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Abstract 
 

The miniaturization trend of transistors and increase in packing density of electronic devices 

has resulted in high heat flux generation, which has created a need for efficient heat removal 

systems. The present research is an experimental study of pool boiling using plain copper chip 

and microchannel chip with boiling surface of 34.5mm x 32mm. Three dielectric fluids, 

Perfluoro-2-methylpentane (PP1), perfluoro-methyl-cyclopentane (PP1C), and fluorocarbon 

(FC-87) were used in a closed loop pool boiling system to determine their performance at 

atmospheric pressure. The pool boiling results have been compared with literature for a boiling 

surface of 10 mm x 10 mm to study the effect of heater size.  

To improve the performance of the pool boiling system, we desire high critical heat flux and 

low surface temperatures. In the current study, we introduced two external structures fitted on 

the test surfaces for regulating the flow of vapor through specific structures and generating 

independent liquid-vapor pathways without any deposition and/or chemical surface 

modifications of the test surface. Firstly, an array of hollow conical structures (HCS) called 

volcano manifold are printed using additive manufacturing technique. A critical heat flux 

(CHF) of 28.1 W/cm², 38.3 W/cm² and 32.5 W/cm² was achieved for volcano manifold with 

plain copper chip using PP1, PP1C and FC87 respectively giving 19%, 33% and 6.5% 

enhancement in CHF respectively as compared to a plain chip without volcano manifold. 

Secondly, dual taper manifold having taper angle of 15° is printed using a stereolithography 

(SLA) additive manufacturing technique. Plain chip with dual taper manifold gave the CHF of 

25.6 W/cm², 31.7 W/cm² and 32.3 W/cm² for PP1, PP1C and FC-87, respectively. These results 

indicate a deterioration in CHF caused by vapor constriction. In addition, the heater size effect 

was studied by comparing the pool boiling performance of a plain copper boiling surface of 

34.5 mm x 32 mm (Large heater) with 10 mm x 10 mm (Small heater) from published literature 

for all three refrigerants. It was noted that 31%, 66% and 104% increment in maximum heat 
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transfer coefficient was obtained for PP1, PP1C and FC-87 respectively with larger heater over 

smaller heater at CHF. The geometrical parameters of the enhancement structures were based 

on published results for water. The results show that the external surface modification 

techniques require further geometrical parameter optimization as the current designs based on 

water performance caused vapor constriction effects that caused performance deterioration for 

dielectric fluids.  
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1. Introduction 
 

The electronics industry has improved performance and reduced size of electronic components 

over the last several decades. However, this reduction in size and improved performance of 

electronic components have resulted in increased thermal loads. Pool boiling is an attractive 

option for dissipation of large qualities of heat since it utilises phase change from liquid to 

vapor and latent heat of vaporization of the working fluid. Thus, two-phase cooling using 

boiling has more advantages than using air as single-phase cooling technique. Two-phase 

cooling has great application in cooling of data centres, boilers, heat exchangers, powered 

electronics and nuclear reactors. The performance of the pool boiling system is limited by 

critical heat flux (CHF), where at high heat flux bubble coalescence creates a vapor blanket 

over the heater surface. Whereas, heat transfer coefficient (HTC) dictates how effectively heat 

is dissipated from the heater surface. Performance of two-phase cooling is enhanced by 

dissipation of a large amount of heat through the test surface while keeping surface temperature 

at a minimum. Researchers have incorporated different enhancement techniques over the test 

surface such as roughing the surface[1], microporous coatings [2], finned surfaces [3] and 

nano-structures [4] to improve heat transfer performance. 

Additive manufacturing allows the manufacturing of complex designed components through 

three-dimensional models layer-by-layer at a low cost. Taking advantage of additive 

manufacturing for creating pool boiling structures is an unexplored field.   
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1.1 Pool Boiling Heat Transfer 
 
Pool boiling is the process in which a heater surface is submerged in a pool of liquid. As the 

heater surface temperature rises above the saturation temperature of the liquid at a given 

pressure. Bubbles are formed and vapor is generated as a result of the boiling process. During 

this time, heating surface temperature is greater than saturation temperature of liquid and the 

difference in temperatures is defined as degree of wall superheat (ΔTsat). Heat flux (𝑞′′) 

represents the amount of heat dissipated by the heating surface per unit area and is measured 

in W/cm2.  

  

The initial work conducted by Nukiyama [5] in 1934 led to the understanding of the 

dependence of heat flux on wall superheat. Platinum, nichrome and nickel wires were tested 

with water at atmospheric pressure to identify the four regimes of pool boiling curve: 

1. Free/Natural convection boiling 

2. Nucleate boiling 

3. Transition boiling 

4. Film boiling 

The four regimes of pool boiling curve are shown in Figure 1 with wall superheat (ΔTsat) i.e. 

temperature difference between the heater surface temperature and saturated liquid on X-axis 

and heat flux (𝑞′′) i.e. heat dissipated from the surface on Y-axis. The pool boiling curve is 

dependent on the properties of the heating surface and also on the liquid used.  
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Figure 1. Pool boiling curve. 

1.1.1 Free/Natural Convection Boiling 
 
Figure 1 shows free convection boiling from origin to point 'A'. At low heat flux, the surface 

temperature of heating surface (Twall) is greater than the saturation temperature of pool of liquid 

(Tsat). Liquid near the heating surface is at a higher temperature than the pool of liquid, thus 

decreasing the density of liquid close to the surface. This temperature difference results in 

creating a density gradient allowing the hot liquid to move upwards and cold liquid to move 

over the heating surface. Thus, natural convective heat is transferred from the heating surface 

to the pool of liquid and sustains until point 'A'. 
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1.1.2 Nucleate Boiling 
 

Bubbles nucleate from cavities present on the heating surface. When bubbles first start to 

nucleate at point 'A' from the heating surface, it is referred to as the Onset of Nucleate Boiling 

(ONB). The region shown between A-B in Figure 1 is a partially developed nucleate boiling 

region. Isolated bubbles nucleate at various nucleation sites over the heating surface and escape 

into the liquid bulk, providing space for liquid to occupy over heating surface thus increasing 

the heat transfer coefficient (HTC). In the region B-C bubble nucleation increases and bubbles 

from different nucleation sites coalesce to form continuous vapor jets or columns of bubbles. 

Thus point 'B' is referred to as the transition from partial nucleate boiling to fully-developed 

nucleating boiling. Point 'C' is called Critical Heat Flux (CHF) where a sudden increase in 

heater surface temperature is achieved and is shown by dotted line from C-E.   

  

1.1.3 Transition Boiling  
 
Other boiling regimes are achieved by controlling heat flux as the input parameter. Whereas, 

the transition boiling region shown between C-D in Figure 1, is achieved by controlling the 

wall superheat. An unstable vapor film is created after the system reaches CHF. The film has 

low thermal conductivity, thus decreasing the heat flux and increasing ΔT. 

 

1.1.4 Film Boiling 
 
At point 'C' frequency of bubble nucleation increases and bubbles coalesce with neighbouring 

vapor columns of bubbles, forming an insulating vapor film. The vapor film prevents the liquid 

from coming in contact with the heater surface thereby increasing the surface temperature. At 

this point, heat is transferred through radiation and conduction from the heater surface to the 

liquid. The plot can be traced from point E-D by decreasing the heat flux, thus point 'D' is 

called the Leidenfrost point where heat flux is minimum (𝑞𝑚𝑖𝑛
′′ ).    
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1.2 Additive Manufacturing 

Additive manufacturing (AM) refers to the process of creating 3D parts from computer aided 

design (CAD) models by successively adding material layer by layer until a physical part is 

created [6]. Additive manufacturing is most commonly called "3D Printing." AM technology 

enables a new approach of design driven manufacturing process and allows for manufacturing 

of highly complex structures which could be a constraint for the conventional manufacturing 

process. Figure 2 shows the schematic for 3D printing process. 

  

 
Figure 2. Schematic of 3D printing process. 

  

Additive manufacturing is divided into following seven categories: 

1. Stereolithography  

2. Fused Deposition Modelling  

3. Material Jetting 

4. Binder Jetting 

5. Sheet Lamination 

6. Powder Bed Fusion 

7. Directed Energy Deposition 
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In the current study stereolithography and fused deposition additive manufacturing have been 

used to fabricate the manifolds for the test section. Stereolithography (SLA) is used for its 

ability to print complex geometric shapes with a smooth surface finish while maintaining high 

precision. Form 2 3D printer works on the principle of SLA and is used in the current study. It 

has an accuracy of 0.050 mm and print with layer thickness with as low as 25 µm for smooth 

surface finish.  Whereas, fused deposition (FDM) is used for its speed and is able to print 3D 

parts with high accuracy. FDM technique is very helpful in creating prototype design while 

keeping it cost friendly. Filaments used in FDM technique range from $20 to $70 per kg, 

making it cost friendly for initial trial prototyping of design.  

 

1.2.1 Stereolithography (SLA) 
 
Stereolithography is a vat photopolymerization AM method. SLA is based on the principle of 

using a light source-laser to cure photopolymer liquid resin into hardened plastic [7]. It was in 

1986, Charles (Chuck) Hull patented the technology for stereolithography. As shown in Figure 

3, the liquid resin is converted into solid 3D objects, one layer at a time.   

 

Figure 3. Stereolithography additive manufacturing technique. 
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The photopolymer liquid resin is first heated. Ultraviolet laser and scanning mirrors are used 

for printing 3D designs layer by layer. 3D objects undergo a post-curing process for removing 

excess resin. The print is placed in a chemical bath and then placed in an ultraviolet oven in 

order to make the print stronger and more stable [8].  

 

1.2.2 Fused Deposition Modelling (FDM) 
 
In FDM, a thin filament of plastic is heated and extruded through the nozzle onto the base, 

thereby printing the 3D model layer by layer on the build platform. Materials that can be used 

in this process are polylactide (PLA), polycarbonate (PC), acrylonitrile butadiene styrene 

(ABS), nylon and PC-ABS. The main advantage of this process is the broad range of materials, 

less time needed to manufacture and inexpensive equipment ranging from $200 - $800.    

  

 

Figure 4. Fused deposition additive manufacturing technique. 
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2. Literature Review 
 

2.1 Pool Boiling over Open Microchannel 

Pool boiling using test surfaces with additive or subtractive modification and enhancements is 

an emerging field. Microchannels are widely preferred over plain surfaces for boiling due to 

their high surface area to volume ratio compared to a plain chip. The added amount of surface 

area produced in microchannels promotes an increase in heat transfer due to better convection 

from solid to liquid.  

 

Figure 5. Microchannel surface [9]. 

Cooke and Kandlikar [10] studied bubble growth and heat transfer mechanism for a plain and 

an open microchannel silicon surface, utilizing water as the working fluid at atmospheric 

pressure. As shown in Figure 6 the channels are constantly in contact with the working fluid. 

It was observed that bubbles nucleate at the bottom of the channels and move along the channel 

sidewall to the fin top, where they completely grow and depart.  Heat transfer coefficient (HTC) 

of 72.9 kW/m2K at 19.5°C wall superheat was reported for microchannel chip with channel 

width and depth of 100 µm and 27 µm respectively [10]. They also investigated the 

performance of microchannels by varying the channel width (197 – 400 µm), channel depth 

(100 – 400 µm) and fin width (200 – 300 µm). Figure 7 shows the heat transfer performance 

of 10 copper chips with different microchannel parameters. It was observed that the chip with 
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375µm channel width, 230µm fin width and 400µm channel depth obtained a heat flux of 244 

W/cm2 and a HTC of 269 kW/m2K, which was 3.7 times HTC of a plain chip [11]. 

 

Figure 6. Bubble dynamics on a microchannel surface in pool boiling [10]. 

  

 

Figure 7. Heat transfer coefficient for tested chips [11]. 
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Kalani and Kandlikar [12] used microchannel surface with ethanol at sub-atmospheric 

pressures for pool boiling performance. Four chips of different channel width, depth and fin 

width were studied at 101.3 kPa, 66.7 kPa, 33.3 kPa, and 16.7 kPa. They recorded a maximum 

heat flux of 1.14 MW/m2 at 20oC wall superheat at 101.3 kPa for a copper chip with channel 

depth and width of 470 µm and 194 µm, respectively. But the highest performing chip had 

channel width, fin width and channel depth of 207 µm, 193 µm and 456 µm, respectively 

attaining a maximum heat flux of 904 kW/m2 with surface temperature of 85oC at 33.3 kPa 

system pressure.  

 

2.2 Pool Boiling using Refrigerants 

Emery and Kandlikar [13] performed experiments using refrigerants PP1, PP1C, PP3, and 

PP80. They compared the boiling curve and HTC with experiments conducted on a polished 

copper chip with a 10 mm x 10 mm boiling surface. They obtained CHF of 15.6 W/cm2, 16 

W/cm2, 13.4 W/cm2, and 14.2 W/cm2, for PP1, PP1C, PP3 and PP80, respectively. As shown 

in Figure 10 it is observed that FC-87 outperforms PP3 and PP80 in CHF. Whereas PP1 exhibits 

better HTC over PP1C, even after achieving similar CHF values because of low wall superheat. 

 
Figure 8. a) Pool boiling curve and b) HTC for tested refrigerants [13]. 
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An extensive study on the effect of channel width and channel depth in microchannel surface 

while keeping the fin length constant was conducted by Jaikumar and Kandlikar [14]. They 

used an open microchannel copper surface with porous fin tops for additional nucleation sites 

and tested FC-87 as the working fluid. The authors identified a channel width-to-depth ratio as 

an important parameter for performance improvement as shown in Table 1. As shown in Figure 

11, test chip 3 with a channel width-to-depth ratio of 1 had the best performance with CHF of 

37 W/cm2, which is 270% enhancement in CHF compared to a plain chip.  

Table 1. Comparison of CHF enhancement for FC-87 and water [14]. 

Channel width/ Channel depth 

 

CHF enhanced/CHF plain 

FC-87 Water 

0.75 2.81 2.2 

1 3.36 2.56 

1.9 0.9 2.2 

1.72 2 2.1 

2 2 1.89 

 

 
Figure 9. Pool boiling curve for tested chips with FC-87 at atmospheric pressure [14]. 
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The objective of Rainey and You [15] was to study pool boiling performance using saturated 

FC-72 with a horizontal copper surface (10 mm x 10 mm x 2 mm) incorporating a double 

enhancement technique that utilizes a 5 x 5 array of square fins varying in length from 0 to 8 

mm with a  microporous coating as shown in Figure 12. The authors conclude that fins produce 

resistance to vapor bubble departure which in turn increases the resistance of working fluid for 

re-wetting in both plain and microporous finned surfaces. The surface temperature of the tip 

potion of fin was observed to be too low to sustain boiling for plain fin lengths above 5mm.  

 
Figure 10. Test heater [15]. 
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2.3 Separate Liquid Vapor Pathways for Boiling Enhancement 

Jaikumar and Kandlikar [16] used selective sintering of a microchannel surface to study the 

performance of separate of liquid vapor pathways. They proposed two enhancement 

techniques, a) sintered fin tops, and b) sintered channels as shown in Figure 13.  

 
Figure 11. a) Sintered fin tops and b) Sintered channels [16]. 

In Type (a), nucleation occurs on fin tops whereas liquid addition is through the channel region. 

In Type (b), a bubble nucleates inside the channel and liquid addition takes place through the 

fin tops. The wall superheat at the fin top is always lower than that of a channel surface, 

preventing bubble nucleation at high heat flux on the fin tops and sustaining separate liquid 

vapor pathways. Sintered channels 300 µm wide yielded a CHF of 420 W/cm2 at a wall 

superheat of 1.7°C, which is 228% enhancement of CHF compared to plain chip.  

Mahamudur et al. [17] performed experiments on a bi-conductive surface comprising of low 

conductivity epoxy, periodically arranged and embedded into a high conductivity copper 

substrate as shown in Figure 14 (a). The test chips varied by the number of epoxy divisions per 

centimeter in copper substrate. These bi-conductive surfaces promote HTC and CHF. Bubbles 
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nucleate near the center of a copper substrate, while epoxy remains wetted during boiling and 

suppresses nucleation. Thus, improving CHF from 116 W/cm2 for plain copper surface to 230 

W/cm2 for bi-conductive surfaces by creating a separate flow for liquid rewetting and vapor 

escape as seen in Figure 14(e).  

 

Figure 12. a)Bi-conductive fabricated surfaces, (b-d) SEM image of epoxy divisions in copper 

substrate, e) high speed image of bi-conductive surface [17]. 

Jaikumar and Kandlikar [18] proposed an enhancement structure with feeder channels (FC) on 

the heater surface that supply liquid from bulk towards the nucleation region (NR), as shown 

in Figure 15(a). Figure 15(b) shows the feeder channels directly impinging towards the 

nucleation sites and the bubbles departing from nucleating region only. The spacing between 

the nucleation regions is governed by the bubble departure diameter, so as to avoid lateral 

bubble coalescence and continuous formation of separate liquid vapor pathway. It was 

observed that chip (NRFC-3) with a CHF of 394 W/cm2 and a wall superheat of 5.5°C was 

obtained with spacing in between the nucleation region was equal to the bubble departure 

diameter.  
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Figure 13. a) Schematic of separate liquid vapor pathway on NRFC configuration, b) picture of 

bubbles nucleating from nucleation region and the feeder channels, c) Top view of NRFC-3 chip 

[18]. 

Hayes et al. [19] performed pool boiling experiments on aluminum heater surfaces with hollow 

conical structures (HCS) using additive manufacturing for regulating vapor removal. It was 

observed that the top hole in the HCS governed the direction of liquid and vapor flow. If the 

top hole diameter is greater than the bubble departure diameter, vapor escapes naturally from 

the top and liquid enters from the side holes. If the top hole is smaller than the bubble departure 

diameter, liquid enters from top and vapor escapes from the side holes as shown in Figure 16. 

The authors obtained an HTC of 190 kW/m²-°C with miniaturized HCS with microchannels, 

representing a 4-fold increase in HTC compared to a plain aluminum surface.  
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Figure 14 Pathway a) liquid entering from side holes and vapor exits from top hole, b) liquid 

entering from top and vapor exits from the side holes [19] 

 

2.4 Pool Boiling of Scaled Heater 

Kwark et al. [20] studied the effect of heater orientation and heater size on the pool boiling 

performance. The authors experimented with different heater sizes (0.75 cm x 0.75 cm, 1.0 cm 

x 1.0 cm, 1.5 cm x 1.5 cm, and 2.0 cm x 2.0 cm) and two different configurations (uncoated 

and Al2O3 nanoparticle coated) at atmospheric pressure with water as the working fluid. A 

decrease in CHF is observed with increase in heater size. The author believes this is due to 

larger heaters offering a longer resistance path for the fluid to the hot spots which leads to lower 

CHF. As shown in Figure 17 it is observed that CHF decreases with increasing heater area.  
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Figure 15. Effect of heater size on pool boiling curve of pure water [20]. 

Rainey and You [21] experimentally studied the effect of heater size by testing differently sized 

copper surfaces of 1 cm x 1 cm, 2 cm x 2 cm, and 5 cm x 5 cm with saturated FC-72. 

Experiments were conducted on plain and microporous coated copper surfaces. The 𝑞𝐶𝐻𝐹
′′  

values for 1-cm2, 4-cm2 and 25-cm2 were observed to range from 13.2–16.0 W/cm2, 12.6–13.1 

W/cm2, 12.9–13.2 W/cm2, respectively. As shown in Figure 18 1-cm2 plain and microporous 

surface both have slightly higher 𝑞𝐶𝐻𝐹
′′  than 4-cm2 and 25-cm2 surfaces.  
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Figure 16. Pool boiling curve for 1-cm², 4-cm² and 25-cm² heater surface [22]. 

2.5 Scope of Work 
 
This research focuses on enhancing the pool boiling performance of a plain copper chip with a 

boiling surface of 34.5 mm x 32 mm using PP1, PP1C and FC-87 dielectrics at atmospheric 

pressure. A very few previous work have studied scaled heater sizes using dielectrics as the 

working fluid.  

As noted from the literature review, microchannel surfaces have a huge impact of enhancing 

the CHF with low wall superheat temperatures. A similar microchannel surface is implemented 

in the current study to understand the increase in pool boiling performance of microchannel 

surface over plain copper surface for a larger heater size. 

Separate liquid vapor pathways have a significant effect on enhancing the CHF due to 

continuous supply of liquid to the heater surface. The novelty of the work stems from using 

additive manufacturing technique for creating external enhancement structures for facilitating 

structured vapor removal and liquid supply to heater surface. 
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3. Experimental Setup 
 

3.1 Test Section  
 

The dimensions of the test section used in this study are 34.5 mm x 32 mm boiling surface in 

the middle of a circular copper chip of 68 mm diameter as shown in Figure 19. The test chip 

used in this study consists of a plain copper chip and a microchannel chip. The parameters of 

microchannels used in this study are channel width, channel depth, and fin width of 500 µm, 

400 µm and 200 µm, respectively.  

 
Figure 17. Test section a) Top view, b) Front view. 

Joule heating using four cartridge heaters of 120 W each heats the copper heater block of 34.5 

mm x 32 mm and a 40 mm projection. Three 0.8 mm holes are drilled in the copper heater 

block which are 15 mm deep and 5 mm apart to accommodate calibrated K-type 

thermocouples, T1, T2 and T3 as shown in Figure 20. Another 0.7 mm hole is drilled in the 

center (2 mm below the heater surface) of the test section to accommodate thermocouple Tc 

for measuring the surface temperature from the known heat flux.  
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          Figure 18. Schematic of heater section. 

The heater assembly as depicted in Figure 21 consists of the copper test chip, gasket and 

garolite block held together using 4-40 x 3/8" socket cap screws arranged in a circular pattern.   

 

Figure 19. a) Schematic heater assembly, b) Actual Image of heater assembly. 
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3.2 Volcano Manifold  

A volcano manifold is bolted to the garolite block of the heater assembly. The volcano manifold 

consists of 3 x 3 array of hollow conical structures (HCS) each having base length of 9.75 mm, 

top hole diameter of 3 mm and height 5.75 mm. The HCS is raised to a height of 2 mm and 

have 1 mm gap below for regulating the flow of liquid to the heater surface as shown in Figure 

22. 1 mm holes are drilled between each volcano structure for rewetting the heating surface. 

The array of HCS covers the entire boiling surface of 34.5 mm x 32 mm. The array of hollow 

conical structures together is called the volcano manifold.  

 

Figure 20. Volcano manifold, a) Top view, b) Side view. 

The volcano manifold is manufactured using the fusion deposition additive manufacturing 

technique. Original Prusa I3 Mk3S 3D printer was used to manufacture the volcano manifold 

using Proto-pasta's High Temperature PLA (HTPLA) v2.0. The HTPLA is originally 

translucent in color. After the 3D structure is printed, HTPLA undergoes heat treatment at 90oC 

for 45 minutes and turns opaque. HTPLA has a heat deflection temperature for 120oC or more, 

unlike PLA which has low heat deflection temperature of 55oC [23].  

Figure 23 shows the volcano manifold with the heater assembly. The flow of liquid and vapor 

above the heater surface is regulated by placing the volcano manifold on top of the heater 

surface. The hollow conical structures have holes on the top that are included for removal of 
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vapor bubbles generated under the volcano manifold. A 1-mm gap is provided below the 

hollow conical structures for the bulk liquid to rewet the heater surface.  

 

 
Figure 21. Heater assembly with volcano manifold. 

 

3.3 Dual Taper Manifold  
 
A dual taper manifold is similarly bolted to the garolite block of the heater assembly like the 

volcano manifold. As shown in Figure 24 the top surface of the dual taper manifold has 3 slots. 

Two slots serve the purpose of liquid inlet, whereas the middle slot serves the purpose of vapor 

removal. The liquid inlet slots and vapor removal slots are 1 mm x 34.5 mm and 1.5 mm x 34.5 

mm, respectively.  A taper of 15o at inlet is provided to reduce the resistance to the flow of 

liquid for reaching the heating surface. At the bottom surface, a similar 15o taper is provided 

for vapor removal. The height of the dual taper manifold is 5mm. Also, the dual taper manifold 

is raised by 0.5 mm for regulating the flow of liquid to the heater surface.  
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Figure 22. Dual taper manifold, a) Top view, b) Front view, and c) 3D Bottom view. 

The dual taper manifold is fabricated using stereolithography additive manufacturing 

technique. The Forms2 printer was used to manufacture the dual taper manifold for a smoother 

surface finish to reduce the resistance for liquid and vapor flow. The resin bath used for 

constructing the 3D structure is Black V4 (FLGPBK04) resin. After the dual taper manifold is 

constructed, it undergoes a post-curing process. The 3D structure is placed in isopropyl alcohol 

(IPA) bath for 30minutes and then undergoes curing under 405 nm wavelength light at 60°C 

for 30 minutes [24]. Figure 25 (b) shows the dual taper manifold bolted to the heater assembly. 
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Figure 23. Heater assembly with dual taper manifold, a) Design and b) Actual image. 

 

3.4 Pool Boiling Setup  
 
A rectangular aluminum block of 6 inch x 6 inch x 3 inch seen in Figure 26 is used for the pool 

boiling setup. Copper coil (condenser) containing 9 turns with each turn's internal diameter 

being 26.4 mm acts as a heat exchanger with an inner and outer diameter of 4.8 mm and 6.3 

mm, respectively.  The condenser is connected to an external chiller that supplies water 

temperature -30°C to 150°C for the entire duration for all experiments. The top surface of the 

aluminium block is mounted with a pressure gauge, two valves and a K-type thermocouple. 

The K-type thermocouple extends to the bottom of the aluminium block to measure the 

working fluid’s temperature. One valve is used for connecting the aluminium block to the 

vacuum port & the other valve acts as an inlet to feed the working fluid inside the setup.  
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Figure 24. Schematic pool boiling setup. 

Aluminium plates (8x8) inches and 9.5 mm thick borosilicate glass are used to hold the central 

block in its place as shown in Figure 27.  

 
Figure 25. Pool boiling setup. 

These high temperature borosilicate glasses are used for better visualization. Silicone gaskets 

are used in addition to the borosilicate glass to ensure a leak free setup. The bottom surface of 

the aluminium block has of two grooves; one of which is used for an auxiliary heater (120VDC, 
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200W) and the other one for the copper heater block to contact the test chip. The aluminium 

compression pates and silicon gasket held the test setup together, but also ensured its horizontal 

orientation during the experiment. Contact resistance is minimized by using an arctic silver 

Thermal Interface Material (TIM) between the copper block and the test chip. 

  

3.5 Experimental Procedure & Setup Validation 
 
 It is crucial to have in place a completely sealed pool boiling setup while using 

refrigerants as the working fluid. In order to ensure the test setup is sealed, the working 

fluid was poured into it and allowed to stand for a 24-hour period. The setup was then 

checked for leaks, the chamber was evacuated and refilled with the working fluid via the 

inlet valve. 

 Every test is preceded by a roughness measurement of the boiling surface using a 

confocal laser scanning microscope at 10X magnification. 

 The test chip is bolted to the fabricated garolite chip holder using a 4-40x3/8" socket cap 

screw. Garolite is used due to its low thermal conductivity and ability to withstand high 

temperatures up to 165°C. 

 8-32x1-3/4" socket head bolts are used for mounting the heater assembly to the bottom 

flange of the aluminum block. 

 The test setup was filled with refrigerant via the inlet valve.  

 The working fluids used in the study are PP1, PP1C, FC-87. 420 mL of refrigerant is 

consistently used for each experiment.  

 The chamber pressure was then reduced to 101.3 kPa.  

 The copper block and auxiliary heaters are then turned on while simultaneously initiating 

a LabVIEW program.  



40 
 

 The LabVIEW program uses a National Instruments cDAQ-9172 and a MOD-9211 is 

used to record temperatures. 

 An initial voltage from the DC power supply is increased with 4V steps which 

subsequently is reduced to 2V at higher heat fluxes.  

 The temperature of the water circulating within the condenser along with the power to 

the auxiliary heater is continuously adjusted at each subsequent step until atmospheric 

pressure is attained. 

 At each step, data is recorded as soon as the experiment reaches steady state. The data 

recording process takes place for 20 seconds at a 4Hz sample rate. 

 The experiments are conducted until critical heat flux (CHF) is achieved. 
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4. Data Acquisition 
 
Data reduction here was similar to that found in previously published works [10–14,25,26]. 

 

Figure 26. 1-D Conduction in copper block. 

Heat flux through the copper block is calculated by assuming Fourier’s law of 1-D conduction. 

                                               𝑞𝑏𝑙𝑜𝑐𝑘
′′ = −𝑘𝐶𝑢

𝑑𝑇

𝑑𝑥
                                                           (1) 

Where, 𝑞𝑏𝑙𝑜𝑐𝑘
′′  is the heat flux, 𝑘𝐶𝑢 is the thermal conductivity of copper, 𝑑𝑇 𝑑𝑥 ⁄ is the 

temperature gradient. The temperature gradient 𝑑𝑇 𝑑𝑥 ⁄ was estimated using Taylor’s backward 

series approximation and expressed as: 

                                                 
𝑑𝑇

𝑑𝑥
=

3𝑇1−4𝑇2+𝑇3

2Δ𝑥
                          (2) 

Where, T1, T2 and T3 are the temperatures corresponding to the three thermocouples in the 

copper block as shown in Figure 28 and Δ𝑥 is the spacing between the thermocouples, 5 mm. 

A heat loss study previously performed in which the chip surface was insulated is included in 

the data reduction [27]. Wall superheat values are used for calculating heat loss at each data 

point. The effective heat flux (𝑞"𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) is given by deducting heat loss (𝑞"𝑙𝑜𝑠𝑠) from the 

calculated heat flux.  

                                               𝑞𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
′′ = 𝑞𝑏𝑙𝑜𝑐𝑘

′′ − 𝑞𝑙𝑜𝑠𝑠
′′

          (3) 
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The surface temperature (𝑇𝑊𝑎𝑙𝑙) can be calculated using effective heat flux (𝑞"𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) and 

Eq. (1) as 

                                               𝑇𝑤𝑎𝑙𝑙 = 𝑇𝑐 − 𝑞′′ (
𝑥1

𝑘𝐶𝑢
)                 (4) 

Where, Twall is the surface temperature of the boiling surface, x1 is the distance between the 

boiling surface and thermocouple TC, measuring 4 mm. The heat transfer coefficient (HTC) is 

calculated from effective heat flux at the surface of the copper chip and wall superheat, ΔTsat. 

                                                  ℎ =
𝑞′′

∆𝑇𝑠𝑎𝑡
=  

𝑞𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
′′

𝑇𝑤𝑎𝑙𝑙−𝑇𝑠𝑎𝑡

                  (5) 
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5. Uncertainty Analysis 
 
An uncertainty analysis was performed similar to that of [10, 29, 30]. Thermocouple 

calibration, thermal conductivity of copper and length measurements between thermocouples 

contributed to the uncertainty calculations. There are two types of errors that rise during 

experimentation: 1) bias error, 2) precision error. The cumulative total of bias and precision 

error can be expressed as: 

                                                            𝑈𝑦 = √𝐵𝑦
2 + 𝑃𝑦

2                  (6) 

Where 𝑈𝑦 is the total uncertainty, 𝐵𝑦 is the bias error and 𝑃𝑦 is the precision error. The 

thermocouples precision error is calculated by first calculating standard deviation of the 

temperature readings recorded during calibration of thermocouples over a range of steady state 

temperature conditions. The average of the standard deviation taken at each steady state 

temperature was then doubled to obtain a 95% confidence interval. Whereas, bias error of 

thermocouples is calculated by the standard deviation of measured values from the mean during 

testing.  

The error propagation is determined through temperature gradient, heat flux, surface 

temperature, wall superheat and HTC by using the following equation: 

                                                         𝑈𝑝 = √∑ (
𝜕𝑝

𝜕𝑎𝑖
𝑢𝑎𝑖)

2
𝑛
1

       (7) 

Where 𝑈𝑝is the uncertainty in parameter 𝑝, and 𝑢𝑎𝑖 is the uncertainty of parameter 𝑎𝑖. Eq. (8) 

expresses the percent uncertainty in heat flux. 

                                      
𝑈𝑞′′

𝑞′′
= √

(𝑈𝑘)2

𝑘2
+  

(𝑈∆𝑥)2

∆𝑥2
+

9(𝑈𝑇1)2+16(𝑈𝑇2)2+(𝑈𝑇3)2

(3𝑇1+4𝑇2+𝑇3)2
                (8) 

The uncertainty in heat flux (𝑞′′) for plain copper chip tested for refrigerants PP1, PP1C and 

FC-87 are plotted in Figure 29. The uncertainty in heat flux was estimated as 6.5%, 6.0% and 

5.7% for PP1, PP1C and FC-87, respectively for a plain copper chip at CHF.  
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Figure 27. Variation in uncertainty with increasing heat flux for tested refrigerants with plain 

chip. 

Fourier’s law of 1-D conduction is used in determining heat flux through the copper heater 

block. The temperature profile over the length of the copper heater block as shown in Figure 

30. Figure 30 shows the temperature distribution for heat flux values of 6.2 W/cm2, 11.7 

W/cm2, 18.8 W/cm2, and 26.5 W/cm2 varying from T3 to T1 for a plain copper chip surface. 

The plot depicts a linear temperature profile and calculated R2 values, all of which are very 

close to 1. Thus the linear temperature profile confirms the assumption that heat flux through 

the heater block is transferred through 1D-conduction with negligible losses.  

 

Figure 28. Temperature variation over heater block for various heat fluxes. 
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6. Results & Discussions 
 
The primary objective of this study is to provide the baseline understanding of heater scalability 

and provide an effective means for regulating the flow of liquid over the boiling surface without 

changing the characteristics of the test section. Each of the three refrigerants (PP1, PP1C & 

FC-87) are tested with a plain copper chip and a microchannel chip at atmospheric conditions. 

Further, these refrigerants are tested with volcano and dual taper manifolds with a plain chip 

and a microchannel chip.  

Tests have been performed under increasing heat flux by supplying an external power and 

increasing it at regular interval. The data is recorded when the steady state in temperature is 

attained at each heat flux. Each test is performed until CHF is reached; it is then stopped to 

avoid the overheating of the heater surface. 

 

6.1 Plain Copper Chip  
 
A plain copper chip with a 34.5 mm x 32 mm boiling surface was tested with PP1, PP1C, and 

FC-87 as the working fluids at atmospheric pressure. Figure 31 shows the boiling curve for 

tested refrigerants with plain chip. A CHF of 23.6 W/cm2 and 28.7 W/cm2 at a wall superheat 

of 30.8°C and 35.9°C was achieved for PP1 and PP1C respectively. However, with FC-87 

comparatively a higher CHF of 30.5 W/cm² at wall superheat of 30.2°C was achieved. The heat 

transfer coefficient for PP1, PP1C and FC-87 for the plain chip was found as 7.6 kW/m² °C, 

8.0 kW/m² °C, and 10.0 kW/m² °C, respectively.  
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Figure 29. (a) Pool boiling curve and (b) HTC for tested refrigerants with plain copper chip. 

Similar trends of decrease in HTC just before reaching CHF is observed in literature [13]. At 

a higher heat flux bubbles depart from the surface more frequently and this increases bubble 

coalescence, creating more vapor columns. At CHF, these vapor columns create a vapor 

blanket over the surface. This transition from vapor columns to attaining CHF is likely the 

reason for a decrease in HTC in a higher heat flux region. This could also be the reason for an 

increase in surface temperature at higher heat fluxes with a small increase in given input. High-

speed images of vapor removal from a plain copper chip surface with PP1 working fluid at 

different heat fluxes are shown in Figure 32. With increments in heat flux, intense bubble 

activity was observed on the heater surface. Also, the large vapor lumps were departed from 

the heater surface which are prominently observed from 19 W/cm² to CHF. The dashed line 

indicates the vapor blanket over aplain copper chip at CHF.  
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Figure 30. High-speed images of bubbles nucleation over plain copper chip with PP1 at 

atmospheric pressure at 5 W/cm², 13 W/cm², 19 W/cm², 24 W/cm² and CHF. 

 

6.2 Microchannel Chip 
 

The microchannel chip with channel width, channel depth and fin width of 500µm, 400µm and 

200µm, respectively are used in this study. It was observed that PP1, PP1C and FC-87 obtained 

heat fluxes of 42 W/cm², 40.6 W/cm² and 36.5 W/cm² at a wall superheat of 19.6°C, 26.4°C 

and 23.6°C, respectively. CHF was not obtained for microchannel chips with all three 

refrigerants due to the limitations of the test setup. In Figure 33(a), at low heat fluxes a trend 

of decreasing wall superheat is observed with all three refrigerants and after certain increments 

in heat flux, the wall superheat starts to increase. It is hypothesized that at low heat fluxes, 

there is localized boiling over the test section. These localized boiling spots create vapor 

columns and reduce the wall superheat. With an increase in heat flux, localized boiling 

increases and boiling starts over the entire surface of the test section which leads to increments 

in wall superheat with increase in heat flux. The heat transfer coefficient increases with 



48 
 

microchannel chip for all three refrigerants. Table 2 compares the HTC for plain and 

microchannel chips and shows an enhancement factor calculated at the wall superheat of 19°C. 

Since the microchannel chips do not attain CHF, this 19°C wall superheat temperature was 

considered. For a data point not falling on 19°C of superheat, adjacent points were linearly 

interpolated for HTC estimate.    

Table 2. HTC and enhancement factor based of plain chip at 19°C for PP1, PP1C and FC-87. 

Refrigerants 
Plain chip HTC 

(kW/m² °C) 

Microchannel chip  

HTC (kW/m² °C) 

Enhancement 

factor 

PP1 8.6 19.0 2.2 

PP1C 8.4 13.4 1.6 

FC-87 8.4 12.7 1.5 

 

The maximum heat transfer coefficients achieved for microchannel chips with PP1, PP1C and 

FC-87 were 21.8 kW/m² °C, 15.3 kW/m² °C, and 15.4 kW/m² °C, respectively. 

  

Figure 31. (a) Pool boiling curve and (b) HTC for tested refrigerants with microchannel chip. 
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Compared to plain chips, microchannel chips showed a large enhancement in both heat flux 

and heat transfer coefficients (HTC). The microchannels assist in providing an efficient liquid 

supply to the bubble nucleation sites. This continuous liquid flow in the microchannels help in 

reducing the wall superheat and thus increasing heat flux and HTC. Similar enhancements were 

observed in literature [10] for the microchannel chips with smaller boiling surfaces (10 mm x 

10 mm).   

 

6.3. Volcano Manifold 
 
The volcano manifold consists of 3 x 3 array of hollow conical structures similar to a volcano 

having a larger base diameter and a smaller diameter at the top. The array of hollow conical 

structures together is called the volcano manifold. Figure 34 a) and b) show the volcano 

manifolds used in this study. The main objective of using the volcano manifold is to direct the 

vapors through a specific structure to generate the separate liquid vapor pathways without any 

deposition and/or chemical surface modifications to the test surface. It is hypothesized that this 

volcano manifold will assist in regulating the flow of refrigerants over the boiling surface by 

developing independent liquid and vapor flow fields.  

 

Figure 32. Volcano manifold, (a) No rewetting holes and (b) With rewetting holes. 

Initially, the vapor manifold as shown in Figure 34 (a) was bolted on the plain copper chip and 

was tested to determine whether it assists in increasing the pool boiling performance compared 
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to a plain copper chip. It was found that as compared to the plain copper chip, the CHF and 

HTC of the plain copper chip using the volcano manifold (as shown in Fig. 34 a)) was lower 

when tested with PP1C. It was believed that owing to the larger heater surface dimensions 

(34.5 mm x 32 mm), the volcano manifold failed to provide the continuous rewetting on the 

heater surface. This led to a large increment in wall superheat without much enhancement in 

CHF. 

Thus, to increase the liquid supply to the heater surface and to enhance the rewetting, a 

parametric study was performed in which additional rewetting holes were drilled in the volcano 

manifold at several locations by maintaining the symmetry along the volcano manifold (as 

shown in Figure 34 (b)). Three dimensions for rewetting holes were selected based on the 

bubble departure diameter of the dielectric fluids. The bubble departure diameter for PP1 and 

PP1C are 1.56mm and 1.37mm respectively [30]. To avoid the escape of vapor through these 

rewetting holes, the diameters of the holes were less than the departure diameter of a vapor 

bubble. Thus, to optimize the diameter, three different diameters of 0.635 mm, 1 mm and 1.5 

mm of rewetting holes were drilled and the pool boiling tests were performed on a plain copper 

chip with PP1C as the working fluid. It is evident from Figure 35 that the 1 mm diameter of 

rewetting hole yielded the highest pool boiling performance giving CHF of 38.3 W/cm² and 

HTC of 7.8 kW/m² °C. Also, 0.635mm rewetting holes achieved CHF at 30.9 W/cm² due to 

insufficient supply of liquid to the heater surface. With the help of high-speed images it was 

observed that vapors escaped through 1.5 mm rewetting holes which was not desirable. Hence, 

the 1 mm diameter rewetting holes were further used during the testing with other refrigerants 

and microchannel chips. Additionally, it was observed that, at low heat fluxes, the volcano 

manifold with holes performs better than the plain chip, but after a certain heat flux, wall 

superheat increases and the boiling curve for the volcano manifold crosses over the pool boiling 

curve of the plain chip.  
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Figure 33. (a) Pool boiling curve and (b) HTC plain chip with PP1C at atmospheric pressure using 

volcano manifolds with rewetting holes 0.635mm, 1mm and 1.5mm. 

 

6.3.1 Plain Copper Chip with the Volcano Manifold 
 
Plain copper chip was tested with volcano manifold having rewetting holes of 1mm diameter 

and working fluid as PP1, PP1C and FC-87 at atmospheric pressure. It was observed that PP1, 

PP1C and FC-87 obtained CHF at 28.1 W/cm², 38.3 W/cm² and 32.5 W/cm², respectively. 

While heat transfer coefficients on a plain chip of 8.8 kW/m² °C, 7.8 kW/m² °C and 8.7 kW/m² 

°C for PP1, PP1C and FC-87, respectively as shown in Figure 36. 
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Figure 34. (a) Pool boiling curve and (b) HTC for tested refrigerants with plain chip and volcano 

manifold with rewetting holes of 1 mm diameter. 

Figure 37 shows a schematic representation of how the volcano manifold regulates the flow of 

liquid over the heater surface creating separate liquid-vapor pathways. The top hole of hollow 

conical structures enable removal of vapor bubbles generated under the volcano manifold. A 

gap of 1 mm is provided below the hollow conical structures (HCS) for liquid to flow through 

the sides and rewet the heater surface.  

 

Figure 35. Schematic representation of separate liquid and vapor fields in volcano manifold. 
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Figure 36. High-speed images of bubbles nucleation over plain chip using volcano manifold with 

increasing heat flux. 

Figure 36 shows high-speed images of nucleation of bubbles (marked with dotted red circles) 

over the heater surface with volcano manifold at different heat fluxes. It is observed that 

bubbles exit through the top hole of HCS due to buoyancy force and the working fluid flows 

under the volcano manifold through the sides having a 1 mm gap. With high speed images, it 

is validated that the vapor does not escape from the sides but only from the top holes at both 

low and high heat fluxes. Thus, the volcano manifold can be used to create separate liquid 

vapor pathways on the heater surface without any deposition and/or chemical surface 

modification of the heater surface. By providing a gap between the volcano manifold and the 
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heater surface, the inertia force of incoming liquid increases and increases in velocity of liquid 

at the inlet is achieved. Additionally, the rewetting holes from the top of the volcano manifold 

act as impingement jets and help in reducing the wall superheat temperature.   

 

6.3.2 Microchannel chip with volcano manifold 
 

It was observed that PP1, PP1C and FC-87 obtained CHF at 32.1 W/cm², 37.2 W/cm², 33.2 

W/cm², and heat transfer coefficients of 7.1 kW/m² °C, 7.3 kW/m² °C and 6.4 kW/m² °C, 

respectively. There is a noticeable increase in the wall superheat for a microchannel chip with 

volcano mnaifold, compared to a microchannel chip for all three refrigerants. Microchannel 

chips with the volcano manifold did not show any enhancement in CHF or HTC.  

 

Figure 37. (a) Pool boiling curve and (b) HTC for tested refrigerants with microchannel chip and 

volcano manifold with rewetting holes of 1 mm diameter. 

Microchannels with the volcano manifold follows a similar trend observed in a plain copper 

chip of decrease in HTC before reaching CHF. As shown in Figure 39 (b) there is a 

considerable drop in HTC after a heat flux of 20 W/cm² for all three refrigerants. At 20 W/cm², 
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a HTC of 12.4 kW/m² °C, 11.0 kW/m² °C and 8.4 kW/m² °C was achieved for PP1, PP1C and 

FC-87, respectively (as shown in Fig. 39 b)).  

 

6.4 Dual Taper Manifold 
 

Figure 40 shows the dual taper geometry used during this study. The top surface of the dual 

taper manifold consists of 3 slots. Two slots serve the purpose of liquid inlet, whereas the 

middle slot serves the purpose of vapor removal. The liquid inlet slots and vapor removal slots 

are 1 mm x 34.5 mm and 1.5 mm x 34.5 mm, respectively. The bubble departure diameter for 

PP1 and PP1C are 1.56 mm and 1.37 mm, respectively [30]. The dimension for the liquid inlet 

slot is governed by bubble departure diameter of all three refrigerants. Thus, to avoid removal 

of vapors through the liquid inlet, the liquid inlet slot is 1 mm wide. Figure 40 shows the dual 

taper manifold used in this study. The main objective of using the dual taper manifold is to 

study the performance of an add-on enhancement structure over the heater surface that would 

direct the bulk liquid to the heater surface through a specific structure and achieve specific 

vapor removal pathway.   

 

Figure 38. Actual image of dual taper 15°, (a) Top view and (b) Bottom view. 

6.4.1 Plain copper chip with dual taper manifold 
 
A plain copper chip was tested with the dual taper manifold of 15° and working fluids of PP1, 

PP1C and FC-87 at atmospheric pressure. It was observed that PP1, PP1C and FC-87 obtained 
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CHF of 25.6 W/cm², 31.7 W/cm² and 32.3 W/cm², respectively. While heat transfer coefficients 

of 7.2 kW/m² °C, 7.08 kW/m² °C and 6.7 kW/m² °C for PP1, PP1C and FC-87 for plain chip, 

respectively as shown in Figure 41 (b). It was observed that a very small increment in CHF 

was achieved for a plain chip with dual taper compared to a plain chip alone. However, a large 

increment in wall superheat was observed which led to reduced HTC. This increase in wall 

superheat is due to two reasons. Firstly, constricted flow due to 0.5 mm gap that did not allow 

adequate amount of liquid for rewetting of the surface. Secondly, the 0.5 mm gap between the 

dual taper manifold and the chip collapsed the vapor bubbles by lateral bubble expansion and 

restricting the bubbles to grow to their bubble departure diameter. Thus, it did not allow for 

efficient heat transfer and led to considerable increase in the wall superheat.  

 

Figure 39. (a) Pool boiling curve and (b) HTC for tested refrigerants with plain chip and dual taper 

manifold of 15° taper angle. 

Figure 42 shows a schematic representation of how the dual taper manifold regulates the flow 

of liquid over the heater surface through the 1 mm x 34.5 mm inlet slot. The taper at inlet 

reduces the resistance to the flow of liquid to the heater surface. The taper at the bottom surface 

directs the vapor bubbles generated to escape either from the center slot or from the sides.  
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Figure 40. Schematic representation of separate liquid and vapor fields in Dual taper 15° manifold. 

 
Figure 43 shows high-speed images of the vapor removal from a dual taper manifold with a 

15° taper angle with plain copper chip and FC-87 at atmospheric pressure for 10 W/cm² and 

22 W/cm². In Fig. 43 (a) and (c) the dashed red lines indicate the vapor escapes from the center 

slot of the dual taper manifold. Whereas in Figure 43(b) and (d) the dashed lines indicate vapor 

departing from the sides of the dual taper manifold. The increase in bubble nucleation at higher 

heat fluxes resulted in chaotic motion near the center, which was difficult to capture. The 

number of bubbles nucleating and exiting from the dual taper sides made it challenging to view 

vapor fields generated at the center of the dual taper.   
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Figure 41. High-speed images of generated vapor pathway over plain chip with FC-87 at 

atmospheric pressure using dual taper manifold of 15° taper angle. 

 

6.4.2 Microchannel chip with dual taper manifold 
 
It was observed that PP1, PP1C and FC-87 obtained CHF at 35.5 W/cm², 36.9 W/cm², 36.7 

W/cm², and heat transfer coefficient of 8.1 kW/m² °C, 7.3 kW/m² °C and 7.4 kW/m² °C, 

respectively. Compared to a microchannel chip with a volcano manifold, a microchannel chip 

with dual taper manifold of taper angle 15° showed a reasonable amount of increase in CHF 
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and HTC for PP1 and FC-87. A 10.9% and 10.5% increase in CHF was observed for PP1 and 

FC-87, respectively, compared to a microchannel chip with volcano manifold. It is suggested 

that the microchannel depth provided excess space to grow vapor bubbles in addition to the 

gap provided between the dual taper and the heater surface. These large vapor bubbles helped 

in dissipating more heat from the heater surface.  

 

 

Figure 42. (a) Pool boiling curve and (b) HTC for tested refrigerants with microchannel chip and 

dual taper manifold of 15° taper angle. 

 
As shown in Figure 44 (b) microchannels with dual taper manifold follow a similar trend 

observed in a plain chip and a microchannel chip with volcano manifold in Figure 36 and 39 

shows a decrease in HTC before reaching CHF. Before HTC begins to drop with increase in 

heat flux at 20 W/cm², PP1 and PP1C achieve similar HTC with microchannel chip using 

volcano manifold. At 21 W/cm² FC-87 shows 21.4% increase in HTC (10.2 kW/m² °C) 

compared to microchannel with volcano manifold at the same heat flux. 
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6.5 Comparison of Larger Heater with Small Heater  
 

In the current study, the plain copper chip used as the test section has a boiling surface of 34.5 

mm x 32 mm referred to as the Large Heater or LH. Results from Chang et al. [31]  for FC-87 

and Emery et al. [13] for PP1 and PP1C have been plotted alongside the test performed in the 

current study for a plain copper chip using PP1, PP1C and FC-87 refrigerants at atmospheric 

pressure. Both authors use a polished plain copper test section of boiling surface 10 mm x 10 

mm (referred as Small Heater or SH) for testing at atmospheric pressure.  

 
Figure 43. Comparison of pool boiling performance of larger heater with smaller heater for (a) the 

pool boiling curve and (b) HTC vs. heat flux. 

 
 
In Figure 45(a) it is observed that the pool boiling curve for LH has shifted towards the left 

compared to the SH. For the same value of wall superheat, LH attains higher CHF values 

compared to SH for all three refrigerants. Similarly in Figure 45(b), for the same value of heat 

flux LH attains higher HTC compared to SH. The decrease in wall superheat and increase in 

heat flux for LH can be explained by Figure 46. Figure 46(a) shows the high-speed image of 

flow structure of liquid and vapor over a plain copper chip (LH) with working fluid as PP1 at 
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atmospheric pressure. The increase in performance for a LH can be accounted by the flow 

structure of the vapor. Bubbles coalesce and create vapor columns. With an increase in heat 

flux, these vapor columns coalesce and create a single plume or flower structure of vapor 

bubbles (as shown in Fig. 46(a)). This sets up the macro-convection currents due to which the 

liquid rush toward the heater surface from the sides of the plume. This enables the enhancement 

in both heat flux and heat transfer coefficients. Whereas, in Fig. 46(b) which shows the high-

speed image of pool boiling for a SH, it is observed that at 18.5 W/cm², the bubble coalescence 

take place on a SH without the formation of any plume of vapour bubbles or flower type 

structure. Thus, these large convection currents are responsible for enhancing the performance 

of the LH as compared to the SH.  

 
Figure 44. (a) pool boiling over larger heater at 19 W/cm² and (b) pool boiling over smaller heater 

at 18.5 W/cm². 

 

Table 3 shows the results of CHF, wall superheat, and HTC for both smaller and larger heater. 

There is 31.03%, 66.6% and 104% increment in maximum heat transfer coefficient for PP1, 

PP1C and FC-87 with LH over SH at CHF. 
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Table 3. Pool boiling performance of smaller and larger heater. 

Refrigerant and heater 

surface tested 
CHF (W/cm²) Wall superheat (°C) HTC (kW/m² °C) 

PP1[Smaller Heater] [13] 15.6 28.6 5.8 

PP1C[Smaller Heater] [13] 16 37.5 4.8 

FC-87[Smaller Heater] [32] 16 31.1 4.9 

PP1 [Larger Heater] 23.6 30.8 7.6 

PP1C [Larger Heater] 28.7 35.9 8.0 

FC-87 [Larger Heater] 30.5 30.2 10.0 

 

Table 4 shows the comparison of CHF and HTC for experiments conducted on plain chip and 

plain chip with volcano and dual taper manifold. Plain copper chip with both volcano and dual 

taper manifold outperforms plain chip in CHF. Thus, suggesting that add-on enhancement 

structures help in delaying the CHF by regulating the flow of vapor through specific structures 

and providing continuous supply of liquid to the heater surface.  

Table 4. CHF and HTC for experiments conducted on plain chip and plain chip with volcano and 

dual taper manifold. 

 

 

 

  

Test chips 

PP1 PP1C FC-87 

CHF 

(W/cm²) 

HTC 

(kW/m² °C) 

CHF 

(W/cm²) 

HTC 

(kW/m² °C) 

CHF 

(W/cm²) 

HTC 

(kW/m² °C) 

Plain chip 23.6 7.6 28.7 8.0 30.5 10.0 

Plain chip with 

volcano manifold 
28.1 8.8 38.3 7.8 32.5 8.7 

Plain chip with 

dual taper 
25.6 7.2 31.7 7.08 32.3 6.7 
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7. Conclusions 
 
In the present study, three refrigerants, perfluoro-2methylpentane (PP1), perfluoro-methyl-

cyclopentane (PP1C) and fluorocarbon (FC-87) have been tested for their pool boiling 

performance at an atmospheric pressure with boiling test section of 34.5 mm x 32 mm in a 

closed loop pool boiling setup. The study also explores two configuration: 1) Volcano Manifold 

and 2) Dual Taper Manifold as add-on enhancement structures over the heater surface without 

any deposition and/or chemical surface modification to the heater surface. These enhancement 

structures were created using an additive manufacturing technique to develop a unidirectional 

flow of liquid and vapor fields over the heater surface. High-speed images suggest that both 

the volcano manifold and dual taper manifold achieved high heat flux dissipation by regulating 

vapor removal and liquid supply to the heater surface. The pool boiling performance for the 

plain copper chips and all the modifications is as follow: 

 For a plain copper chip, critical heat flux of 23.6 W/cm2, 28.7 W/cm2 and 30.5 W/cm² 

were achieved at wall superheats of 30.8°C, 35.9°C and 30.2°C for PP1, PP1C and FC-

87, respectively. The maximum heat transfer coefficients achieved were 7.6 kW/m² 

°C, 8.0 kW/m² °C, and 10.0 kW/m² °C.  

 Microchannel chip with channel width 500 µm, channel depth 400 µm, and fin width 

200 µm achieved maximum heat flux (without reaching CHF) of 42 W/cm², 40.6 

W/cm² and 36.5 W/cm² at a wall superheat of 19.6°C, 26.4°C and 23.6°C for PP1, 

PP1C and FC-87, respectively. The maximum heat transfer coefficient achieved for 

the corresponding heat fluxes was 21.8 kW/m² °C, 15.3 kW/m² °C and 15.4 kW/m² ° 

C.  

 In the configuration of plain chip with volcano manifold having rewetting holes of 1 

mm diameter, CHF and HTC of 28.1 W/cm², 38.3 W/cm² and 32.5 W/cm² and 8.8 

kW/m² °C, 7.8 kW/m² °C and 8.7 kW/m² °C for PP1, PP1C and FC-87 were achieved, 



64 
 

respectively. The gap provided between the volcano manifold and the heater surface 

facilitated in modulating the flow over the heater surface by creating separate liquid-

vapor pathways. 

 Small increment in CHF was achieved with plain chip and dual taper manifold of taper 

angle 15°, since a gap of 0.5 mm provided between the dual taper manifold and the 

heater surface collapsed the vapor bubbles before they grew to their bubble departure 

diameter. Thus, led to increase in wall superheat and inefficient heat transfer from the 

heater surface.  

 Add-on enhancement structures did not show improvement with microchannel chips. 

The gap provided between the heater surface, the manifold and taper angles need 

further optimization in order to obtain better heat transfer performance with 

microchannel chip. 

 By using all the three refrigerants, the large heater (34.5 mm x 32 mm) performed 

better than the small heater (10 mm x 10 mm) by giving higher CHF and HTC. Flow 

structure of the vapor accounted for this increase in performance. High-speed images 

suggested that single plume or flower structure of vapor bubbles is created over the 

larger heater. This flow structure creates a macro-convection current due to which 

liquid rush towards the heater surface from the sides of the plume.  
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8. Recommendations for Future Work 
 

 The current study conducts experiments on taper angle 15° and gap 0.5 mm. A 

parametric study can be conducted on taper angle and gap required between the dual 

taper manifold and the heater surface. A new dual taper manifold is proposed with taper 

angles of 5° and 10° with different gaps of 0.5 mm, 1 mm and 1.5 mm to obtain the 

relation between these parameters and their effect on heat flux and wall superheat 

temperature.  

 

Figure 45. Expected bubble behaviour in dual taper manifold. 

 

 The heater surface for the current study is developed to match the geometry of actual 

CPU surface dimensions. Experiments performed on a plain copper chip with three 
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dielectric fluids provides baseline results for heat transfer dissipated from a 34.5 mm x 

32 mm heater surface. It also provides a direct comparison of heat transfer performance 

with an air cooled CPU surface.  

 The current study uses a 3x3 array of hollow conical structures with base length of 9.75 

mm, top hole diameter of 3 mm and height 5.75 mm. A new volcano manifold can be 

designed with 2 x 2 array of HCS and different base length, top hole and height 

parameters. Another parameter such as the gap provided between the volcano manifold 

and heater surface can be changed from 1 mm to 0.5 mm, 1.5 mm and 2 mm for further 

understanding the effect on the pool boiling performance.  

 A more detailed parametric study needs to be conducted to obtain geometries that are 

able to enhance the performance significantly. 

 Theoretical modelling of these structures is recommended. It is proposed that 

theoretical model of these enhancement structures can be created in ANSYS to further 

understand how the change in parameters such as microgap between the heater surface 

and the manifold, taper angles, and array of hollow conical structures affect the overall 

pool boiling performance. 
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Appendix 
 

Validation of Fourier’s Law of 1-D conduction 
 
In section 4, we measure the heat flux through the heater neck with the Fourier’s law of 1-D 

conduction. A numerical study was performed in ANSYS 18.1 to validate the experimental 

results. The 3D heater block (of the actual dimensions) created in SolidWorks was imported in 

the ANSYS Workbench 18.1 design modeller. The boiling heat transfer was studied at the top 

surface. 380 W of power was applied through the four cartridge heaters inserted at the bottom 

of the heater block as shown in Figure 18. Experimentally, the maximum heat transfer 

coefficient was achieved for microchannel chip. Therefore, this particular data set with heat 

transfer coefficient of 16.74 W/m²-°C for microchannel chip with PP1C dielectric fluid is 

chosen. The heater base and sides were insulated with garolite, which was exposed to air at 

room temperature. Effective thermal resistance provided by the garolite and air was calculated 

for the heater base and sides and heat transfer coefficient of 4 W/m²-°C was applied to the 

surface exposed to air. Figure 46 shows the temperature distribution along the heater block. 

 

Figure 46 Temperature distribution along the heater block in ANSYS. 
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From the simulation, maximum temperature of 126 °C was achieved near the cartridge heaters 

and a minimum temperature of 77 °C at top surface of the heater block. As shown in Figure 18 

there are three thermocouples inserted in the heater block to approximate the temperature 

gradient and calculate heat flux through the heater neck. Temperature for these three locations 

T1, T2 and T3 were also obtained from the simulation as 90.4°C, 86.1°C and 81.7°C 

respectively.  

Table 5. The temperature comparison between experimental and numerical results at T1, T2 & T3. 

Thermocouple 
Computed 

Data (°C) 

Experimental 

Data (°C) 
Difference 

T3 (Bottom) 90.4 90.2 0.2 

T2 (Middle) 86.1 86.3 0.2 

T1 (Top) 81.7 82.1 0.4 

 

The Table 5 shows the comparison between the temperatures at T1, T2 and T3 from the 

numerical study and the experimental study. The difference between the experimental results 

and computed temperatures is less than 0.5°C, thus validating the experimental setup and 

showing that the heater follows the Fourier’s law of 1-D conduction.  
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Heat loss study of the heating chip 
 
In section 3.1, we introduced the heating chips and the heater assembly used in the current 

work. As shown in Figure 19, the test section is a 68 mm diameter copper chip with boiling 

surface of 34.5 mm x 32 mm at the center. Kapton tape was used to prevent heat transfer from 

the excess area. This tape has a low thermal conductivity of 0.12 W/m-K at 23°C. The garolite 

block was used to avoid heat losses from the heating chip. Garolite also has a low thermal 

conductivity of 0.2 W/m-K. A numerical study was performed in ANSYS 18.1 to investigate 

heat losses from the excess area covered by Kapton tape. Figure 47 shows the schematic 

representation of the heating chip with garolite block and the kapton tape insulation.  

 

Figure 47. Schematic of heating chip. 

 
The 3D microchannel chip created in SolidWorks was imported in the ANSYS Workbench 

18.1 design modeller. Experimentally the maximum heat transfer coefficient was achieved for 

microchannel chip. Therefore, this particular data set with heat transfer coefficient of 16.74 

kW/m² °C for microchannel chip with PP1C dielectric fluid was chosen. Figure 48 shows the 

boundary conditions over the heating chip. Convection on the top surface is due to boiling over 

the heater surface and thus the convective heat transfer coefficient of 16.74 kW/m² °C is applied 

(A). Effective thermal resistance provided by the Kapton tape was numerically calculated and 
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heat transfer coefficient of 0.384 W/m² °C was applied over the excess area of the top surface 

(B). The bottom surface of the chip, which consists of the thermocouple, TC, is covered by 

garolite block on all four sides and hence the equivalent convective heat transfer coefficient 

due to air and garolite block was calculated as 5.71 W/m² °C and applied to the surfaces (C). 

The bottom surface of the heating chip was provided with 34.16 W/cm² heat flux calculated 

experimentally (D).  

 

Figure 48. Boundary conditions. 

 
Figure 49(a) shows the heat flux distribution over the heating chip. The excess area covered by 

the Kapton tape computed a heat flux dissipation of 0.0119W/cm² and shown as the blue region 

in Figure 49(a). Since the heat flux being dissipated by the boiling surface is much higher than 

the heat lost from the excess area, it is neglected. Figure 49(b) shows the temperature 

distribution over the heating chip. A maximum temperature of 73.3°C was achieved at the 

bottom of the heating chip and a minimum temperature of 67.7°C at the bottom surface of the 
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microchannels. The bottom surface of the microchannels have minimum temperature, as there 

is continuous heat removal from the surface due to boiling.  

As shown in Figure 47 a thermocouple is inserted in the heating chip to calculate the surface 

temperature. Temperature for this location, TC was also computed from the simulation as 

73.3°C. Computed temperature at TC from the simulation was compared with experimental 

study for the same location. Experimental study obtained 72.8°C for temperature at TC, whereas 

simulation achieves 73.3°C at TC. The difference between the experimental results and 

numerical study is 0.5°C. Thus, numerical study validates that a small amount of heat is being 

lost from the excess area and can neglected.  

 

Figure 49. (a) Total heat flux and (b) Temperature distribution over the heating chip in ANSYS 

 

 

 

 


	Evaluation of External Surface Modification Techniques to Enhance Pool Boiling of Dielectric Fluids
	Recommended Citation

	tmp.1606931438.pdf.LFp5c

