materials from the earth’s crust. 

The environmental impacts of energy use are directly related to the carbon intensity of the energy sources 

used for the processes in the major producer countries of materials. This implies that the average carbon 

intensity or global warming potential per unit of electricity produced in major material producer countries 

plays a key role in overall environmental impacts of material extraction. Figure 4.2 shows a country-level 

heat map reflecting the global warming potential per kWh of electricity generated in countries that 

produce consumer electronics material, and their share of specific material production. We can see that a 

major share of precious metals, REEs and critical metals of concern are produced in countries with a high 

carbon grid or an electricity grid powered majorly by non-renewable energy sources such as coal power 

plants (China, Australia, South Africa). These results show that carbon intensity of the electricity grid of a 
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country should be a major consideration in evaluating alternate supply chains for materials as part of 

holistic SMM strategies. 

 

Figure 4.2. Global warming potential per kWh of electricity generated in consumer electronics material 

producing countries and their production contribution of materials identified to pose environmental risks. 

Dark blue color indicates high carbon intensity of the grid while light blue color indicates cleaner grid 

(low carbon). 

 

Environmental Hotspots High Risk Factors 

Precious Metals Highest GWP, CED, MRD, Supply chain toxicity 

REEs GWP, CED 

Indium GWP, CED, MRD 

Gallium GWP, CED 

Lithium GWP, CED 

Tantalum GWP, CED, MRD 

Table 4.6. Environmental hotspots in electronics. 

Table 4.6 summarizes the key findings of environmental sustainability assessment of materials. 

Environmental evaluation highlighted precious metals to pose highest risk. However, when the material 

consumption in electronics sector is considered, a few more material hotspots that needs consideration in 
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evaluation of sustainability strategies in electronics emerge such as REEs, indium, gallium, lithium and 

tantalum. 

3.3. Social aspects of material sustainability 

 

The sustainability risks to material production due to socio-political factors is evaluated by considering 

quantitative as well as qualitative measurements. Quantitative measurement is performed by using WGI-

PSAV weighted HHI to identify the hotspots. Another consideration is whether materials significant in 

electronics sector belongs to a class of materials called ‘conflict minerals’ due to social conflicts 

associated with their production. 

The results from quantitative estimation of social aspects of material sustainability are presented in Figure 

4.3 which presents a comparison of metrics of geographical concentration with and without the weighting 

socio-political factors of the material producer countries, to identify social hotspots due to supply chain 

concentration. In this analysis, cobalt has emerged to be the material of highest concern. Cobalt has a high 

negative value for the social metric (representing significant political instability in regions where material 

production is concentrated), largely due to the dominant production of cobalt in the Democratic Republic 

of the Congo (DRC), which is a country known for its socio-political issues and has a high negative 

PSAV index. Even though Hg and Mg are highlighted to pose high social risks, REEs are identified to be 

the next social hotspot due their significance in electronics manufacturing. REEs such as neodymium and 

dysprosium are key ingredients of permanent magnets used in electronics, while other rare earths are used 

in in flat panel displays (Buchert et al., 2012). 

Regarding qualitative estimation of social hotspots, cobalt is increasingly considered to be similar to 

‘conflict minerals’ which are categorized so because they are sourced from a geographical location (DRC) 

characterized by socio-political conflicts. The materials classified as conflict minerals are tungsten, 

tantalum, tin and gold (3TG), as economic activities associated with their production and trade have 

contributed to armed conflicts and widespread violence in the eastern DRC (Young, 2018). It is to be 

noted that except tantalum, DRC is not a leading producer of other 3TG metals. However, illegal mineral 

trade worth millions of dollars happen in DRC which forms substantial source of finance for armed 

groups in the country. Conflict mineral regulations are established in countries across the world. In the 

U.S., regulations (Dodd-Frank financial reforms) require that companies that use conflict minerals in their 

products should report on the mineral use and disclose country of origin on the sources of metals. Among 

conflict minerals, tantalum, tin and gold are identified to be social hotspots in electronics, as tantalum and 

tin production is moderately driven by electronics sector (48% of tantalum and tin produced is used in 
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electronics in capacitors and solder respectively), and gold is a key raw material in electronics (gold is a 

constituent of PCBs) even though major use sector of gold is not electronics. See Appendix C Table 8 for 

major use sectors of metals. 

 

 

Figure 4.3. Comparison of the HHI with and without socio-political weighting factors. Materials with 

high positive HHI have greatest risks due to supply chain concentration in a few countries. Materials with 

highly negative WGI-PSAV HHI have greatest risks because the supply chain concentration aligns with 

politically unstable regions. 
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Figure 4.4 shows the socio-political instability of producer countries assessed by the World Governance 

Indicators on Political Stability and the Absence of Violence (PSAV) and their production contribution of 

materials that are chosen to be social hotspots. We can see that cobalt and tantalum, two key material 

enablers of consumer electronics, pose the highest sustainability risks in social aspects as they are sourced 

mainly from DRC and neighboring countries with high negative socio-political stability score (WGI-

PSAV). Results indicate need to explore alternate supply chains for these materials of highest social 

concern in electronics manufacturing. Table 4.7 summarizes the findings of social sustainability analysis 

of materials in consumer electronics. The key materials of concern identified in the analysis of social 

aspects of sustainability are cobalt, tantalum, gold and tin. 

 

 

Figure 4.4. Socio-political instability of producer countries assessed by the World Governance Indicators 

on Political Stability and the Absence of Violence (WGI-PSAV) and their production contribution of 

materials identified to pose sustainability risks from social aspects. Dark color indicates high risk (low 

socio-political score) while light color indicates low risk (high socio-political score) 
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Social Hotspots High Risk Factors 

Cobalt Highest negative value for social metric (PSAV-HHI) 

REEs Negative value for social metric (PSAV-HHI) 

Tantalum Conflict mineral 

Tin Conflict mineral 

Gold Conflict mineral 

Table 4.7. Social hotspots in electronics. 

The next sections of the chapter explore potential sustainability solutions for the material hotspots. 

3.4. Potential for recycling for material sustainability 

 

Material flow analysis in Chapter 2 and 3 showed changing trends in electronics consumption and waste 

flows, with increased prevalence of mobile multifunctional products containing critical metals. Recycling 

is considered as a primary sustainability solution as it can solve both material demand and waste 

management challenges. In this chapter, the material sustainability evaluation from three different 

dimensions of sustainability-economic, environmental and social, helped identify the materials hotspots 

or key materials of sustainability concern in electronics. They are REEs, PGMs, indium, gallium, gold, 

cobalt, tin, lithium and tantalum. Even though each of these metals pose risks in different aspects, 

recycling can be considered as a universal solution for all the materials due to a couple of reasons; First, a 

major share of these high impact materials produced (except gold) is consumed in electronics sector, 

which means that electronics recycling can bring back majority of the end-of-life materials back to 

production pipeline, offsetting the need for their virgin mining. Second, the import reliance in U.S. for 

each of these materials (except gold) is high which indicates the economic potential of recycling these 

metals which will not only ensure domestic supply security but will also mitigate other sustainability risks 

associated with the materials.  

Even though recycling is a promising sustainability solution, the current state of e-waste management is 

far from meeting this objective. There are many factors affecting the current state of recycling in the U.S., 

including lack of effective e-waste policies and collection systems that can ensure end-of-life pathways to 

recover used products from consumers, lack of efficient recycling technologies and infrastructure, that 

can economically recover effective technology and the absence of sufficient markets for recycled 

materials from electronics. At present in the U.S., the lack of financial motivation in recycling is resulting 

in most of the end-of-life products recovered being shipped to developing countries for cheap labor. 
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Given the changing material profile of e-waste and its implications on the economy, environment and 

society, it is important to make use of every opportunity for sustainability, especially in the management 

of the resourceful e-waste stream. Here, the potential for recycling as a sustainability solution is explored 

for the key materials of concern using four different metrics- recycling efficiency in U.S., current use of 

recycled material, circularity potential (waste to demand ratio) and material dilution in e-waste. 

Quantification of potential for recycling of materials using the metrics, captures the present-day 

challenges and opportunities in considering recycling as an immediate sustainability solution for most 

material hotspots identified in the study. 

Recycling efficiency in Table 4.8 is the ratio of waste material available to material recovered in the U.S 

(not specific to electronics sector) and therefore it represents the existing recycling technology and 

infrastructure in the U.S. to reclaim used materials. Secondary material use is another metric that 

represents the recycling market as it is the recycled material content in total material consumed in the 

U.S. Circularity and dilution metrics are used to assess the potential for recycling in the electronics sector 

specifically, based on the material content in the emerging e-waste stream as calculated from MFA results 

in Chapter 2.  

Recycling potential assessment of the material hotspots based on the above metrics presented as a heat 

map in Table 4.8 shows that, in the case of precious metals, considerable amount of recycling and 

secondary material use is taking place in the U.S. The recycling efficiency and secondary material use of 

precious metals indicates that the recycling infrastructure and market for recycled material is in place in 

the U.S., though not specifically for electronic sector. However, high circularity potential and low dilution 

level in e-waste indicates that there is huge potential for recycling precious metals in electronics sector. 

Similar potential for recycling is observed for critical metals tantalum and tin. Recycling efficiency and 

secondary material use in U.S. indicate considerable amount of recycling is taking place in U.S, for 

tantalum and tin, while low dilution levels and high circularity levels indicate potential for recycling to 

improve in electronics sector. 

However, this is not the case for other materials, especially REEs. Recycling efficiency and secondary 

material use metrics indicate the glaring lack of capacity for REE recycling in the U.S. At present there is 

almost no commercial REE recycling happening in the U.S., even though research on the same is 

progressing. (See Appendix C Table 7 for recycling data in absolute numbers for all materials). While 

circularity potential metric which compares waste flow to material demand indicate that recovering REEs 

from electronics can help meet their demand in the sector, dilution levels of REEs in e-waste represents 

the key challenge in recovering them from used electronics. REE dilution levels in e-waste is high since 

they are present only in small quantities per electronic product. Since REEs are the group of materials that 
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emerged to be a concern in all three aspects of sustainability, identifying potential solutions for REE 

sustainability is key in ensuring material sustainability in electronics. In the U.S., around 12,000 metric 

tons of imported REEs is consumed annually, majority of which is imported from China a geopolitical 

competitor of the U.S.(See Table 4.9 for details about the consumption of material hotspots in the 

U.S.).This high import reliance indicates the economic potential for REE recycling in the U.S. All these 

factors highlight the need to invest in research and development of recycling technologies for REEs. 

Prioritizing recycling as the key sustainability solution for REEs will not only mitigate their sustainability 

risks in electronics sector but will also reduce United States’ foreign dependency for this material group. 

 

Table 4.8. Assessing the potential for recycling as a sustainability solution for material hotspots. See 

Appendix C Table 7 for absolute values of the recycling metrics for all materials in the study. 
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The other materials among the hotspots for which recycling efficiency emerged to be a concern are 

gallium, indium and battery material lithium, indicating lack of recycling technology and infrastructure to 

recover them. However, high secondary material uses for indium and gallium in the U.S. shows that 

market for recycled material already exists, which can be a motivation for developing recycling 

technology to recover them from e-waste. Low dilution levels in the e-waste stream also shows that there 

is potential for recovery of both indium and gallium from e-waste if proper recycling infrastructure is in 

place, which is lacking at this point. In the U.S around 23,000 metric tons of gallium is consumed for 

integrated chip manufacturing and the country is completely reliant on imports especially from China for 

the metal (Table 4.9). Import reliance is extremely high for indium as well, asserting the need to ensure 

domestic supply of the materials through recycling. 
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Co 7200 72% China Superalloys in aircraft engines 

Ga 23000 100% China Integrated Chips 

In 170 100% China ITO layer in flat panel displays 

Li 2000 50% Argentina Batteries  

Ta 1170 100% Brazil, Rwanda Tantalum capacitors 

Sn 46000 75% Indonesia Tinplate, solder 

REEs 12200 100% China  Catalysts 

Table 4.9. Consumption of material hotspots in the US. It is to be noted that the U.S. import reliance data 

reported here is the net import reliance (import -export) as percentage of apparent consumption. A zero 

percent import reliance for gold indicates that U.S was a net exporter of gold in year 2018 (USGS mineral 

commodity summaries).  

In the case of lithium, both recycling efficiency and secondary material use highlight lack of recycling 

infrastructure in the U.S. However, the low dilution levels in e-waste is a motivator for developing 
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recycling technology to recover lithium from used batteries in e-waste. In the case of cobalt, another 

battery material the recycling efficiency and secondary material use metrics indicate that considerable 

amount of recycling is taking place in the U.S., though not in the electronics sector. Cobalt contained in 

purchased scrap constituted around 33% of total consumption in US in 2017 (USGS, 2018). Even though 

cobalt recycling from scrap is economically viable, LIB recycling is still not at full capacity. As in the 

case of lithium, dilution levels in e-waste is not a huge issue for cobalt compared to other materials 

hotspots, as they are concentrated in spent LIBs. While two-thirds of cobalt is mined in DRC, most is 

ultimately refined in China, and in the U.S. most of the cobalt consumed is imported from China. 

Therefore, recovering cobalt from end-of-life batteries in electronics is important not only to ensure 

supply security but also to diversify cobalt supply chain. While current recycling rates of lithium from 

batteries is almost zero, there is considerable effort aiming to recover cobalt from batteries. However, lab 

scale recycling yields prove that ongoing research is on the right path in developing better recycling 

technologies for material recovery from spent batteries (see Appendix C Table 9). 

Given the importance of the material hotspots in ensuring material sustainability in electronics as well as 

in ensuring mineral security in the U.S., there is a compelling need to invest in the development effective 

recycling technologies to recover them economically from the e-waste stream. Meanwhile, it is important 

to explore alternate solutions to mitigate the material sustainability risks identified in the study. 

3.5. Alternate solutions for material sustainability 

3.5.1. Material substitution 

 

While recycling is a potential sustainability solution implemented at product end-of-life, material 

substitution is a solution that is applied in product design where materials of high economic, 

environmental or social risk is functionally replaced with materials with better sustainability profiles. 

Figure 4.5 demonstrates how product level environmental impact (carbon footprint) reduction can be 

achieved through material substitution, by applying material level global warming potential metric to 

average laptop material composition compiled for MFA in Chapter 1 for three different potential casing 

materials-plastic, Al and recycled Al. In this example, Al use led to a higher impact when only obtained 

from primary sources, but also opened up a greater potential for recycling and selection of recycled 

content, which, when combined with material substitution, provided the most effective integrated solution 

of the three options. 
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While material substitution is practical for base metals like Al, as demonstrated in the example, it is 

challenging for most of the material hotspots in this study, as their high demand in electronics is due to 

their distinctive physical and chemical properties. In the case of REEs, they are used in consumer 

electronics and other defense and clean energy technologies applications due to their unique magnetic, 

luminescent, and catalytic properties, which makes their replacement in these technologies not effective. 

Similarly, in the case of indium, which is a key ingredient of ITO layer in flat screen displays even though 

antimony tin oxide coatings, carbon nanotube coatings, organic light-emitting diodes and copper or silver 

nanowires, have been explored as a substitute for ITO layer to reduce dependency on indium, none of 

these technologies have attained mainstream adoption. In the case of cobalt use in LIBs, using iron-

phosphorous, manganese, nickel-cobalt-aluminum, or nickel-cobalt-manganese chemistries can reduce 

cobalt dependency, but may result in altered performance. 

 

Figure 4.5. Comparing carbon footprint of laptops (cumulative carbon footprint of all materials in laptop; 

product manufacturing and use phase emissions not included) with different casing materials: plastic, 

aluminum, and recycled aluminum to demonstrate the applicability of material substitution as a 

sustainability solution. 

 

3.5.2. Supply chain diversification 

 

Another potential sustainability solution for material hotspots is to explore alternate supply chains to 

minimize risks associated with geographical concentration of production, based on their global reserves. 
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Here, the potential to diversify supply chain for two key material hotspots-REEs and cobalt are explored 

by comparing their geographical distribution of production with their global reserve distribution. Figure 

4.6a shows production distribution of REEs side by side with the distribution of global reserves. While 

reserves distribution of REEs show that extractable REEs are present in many countries, presently over 

79% of REE mine production occurs in China, a country which holds only 36% of global reserves. 

Similarly, Australia which holds only 3% of global REE reserves contributes over 15% to total REE 

production. With recoverable reserves throughout the world as seen in Brazil, Vietnam and Russia, there 

is good potential to explore alternate supply chains for REEs, if economics permit.  

Cobalt is also a good candidate for exploring alternate supply chains. Currently DRC dominates mine 

production with around 60% contribution to global production of cobalt. But DRC holds only 25% of the 

cobalt reserves while the remaining is distributed among many countries which may have fewer supply 

chain risks (Figure 6b). For example, Australia has around 1.2 million metric tons of identified cobalt 

reserves (USGS), which indicates a potential to explore alternate supply chains. However, other factors 

affecting the feasibility of changing supply chain would need to be addressed in parallel. For example, 

even though Co mine production is concentrated in DRC, as the Refined Metal Production pie chart in 

Figure 6b shows, most of the processing and refining of the metal takes place in China. This indicates that 

in addition to exploiting existing reserves around the world, developing technology and infrastructure to 

process metals to refined form is also important to achieve supply chain diversification of material 

hotspots. While the REEs and cobalt shows good potential for supply diversification, it may not be the 

case for other material hotspots. In the case of indium, there is limited potential for supply chain diversity 

as nearly 70% of known global reserves is in China, indium’s leading producer country (USGS mineral 

commodity summaries). 

 

Figure 4.6a. Current REE production distribution versus REE global reserve distribution. 
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Figure 4.6b. Current cobalt mine production and refined metal production distribution, versus global 

reserve distribution of cobalt. 

 

3.6. Case Study: Sustainability analysis of plastic use in electronics 

 

In addition to metals, plastics are also key raw materials used in consumer electronics manufacturing. 

Consumer electronics represent an annual consumption of over 200,000 metric tons of plastics, which 

ultimately make up 25% of the e-waste flow. While around 12 types of polymers are found in electronics, 

some are more common including ABS (Acrylonitrile-butadiene-styrene copolymer), HIPS (Polystyrene, 

high impact), PA-(Polyamide), PS (Polystyrene) and PC (Polycarbonate) (Mills and Tatara, 2016). In this 

study, the potential sustainability issues with 7 different types of plastics used in electronics are analyzed. 

Table 4.10 presents a heat map with comparisons of annual production, price and environmental issues 

associated with production of different types of plastics used in consumer electronics. 
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Table 4.10. Measuring economic and environmental sustainability of polymers commonly used in 

electronics 

The sustainability profiles of different polymers used in electronics estimated using the economic and 

environmental metrics show that among the polymers considered, ABS, HIPS, and PS have the lowest 

environmental risk. Among those polymers, ABS seem to present minimum economic risk as assessed by 

annual production and price, making it a suitable choice in electronics product manufacturing. It is to be 

noted that even though the heat map shows price variation among different plastics (PVC and PS having 

relatively lower price), the actual price difference between types of plastics is minimal. The average price 

per pound of plastic is 1$ per pound (Ashby, 2013). As with metals in electronics, recycling is a potential 

solution to minimize sustainability impacts of plastic use in electronics, which is explore below. 

Recycling as a sustainability solution for plastic use in electronics 

Even though electronic products have become smaller and lighter with ongoing dematerialization trends, 

as per Chapter 2 MFA results, the plastic content in the e-waste stream has not decreased. In fact, the 

plastic content relative to other e-waste materials has been slightly increasing, underscoring the need for 

e-plastics recovery and recycling. Around half a million metric tons of plastic is available for recovery 

from electronic waste generated annually from U.S. households. The average environmental savings 

achievable through recycling of different plastics as reported by Ashby (2013) is given in Table 4.11. The 

Polymers in 

electronics 

Annual 

Production Price 

Carbon 

Footprint 

Energy 

Demand 

Mineral 

Resource 

Demand 

ABS   
   

  

HIPS   
   

  

PA   
   

  

PS   
   

  

PC   
   

  

PVC   
   

  

PMMA           
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low values of recycled fraction in current supply also highlights the limited availability of recycled 

plastics in the US, indicating need for proper recycling infrastructure. 

There are many challenges in plastic recycling from electronics, the main being contamination in the 

waste stream due to the wide range of plastics used in electronics. The mixed stream is challenging to sort 

and identify, and mixed plastics have low economic value. Another roadblock to e-plastic recycling is the 

use of brominated flame retardants which are added to e-plastics to enhance their resistance to fires (Mills 

and Tatara, 2016). However, the recent bans and subsequent disruption in e-plastic export market to 

China, Vietnam and other Southeast Asian countries, stresses the need to develop domestic recycling 

systems which would solve the waste management problem and reduce environmental impacts, while 

generating revenue. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.11. Environmental benefits of recycling plastics. 

4. Data Uncertainty 

 

The goal of this research was to model sustainability risks associated with material use in electronics, 

through a range of quantifiable metrics. Even though data from the best available sources were used (see 

Appendix C Table 1), quantifying economic, environmental and social risks for the whole spectrum of 

Plastics 

Energy 

demand for 

primary 

production 

(MJ) 

Energy 

savings 

from 

recycling 

(%) 

Carbon 

footprint for 

primary 

production 

(kgCO2eq) 

Carbon 

savings 

from 

recycling  

(%) 

Recycled 

fraction in 

current 

supply 

ABS 95 51% 4 26% 4% 

 PA 123 65% 8 68% 1% 

 PP 79 37% 3 -  6% 

 PE 81 38% 3 7% 9% 

PC 109 61% 6 58% 1% 

PET 85 54% 4 40% 21% 

PVC 59 39% 3 14% 2% 

 PS 97 51% 4 25% 6% 

PLA 52 29% 4 39% 1% 
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materials in electronics involved assumptions and aggregations, which introduces uncertainty in the 

potential sustainability impacts quantified. For example, to quantify ‘electronics sector consumption’, a 

key metric in identifying material hotspots, aggregated data for material use in both electrical and 

electronic applications was used, due to lack of sector specific data. Even though such aggregated data 

may overestimate use level of materials in electronics sector, it gives a good indication on whether the 

production of a material is driven by the electronics industry and if sustainability strategies in the sector 

will offset a major share of the material impacts. 

Another metric which was a major consideration in the determination of material hotspots was the import 

reliance of materials in the U.S. To model this, the net import reliance (import -export) as percentage of 

apparent consumption (as reported by USGS) was used, which yielded a negative import reliance for 

some materials such as gold, for which U.S is a net exporter. Economic metrics such as global reserve, 

annual mine production and annual price were directly adopted from USGS mineral commodity 

summaries for year 2018, while index of depletion, HH index and price volatility, were calculated based 

on the same data. For many of the economic metrics such as reserves, ore concentration, mine production, 

index of depletion, HH Index, PSAV-HHI and production ratio as by product, due to lack of availability 

of disaggregated data for each REE, available aggregated data for REEs (REE oxide production data in 

most cases) was used. Even for metrics such as price, import reliance and electronics sector consumption, 

for which published data was available for individual REEs, scandium (Sc), erbium (Er) and promethium 

(Pm) were omitted due to lack of data availability.  

To model environmental impacts, global average data for global warming potential (GWP), cumulative 

energy demand (CED) and mineral resource demand, per kg production of each material was extracted 

from Ecoinvent database (using Simapro LCA software). For energy use related environmental impacts 

such as GWP and CED, the use of global average data results in uncertainty, as GWP and CED impacts 

are directly related to the carbon intensity of the electricity used in mining and processing materials, and 

global average data may not always reflect the exact carbon intensity of the electricity grid in mining 

locations of producer countries. Nonetheless, these uncertainties are not expected to affect the 

environmental impact ranking and identification of material hotspots in this study. The evaluation of 

potential for recycling is another topic that required reliance on assumptions and approximations due to 

unavailability of accurate recycling statistics, especially in the electronics industry. Lack of a consistent 

approach in defining recycling rates in literature, is a key factor contributing to the uncertainty in 

evaluating recycling status in the sector. The term ‘recycling rate’ is used in different contexts in literature 

where sometimes it refers to recycling efficiency of the system (including end-of-life product collection 

rates) or recycled material use, while sometimes the term is used to denote the recycling process 
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efficiency. This lack of accurate data itself calls for research and development initiatives in the recycling 

sector. 

Even in the presence of all this data uncertainty, the analysis performed, and conclusions drawn in this 

chapter are well grounded on best available theoretical data and can serve as the groundwork in planning 

for sustainability efforts in electronics. 

5. Conclusions 

 

Material use in the electronics sector is becoming a significant sustainability challenge, as many material 

enablers of modern electronics are also widely demanded for diverse applications such as clean energy 

technology. While the industry has started to implement material sustainability strategies, such as 

recycling and material substitution, there is still a need for holistic SMM data and evaluation of strategies 

that engages multiple stakeholders in creating solutions. This study is the first to compile traditionally 

disparate sustainability data on electronics materials and synthesize this information to identify key 

material hotspots and discuss potential solutions.  

REEs were shown to have significant impacts in all dimensions of sustainability, while critical metals like 

In, Co, Ta, Tin, Li and precious metals (gold and PGMs) are also materials of concern needing 

sustainability solutions. Cobalt is identified as the key social hotspot, largely due to its spatially 

concentrated supply chain in politically unstable regions. Recycling emerged as a critical but challenging 

opportunity for making major material improvements. Many of the materials analyzed have high demand 

(in electronics and other sectors) and high reliance on imports due to lack of US reserves or production 

volume. Thus, developing recycling for low volume, high value materials, like REEs and gallium, can 

alleviate these supply chain pressures while also reducing environmental impact. Supply chain 

diversification also presented a potential solution for REEs and cobalt. However, implementing these 

solutions will require both fundamental technology advances as well as joint effort from all stakeholders 

in the electronics system, including recyclers, product manufacturers and e-waste policy makers. 
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CHAPTER 5: Conclusions 
 

There is increased emphasis on sustainable material management in the electronics sector, as the key 

material enablers of modern electronics are critical to the growing clean energy economy. The evolution 

and expansion of electronics from traditional single-function products to multifunctional devices, and the 

increased integration of electronics in new products as seen in ‘wearable’ electronics and ‘smart’ home 

systems, has changed the material profile of the electronics system. However, the e-waste management 

system in the U.S. remains backwards looking, optimized to recover legacy products, while new products 

with unknown material implications are entering the waste stream with no strategies in place for their 

end-of-life management. To be able to respond to the dynamic nature of the sector, sustainability 

strategies need to be informed by proactive estimates of material use and waste generation as well as their 

sustainability implications in the system. But academic as well as industrial research has not kept pace 

with evolution in the sector, limiting the data and insight available to evaluate sustainable material 

management strategies in electronics. Therefore, this research aimed to close this knowledge gap by 

contributing novel data and modeling tools, estimating current and future materials flows, and quantifying 

social, economic, and environmental sustainability implications. 

This research first generated a baseline material footprint analysis for consumer electronics (Chapter 2), 

by compiling and analyzing sales, lifespan and material profile data of over 20 different product 

categories in the U.S. Through the application of highly resolved sales and lab scale material composition 

data of common electronics, on a material flow model, the 2nd chapter reports the most comprehensive 

and up-to-date material footprint analysis for electronics in the U.S. Once the material baseline for the 

electronics system was established, the model was expanded to include predictive capability in material 

flow analysis for emerging electronics (Chapter 3). This study characterized historic product adoption 

behavior in electronics and used these trends to create near-term projections of product adoption and 

waste generation scenarios. The modeling framework demonstrated in Chapter 3 can be used to inform 

proactive material management strategies in electronics by identifying opportunities and risks for both 

emerging products as well as mature products in the market. The final goal of the research (Chapter 4) 

was to investigate the sustainability implications associated with material demand and flows in electronics 

that were estimated in Chapters 2 and 3. A comprehensive set of sustainability metrics was developed and 

applied to the broad spectrum of materials in electronics to identify economic, environmental and social 

hotspots. The findings represent the first comprehensive compilation of sustainability metrics applied to 

electronics materials, which were used to explore solutions including recycling, material substitution, and 

changing material supply chains. 
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Key Takeaways  

 

Through application of highly resolved data and modeling tools, this research advances the state of 

knowledge on sustainability implications of consumer electronics adoption in the United States. Major 

findings of this research are summarized below. 

 

• The electronics landscape in US is undergoing a major change on material footprint with 

increased prevalence of light weight multifunctional products in the market. E-waste in the US 

has begun to decline. Complexity and resource potential are high in the emerging e-waste stream, 

while toxicity from traditional materials of concern is on the decline. Waste flow forecasts for 

mature products like CRTs and desktops, show their declining contribution to the U.S. e-waste 

stream. 

 

• A key trend observed in historic product adoption behavior across current and legacy electronics 

is the steadily shrinking innovation cycle; emerging technologies are likely to have rapid uptake 

in the market but may be quickly replaced by subsequent product innovations.  

 

• REEs are identified to be key materials of sustainability concern in electronics due to their heavy 

use in the sector, high geographic production concentration and environmental impacts, and high 

production ratio as byproduct. Cobalt is also associated with economic as well as social 

sustainability risks due to its production concentration in DRC and high production ratio as by-

product. Gallium, tantalum, tin, lithium, gold and platinum group metals (PGMs) are other 

material hotspots in electronics requiring sustainability solutions. 

 

• Recycling and supply chain diversification are both promising avenues for reducing material 

risks, especially for REEs and cobalt. There is a critical need for expansion of recycling 

technology and infrastructure for efficient material recovery from e-waste, but achieving this 

promise will require significant policy, economic, and technology advances. 
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Research Implications & Recommendations for Stakeholders 

 

The emerging trends in electronic material footprint highlighted by this research underscore a need to 

shift the focus of e-waste management mechanisms from ‘mass’ to ‘materials’, or in other words, from an 

emphasis on ‘waste diversion’ to a new focus on ‘resource retention’. This study identified three 3 key 

leverage points: policy, product design and recycling technology, to intervene and facilitate sustainability 

in the overall electronics system. To use e-waste policies as an instrument to initiate sustainability 

material management, it is necessary to move away from the mass-based policy targets where all 

materials are treated equally, to explore alternate methods for setting collection targets such as those 

based on environmental or economic savings through recycling. Anshassi et al., (2017) in their study 

about solid waste management in Florida has described an approach where lifecycle thinking is 

incorporated in material management by developing LCI-normalized collection targets. An identical 

approach to prioritize economic value, energy saving potentials, and eco-toxicity in recovering different 

materials from printed circuit boards was proposed by Wang and Gaustad, (2012). Similar waste 

management mechanisms are worth exploring in the electronics sector, as they will bring the focus on 

materials in a product rather than mere mass. The same holds for sustainable product design and recycling 

technology development; they must be informed by economic, environmental and social tradeoffs 

associated with material use and material recovery. Company-oriented raw material selection models for 

component manufacturing that take into account material criticality assessments, life cycle impact 

assessment (LCIA) and social life cycle assessment (SLA) have been proposed in literature (Kolotzek et 

al., 2018). Adoption of approaches that incorporate sustainability thinking in product design can result in 

elimination or minimization of materials with potential environmental, social, or supply risk in 

electronics.  

However, to enable these leverage points to establish holistic SMM in electronics, it is necessary for 

greater coordination among stakeholders in the electronic system, including e-waste policy makers, 

product manufacturers and recyclers. Product designs that incorporate more recycled material content can 

increase the viability of secondary material markets and promote recycling, while establishment of 

recycling technology and infrastructure that are resilient to changes in the e-waste material profile can in 

turn increase secondary material supply and aid green-product design. In either case, effective e-waste 

policies are needed to ensure end-of-life pathways for the whole range of products owned in households, 

by broadening the scope of products covered by e-waste laws and creating flexible recycling targets. 

However, a key policy barrier in establishing a material management mechanism in the US, is the lack of 

a uniform federal policy for e-waste management. In the absence of a federal e-waste law, the lack of 
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uniformity in the state-by state approach represents a significant compliance burden to the electronics 

manufacturers, as they are responsible for financing, collecting and recycling these products in the widely 

adopted EPR model (NCER, 2006). Consumer awareness is another barrier to the effectiveness of e-waste 

management system.  At present, the variations in product scope of e-waste laws and landfill bans across 

states can confuse consumers about what products can be recycled in their home state, potentially 

reducing the per-capita e-waste recovery rates (Drayton, 2007). The economies of scale that can be 

achieved through a national level recycling system should be the motivation for establishing federal e-

waste recycling laws as a key instrument for achieving sustainable material management in electronics. 

Limitations and extensions 

A key contribution of this research is the high-quality product adoption data that enabled the 

quantification of product flows and associated sustainability implications in the system. However, there 

are uncertainties associated with data on average product lifespan, which were based on published 

literature. Consumer survey-based data on electronics use that reflect recent product use patterns in U.S. 

would help bring in more accuracy in e-waste estimations. However, as reported in the uncertainty 

analysis in Chapter 2, the key finding of the study, which is the declining trend observed in e-waste in 

U.S., is not expected to change with more resolved lifespan data. This decline in e-waste mass is mainly 

due to a product light weighting trends as well as higher product disposal rates in the U.S, that resulted in 

fast replacement of large electronics in the system. While these trends may hold true for many developed 

economies with high rate of technology diffusion, it may not be the case for economies in transition. As 

past studies have shown, product lifespans and technology diffusion rates are dependent on socio-

economic environment of a country (Petridis et al., 2015; Yu et al., 2010) and in some regions, 

technology difusion may be slow and product lifespans longer as consumers hold on to expensive 

electronics for longer times, which in turn may create a longer lag before reaching the e-waste decline 

phase. However, technological leapfrogging may also occur, where developing economies may skip 

intermediate technologies, resulting in faster adoption of newer, smaller multifunctional devices and 

therefore replacing large legacy products from the system sooner than expected. These factors again 

highlight the importance of data driven analysis in evaluating strategies for managing the resource-intense 

and fast changing electronics waste stream in different regions of the world. 

This research analyzed the sustainability implications of consumer electronics adoption in the U.S from a 

materials perspective. Material sourcing, production, consumption and waste flows in electronics were the 

primary foci of this research. However, there are other life cycle aspects of sustainability, particularly 

associated with manufacturing and end-of-life management that are not explored here but key for future 

study. In addition, expanding sustainability analyses to include new methods, like Social LCA, can also 



81 
 

provide greater insight into social impacts, which are traditionally challenging to quantify. Even though 

this research discussed the implications of material flows and material sustainability on e-waste policies, 

applying the SMM metrics to specific analyses of e-waste policy is also a priority for detailed study, 

particularly as state policies continue to evolve. These models can also be expanded to consider material 

interactions across sectors, given the wide use of electronic materials in other emerging technologies, 

such as electric vehicles. The possible research extensions from this work are vast, as this study provides 

a knowledge base on product and material flows and impacts, and lays the groundwork for effective 

sustainable material management in electronics. While this future-oriented study may be burdened with 

uncertainty, the research findings demonstrate the importance of a proactive approach for electronics, 

rather than reacting to sustainability issues after they have resulted in social, economic, or environmental 

impacts.  
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APPENDIX A 
 
Products included in the MFA 
 
Products included in the material flow analysis are grouped into five categories: computing products, 

CRT displays, Flat panel displays, Audio visual products, other mobile products and phones. Table below 

shows the products included in each category. 

 
Table 1: Product scope 
 

Computing CRT Displays Flat Panel Displays Audio Visual Products 

Other Mobile 

Products Phones 

Laptops CRT Monitors Plasma TVs Blu-Ray Players Digital Cameras Smart Phones 

Tablets CRT TVs LCD TVs (CCFL) DVD Players Digital camcorders Basic mobile phones 

Desktops 
 

LCD monitors (CCFL) VCR MP3 Players   

Printers 
 

LCD (LED) TVs Gaming Consoles 
 

  

    LCD (LED) monitors       

 
Uncertainty analysis results 
 
 

 
 
Figure 1a. Sensitivity to lifespan probability assumption (Weibull vs lognormal). Figure shows that the 

declining trend in e-waste holds true, irrespective of the lifespan distribution assumption. However, under 

lognormal distribution assumption of product lifespans, net mass of e-waste peaks early compared to 

Weibull distribution. 
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Figure 1b. Sensitivity to product mass assumptions (min, max scenarios). Figure shows that the 

declining trend in e-waste holds true, for both minimum and maximum product mass scenarios. 

 

Figure 1c. Sensitivity to product scope. Figure shows that there is no fundamental change in the trends 

observed in e-waste mass even when 6 additional products (fitness trackers, smart watches, portable 

navigation, OLED displays, drones and digital photo frames) are included in the baseline product scope. 
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Parameters for product lifespan distribution 
 
Table 2: Mean and maximum lifespan values used to estimate Weibull parameters. 
 

Products Maximum Minimum Mean Std Dev 
Basic mobile phone 7 1 2 2 
Blu ray Player 10 1 6 2 
CRT Monitor 13 1 9 3 
CRT TV 20 1 14 5 
Desktop CPU 10 1 4 2 
Digital Camcorder 14 1 6 3 
Digital Camera 14 1 5 3 
DVD Player 10 1 6 2 
Gaming Consoles 10 1 4 2 
Laptops 9 1 4 2 
LED Monitor 10 1 4 2 
LED TV 10 1 6 2 
LCD Monitor 10 1 4 2 
LCD TV 10 1 6 2 
MP3 Player 7 1 4 2 
Plasma TV 10 1 7 2 
Printer 10 1 7 2 
Smart Phone 7 1 2 2 
Tablets 5 1 3 1 
VCR 15 1 8 4 

 
Average product mass estimations 
 

For smaller products such as cameras and phones, mass was assumed to be static over time, while for 

larger products which represent major contribution to waste flow mass and underwent significant 

dematerialization over years, such as TVs, monitors and laptops, average mass of products sold was 

considered to be dynamic over the years. A combination of data from lab, literature and data compilations 

from NCER were used for both static and dynamic product mass estimations. 

 
Static Mass: For mass uncertainty analysis, minimum and maximum from the range of available data was 

used. Table below shows average, minimum and maximum mass assumptions for static mass products. 
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Table 3: Static mass assumptions of products 
 

Products Average mass (kg) Minimum mass (kg) Maximum mass (kg) 

Basic mobile phone 0.114 0.095 0.149 

 Blu-ray player 3.15 0.983 4.46 

Desktop CPU 9.89 6.71 12.7 

Digital camcorders 1.14 0.848 1.31 

 Digital cameras 0.132 0.096 0.150 

DVD player 3.69 2.34 5.16 

Gaming consoles 2.81 1.18 4.23 

MP3 player 0.093 0.052 0.128 

Printer 7.45 5.31 8.90 

Smart phone 0.137 0.091 0.180 

Tablet 0.441 0.222 0.726 

 VCR 4.43 3.86 5.00 

Data Sources: Lab disassembly data, U.S EPA waste management, NCER and literature. 

 

Dynamic mass: For products with yearly mass data from multiple data sources (laptops, LCD monitors, 

LCD TVs, Plasma TVs), a fitted trend was used to estimate the dynamic mass input while for products 

which lacked data from multiple sources (CRT TVs and monitors), mass trend was built on the single 

reliable data source. Dynamic mass estimates for LED TVs and monitors were generated by assuming a 

LED displays to be 35% lighter compared to LCD displays, based on lab disassembly data which was 

also corroborated in literature. For mass uncertainty analysis, in the case of products with mass data 

points from multiple data sources (laptops, LCD monitors, LCD TVs, Plasma TVs), the uncertainty range 

was estimated by calculating the average percent difference of different data points to the fitted trend. In 

the case of products which relied on a single reliable data source for estimating dynamic mass trends 

(CRT TVs and monitors), the average difference of any additional data point to the trend was used to 

estimate the uncertainty range. These calculations yielded a 14% mass uncertainty range (yearly average 

mass ±14%) for CRT monitors, CRT TVs and LCD monitors, a 12% LCD TVs and 5% for plasma TVs. 

For LED TVs and monitors, the same uncertainty range for LCD TVs and monitors were applied due to 

lack data. 
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Table 4: Dynamic mass assumptions of products. 
 

Year Average product mass (kg) 

 CRT monitor  CRT TV Laptops LCD monitor LCD TV LED Monitor LED TV Plasma TV 

1990 11 26 0.0       

1991 11 27 0.0       

1992 11 27 3.4       

1993 11 27 3.4       

1994 13 27 3.3       

1995 15 27 3.3       

1996 17 27 3.2       

1997 18 27 3.2       

1998 20 28 3.1       

1999 22 27 3.1 3.4 0   45 

2000 24 27 3.0 3.6 25   44 

2001 23 27 3.0 3.8 24   42 

2002 23 27 2.9 3.9 24   41 

2003 23 28 2.9 4.1 23   39 

2004 23 29 2.8 4.3 22   37 

2005 23 30 2.8 4.5 21   36 

2006 23 30 2.7 4.7 20   34 

2007 23 30 2.7 4.8 20   33 

2008   2.7 5.0 19   31 

2009   2.6 5.2 18 3.4 12 29 

2010   2.6 5.4 17 3.5 11 28 

2011   2.5 5.6 17 3.6 11 26 

2012   2.5 5.7 16 3.7 10 24 

2013   2.4 5.9 15 3.8 10 23 

2014   2.4 6.1 14 4.0 9.2 21 

2015   2.3 6.3 13 4.1 8.7   

2016   2.3 6.5 13 4.2 8.2   

2017   2.2   4.3 7.7   

2018     2.2     4.4 7.1   
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Product Material Profile Estimations 

Table 5: Average material profile of products  

 

Product Category  Fe Al Cu 

Other 

metals Plastic PCB 

Flat Panel 

Glass 

CRT 

glass Battery Others 

Basic Phones 1.0% 5.6% 2.1%   33% 18% 8.8%   25% 6.1% 

Blu Ray Disc 60% 0.2% 3.5%   18% 18%       1.4% 

CRT Monitor  3.0%   2.0% 1.0% 20% 12%   62%     

CRT TV 6.0%   1.0%   23% 10%   60%     

DVD Players 49% 1.1% 4.1%   33% 13%       0.2% 

Traditional Desktop 54% 9.6% 4.4% 1.1% 19% 10% 0.0%     1.7% 

Digital Camcorders/Cameras 16% 12% 1.4%   41% 16% 4.2%   0.9% 8.3% 

Gaming Consoles 31% 9.1% 2.2% 0.0% 34% 17%     0.02% 6.2% 

Laptops 12% 15% 1.8% 5.8% 28% 12% 8.2%   14% 2.4% 

LCD monitors 36% 6.2% 5.3%   28% 6.2% 18%     0.2% 

LCD TV  43% 2.5% 0.9% 4.7% 28% 5.8% 13%     2.5% 

LED monitors 38% 0.3% 0.04%   44% 2.6% 15%     0.4% 

LED TV  18% 27%     35% 5.7% 14%     0.2% 

MP3 Player 14% 26% 0.7%   17% 14% 7.7%   12% 8.9% 

Plasma TV 32% 11% 0.5% 1.9% 30% 5.9% 12%     6.7% 

Printer 30% 0.2% 0.5%   61% 3.1% 0.1%     5.2% 

Smart Phone 6.3% 9.4% 1.2% 2.5% 23% 14% 9.6%   23% 12% 

Tablet 3.6% 9.3% 0.4%   32% 7.2% 15%   23% 9.7% 

VCR 65%   1.5%   19% 15%         

Data Source: A combination of product disassembly and literature data for most products. For CRTs, the 

material composition is adopted from Townsend et al (2004). 

 
Mercury content in LCD displays  

 

Mercury content in LCD TVs and monitors with CCFL backlights was calculated based on average mass 

percentage of mercury per kg of CCFL lamp (0.04%) from literature and weight contribution of CCFL 

lamps in LCD displays. The CCFL lamp weight in LCD displays were estimated through a combination 

of lab scale product disassembly data and published literature, to be 0.11% in monitors and 1.2 % in TVs.  
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Table 6: CCFL lamp weight estimation for LCD TVs. 

 
LCD TV  

screen size  

(inches) 

Total TV 

weight  

(kg) 

Total CCFL lamp 

weight  

(kg) 

Lamp weight  

per kg TV 

 (%) 

Data  

Sources 

40 inches 14.236 0.1666 1.2% Lab Disassembly 

37 inches 20.66 0.24 1.2% Wrap 2010 

Average CCFL lamp weight per kg TV= 1.2% 
 

 

Table 7: CCFL lamp weight estimation for LCD monitors. 

 

LCD  

Monitors 

Total Monitor 

 weight (kg) 

Total CCFL lamp 

weight (kg) 

Lamp weight per 

kg monitor (%) Data Source 

Dell 2015 2.84 0.004 0.14% Lab Disassembly 

HP 4.97 0.0062 0.12% Lab Disassembly 

Model Unknown 5.279 0.00194 0.04% Huisman 2007 

NEC Multi Sync LCD 1810  5.165 0.009 0.17% California 2004 

Mitsubishi LXA565W 4.731 0.0034 0.07% California 2004 

Mitsubishi LXA565W 4.997 0.0033 0.07% California 2004 

Sony SDM-M81 6.892 0.0125 0.18% California 2004 

Sony CPD-M151 4.956 0.0046 0.09% California 2004 

Sony SOM-X52 4.576 0.0045 0.10% California 2004 

Sony SOM-HJ53 3.596 0.0044 0.12% California 2004 

Average CCFL lamp weight per kg monitor= 0.11%   
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Historic product adoption data 

 

Table 8: Annual sales data of products in units sold to residential sector. Data were provided by the 

Consumer Technology Association. 2018 and 2019 values are projections made by CTA. 

 

Year LCD Monitors LED 
Monitors 

LCD TVs Plasma TVs Portable Navigation Smart Phones Tablets & 
E-readers 

1999 1,122 
  

2,000    

2000 399,850 
 

832,000 8,000 107,000   

2001 419,827 
 

845,000 16,000 162,000   

2002 495,530 
 

935,000 106,000 221,000   

2003 764,570 
 

1,253,000 342,000 300,000 2,306,000  

2004 1,351,645 
 

1,842,000 870,000 550,000 3,627,000  

2005 2,801,727 
 

4,077,000 1,639,000 707,000 7,920,000  

2006 7,312,696 
 

10,325,000 3,028,000 2,284,000 11,282,000 20,000 

2007 11,095,043 
 

16,843,000 3,166,000 8,751,000 19,500,000 147,000 

2008 9,977,497 
 

24,116,000 3,572,000 15,320,414 28,555,000 580,000 

2009 9,097,128 478,796 28,239,700 3,366,000 14,870,000 41,163,000 2,290,000 

2010 8,364,245 2,091,061 22,815,200 4,416,000 13,683,650 54,136,000 18,570,000 

2011 6,983,869 2,883,996 20,230,000 3,807,000 12,315,285 87,431,000 52,960,000 

2012 6,163,915 3,348,273 20,981,649 2,982,000 9,325,000 114,061,000 70,827,375 

2013 3,343,581 3,829,659 16,861,378 1,995,000 7,274,000 151,000,000 86,466,279 

2014 2,415,051 6,081,601 10,133,000 1,063,000 6,401,000 160,221,000 84,527,842 

2015 1,082,980 6,036,373 5,982,641 
 

4,600,000 174,640,890 73,848,551 

2016 119,211 5,841,332 800,560 
 

4,140,000 179,880,117 68,302,475 

2017 0 4,623,094 0 
 

3,767,400 174,650,293 64,475,481 

2018 0 4,379,760 0 
 

3,483,338 169,420,468 61,249,750 
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Table 8. Annual sales data of products, continued. 

Year CRT TVs Desktops VCRs Printers CRT Monitors Basic Mobile 
Phones 

Digital 
camcorders 

1980 17,581,000 343,225 11,336,000 
 

369,000 343,226   

1981 16,811,000 686,451 12,005,000 738,000 686,452   

1982 17,058,000 1,064,000 11,702,000 1,145,000 1,064,000   

1983 19,721,000 1,907,500 10,748,000 2,769,000 1,907,500   

1984 21,328,000 2,331,000 9,760,000 2,935,000 2,331,000 22,750  

1985 20,779,000 2,016,000 10,119,000 2,363,000 2,016,000 68,250 517,000 

1986 22,461,000 2,397,850 10,718,000 2,178,000 2,397,850 259,350 1,169,000 

1987 23,170,000 2,870,700 12,329,000 2,308,000 2,870,700 514,150 1,604,000 

1988 23,092,000 3,053,400 12,448,000 2,585,000 3,053,400 809,900 2,044,000 

1989 23,627,000 3,117,030 13,087,000 2,880,000 3,117,030 1,365,000 2,286,000 

1990 22,570,000 3,319,935 13,562,000 2,954,000 3,319,935 1,665,300 2,962,000 

1991 21,300,000 3,333,317 15,641,000 2,880,000 3,333,317 2,174,900 2,864,000 

1992 23,029,000 3,468,850 16,673,000 3,600,000 3,468,850 3,480,750 2,815,000 

1993 25,649,000 4,557,707 18,113,000 4,320,000 4,557,707 5,086,900 3,088,000 

1994 27,908,000 5,353,664 22,809,000 5,160,000 5,353,664 8,030,750 3,209,000 

1995 26,736,000 6,912,069 23,072,000 6,480,000 6,912,069 9,368,450 3,560,000 

1996 25,895,000 7,567,312 14,910,000 8,400,000 7,567,312 10,524,150 3,634,000 

1997 24,921,000 9,314,468 13,538,000 10,400,000 9,314,468 24,570,000 3,650,000 

1998 26,768,000 11,980,924 6,416,000 12,500,000 11,980,924 27,300,000 3,829,000 

1999 29,188,000 16,375,290 2,267,000 15,000,000 16,374,168 30,667,000 4,790,000 

2000 30,620,000 14,975,336 1,365,000 17,400,000 14,575,486 47,866,000 5,848,000 

2001 26,980,000 13,575,382 759,000 18,800,000 13,155,555 48,594,000 5,284,000 

2002 28,245,000 13,940,539 53,000 20,300,000 13,445,009 59,140,900 5,790,000 

2003 25,640,000 13,055,206 6,000 21,518,000 12,290,636 69,945,330 5,262,000 

2004 23,824,000 13,225,393  19,581,000 11,873,747 72,690,000 5,559,000 

2005 20,427,000 12,814,129  19,973,000 10,012,402 86,042,000 5,242,000 

2006 10,904,000 13,284,211  20,273,000 5,971,515 99,472,000 5,320,000 

2007 1,400,000 11,871,347  21,001,000 776,304 101,500,000 5,558,000 

2008  9,977,497  22,944,000 0 102,775,000 5,608,000 

2009  9,575,925  21,499,076 0 94,239,000 6,267,000 

2010  10,455,307  20,054,153 0 91,225,000 7,246,000 

2011  9,867,865  18,022,000 0 79,000,000 5,459,000 

2012  9,512,188  16,950,000 0 66,602,000 2,663,000 

2013  7,173,240  16,285,000 0 51,950,000 1,633,000 

2014  8,496,653  15,990,877 0 41,560,000 1,195,000 

2015  7,119,353  15,240,323 0 29,092,000 776,750 

2016  5,960,542  14,489,769 0 20,364,400 512,618 

2017  4,623,094  13,820,492 0 12,696,000 460,403 

2018  4,379,760  13,275,000 0 10,005,000 305,437 
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Table 8. Annual sales data of products, continued. 

Year Laptops LED TVs DVD 
Players 

Blu-Ray  
Players 

Gaming 
Consoles 

MP3 
Players 

Digital 
Cameras 

1992 222,000 
    

  

1993 303,358 
    

  

1994 384,056 
    

  

1995 581,574 
    

  

1996 609,733 
    

 300,000 

1997 516,546 
 

349,000 
  

 863,000 

1998 571,983 
 

1,079,000 
  

 1,180,000 

1999 1,319,101 
 

4,072,000 
  

500,000 2,114,000 

2000 1,739,930 
 

8,499,000 
  

587,000 4,234,000 

2001 1,835,910 
 

12,707,000 
  

724,000 5,556,000 

2002 2,941,318 
 

17,090,000 
  

1,737,000 9,267,000 

2003 5,900,451 
 

21,994,000 
  

3,031,000 14,786,000 

2004 7,323,092 
 

19,990,000 
  

7,126,000 18,852,000 

2005 9,728,855 
 

21,148,000 
  

24,812,000 23,249,000 

2006 11,059,675 
 

22,306,000 130,000 
 

38,124,000 32,947,000 

2007 14,159,632 
 

20,919,000 1,136,000 17,981,150 48,020,000 32,220,000 

2008 17,996,965 
 

18,970,000 2,773,000 21,603,534 43,731,000 33,168,000 

2009 27,969,324 1,486,300 21,026,000 7,088,000 21,187,590 40,101,000 32,932,000 

2010 28,843,486 5,703,800 18,268,500 9,301,000 21,479,500 39,686,000 36,545,000 

2011 27,359,802 8,354,000 15,511,000 9,991,000 20,031,168 36,263,000 37,697,000 

2012 24,920,728 11,397,351 10,540,000 10,769,000 12,790,400 26,472,000 23,202,000 

2013 22,738,676 19,312,622 8,936,000 11,088,000 12,428,000 19,503,000 15,341,000 

2014 21,765,793 25,517,000 7,570,000 9,088,000 14,292,200 15,272,000 11,532,000 

2015 22,046,317 33,346,359 7,363,000 7,727,000 15,149,732 7,788,720 8,336,000 

2016 20,457,000 39,227,440 6,419,526 7,298,777 14,082,485 5,841,540 5,170,531 

2017 19,778,474 41,706,600 5,640,766 5,556,436 14,121,693 5,666,294 5,488,813 

2018 18,780,985 40,505,173 4,768,125 5,523,795 14,477,159 5,892,946 5,548,325 
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Table 8. Annual sales data of products, continued 

Year Drones OLED Displays Digital photo frames Smart watches Fitness Trackers 

2006   1,450,000   
2007   5,262,000   
2008   7,472,040   
2009   9,319,000   
2010   9,133,000   
2011   7,970,000  3200000 
2012   6,535,000 5000 8415000 
2013 127,500 9000 5,118,000 6000000 10267000 
2014 449,700 38000 3,275,520 2355000 16800000 
2015 1,145,000 72200 2,075,000 10597500 20254000 
2016 2,425,000 181000 1,524,500 9007875 22824000 
2017 3,400,000 532972 1,189,110 8106888 21217000 
2018 4,448,000 971279 986,149 7944890 20656000 

 

Table 9. Average mass of additional products in uncertainty analysis. 

For drones (0.947 kg) and fitness trackers (0.025 kg), lab scale average mass data was available. Average 
mass of other products was collected from alternate sources (Table above). 

Product 
Category Size Model Mass (kg) Data Source 

OLED TVs 
 
 
 
 
 
 
 
  

55" LG C9 55-inch Class 4K Smart OLED TV  19 

Manufacturer website 

65" LG C9 65-inch Class 4K Smart OLED TV 25 
77" LG C9 77-inch Class 4K Smart OLED TV 30 
65" LG E9 Glass 65-inch Class 4K Smart OLED TV  20 
55" LG E9 Glass 55-inch Class 4K Smart OLED TV  16 
55" LG B8PUA 4K HDR Smart OLED  16 
55" SONY 55" Class - OLED - A9G MASTER Series  19 

Seller Website -Best 
Buy 65" Sony - 65" Class - OLED - A9G MASTER Series  21 

77" Sony - 77" Class - OLED - A9G MASTER Series 35 

  OLED TVs average mass = 22   

Smart Watches 
 
 
 
  

38 mm Apple Watch Series 3 (38mm)  0.05 

consumerreports.org 
40 mm Apple Watch Series 4 (40mm)  0.07 

1.1" Samsung Galaxy Watch Active smartwatch 0.05 
1.3" Samsung Gear S2 smartwatch 0.06 
1.3" Samsung Gear S3 Frontier smartwatch 0.09 

  Smart watches average mass = 0.06   

Portable GPS 
Navigation 

 
 
  

5" Magellan RoadMate 5375T-LMB GPS 0.17 

consumerreports.org 6 " Magellan RoadMate 5330T-LM GPS 0.17 
6.1" Garmin nuvi 68LMT GPS 0.24 
5" Garmin nuvi 57LMT GPS 0.18 

  Portable navigation system average mass = 0.19   

Digital Photo 
Frames 

10” Insignia - 10" Widescreen LCD Digital Photo Frame 0.91 
Seller Website -Best 

Buy 8” Aluratek - 8" LCD Digital Photo Frame 0.64 
7” Polaroid Digital Photo Frame 7" Screen 0.32 

  Digital photo frame average mass = 0.62   
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APPENDIX B 
 

Product Adoption Cycle 

 

The case of audio-visual (AV) media is used to demonstrate that decline of one technology generation is 

not always predicated solely on substitution by the next generation. Figure 1 shows historic market 

adoption data of audio-visual media technologies -VCRs, DVD Players, Blu-rays and Streaming media 

players. It can be observed that the beginning of decline phase of all incumbent technologies coincides 

with that of the entry of a new competing technology, and in the case of Blu-rays and DVD Players 

market decline is triggered by the advent of new streaming media services, rather than a new product 

generation. 

 
 

 
Figure 1. Technological shifts and substitution phenomena in the historic adoption of audio-visual 

(AV) media technologies in US (Data from CTA 2017, as reported in Babbitt et al. 2017).  
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Product Lifespan Assumptions 

 

To characterize product lifespan, literature and data sources, including values provided by the consumer 

technology association were reviewed and compiled. Here, we define lifespan to be total time a product 

spends in a household before being discarded (to reuse, recycling, or ultimate disposal) and potentially 

including both in-use and storage times. These values are summarized in table below and converted to 

Weibull parameters for the predictive MFA model. 

 
 
Table 1: Lifespan estimates assumed: 
 

Products Maximum Minimum Mean Standard Deviation 

Basic mobile phone 7 1 2 2 

Blu ray Player 10 1 6 2 

CRT Monitor 13 1 9 3 

CRT TV 20 1 14 5 

Desktop CPU 10 1 4 2 

Digital Camcorder 14 1 6 3 

Digital Camera 14 1 5 3 

DVD Player 10 1 6 2 

E reader 5 1 3 1 

Gaming Consoles 10 1 4 2 

Laptops 9 1 4 2 

LED Monitor 10 1 4 2 

LED TV 10 1 6 2 

LCD Monitor 10 1 4 2 

LCD TV 10 1 6 2 

MP3 Player 7 1 4 2 

Plasma TV 10 1 7 2 

Printer 10 1 7 2 

Smart Phone 7 1 2 2 

Tablet 5 1 3 1 

VCR 15 1 8 4 

Drone 7 1 4 2 

Fitness Tracker 7 1 3 2 

Smart Thermostat 10 1 5 2 
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MFA model parameters for mature products 

 
Table 2: Logistic parameters from data and from curve fitting for mature products. 

 Data Logistic Curve Fitting 

Products 

Start 

Year Time to peak Peak Sales 

Growth 

rate 

Growth 

midpoint Decay rate 

Decay 

midpoint 

CRT TV 1962 38 30620000 0.14 20 1 6.3 

CRT Monitor 1980 19 16374168 0.27 16 0.63 7 

Desktop CPU 1980 19 16375290 0.27 16 0.17 15 

Laptops 1993 17 28843486 0.55 14 0.22 12 

LED Monitor 2009 5 6081601 0.7 3.4 0.81 6 

LED TV 2009 8 41706600 0.75 5.2 0.91 5.1 

LCD Monitor 2000 7 11095043 1.7 6.6 0.64 5.9 

LCD TV 2000 9 28239700 1.1 7.5 0.69 5.1 

Plasma TV 2002 9 4416000 0.73 4.7 1 3.8 

Printer 1980 28 22944000 0.31 18 0.19 12 

Tablet 2009 4 86466279 1.6 2.8 0.45 7.2 

 
 
Average Product Mass  

 

To translate product flows into cumulative mass flows, average mass data were collected from literature, 

direct weighing of sample products in the lab, and data compilations provided by the National Center for 

Electronics Recycling, who monitor product weight as part of e-waste compliance efforts in several U.S. 

states.  Since product mass may change over time for some products, mass averages were calculated to 

reflect the weighted averages reflecting consumption of given size products, mass of different sizes, and 

averages across multiple products measured. Product mass was held constant over time, to minimize 

variability attributed to factors other than product adoption, as the focus of the study. Additional detail 

about all product mass sources was given in Babbitt et al. 2017.  
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Table 3: Product mass assumptions 
 

Product Average Mass (kg) 

CRT TV 46 

CRT Monitor 20 

Desktop CPU 10 

Laptops 3 

LED Monitor 4 

LED TV 10 

LCD Monitor 5 

LCD TV 14 

Plasma TV 23 

Printer 8 

Tablet 0.6 

 
Estimating MFA model parameters for emerging products 
Table 4: Logistic parameters extracted for 15 products to identify temporal trends (Δt is used to 
calculate growth rate as growth rate=ln (81)/ Δt 
 

Products Market Entry Year 10% 90% Δt 50% Time to peak 

 CRT TV 1962 4.5 37.5 33 18.5 38 

 VCR 1977 6.5 22.5 16 15.5 23 

Desktop CPU 1980 3.5 19.5 16 17.5 19 

Digital camcorders 1985 1.5 25.5 24 11.5 25 

Satellite Set-Top Boxes 1986 9.5 27.5 18 17.5 27 

Basic mobile phone 1989 7.5 17.5 10 13.5 19 

Laptops 1993 9.5 16.5 7 15.5 17 

DVD player 1997 2.5 8.5 6 4.5 9 

MP3 player 1999 5.5 8.5 3 6.5 8 

LCD monitor 2000 4.5 7.5 3 6.5 7 

Portable Navigation Devices 2001 5.5 7.5 2 6.5 7 

Plasma TV 2002 2.5 8.5 6 4.5 8 

Cable Set-Top Boxes 2003 1 9.5 8.5 2.5 9 

Digital Photo Frames 2006 1 1.5 0.5 3.5 3 

Tablet 2009 1.5 4.5 3 2.5 4 

LED TV 2009 1.5 7.5 6 5.5 8 
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Figure 2: Exponential trend line for sigmoid midpoint of logistic adoption curve 

 
Figure 3: Exponential trend line growth rate of logistic adoption curve (represented by Δt) 

 

 

 

 

 

0

5

10

15

20

25

1960 1970 1980 1990 2000 2010

Ye
ar

Year of market entry

Sigmoid Midpoint
Sigmoid Midpoint Exponential Trendline

0

5

10

15

20

25

30

35

40

1960 1970 1980 1990 2000 2010

Ye
ar

s

Year of market entry

Δt
DeltaT Exponential Trendline



112 
 

Table 5. Products and peak sales units to households. 

 
 

Product Category Products Peak sales per household 

Computing 

LED Monitor 0.05 

LCD Monitor 0.10 

CRT Monitor 0.16 

Desktop 0.16 

Printer 0.20 

Laptop 0.25 

TV 

Plasma TV 0.04 

LCD TV 0.25 

CRT TV 0.29 

LED TV 0.35 

Audio-Visual 

IPTV 0.05 

Digital photo frames 0.08 

VOIP 0.09 

Blu-Ray 0.10 

Cable set top boxes 0.14 

Satellite Set top boxes 0.15 

Gaming 0.19 

DVD 0.20 

VCR 0.23 

 Answering Devices 0.25 

Small Mobile 

Camcorder 0.06 

Portable Navigation 0.14 

E reader 0.18 

Digital Camera 0.33 

MP3 0.43 

Phones 

Tablet 0.67 

Basic Phone 0.91 

Smart Phone 1.53 
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Table 6. Limited adoption and mainstream adoption ranges assigned to product categories 

Computing Min Max Average 

Limited adoption range 0.05 0.10   

Mainstream adoption range 0.17 0.21 0.19 

TV 
  

  

Limited adoption range 0.05 0.10   

Mainstream adoption range 0.27 0.33 0.30 

Audio-Visual 
  

  

Limited adoption range 0.05 0.10   

Mainstream adoption range 0.17 0.21 0.19 

Small Mobile 
  

  

Limited adoption range 0.05 0.10   

Mainstream adoption range 0.24 0.30 0.27 

Phones 
  

  

Limited adoption range 0.05 0.10   

Mainstream adoption range 0.93 1.14 1.04 

 

Logistic MFA Model Validation 

To confirm the logistic assumption of product adoption curves, growth and decline curve for each product 

was tested against candidate distributions using a ‘least squares’ approach as implemented in MATLAB. 

Goodness of fit parameters such as SSE (sum of squared errors), R-squared, Root Mean Squared Error 

(RMSE), AIC (Akaike information criterion) and BIC (Bayesian Information Criterion) were used to 

confirm that logistic curves were the best distribution to represent adoption cycle of electronics. AIC and 

BIC were calculated from parameters estimated through ‘least squares’ approach using the equations 

given below. 

 

 

AIC= n+ n log (2π) + n log (RSS/n) +2(p+1)                                  Eq (1) 

 

BIC= n+ n log (2π) + n log (RSS/n) +(log n) (p+1)                        Eq (2) 

 

Where RSS is the residual sum of errors, n is the number of observations and p is the number of 

parameters. 
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Table 7: Best Curve results 
 
For most products that have matured in the market, a logistic curve emerged to be the best fit curve, 

which was selected to represent all products. 

 

Products 

  

Curves Tested 

Goodness of fit 

  SSE R square 

Adjusted R 

Square RMSE AIC BIC 

 CRT TV 

growth 

linear 1.7E+14 9.5E-01 9.5E-01 2.1E+06 5.7E+02 5.7E+02 

logistic 1.3E+14 9.6E-01 9.6E-01 1.9E+06 5.7E+02 5.6E+02 

exponential 4.1E+14 8.8E-01 8.7E-01 3.3E+06 5.8E+02 5.8E+02 

decay 

linear 1.2E+14 8.2E-01 7.9E-01 4.5E+06 1.3E+02 1.2E+02 

logistic 3.7E+13 9.5E-01 9.4E-01 2.5E+06 1.2E+02 1.2E+02 

exponential 2.1E+14 7.0E-01 6.5E-01 5.9E+06 1.3E+02 1.2E+02 

 CRT 

monitor 

growth 

linear 7.5E+13 7.6E-01 7.5E-01 2.0E+06 2.9E+02 2.9E+02 

logistic 3.9E+13 8.7E-01 8.6E-01 1.5E+06 2.9E+02 2.9E+02 

exponential 1.4E+13 9.6E-01 9.5E-01 8.7E+05 2.8E+02 2.8E+02 

decay 

linear 3.2E+13 8.3E-01 8.0E-01 2.1E+06 1.4E+02 1.3E+02 

logistic 1.9E+13 9.0E-01 8.6E-01 1.8E+06 1.4E+02 1.3E+02 

exponential 5.0E+13 7.3E-01 6.9E-01 2.7E+06 1.4E+02 1.3E+02 

Desktop 

CPU 

growth 

linear 7.5E+13 7.6E-01 7.5E-01 2.0E+06 2.9E+02 2.9E+02 

logistic 3.9E+13 8.7E-01 8.7E-01 1.5E+06 2.9E+02 2.9E+02 

exponential 1.4E+13 9.6E-01 9.5E-01 8.7E+05 2.8E+02 2.8E+02 

decay 

linear 1.1E+13 9.5E-01 9.5E-01 8.0E+05 2.8E+02 2.7E+02 

logistic 1.1E+13 9.5E-01 9.5E-01 7.9E+05 2.8E+02 2.8E+02 

exponential 2.0E+13 9.1E-01 9.1E-01 1.1E+06 2.8E+02 2.8E+02 

Printer 

growth 

linear 2.0E+14 8.9E-01 8.9E-01 2.7E+06 4.3E+02 4.3E+03 

logistic 4.4E+13 9.8E-01 9.8E-01 1.3E+06 4.1E+02 4.1E+02 

exponential 1.8E+14 9.0E-01 9.0E-01 2.6E+06 4.3E+02 4.3E+02 

decay 

linear 6.5E+12 9.4E-01 9.4E-01 8.1E+05 1.7E+02 1.7E+02 

logistic 1.5E+13 8.7E-01 8.6E-01 1.2E+06 1.7E+02 1.7E+02 

exponential 3.2E+12 9.7E-01 9.7E-01 5.7E+05 1.6E+02 1.6E+02 

Laptops 

growth 

linear 3.4E+14 7.7E-01 7.5E-01 4.6E+06 2.8E+02 2.8E+02 

logistic 5.9E+13 9.6E-01 9.6E-01 1.9E+06 2.7E+02 2.6E+02 

exponential 2.7E+13 9.8E-01 9.8E-01 1.3E+06 2.6E+02 2.6E+02 

decay 

linear 6.9E+12 9.4E-01 9.3E-01 9.3E+05 1.4E+02 1.4E+02 

logistic 1.6E+13 8.6E-01 8.5E-01 4.1E+05 1.5E+02 1.4E+02 

exponential 4.4E+12 9.6E-01 9.6E-01 7.4E+05 1.4E+02 1.4E+02 
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Table 7: Best Curve results, continued 
 

Products 

  

Curves Tested 

Goodness of fit 

  SSE R square 

Adjusted R 

Square RMSE AIC BIC 

LCD 

monitor 

growth 

linear 3.0E+13 7.3E-01 6.8E-01 2.2E+06 1.2E+02 1.2E+02 

logistic 2.2E+12 9.8E-01 9.8E-01 6.1E+05 1.1E+02 1.1E+02 

exponential 2.0E+12 9.8E-01 9.8E-01 5.8E+05 1.1E+02 1.1E+02 

decay 

linear 2.4E+12 9.8E-01 9.8E-01 5.5E+05 1.4E+02 1.3E+02 

logistic 1.8E+12 9.9E-01 9.9E-01 4.7E+05 1.4E+02 1.3E+02 

exponential 5.5E+12 8.9E-01 8.7E-01 1.4E+06 1.5E+02 1.4E+02 

LCD TV 

growth 

linear 1.8E+14 8.2E-01 8.0E-01 4.8E+06 1.6E+02 1.5E+02 

logistic 6.3E+12 9.9E-01 9.9E-01 8.9E+05 1.4E+02 1.4E+02 

exponential 4.2E+13 9.6E-01 9.5E-01 2.3E+06 1.5E+02 1.5E+02 

decay 

linear 3.1E+13 9.5E-01 9.4E-01 2.3E+06 1.2E+02 1.2E+02 

logistic 3.0E+13 9.5E-01 9.4E-01 2.2E+06 1.2E+02 1.2E+02 

exponential 9.0E+13 8.5E-01 8.3E-01 3.9E+06 1.2E+02 1.2E+02 

Plasma TV 

growth 

linear 1.2E+12 9.4E-01 9.3E-01 4.2E+05 1.2E+02 1.2E+02 

logistic 9.4E+11 9.5E-01 9.5E-01 3.7E+05 1.2E+02 1.2E+02 

exponential 3.3E+12 8.3E-01 8.1E-01 6.9E+05 1.3E+02 1.2E+02 

decay 

linear 5.4E+10 9.9E-01 9.9E-01 1.3E+05 6.5E+01 6.1E+01 

logistic 6.7E+10 9.9E-01 9.9E-01 1.5E+05 6.8E+01 6.2E+01 

exponential 4.5E+11 9.4E-01 9.2E-01 3.9E+05 7.0E+01 6.6E+01 

LED 

Monitor 

growth 

linear 1.2E+12 9.3E-01 9.1E-01 5.5E+05 8.5E+01 8.0E+01 

logistic 1.9E+12 8.9E-01 8.7E-01 6.8E+05 8.8E+01 8.2E+01 

exponential 1.4E+12 9.2E-01 9.0E-01 5.8E+05 8.5E+01 8.1E+01 

decay 

linear 3.9E+11 8.6E-01 8.1E-01 3.6E+05 6.9E+01 6.6E+01 

logistic 3.4E+11 8.7E-01 8.3E-01 3.4E+05 7.1E+01 6.6E+01 

exponential 4.6E+11 8.3E-01 7.8E-01 3.9E+05 7.0E+01 6.6E+01 

LED TV 

growth 

linear 3.6E+13 9.8E-01 9.8E-01 2.3E+06 1.4E+02 1.3E+02 

logistic 1.9E+13 9.9E-01 9.9E-01 1.7E+06 1.4E+02 1.3E+02 

exponential 1.1E+14 9.4E-01 9.3E-01 4.0E+06 1.4E+02 1.4E+02 

decay No Data 
            

     
  

Tablet 

growth 

linear 9.8E+13 9.8E-01 9.7E-01 5.7E+06 8.1E+01 7.7E+01 

logistic 4.1E+13 9.9E-01 9.9E-01 3.7E+06 8.2E+01 7.6E+01 

exponential 5.9E+14 8.8E-01 8.4E-01 1.4E+07 8.5E+01 8.1E+01 

decay 

linear 3.2E+13 9.8E-01 9.7E-01 2.5E+06 1.1E+02 1.0E+02 

logistic 1.1E+14 9.1E-01 8.9E-01 4.8E+06 1.1E+02 1.1E+02 

exponential 3.3E+13 9.7E-01 9.7E-01 2.6E+06 1.1E+02 1.0E+02 
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The forecasting capability of the MFA model is validated by comparing e-waste flow forecasts generated 

by the model with past e-waste flow estimations in literature.  

 

 
Figure 4: Comparing MFA results to a U.S. Environmental Protection Agency (2011) study. 

Material flow calculations to understand implications of MFA results to CE planning. 

Product flow forecasts are applied to material profile of products to gain insights on key implications of 

MFA forecasts on circular economy planning.  

Table 8: Forecasting near term lead outflows from Cathode Ray Tube (CRT) devices 

Year 

CRT TV waste flow 

forecasts (metric 

tons) 

CRT Monitor waste 

flow forecasts (metric 

tons) 

Total CRT waste flows 

(metric tons) 

Forecasted Lead waste 

flow from CRTs (metric 

tons) 

2018 1.2E+06 7.1E+04 1.2E+06 7.4E+04 

2019 1.0E+06 4.6E+04 1.1E+06 6.5E+04 

2020 8.7E+05 2.8E+04 9.0E+05 5.4E+04 

2021 6.8E+05 1.6E+04 6.9E+05 4.2E+04 

2022 4.8E+05 9.1E+03 4.9E+05 2.9E+04 

2023 3.0E+05 5.0E+03 3.1E+05 1.9E+04 

2024 1.7E+05 2.7E+03 1.7E+05 1.0E+04 

2025 8.4E+04 1.4E+03 8.5E+04 5.1E+03 

 
Lead waste flow forecasts assume 6% lead content per ton of CRT device as reported by Babbitt et al 
(2017). 
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Table 9: Forecasting near term indium flows from Flat panel TVs (LCD and LED). 

 

Year 

LCD TV 

waste flow 

forecast 

(units) 

LED TV 

waste flow 

forecast 

(units) 

Total Flat 

panel TV 

waste flow 

forecast 

(units) 

LED TV 

sales 

forecast 

(units) 

LCD TV 

sales 

forecast 

(units) 

Total Flat 

panel TV 

sales 

forecast 

(units) 

Forecasted 

Indium 

waste flows 

(metric tons) 

Forecasted 

Indium 

demand 

(metric tons) 

2018 2.1E+07 8.4E+06 3.0E+07 4.1E+07 1.8E+06 4.3E+07 7.7E+00 1.1E+01 

2019 2.0E+07 1.3E+07 3.2E+07 3.9E+07 9.5E+05 4.0E+07 8.4E+00 1.0E+01 

2020 1.7E+07 1.7E+07 3.4E+07 3.6E+07 4.9E+05 3.7E+07 8.9E+00 9.6E+00 

2021 1.4E+07 2.2E+07 3.6E+07 3.0E+07 2.5E+05 3.1E+07 9.4E+00 8.0E+00 

2022 1.1E+07 2.7E+07 3.8E+07 2.2E+07 1.2E+05 2.2E+07 9.8E+00 5.7E+00 

2023 7.6E+06 3.1E+07 3.8E+07 1.3E+07 6.2E+04 1.3E+07 1.0E+01 3.3E+00 

2024 4.9E+06 3.3E+07 3.8E+07 6.2E+06 3.1E+04 6.3E+06 9.9E+00 1.6E+00 

2025 3.0E+06 3.4E+07 3.7E+07 2.7E+06 1.6E+04 2.8E+06 9.6E+00 7.2E-01 

 
 

Indium flow forecasts assume 260 mg indium content per flat panel TV as reported by Babbitt et al 

(2017). 

 
Table 10: Forecasting near term cobalt flows from laptops. 

Year 

Laptop waste 

flow forecasts 

(metric tons) 

Laptop sales 

forecasts 

(metric tons) 

Forecasted 

LIB demand 

(metric tons) 

Forecasted LIB 

waste flow 

(metric tons) 

Forecasted cobalt 

waste flows 

 (metric tons) 

Forecasted 

cobalt demand 

(metric tons) 

2018 7.1E+04 6.0E+04 8.4E+03 9.9E+03 1.3E+03 1.1E+03 

2019 6.9E+04 5.5E+04 7.8E+03 9.6E+03 1.2E+03 1.0E+03 

2020 6.6E+04 5.1E+04 7.1E+03 9.2E+03 1.2E+03 9.3E+02 

2021 6.3E+04 4.6E+04 6.5E+03 8.8E+03 1.1E+03 8.4E+02 

2022 5.9E+04 4.2E+04 5.8E+03 8.3E+03 1.1E+03 7.6E+02 

2023 5.5E+04 3.7E+04 5.2E+03 7.7E+03 1.0E+03 6.7E+02 

2024 5.1E+04 3.2E+04 4.5E+03 7.1E+03 9.3E+02 5.9E+02 

2025 4.7E+04 2.8E+04 3.9E+03 6.5E+03 8.5E+02 5.1E+02 

 

Cobalt flow forecasts assume 14% LIB (Lithium ion battery) content in laptops and 13% cobalt content in 

LIBs as reported by Buchert et al (2012). 
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Table 11: Average material profile of drones  

 

Aluminum Copper Steel Plastic PCB LIB 

Flat 

Panel 

Glass 

Others 

Total 

mass 

(g) 

3% 3% 15% 54% 10% 14% 1% 3% 947 

Data Source: Product disassembly data 

 
 
Table 12: Cobalt demand forecast for drones. 

 

Year 
Drone sales 

forecasts (units) 

Drone sales 

forecasts (metric 

tons) 

Forecasted LIB 

demand for 

drones  

 (metric tons) 

Forecasted cobalt 

demand for drones 

(metric tons) 

2013 5.3E+04 5.0E+01 7.2E+00 9.4E-01 

2014 1.7E+05 1.6E+02 2.3E+01 3.0E+00 

2015 5.1E+05 4.9E+02 7.0E+01 9.1E+00 

2016 1.4E+06 1.3E+03 1.9E+02 2.5E+01 

2017 3.0E+06 2.8E+03 4.0E+02 5.2E+01 

2018 4.5E+06 4.3E+03 6.2E+02 8.0E+01 

2019 5.4E+06 5.1E+03 7.4E+02 9.6E+01 

2020 5.7E+06 5.4E+03 7.8E+02 1.0E+02 

2021 5.4E+06 5.1E+03 7.4E+02 9.6E+01 

2022 4.5E+06 4.3E+03 6.2E+02 8.0E+01 

2023 3.0E+06 2.8E+03 4.0E+02 5.2E+01 

2024 1.4E+06 1.3E+03 1.9E+02 2.5E+01 

2025 5.1E+05 4.9E+02 7.0E+01 9.1E+00 

Cobalt demand forecasts as based on most likely adoption scenario of drones. 
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Table 13: Annual sales data of emerging products in units sold to residential sector. Data were 

provided by the Consumer Technology Association. 2018 and 2019 values are projections made by 

CTA. 

 

Year Fitness Trackers Drones Smart 
Thermostats 

OLED TVs 

2011 32,00,000    

2012 8,415,000    

2013 10,267,000 127,500 425,000  

2014 16,800,000 449,700 1,020,000  

2015 20,254,000 1,144,670 1,550,000  

2016 22,824,000 2,425,000 3,256,000  

2017 21,217,000 3,109,000  532,140 

2018 20,656,000 3,363,260  771,603 

2019  3,544,854  1,234,565 
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APPENDIX C 
 

 Table 1. Sustainability Metrics Definition 

Sustainability 
Aspects Metric Unit Definition DataSource

Global Warming 
Potential (GWP) kg CO2 eq

 Quantifies the supply chain emissions from 
processes required to extract and product 

materials for use in CT products.

Ecoinvent database, Simapro LCA 
Software

Cumulative Energy 
Demand (CED) MJ

Quantifies the net energy and fuel resources 
associated with extracting and producing a 

material for use in a CT product.

Ecoinvent database, Simapro LCA 
Software

Mineral Resource 
Demand (MRD) kg Fe eq

  Analyzes the life cycle input of mineral 
resources associated with extracting and 

producing a material for use in a CT product.

Ecoinvent database, Simapro LCA 
Software

Supply Chain 
Ecotoxicity  PAF.m3.day

Quantifies the potential toxicity of a wide array 
of chemicals emitted into freshwater systems 

in a materials’ production chain.
USEtox Characterization Factors

Direct Ecotoxicity
 species∙yr/kg 

1,4-DBC 
emitted to 

freshwater eq

Represents the potential toxic effect of a metal 
on freshwater eco system, if is emitted into 

freshwaters.

ReCiPe Method, Characterization 
factors

En
vi

ro
nm

en
ta

l
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Table 1. Sustainability Metrics Definition- Continued

 

Sustainability 
Aspects Metric Unit Definition DataSource

Global reserves metric tons Reserve is the working inventory of supply of 
economically extractable mineral commodity.

USGS 
Mineral Commodity Summaries 2018

Ore concentration
% Percentage of material content in its ore

Sverdrup et al (2017)

Annual Production metric tons Mine production of a metal in year 2017. USGS 
Mineral Commodity Summaries 2018

Static Index of 
Depletion year

Ratio of global reserve of a material to the 
annual demand or production of the material. 
Reserve is the working inventory of supply of 
economically extractable mineral commodity.

Calculated

Herfindahl-Hirschman 
Index (HHI) -

Measures the geographical concentration of 
material production. The HHI value is always 
positive with higher values indicating a more 

concentrated production (undesirable).

Calculated based on producer 
countries information from USGS 

Price $/pound Metal price in year 2017 USGS 
Mineral Commodity Summaries 2018

Price Volatility Annual change in material price expressed as 
5 year (2014-2018) coefficient of variation 

Calculated price information from 
USGS 

Import Reliance-US 
Perspective

Percentage of total material consumed in the 
US annually that is imported.

USGS 
Mineral Commodity Summaries 2018

Electronics Sector 
Demand %

Measures material use in electronic sector, as 
the percentage of annual mine production of a 

material.
Gradeal et al (2015)

Ec
on

om
ic
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Table 1. Sustainability Metrics Definition- Continued 

 
 

 

 

 

 

 

 

 

 

 

Sustainability 
Aspects Metric Unit Definition DataSource

So
ci

al PSAV-Herfindahl-
Hirschman index

 (PSAV-HHI)
-

PSAV-Herfindahl-Hirschman index-In addition 
to considering how concentrated the 

production of a given material is, this metric 
also considers the socio-political stability of 
the producer countries to evaluate risk to 

business continuity. The WGI-PSAV weighting 
metric can be positive or negative, with 

negative indicating less stability and more 
violence.

Calculated based on country level 
PSAV Data from World Bank and HHI
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Table 2. Recycling Potential Metrics Definition. 

 
 

 

 

 

 

 

Sustainability 
Aspects Metric Unit Definition DataSource

Theoretical Recycling 
Efficiency in US %

 Represents amount of old scrap recovered 
and reused relative to the amount available to 

be recovered and reused.
Graedel et al (2011)

Secondary Material 
Use in US % Represents the fraction of the apparent metal 

supply that is scrap on an annual basis. Graedel et al  (2011)

Theoretical Circularity 
Potential -

Calculated as ratio of material waste to 
material demand in electronics in year 2018, 

from Chapter 1 MFA results

Calculated based on e-waste 
estimation from Chapter 1

Material Dilution in E-
waste %

Calculated as ratio of material waste mass to 
total e-waste mass estimated for  2018, based 

on from Chapter 1 MFA results.

Calculated based on e-waste 
estimation from Chapter 1
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Table 3. Economic aspects of sustainability associated with material sourcing represented using metrics such as global reserves, ore 

concentration, annual mine production, rate of depletion (static index of depletion) and HHI (geographical concentration of production. 

 

 

Global Reserves 
(metric tons)

Ore 
concentration 

(%)

Annual Mine 
Production

(metric tons)

Static Index 
of depletion 
based on 
reserve 
(years)

Geographical 
Concentration 
of Production 
(HHI Index)

Production % 
as byproduct

Al 7,000,000,000      50% 60,000,000        117 0.31 0%
Cu 790,000,000        3% 19,700,000        42 0.16 9%
Mg 40% 1,100,000         0.72 4%
Fe 80,000,000,000    55% 1,700,000,000   47 0.28 0%
Ni 74,000,000          1% 2,100,000         35 0.10 2%
Zn 230,000,000        6% 13,200,000        17 0.20 10%
Ti 930,000,000        35% 170,000            130 0.26 0%
Au 54,000                 0% 3,150                17 0.13 15%
Ag 530,000               0% 25,000              21 0.13 71%

PGM 69,000                 0% 474                   146 0.51 16%
Sb 1,500,000            0% 150,000            10 0.55 80%
Ba 290,000,000        7,700,000         38 0.19 2%
Co 7,100,000            5% 110,000            65 0.36 85%
Ga 50,000                 0% 292                   43 0.25 100%
Gr 270,000,000        1,160,000         233 0.45
In 1,000                   0% 720                   2 0.30 1%
Li 16,000,000          1% 43,000              372 0.32 52%

Mn 680,000,000        55% 16,000,000        43 0.18 3%
Ta 110,000               1,300                85 0.21 28%
Te 31,000                 0% 420                   74 0.47 100%
Sn 4,800,000            8% 290,000            17 0.05 3%
V 20,000,000          5% 80,000              250 0.37 82%

REEs 110,000,000        5% 130,000            846 0.68 100%
Pb 88,000,000          3% 4,700,000         19 0.29 10%
Hg 2,500                200 0.66 10%
Cr 810,000,000        55% 310,000,000      3 0.30 2%
Cd 500,000               0% 23,000              23 0.19 1%
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Table 4. Economic aspects of sustainability associated with material production as by product. 

 

Materials Production % as 
byproduct Parent Metal 

B
as

e 
 M

et
al

s 

Al 0% - 
Cu 9% Ni (5%), Au (2%), Pb/Zn (2%), Ag, Pt 
Mg 4% K(Potash) 
Fe 0% - 
Ni 2% Pt, Pd 
Zn 10% Cu 
Ti 0% - 

Pr
ec

io
us

  
M

et
al

s Au 15% Cu (12%), Zn, Ag 
Ag 71% Zn/Pb (36.5%), Cu (23.5%), Au (10.4%), Other (0.5%) 

PGM* 16% 16% represents Pt production from Ni. 

C
rit

ic
al

  
M

et
al

s 

Sb 80% Pb (40%), Ag (16%), W (12%), Sn (8%), Au (4%) 
Ba 2% Cu, Au, Pb, Ag, Zn and fluorite 
Co 85% Ni (50%), Cu (35%), Pt, Pd, As 
Ga 100% Al, Zn 
Gr     
In 1% Zn (80%), Sn (15%), Cu (5%) 
Li 52% K(Potash) 

Mn 3% Fe 
Ta 28% Sn slag (15%), Nb (13%) 
Te 100% Cu (>90%), Pb and Bi (<10%) 
Sn 3% Zn (2%), Ta (0.4%), Cu (0.1%) 
V 82% Fe (62%), Alumina (12%) 

REEs 100% Fe  

H
az

ar
do

us
 

M
et

al
s 

Pb 10% Zn, Cu 
Hg 10% Au-Ag 
Cr 2% Pt 
Cd 1% Zn 

Note: Only 16% of Pt is produced as by-product while 100% of Ru, Rh, Pd, Os and Ir are produced as by-products of Pt. 
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Table 5. Economic aspects of sustainability associated with material availability represented using metrics such as price, price volatility, 

electronic sector consumption and import reliance in the US. 

 

 

Price ($/lb)

Price Volatility
 (5 year 

coefficient of 
variation)

Import Reliance:
 US Perspective 

(% of total 
consumption)

Electronics 
Sector 

Consumption 
(% of total 
production)

Al 0.99 0.1 61% 7%
Cu 2.85 0.2 33% 4%
Mg 2.15 0.0 25% 6%
Fe 0.28 0.3 18% 6%
Ni 4.60 0.2 59% 11%
Zn 0.34 0.1 85% 17%
Ti 0.09 0.1 53% 12%
Au 18261 0.1 0% 6%
Ag 249 0.2 62% 25%
Pd 12464 0.1 45% 10%
Pt 13913 0.2 68% 3%
Rh 15217 0.2 1%
Sb 4.01 0.1 85% 26%
Ba 0.08 0.1 75% 16%
Co 26.6 0.4 72% 22%
Ga 202 0.3 100% 67%
Gr 0.64 100% 25%
In 164 0.3 100% 84%
Li 6.95 0.4 50% 46%

Mn 0.00 0.1 100% 2%
Ta 87.7 0.1 100% 48%
Te 16.4 0.5 75% 6%
Sn 9.50 0.1 75% 48%
V 5.20 0.2 100% 9%
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Table 5. Economic aspects of sustainability associated with material availability represented using metrics such as price, price volatility, 

electronic sector consumption and import reliance in the US. Continued 

 

 

 

 

 

 

 

 

Price ($/lb)

Price Volatility
 (5 year 

coefficient of 
variation)

Import Reliance:
 US Perspective 

(% of total 
consumption)

Electronics 
Sector 

Consumption 
(% of total 
production)

La 1.36 0.5 100% 16%
Ce 1.36 0.5 100% 10%
Pr 52.3 0.2 100% 5%
Nd 26.1 0.2 100% 76%
Eu 35.2 1.1 100% 100%
Sm 73%
Gd 48.26 0.0 100% 21%
Y 3.64 0.5 100%
Tb 215.91 0.3 100%
Dy 84.09 0.4 100% 100%
Pb 1.12 0.1 40% 80%
Hg 13.16 0.5 0% 10%
Cr 4.75 0.1 69% 5%
Cd 0.77 0.2 25% 66%
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Table 6. Environmental aspects of sustainability using metrics such as global warming potential (GWP), cumulative energy demand 

(CED) and mineral resource demand (MRD). 

 

GWP 
 (kg CO2eq)

CED  
(kgCO2 eq)

MRD (kgFeeq)
Supply Chain 
Ecotoxicity 

(PAF.m3.day)

Direct EcoToxicity 
(species∙yr/kg 1,4-

DBC emitted to 
freshwater eq)

Al 20 222 0.4 338,003          -
Cu 4.1 61 53 1,375,377        162
Mg 32 401 1 217,045          -
Fe 2 21 1 6,080              -
Ni 12 177 45 392,609          46
Zn 5 62 4 79,350            211
Ti 0 4 0.05 222,666          -
Au 17083 256403 81312 5,438,507,700 -
Ag 360 5492 1424 19,497,900      485
Pd 6117 84645 32322 143,142,550    -
Pt 29145 368365 140481 1,040,594,500 -
Rh 26849 344844 130323 912,131,180    -
Sb 10 149 4 2,730,766        -
Ba 0 1 0 31,400            3
Co 10 137 2 118,931          6
Ga 195 2737 10 624,480          -
Gr 2 55 0 14,000            -
In 223 2715 118 3,707,743        -
Li 168 2514 5 616,750          -
Mn 4 62 179 96,481            -
Ta 305 4748 46 2,612,227        -
Te 8 135 28 782,272          -
Sn 22 327 1486 186,181          5
V 33 516 178
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Table 6. Environmental aspects of sustainability using metrics such as global warming potential (GWP), cumulative energy demand 

(CED) and mineral resource demand (MRD). Continued 

 

 

 

 

 

GWP 
 (kg CO2eq)

CED  
(kgCO2 eq)

MRD (kgFeeq)
Supply Chain 
Ecotoxicity 

(PAF.m3.day)

Direct EcoToxicity 
(species∙yr/kg 1,4-

DBC emitted to 
freshwater eq)

La 11 215 2 11,223            -
Ce 13 252 1 11,223            -
Pr 19 376 4 11,223            -
Nd 18 344 4 11,223            -
Sm 59 1160 2 116,552          -
Eu 395 7750 2 116,552          -
Gd 47 914 116,552          -
Y 11,223            -
Tb 297 5820 11,223            -
Dy 60 1170 11,223            -
Ho 226 4400 11,223            -
Tm 649 12700 11,223            -
Yb 125 2450 11,223            -
Lu 896 17600 11,223            -
Pb 1 17 2 24,978            1
Hg 15 126 0 60,101            50
Cr 31 538 36 352,895          87
Cd 1 17 0 10,766            17
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Table 7. Potential for recycling as a sustainability solution quantified using metrics such as theoretical recycling efficiency, secondary 
material availability, theoretical potential for circularity and material dilution in e-waste. 

 

Theoretical 
Recycling 

Efficiency in 
US

Secondary 
Material Use 

in US 

Theoretical 
Circularity 
Potential 

Material 
Dilution in 
E-waste

Al 42% 36% 1.97 4.656%
Cu 43% 30% 2.52 3.935%
Mg 39% 33% 2.37 0.015%
Fe 52% 41% 1.49 24.170%
Ni 57% 41% 2.29 0.130%
Zn 19% 27% 3.42 0.173%
Ti 91% 52% 1.80 0.000%
Au 96% 29% 2.37 0.004%
Ag 97% 32% 2.37 0.013%
Pd 65% 50% 2.37 0.001%
Pt 76% 16% 2.37 0.000%
Rh 65% 40%
Ru 10% 55%
Ir 25% 18%

Os 0% 0%
Sb 89% 20% 2.37 0.033%
Ba 0% 0% 0.926%
Co 68% 32% 1.31 0.249%
Ga 0% 38% 2.26 0.000%
Gr 0% 0% 1.31 0.214%
In 0% 38% 1.52 0.001%
Li 0% 0% 1.31 0.029%

Mn 53% 37% 2.37 0.012%
Ta 35% 21% 2.37 0.002%
Te 0% 0% 0.000%
Sn 75% 22% 2.37 0.288%
V 0% 0% 0.000%

Materials

Ba
se

 M
et

al
s

Pr
ec

io
us

 M
et

al
s

C
rit

ic
al

 m
et

al
s



 

131 
 

Table 7. Potential for recycling as a sustainability solution quantified using metrics such as theoretical recycling efficiency, secondary 

material availability, theoretical potential for circularity and material dilution in e-waste. Continued 

 

 

 

 

 

 

 

 

 

Theoretical 
Recycling 

Efficiency in 
US

Secondary 
Material Use 

in US 

Theoretical 
Circularity 
Potential 

Material 
Dilution in 
E-waste

Ln 5% 0% 5.42 0.000%
Ce 5% 5% 4.47 0.000%
Pr 0% 5% 5.42 0.000%
Nd 0% 0% 1.25 0.005%
Eu 0% 0% 5.23 0.0000%
Gd 0% 5% 0.77 0.0000%
Y 0% 0% 4.75 0.0003%
Tb 0% 0% 5.42 0.0000%
Dy 0% 0% 1.29 0.0001%
Pb 95% 63% 2.37 3.373%
Hg 5% 38% 2.37 0.000%
Cr 87% 20% 2.37 0.003%
Cd 15% 14% 0.002%
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Table 8. Major use sectors. 

Materials Major Use Sector Use (%) 

Cd Batteries  66% 

Cr Infrastructure Steel  25% 

Hg Gold Mining  21% 

Pb Batteries  80% 

Dy Neodymium magnets  100% 

Gd Neodymium magnets  69% 

Eu Phosphors 100% 

Sm Battery alloy  73% 

Nd Neodymium magnets 76% 

Pr Neodymium magnets 70% 

Ce Glass Polishing  25% 

La Fluid cracking catalysts  46% 

V Steel Alloy 43% 

Sn Solder  54% 

Te Metallurgy  48% 

Ta Capacitors  100% 

Mn Metallurgy  90% 

Li Batteries  46% 

In Flat Panel Displays  84% 

Gr Refractories  35% 

Ga Integrated Chips 67% 

Co Batteries  80% 

Ba Oil Industry  54% 

Sb Flame Retardants  51% 

Rh Auto catalyst  86% 
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 Major Use Sector Use % 

Pt Auto catalyst 33% 

Pd Auto catalyst  54% 

Ag Electrical  23% 

Au Jewelry  62% 

Ti Pigments 88% 

Zn Galvanizing 50% 

Ni Industrial machinery  31% 

Fe Construction  48% 

Mg Refractories  86% 

Cu Electrical  26% 

Al Automotive applications  28% 
 

 
Figure 1. Comparing the average material composition of a typical 14-inch laptop to the relative contribution to total material carbon footprint 

(supply chain greenhouse gas impact of producing all materials contained in the average laptop bill of materials). It is to be noted that reported 

carbon footprint is material specific and do not include production manufacturing and use phase impacts. Analysis is performed by applying global 

warming potential metric to laptop material profile compiled for MFA in chapter 2. 
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Table 9. Battery materials recycling yields, defined as the ratio of material recovered to total material input to a recycling process (does 
not account for collection, etc.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Battery 
Materials 

Current 
Recycling 

Yield 

Lab 
Scale 
Yields 
(Mid) 

Lab 
Scale 
Yields 
(High) 

Co 68% 80% 99% 

Li 0% 55% 10% 

Al 42% 55% 98% 

Ni 57% 99% 99% 

Mn 0% 92% 98% 
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