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Abstract

Since the development of spectral imaging systems where we
transitioned from panchromatic, single band images to multiple bands, we
have pursued a way to evaluate the quality of spectral images. As spectral
imaging capabilities improved and the bands collected wavelengths outside
of the visible spectrum they could be used to gain information about the
earth such as material identification that would have been a challenge with
panchromatic images. We now have imaging systems capable of collecting
images with hundreds of contiguous bands across the reflective portion of
the electromagnetic spectrum that allows us to extract information at
subpixel levels. Prediction and assessment methods for panchromatic
image quality, while well-established are continuing to be improved. For
spectral images however, methods for analyzing quality and what this
entails have yet to form a solid framework.

In this research, we built on previous work to develop a process to
optimize the design of spectral imaging systems. We used methods for
predicting quality of spectral images and extended the existing framework
for analyzing efficacy of miniature systems. We comprehensively analyzed
utility of spectral images and efficacy of compact systems for a set of
application scenarios designed to test the relationships of system
parameters, figures of merit, and mission requirements in the trade space
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for spectral images collected by a compact imaging system from design to
operation. We focused on subpixel target detection to analyze spectral
image quality of compact spaceborne systems with adaptive band selection
capabilities.

In order to adequately account for the operational aspect of
exploiting adaptive band collection capabilities, we developed a method for
band selection. Dimension reduction is a step often employed in processing
spectral images, not only to improve computation time but to avoid errors
associated with high dimensionality. An adaptive system with a tunable
filter can select which bands to collect for each target so the dimension
reduction happens at the collection stage instead of the processing stage.
We developed the band selection method to optimize detection probability
using only the target reflectance signature. This method was conceived to
be simple enough to be calculated by a small on-board CPU, to be able to
drive collection decisions, and reduce data processing requirements. We
predicted the utility of the selected bands using this method, then
validated the results using real images, and cross-validated them using
simulated image associated with perfect truth data. In this way, we
simultaneously validated the band selection method we developed and the
combined use of the simulation and prediction tools used as part of the
analytic process to optimize system design.

We selected a small set of mission scenarios and demonstrated the
use of this process to provide example recommendations for efficacy and
utility based on the mission. The key parameters we analyzed to drive the
design recommendations were target abundance, noise, number of bands,
and scene complexity. We found critical points in the system design trade
space, and coupled with operational requirements, formed a set of mission
feasibility and system design recommendations. The selected scenarios
demonstrated the relationship between the imaging system design and
operational requirements based on the mission. We found key points in the
spectral imaging trade space that indicated relationships within the
spectral image utility trade space that can be used to further solidify the
frameworks for compact spectral imaging systems.
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”We live in a world bathed in light. We see with light, plants
draw energy from light, and light is at the core of technologies
from computing to surgical techniques. Light influences our
lives today in new ways that we could never have imagined
just a few decades ago. As we move into the next century,
light will play an even more significant role, enabling a rev-
olution in world fiberoptic communications, new modalities
in the practice of medicine, a more effective national defense,
exploration of the frontiers of science, and much more.”

- National Research Council, Harnessing Light, 1998

1
Introduction

The development of imaging systems and our methods of recording light
have had a profound effect on image collection and exploitation
capabilities. In less than a century, we moved from taking panchromatic
aerial photographs [1] to high spatial resolution images that can be
acquired at any time during almost any weather conditions [2]. In this
research, our focus was on the design of passive imaging systems capable of
collecting spectral images in the reflective portion of the electro-magnetic
spectrum. We built on previous frameworks for analyzing spectral image
quality [3] and the efficacy of miniature satellite systems for wide area
search missions [4] to develop a process for optimizing imaging system
designs with application performance as the objective function. We used
existing tools to form a process for traversing the trade space for spectral
imaging system to find the relationships between components of spectral
imaging systems that affect performance. We took advantage of the
computing power available today that was not possible a decade ago to
analyze thousands of images with billions of pixels. The context in which
we developed our objectives was for compact spectral imaging systems
with wide area search missions for subpixel targets.

1
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1.1 Motivation

Traditional spectral imaging systems often attempt to simultaneously
increase spectral resolution and spatial resolution. Hyperspectral imaging
systems currently in use have powerful detectors, that collect images with
hundreds of contiguous bands across the reflective portion of the
electromagnetic spectrum where every pixel in the image contains
information about the materials present. Target detection using
Hyperspectral Images (HSI) does not always require spatial resolution that
allows an analyst to visually identify an object of interest, and two objects
that may look the same (green camouflage vs green vegetation), can be
differentiated using spectral signatures outside of the visible spectrum.

When it comes to analyzing HSI to extract the information
required, there are challenges to processing the data. When HSI is
collected, the hundreds of bands in each image means a single spatial
sample is hundreds of more bits than a panchromatic image. This amount
of data needs to be go through several data handling steps, each of which
can be costly. Usually, every band collected does not contribute to utility
and justify these costs. For example, when looking for an object with a
specific spectral signature, only the bands containing the detectable
signatures are of use. With this in mind, a method for reducing the
number of bands that are transmitted or stored during collection can be
beneficial. Given the amount of data inherent in HSI combined with the
use of automation for extracting information, their utility is often limited
by the processing, exploitation, and dissemination capabilities. A spectral
imaging system that has adaptive band selection capabilities can allow us
to bypass the costs of handling all the data that is collected while meeting
the information requirements.

Designing and building such a system required comprehensive
analysis of the efficacy of the mission, performance analysis of the the
design, and the operational feasibility. There were some missions - targets
and locations - where a compact spectral imaging system was not the
appropriate tool, and to determine this, we needed a process that could
define and test the limits. The statistical component of uncertainty for
subpixel target detection missions using compact systems first required a
decision for the efficacy of a mission. Not only of whether a target was
detectable using spectral images, but if the uncertainty inherent in the
given mission was acceptable. However, this could only be answered if the
mission was defined. A system designed with an unknown mission, may
not be able to meet its performance goals once it was operational and
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given specific targets and locations. We determined that the decision point
for designing a compact spectral imaging system was between the efficacy
of the mission, the trade space between spectral image figures of merit, and
the operational feasibility of processing the collected images.

We predicted then assessed the system design for a small set of
missions as the methodology for analyzing the utility trade space for
spectral imaging systems. Our goal was to provide design
recommendations for an imaging system that was cost effective, robust,
with adequate performance within the operational constraints. We
developed an approach to facilitate decisions for building and operating
compact spectral imaging systems with adaptive band selection
capabilities for wide area search missions.

1.2 Imaging System Context

In this section we elaborate on the imaging system context for which we
develop our process and detail the parameters. Reference to compact
systems refer to low earth orbit systems weighing less than 10 kilograms
[5]. One unit of measure (1U) for these compact systems is 10cm on each
side. The systems we considered in our design analysis are 3-6U in size.
We envisioned this process to be used for systems that resemble a
CubeSat, which is self-contained with its own communication, power and
navigation system within the spacecraft. A single compact imaging system
would be part of a constellation for wide area search missions, capable of
high temporal frequency, with daily revisit times or less.

The adaptive band selection capability refers to a tunable filter
that can modify its spectral resolution by changing its tuning time. If high
spectral resolution is required, the tuning time is decreased, and visa versa.
The system is capable of selecting the wavelengths of the bands and
collecting the desired number of bands. While theoretically it can collect
the number of bands with the spectral resolution matching the traditional
HSI systems, we only considered the range of bands that we determined to
be operationally feasible for compact systems. What we did not consider
was the calibration errors associated with the time it takes for the tunable
filter to select the wavelength. We assumed negligible error due to tuning
time, which may or may not affect the final recommendation. We leave the
error analysis for these system effects for future studies.

The process was developed to determine the mission efficacy,
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optimal system design implementation, and the operational feasibility of
subpixel target detection using images collected using these systems. What
this process does not do, is analyze individual components in the design
such as optical diameter, telescope design, detector sensitivity, and many
other components in building a spectral imaging system. We assume that
it is a modular CubeSat that already has most of the system components
built, but with a few elements of the system design such as the focal
length, height of the orbit, and some noise reduction or signal boosting
capabilities that can be modified.

1.3 Semantics

When describing and explaining image quality, many terms are used
interchangeably. In our references, the subtleties between the definitions
and use of these terms were explained in detail [6] [3]. We reiterate these
definitions and terms in this dissertation for clarification of their use
throughout this document. We defined image quality in two components -
1) fidelity which is the accuracy of information that is contained in a scene
and 2) utility which is the ability to extract the information needed from
the image. Both of these terms are tied to specific portions of the imaging
chain but are not mutually exclusive.

Fidelity is defined as how accurately an image captures the real
world. It is the component of quality that answers to the reliability of the
information contained in an image and is usually tied to the sensor figures
of merit and collection capabilities of the imaging chain. Fidelity can be
further divided into spatial, spectral, and radiometric components. Spatial
fidelity speaks to how well an image projects the 3-D object shapes in the
real world into the 2-D image space. With digital imaging, it also
represents how accurately the continuous signal from the real world can be
replicated by the image sampling. Spectral fidelity answers to how well an
imaging system captures a material’s reflective properties. It represents
how precisely the continuous reflective spectrum of the materials in the
real world are spectrally sampled. Radiometric fidelity spans both the
spatial and spectral aspects of fidelity and represents the pixel by pixel
accuracy in which the signal that reaches the sensor is captured. It can be
degraded by the atmosphere, noise, or poor calibration.

Utility is how easily an image can deliver the information we need
from it or how useful an image is. It answers to the required steps or
processes to extract the information we want from an image, and is usually
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tied to the exploitation activities in the imaging chain. We present two
broad separations in the exploitation methods. One method of exploitation
is by a human observer who can identify objects and activities from an
image. The other method is information extraction using automated
processing. Many exploitation activities in the past used automated
processing for HSI and a human observer for panchromatic images. More
recently however, image exploitation is done using automated processing
and machine learning algorithms for all types of images.

We focused on the utility of spectral images, with the assumption
that information was extracted using automation and machine learning
algorithms. Therefore computational efficiency, reducing processing cost
while maintaining the ability to extract the required information, was a
key consideration in our approach. Image quality for the purposes of this
dissertation refers to both our ability to extract the needed information as
well as how accurately it captures the real world scene that was being
imaged. These two measures of image quality are defined as image utility
and image fidelity. For panchromatic images, we mostly refer to quality, as
this definition encompasses both fidelity and utility and for these types of
images, one directly affects the other. What a human observer is able to
ascertain from an image is the standard for defining image quality, and so
a high level of image fidelity is responsible for improved information
extraction leading to a high level of utility. Furthermore, spatial fidelity of
a scene is usually the primary concern in panchromatic images, and so
spatial fidelity leads directly to utility. We do not expand definitions of
utility for panchromatic images that use machine learning for image
exploitation, although in the future, this shift will need to be addressed
when analyzing image quality even for panchromatic images.

For spectral images, the relationship between fidelity and utility
for spectral images do not necessarily go hand in hand. Unlike
panchromatic images where the ability of a human observer to extract
information is the main criterion for quality, automated processing is the
primary method for image exploitation. Furthermore, spectral fidelity is an
additional component that contributes to the quality of spectral images,
and changes the relationship between fidelity, utility, and quality. While
high spatial and spectral fidelity both contribute to utility, the relationship
is not direct nor linear. For example, an image with only a few bands with
a low spatial resolution can detect some targets with a high level of
accuracy. This is a case where low fidelity measures can still result in high
utility. Furthermore, since there is a wider range of uses for spectral
images, utility depends on application. In Chapter 3 we explicitly and
quantitatively define utility for subpixel target detection applications, but
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in this section, we define utility of spectral images as the performance an
image exploitation algorithm achieves.

We also define assessment and prediction when related to
spectral image utility analysis for subpixel target detection. Both are
necessary steps in analyzing image quality within the system design
process. Assessment is applying a target detection algorithm directly to a
large set of images in order to generate detection statistics. Prediction on
the other hand, is a model that when given certain figures of merit or
imaging system parameters, can produce the most likely detection results
without the images. There are many methods for predicting image quality,
but we focus on the analytic method which is explained in the subsequent
chapters. We parameterized target abundance, number of bands, noise,
and scene complexity to predict utility. Following prediction, we used
simulation to account for the operational aspects of exploiting images
collected by a compact spectral imaging system with adaptive band
selection capabilities. We assessed the simulated images with associated
truth data. We used both the prediction and assessment results to
determine our recommendations.

Scene complexity is a term we also define in this section to clarify
its use in the subsequent chapters of this dissertation. It was used in two
ways, first in Chapter 3 in order to stay consistent with the reference that
first used this as a figure of merit [7]. Then in Section 3.2 where we
described how this value is calculated and used in some of the prediction
methods for spectral image utility. In the subsequent chapters however, for
the purpose of this research, we refer to scene complexity in a more general
sense to describe the overall intrinsic properties of a location where
homogeneity, spectral variations of the materials present, and other
physical phenomena that can contribute to complexity. We separated the
two measures of scene complexity as background complexity which is a
metric we developed in this research, and scene volume which is a metric
developed by previous research for spectral image analysis [8]. The
calculations, descriptions, as well as motivations for their use is described
in detail in Chapter 6.

1.4 Previous System Design Processes

Previous methods for optimizing system design also used simulation and
modeling of spectral imaging systems [9] and some of them encompassed
the entire remote sensing process [10]. These methods also conducted
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trade studies using both analytic and simulation models to configure
complex data selection parameters [11]. Other methods for studying
system designs from a mission and operation perspective exist for satellite
systems where the optimal designs of small satellites were outlined in
detail for a list of mission objectives [12]. The state of the art processes
that facilitate decision making on design of remote sensing satellites used
an approach called multidisciplinary design optimization [13] and
multi-parameters joint optimization [14].

Other works also attempted to account for several elements of the
image chain to include dimension reduction methods to determine
detection performance. One of them started by characterizing the
background and its effect on target detection performance [15]. Others
compared target detection algorithms and their performance after images
went through the pre-processing steps of atmospheric compensation and
dimension reduction [16] [17]. However, all of these projects used a single
HSI of the same scene and targets. Therefore the effects of detection
performance due to the target and the location was not determined.

There were several gaps in the previous work and current state of
the art that we wished to close in this research. The first was that all these
methods assumed a fixed band imaging system, and so if the band
selection and dimension reduction step were accounted for, it assumed post
collection processing. Also, while these methods were appropriate for many
aspects of designing a spectral imaging system, they did not
comprehensively account for the operational aspect of exploiting a spectral
image to include band selection or the input mission scenarios before the
design. The assumptions of the methods were either that the system
existed and the utility prediction was for the purpose of selecting the
appropriate spectral image, or that the final mission scenario was
unknown. For subpixel target detection, the target and background
combination had significant effects on the final detection performance.
What we addressed in this research by selecting a few input scenarios for
analysis, was the operational aspects of image collection and the effects of
the mission scenario in the final utility.

The process we proposed analyzed selected mission scenarios, and
assumed that the bands were selected for collection depending on target.
Our assumption was that small, inexpensive spectral imaging systems were
not required to detect all possible targets, but only a few, leveraging the
constellation of satellites, each with a separate mission set. We also
accounted for the operation and anticipated the decisions that a collection
manager would make in order to meet the mission requirements. As a
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result, we not only developed a band selection method that could be used
to determine which bands to collect, but also a metric that tied the design
to the operation in determining the number of bands. We developed
metrics that quantified the effects of a target and its location on mission
feasibility and utility.

1.5 Objectives

The primary objective of this research was to develop a practical process
for determining the efficacy of missions and analyzing utility of spectral
images collected by compact systems. A key task in forming this process
was to develop a dynamic band selection algorithm that could be
implemented in a compact spectral imaging system with adaptive band
selection capabilities. The insertion of this capability to the process was to
account for the operational requirements in wide area search missions
where transmission bandwidth or data storage requirements can be limited.
We built on previous work that defined figures of merit for spectral images
and used existing tools in a novel manner for analyzing spectral image
utility to examine a few mission scenarios and how they occupy the trade
space. By doing so, developed a decision process to facilitate the design of
compact imaging systems and determine the feasibility of selected missions.

Figure 1.1 shows an overview of the steps in the process to study
the trade space of spectral imaging systems. We examined the feasibility of
a mission by predicting the detection performance for a target against the
background composition to find critical points in the trade space for the
mission. We then designed a scene similar to the location in which we
wished to confirm or deny the presence of a target, and generated
simulated images that encompassed the critical design elements found in
the prediction process. Then we assessed the simulated images using target
detection algorithms to justify the determination of whether a mission was
operationally feasible, and a set of recommended spectral imagining system
design parameters to achieve the desired performance.

The process was developed within the framework for analyzing
efficacy of missions for compact satellite imaging systems that was
previously focused on panchromatic images and the figures of merit that
govern them. We also built on the framework for analyzing spectral image
utility that was previously focused on spectral imaging systems with fixed
bands. We selected four criteria that affected detection performance, tied
to the mission, imaging system design, and the exploitation of spectral
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Figure 1.1: Overall objective and process to analyze efficacy, and predict
and assess utility for selected subpixel target detection mission scenarios.

images for wide area search. The four criteria were target fill fraction or
target abundance (two terms that are used interchangeably in this
dissertation), number of bands, scene complexity, and signal to noise ratio.
The analytic model that was used to predict utility parameterized these
four components to find points in the trade space where improving the
imaging system design metric had limited effect on utility. The prediction
also produced information about the feasibility of a mission and imaging
system parameters that would allow detection of the target above a desired
performance criterion. The goal of the simulation process was to design a
scene and use a method for placing targets that replicated the operations
framing the wide area search mission. The assessment of the simulated
images validated the predictions or highlighted possible challenges that
may exist in real operations that would affect utility that was not captured
in the prediction process.

Table 1.1 shows the sequence of the optimization process and the
trade space parameters analyzed in each step to form recommendations for
a system design. In each step there was an output for a mission set with a
target and location related to the system. For example, if our mission was
to confirm or deny the presence of an orange airplane in the Rochester, NY
in the month of June, the prediction for this mission determined whether
this mission was feasible. If it was feasible, the critical points in the trade
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space for target abundance, number of bands, noise, and background
complexity were used to find a set of recommendations for a system design.
The prediction determined a set of possible spatial resolutions, acceptable
noise, and the number of bands required. In the simulation and scene
design step, the target geometry along with the real world scene
resembling the Rochester airport and the operational conditions were
replicated to generate synthetic images.

Table 1.1: Sequence of the Optimization Process

Process Mission System

1) Prediction Feasibility
Determination or
Saturation Points

Spatial Resolution,
Noise, Number of
Bands

2) Simulation and
Scene Design

Target Geometry,
Location and
Operations Replication

Optics, Platform
Height, Detector,
Collection Conditions

3) Assessment Operational Effects
and Performance
Ceilings

Detectability, System
Recommendations

The simulation was designed with imaging system parameters for
optics, platform height, and detector characteristics such as the pixel pitch
and detector response functions of the bands, and collection conditions
such as illumination, smear or look angle, that generated the optimal
spatial resolution and bands found by the prediction. The assessment step
included the post-processing of the simulated images and replicated the
predicted acceptable noise and selected bands to assess the images using
target detection algorithms. The assessment as it related to the mission
determined the effects of the operational process, computational
requirements for processing the amount of data required affected by the
number of bands and the temporal frequency for accomplishing the mission
and performance ceilings due to a combination of these factors. For the
system, it determined the detectability of the target based on its target
abundance distribution and scene complexity produced by the simulated
system parameters, which led to a set of recommendations for a system
design.
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Figure 1.2: Example mission that use process to determine points in trade
space that lead to a set of system parameter recommendations.

1.6 Example Mission

In this section we present an example mission and the flow of this process
to reach a recommendation for a set of parameters. We present this to
illustrate the determination of the optimal design that also accounts for
operational limitations. We reiterate the context, and the process that was
considered to make design decisions.

Mission Scenario: Collect weekly images from June to July to detect
presence of green vehicles in training areas of Ft Knox, KY. The presence
of a target is easily verifiable by other sources of intelligence collection.
Data processing capabilities for weekly images are a maximum of 15 bands.

Figure 1.2 shows the target and location and the information that needs to
be determined to provide a feasibility recommendation of whether this
mission scenario is appropriate to employ compact imaging systems. If the
mission is feasible, the optimal system parameters are determined. The
key parameters in the imaging system that we provide a recommendation
for, were the spatial resolution determined by the focal length and sensor
height, number of bands needed to accomplish the mission, and the
acceptable noise level. The subsequent chapters of this dissertation detail
the experiments and analysis that was done to not only provide
recommendations for this mission but also others.

1.7 Overview

We present a methodology for comprehensively analyzing the spectral
image utility trade space for the purpose of optimizing the design of a
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compact imaging system. We begin be describing panchromatic image
figures of merit used to predict quality in Chapter 2 on which we build the
descriptions of the spectral image quality metrics in Chapter 3. We
differentiate multi-spectral images from hyper-spectral images, discuss
some spectral image figures of merit, quantitatively define utility, and
present existing utility prediction methods including the analytic method
used in this project. Then in Chapter 4 we describe the simulation tool
used to generate spectral images and the techniques used to ensure key
real world image characteristics were captured in the simulation model or
in the post-processing step. In Chapter 5 we describe dimension reduction
and band selection methods. We also describe the development of a novel
band selection method that was employed as part of the process in order to
account for the operation of an adaptive spectral imaging system, and the
validation process.

In Chapter 6, we describe the approach used to comprehensively
analyze the different components of the spectral image utility trade space.
The parameters used in the prediction, and the methods used to design the
scenes, the post-processing steps, and the target detection algorithms used
in the assessment are described. The overall approach divides the tests
into two parts - the simple scene and the complex scene. Chapter 7
describes the operational context and the details for the two parts of the
testing. Then Chapter 8 presents the results of the tested scenes and
Chapter 9 provides the conclusions and contributions of this research.



”The dwarf sees farther than the giant, when he has the
giant’s shoulder to mount on.”

- Samuel Taylor Coleridge, The Friend, 1828

2
Panchromatic Image Quality

Image quality for panchromatic images have been analyzed for many
decades and there is a solid framework for predicting quality with
well-defined figures of merit. The General Image Quality Equation (GIQE)
is the widely accepted method for predicting panchromatic image quality
using various figures of merit [18]. In this chapter we present the
prediction method and the three figures of merit used to predict
panchromatic image quality.

2.1 National Image Interpretability Rating Scale

The most widely used measure of quality for panchromatic images is the
National Image Interpretability Rating Scale (NIIRS). This is a numbered
rating between 0 and 9 that is given by a trained image analyst to an
image based on the amount of information that can be extracted. It is a
subjective measure of utility that increases when a human observer is able
to extract more information about the real world scene. The GIQE is a
quality prediction model that was modified several times over the last
decade. The three figures of merit used in the current version, GIQE
version 5 (GIQE 5) [19], are the Ground Sampled Distance (GSD),
Signal-to-Noise Ratio (SNR), and Relative Edge Response (RER). The

13
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predicted NIIRS value (PNIIRS) is calculated using the coefficients in
Table 2.1 (Eq. 2.1).

PNIIRS = A0 +A1 · Log10(GSD) [in] + A2 · [1− e
A3

SNR ] · Log10(RER)

+ A4 · Log10(RER)4 +
A5

SNR
(2.1)

We used these three parameters as the starting point for exploring
panchromatic image quality.

Table 2.1: GIQE 5 equation coefficients

A0 A1 A2 A3 A4 A5

9.57 -3.32 3.32 -1.9 -2 -1.8

2.2 Ground Sampled Distance

In remote sensing, the GSD is a measure of the distance between the
projection of two pixels onto the ground. It is dictated by the Effective
Focal Length (EFL), detector pixel pitch, and collection geometry of the
imaging system. For an image that is collected by a sensor that is directly
above the scene, Eq. 2.2

GSD =
p

F
·H⊥ [m] (2.2)

shows the parameters that contribute to the GSD in both the x and y
directions. Table 2.2 shows the parameters that are used to calculate GSD.

Table 2.2: Parameter definitions for GSD calculation

Parameter Symbol

Detector Pixel Pitch p [µm]

Height H [m]

Effective Focal Length F [mm]

Line of Sight Tilt Angle α

Imaging System Elevation Angle β

Angle between x and y θ
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For collection geometry where the sensor is not directly above the
scene, the GSD in each direction is calculated separately according to Eq.
2.3

GSDx =
( p
F
·Hr

)
·

(
cos2(α) +

[
sin(α)

cos(β)

]2
)1/2

[m] (2.3)

and Eq. 2.4.

GSDy =
( p
F
·Hr

)
·

(
sin2(α) +

[
cos(α)

sin(β)

]2
)1/2

[m] (2.4)

In this case, the parameter used in the GIQE is the geometrical mean of
the GSD in both directions (Eq. 2.5),

GSDGM =
√
GSDx ·GSDy [m] (2.5)

or in the case where the along-scan and cross-scan are not orthogonal, the
angle between the scanning directions is accounted for by using the angle θ
(Eq. 2.6).

GSDGM =
√
GSDx ·GSDy · sin(θ) [m] (2.6)

Figure 2.1 shows a diagram of what the GSD parameters
represent within the imaging system. Figure 2.1a shows the GSD
calculation parameters for nadir collection where the angle between the
GSD in the x and y directions are perpendicular (Eq. 2.2). Figure 2.1b
shows the calculation parameters for a collection angle that is tilted and so
the line of sight is at an angle α to the ground and the elevation of the
imaging system is at an angle of β. The image shows straight lines that
represent the ground, which is a sufficient approximation for small GSDs,
but there is also a curvature of the earth that may have effects on larger
GSDs. The final GSD for this figure is calculated by using the geometric
mean (Eq. 2.6).

In this research we used meters as the units to calculate the GSD
since the input variables were in metric unit. However, the units of the
GSD value used to calculate the predicted NIIRS value (Eq. 2.1), are in
inches. Therefore, the GSD value was converted to inches prior to
calculating the PNIIRS value.
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(a) Diagram illustrating GSD for
nadir collection.

(b) Diagram illustrating GSD for angled col-
lection.

Figure 2.1: Diagrams representing GSD for different collection geometry.

2.3 Signal-to-Noise Ratio

The SNR is an image quality metric that is often used on its own to
indicate the level of detector sensitivity. A high quality detector has high
SNR, and differentiates small changes in signal. As the name implies, it is
the ratio between the signal and the noise. While the base concept is
simple, there can be many different values for the same detector,
depending on how signal and noise are defined and calculated.

For remote sensing systems, one object on the earth is
differentiated from another when the change in reflectance at a set
wavelength or bandwidth registers a signal that is greater than the noise.
It is why the noise equivalent change in reflectance (NE∆ρ) is often used
to determine image utility. For target detection, the difference in
reflectance between the target and background determines signal, since a
target that does not have a sufficiently higher reflectance than the noise
can not be detected (Eq. 2.7).

S∆ρ = Sρhigh − Sρlow (2.7)

The definition of signal we used is one that was provided by the GIQE
manual for image-based SNR calculations. It used the difference in the
sensor reaching radiance (L) from a high and low reflectance value and
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converted it into signal electrons (Se) [20]. The selection of the high and
low reflectance affected the signal value, and for our simulation validation,
explained in chapter 4, we used 7% and 15%. Table 2.3 shows the
parameters that were used to calculate the SNR.

Table 2.3: Parameter definitions for SNR calculation

Parameter Symbol

Dark Noise σd [e−]

Quantization Noise σq [e−]

Quantum Efficiency QE

Optical Transmission τ

Aperture Diameter D [mm]

Integration Time tint [µs]

Detector Area A [m2]

Radiance L [W/m2sr]

Focal Length F [m]

The noise is typically calculated from the standard deviation of
the high reflectance signal value, which is the shot noise. The F# (Eq.
2.8),

F# =
F

D
(2.8)

is used to calculate the G# (Eq. 2.9),

G# =
1 + 4F#2

τπ
(2.9)

which along with the radiance and integration time, is used to calculate
the number of photons incident onto a detector area (Eq. 2.10).

SΦ =
tint ·A · L

G#
· λ
hc

[photons] (2.10)

We assumed that the signal had a Poisson distribution, and so the variance
was equal to the mean of the signal level. The average shot noise was then
assumed to be equal to the standard deviation of the signal, which in
terms of electrons was calculated by scaling the photon signal by the
quantum efficiency of the detector (Eq 2.11).
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Se = SΦ ·QE [e−] (2.11)

We defined noise as a combination of fixed noise and shot noise, and the
total noise was the the combination of all the components (Eq. 2.12).

N =
√
Se + σ2

d + σ2
q [e−] (2.12)

While there were many different sources of fixed noise, we focused on two
fixed noise values that was separated into dark noise (σd) and quantization
noise (σq). This allowed us to calculate SNR directly from the difference in
radiance values of a high and low reflector in the image (Eq. 2.13).

SNR =
Se
N

(2.13)

2.4 Relative Edge Response

The RER is a measure of how sharply an edge is represented in an image
and how much blur there is. It is a metric that is dependent on the
Modulation Transfer Function (MTF). The GIQE definition of the MTF is
a combination of the imaging system components that include the optics,
detector, clocking (that causes scan smear), and other imaging system
components that can cause blurriness. We focused on the diffraction
resolution and detector resolution [6] as sources of the blur from the
diffraction from widening of a point source of light, and smear due to
movement of the imaging system. Figure 2.2 illustrates the edge response
where 2.2a shows an image of a perfect edge with no blur and its plot
showing the transition between the high reflectance area and the low
reflectance area and 2.2b shows the same for a blurry edge.

The normalized edge response that was used in our GIQE
calculation was the MTF that was integrated through an imaging system’s
spatial frequencies. In Eq. 2.14

ERx(ζ) = 0.5 +
1

π

∫ uc

0

MTFx(u)

u
sin(2πuζ)du (2.14)

ζ is the response relative to the center of a pixel and u is the spatial
frequency that produces the MTF in either the x or y direction. The MTF
values are integrated along each frequency where uc is the optics cutoff
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(a) Image of perfect edge with no blur
and plot of its edge response.

(b) Image of edge with some blur and
plot of its edge response.

Figure 2.2: Illustration of edge response function showing difference in tran-
sition between a perfect edge with no blur and edge with blur incorporated.

frequency normalized to its sample spacing. The RER was calculated by
taking the slope between the edge response at half a pixel to the left of the
edge and half a pixel to the right of the edge.

Figure 2.3 shows a diagram of the values that are used in Eq. 2.15

RERx = ERx(+0.5)− ERx(−0.5) (2.15)

to calculate the RER. An edge such as the ones shown in Figure 2.2 was
an RER in the x direction. A platform moving in a direction other than
what is perpendicular to an edge would produce smear differently for edges
in the x and y direction. The geometric mean of the RER in both the x
and y directions (Eq. 2.16)

RERGM =
√
RERx ·RERy (2.16)

was the parameter used to calculate the GIQE along with the GSD and
SNR.
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Figure 2.3: Diagram of relative edge response [18].

2.5 Summary

Three panchromatic figures of merit that are used in the GIQE were
described in this chapter. We first analyzed the image quality metrics that
were determined by a human observer as a starting point for contrast to
spectral image utility metrics. While spectral images derived its utility
from automated processing, the metrics presented in this chapter still
permeated all aspects of spectral image utility. The image quality
described by spatial resolution, edge response, and noise were still
components within the spectral image quality trade space. Their
relationship in spectral images became more complicated and challenging
to express as an equation as was done with the GIQE.



“In that direction,” the Cat said, waving its right paw round,
“lives a Hatter: and in that direction,” waving the other
paw, “lives a March Hare. Visit either you like: they’re both
mad.”
“But I don’t want to go among mad people,” Alice remarked.
“Oh, you can’t help that,” said the Cat: “we’re all mad here.
I’m mad. You’re mad.”
“How do you know I’m mad?” said Alice.
“You must be,” said the Cat, “or you wouldn’t have come
here.”

- Lewis Carroll, Alice in Wonderland, 1865 3
Spectral Image Utility

Traditional quality measurements of panchromatic images were derived
from human observers and their ability to extract information about the
scene. Fidelity and how accurately an image was able to depict what was
in a scene was the primary driver for utility. The measures we used to
determine utility for panchromatic images were relevant also for spectral
images. However, the addition of another dimension of quality - spectral
resolution - complicated the intuitive relationships between the figures of
merit that were described in Section 2 as well as those that were specific to
spectral images.

With spectral images, the reflectance properties of a material
could identify an object within a scene even at sub-pixel levels [21]. The
shape of an object and what was perceived by a human observer was less
relevant in identifying it. Quality for spectral images was dependent on
automation and its algorithms to extract information [22]. Fidelity was no
longer the primary driver for utility in spectral images, and the accuracy in
which an image captured the shapes of objects played minor roles in
determining quality. The application and the capabilities of automation
and the suitability of algorithms determined the ability to extract
information.

The applications of spectral images were more diverse than

21
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panchromatic images and so the relationship between the existing figures of
merit and their contribution to utility was challenging to express in a single
equation. In this chapter we focus on the figures of merit that contribute
to performance for subpixel target detection applications. We refer to
utility in this document to be synonymous to application performance,
which for subpixel target detection algorithms, was detection probability.

3.1 Utility Assessment Metric

For target detection, there were several metrics to quantify utility. The
primary method for quantifying detection performance was the Receiver
Operating Characteristic (ROC) curve that compared the True Positive
Rate (TPR) to the False Positive Rate (FPR). The Area Under the Curve
(AUC) was a commonly used metric that was calculated from the ROC
curve. The maximum AUC was 1.0 which indicated that all the true
positive were detected with no false positives. The TPR at a Specified
False Positive Rate (SFPR) or Constant False Alarm Rate (CFPR) was
also a commonly used utility metric when the number of false alarms were
of primary concern. Each utility metric had its advantages and
disadvantages. The AUC did not contain full information about the false
alarm rates, and the TPR at a SFPR or CFPR did not contain
information of the detection performance outside of these values.

In order to address the need to account for false positives as well
as performance behavior at more than one SFPR or CFPR value, we used
a utility metric defined in [3]. This metric was ideal for the purpose of
subpixel target detection as it combined the AUC and TPR at a SFPR or
CFPR. It was the AUC below an FPR divided by the Perfect Detection
Area (PDA) (Eq. 3.1).

Util(FPR,AUC) =

∫ FPR
0 AUC∫ FPR
0 PDA

(3.1)

Figure 3.1 shows a diagram representing the components of the utility
metric where the blue area represents the the utility value for the selected
FPR. Figure 3.2 shows two example ROC curves with the same AUC and
TPR at a single FPR value but with different utility values. Figure 3.2a
shows a ROC curve with a utility value lower than the ROC curve shown
in Figure 3.2b. These figures demonstrated a case where neither the AUC
or FPR was able to capture the required information. What this metric
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Figure 3.1: Graphical representation of utility metric.

(a) Example of low utility at same
FPR and AUC values as Figure 3.2b.

(b) Example of high utility at same
FPR and AUC values as Figure 3.2a.

Figure 3.2: Examples of the high at low utility metrics for same FPR and
AUC.

also allowed us to do was to analyze target detection performance without
having to repeat our process for multiple FPR values. A low utility result
indicated limited performance below the selected FPR, and a high utility
result indicated otherwise.

3.2 Spatial Resolution vs. Scene Complexity

For panchromatic images, a smaller GSD was usually desirable and led to
higher quality. In the GIQE, the GSD contributed to the NIIRS prediction
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in the term −3.32 ∗ Log10(GSD). However, increasing GSD also came at
the cost of losing context in a single image, because the imaging system’s
field of view narrowed. Furthermore, increase in GSD only increased image
quality if the RER did not change due to the optical Point Spread
Function (PSF) that increased when GSD decreased while the optical
diameter remained constant. The Q# which was a metric that related the
detector resolution to the optical resolution described this phenomena [6].
The trade within the panchromatic image quality space between GSD and
RER described by the Q# is explaned in detail in Chapter 4. Ultimately
for panchromatic images, a smaller GSD meant more detail was seen of the
objects in a scene that allowed for better identification by a human
observer or for machine learning algorithms that were trained to identify
an object based on specific features.

This may be true for spectral images in certain applications such
as fine-grained object identification. For instance, an RGB image with a
smaller GSD can provide more information about an object’s features such
as the type of vehicle. The utility of an image with low spectral resolution
such as an RGB image can have a relationship to GSD that was similar to
panchromatic images. The contribution of spectral information in the
RGB image to utility was to allow finer separability between objects based
on the additional information. For example, vehicles that could only be
identified by type (sedan, van ect.) in panchromatic images can be
identified by its color as well (white sedan, blue van). Spectral contribution
to utility in such an application, was coupled with spatial resolution.

For subpixel target detection, contribution of the spectral
information had a different relationship to spatial resolution. A smaller
GSD increased the target fill fraction, so a target that is 2m2 in size that
was imaged using a system with a 4m GSD produced spectral images with
up to 12% pixel fill fraction of a target. If the GSD was increased by 2, the
maximum target fill fraction decreased by 4. Increase in fill fraction often
improved detection performance for subpixel target detection, which
increased utility. However, the effects of increasing the target fill fraction
or Target Abundance or Target Fill Fraction (TA) were limited, and
reached a point where an increase in abundance did not significantly
increase detection probability.

For spectral images, decreasing the GSD increased the variation
in the background depending on the inherent complexity of the scene. This
variation was mentioned in [7] as a scene complexity value (σscene), which
was the average standard deviation of each band (σi) across the image for
N bands (Eq. 3.2).
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σscene =

∑n
i=1 σi
N

(3.2)

In spectral images, σscene changed due to the scene complexity and the
GSD. A closer look at the materials on earth meant a greater variation
from pixel to pixel, whereas a large GSD averaged the materials that
composed the scene to decrease the pixel to pixel variation. The units for
σscene depended on the units of the image and it could be in digital counts,
radiance, or reflectance.

Assuming a linear mixture model, a mountainous scene that
consisted of rocks, vegetation and soil, had background spectra that was a
mixture of these materials in each pixel. A scene with a small GSD that
separated the presence of these materials resulted in higher scene variation.
A large GSD on the other hand, produced the average spectrum from
these materials, making the scene more uniform, and thus produced a low
σscene. The same scene of the mountains and the various materials in it
had higher scene variation with higher spatial resolution, than at a lower
spatial resolution. This could have effects on detection results for
algorithms that depend on the background covariance to estimate the
presence probability of a target. Figure 3.3 shows two images as examples
of scenes with different complexity values. Figure 3.3a is a scene that
inherently has a high σscene value and increasing spatial resolution would
decrease detection probability of a target even if the TA was improved. On
the other hand, for a scene such as the one shown in Figure 3.3b, the
σscene value will not change significantly with the spatial resolution. Thus
the spatial resolution could increase or decrease utility depending on the
spectral separability of the target as well as the the type of scene it was in.
Each target and background combination had different effects on utility
and it relationship to the spatial resolution.

The σscene value was used to measure scene complexity, and
because it was related to the background value used in many target
detection algorithms, it was able to capture some of the effects it had on
detection performance. What it did not fully account for was large areas
with clustered changes in the scene such as an urban scene with buildings
and roads, but with an immediate surrounding that was open and uniform.
It also did not account for the reflectance of the materials that were
present. Even if there was lower variation from pixel to pixel, highly
reflective materials that surround a target, would make it difficult to
detect. Therefore this was not a measure used in this project to quantify
scene complexity. It is provided in this chapter to illustrate the intuitive
trade between GSD and utility for subpixel target detection, and to
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(a) Hyperion image of the Coast of Japan shown with bands 2, 5, and 10 -
B(365.76nm), G(396.29nm), and R(447.17nm), average GSD = 30m. Example
of scene with high degree of complexity. σscene = 0.60.

(b) Hyperion image of the Coast of Japan shown with bands 2, 5, and 10 -
B(365.76nm), G(396.29nm), and R(447.17nm), average GSD = 30m. Example
of scene with low complexity. σscene = 0.15.

Figure 3.3: Image examples with high and low σscene.

reference previous work we built on. A more comprehensive analysis of the
metrics used for scene complexity is presented in Chapter 7.

3.3 Spectral Separability

The Spectral Similarity Value (SSV) is a comparison measurement that
was described in [23] for different material classes. It accounted for the
Euclidean distance (Eq. 3.3),

de =

√√√√ 1

N

N∑
i=1

(xi − yi)2 (3.3)

and the correlation coefficient (Eq. 3.4),

r2 =

(
1

N−1

∑N
i=1(xi − µx)(yi − µy)

σxσy

)2

(3.4)

r̂2 = 1− r2 (3.5)
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(a) Materials with similar spectral
signatures. SSV = 0.244

(b) Materials with distinct spectral
signatures. SSV = 1.054

Figure 3.4: Examples of low SSV (spectrally similar) and high SSV (spec-
trally distinct). Max SSV ≈ 1.4

to produce a metric that measured how different one material spectrum
was from another (Eq. 3.6).

SSV =
√
d2
e + r̂2 (3.6)

The spectrum of material X, its mean (µx) and standard deviation (σx)
were compared to the material Y , across the number of bands (N) to
produce a value. This metric produced a large value when X and Y were
more distinct from each other. Figure 3.4 shows examples of two materials
that have similar spectral reflectance signatures (low SSV), and two
materials that are more distinct (high SSV). The maximum SSV was the
square root of 2 (≈ 1.4).

Another method for calculating the spectral separability of the
target and background used the Mahalanobis distance between them (Eq.
3.7). The SSV can be applied to any two materials whether it is a target
or background or neither, and was often used for classification
applications. A metric that was designed primarily for target detection
applications was the Signal to Clutter Ratio (SCR).

SCR =
√

(µt − µb)TΣ−1
b (µt − µb) (3.7)

This value was described in [24] and used as a metric in one of the spectral
utility prediction methods that is described in Section 3.7. The difference
in the mean of the target (µt) and background (µb) were multiplied to the
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inverse covariance (Σ−1
b ) of the background, then multiplied to the

transpose of the difference in means. What this metric took into account
was the mean spectral difference of a target and background, as well as the
scene variation that affected detectability. For subpixel target detection
both the spectral separability of a target from its background as well as
the complexity of the scene affected detection performance. The values for
µb and Σ−1

b were calculated from the image, and so it was appropriate for
processing HSI, post collection or predicting utility. A modification of this
metric was used to quantify background complexity in this research, which
is described in Chapter 6.

While these figures of merit may not have a direct connection to
the imaging system, for subpixel target detection they were useful in
predicting and assessing utility. As discussed in Section 3.2, utility for
subpixel target detection was dependent on the target and the scene. Dark
materials with low reflectance values for most of the spectrum such as
black rubber, were difficult to detect at subpixel levels, regardless of the
background, since their contribution to the sensor reaching radiance was
limited. Bright targets on the other hand, with high reflectance for large
portions of the reflective spectrum contributed proportionally to the the
final radiance, and if placed in a darker background, was the primary
contributor to the final radiance. Furthermore, even bright targets, if
surrounded by materials that were spectrally similar, became difficult to
detect.

3.4 Spectral Fidelity

There were many ways spectral fidelity is measured and calculated. While
we focused on utility as the primary component of spectral image quality.
The fidelity measures can be separated into three categories - spectral
resolution, spectral relative edge response, and spectral calibration
accuracy. These three measures have complex spatial-spectral relationships
and result from many physical phenomena intrinsic to spectral imaging
systems. An initial attempt at replicating the image quality prediction
model for panchromatic images for spectral images detailed these three
spectral fidelity measures along with other metrics as figures of merit for a
predictive model [25].

Depending of the spectral detector design and purpose, these
three categories of spectral fidelity have different effects on the final image
quality. The individual effects on image utility were not explored in this
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(a) Diagram of ∆λ as measured from
center wavelengths of two bands.
Measure used for systems with filters.

(b) Diagram of ∆λ as defined by
the FWHM. Measure used by sys-
tems with light dispersion mecha-
nisms such as prisms.

Figure 3.5: Diagram representing measures of spectral resolution (∆λ).

research, but they are presented in this chapter as they are intrinsic to the
system design. We describe these categories of spectral fidelity that were
intertwined and affected real systems, but they were not wholly accounted
for in our prediction model or simulation. Furthermore, for compact
imaging systems with adaptive band selection capabilities, the traditional
methods for measuring them require further inspection in the future.

3.4.1 Spectral Sampling Interval

The spectral sampling interval (∆λ) is the width of the distance between
the center wavelengths of each band. The spectral signature of a material
in the real world and how it interacts with light at each wavelength is
continuous. When imaging the spectral signature, ∆λ can be a measure of
how fine the data sampling is. It can also be measured in terms of the
Full-Width Half-Max (FWHM) of each band when there is no overlap as is
the case with spectrometers that use a light dispersion method to record
the spectral information. Figure 3.5 diagrams two ways in which ∆λ can
be measured. For a spectral response function, we can define ∆λ in terms
of FWHM or in terms of the difference in the peak radiometric response
between two bands. For a tunable filter, ∆λ can be arbitrary, but reference
to this measure of fidelity for this dissertation is with respect to sampling
intervals as shown in Figure 3.5a.

High spectral sampling is a measure of quality for spectral
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imaging systems as it increases our ability to characterize spectral
signatures. However, high spectral sampling often increases noise and
decreases spatial resolution. It also increases dimensionality which
introduces errors and increases data processing costs. For target detection,
spectral sampling has different effects on utility depending on the target,
background and the algorithm used. If an algorithm depends on the slope
of the spectra to determine detection statistics, then sufficiently high ∆λ
can improve utility. However, for a highly reflective target, only a few
bands can be sufficient for detection, and so increasing ∆λ is unnecessary.
For a system with a tunable filter, this measure is only relevant when it is
related to its ability to resolve a narrow spectral feature.

3.4.2 Spectral Relative Edge Response

The Spectral Relative Edge Response (SRER) is similar to the RER
defined for panchromatic images, but is applied to the spectral response
function. It is the measure of how well a narrow spectral feature can be
resolved by the imaging system. For subpixel target detection, this metric
plays a limited role. However, if the target is highly reflective only at a
narrow bandwidth, then the SRER and the imaging system’s ability to
resolve this spectral feature, contributes to utility. This measure of fidelity
for an imaging system with a tunable filter that can collect images at
arbitrary wavelengths is intertwined with ∆λ. Since center bands can be
selected arbitrarily, the system’s capability of collecting two bands that
can resolve a narrow spectral feature determines its SRER. A detector that
is not capable of producing sufficient spectral resolution can not produce a
high SRER. The SRER is also affected by calibration where degradation of
SRER can be caused by spectral calibration error, which is another
measure of spectral fidelity.

3.4.3 Spectral Calibration Accuracy

The spectral calibration accuracy is how close to the actual center
wavelength the determined or declared center wavelength is in a band’s
FWHM. When this is related to the spatial component, error in calibration
accuracy can be from distortions in mapping of the spectrum to a spatial
position. Figure 3.6 illustrates the spatial-spectral mapping distortion that
can cause the spectral radiance at some wavelengths for materials in one
pixel to contribute to the spectral radiance of another pixel. Calibration
can correct for distortions that are well-behaved functions, but there is
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(a) Distorted mapping of spectrum
for spatial position.

(b) Undistorted mapping of spectrum
for spatial position.

Figure 3.6: Diagram showing spatial-spectral mapping in a dispersive imag-
ing spectrometer. [26]

error when an imaging system’s artifacts are not.

For subpixel target detection calibration accuracy can be
important when it affects the wavelengths where a target is detectable. It
is critical for imaging systems with tunable filters that is only collecting a
few bands for a target that is only distinguishable from the background at
the selected wavelengths. Error in calibration can mean the difference
between collecting a band that is spectrally distinguishable from the
background or not.

3.4.4 Spectral Fidelity Summary

These spectral fidelity measures are intimately related to each other in
producing the final spectral image and determining its utility. Their effects
can be compounded when the image is processed with machine learning
algorithms that are trained with data that may be sensitive to differences
in spectral fidelity. The individual contributions of each measure of utility
and their effects on machine learning is beyond the scope of this project.
Perhaps it is a research direction that can be taken in the future. What we
did address in this dissertation was how the spectral fidelity measures
would effect utility for an imaging system with tunable filters capable of
selecting bands at arbitrary spectral sampling intervals. The calibration
errors and band registration errors associated with the filter tuning or
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collection methods are beyond the scope of this project, but are
contributors to spectral fidelity and utility that may need to be addressed
in the future.

3.5 Optimal Number of Bands

Given infinite time and computational resources, having high spectral
resolution for the entire reflectance spectrum may help detection results,
but for most operations using compact systems, we assumed both were
limited. In many situations where spectral images were used for subpixel
target detection, data transmission bandwidth, and turnaround time from
when the data was collected to when it was needed were key constraints.
Reducing the number of bands prior to collection was ideal, and even
post-collection, it was an important step. However, fewer bands in many
cases also led to limited detection performance.

There was a point in the spectral utility trade space where
increasing the number of bands did not improve performance. In fact,
increased dimensionality often had negative effects on performance. If we
found the number of bands less than the full spectral collection capability
of a hyperspectral imaging system that either optimized or equaled the
performance compared to using all the available bands, then we asserted
that these bands had higher utility values. If we assigned an acceptable
error margin to the peak performance statistic that reduced the number of
bands even further, the optimal number of bands were then tied to the
operational requirements and could be quantified using an acceptable error
value (ε). We defined this as the optimal number of bands and it was
compared to the number of bands that achieved the highest possible
detection performance.

We first defined the maximum number of bands that a system
was capable of collecting (Bmax) based on the wavelength range and ∆λ.
For example, a system with a wavelength range in the Visible Near
Infrared (VNIR) spectrum (400-900nm) and a ∆λ of 10nm, had a
maximum number of bands of 50 (Bmax = 50).

We also defined a vector that was of length N such that
N < Bmax that we selected as the subset of bands that achieved utility
equal to Bmax (Eq. 3.8).
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Util(BN ) = Util(Bmax) (3.8)

Each of these bands were at wavelengths i = 1, 2, ...N (λi) within the
wavelength range of the imaging system. Then the number of bands that
achieved a utility higher than the acceptable error value of the maximum
achievable utility, was defined as a subset of the BN . For an acceptable
error value, we define B(N, ε) as the set of bands that achieved the
fractional utility higher than Util(BN ) (Eq. 3.9).

Util(B(N, ε)) = Util(BN ) · (1− ε) (3.9)

This was the utility achieved within an acceptable error value, such that if
ε = 0.2, we could think of it as the 80% solution. The expectation was that
there were several sets of bands that achieved utility higher than
Util(BN ) · ε depending on the band selection method used. The optimal
number of bands then was the smallest set that could meet this
requirement for the selected error value (Eq. 3.10).

Bopt(ε) = min(B(N, ε)) (3.10)

Analyzing all the existing band selection methods for every mission
scenario was not a tractable problem. Therefore we use the band selection
method we developed to determine the band ranks for each target to
analyze the number of bands and its relationship to utility.

Figure 3.7 shows an example curve calculating the utility value
for a range of bands from 2 to 30 for a subpixel target detection scenario.
The bands were selected using the method we developed that is described
in detail in Section 5. The utility was calculated for an orange lifeboat
target in open water using the spectral matched filter at FPR = 0.001.
Using the full HSI, or the maximum utility for this scenario was 0.85 and
the 99% solution or BN was 17 bands. The optimal number of bands for
the 90% solution was 7 bands. What these results illustrated was that the
utility vs number of bands curve for a feasible range of bands appropriate
for a compact system could be generated during the design phase, and the
Bopt(N, ε) values could be determined during operations based on
requirements.
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Figure 3.7: Example curves of Util(Bi) for a range of 2-30 bands. For this
mission scenario, N = 17, and BN = B(N, 0.01) = 17. The Bopt(N, 0.1) = 7
or the 90% solution is 7 bands.

3.6 Noise Equivalent Spectral Radiance

Radiometric sensitivity is a figure of merit applicable for any imaging
system. The SNR for spectral images is similar to the panchromatic SNR
in that it is a statistical measure of variation in a signal. However in
spectral images, the SNR needs to be applied to each band and comes with
a trade-off between the spectral resolution. Higher spectral resolution
means higher distribution of the total radiance to each band which lowers
the SNR. There is an inverse relationship with spectral resolution in the
case of dispersive spectrometers, where the narrow widths of the detector
required for small ∆λ also degrades radiometric sensitivity. In this section
we build on the SNR description for spectral images to be similar to that
described in Section 4.4.3 and present a commonly used metric that
accounts for noise that is described in [26].

The Noise Equivalent Spectral Radiance (NESR) is ratio between
the spectral radiance (Ls(λk)) and the SNR of band k (SNR(λK)) (Eq.
3.11).

NESR(λk) =
Ls(λk)

SNR(λk)
(3.11)

We consider two representations of the NESR - when shot noise is the
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dominant contributor to noise (Eq. 3.12)

NESR(λk) =

√
Ls(λk) · hc ·G#k

A ·QE · λk · tint ·∆λ
(3.12)

and when the fixed-noise component (σfixed) is the dominant contributor
to the total noise (Eq. 3.13).

NESR(λk) =

√
σ2
fixed ·G#k · hc
A · tint · λk ·∆λ

(3.13)

In this equation, we use σfixed as a general term that encompasses all
possible fixed noise sources such as the dark noise (σd) and quantization
noise (σq), or others such as detector noise or sensor noise. It is used as the
summation of all fixed-noise sources.

The two different representations of NESR are presented here to
provide the background for the method we used to parameterize noise. The
transmission terms are simplified, which for spectral imaging systems can
include spectrometer transmission, cold filter transmission, warm optics
transmission and the quantum efficiency at each wavelength to be folded
into the optical throughput term (G#k) for band k. In reality, each of
these terms and their relevance depends on the mechanisms that disperse
the light or collect each band. While they have effects in the final utility
assessment, exploring each of these effects and phenomena are outside the
scope of this project and perhaps a worthwhile future endeavor.
Radiometric sensitivity is a utility metric that can be applied in the same
way as the panchromatic measures of utility for each band, and the
composite values and increasing NESR also increases spectral image utility.

For a tunable filter, the signal decreases as the FWHM of the
spectral response function centered at a wavelength narrows. However,
widening the filter width can also widen the SRER. As described in Section
3.4, this effect on utility for subpixel target detection will depend on the
spectral signature of the target. A system with high noise contributions
overall will degrade performance. However, if there is varying amounts of
fixed noise at each band, while it may not have any effect on some targets,
it may degrade detection performance for other targets.
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3.7 Spectral Image Utility Prediction

There have been multiple efforts to analyze spectral image utility and
many have attempted to produce prediction methods similar to the GIQE.
The main motivation for prediction started as a way to establish a
relationship between collection parameters and how they affect our ability
to extract information from the spectral data [7]. We now rely on several
methods for prediction to facilitate design of spectral imaging systems,
provide a strategy for collection tasking, and develop archive indexing
schemes [27]. In this section we outline several approaches for spectral
image utility prediction.

3.7.1 Regression Approach

Regression models are empirically derived equations that relate imaging
system parameters to utility measures. These regression models attempt to
replicate the GIQE. They are equations formed by analyzing many spectral
images to form a relationship between the selected utility measures and
known imaging system parameters. We present two different regression
models that combine traditional utility measures that are also used for
panchromatic images and metrics that are specific for spectral iamges.

Spectral Quality Rating Scale

The Spectral Quality Rating Scale (SQRS) is rooted in the GIQE in that
it uses similar figures of merit but the relationships are modified for
spectral images. It is tested for subpixel target detection in the reflective
wavelengths of the electro-magnetic spectrum [28]. It is based on the
notional concept of defining quality as a surface within a space defined by
the Ground Resolved Distance (GRD) in centimeters, noise, and spectral
resolution. It tests a single background material and three different target
materials. It relates GRD, SNR, and the number of bands (N) into a
GIQE-like equation (Eq. 3.14).

SQRS = 9.65− 3.22log10(GRD) + 0.44log10(SNR) + 0.8log10(N) (3.14)

Figure 3.8 shows an image from [28] that illustrates the envisioned
relationship between the three selected spectral image quality measures
that can be derived from the regression model.
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Figure 3.8: Image from [28] demonstrating spectral image quality as a sur-
face within the space created by three measures of image quality.

While this approach was able to make a complex problem more
tractable, it is limited to the single background case for the targets that
were tested. It is also able to contract into the panchromatic case when
N = 1 to replicate the GIQE, and accounts for an arbitrary selection of
bands that may not be directly related to the spectral resolution. It does
not account for the spectral separability between the target and
background that would change the detection results, or the scene
complexity. It also does not fold in the utility metrics of target detection
such as FPR or AUC as part of the model.

This method was later updated to include the separability of the
target and background along with the detection threshold values [24]. In
the updated equation, the SNR is replaced by the SCR described in
Section 3.3 for a target and background combination (3.7). The number of
bands is no longer used, but instead replaced with a T value which is
defined as the threshold on the algorithm test statistic that produces a
desired PFA. The revised SQRS (Eq. 3.15),

SQRSnew = 10.6− 1.6log10(T )− 3.3log10(GSD) + 1.6log10(SCR) (3.15)

accounts for utility and target separability, which were limitations of the
previous SQRS, and so it is useful for analyzing sensor designs for a
specific target and background combinations.



CHAPTER 3. SPECTRAL IMAGE UTILITY 38

Spectral Quality Equation

The Spectral Quality Equation (SQE) was developed for subpixel target
detection of images in the VNIR spectrum, and related GSD [in], spectral
resolution (∆λ), detector performance (SNR), and scene complexity
(σscene) [29] using an equation. It compared several TPRs (Pd) at SFPRs
(Pfa) for these four measures of quality. Its purpose was to establish a
relationship between collection parameters and utility of spectral images.
It was not intended to mimic the GIQE but rooted in the assumption that
spectral images will not be processed by a human observer but a machine.
It upgraded the SQRS to include detection performance measures as part
of the model.

The SQE was developed using desert and forest scenes collected
using the Hyperspectral Digital Imagery Collection Experiment (HYDICE)
data. The four figures of merit are combined to produce a Pd value (Eq.
3.16).

Pd = A0+A1log10

(
1

GSD2

)
+A2log10

(
1

∆λ

)
+A3log10(SNR)+A4log10

(
1

σscene

)
(3.16)

The Hyperspectral Digital Imagery Collection Experiment (HYDICE) data
are analyzed to find regression coefficients for each of the figures of merit.
Table 3.1 shows the coefficients that were found for two Pfa values.

Table 3.1: SQE equation coefficients found for the two Pfa values calculated
in the regression analysis.

Pfa A0 A1 A2 A3 A4

0.001 6.09867 0.404654 0.203598 0.101418 2.3445

0.005 6.9537 0.405193 0.184891 0.133405 2.74164

The value of the model lies in the ability to both assess and
predict the utility of spectral images as long as the four figures of merit are
known or held as constants. It can assess the detection statistics for the
imaging system parameters, or if a certain true positive rate is desired, the
figures of merit combinations can be calculated to produce it. However, it
does not fully address the trade-off between these figures of merit such as
σscene and GSD or SNR and ∆λ.

Overall, the regression methods are useful for the imaging
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systems that were analyzed with the assumption that each of the figures of
merit used were independent of each other. They apply to the spectral
imaging systems that collected the images that were used to calculate the
regression. For spectral imaging systems with adaptive band selection
capabilities or compact systems, the regression may not be able to
accurately predict utility.

3.7.2 Spectral-Spatial Confidence

An approach that combines the spectral figures of merit along with the
spatial components is the General Spectral Utility Metric (GSUM) [30].
The purpose of this approach was to generalize spectral utility for more
than one purpose under the assumption that the use of both spatial and
spectral information will result in greater utility. It also assumed that
spatial and spectral quality metrics are separable, and defined a metric to
combine this information to predicts utility both as a machine extracted
values and from visual inspection by a human observer.

The confidence term is the figure of merit that determines the
level of confidence one can have in a spectral image of performing a given
task. This method parameterized the GSD and the number of bands to
determine the total confidence (Ctotal) that is calculated by combining the
spatial confidence value (Cspatial) and the spectral confidence value
(Cspectral) along with weighting functions (W1 and W2). The weighting
functions allowed the method to account for different scenarios,
requirements and the measures of utility between the spectral and spatial
components of an image (Eq. 3.17).

Ctotal = 1− (1−W − 1 · Cspatial) · (1−W2 · Cspectral) (3.17)

This method is valid as a high level diagrammatic approach to predicting
utility for all purposes of spectral images. It is most useful for spectral
images with high spatial resolution and low spectral resolution such as
RGB images where both spatial and spectral characteristics affect utility.
Figure 3.9 shows the flow diagram from [30] for the GSUM method that
assess the spectral and spatial components separately, then combines them
to calculate to final confidence value.

Unfortunately, none of the values can be quantitatively expressed
in terms of image quality parameters. Therefore, while useful as a starting
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Figure 3.9: Diagram from [30] for utility prediction using spatial-spectral
confidence of the GSUM.

point for developing a framework for spectral utility prediction, it has
limited use in designing compact spectral imaging systems with adaptive
band selection capabilities. Furthermore, the assumption that spatial and
spectral figures of merit are separable and independent is limited in scope
especially for cases where this method would be most useful such as RGB
images which often find improved utility after pan-sharpening.

3.7.3 Forecasting and Analysis of Spectro-radiometric
System Performance

A comprehensive method for predicting the spectral image utility trade
space for the purpose of subpixel target detection is the Forecasting and
Analysis of Spectro-radiometric System Performance (FASSP) method [31].
It is an analytic method that propagates the system parameters through
the imaging chain, to generate ROC curves for targets and backgrounds at
various abundances. The input parameters of the model include
atmospheric conditions, TAs, and target and background spectra. The
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Figure 3.10: Diagram for the FASSP model showing input and output.

output of the model include the average radiance of target and background,
SNR averages at each wavelength, and the ROC curve for the TA values.
Figure 3.10 shows a diagram of the possible input one can provide in a
FASSP run and the output. It primarily uses Moderate Resolution
Transmission (MODTRAN) to analyze the single pixel radiometry, and the
results are statistical calculations based on the input [32].

The FASSP model can be used as a top-level analytic solution to
deciding various parameters in the design of a spectral imaging system for
a specific task. It is able to capture information from reflectance data,
sensor characteristics, and push them through a processing algorithm that
produces results that can easily be used for trade studies [33]. It is an
efficient and tractable way to predict imaging system performance for a
specific target and various background characteristics. It can account for
several noise sources such as detector gain or spectral calibration error,
and even band selection.

For a well defined scene, imaging system, and collection
parameters, it is an efficient method for analyzing an imaging system trade
space and predicting utility. When combined with a 3-D simulation model,
it can provide complementary analytic capabilities that can validate and
assess the images generated from a system designed based on the
predictions. The trade space analysis can be enhanced with studies for
other imaging system characteristics and conditions such as shadow effects
or oblique collection angle [34]. Figure 3.11 shows an example output from
a FASSP model run for a range of TA percentages. It shows the TPR at
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Figure 3.11: Example of trade analysis output for various target abundance
percentages using FASSP model. The trade curve is for probability of de-
tection at 0.1 false alarm rate.

0.01 FPR for the TA range of 2-12%. This type of curve can be used to
find saturation points in the trade space. We define saturation points as
locations in the trade curve where increase in the metric analyzed has
limited or no increase in utility. The main disadvantage of this method is
that we can not compare the prediction with assessment. It also requires
detailed knowledge of the sensor and the covariance statistics, material
reflectance, and collection geometry, and it cumbersome to account for
various phenomena in a complex scene.

3.7.4 Image-derived Spectral Image Utility Approach

The image-derived spectral image utility prediction method uses real
images and synthetically implants targets to assess detection results using
a target detection algorithm. The motivation for this approach was to
develop a method that was less computationally intensive and allowed for
comparison between assessment and prediction [27]. This method
calculates the statistical parameters of a real image along with the target,
linearly mixes these statistics, then applies a target detection algorithm to
generate a predicted ROC curve. It does not need detailed information
about an imaging system such as the SNR of the sensor, and atmospheric
effects are inherent in the prediction data. It is computationally efficient as
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targets do not need to be implanted into each pixel and the sensor
reaching radiance does not need to be calculated. This utility prediction
method answers a critical operational question:

Can this spectral imaging system find this target?
If we know the size and spectral reflectance signature of a target, this
method can predict the likelihood of successfully detecting the target using
an existing spectral imaging system. It can be used to quickly iterate
through available systems to determine which is best suited to find the
required target. The prediction is independent of scene complexity,
sensor-derived characteristics, and atmospheric compensation error. The
main sources of error are parameter estimation errors and non-linear scene
interactions between target and background. Since a linear mixture model
is used to produce the target present statistics, any deviations from this
estimate produces error. What this method is not appropriate for is
predicting utility of compact spectral imaging systems designs and
conducting trade studies for individual system parameters.

3.7.5 Prediction Methods: Advantages and Disadvantages

Table 3.2 summarizes the information presented in this section for a few
spectral image utility prediction methods. A brief description of the
method and the applications they are most suited for is followed by their
advantages and disadvantages. While there may be other prediction
methods, we present these as the baseline for utility prediction in our
research. Many of these are not directly applicable to designing compact
imaging systems with adaptive band selection capabilities, but we built on
their analysis and methodology along with some of the figures of merit
they developed.

We used the methodology of analyzing spectral images for
subpixel target detection presented in the spectral-spatial confidence
approach and the figures of merit that were introduced in the regression
approaches. We built on the framework developed in the image-derived
utility analysis to develop the process of prediction and assessment. The
FASSP model was used as the primary tool in the prediction process to
analyze the feasibility of a mission then to find optimal design parameters
for a compact spectral imaging system for subpixel target detection
applications.
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Table 3.2: Summary of Spectral Image Utility Prediction Approaches

Regression Approach: Empirically derived, appropriate
for sensor design trade studies [25] [29] [28]

Advantages Disadvantages

Simple and tractable with strong
correlation to real spectral images

Required information not always
available; does not account for
non-linear relationships between
parameters

Spectral Vector Analysis: Analyze separability of
material classes treating spectra as vectors, appropriate for
classification [23]

Advantages Disadvantages

Does not require details of sensor
design

Not effective for sub-pixel target
detection using small number of
bands, does not account for spatial
information or scene complexity

Spectral-spatial Confidence: Combine spatial and
spectral information as contributors to utility, useful for
predicting utility for spectral image exploitation by human
analyst [30]

Advantages Disadvantages

Combine existing utility prediction
methods

Does not account for redundant
spectral and spatial information or
pan-sharpened spectral images

FASSP: Propagates given system parameters through
remote-sensing process, used for study of imaging chain
effects on target detection, appropriate for utility prediction
of specific target and background combinations [31]

Advantages Disadvantages

Prediction of performance for
robust range of target and
background scenarios, and imaging
system parameters

Can not compare prediction and
assessment, does not model spatial
scene characteristics and
complexities

Image-derived Utility Analysis: Use statistical
parameters of an image to predict utility, most appropriate
for utility prediction of target detection for existing spectral
imaging systems [27]

Advantages Disadvantages

Use real images, does not require
details of system parameters;
Allows comparison of prediction to
assessment; Computationally
efficient

Can not parameterize individual
imaging chain phenomena; target
implant artifacts
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3.8 Summary

In this chapter we explored the figures of merit that were unique to spectral
images and their relationship to utility. We explored some measures of
spectral image quality such as the NESR that had effects on spectral
images utility that were parallel to SNR in panchromatic images. Some
measures were described such as the GSD that had an inverse relationship
to scene complexity which complicated its relationship to utility. We also
explored some other measures that were only relevant to spectral images
such as the SSV, σscene, and ∆λ. Each of these contributed to the design
or the operation of the phase in various ways. For example, while ∆λ was
directly tied to the sensor characteristics, SSV was dependent on the
mission requirements. We presented these figures of merit to distinguish
spectral image utility measures from the panchromatic metrics.



”There is an idea of a Patrick Bateman, some kind of ab-
straction, but there is no real me, only an entity, something
illusory, and though I can hide my cold gaze and you can
shake my hand and feel flesh gripping yours and maybe you
can even sense our lifestyles are probably comparable: I sim-
ply am not there.”

- Bret Easton Ellis, American Psycho, 1991

4
Simulation

Simulation is a capability that can provide labeled data, truth information,
user control of system parameters, and produce a large amount of data
with limited resources compared to collecting real images. These are all
critical requirements for analyzing spectral image utility and optimizing
designs of compact systems. In order to generate spectral images for
assessment of spectral image utility, we used a synthetic image generation
tool that uses physics-based modeling. In this chapter we explain the
simulation tool and its sub-models that replicated the real world scene,
operational conditions, and generated spectral images that were used in
the assessment phase of our process.

4.1 Physics-based Simulation

The simulation tool we used modeled the physical processes in the
collection of photons in remote sensing systems [35]. It incorporated the
radiative transfer model to account for the propagation of light from its
source to sensor, through the atmosphere, that was reflected or absorbed
by surfaces and objects in a scene. The radiance field at the sensor (Ls)
was calculated using radiometric equations such as Eq. 4.1.

46
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Table 4.1: Variables in the sensor reaching radiance equation.

Es direct solar irradiance at surface

ED diffuse solar irradiance at surface are emitted

ro surface object reflectance

ε0 surface object emissivity

B(To) surface object blackbody radiance for temperature To
τ atmospheric transmittance from surface to sensor

Lu upwelling radiance (both solar and emitted)

Ls =
[
(Es + ED)

r0

π
+ ε0B(T0)

]
τ + Lu (4.1)

This equation was a simplified version that consolidated the components in
the physics-based simulation [36] that were used in the calculation of L[s].
Table 4.1 shows the components that were considered in our analysis. The
calculations performed by the physics-based simulation was complex since
the 3-D world had many components such as vertical relief, adjacent
objects, clouds, and spatial heterogeneity in the scene, that affected the
possible paths a photon can take. A simulation model when accounting for
many of these phenomena can become computationally expensive [37].

A method for generating a realistic sensor reaching radiance is
through ray tracing [38]. Many models use ray-tracing to calculate
complex interactions of a photon that produce an image. The
implementations are often complex, but the fundamental mechanism is to
trace the path of photons from the source, the interactions with the
possible surfaces and media, then through the sensor aperture. This is
coupled with Monte Carlo calculations to account for randomness. This
type of photon mapping, can provide the realism required to assess an
imaging system’s performance [39].

The simulations use sub-models to account for the 3-D photon
interactions in a single pixel which are integrated into the simulation to
produce the final image. The synthetic image, with appropriate simulation
techniques with the correct parameters and appropriate sub-models, can
adequately represent the a real image that may be collected of the physical
scene. The benefits of using simulation is that the user is able to control
key aspects of an imaging system that affect the final image, from the
optical system to the scene itself. Improbable real world situations can be
created to test the output of conceptual imaging systems at desired
capability points. Changing key collection parameters for a range of
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values, can allow us to analyze the trade space that would be challenging
or unfeasible to do with real images.

4.2 Digital Imaging and Remote Sensing Image
Generation

The primary tool we used to simulate our image collection scenario was
the Digital Imaging and Remote Sensing Image Generation (DIRSIG)
model [40]. It used path-tracing to generate images of a scene captured by
a remote sensing system, and samples the photon interactions with the
materials in a scene using a Monte Carlo model to capture the random
nature of scattering photons. Several sub-models were used to simulate a
remote sensing system’s sensor characteristics, platform motion, collection
geometry, and the atmospheric effects on image collection.

Figure 4.1 shows a diagram of the various sub-models that are
used to produce a synthetic image. Using DIRSIG, we simulated images of
a large area scene generated by a spectral imaging system [41], using a
database of material spectra to calculate the radiometry of each band. The
simulation model was used to design a scene that represented the location
and target, along with the collection conditions that generated images
similar to those collected in real operations.

4.3 Sub-Models for Single Pixel Radiance
Calculation

Many simulation methods that generate images of a large area scene use
single pixel models to calculate the final sensor reaching radiance. This
models remote sensing systems as different components of the earth affect
the final image produced in real imaging systems in their own way. The
two single-pixel models we focused on for this dissertation was atmospheric
modeling and surface reflectance modeling. In this section we describe the
single pixel models that we used to simulate then replicate the scene in our
analysis.
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Figure 4.1: Diagram of some sub-model and parameters that are used to
generate final image in DIRSIG.

4.3.1 Surface Reflectance and Emissivity of Materials

Various surfaces scatter light in different ways depending on the material
and collection geometry. For example, shiny materials such as metals are
highly specular, while other materials such as paper are not. A specular
material can give off glints and produce changes in the sensor reaching
radiance depending of the angle at which the image is collected with
respect to the material’s 3-D geometry and illumination angle. Therefore,
the radiance signatures of some materials can change significantly
depending on the collection conditions. The Bi-directional Reflectance
Distribution Function (BRDF) describes the surface scattering of materials
with angular dependence.

The Hapke BRDF model [42] [43] and Ross-Li model [44] [45] are
examples of models that calculate the BRDF. In DIRSIG, both models can
be used depending on the radiometry model that is selected as part of the
simulation. The reflectance and emissivity files that are used as input also
account for the BRDF characteristics that can provide realism and
radiometric accuracy in the simulated images. Some materials can be
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Figure 4.2: Example output from DIRSIG generated with high spatial res-
olution to show texture of materials within scene that was created using
texture map (road and shore) and BRDF models (lifeboat and ship).

given reflectance or emissivity data that that can produce variations in a
single material from pixel to pixel as it would in real spectral images.

The amount of variation can also be controlled using a texture
map, which is an 8-bit image that maps the pixel values in the image to
the material reflectance data. In this research, a combination of BRDF
models along with texture maps were used to introduce variations in the
final images to more closely model real world phenomena. Figure 4.2
shows a high spatial resolution image of a lifeboat and ship that were
placed in the scene that was generated using DIRSIG. The surface
characteristics of the lifeboat and ship as well as the texture of road and
shore was generated using the available tools to provide realism.

4.3.2 Atmospheric Effects

An important effect on the the sensor reaching radiance in remote sensing
systems for spectral images is the atmosphere. The materials on the
ground of the scene that are imaged reflect or emit light, but first goes
through the atmosphere before reaching the sensor. If the imaging system
is directly above the material being imaged, the atmosphere has limited
effects, but if the sensor is many kilometers above the material, each layer
of the atmosphere up to where the sensor is, has a significant effect on the
at sensor radiance for each wavelength.
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Figure 4.3: Workflow diagram for the panchromatic image quality study for
the purpose of validating use of simulation.

MODTRAN is a model that can account for the effects of the
atmosphere by calculating the line-of-sight transmittance and radiance at
each layer of the atmosphere [46]. It has a spectral range of 0.2-100 [µm]
with a band-based resolution of 0.1 [cm−1]. Newer versions of the model
can also account for cloud cover[47]. It can be user defined by modifying
the input files that are used in the DIRSIG simulation.

4.4 Simulation Validation

We validated the use of simulation for trade studies of spectral imaging
systems by generating the panchromatic images that could be used to
calculate the GIQE as described in Chapter 2. We developed techniques
for generating images that reproduced key real world phenomena for a
range of parameters, and tested them against the well-established figures
of merit for panchromatic images [48]. Figure 4.3 shows the workflow of
the process to develop the simulation techniques for panchromatic image
utility prediction that we used to transition into the spectral images.

We first designed a scene and modified some of the sub-models in
DIRSIG to facilitate the calculation of the GIQE parameters that are used



CHAPTER 4. SIMULATION 52

to predict the NIIRS. We used the images we generated to calculate the
RER, SNR and GSD. The EFL was the variable parameters which with
constant diameter, predicted the NIIRS by generating a range of GSD,
RER, and SNR. We used the calculated parameters and the GIQE to
produce a range of predicted NIIRS values.

4.4.1 Scene Design

The scene background we used was a railroad track in the desert which
was a relatively flat, uniform area. We placed panels that were Lambertian
with 7% and 15% reflectance. These panels were placed directly next to
one another to create edges in both the x and y directions. This generated
images of perfect edges that could be used to directly calculate the RER as
described in [18]. The reflectance values were selected to replicate the
calculation described in [20] for the SNR. The platform motion was also
simulated to ensure smear was incorporated. The direction of movement
was simulated so the edges were the same in both directions, thus
simplifying calculation of the RER. The illumination and sensor position
was selected to be directly above the scene. This allowed the GSD to be
calculated using the sensor height, pixel pitch, and EFL.

4.4.2 Ground Sampled Distance Calculation

All imaging system parameters were kept constant except for the EFL.
The GSD could be calculated without consideration for angular changes
due to collection geometry because the scene was designed as such (Eq.
2.2). In this way, the GSD was solely a function of the changing EFL.
Figure 4.4 shows a few examples of the images that were generated. Each
image in Figure 4.4 are 500x500 pixels, but the EFL parameters used in
the simulation changed the field of view and the extent of the area that
was imaged.

4.4.3 Signal to Noise Ratio Calculation

The signal values were dependent on the system throughput and so while
the image pixel values were assumed to be noiseless, the SNR was
calculated using the image pixel values along with the changing system
throughput values that depended on the EFL. To calculate the SNR we
selected sections of the images generated that were of the reflectance
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Figure 4.4: 500x500 pixel DIRSIG generated images at selected focal lengths.

panels placed in the scene. The 15% and 7% reflectance panels were used
for the high and low reflectance values. Figure 4.5 shows the sub-image
sections that were selected.

The electron signal was calculated using Eq. 2.11, using QE and
tint values shown in Table 4.2. The high reflectance signal (Φρhigh) and low
reflectance signal (Φρlow) was the average of the subimage pixel values.
Then following the prescribed method for SNR calculation in our reference
[20], the difference between the high and low reflectance values were used
as the signal (Eq. 4.2),

Φ∆ρ = Φρhigh − Φρlow (4.2)

and the standard deviation of Φ∆ρ was used as the shot noise where we
assumed the signal had a Poisson distribution (Eq. 4.3).

σs =
√

Φ∆ρ (4.3)

The total noise (σT ) was assumed to be composed of the shot noise (
√

Φe)
and two fixed noise sources. The total noise (σT ) was calculated using the
three noise components that were summed in quadrature (Eq. 4.4).
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Figure 4.5: Scene showing subimage of low reflectance and high reflectance
panels selected for SNR calculation in yellow boxes.

Table 4.2: Imaging system parameter values used to generate panchromatic
images that were used to calculate SNR for simulation validation.

Parameter Symbol Values Simulated

Integration Time tint 600 µs

Quantum Efficiency QE 0.76

Wavelength λ 0.5 µm

Dark Noise σd 10 electrons

Other Fixed Noise σf 5 electrons

σT =
√
σ2
s + σ2

d + σ2
f (4.4)

Finally, the SNR was calculated as the ratio of the difference in electron
signal of the high and low reflectance values and the total noise (Eq. 4.5).

SNR =
Φ∆ρ

σT
(4.5)

We calculated the SNR in a way that replicated the GIQE definitions
directly from the images. Table 4.2 shows the values of the parameters
that were used in the simulation along with the assumed fixed noise values.
This method produced SNR that was expected for a compact imaging
system, and changed according to the system throughput that was
dependent on the EFL.
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4.4.4 Relative Edge Response Calculation

In Section 2.4 we described the RER and how it is calculated. To simulate
varying degrees of sharpness of an edge in an image, we focused on two
contributions to the edge response - Point Spread Function (PSF) and
smear. We incorporated these real image phenomena by simulating
platform motion and implementing an optical PSF that changed with the
EFL.

The optical PSF for the panchromatic study was simulated in
DIRSIG by using an 8-bit image of a diffraction pattern of a circular
aperture. The image was given a scale that corresponded to the
instantaneous field of view so the grayscale values of the image were used
to produce an importance sampling of the ray-tracing mechanism. This
method of sampling replicated a blur that would normally be observed in a
real imaging system’s optics due to its PSF where the scale dictated the
extent of the blur. By changing the scale given to the PSF parameter
within DIRSIG, we generated images that would be produced from
imaging systems with different EFLs that had a constant aperture
diameter. All the other system parameters such as detector pitch, diameter
of the primary optical lens, and center wavelength of the bandwidth, were
kept constant, but the EFL changed and the PSF changed accordingly.
The diameter of the airy disc that produced the blur was calculated using
the Rayleigh criterion (Eq. 4.6).

drayleigh = 2.44λ
EFL

D
(4.6)

We then calculated a scale factor by using the Q# defined in [6] (Eq. 4.7)

Q# =
λcenter · EFL

p ·D
(4.7)

The the edge response in the image that was generated by the scale input
in DIRSIG was examined to ensure it corresponded to the Q# for the EFL
that was simulated. Since this relationship between the EFL and Q# was
linear, we examined one of these relationships and scaled the others by
their Q#. At the EFL value where Q# = 1, the EFL = 4.25m for the
selected imaging system parameters shown in Table 4.3. Therefore for the
images simulated at this EFL, we expected an edge response that was
consistent with a system that had a Q# of 1. We calculated the scale
factor that would produce an edge response that was consistent with an
airy disc diameter produced by an imaging system with this Q#, and
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Table 4.3: Imaging system parameter values used to generate panchromatic
images that were used to calculate RER.

Parameter Symbol Values Simulated

Aperture Diameter D 45cm

Pixel Pitch p 4.5 µm

Center wavelength λcenter 0.5 µm

Effective Focal Length EFL 3.0m - 13.0m

scaled the image of the diffraction pattern to produce and edge response
that was consistent with this Q#. We generated images for a range of
EFLs that had edge responses that would first be limited by the detector
resolution when the Q# was small, then limited by the diffraction
resolution when the Q# increased. Figure 4.7 shows and example of an
edge that was used to calculate the RER of each simulation set.

Another contribution to the RER is smear produced from the
movement of the imaging system platform. Depending on the spatial
relationship between the edge to the direction of movement, smear is
produced differently for each edge. For this reason, the GIQE calculates
the RER in both the x and y direction and the RER used in the NIIRS
prediction is the geometric mean of these two values. We simulated
platform motion to be 45 degrees with respect to our simulated scene, and
the panels were placed with their edges perpendicular to the direction of
the platform motion. This allowed us to simply calculate the RER of one
edge, which would be equivalent to the geometric mean of the RER in
both direction. Figure 4.6 shows an edge response that was calculated
using a subimage such as the one shown in Figure 4.7. The subimages were
first tilted using nearest-neighbor interpolation to have the columns of the
pixels to line up with the edge, then the columns of the pixel values of the
tilted subimage was averaged to produce the edge response. The RER was
then calculated by taking the slope of the edge response function.

The method of tilting the image first before calculating the edge
response as opposed to projecting the image of a tilted edge to a step
function was used because of the EFL range we simulated. For edge
responses that only span one or two pixels, or even a partial pixel,
projecting the values of a tilted edge onto a step function is required.
However, for the range of EFLs we selected to simulate along with our
other imaging system parameters, the edge response spanned more than
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Figure 4.6: Example edge response calculated from subimage of edge.

Figure 4.7: Example scene showing subimage selected for RER calculation.
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Figure 4.8: EFL vs NIIRS curve

two pixels. Therefore attempting to project the edge response that might
span over 25 pixels onto a step function would have unnecessarily
complicated the RER calculation. Overall, the relative edge response that
was produced from the simulation was found to be sufficient replications of
the edge responses in real imaging systems for the range of focal lengths
we analyzed.

4.4.5 GIQE Calculation

The GSD, RER, and SNR values that were calculated for the range of
EFLs that were simulated were used as input into the GIQE (Eq. 2.1) to
predict the NIIRS values at each EFL. Figure 4.8 shows the predicted
NIIRS value at each of the simulated EFL values. The simulation
generated 100 images for each EFL value ranging from 3.0m to 12.8m at
0.2m increments. This produced a dataset that could be used to test any
inconsistencies of DIRSIG 5, which was still at the beta release stage of
development as opposed to its previous version, DIRSIG 4.

What we found was that the final calculation produced results
that were consistent with expected results and our references. The peak
EFL was found at 5.8m, the point where the Q# = 1.5, a peak quality
point described by [6]. For most applications, this is where the detector
resolution limit meets the optical resolution limit. The variations in the
results were due to discretization of the sampling that was selected to



CHAPTER 4. SIMULATION 59

reduce computation time, and from the randomization seeds used for the
Monte Carlo calculations that changed from one run to another. There
was also a change in the spatial location of the edge with respect to the
pixel location that changed as the GSD changed and affected the RER of
the images differently for each EFL value. Despite the small variations, we
found that after implementing the selected parameters and sub-models in
DIRSIG, the images generated sufficient realism and replicated key
components of a spectral imaging system that could be used for trade
space analysis.

4.5 Summary

In this chapter, we validated the use of simulation for imaging system
trade studies by demonstrating that we could adequately replicate the
well-established panchromatic methods for predicting utility. These
techniques and parameters that were developed for the panchromatic
images were then translated to simulating spectral imaging systems to
ensure the point spread function, collection geometry and motion, and
sensor characteristics were correctly implemented within the simulation
tool.



”And how many hours a day did you do lessons?” said Alice,
in a hurry to change the subject.
“Ten hours the first day,” said the Mock Turtle: “nine the
next, and so on.”
“What a curious plan!” exclaimed Alice.
“That’s the reason they’re called lessons,” the Gryphon re-
marked: “because they lessen from day to day.”

- Lewis Carroll, Alice in Wonderland, 1865

5
Band Selection

Increasing spectral resolution provides us the ability to identify materials
and detect objects that are subpixel based on their spectral signatures.
However, this also increases dimensionality which can often lead to
computational complications. With automated processing being the
primary method of material identification, classification or detection, there
is a need to analyze the trade between increasing the numbers of bands
that improve our ability to identify materials and increasing dimensionality
that stresses computational resources and introduce error. Dimension
reduction is an often employed step in spectral image processing as a way
to find the ”sweet spot” to having just enough bands that contribute to
utility. In this chapter, we present the background for spectral image that
form the trade space dimension of spectral bands, and the method we
develop that is suited for compact imaging systems.

5.1 Definition: HSI vs MSI

In the previous chapters, we used the term spectral images to encompass
both HSI and Multispectral Images (MSI), and used it to reference any
image other than panchromatic, to include RGB images. While there may
be wide variations in how MSI and HSI are differentiated and defined, the

60
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two modalities are not necessarily separate. In this work, we differentiate
them by their sampling capability of a material’s spectral signature, which
dictates their data extraction approaches. MSI can be viewed from an
imaging aspect where selecting the correct bands is of primary importance.
HSI on the other hand can be viewed from a signal processing perspective
where separating the signal, or the correct spectral signature of a material,
is the primary requirement.

From these viewpoints of MSI and HSI, MSI is simply a set of
data that does not require dimensionality reduction as it is under-sampled
data of a material’s spectral signature. On the other hand, we can consider
HSI as an over-sampled set of data that requires dimensionality reduction.
Here we define the number of bands that make an image an MSI to be
relative to what is required to extract information. For example, to
calculate the Normalized Difference Vegetation Index (NDVI), only two
bands are needed as long as they are the correct bands [49]. If the
application is material classification of the earth’s surface into four
categories, then an image that has 7 bands can adequately accomplish this
task with some level of error as long as they are the correct 7 bands. An
imaging system with just the two bands or the 7 bands can be considered
an MSI where more bands may improve the results, but with careful
selection, they adequately extract the required information. Any more
bands than what is required, can be seen as being over-sampled, and an
HSI.

For subpixel target detection, 7 bands can be insufficient to
determine the presence of a target, especially if they are not optimized for
the target. In this case, a 7 band spectral image is under-sampled for the
signal that needs to be extracted. It is why hyperspectral imaging systems
that collect hundreds of contiguous bands are used for this task. Of these
hundreds of bands however, far fewer bands are needed to detect a
subpixel target, but the wavelength of the bands and the number of bands
needed, change depending on the target. The signal is the target we wish
to identify, and the noise is the background materials surrounding the
target that contribute to the sensor reaching spectral radiance. An HSI is
therefore over-sampled for any one target, but without adaptive collection
capabilities it can not be avoided because what constitutes a signal can
change from target to target.

In sections 5.2 and 5.3, we explain the representation of HSI data
and different methods of dimension reduction, which are widely used in the
post-processing steps for HSI exploitation. Band selection methods can be
seen as a dimension reduction method approach that is optimized for a
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specific target and scene, when it is used as a post-collection step and in
5.4 we present some of the existing methods. In Section 5.5 we present the
motivation for developing a novel band selection method for a future
spectral imaging system with adaptive band selection capabilities.

An imaging system with the flexibility for selecting which bands
are collected from mission to mission can be both a multi-spectral or
hyper-spectral imaging system. An adaptive system that can change the
wavelengths and the number of bands has neither requirements to
under-sample nor over-sample the signal and can adapt as needed. What
we explore in Section 5.6 is a method suited for band selection prior to
collection to meet the task at hand for an imaging system with adaptive
band selection capabilities that can collect only what is needed based on
the target. Thus for the purpose of this research, HSI and MSI are defined
in terms of their requirements for subpixel target detection, where an HSI
is an over-sampled data set, and an MSI is an under-sampled one.

5.2 Data Representation Methods

There are several data representation methods for spectral images that
depend on their application. With the development of machine learning
algorithms, and the increase in their use for exploiting high dimensional
data, tensor-based representation of HSI has become common [50] [51] [52].
This can be used to automate data processing, but for subpixel target
detection, there are two representations that form the underlying premise
for this application. The tensor-based representation when used for
automated subpixel target detection, assumes either or both the geometric
or statistic representation of the spectral image. In this section we present
the two representation methods that drive calculations for subpixel target
detection algorithms.

5.2.1 Geometrical Representation

When using the geometrical representation of HSI, each spatial pixel can be
seen as separate vectors of N dimensions where N is the number of bands.
Between the vectors, we can calculate a distance component (Eq. 5.1),

d = |x1 − x2| =
√

(x1 − x2)T (x1 − x2) (5.1)
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Figure 5.1: Geometrical representation of spectral data.

where xi is the ith pixel of an HSI, and d is the distance between two
pixels. Their location within the N -dimensional space, can also have an
angle (Eq. 5.2),

θ = cos−1

 xT1 x2√
(xT1 x1)(xT2 x2)

 (5.2)

which along with the distance, can represent how spectrally similar two
pixels are. When using the geometrical representation of the data, we
assume the mixture of materials of the different spectra within a pixel are
linearly additive. The amount of material present in a pixel using this
representation, is the amount of contribution each material has to the
distance and angle (Eq. 5.3),

x = a · p + b · q (5.3)

where a and b are the fractional amounts of materials p and q present.
Figure 5.1 shows a diagram that illustrates the distance (d) and angle (θ)
of a pixel and target spectra when represented geometrically. For example,
if the spectrum of pixel x is composed of two materials whose pure spectra
is p and q, each contributing a fractional amount of a and b respectively, a
linear mixture of the two pure material spectra will produce the pixel
spectrum of x. This is the underlying assumption for subpixel target
detection algorithms. The distance or angle of a pixel to the pure target
signature, gives the likelihood of whether the target material contributes to
the spectrum or not.



CHAPTER 5. BAND SELECTION 64

5.2.2 Statistical Representation

Another data representation method for spectral images is to consider the
pixels as random data points with a distribution function representing the
variations and combinations of materials present. This type of
representation can characterize the distribution of sensor noise, inherent
variation in a single material spectrum, along with variations from the
combination of the materials. It can capture the randomness produced by
noise, scene complexity, and other inherent variations of spectral images.
A pixel of a spectral image with N bands, can be represented statistically
as a combination of signal (s) and noise (n) (Eq. 5.4).

x = s + n (5.4)

The probability density of the pixels (Eq. 5.5)

p(x; Σ, µ) =
exp

(
−1

2 [x− µ]TΣ−1[x− µ]
)

(2π)K/2|Σ|1/2
(5.5)

can be represented with a mean (µ) which converges to the true signal
value (Eq. 5.6),

µ = s (5.6)

and an example of a covariance matrix (Σ) can be used to represent the
noise. In this representation of Σ, the diagonal matrix contains the
variance values of each band (σ2) multiplied by the identity matrix (I)
(Eq. 5.7).

Σ = σ2I (5.7)

This method of representing spectral images along with the geometric
method, allows us to analyze the statistical variations of the distances
between a target spectrum and the pixel that is analyzed. We can assume
that the target material we are looking for is the signal and the
background surrounding the target as noise, and the probability of the
target presence is represented by the distance or angle between the target
and background spectra.
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5.3 Dimension Reduction Methods

Subpixel target detection methods combine both the geometrical and
statistical representation of spectral images to calculate detection
probabilities. Therefore high dimensionality of data can not only
complicate the computation, but produce undesirable effects that can skew
the detection results. Therefore dimensionality reduction for HSI is a key
aspect of subpixel target detection. The requirement to reduce complexity
for optimal detection is balanced with retaining sufficient amount of signal.
The three types of dimension reduction methods we present in this section
have the primary purpose of finding the lower-dimensional sub-space that
contain most of the signal information that will allow optimal target
detection results.

5.3.1 Principal Component Analysis

The first type of approach for dimension reduction is the use of second
order statistics of a spectral image to find the most significant dimensions.
One of the most widely used methods of type is the Principal Component
Analysis (PCA). There are many implementations of PCA to compress
HSI to store and process the data specifically for subpixel target detection
applications [53]. The underlying assumption of this algorithm is that HSI
bands are highly correlated, and once the data is converted into linearly
uncorrelated datasets, the information of interest is contained in the
subspace of the HSI bands with the highest amount of variation. PCA uses
linear fitting and Singular Value Decomposition (SVD) to project the
higher dimensions into a lower dimension [54]. This projection depends on
the global linearity of the data, and so whitening and noise-adjusting are
common pre-processing steps for transforming HSI when using PCA for
target detection.

For the purpose of target detection, both of these pre-processing
steps are often used to to enhance the distance between target and
background and boost the signal content separate from the noise.
However, even with these steps, for subpixel target detection, PCA often
falls short of preserving the bands that would optimize detection. This
transform derives its results solely from second order statistics of the data,
and it inherently assumes that the data has normal distribution. For
scenes and low abundance targets, this assumption may not hold, and so
the target signal is often lost.
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To illustrate the effects of PCA, we present an experiment that
was conducted to study applications of HSI including subpixel target
detection [55]. The experiment and the data that was collected is
explained in detail in Section 5.7.2, but we zoom in on the portion of the
scene that was designed specifically for subpixel target detection to
examine the latent data that contain the subpixel targets. Three sets of
bands after transformation are selected and displayed as an RGB image to
illustrate the effects of PCA and how the algorithm handles latent subpixel
information.

Figure 5.2 shows the three bands with the highest variation. The
PCA transformed bands were rank ordered by their eigenvalues, and the
three images shown in 5.2a are the bands with the highest eigenvalues. We
can see that these image are the most distinct from each other for the
whole scene, and so is believed to contain the most information. However
the RGB composite shown in Figure 5.2b and a subset of the scene that
was used in the experiment for subpixel target detection shown in Figure
5.2c, loses the latent subpixel information.

Figure 5.3 shows images of the three bands that had the lowest
eigenvalues after the PCA transform and thus the lowest variation. The
three images in Figure 5.3a have almost no differences between them, and
the RGB composite of these three images confirms it as shown in Figure
5.3b. The subset of the scene shown in Figure 5.3c shows limited values in
these bands for subpixel target detection as expected.

Figure 5.4 shows the images of the bands with the 15th, 16th,
and 17th highest eigenvalues after PCA transformation. While the
individual bands in Figure 5.4a shows some, but limited differences
between the images for the scene as a whole, the RGB composite shown in
5.4b indicates that these bands likely contain information of interest for
subpixel detection.

The areas containing the subpixel targets in the subset scene
shown in Figure 5.4c appeared to be uniform in Figures 5.2 and 5.3, but
has variations using the 15th, 16th, and 17th bands. The figure shows
intermittent dark pixels among the green grass area, and green pixels in
the black asphalt area. Here we illustrate the dimension reduction
mechanism of the PCA transform for HSI, and its potential for its use in
subpixel target detection. As long as enough dimensions are preserved, it
is a method that can be used, but the amount of latent subpixel
information it preserves, even in the 15th-17th bands is limited.
Furthermore, knowing how many dimensions to preserve using this method
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(a) Images of three bands with the highest eigenvalues after PCA transfor-
mation. Shows highest variation where distinct differences can be observed
between the three images.

(b) RGB composite of the three bands with the
highest eigenvalues and highest variation.

(c) Subset of scene used
for sub-pixel target de-
tection experiment.

Figure 5.2: Images of a 360 band HSI that was transformed using PCA with
highest variation.
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(a) Images of three bands with the lowest eigenvalues after PCA transfor-
mation. Shows lowest variation where almost no differences can be observed
between the three images.

(b) RGB composite of the three bands with the
lowest eigenvalues and lowest variation.

(c) Subset of scene used
for subpixel target detec-
tion experiment.

Figure 5.3: Images of a 360 band HSI that was transformed using PCA with
lowest variation.
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(a) Images of three bands with the 15th, 16th, and 17th highest eigenvalues
after PCA transformation. Shows moderate variation between the bands
where some differences can be observed between the three images.

(b) RGB composite of the three bands with the
15th, 16th, and 17th highest eigenvalues.

(c) Subset of scene used
for subpixel target detec-
tion experiment showing
some indication of sub-
pixel targets.

Figure 5.4: Images of a 360 band HSI that was transformed using PCA with
moderate variation.

can be a challenge. While this method is widely used for processing HSI,
for subpixel target detection, dimension reduction methods that preserve
latent information is more appropriate.

5.3.2 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is an algorithm that is being
used increasingly for target detection purposes as it can preserve more
latent information compared to PCA. For spectral images, this method
works well since all spectral data is non-negative, which means the
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underlying assumption of the algorithm holds [56]. It has an advantage
over PCA or even ICA because it approaches the data in parts and so
reducing the dimensionality is a natural process of the algorithm. It does
not need to assume the pixels are combinations of pure pixels like PCA
does. A disadvantage of NMF is that it is sensitive to spectral variations of
the material caused by collection geometry or atmospheric effects. Another
challenge of using NMF is that it assumes the data is smooth, which is not
always the case with HSI, especially if pre-processing is done to discard
bad bands before dimension reduction. There are many variants of NMF
that attempts to overcome challenges presented by the inherent
characteristics of HSI depending on the use such as clustering bands to
ensure smoothness [57].

NMF is a popular dimension reduction method for unmixing
applications as it can better preserve latent information. However, it is
becoming increasingly prevalent for subpixel target detection as well for
the same reason. Both PCA and NMF are widely used dimension
reduction methods that can be used without a prior knowledge of the
target, and the background is calculated from the collected image, to
identify anomalies. Their disadvantage is that they assume the normal
statistical distribution of the HSI pixels, and become inaccurate with poor
detection performance when these assumptions do not hold.

5.3.3 Independent Component Analysis

The two methods presented in Section 5.3.1 and 5.3.2 assumed each pixel
was an independent random process with normal distribution. For cases
where this assumption does not hold, and the bands are not independent
processes, a dimension reduction method that takes a numerical approach
can be used, such as the Independent Component Analysis (ICA) [58].
Unlike PCA which transforms the HSI using principal components, the
ICA transform uses the inverse of the principal components matrix,
making the transformed data statistically independent.

ICA makes each component independent, then selects the
dimensions that have the highest variations in the distribution. Like NMF,
it is capable of preserving latent information within the data and does not
assume Gaussian distribution. As a results, it can be successful for many
different target or background combinations. There are many variations of
ICA that overcome specific challenges inherent in the method when
applied to HSI to select the best dimensions depending on use [59]. We
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examined the same HSI of the scene that was used to illustrate the effects
of PCA for subpixel target detection in the previous section. We
transformed this image using ICA and select a similar set of bands to
analyze how the latent subpixel information was preserved.

Figure 5.5 show the bands and the RGB composite of the top
three bands with the highest amount of variation. The bands were not
rank ordered by its eigenvalues, but an iterative variation analysis was
done after making the data statistically independent. The processing time
as a result was much longer for the same image than it was to calculate the
PCA transform. Figure 5.5a shows that each band is distinct from each
other, indicating that they do contain the most information as was the
case with the PCA bands with the highest eigenvalues. However, unlike
PCA where the latent target information was averaged out in the in the
bands with the highest eigenvalues, ICA was able to preserve some
subpixel target signatures which can be seen in Figure 5.2c. The asphalt
area in the image that appears mostly yellow has green speckles, indicating
the presence of subpixel targets. However, the grass area shown in pink
that contained the more difficult target did not preserve the latent target
information in the top three bands.

Figure 5.6 shows the bands with the 10th, 12th, and 13th highest
variations. They still have distinct differences as seen in Figure 5.6a. Since
the bands are statistically independent, the information contained does not
decrease linearly in the lower ranked bands as is the case with PCA
transform. With these bands, the target that was more difficult to detect
can now be seen in Figure 5.6c. The blue area representing the grass
background has darker blue pixels speckled in the scene indicating the
presence of subpixel targets. This illustrates that this method is able to
preserve latent information better than PCA, although the challenge of
knowing how many dimensions to preserve persists.

While these methods can be used for post-collection data
processing when target and background information is not available, for
subpixel target detection, they will likely have poor performance due to
loss of latent information. Furthermore, the amount of processing required
even for a single image can be operationally unfeasible, even with the
advanced computational capabilities we have today. When applying
machine learning applications to process the data, where many images are
needed to train the algorithms, this type of computational cost can be
prohibitive. Even though our CPUs are more capable today for
computationally complex tasks, when processing a large number of images
as can be required for wide area search or when using machine learning
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(a) Images of three bands with the highest variations after ICA transfor-
mation. Shows largest difference between each band.

(b) RGB composite of the three bands with the
highest variations.

(c) Subset scene used for
target detection experiment.
Unlike PCA, easy targets ap-
parent.

Figure 5.5: Images of a 360 band HSI that was transformed using ICA using
the bands with the highest variations.

algorithms, there is immense value in reducing the image processing
requirements. The challenge with all of these methods is that while they
can be used for subpixel target detection, not only do we need to process
all the bands to make the transforms, but the decision of how many
dimensions to preserve is also required. These two requirements pose
limitations, especially if the data is automatically processed.

5.4 Band Selection Methods

The dimension reduction methods presented in Section 5.3, despite their
limitations are prevalent, as they can be used for most applications of
spectral images. However for subpixel target detection, we can take a more
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(a) Images of three bands with the 10th, 12th, and 13th highest variations
after ICA transformation. Shows moderate but distinct differences between
the three images.

(b) RGB composite of the three bands with mod-
erate variations.

(c) Subset scene used for
target detection experiment.
Anomalies can be observed
for easy and difficult targets.

Figure 5.6: Images of a 360 band HSI that was transformed using ICA with
moderate correlation.

discriminate approach that is tailored to the target and scene. Band
selection is such an approach that can reduce the dimensionality of the
data without losing latent target information, potentially for a much
smaller number of dimensions. While some of the methods find a value
akin to Bopt in their selection, which is a metric we developed as part of
this research and explained in Section 3.5, but the band selection method
we developed had an explicitly developed to have a connection to
operations.

There are a myriad of band selection methods, that can be used
for different applications of HSI, and in this section we present three
methods. One is used when the target and background are both known
and selects bands after comparing them. It uses the inner product of the
two spectra to calculate the distance between them, and is appropriate for
subpixel target detection as long as the background can be characterized.
This method was selected for comparison for its potential for use in a
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compact imaging system because it could be used to select bands prior to
collection if the background was known.

We selected two other methods for comparison because they were
considered state of the art. We used the results of a study that compared
17 different band selection methods that were considered state of the art to
narrow down the ones to use for comparison [60]. The two methods that
were selected found at least 4 out of the 15 targets from the HYDICE [61]
Forest Radiance I dataset [24], and their computation time was less than
0.5 seconds. One of these methods was based on divergence-based
decorrelation, and the other was based on the Constrained Energy
Minimzer (CEM) target detection algorithm.

5.4.1 Target and Background Comparison (TBC) Method

This method was selected for comparison because of it was simple enough
to calculate using an small on-board CPU, and so held potential for use in
a compact imaging system if background information was available. This
method used an algorithm that maximizes the distance between the
background and target spectral signatures. It rank ordered the bands by
projecting the subspace spanned by the target to the background and
finding the bands that are orthogonal to the subspace [62]. The band
ranking was ordered for the best bands (z) based on the spectra where
target was most distinct from the background (Eq. 5.8).

z = t− (bT · t) · b (5.8)

This method was designed to select bands using radiance data in
the the thermal portion of the electro-magnetic spectrum and so it has
potential for use with radiance data or digital counts for target detection.
We used a simplified version of this method on the reflectance data to find
the bands with the largest differences between the target and background
to be able to compare with the other methods. The effectiveness and its
advantage over other dimension reduction methods such as PCA or NMF
was when the background is (1) known, (2) uniform, or (3) well
characterized.
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5.4.2 Information Divergence (ID) Method

A method that maximized information divergence, a concept based on
information theory [63], prioritized bands using PCA-based transforms,
then minimized correlation by calculating the cross-entropy [64]. The
advantage of this method is that it was able to calculate a value akin to
Bopt when error was minimized. The disadvantage of this method was that
it was an iterative method, and so the computation time increased with
the number of bands needed.

This method calculated the noise-adjusted PCA and prioritized
the bands according to the largest eigenvalues, followed by a calculation of
the divergence between each set of bands. The divergence D(p,q) was
calculated using the log sums of the sets of bands p and q (Eq. 5.9)

D(p,q) =

l∑
i

pilog
pi
qi

+

l∑
i

qilog
qi
pi

(5.9)

In this equation, p and q are arbitrary sets consisting of any number of
bands less than the total. In this equation, the the total number of bands
in each set was l. The set of bands were selected if the divergence was
greater than a given threshold. In order to compare the detection
performance of the bands selected using this method with the other three
methods, we iterated though the bands to find the best N bands. This
algorithm was implemented for a range of of 2-30 bands in the comparison.
The computation time to select all N bands were measured. The z-values
were calculated using Eq. 5.10

z = D(p, qi) (5.10)

where p was the top 30 bands after the noise-adjusted PCA was calculated
and qi were the individual bands in the HSI at each wavelength for
i = 1...N . Therefore the divergence was calculated for each band against
the initial top 30 bands, and a z value was assigned accordingly.

5.4.3 Linearly Constrained Minimum Variance (LCMV)
based Method

A method that was based on the CEM algorithm, constrained the
correlation of each band to the correlation matrix of the HSI [65]. The
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bands were rank ordered so that the ones with the least amount of
correlation was the highest ranked. A band dependence factor was also
calculated, and the highest ranked bands had both lowest correlation and
dependence. Applying this method to every pixel in the image took
between 18 seconds to 43 minutes to find 9 bands in our reference. A
modified version of this algorithm was the LCMV, which reduced the
computation time by constraining a spatial dimension as a single vector.
Using the LCMV, the CEM algorithm was calculated for every row in the
image instead of every pixel.

This method was implemented by calculating the CEM of the
y-axis pixels as the constrained input vector v and the bands were ranked
using Eq. 5.11

z = Σ−1B(BTΣ−1B)−11N (5.11)

where

1N = BTw (5.12)

and

w = t · v (5.13)

where the spectral reflectance signature of the target t was used as the
weighting vector w, to rank order the bands for the input vector v. This
value was compared to the entire image used to calculate the background
B, from which the inverse covariance matrix Σ−1 was also calculated.

5.5 Motivation for Novel Band Selection Method

The advantages that dimension reduction methods have over band
selection methods, is that they require little information about the target
or background. They select the best bands based on the most statistically
important information, and so the calculations can be modified based on
the application. However, they also require a decision for which dimensions
are the most important, and often result in loss of information.

All the methods mentioned in sections 5.3 and 5.4 assumed
systems that collected fixed bands, and operated on images that were
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already collected, transmitted, stored, and disseminated for processing.
Their primary purpose was to improve detection performance, and
computation time was generally not a concern since the calculations were
done post-collection. In essence, the existing band selection methods were
optimized for exploiting HSI collected by imaging systems with fixed bands
following collection. The purpose of these methods was to facilitate image
exploitation and maximize detection performance, not as a design
optimization tool where computation time was a component to consider.

What we wanted was a band selection method that was simple
enough be implemented and computed using a small on-board CPU of a
compact spaceborne system. The method we developed for this purpose
selected the bands using only the target reflectance signature. It was a
method that could be used to drive the collection decisions based on
mission for compact spectral imaging systems with adaptive band selection
capabilities. Its primary purpose was not simply to maximize detection
probability, but to reduce data processing requirements for a given target.
In the design phase, the detection performance for a range of bands can be
computed to drive feasibility decisions for compact systems, and in the
operational phase use this information to compute Bopt based on
requirements. This method could be used without consideration of the
background prior to collection.

5.6 Bands from Only the Target Spectrum
(BOTS)

We developed a band selection method that could be used to make
collection decisions for an adaptive system. The method only needed the
target reflectance signature to calculate the best bands, and the analysis
results in the design phase could be used to calculate Bopt in the
operations. Its purpose was to minimize the number of bands that are
collected and subsequently processed, depending on the operational
requirements.

To achieve this, we calculated the band rankings as a function of
the magnitude of the target reflectance signature and the slope (Eq. 5.14).

z = f

(
a · dt

dλ
, b · t

)
; a+ b = 1 (5.14)

We wanted a function that was adjustable as needed depending on the
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amount of a priori knowledge of the background or the type of target. For
example, if we knew the background spectra was similar to the target
(green vehicle in area with high amount of vegetation), then we can
increase the slope of the target for this scenario to emphasize the spectral
features of the target. Or if we have a target that is bright with limited
spectral features, (white vehicle in urban area) then we can increase the
magnitude of the target signature to emphasize the bands with the highest
reflectance.

This method took advantage of the fact that targets are more
detectable at wavelengths where its reflectance is higher, thus the use of
the highest reflectance values, and by using the slope of the reflectance we
found points where a target’s spectral signature was likely to be
distinguishable from others. It combined the two qualities of a material’s
reflectance signature that increased its detectability at subpixel levels
without comparing it to a background.

We tested different combinations of the two values to find a
function that related the magnitude and slope, such as multiplying the two
values, subtracting them, or using the absolute values of the slope. We
tested the functions for the orange target which had both high and low
reflectance regions in the spectrum along with a distinct feature. The best
results were obtained when the two values were added, without using the
absolute values (Eq. 5.15).

z = a · dt
dλ

+ b · t (5.15)

While the magnitude of the reflectance was a number between 0 to 1, the
slope could be positive or negative but bounded since the target reflectance
was a sampling of a continuous curve. Given these properties of the slope
and magnitude of a material’s reflectance, the sum of the magnitude and
slope were used to rank order the bands. This led to portions of a target’s
spectral signature where reflectance decreased, to be ranked lower than the
wavelengths with no change. The following sections outline the testing and
validation process of this band selection method.

5.7 Testing and Validation

Once the best function for combining the magnitude and slope of the
target signature was found, we tested the utility of changing the
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coefficients for different targets and scenes. We started with the orange
lifeboat in open ocean, where we generated curves for utility vs number of
bands using the DIRSIG images of the open ocean. The best results for
this target and scene was when a = 0.7, where the spectral features were
emphasized more than the magnitude of reflectance. We then tested the
effects of changing the coefficients for the green and yellow targets using
real data. We used FASSP to generate trade curves for various values of a
and b. Then tested the range of values on the real data generating curves
for utility vs number of bands. A value of a = 0.2 for the green wood
target, and a = 0.8 for the yellow target produced the best results on the
real data, and so these were the values that were used for comparison to
the other band selection methods. The details of the results for analyzing
the coefficients are in Appendix A.

For the other band selection methods, we selected the bands for
the yellow and green targets using asphalt and grass backgrounds
respectively [66]. We compared BOTS to a method that used the inner
product comparison of two materials (TBC), and the two state of the art
methods ID and LCMV. Figure 5.7 shows the normalized z values
calculated from the the four band selection methods to rank the bands.

The HSI sensor we modeled using DIRSIG was the sensor that
was used in the SHARE 2012 data collection. The wavelengths of the 360
bands of the real and simulated images were then interpolated to match
the 210 bands of the HYDICE sensor used in the FASSP model. We used
the bands that corresponded to the VNIR spectrum for analysis which
corresponded to bands 4-97 of the HYDICE sensor. From this range of
bands, the wavelength of the selected band that was closest to the
wavelength of the 360 band sensor of the SHARE 2012 and DIRSIG data
was used in the band selection analysis. The results using the 93 bands
was used to compare the band selection results. Our reference to using all
the bands refer to this set of 94 bands of the HYDICE sensor in the VNIR
spectrum. The highest z values corresponded to the best bands and the
top 30 bands from the four methods were selected for analysis. The utility
results for the range of 2-30 bands were compared to the results for all the
bands.

We started by predicting the utility of the bands selected for the
four methods with FASSP for the range of 2-30 bands. The same bands
were used to assess utility using real data to validate the BOTS method.
We then used simulated images with associated perfect truth data to
cross-validate these results. We built on previous work done to compare
the SHARE 2012 data and DIRSIG data and modified the existing
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(a) Normalized z values for the green targets where the highest values are the best
bands for target detection.

(b) Normalized z values for the yellow targets where the highest values are the best
bands for target detection.

Figure 5.7: Normalized z values for the green and yellow wood targets.
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simulation files with different techniques to fit our purpose [67] [68]. The
process of validation with with real images, followed by a cross-validation
using simulated images had the dual purpose of not only validating BOTS
as a band selection method, but also validating the combined use of
FASSP and DIRSIG for spectral utility trade space analysis. By
comparing their results, we verified that the utility predictions were
congruent to the assessments.

5.7.1 Testing with Utility Prediction Method (FASSP)

To predict utility using the FASSP modeling tool, we generated FASSP
reflectance files from the field data collected as part of the SHARE 2012
experiment. Additional reflectance spectra of the asphalt where the yellow
wood panels were placed, was also collected. The additional background
spectra was collected in order to calculate the covariance matrix that is
required for the FASSP reflectance files when they are used as background
spectra. Figure 5.8 shows the mean reflectance curves of the target and
background that were used to predict utility with FASSP. These
reflectance data were also used to select the bands and in the material
property files in the DIRSIG simulations to attribute the simulated scene
materials with the same spectral reflectances.

Trade curves were then generated for the TAs at FPR = 0.01 and
FPR = 0.001 to predict the utility values for the real and simulated
images. ROC curves were calculated for a range of 2 - 30 bands at 6%,
10%, and 15% TAs. The final results of the real images were compared to
the performance results of the three abundance values, and the predicted
utility values for the 10% TA matched the assessment results. Since the
expected TA for the real and simulated images given the size of the wood
panels and pixel size was also 10%, this indicated congruence between the
prediction and assessment.

The final utility metric using FASSP was calculated by summing
the probability of detection values below FPR = 0.01 and FPR = 0.001 to
compare the detection statistics from the real and simulated data. The
FASSP model used the CEM target detection algorithm to generate
detection statistics. This algorithm was similar to the SMF where it
compares the orthogonal subspace of the target and background spectra.
While ACE and SAM target detection algorithms were also used to assess
utility of the real and simulated data, the results from the SMF algorithm
was used for comparison.
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(a) Spectral reflectance signatures of green wood panel targets and grass back-
ground.

(b) Spectral reflectance signatures of yellow wood panel targets and asphalt back-
ground.

Figure 5.8: Target and background spectral reflectance curves used for the
band selection method analysis.
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5.7.2 Validation with Real Images (SHARE 2012)

The data we used to validate the FASSP results were from a data
collection campaign that was conducted in 2012 in Rochester, NY [69].
The SpectTIR Hyperspectral Airborne Rochester Experiment 2012
(SHARE 2012) was a joint effort to collect data for various studies using
HSI including subpixel target detection [55]. As part of the study, large
black and white panels were placed in the scene that could be used for
calibration and atmospheric compensation [70]. This allowed the radiance
images to be converted to reflectance images with a high degree of
accuracy. We used the reflectance images that were produced after
atmospheric compensation using the empirical line method from the
calibration panels. Higher spatial resolution imagery using an RGB sensor
was collected concurrently for visualization as part of the experiment. The
RGB sensor used to collect the high spatial resolution imagery was part of
the Wildfire Airborne Sensor Program (WASP) imaging system suite.

The images for the SHARE 2012 experiment were acquired using
the ProSpecTIR-VS sensor operated by SpecTIR, LLC. The sensor
collected HSI that had 360 bands from 400 to 2450 nm wavelengths and
had a focal length of 23.1mm. The airborne platform collected data at an
average altitude of 936m, which produced an average GSD of 1.22m. The
imaging system was a pushbroom sensor, and so we could approximate
nadir collection geometry for all the images. We used four of the
atmospherically compensated reflectance images collected during the day
for the analysis.

The ground reflectance spectra of the two targets and two
background materials were collected using a SpectraVista SVC-1024 field
spectrometer. This was the same instrument that was used to collect the
additional asphalt reflectance data as part of this project. These
measurements were used to create the reflectance files in FASSP as well as
the material data files in DIRSIG. The numerous measurements made
using the spectrometer were not only used to generated the covariance
data for the material reflectance files used in FASSP, but also implemented
into the DIRSIG files to replicate the real world variations. They were also
used to calculate the band ranking values for the band selection methods.
The bands collected using the spectrometer were interpolated to match the
bands of the sensors on the airborne platform prior use in the DIRSIG
simulation. Then for band selection, the bands of the SpecTIR sensor were
interpolated to match the HYDICE sensor. Once the bands were selected,
the bands in the SpecTIR sensor with wavelengths that were closest to the
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selected bands of the HYDICE sensor were used for the utility analysis.

The images we used were not georectified as this was an
additional computational step that did not provide any analytic or
procedural benefits for testing the band selection methods. Furthermore,
in at least one experiment using the same data, georectification was found
to cause changes in detection results [71]. The four selected reflectance
images therefore had a separate truth file associated with each. We
cropped the images to match the scene and image size of our simulated
images where each was approximately 250 × 350 pixels, This gave us a
total of 350,000 pixels to use for analysis.

The portion of the SHARE 2012 experiment that was designed
for subpixel target detection used two targets - green and yellow wood
panels that were 0.3m x 0.5m in size. The green panels were placed on a
grass background, and the yellow panels were placed on an asphalt
background. The targets were placed in semi-random positions at least 2m
apart to ensure that each pixel had at most one target instance. This
produced a target area of 0.155m2, and for an average GSD of 1.22m, the
expected target fill fraction was approximately 10%. Figure 5.9 shows
WASP images and ground photographs from [55] showing the target
placement and the experiment designed for target detection analysis.

The truth data that was used to calculate the utility metrics were
first estimated using a spectral angle mapping tool in ENVI [72] using the
bands 4-97 (400.32nm - 849.3nm). These values were compared to
independently derived truth data for one of the images, and a mask was
used to reject any ”positive” values found by the angle calculation tool
outside of the target area. This method of estimating the truth data likely
eliminated many of the pixels with very small target fill fractions as
positives, but it was found to be a sufficient truth map for comparison
since most of the pixels within the target area were likely positive.

5.7.3 Cross-validation using simulation and perfect truth
data

To generate the synthetic spectral images, we used existing simulation files
used from the comparative studies between the real and simulated images,
and made some modifications. Table 5.1 shows the parameters used in the
simulation along with the real image collection data. These parameters
were selected to produce GSD that were similar to the real images and the
same number of bands, bandwidth, and similar spectral resolution.
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(a) Ground image showing placement
of green wood panels.

(b) Ground image showing placement
of yellow wood panels.

(c) High resolution WASP imagery of
scene used for subpixel target detection.

Figure 5.9: Images from [55] for visualization of SHARE 2012 experiment
setup to collect SpecTIR HSI.

Table 5.1: Comparison of simulation parameters to real image collection
data.

Parameter DIRSIG SpecTIR

Sensor Altitude 1923m 936m (average)

Focal Length 23mm 23.1mm

GSD 0.99m 1.22m (average)

Sensor Type Pushbroom Pushbroom

Time of Collection 09/25/12 11:57 11:00-14:00

Spectral Bandpass 400.32 - 2452.81 nm same

Bandwidth 6 nm Gaussian 3 - 9 nm

Pixel Pitch 11.96 µ m 30 µ m

Geo-location 42.9◦ N 77.76◦ W 42.54◦ N 77.46◦W



CHAPTER 5. BAND SELECTION 86

The scene in the simulation was designed to be representative of
the area in the real image, and not an exact replica. The materials of
interest such as the targets and the background were represented using the
field spectral measurements described in Section 5.7.2, but other materials
in the scene were represented with existing spectral material files that may
or may not have had the same reflectance as the materials that were
present in the real image scene.

Since the real images we used were not georectified, the
distortions due to variations in the roll, pitch and yaw of the airborne
platform in these images led to variations in the truth data. The original
simulation files that existed for this scene assumed georectified images, and
so did not contain these variations. For our purposes, locational variation
was added to simulate the platform movements that caused the distortions
that would vary the truth maps. The modifications were made to the
platform simulation file to mimic not only the locational and rotational
noise of the platform movement, but also small gradual changes in the
flight path. These gradual directional changes simulated slight adjustments
that a pilot may have made mid collection to stay on the flight path.

Figure 5.10 shows the progression of developing the simulated
images, starting with one of the real images shown in 5.10a. An image that
was generated using the existing simulation files is shown in Figure 5.10b.
Figure 5.10c shows a subset scene with added locational and rotational
noise of the platform movement. Figure 5.10d shows an example of the
final simulated image after the changes in the platform movement noise
and flight path was added to resemble the real images.

We generated 12 different variations of the scene adding different
platform movement effects. Each of the images were 250 × 350 pixels to
produce a data size of 1,050,000 pixels. This generated a range of TAs and
different true positive pixel locations within the scene. The distortions
caused a change in the location of the target present pixels as well as the
abundance values. We made an assessment of the truth data distributions
by examining the images alongside the truth map they were associated
with. Figure 5.11 shows an example DIRSIG image and truth map
combination. Figure 5.11a shows a closeup of the scene location where the
green and yellow wood panels were placed in the simulation. Figure 5.11b
shows the associated truth map where the target locations and abundance
follow the distortions of the scene. The green pixels in 5.11b correspond to
the green wood panels and the blue pixels correspond to the yellow wood
panels. Pixels with higher intensity are also pixels with higher TAs. The
distribution of the TAs changed from image to image due to the
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(a) A SHARE 2012 SpecTIR image of
the scene used for the sub-pixel target
detection experiment. Shown using
three bands - R(650nm), G(550nm),
and B(450nm).

(b) A simulated image of the Avon,
NY scene generated with no mo-
tion noise as georectified image.
Shown using three bands - R(650nm),
G(550nm), and B(450nm).

(c) A simulated image of the
same scene generated using DIRSIG.
Shown using three bands - R(650nm),
G(550nm), and B(450nm).

(d) A simulated image of the
same scene generated using DIRSIG.
Shown using three bands - R(650nm),
G(550nm), and B(450nm).

Figure 5.10: Images illustrating process for developing simulated image to
produce variation in target abundance similar to real images.
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(a) A closeup of the scene generated
where targets were placed.

(b) Truth map generated alongside
the simulated images.

Figure 5.11: Closeup of scene and truth map used for target detection anal-
ysis of DIRSIG generated data.

modifications made to the platform movement.

Shot noise was added to the radiance images, then converted to
reflectance for target detection as a post-processing step for the simulated
images. The noise was calculated by multiplying the radiance values of the
noiseless synthetic image at each pixel and band (f(i, j, k)sim) with a
random number that had a Gaussian distribution, zero mean, and unit
standard deviation (g(i, j, k)). This value was scaled by the SNR we
wished to produce which was SNR = 20, to match the noise modeled in
FASSP and described in Section 4.4.3. This step was necessary to ensure
proper comparison could be made between the simulation and real image
data that we expected to have noise sources not only from the published
detector characteristics but also from other undefined sources.

5.7.4 Band Selection Results

The resulting utility values for the four band selection methods were
comparable. Also, the trends for the FASSP results, simulation, and real
data were congruent. The green targets that were placed in grass was a
difficult detection case while the yellow targets placed in asphalt was an
easier case. Figure 5.12 shows example ROC curves generated for the
SHARE 2012 data using all the bands, as described in the previous
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section, and 10 bands selected using BOTS. All the images available were
combined, then the target present pixels and target absent pixels were split
randomly into 8 folds to calculate statistical variations in detection
performance.

Figure 5.12: ROC curves of the SHARE 2012 data for the two targets shown
for all bands and for 10 bands.

The split data was used to calculate the FPR, TPR, and AUC for
each fold. The 8 folds generated 8 different ROC curves, which were then
used to calculate a mean ROC curve with standard deviations. The figure
shows the individual results for the two targets with the dark blue line
showing the average ROC curve, and the gray area showing the standard
deviation.

The ROC curves for the DIRSIG data had a similar shape but
with a smaller standard deviations. The spectral similarity value that was
calculated for the yellow target compared to the asphalt background was
0.5614. The spectral similarity value for the green targets compared to the
grass background was 0.2144. This indicates that the grass and green
wood panels have similar spectral reflectance signatures as opposed to the
asphalt and yellow wood panels that are dissimilar. Furthermore, for most
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Figure 5.13: Utility values for yellow wood targets using SHARE 2012 data.

of the wavelengths, the green wood panel is darker than the grass, with a
lower reflectance except at a few wavelengths as was seen in Figure 5.8a.
The yellow target on the other hand had a higher reflectance value at
almost every wavelength than its background as was seen in Figure 5.8b.

To compare the three methods used for utility assessment and
prediction, we summed the TPR values at the same FPR values we used
for the FASSP analysis. For the FASSP analysis a range of TPR values
were calculated for FPR values of 1.0× 10−1 to 1.0× 10−5. The utility
values were then calculated for the ROC curves at 2, 5, 10, 15, 20, 25, and
30 bands for the yellow target. Then for the green target, the utility values
were calculated for 5, 10, 15, 20, 25, and 30 bands. Figures 5.13 - 5.15
shows the utility values at each of the number of bands for the yellow wood
target. Figures 5.16 - 5.18 shows the results for the green wood target.

The utility values of TBC and BOTS were were similar for the
range of bands and two targets we examined. The utility values of ID and
LCMV were higher in some instances, especially for higher number of
bands, but neither stood out when comparing the results from all three
data sources, and the trends for both targets were mostly in agreement.
The results from the other target detection algorithms (SAM and ACE)
that were used used for the DIRSIG and SHARE 2012 data did not have
any significantly differing results or trends from the SMF and CEM
methods.

The detection performance due to reduction in bands compared
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Figure 5.14: Utility values for yellow wood targets using DIRSIG data.

Figure 5.15: FASSP prediction of utility values for yellow wood target at
10% abundance.



CHAPTER 5. BAND SELECTION 92

Figure 5.16: Utility values for green wood targets using SHARE 2012 data.

Figure 5.17: Utility values for green wood targets using DIRSIG data.
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Figure 5.18: FASSP prediction of utility values for green wood target at
10% abundance.

to all the bands for the yellow target was not significant, and there was
detection even when using 2 bands. For the green target, the difference in
utility was significantly higher when using all the bands as opposed to the
reduced number of bands. This indicated that reducing the number of
bands in difficult detection scenarios had a more significant effect,
regardless of the band selection method.

For the yellow target, there was some differences in trends for the
predicted utility, simulated data, and real data. The prediction showed
limited effects on utility for the yellow targets for reducing the number of
bands even as low as 2 bands. The simulated data showed an improvement
in utility for reducing the number of bands. For the real data however,
while the utility value was similar up to 20 bands, but with less bands,
utility decreased significantly. Unlike the FASSP or DIRSIG results, the
utility value using all the bands remained the highest.

Differences in the results between the real data, analytic
prediction, and the simulated images show that there are non-linear effects
that was not accounted for in the models. Analyzing the cause of the
differences between the models and real images is beyond the scope of this
research, but perhaps a subject for future studies.
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Table 5.2: Computation times in seconds for each band selection method
for the number of bands.

Computation Time (s)

Method 2 Bands 10 Bands 20 Bands 30 Bands

BOTS 9.143 ×10−5 1.022×10−4 9.988 ×10−5 1.002 ×10−4

TBC 2.113 ×10−2 2.126 ×10−2 2.081 ×10−2 2.132 ×10−2

ID 5.019 ×10−2 0.2012 0.3488 0.5001

LCMV 0.8344 0.7749 0.8122 0.8779

5.7.5 Computation Time

The computation time of BOTS was significantly less than any of the other
band selection methods. The primary advantage of this method was not
only that it was simple and did not need background information, but also
that the computation complexity was independent of image size or number
of bands needed. The computation complexity of TBC was also
independent of number of bands to select or image size, which signals its
potential for implementation in a CubeSat as an alternative method if
background information is known. The computation time for these two
methods would change based on the spectral resolution of the input
reflectance file, but since all the bands considered were ranked as part of
the computation, there was no change in computation time whether we
were selecting 5 or 30 bands. The primary advantage of TBC over BOTS
was that it could use digital counts to select the best bands and so for
some operations, the bands for an opportunistic target could be selected
mid-mission.

The other two methods, although considered state of the art for
detection performance using the data that these methods were tested on,
was found to have complexity dependent on image size as was with LCMV
or number of bands selected as was with ID. Both of these methods, while
they had acceptable performance finding 9 bands for the HYDICE Forest
Radiance I data, were found to have unacceptable computation time when
the image size increased from 145 × 145 pixel to 250 × 350 pixels, or when
30 bands were selected instead of 9. Table 5.2 shows the computation time
of each method for this dataset and the number of bands selected.
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5.7.6 BOTS Validation Summary

In analyzing the predicted results using FASSP, simulated images, and real
data, we found that their results were congruent, thus validating its use for
band selection in future studies. The computation time to select bands
using BOTS was found to be acceptable for use on a small on-board CPU
of a miniature satellite system. While TBC showed potential for similar
use in a compact system, it was still 200 times slower to compute than
BOTS. The state of the art band selection methods were appropriate for
image exploitation of HSI with fixed bands, following collection when there
was no constraint on computational resources. However, given the
congruence in results both when comparing the prediction, simulation, and
real data as well as for performance, we found that BOTS was a method
that could select bands for target detection without significant impact on
performance that was computationally feasible for use in a compact
spectral imaging system with adaptive band selection capabilities.

5.8 Summary

When using HSI for any application, dimension reduction was often
employed, and for subpixel target detection, band selection was prevalent
for this purpose. In the design of a compact system with adaptive band
selection capabilities, we not only needed to consider performance but
computation time as well. Existing methods however, required background
information which may not be available prior to collection, and often had
unacceptably complex calculations. All the methods for dimensions
reduction so far were designed for post-collection processing for
hyperspectral imaging systems with fixed bands. In developing this
method, we met the requirements in the design of an adaptive spectral
imaging system capable of adaptive band selection to save data handling
costs. In this chapter we presented the validation of BOTS as a band
selection method, that could be used for an adaptive and compact system
with limited on-board computational capabilities.

The validation method for BOTS also had the purpose of
validating the combined use of FASSP and DIRSIG images for analyzing
spectral imaging system designs. In finding that the prediction and
assessed results from the simulated images were congruent to results from
real images, we can surmise that the parameters selected for the models
and the simulation techniques adequately captured real world phenomena
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that affect subpixel target detection.



“Don’t forget - no one else sees the world the way you do, so
no one else can tell the stories that you have to tell.”

- Charles de Lint, The Blue Girl, 2004

6
Overall Project Approach

The goal of this project was to determine if the use of spectral images
collected by a compact system was the appropriate tool for a given
mission. In developing this process for practical use, the critical answer we
answered was:

Is the use of a compact spectral imaging system for this target in this area
of operation feasible, given our computational resources and other assets
available to confirm or deny its presence?

We comprehensively analyzed spectral image utility in the design phase as
well as the operational phase. We accounted for the design costs of
improving a system figures of merit, but also the operational costs once
deployed. We created a workflow to using FASSP to find the saturation
points in the utility trade space for four system parameters - TA, Bopt,
SNR, and Γ. Bopt and Γ are metrics we developed as part of this research.
Bopt was described in Chapter 3 Section 3.5, and Γ is described in 6.5.2 as
one of the scene complexity measures we use. We designed a scene with
targets to replicate the operational context for a set of GSDs based on the
TA saturation points and target size. We generated the spectral images
based on the saturation points, selected bands, added noise, and generated
ROC curves using three different target detection algorithms. We
described the simulation validation process in Chapter 4 where we

97
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Figure 6.1: Diagram showing the progression of developing the methodology
to comprehensively analyze spectral image utility.

developed the techniques and selected the simulation parameters that
adequately captured real world phenomena. We used BOTS that was
described in Chapter 5 to select the bands. In this chapter we describe the
overall methodology for comprehensive system analysis to facilitate the
design of compact spectral imaging systems with adaptive band selection
capabilities. Figure 6.1 shows the progression in developing this process.
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6.1 Analysis Methodology

The use of FASSP to predict spectral image utility was introduced in the
band selection method validation. Simulating an entire scene composed of
various materials and attributing each object with the material reflectance
was found to be intractable to study a range of parameters that affected
spectral image utility. With the simulation method, while it was possible
to control each portion of a system design, their study as separate
parameters that affect utility was cumbersome. An analytic model that
used first and second order statistics of a target’s spectral signature
compared to the background, was a tractable and efficient way to analyze
different components of the trade space separately as they related to
utility. For example, studying the TA as related to utility required the
design of a scene and the generation of thousands of images when using
DIRSIG that took on the order of days to generate using high performance
computing. Using FASSP, computing the trade curve of TA vs utility was
a single analysis that took a few minutes using a personal computer.

While it was possible to provide the necessary input in the FASSP
model to create a background with varying complexity that affected utility,
replicating the interactions of different objects in a scene as they would in
the real world using FASSP was cumbersome. While it was possible to
model a uniform background in the real world such as the open ocean or a
vast desert using FASSP, any other scene with man made objects such as
an urban scene or even a scene with a rapid change between two
backgrounds such as a coastal scene was a challenge to model using
FASSP. Therefore the analytic model and the simulation tool were both
used to comprehensively analyze the spectral image utility trade space.

We used FASSP to test various target detection scenarios for four
key parameters that affected target detection, and DIRSIG to design a
parallel scene for assessment. The analysis was divided into two separate
studies. The first was a simple scene analysis using an open ocean scene
with orange and black lifeboat targets. The purpose of this study was to
compare the FASSP predictions to the DIRSIG image assessments. The
open ocean was an ideal uniform background that could be characterized
with a few spectra, and spectral images of the real world scene were not
expected to have any significant differences. The expectation was that for
this simple scene the differences between the FASSP predictions and
assessment using DIRSIG images were going to be minimal. Any
significant differences would indicate a need to modify the simulation
techniques and modeling parameters.
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Once the simple scene analysis and the results from both the
prediction and assessment were congruent which indicated that the
simulation techniques and modeling parameters were selected and
adequately developed, we were able to analyze a complex scene. Two
background compositions and analogous scene types were selected for the
complex scene analysis. Using FASSP we composed a grass background
and sand background. The four trade variables (TA, SNR, Bopt, and Γ)
were tested for the sand and grass background compositions.

Using DIRSIG, we designed a complex heterogenous scene with
geometry effects and pixel to pixel variations. The assessment allowed the
study of the operational conditions encompassing subpixel target detection
and its effect on utility. We wanted to study the relationship between
system parameters such as GSD, PSF, or smear and how the operational
conditions affected their impact on utility. Table 6.1 summarizes the
parameters analyzed using FASSP and DIRSIG along with their analysis.

6.2 Prediction

We used FASSP to generate trade curves and find critical points or
saturation points in the trade space for the selected targets and
background. Saturation points in the trade space were points where
increase/decrease in a tested metric no longer contributed to utility. The
scenes for analysis were divided into two types - simple and complex. An
open ocean scene was used as a simple scene example. This was the type of
scene that could be modeled using a few material spectra and the
variations that contribute to background complexity was going to be from
the inherent variations of the materials as opposed to scene geometry or
various objects within a scene. We describe this scene as homogeneous
because the background composition does not change from pixel to pixel
and it has limited 3-D geometry effects. In the prediction, four water
spectra was used to compose the background of the open ocean scene. Two
target materials were selected for testing the simple scene case - the orange
life vest and black tire. Since the purpose of analyzing the open ocean
scene was to compare the simulation and assessment results to the
prediction, only the TA component was analyzed.

A saturation point was found for the orange target using the open
ocean background spectra, and it was compared to the results found for
sets of simulated spectral images with corresponding median target fill
fractions. The black target in the simple scene was used to get a
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Table 6.1: Summary of FASSP and DIRSIG experiments for different target
detection scenarios to analyze spectral image utility.

FASSP

Spectral Similarity
Value (SSV)

Test two background composites and four
targets to calculate their spectral separability.

Analysis: Utility trends for 8 different spectral similarity values

Target
Abundance/Pixel fill
fraction (TA)

Generate trade curve for range of target
abundances for each target and background
combination to find saturation points.

Analysis: Find points for different target and background combinations
where perfect detection is achieved.

Number of bands
(Bopt)

Select bands using BOTS to find saturation
points if any for a range of 2-30 bands.

Analysis: Find effects of reducing the number of bands on utility.

Signal to Noise
Ratio (SNR)

Generate ROC curves for various noise values

Analysis: Test effects of various SNR values on utility.

Background
Complexity (Γ)

Use various background compositions to
generate range of background complexity values.

Analysis: Introduce novel metric to measure background complexity for
uniform large area scenes and test its relationship to utility.

DIRSIG

Mean Target
Abundance
(TAmean)

Use various methods for placing targets in scene
to generate distribution of abundances.

Analysis: Effects of real world situations on target abundance and its
relationship to detectability.

Scene Volume
(Vscene)

Separate complex scene into subset scenes with
various scene complexity values.

Analysis: Effects of 3-D geometry and scene complexity on detectability.

Detectability (ξ) Combine mean target abundance values and
scene volumes to analyze their combined effect
on utility.

Analysis: Introduce novel metric that can tractably capture operational
effects on real world target detection missions.
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comparison for targets that were likely to be categorized as one that was
operationally unfeasible or suitable for use with compact spectral imaging
systems. Therefore for the simple ocean scene, the TA metric was tested
with the orange target that was likely to be categorized as a mission
suitable for compact imaging systems and the black target that was
expected to an unsuitable mission, to compare the predicted utility and
assessed utility.

For the complex scene, two sets of background compositions were
selected along with four targets for a total of 8 mission sets. Four types of
grass background spectra were used to compose one of the sets in the
complex scene analysis and four spectra of various sand and light soil
materials were used to compose the other set. These were background
spectra that were congruent to a suburban scene where the open areas and
the bulk of the background materials were composed of grass, or a desert
scene where the bulk of the background was composed of sand and light
soil. Each of the four targets were tested against these background
compositions to find saturation points.

To quantify background complexity for utility prediction, we first
combined the mean spectral signature of the materials that composed the
background (Eq. 6.1)

B =
K∑
i=1

ai · bi (6.1)

and the spectral variations of the material signatures by calculating the
total inverse covariance (Eq. 6.2)

ΣT =
K∑
i=1

ai · Σi (6.2)

to get the background complexity value (Eq. 6.3).

Γ =

√
|BT · ΣT

−1 ·B| (6.3)

Here the total number of materials that the background is composed of is
K, and bi is the spectral signature of one material’s reflectance data and
Σi its covariance. The spectral signature and covariance are scaled by the
fractional amount (ai) of that material presence in the background
composition. The background complexity value (Γ) is used in the complex
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Figure 6.2: Prediction process.

scene analysis to parameterize the background effects on utility. Varying
the background composition of materials and their fractions generated a
limited range of Γ values. This value was used because the spectral
signature of a material was considered in the quantity of Γ, and brighter
materials increased complexity and darker materials contributed less to Γ.
What this metric does not account for is the degree of heterogeneity in a
scene that can be caused from macro changes in a scene content. Examples
are urban scenes where the contents of the scene changes from man-made
buildings, roads ect. to forest or sand or a coastal scene where it can
change from the ocean to land along with man-made construction. This
metric accounted for was intrinsic variation within a homogeneous scene.

Figure 6.2 diagrams the process for predicting utility. It outlines
the target materials that were tested and the background materials that
were combined to produce a comparable scenario to the simulations. In
order to narrow the trade space to allow the analysis to be tractable, each
metric was traversed through their saturation points. It shows the four
components in the trade space and the order in which they were analyzed
to find each of the saturation points.

The first metric analyzed was the TA. Using all the bands, the
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lowest TA value that produced perfect detection was determined to be the
saturation point. This value then was set as a fixed input in the analysis
for the number of bands. For the 8 scenarios, a range of the number of
bands from 2-30 were analyzed at the TA saturation points. If a scenario
did not reach the TA saturation point, a 100% target fill fraction was used
as the input value. The saturation point for the number of bands were
then set as the input for the noise analysis and background complexity
analysis. While the background complexity metric was not expected to
reach a saturation point, it was the last metric that was analyzed at each
of the saturation points to find a relationship between utility and Γ. Using
the saturation points, a set of initial recommendations for a system design
could be formed for range of acceptable error values along with a
operational feasibility decision. These system design parameters were then
used to simulate a spectral imaging system that could be used for
assessment.

6.3 Spectral Image Simulation

The process for developing the simulation techniques to ensure the spatial
characteristics of an image were adequately captured were explained in
Chapter 4, and we used these techniques to generate the spectral images
also. The panchromatic image simulation was extended to spectral image
simulation by generating multiple bands with a narrow detector response
function, which were then combined to produce the spectral image. Figure
6.3 shows the simulation and assessment process for analyzing the imaging
system parameters and solidify the recommendations formed by the
prediction process. In this section we describe the simulation techniques to
design the scenes to replicate spectral images that would be collected in
real operations.

6.3.1 Spectral Imaging System Parameters: Sensor
Characteristics

In order to simulate an adaptive spectral imaging system that could collect
any number of bands at variable spectral resolution and wavelengths,
individual panchromatic image were generated where the detector response
function was tabulated to be similar to that of the adaptive filter. The
platform height was kept constant at 350km, but the focal length was
changed as needed for each set of simulations to produce the desired GSDs.
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Figure 6.3: Simulation and assessment process.

We were able to generate a range of TAs that resulted from the GSD,
target shape/size, and distribution due to the relative location of the
target to the detector’s pixel pitch. The simulation process encompassed a
TA distribution that resulted from the target size, location, and GSD. A
small GSD could increase TA, but so could a large target. With
simulation, we generated spectral images that would be collected of targets
with varying sizes by an imaging system with a fixed collection geometry
relative to the platform. Table 6.2 shows the imaging system parameters
that were modeled in the simulation.

Figure 6.4 shows two images that illustrate the scaling effects of
the simulated sensor that produced subpixel target image for the open
ocean scene. This figure shows the change in spatial resolution that
produced the range of TAs. The image on the left represents a pixel in the
image on the right. The two images generated the same scene, but the size
of the image on the right was 500x500 pixels, modeling a sensor with 20
times the focal length as the image on the right producing a spatial
resolution of 1m GSD. The image on the right was generated at a spatial
resolution of 24m GSD and its size is 25x25 pixels that represent the same
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Imaging System Parameters Notes

Aperture Diameter 44.5mm F/2.4 - F/7.1

Effective Focal Length 105-315mm 10-15m GSD

Spectral Bandwidth 400-1000nm 97 bands

Spectral Resolution 6.19nm Narrow Response Function

Pixel Pitch 4.5 µm Square detectors

Integration Time 0.6 ms Smear from 45◦ orbital velocity

Sensor Altitude 650 km

Look Angle Nadir

Solar Angle Zenith

Platform Velocity 7000 m/s

Table 6.2: Parameters selected for the optical system simulation.

scene as the 500x500 pixel image on the left. Using the two images, the TA
of the pixel shown can be estimated to be 10-12%. This type of
comparison was used to design the simulation sets for the open ocean to
generate a range of TAs using the simulation. This type of scaling was also
used to select the GSD and target types in the commplex scene to ensure
there was sufficient distribution of target fill fractions of the TA saturation
points found each of the targets the simulation.

6.3.2 Scene Development: Target and Background

We used the four types of reflectance spectra used for the FASSP
background compositions in the DIRSIG simulations as well. The four
spectra of the background types - open ocean, desert, and suburban - were
attributed to the scene’s base image that was used as a texture map of the
material reflectance files. Figure 6.5 shows an 8-bit image of the texture
map that was used to create variations in the ocean spectra. Each of the 4
spectra was assigned to a pixel intensity level between 0-255. The intensity
level of the pixels in the texture map would assign the corresponding
mixtures of materials. For example, if the Ocean Type 1 spectrum was
assigned the pixel intensity of 100, and Ocean with Whitecaps spectrum
was assigned the pixel intensity level of 200, then a pixel in the texture
map with a pixel intensity value of 175 would mix the output image
spectra with 25% Ocean Type 1 and 75% Ocean with Whitecaps. The
material map was given a spatial GSD scale to which its pixels would
correspond to. If the material map was given a GSD of scale of 1m, then
for a 30m image, 30 of the material map pixels would be mixed, producing
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Figure 6.4: Scaling example to generate spectral images with subpixel
targets. Image shown with three bands at R(650nm), G(550nm), and
B(450nm). Image on left is a 1m GSD resolution image of the open ocean
scene that is then generated at 24m (image on right).

a mixture that could potentially consist of all 4 spectra in one pixel with
varying amounts. In this way we were able to produce a scene complexity
that was comparable to a real image and corresponded to the prediction
model background.

The ocean scene was an example of a simple scene with uniform
background. For the complex scene analysis we used existing an simulation
of Trona, CA. We generated imagery of an existing scene of Trona, CA
that is routinely used for studies involving spectral images [73]. Figure 6.6

Figure 6.5: Texture map used to mix ocean spectra.
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Figure 6.6: High spatial resolution image of Trona, CA as a desert scene.

shows a synthetic image of this scene generated as a desert/industrial area
where the primary background materials it is composed of are sand, dirt
roads, and gravel. The DIRSIG scene of Trona, CA was originally an
industrial desert scene with the material map attributed with various sand
and soil spectral reflectance curves. This attribution was modified to
match the reflectance curves used in with the FASSP model to generate a
background that was comparable.

This scene was then modified to resemble a suburban scene by
attributing the background material map with the four grass spectra used
in the FASSP model. The two types of scenes of the same area was used to
place different types of vehicles, each attributed with the four target
spectra. This scene contained 3-D geometry of various types of buildings,
other vehicles, trees, and objects normally seen in a complex scene. All of
these 3-D objects were attributed with spectral reflectances of the
materials the objects were usually made of. The objects were large enough
to create shadows that could affect subpixel target detection performance.
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6.4 Assessment

The spectral images generated by DIRSIG are always noiseless with perfect
edges. Smear from platform movement however was incorporated as shown
in Table 6.2 and the edges were blurred accordingly. Post-processing was
necessary to incorporate noise and additional effects due to the optical
PSF. For the panchromatic images generated for the validation study, the
PSF was incorporated into the simulation. However, for the spectral image
analysis, each band was convolved with a model of the PSF. This allowed
modification of the PSF implementation to study its effects on utility in
future studies. Once the PSF was implemented, the bands were selected
using BOTS for each target. Once the bands were selected, three target
detection algorithms were used to generate ROC curves for each of the
simulation sets. The assessment process involved ensuring proper
incorporation of key real world effects that may affect utility and the use of
three target detection algorithms on the simulated spectral images.

6.4.1 Post-processing

To ensure we sufficiently captured the key real world effects that affected
detection performance, the images that were generated had to go through
post-processing. The first step in preparing the data for assessment was to
select the bands, not only because this was a critical component of the
envisioned operational process, but as a dimension reduction step for
computation. With the reduced amount of data, the computation time to
add noise, apply a point spread function, and finally to assess utility was
reduced. The same bands that were used for the prediction process were
also used for the assessment process. The second part of the
post-processing was to add noise. We added noise to the image to account
for the shot noise. Detector noise was not captured in order to develop a
process that could parameterize the SNR as it related to utility. However,
future studies can fold in the entire noise calculation process that can
determine the effects of any fixed noise on utility. Then final processing
step was PSF implementation.

6.4.2 Noise

Noise was added to the radiance images, in the form of shot noise as a
post-processing step of the simulated images. The amount of noise added
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produced variance in each data point to simulate images with average
SNRs of our selection. The noise was added by multiplying the simulated
image value at each pixel and band (f(i, j, k)sim) with a random number
that had a Gaussian distribution (gi, j, k) of zero mean and unit standard
deviation. This value was scaled by the SNR we wished to produce and
our first selection was SNR = 20 (Eq. 6.4).

n(i, j, k) = g(i, j, k) · f(i, j, k)sim/SNR (6.4)

Then we added the noise to the simulated image pixel value to produce the
noisy image (Eq. 6.5).

f(i, j, k)noisy = f(i, j, k)sim + n(i, j, k) (6.5)

The output units of the simulated data was in radiance ( W
m2sr

) in 32-bit
floating point format. We wanted to convert this into what we expected
from a small CubSsat.

To the radiance values, we first added a gain and bias. The gain
slowly increased from the shortest wavelengths to the center wavelength
(620nm), then decreased down to the highest wavelengths. This added
more gain to the wavelengths between 550-700nm, and less to the lowest
and highest wavelengths. There was some additional randomness added
between the 5-10% gain that changed from pixel to pixel and band to band.

This selection of gain values while arbitrary, was a simple method
to mimic quantization noise in real images. The bias added was a random
number centered at 2.5% with up to 0.1% fluctuation. We essentially
converted each band from radiance to digital counts by incorporating a
gain and bias to the 32-bit floating point value, then converted it to an
8-bit integer. Figure 6.7 shows example curves of the gain and bias that
was added to the simulated radiance data, then converted into digital
counts. This was done to test and develop a process that could potentially
allow calculating detection probabilities on board the CPU if the target
reflectance signature was forward modeled, converted to radiance, then to
digital counts. The entire process from start to finish may be outside the
scope of this project, however the addition of quantization noise to the
data gives us detection statistics that at least account for this phenomena
in addition to the shot noise.
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(a) Example curve of gain incorporated
into to simulated radiance images.

(b) Example curve of bias added to
simulated radiance images.

Figure 6.7: Gain and bias added to convert simulated radiance images into
digital counts.

6.4.3 Band Selection

Following the development and validation of BOTS, we used this method
to reduce dimensionality and generate the data needed to find Bopt for
each mission. For each target, we generated a trade curve at a specified
FPR for utility vs number of bands. The curve of possible Bopt values were
first predicted using FASSP then assessed using DIRSIG images. This
allowed us to analyze the trade space for the number of bands for various
mission scenarios. This also allowed us to find data points to reveal
potential relationships between GSD, target size, background, target type,
and the number of bands. For example, we found that the orange target
placed in a dark background such as the open ocean, could not only be
detected at low TAs, but could be detected using less than 5 bands.

The range for the number of bands we tested was from 2 to 30
bands. The number of bands beyond 30 was not analyzed because the
operational feasibility for a compact system’s processing architecture to
collect and ingest this amount of data seemed unlikely. We determined
that for the automated image exploitation architecture of the miniature
satellite imaging systems, our recommendation for a target that needed
more than 30 bands was unfeasible for compact imaging systems and
better handled by larger existing, hyperspectral systems.



CHAPTER 6. OVERALL PROJECT APPROACH 112

6.4.4 Point Spread Function

Once the bands were selected, and noise was added, we convolved the
image with a point spread function. We applied a blurring kernel to the
noisy image using a discrete Fourier transform that replicated the effects of
an airy disc from a circular aperture [74] [75]. The airy disc radius was set
to 0.5 · λ/λc for the 15m GSD images, 1.0 · λ/λc for the 10m GSD images,
and 1.5 · λ/λc for the 5m GSD images. Here λ is the center wavelength of
each band, and λc is the selected wavelength representing the overall sensor
spectral band range, which in order to coincide with our panchromatic
study was set to 500 nm [48]. This in effect simulated the optical
resolution effects that coincided with Q numbers of 0.5, 1.0 and 1.5 [6].

6.5 Spectral Utility Analysis

We selected two major components related to subpixel target detection
that could be analyzed for their relationship to spectral utility using the
simulated images - mean TA and scene complexity. In the simple scene
analysis we compared the predicted utility for a range of TA values to sets
of simulated images that had a range of median TAs. For the complex
scene there were two scene types - desert and suburban - and they were
both divided into subsets, each with different scene complexity. The
vehicle targets that were placed in the scene also generated different TA
distributions in these sets due to their size. In this section we describe how
different TA distributions were generated, how scene complexity was
quantified and how they were combined to produce a detectability metric.

6.5.1 Target Abundance

We examined a range of TAs for different types of targets for the open
ocean scene and the complex scene. In the open ocean scene, the target
size and GSD was kept constant in the analysis, so the range of TAs were
generated by changing the number of targets in the scene. This produced a
predictable increase in the TA values as the number of targets increased.
This was to isolate the TA distribution in the simulation for comparison to
the predicted utility values. Figure 6.8 shows the workflow of generating
images for a range of TAs to examine utility saturation points in the
simple scene analysis.
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Figure 6.8: Process for generating images with varying target abundance
within scene with orange lifeboat targets.

For the orange lifeboats in the open ocean scene, 15 simulation
sets sets were generated, each with an increasing number of lifeboat. With
each image being 25x25 pixels the first set had 1250 lifeboats in the scene -
an average of 2 lifeboats per pixel. This produced a median abundance of
1% TA. For each subsequent set, 625 lifeboats were added to the scene.
While the increase in the median abundance was not linear, overall the
first 10 sets generated a TA distribution in the range of 1-8%. Using the 15
sets of orange lifeboats placed in the open ocean scene, we generated a
trade curve for utility vs median TA.

For the complex scene, the TA was calculated for each set of
images, but the values were a result of the simulation design. The
distribution of TA was a combined result of the various target sizes, the
spatial location of the target within the image, and GSD. The mean TA
(TAmean) values were used to analyze the complex scene and the
distribution methodology of the targets generated a range of these values.
However, the distribution was deliberately designed to reflect real world
operations and so there was no direct correlation in the TAmean to any
simulation design parameters.

For the black lifeboats, because we needed a higher TA to study
utility, we placed a higher number of lifeboats in the scene. Furthermore,
in order to avoid contamination effects when computing the ROC curves
using the three target detection algorithms, we also generated images
without any lifeboats and combined these images with the target images.
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The target absent images and target present images were combined at a
ratio of 10:1 where a data set consisted of 10 negative images per positive
image or a total of 625,000 negative pixels with 65,000 positive pixels. The
goal was to generate a range of median TAs from 40-80%, and so 25,000
lifeboats were placed in the scene in the first set, and 6250 lifeboats were
added to the scene in each subsequent set.

Using the simulated images to examine TA, we used the simple
scene to compare the assessment results to the predicted utility. With the
complex scene, we used simulation to replicate the operational aspect of
subpixel target detection to generate images that would be collected in real
operations.

6.5.2 Scene Complexity

We examined scene complexity using the simulated images by using the
four background material spectra that was used in the prediction. The
spectra used for the background composition of the FASSP experiments
were used to attribute these material spectra into the texture maps of the
simulated scenes. For the open ocean scene there were no other
complications inherent in the the scene, and so this provided a congruent
simulated scene to the background composition of the prediction model.

For the complex scene, the material maps were associated with
the four background material spectra in a similar manner to the simple
scene, but the entire scene was also divided into 9 subsets in order to vary
the complexity contributions from other objects that were present in the
scene. Figure 6.9 shows a subset scene with a higher complexity value due
to a large number of other objects within the scene that contribute to the
background. This is a scene that could not be adequately characterized
using Γ. Figure 6.10 on the other hand, shows a subset scene with lower
complexity with only a small number of objects and materials that
contribute to the background. The background spectrum calculated from
this scene for target detection, would not deviate significantly from the
background complexity value (Γ) calculated using the four spectra that the
base image texture map was associated with.

In order to quantify the measure of scene complexity for the
simulated images, we used the scene volume that was calculated using
endmembers. This was a geometric approach to quantifying scene
complexity by representing spectral data as described in Section 5.2. In
this case, the endmembers of the spectral image formed the vertices of the
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Figure 6.9: High spatial resolution subset of DIRSIG rendering of Trona, CA
as suburban scene shown as example of scene with high degree of complexity.

Figure 6.10: High spatial resolution subset of DIRSIG rendering of Trona,
CA as suburban scene shown as example of scene with low degree of com-
plexity.
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space occupied by the data, and the volume of this space was calculated
[8]. The volume of the convex set was enclosed by the endmembers present
in a scene, which was calculated directly if this number is known. If the
number of endmembers present was not known, the volume of the scene
was calculated by finding the parallelotope using the Gram matrix of the
image between pixel i and j (Eq. 6.6).

Gi,j =< xi,xj > (6.6)

The Gram matrix was the same size as the spatial dimensions of the
image. The determinant of the Gram matrix was the square of the volume
of the paralleotope for k endmembers (Eq. 6.7).

Vk =
√
det(G) (6.7)

The volume was calculated for a range of endmembers from 3 to N , where
N was the maximum number of endmembers to calculate determined by
the user. After calculating the volume for several scenes using various
values of N , the highest endmembers found was 12. We set N to 15
endmembers in order to encompass the highest number of endmembers
found in all the subset scenes.

The maximum volume determined scene complexity for the input
images (Eq. 6.8).

Vscene = max(Vk|Nk=1) (6.8)

A scene with a larger volume consisted of a higher number of materials
and brighter materials and thus had higher complexity. What this method
accounted for is not only the complexity due to the number of materials
present but also the spectral signatures of the materials in a scene. Higher
volume was consistent with brighter materials that have higher spectral
reflectance values, while darker materials occupied less volume. Therefore,
like the background complexity value (Γ), the scene volume (Vscene) was
able to account for the brightness of the material’s spectral signature
which affects subpixel target detection. Furthermore, it was able to
account for the heterogeneity of a scene. A homogeneous scene that is
composed of a single material (even if it is bright) such as the vast desert,
would have a low Vscene value. On the other hand, if a scene was
heterogeneous such as a coastal scene, even if most of the materials present
in the scene were dark, the scene would have a higher Vscene value.
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6.5.3 Detectability

Another metric that was developed for this analysis is the detectability
value (ξ) that combines the TAmean value and the Vscene. A low TAmean
and high Vscene indicated a difficult detection scenario, and so these values
are inversely related. We determine the detectability of a target for each
simulation sets by relating these two values (Eq. 6.9).

ξset =
Tmean
Vscene

(6.9)

The ξ values found for each set was normalized for comparison (Eq. 6.10).

ξ =
ξset

max(ξset)
(6.10)

A high ξ value indicated an easy detection scenario, and a low ξ value
indicated a difficult detection scenario. In order to allow comparison, the ξ
values calculated for each set were normalized. For the scene types and
GSD, the calculated ξ were sorted and plotted against their assessed utility
value. This value was used to ingest the effects of the target type, size, and
location in the images generated by a system design to quantify
detectability. It provided a range utility values that pointed to a
combination of system design parameters for a given mission.

6.6 Target Detection

We implemented three different target detection algorithms for
performance comparison - Spectral Angle Mapper (SAM), Spectral
Matched Filter (SMF), and Adaptive Cosine Estimator (ACE). These
algorithms were selected for their wide use, and because they formed the
core of what many other target detection algorithms modified for their
purpose. They were implemented to calculate the ROC curves for subpixel
target detection [26]. SAM was selected as an example of a detection
method that used the angle between a target and its background (Eq.
6.11).

rSAM (x) = −cos−1

(
sTx√

(sT s)(xTx)

)
(6.11)
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This method used the spectral signature of a target (s) compared directly
to a pixel spectrum (x) to determine the probability of a target’s presence.
ACE was selected because it was often accepted as the ”state of the art”
for subpixel target detection, especially for subpixel target detection. It
also used the spectral angle between the target and background but
incorporated the inverse covariance (Σ−1) of the data to account for
inherent variability of the pixels (Eq. 6.12).

rACE(x) =
(sTΣ−1x)2

(sTΣ−1s)(xTΣ−1x)
(6.12)

SMF was selected for use because this was a method similar to the CEM.
SMF subtracted the mean spectrum of the image from a pixel prior to
comparing the target spectrum to the pixel, in order to determine the
likelihood of a target’s presence (Eq. 6.13).

rSMF (x) =
[sTΣ−1(x− µ)]2

sTΣ−1s
(6.13)

It assumed the target was an anomaly, and also incorporated the
covariance to account for inherent variations in a scene. The CEM
algorithm used in FASSP was similar to the SMF except that it did not
subtract the mean spectrum of the image (Eq. 6.14),

rCEM (x) =
sTΣ−1x

sTΣ−1s
(6.14)

which made it appropriate for an analytic model that used first and second
order statistics and did not have an image to calculate the mean spectrum
from. The SMF and CEM were equivalent calculations adapted for the two
types of data, to calculate the probability distributions of the target’s
presence.

The three algorithms were selected not only for their distinct
detection mechanisms, but also as a control measure in the utility analysis.
While the purpose of this project was not for algorithm comparison, using
at least three different algorithms to assess utility shifted the dependence
of the results on a single algorithm. Any anomalous result that were
attributed mostly to a single algorithm and its method of calculation,
could be reasonably discarded without further analysis. Algorithm
selection depending on the target and background combination was
another layer of complexity in assessing spectral image utility that in this
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project we limited to only these three. However, future studies can expand
on this dimension in the spectral image utility trade space.

6.7 Summary

Our overall approach to developing a process for optimizing a system
design for various missions was to predict utility using FASSP, design a
scene to simulate real world operational conditions, then assess utility from
images generated to provide a mission feasibility recommendation or
system design recommendations. We tested two different type of scenes - a
simple scene of a open ocean and a complex scene of Trona, CA. The
purpose of the simple scene was to compare and validate the congruence in
results between the prediction and assessment. Then we tested a complex
scene designed both as an industrial/desert scene and a suburban scene as
an example use of this process for a potential real world scenario.



”Intuition is really a sudden immersion of the soul into the
universal current of life.”

- Paulo Coelho The Alchemist, 1988

7
Process Description

In this chapter, we present how the process described in Chapter 6 was
used for a simple open ocean scene and a complex industrial/suburban
scene. We first present the operational context in which we envision this
process to be used and the motivation for selecting the target and
background spectra. Then we describe the process for comparing the
prediction and assessment steps. We then present the methodology of
analyzing the trade space for the example mission scenarios in a complex
real world scene to produce recommendations for the design of a spectral
imaging system.

Figure 7.1 shows the steps for predicting then assessing utility,
starting with the mission scenario as input. The prediction method
parameterized four components of spectral image utility to find saturation
points. Then the simulation was designed to generate spectral images from
a system design based on the predictions, but also replicating the
operational context of the mission. This allowed us to capture more real
world considerations that would have been challenging using the analytic
model. The we assessed the simulated images using three target detection
algorithms after adding noise and selecting bands to generate a utility vs
detectability (ξ) curve that was used to form the mission feasibility
recommendation and to develop a set of system design recommendations.

120
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Figure 7.1: Diagram of approach to analyze spectral image utility starting
with mission input.

7.1 Operational Context

When employing a compact spectral imaging system for subpixel target
detection, the first question we asked was - what is the target, and can we
find it? Given the limitations of compact systems, we needed to first
decide if what we were looking for was an appropriate target [4]. In order
to wholly analyze the utility trade space for the compact imaging systems,
we considered not just the design decisions for optimizing an imaging
system, but also the operations following the deployment of the system.
Figure 7.2 shows where the utility analysis fits within the overall process
from design to deployment of the systems. It shows the design phase starts
with a desired set of mission scenarios that are analyzed using the
prediction and assessment process that produce system design
recommendations for feasible missions. Once the imaging system is
deployed, is selected which bands to collect based on the tasking, which we
assumed was processed using automation and machine learning algorithms.
Once operational, the compact system could tip and cue other systems to
confirm or deny the presence of a target.

7.2 Targets and Backgrounds

We selected four targets - black, white, orange, and green. The spectral
reflectance data for these materials were obtained from ground
measurements using a spectrometer. The black target measured the
spectral reflectance of a black tire, and was an example of a difficult (if not
impossible) target to find. It served as our floor or worst case target. The
white target used measurements from a white boat, and it served as our
ceiling, or best case target where its spectral reflectance for most of the
VNIR spectrum was high. The green target used measurements from a
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Figure 7.2: Envisioned use of optimization process within the imaging sys-
tem design and operation.

green BMW, and was an example of a realistic, but difficult target to
detect. The orange target used measurements from a orange life-vest, and
was an example of an easy target. Figure 7.3 shows the mean spectral
reflectance curves of the four materials along with the standard deviations
of the spectra.

The initial background selected for the simple scene analysis was
an open ocean scene which was used as an example of the ideal background
to test target detectability. It was ideal because it was uniform, and could
reasonably be modeled using a single material reflectance curve. It was
also dark across the VNIR spectrum, and so any contribution to the sensor
reaching radiance would be from the target. In order to introduce realistic
variability, we used four different types of ocean spectra to produce a
background composite. Figure 7.4 shows the four mean spectral reflectance
curves along with their standard deviations to compose the open ocean
background. These were the four spectral reflectance curves that were
attributed to the material map as described in Section 6.3.2.

The targets that were tested with the ocean background was the
orange life-vest and black tire materials. The orange target was the easy
target example, and the black target was the difficult target example to
test for unexpected behavior in the spectral utility trade space. This
background and the two targets were used for the simple scene analysis to
compare the prediction and assessment methods. The open ocean scene
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Figure 7.3: Target reflectance curves used for FASSP analysis and DIRSIG
objects placed in scene. Also used to select bands.

Figure 7.4: Background reflectance curves used to compose ocean back-
ground used for FASSP and DIRSIG scenes.
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Figure 7.5: Background reflectance curves used to compose grass back-
ground used for FASSP and DIRSIG scenes.

was also an example of a real world scene that was homogeneous, and so
could be characterized by the background complexity value Γ, described in
Section 6.5.2 (Eq. 6.3).

The two background types selected for the complex scene analysis
were sand and grass composites. They were selected for their prevalence in
target detection missions, and because existing spectral reflectance files
with sufficient variation data were available for use with both FASSP and
DIRSIG. For the grass background, the measurements were taken from
several areas, and the variations were attributed to their species or other
environmental factors. Figure 7.5 shows the four curves that were used for
the grass background composite in the prediction and also used in the
simulation for the suburban scene. The four curves were attributed to the
texture map as described in Section 6.3.2. For the sand background and
the primary materials selected for the composite used in the prediction and
the simulated desert/industrial scene were light brown soil, brown soil,
gravel, and ocean sand. Figure 7.6 shows the four curves used to compose
the sand background.

The two difficult and two easy targets were selected for their
spectral contrast against two background materials we selected for the
complex scene analysis. The orange and green targets were less spectrally
distinct from the grass background, and the white and black target were
less distinct from the sand background. Therefore we had both an easy
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Figure 7.6: Background reflectance curves used to compose sand background
used for FASSP and DIRSIG scenes.

and difficult target with relatively high and low spectral contrast to the
two backgrounds. The SSV values were relative to the type of target, since
the easy targets had higher SSV overall, since their reflectance magnitude
was higher compared to the difficult targets.

7.3 Band Selection

We used the BOTS method to select the bands for each of the targets in
our analysis [66]. In Chapter 5, the optimal coefficient for the green target,
which was an example of a difficult target, was found to be a = 0.2. For
the yellow target, which was an example of an easy target, the optimal
coefficient was a = 0.8. Therefore, these were the coefficients that were
used for the targets based on their detection difficulty. Figure 7.7 shows
the normalized z values calculated. The bands that corresponded with the
highest 30 z values for each target were used in the analysis. Details on the
selection of coefficients and the list of best bands for all the target
materials are in Appendix A.

For the prediction, the top 30 bands for each target was analyzed
to generate the utility vs number of bands curve. This produced data that
calculated Bopt values in the design phase for a range of utility values up to
30 bands. In the assessment phase that replicated the operational phase,
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Figure 7.7: Normalized z values of band selection methods for the bands
between 400-1000 nm. The highest z values are selected.

this data was used to select Bopt for the required utility that could provide
a feasibility recommendation based on resource constraints. The details
with potential decision points for required utility values are in Appendix
B. Therefore Bopt was a metric that could be calculated in the design
phase that would be used in the operational phase to drive feasibility
decision driven by the utility requirements and computational resource
constraints. For the assessment, any saturation points that were found in
the number of bands were used, otherwise the maximum 30 bands were
used. This reduced the computational requirements of our assessment.

7.4 Comparison: Simple Scene

The simple scene with the open ocean background was used for the
comparison study because it was a scene in which the prediction and
assessment were inherently congruent. The expectation was that there
would not be any statistically significant differences between the utility of
the prediction and the assessment due to real world characteristics of the
scene. Any significant difference would indicate a need to modify the
modeled parameters and simulation techniques. The comparison between
the results from FASSP and DIRSIG served as a step to further validate
the combined use of the two models for utility analysis along with the
validation that resulted from the band selection method analysis described



CHAPTER 7. PROCESS DESCRIPTION 127

Table 7.1: Table of parameters used for FASSP model and DIRSIG simula-
tion.

Paramters FASSP DIRSIG

Target Abundance 0.1-20% 0-16%

Algorithm CEM SMF

Background 4 ocean spectra 4 ocean spectra

Band Range ≈ 400-850nm 400-850nm

Number of Bands 45 45

Bandwidth ≈ 10 nm 10 nm

SNR ≤ 20 ≈ 20

in Chapter 5.

We started with the orange target, and using FASSP, the trade
curve for various TA values was generated to find a saturation point. This
result was compared to various sets of DIRSIG simulations that produced
a range of TAmean values. Table 7.1 shows the parameters used in both
the FASSP and DIRSIG models for this comparison step. The SMF
algorithm was used to generate ROC curves using the DIRSIG images that
could be compared to the results from the CEM algorithm that was used
in FASSP to calculate the detection statistics.

7.4.1 Prediction

The background was composed of different percentages of the four types of
water spectra shown in Figure 7.4 to introduce variations similar to what
would be observed in a real ocean scene. The sensor model we used as part
of the prediction was for the HYDICE sensor which collects 210 bands in
the range of 350-2500nm [61]. The DIRSIG simulation generated 45 bands
at 10nm increments from 400-850nm. To match this, we used bands 4-94
which had approximate wavelengths between 400-850nm, and set the
grouping function to 2 so these 90 bands were grouped into sets of 2, and
analyzed as though they were 45 bands.

For the initial simple scene analysis, we used a single spectral
reflectance curve to characterize the background. The Ocean Type 1
spectrum shown in Figure 7.4 was used for this purpose to test the best
case scenario where background complexity was close to 0. Then the four
types of ocean spectra were used to introduce some variations in the
background complexity that would be analogous to the simulated images.
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Table 7.2: Percentages of the four spectra used to compose background to
introduce realistic complexity in ocean scene analysis.

Ocean Spectrum Type Percentage Composition

Ocean with Whitecaps 10%

Ocean Type 1 60%

Ocean Type 2 20%

Urban Water 10%

Total 100%

Table 7.2 shows the background composition that was used to analyze the
detection statistics to introduce realistic background complexity. This
composition was used to introduce effects of whitecaps and spectral
variations from other inherent real world complexities that affect detection
performance.

7.4.2 Assessment

For the DIRSIG simulations, we generated a scene with a mixture of the
four ocean spectra with orange lifeboats placed randomly within the scene.
We used the simulation techniques described in [48] to produce spectral
images where each band had a narrow spectral response function, and was
generated separately each with its own PSF incorporated that was related
to its center wavelength. The individual bands were combined to produce
the final spectral image which consisted of 45 bands with 10nm spectral
resolution with band wavelengths between 400-850nm.

Figure 7.8 shows a high spatial resolution image rendered at 0.3m
GSD of the open ocean scene shown with bands R(580nm), G(550nm) and
B(450nm). The large lifeboat placed in the corner produced a pure target
pixel that was used in the target detection algorithms. Only one was
generatd for each set to avoid contamination of the data. The images used
to assess subpixel target detection performance were generated at 30m
GSD to produce a range of target fill fractions. We generated 15 sets of
simulations where an increasing number of lifeboats were placed in each
set. Each set had 100 images that consisted of 625 pixels with a
distribution of TAs that had increasing median values as the number of
lifeboats placed in the scene increased.
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Figure 7.8: High spatial resolution image of open ocean scene rendered at
0.3m GSD using DIRSIG for visualization. Shown using bands R(580nm),
G(550nm) and B(450nm).

This method of increasing the number of targets placed in the
scene to increase TA was used to generate a relationship between TA and
utility independent from GSD or target size. The GSD would have an
effect on the PSF, and the target size would generate a distribution of TAs
based on its relative spatial location to the pixel pitch. To mitigate these
complications, the GSD and lifeboats sizes were kept constant. A single
lifeboat was 2.0m x 1.5m which at 3.0m2 produced a TA of 0.5% per boat
when rendered at 24m GSD. The median abundances were used to
compare the assessed detection performance from the simulated images, to
the range of TAs used to calculate the FASSP predictions.

7.5 Testing: Complex Scene

For the complex scene analysis, we use an existing DIRSIG scene of Trona,
CA that was rendered both as the original desert/industrial scene and
modified to be a suburban scene. The texture maps in the two variations
of the Trona, CA scene were associated with the background spectra
described in Section 7.2. Figure 7.9 shows the sets of target and
background combinations that were analyzed for the prediction using
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FASSP then the assessment using synthetic images of the two versions of
Trona, CA. The background compositions we analyzed were the grass
which was analogous to the suburban scene and sand which was analogous
to the desert scene.

Figure 7.9: Target and background combinations tested for the prediction
and assessment of utility.

The parameters we analyzed in the prediction process was TA,
number of bands, noise, and background complexity. This was used to
determine the GSDs for the simulation based on the size of the targets.
Then the number of bands and noise predictions were used in the
post-processing step to assess the predicted parameters. The background
complexity analysis used to predict the mission feasibility recommendation
that was verified by the assessment. The purpose of the complex scene
analysis was to find changes between the prediction and assessment due to
complexities introduced by real world operations. Using the simulation, we
not only wanted to replicated images captured for moving targets, but also
in a heterogeneous scene that could not characterized by a few spectra.
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Table 7.3: Initial composition of the sand background.

Background Spectrum Percentage Composition

Ocean Sand 10%

Dirt Road 60%

Light Dirt Road 20%

Gravel 10%

Total 100%

Table 7.4: Initial composition of the grass background.

Background Spectrum Percentage Composition

Grass 1 10%

Grass 2 20%

Vegetation 1 40%

Shrubbery 30%

Total 100%

7.5.1 Prediction

Two backgrounds and four targets were used to predict utility for the
complex scene. The input value for each subsequent parameter that was
analyzed was the saturation points of the previous one. The initial set up
for the prediction was with a noise parameter that produced a maximum
SNR of 20, using all the bands in the VNIR spectrum, and background
composites shown in Tables 7.3 and 7.4. The SNR maximum for each band
was achieved by setting the relative calibration error value to 5%, and each
band had varying SNR predictions based on the calculated radiance
resulting from the target fill fraction and the background. The
compositions of the two background types produced complexity values of Γ
= 0.17 for the sand composite, and Γ = 0.075 for the grass composite. The
set we reference as all the bands were those of the HYDICE sensor that
were within the VNIR spectrum as described in Chapter 5. The first
parameter that was analyzed was TA using this initial setup.

The saturation points for the TA was used as the input to
analyze the number of bands. Each target and background combination
was evaluated at its TA saturation point for the number of bands. The
trade curves for each scenario was generated for the top 2, 5, 10, 15, 20,
25, and 30 bands that were selected for each target using BOTS. If an
input scenario did not reach a saturation point, which we expected for the
black target and possibly even the green target, we used the maximum TA
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of 100% as the input value for analyzing the number of bands. We
analyzed the effects of reducing the number of bands, and looked for
possible saturation points reached with less than 30 bands. If a saturation
point was found, this value was used to analyze the effects of noise. If a
saturation point was not found with 30 bands, noise was analyzed using all
the bands for the input scenarios. The noise effects were analyzed for a
range of calibration errors that produced a maximum SNR of 5, 10, 20, 30,
40, and 50.

The background was analyzed at the critical points found for TA,
number of bands, and noise. To do this, a range of background complexity
values (Eq. 6.3) were generated by changing the composition of the four
curves that were used for each background type. The percentages of each
reflectance curve that were shown in tables 7.3 and 7.4, were changed to
find different Γ values. This was done by setting the TA to 0, then taking
the inverse of the signal to clutter ratio calculated by FASSP for each
background composition. If the desired Γ value for this composition was
found, then the TA and number of bands were set and tested for each
input scenario at the critical points for the three parameters previously
evaluated to produce a utility value.

The utility was analyzed for TA, number of bands, noise, and
background complexity, to predict the points of interest in the trade space.
The purpose of the prediction step was to determine the simulation
parameter and form the initial mission feasibility recommendations. Each
step in the prediction process was associated with some level of error. The
TA saturation point changed depending on the initial background
composition that was selected as well as the noise. The errors associated
with the TA saturation point, then changed the trade curves for the
number of bands. However, each subsequent step also served as feedback
for each of the previous steps, thus making a traditional error propagation
analysis challenging. Perhaps in the future, different initial values can be
used for the prediction process to evaluate the error in the saturation
points that lead to the final recommendations.

7.5.2 Assessment

To verify the predictions, the DIRSIG scene of Trona, CA was rendered
both as a desert and suburban scene mostly composed of the four sand and
grass spectral reflectance curves used for the FASSP analysis. This was an
existing scene that was routinely used for studies with spectral images [73].
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Table 7.5: Parameters selected for the optical system simulation.

Imaging System Parameters Notes

Aperture Diameter 44.5mm F/4.4 - F/13.1

Effective Focal Length 9.6 - 28.9mm 5-15m GSD

Spectral Bandwidth 400-1000nm

Spectral Resolution 5nm Filter Response Function

Pixel Pitch 4.5 µm Square detectors

Integration Time 0.6 ms Smear at (45◦)

Sensor Altitude 350 km

Look Angle Nadir

Illumination Angle Solar Zenith

Platform Velocity 7000 m/s

Several vehicles of varying sizes were placed in the scene to produce the
TA saturation points found for each mission scenario. These scenes were
generated at three different spatial resolutions of 5m, 10m, and 15m GSD
by changing the focal length. The simulations generated HSI, so all the
bands that were needed for the targets were available.

Table 7.5 shows the simulation parameters that were used to
generate the HSI. These deliberately replicated the panchromatic image
simulation parameters described in Chapter 4 to ensure we captured key
real world phenomena at least in the spatial domain [48]. The simulation
techniques that were used for the panchromatic images were extended into
the spectral domain by generating many bands using the same techniques,
but with narrow spectral response functions centered at selected
wavelengths. The HSI consisted of bandwidths that were similar to what
would be collected by an adaptive spectral imaging system, but with
center wavelengths that matched the HYDICE sensor.

The entirety of the existing scene was divided in to 9 subsets.
Figure 7.10 shows an image of the existing scene rendered as a suburb, and
the subsets it was divided into. The high spatial resolution image of the
Trona, CA scene shown in 7.10 is 1m GSD, with a size of 4000x4000 pixels.
At 5m GSD, to produce a single image that captured the entire scene or
most of it would be 800x800 pixels. The computation time required to
generate a single spectral image of this size was impractical. So the
simulation was setup to generate a subset of the entire scene where a single
image at 5m GSD was 300x300 pixels in size, covering a portion of the
scene. Each subset scene was not only more computationally feasible to
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generate, but had different scene complexities that were used as part of the
analysis.

Figure 7.10: DIRSIG generated Trona, CA scene divided into 9 subset
scenes.

Four types of vehicles were placed within the road network of the
scene using Simulation of Urban Mobility (SUMO) [76] [77]. The SUMO
model generated movement files with the locations of objects at different
time increments similar to how vehicles would move in traffic. The sensor
was modeled with a capture rate of 1Hz so there was one image per second
of the scene with the location of the vehicles dictated by the movement
files. Each image generated at a single time of capture that was different
from an image at a different time, and when set to collect for 20 seconds,
generated 20 different time correlated images [78] [79]. This allowed a
single simulation run to generate 20 different images of a single subset
scene with changing locations of the target. However, this setup did not
incorporate platform movement as the mechanism for the changing images
since this would require 20 images of different locations on earth, and we
wished to keep the 9 subset scenes constant. What this replicated was 20



CHAPTER 7. PROCESS DESCRIPTION 135

(a) High spatial resolution image of
panels and vehicles attributed with
each target material type.

(b) Truth map of the image with array
of vehicles for 3 out of the 4 targets
generated with each image.

Figure 7.11: Panels and demonstration array of vehicles associated with
each target material type.

different satellites taking an image with identical collection geometry of
the same scene at 1 second intervals. It would be an impossible scenario to
achieve in real life, but it was necessary to analyze the relationship
between the imaging system parameters that produced the TAmean
distribution with a tractable scene complexity analysis.

Figures 7.11 shows a high spatial resolution image to demonstrate
the material attribution and vehicle types that were used in the
simulation. Figure 7.11a shows four calibration panels attributed with the
four target materials, along with the four vehicle types attributed with
them as well. Figure 7.11b shows the truth map of this image with the
white material shown in blue, green material shown in green, and orange
material shown in red.

The 18-wheeler was selected as a vehicle that was large enough to
generate a full target pixel at 5m GSD. In a similar manner, the dump
truck could produce up to a 85% target fill fraction, and the SUV and
sedan up to 45%. The targets’ ground location with respect to the
detector’s pixel pitch could spectrally split a target between several pixels.
Therefore, the vehicles would not always produce the maximum TA, since
the sensor was not ”tracking” the vehicles. However, we expected this
simulation technique to generate sufficient number pixels with these TA
values to analyze detection performance of the green and black materials.
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Table 7.6: Different vehicle types used in simulation, their dimensions and
maximum target abundance possible when rendered at 5m GSD.

Vehicle Type Size Max TA (5m GSD)

Semi 4.5m x 20m 100%

Dump Truck 3.5m x 9.5m 100%

SUV 2.2m x 6.5m 85%

Sedan 1.7m X 4.5 45%

With this simulation setup, the different vehicle types could generate a
range of TAs that changed due to spatial resolution and target size. This
accounted for an operational component of subpixel target detection where
target fill fraction was simultaneously characterized by semi-random
components consisting of the ground location of the target relative to the
sensor, spatial resolution, and target size. Table 7.6 summarizes the vehicle
sizes and the maximum target fill fractions each type could potentially
generate for images rendered at 5m GSD.

Figure 7.12 shows high spatial resolution images of a residential
location in the Trona, CA scene to demonstrate vehicle placement using
SUMO. Figure 7.12a shows the scene rendered as a desert scene, and
Figure 7.12b shows the identical location rendered as a suburb. Figure
7.12b is displayed as a false color composite with the infrared wavelength
displayed as red to emphasize the attribution of the composite grass
spectral reflectance curves to the background. Using using SUMO to place
the vehicles in the scene, where the movement files were selected at
random, there was variation in the number of targets present in each
image. There were 9 white and orange vehicles, and 15 green and black
vehicles placed in the entire scene. For a subset scene, there was potential
for none or several of a target to be present. However, on average, 1 white
and orange vehicle and 1.7 green and black vehicles were expected per
image. The additional green and black vehicles were added to increase the
chance of obtaining higher target fill fractions since the TA saturation
points for these materials were higher.

The spectral images of the two scene types were separated into 9
subsets, where the vehicles and movement file combinations were selected
using a different random generator seed for each set. Each set generated 20
different time correlated images of the vehicles moving across a scene (or
standing still) at various speeds. Table 7.7 shows a summary of the sets in
the complex scene analysis. Once the images were generated, they were
processed to add noise, apply a point spread function, and select bands as
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(a) High spatial resolution subset
scene rendered as desert/industrial
scene.

(b) High spatial resolution subset scene
rendered as suburb shown in false color
composite.

(c) Truth map of the high spatial resolution scenes showing
three of the vehicle material types within scenes.

Figure 7.12: Subset scenes along with truth map to demonstrate vehicle
placement using SUMO.
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Table 7.7: Summary of Simulation Sets

Number of Sets Description

GSD 3 5m, 10m, 15m

Background 2 Desert and Suburban

Subset Scenes 9 1.5x1.5km areas

Total 54 6 Utility vs ξ Curves

described in Section 6.4. The post-processed images were then used with
the three target detection algorithms described in 6.6 to generate ROC
curves and compute utility. The TAmean and Vscene values were computed
for each set to produce a range of ξ values that were plotted against the
utility values. Therefore each scene type and GSD produced a total of six
renderings to generate six separate utility vs. ξ curves.

7.6 Summary

We divided the analysis for comprehensive system design into two scene
types - simple and complex. The simple scene analysis using the open
ocean scene was a validation step to ensure the prediction and assessment
processes were congruent. This validation was a complementary step to
the band selection method validation where we compared the prediction
and assessment results to real image subpixel target detection. The
complex scene analysis was the proof of concept for this type of system
analysis where the assessment was not a validation step for the prediction
but to expand the system analysis from the parameter requirements of the
design to the operational feasibility determination. We formed a practical,
cost-effective process to reach recommendations for the design and
operation of compact spectral imaging systems with adaptive band
selection capabilities.



”And once the storm is over, you won’t remember how you
made it through, how you managed to survive. You won’t
even be sure, whether the storm is really over. But one thing
is certain. When you come out of the storm, you won’t be
the same person who walked in. That’s what this storm’s all
about.”

- Haruki Murakami

8
Results

In this chapter, we present the results with a set of recommendations for a
mission scenario such as the one set in Ft Knox, KY using the process that
was described in Section 1.6. Given the many dimensions of the trade
space, these results serve as examples and a few data points that indicate
relationships between the variables in the exploitation of spectral images.
However, even with the small set of target and background combinations,
we were able to make some observations about spectral image utility and
the figures of merit. The first set of results were from analyzing the simple
scene to compare the prediction to the assessment, followed by the
complex scene analysis results. Then example recommendations are
presented following the results of the simple and complex scenes.

8.1 Open Ocean Scene Analysis

The open ocean scene was used as the background for the orange and
black targets to compare the predictions from the assessment results. The
orange and black targets were used to generate trade curves using FASSP,
and placed in the ocean scene as lifeboats to generate DIRSIG images.
The predicted utility was compared to the assessment from the SMF target
detection algorithm using the simulated images.

139
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Figure 8.1: Utility trade curve for orange target using only the Ocean Type
1 reflectance file to characterize the background.

8.1.1 Orange Target

The first scenario that we analyzed was the orange lifeboats in the open
ocean scene. We generated trade curves using FASSP, first for a uniform
background to get the best case scenario. This was done by characterizing
the background with a single material reflectance curve. Figure 8.1 shows
the TA trade curve for the orange target using only the Ocean Type 1
reflectance. Utility was calculated for FPR = 0.01 and the figure shows the
curve for the TA range of 0-3%. Perfect detection was achieved at 0.5%
abundance.

The uniform background had the minimum Γ value possible, and
demonstrated the best case scenario, but was highly unrealistic. In order
to increase Γ, the background was characterized using four curves as
described in Section 7.2. Figure 8.2 shows the trade curve when Γ was
increased by using more materials to characterize the background. The
utility was calculated for FPR = 0.01 and for a TA range of 0-25% with
perfect detection achieved at 9%.

DIRSIG images were generated as described in Section 7.4.2
where the sets of simulations had a range of TAmean values. The images
went through the post-processing steps as described in 6.4, and the ROC
curves for these sets were calculated and analyzed. A total of 15 sets were
generated, but 6 sets that had the TA value that matched the FASSP TA
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Figure 8.2: Utility trade curve for orange target using using a combination
of four spectra to characterize the background.

values were selected. Figure 8.3 shows the ROC curves for the 6 sets
selected. The peak TA was found with the set that had TAmean = 9.3%,
and the sets with higher TAmean values all had perfect detection. Separate
ROC curves were generated by randomly splitting the positive and
negative pixel in each set into 6 folds. The average ROC curve of the folds
were used to calculate utility.

The ROC curves generated using the DIRSIG images show that
at each comparable TA percentage, the detection results are congruent to
the FASSP predictions. Figure 8.4 shows the trade curve from the
assessment of the DIRSIG image sets. It shows a similar saturation point
to the FASSP trade curve shown in Figure 8.2. With the DIRSIG images,
perfect detection was never achieved, and there were slight differences
between the target detection algorithms, unlike the FASSP results.
However, we determined the results from both the prediction and
assessment were congruent.

These results indicated the challenges posed in assessing utility
compared to predicting it, but the comparison of the two methods
highlighted the potential for their combined use. The analytic model was
able to efficiently parameterize key elements of spectral image utility to
find saturation points. Then by simulating an imaging system design based
on the predictions, real world operational considerations was accounted for
to validate or modify the predicted parameters to optimize system design.
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Figure 8.3: ROC curves for the orange target in open ocean scene from six
sets with range of TAmean values.
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Figure 8.4: Trade curve for the orange target assessed using DIRSIG images
for open ocean scene.

This comparison was replicated for the black target to test the limits of this
process and analyze the trade space behavior for targets that should not be
candidates for subpixel detection using compact spectral imaging systems.

8.1.2 Black Target

The black target was analyzed using the same process as the orange target
using FASSP. Figure 8.5 shows the trade curve for the black target using
one background spectrum. Utility for the black target was calculated at
FPR = 0.01 for the range of 0-25% TA. Perfect detection was achieved at
18% TA.

Figure 8.6 shows the trade curve for the black target using the
four ocean spectra with the same composition that was used for the orange
target. The utility for a TA range of 0-95% was calculated at FPR = 0.01.
Perfect detection was never achieved, and so no saturation point was
observed. This indicated that even with full target pixels, the detection
performance was likely to be poor.

Simulated images were generated with black lifeboats in a similar
manner to the orange lifeboats, but with a higher number of lifeboats
placed in the scene to increase the range of target fill fractions. Figure 8.7
shows a histogram of the target fill fractions of the first few sets that were
generated with the black lifeboats. With the high number of lifeboats that
were placed in the scene, there was a wider distribution of target fill
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Figure 8.5: Trade curve for the black target using only Ocean Type 1 spec-
trum to characterize the background.

Figure 8.6: Trade curve for the black target using a combination of four
ocean spectra to characterize the background.
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Figure 8.7: Histogram of the spectral images of the ocean for the sets with
the lowest number of black lifeboats placed in the scene. Median TA for this
set was 30%, with maximum TA of 50%.

fractions, without a gradual change in the means as we had with the
orange lifeboat, making analysis challenging. When the number of
lifeboats placed in the scene increased, the distribution widened, as
opposed to a shifting mean.

The distribution of the set with the lowest number of black
lifeboats placed in the scene produced a median TA of 30% with a
maximum target fill fraction of 50%. Figure 8.8 shows the ROC curve that
was generated for this set. It shows limited detection with an AUC value
close to chance, and utility value close to 0. This was an expected result
for this type of target for the TA values that were generated.

Figure 8.9 shows the histogram of the sets with the highest
number of lifeboats placed in the scene. There were a higher number of
pixel with TA values above 60% for this set, but the TAmean value
remained at 40%. As a result, a range of TAmean values could not be
produced for the black lifeboats as was done for the orange lifeboats.
Therefore the data for the black lifeboats were divided into 20 folds to
separate the data with high target fill fractions from those with the low fill
fractions as much as possible. This generated many ROC curves from a
single data set so ROC curves from folds with higher target fill fractions
could be differentiated from sets with lower fill fractions.

Figure 8.10 shows the ROC curves generated from these sets of
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Figure 8.8: ROC curve generated for set of DIRSIG images with TA = 40%
in open ocean scene. Limited detection with AUC = 0.6, consistent with
FASSP results for targets with less than 40% TA.

Figure 8.9: Histogram of the spectral images of the ocean for the sets with
the highest number of black lifeboats placed in the scene. Median TA was
40%, with maximum TA of 80%.
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Figure 8.10: ROC curve generated for set of DIRSIG images with TA = 80%
for open ocean scene. ROC curves of folds containing positive pixels with
low TA have ROC curves with low AUCs. ROC curve of folds containing
positive pixels with high TA values have ROC curves with high AUCs.

images with the highest number of lifeboats placed in the scene. While a
similar comparison between the predicted results to the assessment could
not be made with the black target as was done with the orange target, we
can ascertain the congruence between the prediction and assessment. The
ROC curves of the different folds indicate utility behavior congruent to the
FASSP results where the folds either produce utility ≈ 0.1, or utility ≈ 0.8
as Figure 8.6 shows. There is a jump in the trade curve generated using
FASSP, from TA = 40-60% where the utility changes from 0.1 to 0.8. This
is consistent with the ROC curves generated using the DIRSIG images
where the folds either produce ROC curves with low utility or high utility,
with few in-between.

8.1.3 Summary

The comparison between the prediction and assessment of targets placed
in a simple open ocean scene indicated that the two models produced
congruent results for both an easily detectable target and a difficult target.
This comparison also demonstrated the strengths of each model and
suggested their appropriate use for this research. This step for comparing
the simple scene using FASSP and DIRSIG was used in conjunction with
the band selection method validation process to ensure the simulation
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Table 8.1: Spectral Similarity Values

Background/Target White Orange Black Green

Sand 0.28 0.46 0.07 0.21

Grass 0.42 0.39 0.25 0.14

parameters and modeling techniques we selected were able to capture the
real world phenomena needed for our research.

8.2 Complex Scene Analysis

Simulated images of Trona, CA was used to analyze a scene that contained
objects with 3-D geometry and various material spectra. In order to
predict the utility for such a scene, the TA, number of bands, noise, and
background complexity were analyzed to find saturation points. The SSVs
were calculated for the 8 detection scenarios to quantify separability of the
targets to the two backgrounds.

An average of the four background curves for the sand and grass
composite spectra, along with the target curves were used to calculate the
SSVs of the different scenarios. Table 8.1 shows the SSVs of each target
and background combination. Since the SSV accounts for the magnitude
difference between two curves, the SSV for the green and black had lower
values overall as their reflectance magnitude was lower. Relatively, however
the white and black targets had lower SSVs against the sand background,
and the orange and green targets against the grass background.

The SSV that would correspond to the example mission scenario
that was presented in Section 1.6, was for the green target which for the
purpose of this research will say is the spectrum for the green HMMWVs
targets. Since the training area in Ft Knox, KY consists mostly of
vegetation, we can say that it corresponds to the grass background. For
our example mission, the SSV was 0.14.
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Table 8.2: Target Abundance Saturation Points

Background/Target White Orange Black Green

Sand 26% 18% 100% 58%

Grass 6% 11% 45% 16%

8.3 Prediction

The primary advantage of the FASSP model was that it parameterized
components of the image chain that affect utility for subpixel target
detection. The TA was first analyzed to find a saturation point, which was
used as the input parameter for the number of bands. The SNR and
background complexity were analyzed in a similar manner fixing each
subsequent parameter at the saturation points. The results from the
prediction was then used to select the system design parameters for the
simulation.

8.3.1 Target Abundance

To analyze the TA, utility was calculated using all the bands in the VNIR
spectrum of the HYDICE sensor. The 8 target and background
combinations were analyzed initially for the TA range from 0-100% in 15%
increments. The range was narrowed down to finer increments between the
points where utility first reached perfect detection. For example, for the
orange target, the perfect detection was initially found at 30% TA, and so
the range was narrowed to 15-30% at 1% increments and reanalyzed. If a
utility value at FPR = 0.001 was higher than 0.98, it was determined to be
a saturation point.

Figures 8.11 and 8.12 show the trade curves for the TA. The
brighter targets reached a saturation point at relatively low target fill
fractions, but the darker targets also reached saturation points. The only
exception was the black target against the sand background which did not
reach utility above 0.4. Table 8.2 shows the TA saturation points that was
used as the input value in analyzing the number of bands.

The TA saturation point for the example mission was 16%, which
corresponds to the green target in grass background. Given this
information, if the green vehicle size was 2m x 2m, then the required GSD
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Figure 8.11: Utility vs Target Abundance for grass background.

Figure 8.12: Utility vs Target Abundance for sand background.
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Figure 8.13: Utility vs Number of Bands for grass background.

would be less than 25m to produce a target size to GSD ratio of at least
16%.

8.3.2 Number of Bands

For the number of bands, the saturation point was determined as the
number when utility error margin (ε) was above 0.1 or achieved a utility of
0.88 or higher for FPR = 0.001. Utility was calculated for a range of 2-30
bands at 5 band increments. Figures 8.13 and 8.14 show the performance
curves for the grass and sand backgrounds for the number of bands.

For the white and orange targets, there was a saturation point
below 30 bands, but for the black and green targets there was no point
where the utility reached 0.88 even with 30 bands. Table 8.3 shows the
saturation points for the number of bands, and the input value for the
number of bands used in the noise analysis. With the green target against
the grass background, there was a saturation point found when all the
bands were used, but with less bands, the utility at FPR = 0.001 remained
below 0.2 even with 30 bands. The utility for the black target against the
grass background increased up to 0.82 with 30 bands.

A similar results is seen for the black target against the sand
background, where the utility value was 0.1 for 30 bands. For the green
target against the sand background, utility reached 0.92 with 30 bands.
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Figure 8.14: Utility vs Number of Bands for sand background.

Table 8.3: Number of Bands Saturation Points

Background/Target White Orange Black Green

Sand 10 15 30 30

Grass 20 25 30 30
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Figure 8.15: Utility vs SNR for grass background.

The SSV of the target and background combinations served as a possible
explanation for these results. For our example mission, this showed that
we need more than 30 bands. However, since the presence of the vehicles
can be easily verified, we determined that the required utility was low. For
the purpose of this dissertation, we set the minimum utility at 0.1. What
this curve showed, was that utility above 0.1 was achieved using 15 bands,
which was also the maximum number of bands that was set for the
example mission.

8.3.3 Noise

The utility results for a range of noise levels that produced maximum
values of SNR = 5, 10, 20, 30, 40, 50 were analyzed. The range of SNR
values for the green and black targets were analyzed using 30 bands as well
as all the bands. Figures 8.15 and 8.16 show the performance curves for
the range of SNR values. Increasing the SNR had varying effects on
performance for each mission scenario. In general, there was no distinct
saturation point for any experiment set. However, for most of the targets,
there was a slight turning point in utility at SNR = 20, and no discernible
increase in utility for a higher SNRs in any of the scenarios. Therefore the
SNR of 20 was set as the input value for analyzing background complexity
using FASSP.
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Figure 8.16: Utility vs SNR for sand background.

8.3.4 Background Complexity

The effects of background complexity was analyzed by changing the
composition of the spectral reflectance curves used as described in Section
7.5.1. Figures 8.18 and 8.17 show the utility values predicted for a range of
Γ values. There was a clear trend in which utility decreased as Γ increased
for all the target and background combinations. An increase in background
complexity had a greater effect on the darker targets than the brighter
targets, especially for the grass background.

The utility value for the green target in grass background mostly
remained above 0.1, even for the highest Γ values. This meant that the
feasibility recommendation based on the prediction for the example
mission was feasible even if the complexity value was high. However, the Γ
value assumes a homogeneous background. The area of Ft Knox, KY while
mostly vegetation, also had an adjoining urban area. Therefore it was a
heterogeneous scene where the background composition would change from
pixel to pixel, something that was not captured by the prediction.

Overall the relationship between the 8 scenario based on
background complexity indicated the chaotic nature of this analysis. The
initial setup and input would change the final results, and so any a priori
information in real operations is key. However instead of having specific
quantified information, this analysis allows for estimations. This
information could be used to redesign the initial setup of the analysis, and
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Figure 8.17: Utility vs Γ for sand background.

Figure 8.18: Utility vs Γ for grass background.
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sensitivity of the final recommendations to the initial values of the design
parameters is a potential study for the future.

8.3.5 Prediction Summary

The predictions indicated system parameter requirements for a GSD of
15m for the white and orange targets, and a GSD of 5m for the green and
black targets based on the sizes of the target we selected for the simulation.
This was determined by a combination of the TA saturation points and the
expected background complexity of the Trona, CA scene. Therefore a
spectral imaging systems that would produce images with GSDs of 5m,
10m and 15m were simulated for the assessment. In the post-processing
step, the bands were selected according to the number of band saturation
points with noise added to produce a maximum SNR of 20 at each band.

8.4 Assessment

Using simulation, we generated spectral images collected by a system that
produced the GSDs that encompassed the TA saturation points for each of
the mission scenarios. Noise was added to produce a maximum SNR of 20.
This part of the process introduced some of the real world complexities
that might exist in the operational phase, and allowed us to test the
predicted system parameters within that context. The simulated images
were divided into 54 sets, and each set was analyzed separately to generate
its own histogram and ROC curves for the four targets. As such, two
variables are introduced that summarize the qualities of each set. The
mean target abundance (TAmean) found for each set, was used to calculate
detectability. However, this measure did not always fully capture the
distribution of the TAs that made up the mean in each set. For example, if
a set had a TAmean = 20%, this may be from 200 pixels with less than 1%
TA, and 10 pixel with 100% TA. The resulting utility for this data set
would be more in line with that of pixels with 1% TA rather than 20%.
While the TAmean metric was an oversimplification of a more complex
phenomenon, it allowed the analysis to be more tractable.
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Table 8.4: Scene Volumes for Suburb Background Simulation Sets

Set/Scene 5m GSD 10m GSD 15m GSD

1 0.47 0.70 0.41

2 0.64 0.31 0.40

3 0.46 0.40 0.30

4 0.30 0.47 0.39

5 0.44 0.41 0.41

6 0.40 0.37 0.42

7 0.32 0.43 0.43

8 0.38 0.49 0.45

9 0.49 0.87 0.44

Table 8.5: Scene Volumes for Desert Background Simulation Sets

Set/Scene 5m GSD 10m GSD 15m GSD

1 0.50 0.48 0.41

2 0.61 0.45 0.40

3 0.62 0.40 0.30

4 0.47 0.59 0.38

5 0.58 0.56 0.39

6 0.44 0.41 0.40

7 0.82 0.50 0.42

8 0.61 0.46 0.45

9 0.63 0.55 0.44

8.4.1 Scene Complexity

Each set was first examined by their histograms along with the TAmean
values. Then the scene volumes were calculated for each set, shown in
Tables 8.4 and 8.5. The tables show that for both scene types (desert and
suburb), when the GSD increases, the volumes decrease. This result is
congruent with the assertion that as spatial resolution decreases, the scene
complexity also decreases where the material compositions in each pixel
approach the scene average. This demonstrates the trade between
decreasing GSD to increase TA as opposed to increasing it to reduce scene
complexity.



CHAPTER 8. RESULTS 158

(a) Histogram of target fill fractions. (b) ROC curves.

Figure 8.19: Histogram and ROC curve for Set 5 of Orange target placed in
Trona Desert scene, rendered at 15m GSD.

8.4.2 ROC Curves

ROC curves and histograms of the positive pixels were generated for the
targets in each of the 54 sets. There were 180 images per set and this data
was divided into 15 folds for analysis. Figure 8.19 shows the ROC curve
and histogram of set 5 of the desert scene, rendered at 15m GSD. Figure
8.19a shows a histogram of the TAs for the orange target. The largest bins
in the histogram were of the pixels below 1% TA. Figure 8.19b shows the
ROC curves generated from this set, and the bold blue line shows the
mean ROC curve generated from each of the folds.

The TAmean for this set was 16.75%, but this distribution was an
example of a scene where most of the positive pixels were below 2% TA,
which results in a lower average utility than what was predicted for an
orange target with a TA of 16.75%. This ROC curve and histogram was an
example of a TAmean that was not directly correlated to a parameterized
target fill fraction to predict utility. However these performance values
were consistent with the predicted utility for an orange target in sand
background which was an easy detection scenario. Even with a large
percentage of pixels with low TA values, the false positives were limited,
and the calculated utility at FPR = 0.001 was 0.36 (Util = 0.36).

Figure 8.20a shows the histogram of the black targets in set 5 of
the suburban scene rendered at 15m GSD, which had a TAmean of 10.74%,
much lower than the orange target, and well below the predicted
detectability rate. Figure 8.20b shows the ROC curves which had a low
standard deviation and AUC of 0.80. While the AUC is relatively high, the
utility value calculated at FPR = 0.001 was close to 0. In fact, for most of
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(a) Histogram of target fill fractions. (b) ROC curves.

Figure 8.20: Histogram and ROC curve for Set 5 of Black target placed in
Trona Suburban scene, rendered at 15m GSD.

(a) Histogram of target fill fractions. (b) ROC curves.

Figure 8.21: Histogram and ROC curve for Set 5 of Green target placed in
Trona Suburban scene, rendered at 15m GSD.

the sets, even when there were full target pixels and the TAmean was
higher, the utility values for the black target was always close to 0.

There were complexities that existed in the analysis for spectral
image analysis where the AUC did not capture performance. An example
where there was a difference in performance depending on the figure of
merit used, was between the green target and white target. Figure 8.21
shows the histogram and ROC curves for set 5 of the green target in the
suburban scene, rendered at 15m GSD. Figure 8.21a shows the ROC
curves that were generated for the histogram shown in Figure 8.21b. The
AUC for this set which had a TAmean of 13.39% was 0.89, and Util = 0.18.
This was a difficult detection scenario, and the results were consistent with
the utility prediction.

Figure 8.22 shows the histogram and ROC curves for set 5 of the
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(a) Histogram of target fill fractions. (b) ROC curves.

Figure 8.22: Histogram and ROC curve for set 5 of white target placed in
Trona Suburban scene, rendered at 15m GSD.

white target in the suburban scene, rendered at 15m GSD, same as the
green target shown in Figure 8.21. Figure 8.22a shows the histogram of the
positive targets in this scene where TAmean was 19.32%. Figure 8.22b
shows the ROC curves that were generated for this set. The AUCs for the
green target was 0.89, and 0.88 for the white target. Given their standard
deviation, these were equivalent AUCs. The utility on the other hand, for
the green target was 0.18, but 0.01 for the white target.

This was not consistent with the prediction where the white
target in grass background was the easier detection scenario than the green
target in grass background. These results indicated not just the
complications inherent in spectral utility analysis based on the metrics
that were used, but the background and scene effects that were not
captured in the predictions. A possible explanation for this phenomenon
was that the white target did not have many spectral features, and there
were many materials in this scene that were similar to the white target
which caused a high number of false alarms. It also signals the importance
of spectral features in a target’s reflectance signature that would have
allowed the detection algorithms to differentiate the white target from the
bright surrounding objects.

Figure 8.23 shows the histogram and ROC curves for set 5 of the
white target, rendered at 15m GSD. This was the same subset scene as
Figure 8.22, but rendered as a desert scene. Figure 8.23a shows the
histogram of the positive pixels in this set with a TAmean of 20.1%. Figure
8.23b shows the ROC curves where the AUC is 0.83, which is lower than
the AUC for the same subset scene rendered as a suburban scene. We can
compare these results those shown in Figure 8.22b which has a similar
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(a) Histogram of target fill fractions. (b) ROC curves.

Figure 8.23: Histogram and ROC curve for set 5 of white target placed in
Trona Desert scene, rendered at 15m GSD.

TAmean, but with a background that has a lower SSV compared to the
target. While the utility for both sets are low due to the high number of
false alarms, the AUCs are consistent with the predictions where detection
performance of the white target was lower against the sand background
than the grass background.

Figure 8.24 shows the histogram and ROC curves for the white
target, but for set 7, a different subset scene, rendered at 5m GSD as a
suburban scene. The TAmean is 17.85%, lower than what was shown in
Figure 8.22a, but with more pixels that had higher target fill fractions. The
AUC for this set is the same as was with set 5 shown in Figure 8.22 but the
utility results are higher with a value of 0.05 as opposed to 0.01, 5 times
higher. However, these utility values are still very low indicating that while
the target fill fraction increased for many of the pixels due to a smaller
GSD, the final utility value was driven primarily by the scene complexity.

All 54 sets were examined by their histograms, ROC curves, and
the utility values were calculated for FPR = 0.001. The utility for the
black target for all the sets were close to 0, never exceeding 0.05 even when
the AUCs were equivalent to the other targets. The white target had low
utility for many of sets, especially when the target fill fraction distribution
had many pixels below 1% TA. However for some subset scenes, regardless
of the target fill fraction distribution or TAmean value, the utility increased.
This showed that for the white target, while higher target fill fractions
contributed slightly to utility for the white target, the scene complexity
and the materials that were present in the scene had a greater effect. On
the other hand, utility for the green target increased significantly for sets
with higher fill fractions and the scene complexity had a less significant
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(a) Histogram of target fill fractions. (b) ROC curves.

Figure 8.24: Histogram and ROC curve for set 7 of white target placed in
Trona Suburban scene, rendered at 5m GSD.

effect. For the orange target, both increasing the TA and decreasing scene
complexity had a significant effect, but only up to a certain point for the
TA. Utility for the black target was independent of the scene or the TA
and remained low for any combination of TA and scene volume.

The comparison of the overall results for the green and white
target were surprising. In almost all the sets, the green target had higher
or equivalent utility for the equivalent detectability values of the white
target. A potential reason for this may be that other materials present in
the scene such as buildings had similar spectral signatures as the white
target. Another reason may be the lack of spectral features in the white
target, and so the reduced number of bands had a significant effect when
analyzed in a complex scene. Compared to the green target that used 30
bands to generate the ROC curves, the white target used 10 bands for the
desert scene and 20 bands for the suburban scene, since these were the
predicted saturation points for number of bands. This may be an example
of a complex scene phenomena that was not captured in the prediction
that had a significant effect on the utility.

The results for the orange target was as predicted. It also used
less bands than the green target, but the utility of the orange target was
higher as predicted, and remained detectable as long as the TA values were
above the saturation point, and in many cases, the utility remained high
even at lower TA value with limited false alarms. What this demonstrated
was that the anomalous results between the prediction and assessment
only affected the white and green targets.
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Table 8.6: Tally of the best target detection algorithm results for each target
of the 54 simulation sets, if the set contained the target.

Algorithm Orange White Green Black

SAM 0 0 51 54

SMF 4 32 0 0

ACE 46 19 2 0

Total 50 51 53 54

8.4.3 Target Detection Algorithms

The histograms and ROC curves shown in Section 8.4.2 are the best
results out of the three target detection algorithms. When comparing the
figures between the four targets, each target had a different algorithm that
produced the best results. Table 8.6 shows a summary of the target
detection algorithms and the number of sets that had the highest utility
for each algorithm for each target. There were a total of 54 simulation
sets, however some sets did not contain the target, and so they were not
included in the tally of which algorithm produced the highest utility.

For the black target, SAM was always the algorithm that
produced the best results. The other algorithms rarely produced utility
above 0 for this target. Similarly, SAM was also the best algorithm for the
green target in almost all the cases except for two. What distinguished
these cases from the others was unclear. In many cases however, SAM and
ACE produced similar results with SAM producing only a slightly higher
utility value.

For the orange target, the best algorithm was usually ACE, but
sometimes SMF. The best algorithm seemed to change based on the TA
distribution. When the median was below 5%, ACE always had the
highest utility. When there was a significant number of pixels with TA
values above 10%, SMF was always the best algorithm for the orange
target. The best algorithm switched in a similar manner for the white
target, but with SMF as the best algorithm for sets with lower TAs. Since
the only algorithm that was compared between the prediction and
assessment was SMF, examining the comparative results using other
detection algorithms for the prediction is a direction for future studies.
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Figure 8.25: Utility at FPR = 0.001 for the scene values calculated for the
Trona Desert scene, rendered at 5m GSD.

8.4.4 Detectability

Each GSD of the scene rendered as a desert or suburban scene was grouped
to generate 9 detectability values (ξ) for each rendering. The detectability
was calculated using the scene volume (Vscene) and TAmean for the 9
subset scenes, and the utility was plotted for the ordered range of ξ values.
Figures 8.27 to 8.30 shows the utility vs. ξ curves for each rendering.

For our example mission which required utility greater than 0.1,
the detectability value was 0.3 for the 5m and 15m GSD images. For the
10m GSD images, only a detectability of 0.8 or higher achieved utility
above the required value. This showed, that for this mission, we needed to
either decrease the GSD to 5m to increase TAmean, or increase the GSD to
15m and lower the scene volume. Both results were similar, but the utility
was slightly higher for the 5m GSD images.

The detectability of the black target, as predicted and expected,
remained low whether the subset scene had high or low scene volume and
regardless of the TAmean values. However, the prediction was that pixels
with high target fill fraction could be detected, and a saturation point was
found for the grass background. This discrepancy between the prediction
and assessment indicates the potential for use of this target in error
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Figure 8.26: Utility at FPR = 0.001 for each scene values calculated for the
Trona Desert scene, rendered at 10m GSD.

Figure 8.27: Utility at FPR = 0.001 for each scene values calculated for the
Trona Desert scene, rendered at 15m GSD.
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Figure 8.28: Utility at FPR = 0.001 for each scene values calculated for the
Trona Suburban scene, rendered at 5m GSD.

Figure 8.29: Utility at FPR = 0.001 for each scene values, calculated for the
Trona Suburban scene, rendered at 10m GSD.
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Figure 8.30: Utility at FPR = 0.001 for each scene values, calculated for the
Trona Suburban scene, rendered at 15m GSD.

propagation analysis of this process.

The orange target benefited most from a decrease in Vscene
compared to an increase TAmean. This is likely due to the orange target’s
TA saturation point. Decreasing the GSD may have resulted in a higher
TA, but past this target’s saturation point, it benefited more from a
decrease in scene complexity. The green and white targets on the other
hand, had similar results in the 5m GSD sets and 15m GSD sets. This
indicated that for these targets, the benefits of increasing TA had similar
effects to decreasing scene complexity.

Overall, for the Trona, CA scene and the targets that were
selected, decreasing scene complexity had more impact on utility than
higher TAmean values that resulted from lower GSDs. For both sets, the
detectability curves were the worst in the 10m GSD images. This indicated
that at this GSD which could be seen as a ”middle ground” solution, the
improved target fill fraction from a lower GSD, was less significant than
the high scene complexity which had a more significant effect on
detectability. This relationship between the three GSDs indicated that the
two metrics were not directly nor linearly related. The nature of their
relationship is a possible subject for analysis in the future.
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The spectral characteristics of the scene had limited effect on
detectability, in that there was some congruence between the predicted
results based on the SSV between the target and background, but the
overall heterogeneity of the scene was a dominant factor affecting utility in
the complex scene analysis. The utility values were similar for the scenes
rendered both as a desert scene and a suburban scene for the orange and
green targets. There was only a small decrease in utility in the suburban
scene compared to the desert scene compared to what was predicted using
the FASSP grass and sand background composition comparisons. The
green target was not significantly less detectable in the suburban scene as
opposed to the desert scene. The white target was less detectable for the
5m GSD desert scene, compared to the 5m GSD suburban scene, but not
as significantly as predicted. Given the contrasting results, this
relationship between the complexity of scene and detectability is an
subject requiring further study. The results indicated that the complexity
of a scene that is defined by its homogeneity, effects of the 3-D geometry,
and other materials present, had a greater effect on utility compared to the
spectral similarity between target and background. For two missions with
the same SSVs, the results from a uniform scene was different for a
heterogeneous scene.

8.4.5 Summary

The results of the assessment validated many of the predictions on utility,
but also highlighted some complexities that would be introduced in a real
world situation. The presence of materials in the scene that was not used
to characterize the background seemed to have a significant effect on
utility, especially for the white target. The trade for increasing target fill
fraction came at the cost of increasing scene complexity. For the green and
white target, the effects of higher TA values from a smaller GSD was
balanced out by the higher scene volume that resulted with limited effect
on utility. For the orange target, the gains from improving TA was
outweighed by the increased scene volume, which decreased utility.
TAmean and scene volume were inversely correlated measures that affected
utility differently for each target, and the trade of improving one
parameter at the cost of the other, depended on the combined
characteristics of the target and scene.
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Figure 8.31: Example use of process leading to imaging system parameter
recommendation for a green target using the scene volume metric.

8.5 Example Requirement Recommendation
Flow Diagram

The results applied to the example mission described in Section 1.6, took
only the target and location into consideration, but the operational aspects
of how often the images needed to be collected, coupled with the the
computational resources available, determined the maximum number of
bands. The difficulty of confirming or denying the presence of a target
based on the detection probabilities determined the minimum utility
requirement, since this value was coupled with the FPR. Given these
considerations, detectability values were estimated for mission feasibility
and system parameter recommendations.

We summarized the process to reach the example mission
introduced at the beginning to reach the final system design
recommendations. Figure 8.31 shows the set of recommendations and the
process flow for the green vehicle in a mostly uniform scene composed of
vegetation. Assuming the target and background were similar to the green
target and grass background that we analyzed, the predicted saturation
point for this target and background was TA = 16%. Assuming the
complexity of this location was similar to set 3 and 5 of the suburban scene
rendered at 5m GSD, the Vscene estimate was 0.45. This led to a ξ value of
0.36, and for the 10m and 15m GSD images the maximum ξ values were
0.4 and 0.53 respectively.

If our desired utility was at least 0.1, then both the 5m and 15
GSD curves at their corresponding ξ values achieved this. However, the
utility at the same ξ value for the scenes rendered at higher GSDs as seen
in 8.26 and 8.27, was lower. This led to the recommendation that a smaller
GSD was desirable since increasing TA had more impact for this type of
scene and target. Therefore, for a GSD of 5m, if the platform height was
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Figure 8.32: Example use of process leading to imaging system parameter
recommendation for a white target with using the scene volume metric.

350km, the effective focal length was 315mm. The minimum number of
bands that could achieve utility higher than 0.1 was 15.

This recommendation was for a GSD that could produce a
TAmean of 16% for the target size we simulated. A higher GSD for this
target was unnecessary, but it was a situation where the TAmean as
opposed to the Vscene value was the primary driver for the parameter
recommendations. Even though the predicted utility for reducing the
number of bands for this target and background was low, since the
required utility was also low, this target was found to be feasible. If the
required utility was higher than 0.3, the operational feasibility
recommendation would have been that the compact system was unsuitable
for the mission. A more detailed, step by step explanation to the final
recommendations are presented in Appendix C.

We demonstrate this process for another mission scenario. Figure
8.32 shows a flow diagram for a white semi in a complex desert scene.
Assuming the white semi had a similar spectral reflectance signature as the
white target we used in our analysis, the predicted TA saturation point
was 26%, and we estimated the Vscene to be similar to sets 2 of the desert
scene rendered at 5m GSD, which was 0.6 (the same as Ft Knox, KY).

The first decision point in the operational phase was the required
utility for this target and location. Assuming the required utility value for
this mission was 0.1, a feasibility decision was made from this requirement.
The estimated ξ value for the saturation point and scene volume was 0.43
(Eq. 8.1).

ξ =
TAmean
Vscene

=
0.26

0.6
= 0.43 (8.1)

Examining the assessment results of the desert scene, utility = 0.1 was
achieved at ξ = 0.6 for the 5m GSD rendering, ξ = 0.9 for the 10m GSD,
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Figure 8.33: Example use of process leading to imaging system parameter
recommendation for orange target using background complexity metric.

and ξ = 0.4 with the 15m GSD. Only the 15m GSD images produced the
required utility at a ξ value that was approximate to the estimated value
based on the saturation point.

Therefore the recommended system parameters when the required
utility was 0.1 for a mission to determine the presence of a white semi in
Whitesands, NM was a focal length of 105mm and sensor height of 350km
to produce a GSD of 15m. The number of bands that achieved utility
above 0.1 was 2 bands, and so Bopt for this mission was 2. The SNR that
was predicted and simulated for these results was SNR = 20. This mission
was feasible for the utility and number of bands requirements.

Figure 8.33 shows an example of a target detection mission that
can use the background complexity value instead of the scene volume. The
benefits of using Γ as opposed to Vscene was its simplicity. We calculated Γ
from a combination of the material spectra in the background. For a scene
such as the open ocean, this could be a sufficient estimate of the
background complexity even for the real scene. In fact, any scene that is
homogeneous enough to be characterized by a finite number of material
spectra, could use Γ to estimate scene complexity.

This figure was the same target and scene used in simple scene
analysis of the orange lifeboats in open ocean. The saturation point for
this target and background was found at 9% and the estimated Γ value
was 0.1. At the saturation point, the ξ value was 0.9, and in this case, Γ
was fixed, as opposed to TA. With this type of scene using the TAmean vs
utility curve, we could adjust the GSD based on requirements. In our
simple scene study, TAmean ≈ 2.5% was able to achieve utility ≥ 0.6 for
this scenario, which for a lifeboat that was 2.0m x 1.5m in size, was
achievable at 15m GSD. Increasing or decreasing GSD was unlikely to
change Γ. This was in contrast to the previous scenario where changing
the GSD could change the ξ value, and the TA value at the saturation
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point was the immovable parameter. With this scenario, depending on the
operational requirement, we could increase the GSD, because this type of
target could be found even at low TA values. The advantage of doing this
would be that the imaging system would have a wider field of view, and so
a single image would be able to cover a larger area, saving computational
costs. On the other hand, if the GSD was fixed, we could decrease the
number of bands to do the same.

If the required utility was 0.6, the recommended system
parameters were to increase the GSD and decrease the number of bands. If
we fixed the GSD at the maximum of 15m that we analyzed, then we can
analyze the trade curve for the number of bands. For the orange target,
even for the sand background, using 5 bands could achieve a utility greater
than 0.6, and so we determined less than 5 as the recommended number of
bands. With further analysis of the detection scenario we could fine Bopt
for the required utility. These types of decisions can be made from the
trade curves generated form this analysis to optimize the system design
based on the mission, operational requirements, situation, and
computational resources available. For this particular mission, wide area
search for the orange target in the open ocean was a highly appropriate
mission for compact imaging systems that could achieve a high level of
utility.

8.6 Summary

In this research we presented the analysis of a few mission scenarios, and
some theoretical examples of the use of this process towards optimization
of spectral imaging system designs. We found relationships in the trade
space and gained insight into the trade between the system parameters.
We presented some example missions to demonstrate the decisions that
drove the optimization of the system design using the information gained
through this process. In the future this process can be used for other
targets, locations, and missions to design a compact imaging system for
wide area search.



”See the line where the sky meets the sea?
It calls me.
And no one knows how far it goes.
If the wind in my sail on the sea stays behind me, one day I
know, there’s just no telling how far I’ll go.”

- Disney/Pixar Animation, Moana, 2017

9
Summary

In this chapter, we present the novel contributions, conclusions, and
potential future work. This project combined the use of an analytic
prediction model and a simulation model in a novel manner to predict then
assess spectral image utility within the design and operational context.
The process of analyzing spectral image utility involved multiple
components that affected the results, and there were many factors that
affected system design recommendations for wide area search missions. For
the operational context in which spectral utility was analyzed in this
research, the primary contribution to utility was the input mission. What
we were looking for and where we were looking were the primary drivers of
the requirements in designing a compact spectral imaging system with
adaptive band selection capabilities.

9.1 Contributions

The primary contribution of this work was the comprehensive system
analysis methodology that used existing tools such as FASSP and DIRSIG
in a novel way. We demonstrated this methodology for a few mission
scenarios, and in doing so provided insight into the spectral image utility
trade space. The novelty of the process compared to previous work and
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current state of the art, was that it started with the mission (target and
background) to determine the requirements and feasibility of targets for
wide area search missions. In order to provide recommendations for a
system design, based on the mission, some novel metrics were developed to
aid analysis.

The first metric we developed was the optimal number of bands
(Bopt), making it a function of what was required operationally with data
that was generated during the design phase. This metric accounted for the
acceptable error and the cost of increasing the number of bands, even if it
improved detection. This concept was demonstrated by using the number
of band saturation points for the targets and setting a maximum number
for all targets. For the green target, although the maximum number of
bands in the prediction showed limited utility, the assessment showed that
the target was still detectable with less bands. On the other hand, for the
white target, the predicted optimal number of bands produced a much
lower utility than the assessment. Using the Bopt metric, we were able to
use the information from the design analysis to account for the operational
considerations including data processing costs. In the design phase, we
calculated the number of bands vs utility curve, then in the operational
phase we used this curve to determine Bopt and drive collection decisions.
By developing this metric, we were able to bridge the gap between the
current state of the art band selection methods with the requirement for
optimizing design and operation of systems with adaptive band selection
capability.

The next metric we developed was the background complexity
value Γ, which could be computed using a finite number of material
spectra. While it did not fully characterize a real world scene, when
estimating background effects for a location with uniform composition of
materials, it was a metric that was simple to calculate. This metric was
used in the prediction portion for the complex scene analysis in order to
calculate the utility vs background complexity curve. This allowed us to
quantify the effects of background complexity for large uniform areas
which was prevalent for missions tasked to compact spectral imaging
systems to quickly determine the mission feasibility of a selected target. It
was a metric that facilitated analysis of wide area missions using compact
systems.

The final metric that we developed was the detectability value ξ,
which related TAmean to the scene complexity (Vscene or Γ). To analyze
the mission, this value was used with the required utility value to
determine the best GSD from the assessment and verify the predictions.
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This value characterized the trade between improving TA or decreasing
scene complexity for a specific mission, folded a complex real world
situation into a more tractable space for that allowed us to analyze
imaging system trades and gain insight into the relationship between
parameters. To analyze a spectral imaging system, quantifying the
operational aspects in the design and the resulting utility was challenging.
While this metric did not absorb all the complexities of designing a
spectral imaging system, it allowed us to systematically justify mission
feasibility decisions and potential design parameters.

Another requirement of the process that brought about a novel
contribution is the band selection method using only the target signature.
This was developed in order to account for the envisioned operation of the
compact imaging system capable of adaptive band selection. This band
selected method was tested against other state of the art methods, and
while the bands did not have higher performance, it was a method that
could be implemented on a CubeSat. It bridged the gap between the state
of the art methods that were not feasible for use on-board a compact
system due to their computational complexity, and the the advanced
capabilities of a system with adaptive band selection.

In conclusion, this research provided a practical process to
optimize the design of a compact spectral imaging system with adaptive
band selection capabilities. We also gained novel insight into the trade
space for system parameters by developing metrics that could characterize
the complex relationships. We developed a process that could quantify and
simplify the relationships between parameters to make the decision
between the design and operational space more tractable.

9.2 Conclusions

The results presented in this research shows the potential use of this
process as a decision tool to optimize the design of spectral imaging
systems. The utility trade space was explored from a mission perspective,
systematically accounting for the operational aspect of subpixel target
detection. This was accomplished by focusing primarily on the targets
where the trade space was examined as it related to the material’s spectral
reflectance signature. This process was developed to work within an
operational context where there was a mission, and the imaging system
had a specific application.
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The key findings from this research was that scene complexity
and GSD are inversely related, and the trade between the two components
depend on the scene, target, and the requirements. If the mission was
determined as feasible for the required utility value, then the decision on
whether or not to increase the GSD depended on the predicted TA
saturation point and the inherent complexity of the scene. On one hand,
there was no need to design a system with a smaller GSD to achieve a TA
past the saturation point. On the other hand, a target size to GSD ratio
did not guarantee that an image would produce this TA, since the TA
could be distributed between more than one pixel. Furthermore, if a scene
was inherently simple such as an open ocean, then increasing the GSD to
lower the scene complexity had limited effects. Therefore the best GSD to
simultaneously maximize TA and minimize scene complexity depended on
the requirements, the target, and the scene.

Another finding was that the SSV between the target and
background had some effects on detectability, but its effect depends on the
other materials present in the scene as well as the target itself. As for the
targets, spectral features of a material changed its resulting detectability
that was not always captured by the prediction. This was demonstrated by
the white target that was thought to be the ceiling due to its high
reflectance within the VNIR spectrum, but was found to have lower
detectability than the orange target. This could either be from the scene
complexity and the materials that contributed to it, or the target material
itself which has limited features. The examination of the spectral features
of a material and its effect on detectability is a potential subject of future
research.

Another finding about the relationships within the trade space
was that SSV and scene complexity contributed to the number of bands
required to achieve a desired utility value. In a simple scene such as the
open ocean, the number of bands required for an orange target could be 5
bands or even lower. On the other hand, the same target in a suburban
background required 25 bands to achieve a saturation point. The primary
conclusion of this research was that the background scene, target, and
what is determined to be acceptable error drives the decisions for designing
a compact system. For wide area search missions, all of these effects in the
trade space needed to be considered. A key novel contribution of this
research was that we found that there was a distinct trend between utility
and background complexity as well as utility and detectability. While
these observations were from limited data points, it yields itself to future
research.
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9.3 Future Research

Some areas of study for the future is the use of the simulated images to
explore the temporal resolution component of an imaging system with
tracking capabilities. While we assumed a fixed satellite orbit in this study,
with some modifications this process can be used to account for a system’s
ability to change its focal plane. If an imaging system can be designed to
automatically begin ”tracking” the location of a potential target because
the pixel was above a detection threshold, this can improve performance
by improving TA without increasing scene complexity. The spatial
distribution of the target was an effect that was observed in this research
that caused target fill fractions to be consistently lower than the maximum
achievable abundance, and tracking capabilities can mitigate this effect.

Another area of study if to form a look up table with the
detectability index of targets. This information can be used to facilitate
decisions of whether or not to even consider a target for wide area search
missions without going through the entire process. It can also provide a
confidence level in detection results using existing compact imaging
systems. In this research, the black tire was found to be a target that was
not feasible for any situation, and with a look up table comprehensive
trade space analysis for this type of target can be avoided in the future.
For other feasible target and background combinations, this process can be
used to find more data points in the spectral image utility trade space.
The finding that spectral features of a material had affects on the
detectability is based on the results of the four target materials examined
in this research. Similar analysis of other target materials can be used to
confirm or counter these findings in the future.

Examining the comparative results using other target detection
algorithms for the prediction is a natural follow on study. The only
algorithm implemented in the FASSP analysis tool was CEM. Given the
differences in performance for the three target detection algorithms used
depending on target that was found using the simulated images,
implementing more target detection algorithms may produce better
predictions.

Another potential follow-on research project is the development
of a reverse process for an existing compact imaging system to determine
the confidence level of detection results. For example, this process revealed
the black target as one with low utility value more or less independent of
the metrics that were used to determine detectability. Therefore, the
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confidence value of any detection result for this type of target would be
low. On the other hand, for the orange target, especially if the scene was
uniform, the high detectability value of this combination would also raise
the confidence level of the detection results of this target and background
combination. Also, coupled with the detectability of each target and
background combination, if an imaging system collects a finite set of
bands, targets with tops bands that correspond to the ones collected by
the imaging system would yield a higher confidence value in the detection
results.

The results of this process and the final set of recommendations
were composite optimizations in each dimension of the trade space
determined empirically. The relationship between on figure of merit to
another are not linear and would be challenging to express as an algebraic
equation. Therefore a quantitative examination of uncertainty in the
results would require more than the traditional error propagation analysis
for each metric since their relationship is more complex. Further
examination of the effects due to uncertainty and error on the final decision
recommendation provides another potential avenue for future work.



A
Coefficient Analysis for BOTS

A.1 Bank Rankings

Figures A.1 - A.20 show z values for range of coefficient values calculated
with BOTS. Note: Y-axis values are different from image to image to show
changes in low values.

Figure A.1: a = 0.99 Figure A.2: a = 0.95

179
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Figure A.3: a = 0.90 Figure A.4: a = 0.85

Figure A.5: a = 0.80 Figure A.6: a = 0.75

Figure A.7: a = 0.70 Figure A.8: a = 0.65

Figure A.9: a = 0.60 Figure A.10: a = 0.55
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Figure A.11: a = 0.50 Figure A.12: a = 0.45

Figure A.13: a = 0.40 Figure A.14: a = 0.35

Figure A.15: a = 0.30 Figure A.16: a = 0.25

Figure A.17: a = 0.20 Figure A.18: a = 0.15
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Figure A.19: a = 0.10 Figure A.20: a = 0.05

A.2 Table of top 30 band wavelengths

Tables A.1 - A.6 show list of band rankings for the top 30 bands for range
of coefficients calculated with BOTS.

Table A.1: Best bands for orange lifeboat material.

a values Band wavelengths (µm)

a = 0.99 0.606 0.576 0.594 0.588 0.6 0.582 0.612 0.57 0.618 0.558
0.648 0.624 0.77 0.564 0.739 0.661 0.745 0.63 0.776
0.636 0.545 0.655 0.8 0.939 0.933 0.982 0.642 0.764
0.685 0.758

a = 0.95 0.606 0.576 0.594 0.6 0.588 0.582 0.612 0.618 0.77 0.648
0.776 0.8 0.745 0.739 0.624 0.982 0.939 0.933 0.794
0.885 0.879 0.806 0.764 0.758 0.945 0.752 0.661 0.788
0.988 0.721

a = 0.90 0.606 0.6 0.576 0.594 0.588 0.582 0.77 0.8 0.776 0.806
0.612 0.885 0.794 0.879 0.982 0.745 0.939 0.788 0.739
0.764 0.988 0.933 0.945 0.758 0.752 0.994 0.782 0.842
0.648 0.976

a = 0.85 0.606 0.6 0.8 0.77 0.806 0.776 0.885 0.794 0.879 0.982
0.788 0.594 0.988 0.842 0.939 0.812 0.782 0.764 0.745
0.818 0.994 0.945 0.824 0.758 0.873 0.933 0.836 0.848
0.739 0.83

a = 0.80 0.606 0.8 0.806 0.77 0.885 0.776 0.794 0.879 0.788 0.812
0.982 0.818 0.842 0.824 0.988 0.782 0.836 0.848 0.994
0.83 0.873 0.855 0.764 0.867 0.939 0.945 0.891 0.861
0.897 0.758

Continued on next page
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Table A.1 – Continued from previous page

a values Band wavelengths (µm)

a = 0.75 0.606 0.8 0.806 0.885 0.794 0.776 0.879 0.77 0.812 0.788
0.818 0.824 0.842 0.836 0.83 0.848 0.782 0.982 0.988
0.873 0.855 0.994 0.891 0.867 0.861 0.897 0.903 0.764
0.945 0.939

a = 0.70 0.8 0.806 0.885 0.794 0.812 0.818 0.879 0.824 0.776
0.788 0.842 0.83 0.836 0.77 0.606 0.848 0.782 0.891
0.855 0.873 0.867 0.861 0.988 0.982 0.897 0.994 0.903
0.764 0.945 0.976

a = 0.65 0.806 0.8 0.812 0.885 0.818 0.794 0.824 0.879 0.842 0.83
0.836 0.788 0.776 0.848 0.891 0.855 0.782 0.873 0.77
0.861 0.867 0.897 0.994 0.988 0.903 0.982 0.764 0.976
0.945 0.939

a = 0.60 0.806 0.8 0.812 0.818 0.885 0.824 0.794 0.83 0.842 0.879
0.836 0.848 0.788 0.891 0.855 0.776 0.782 0.897 0.861
0.873 0.867 0.903 0.77 0.994 0.988 0.982 0.976 0.764
0.945 0.909

a = 0.55 0.806 0.8 0.812 0.818 0.824 0.885 0.794 0.83 0.842 0.836
0.879 0.848 0.891 0.788 0.855 0.897 0.861 0.873 0.776
0.782 0.867 0.903 0.994 0.988 0.77 0.982 0.909 0.976
0.764 0.945

a = 0.50 0.806 0.812 0.8 0.818 0.824 0.885 0.83 0.794 0.842 0.836
0.848 0.891 0.879 0.855 0.788 0.897 0.861 0.873 0.867
0.782 0.903 0.776 0.994 0.988 0.77 0.982 0.909 0.976
0.764 0.945

a = 0.45 0.806 0.812 0.818 0.8 0.824 0.83 0.885 0.836 0.842 0.794
0.891 0.848 0.879 0.855 0.897 0.788 0.861 0.867 0.873
0.782 0.903 0.776 0.994 0.988 0.77 0.909 0.982 0.976
0.97 0.945

a = 0.40 0.806 0.812 0.818 0.824 0.8 0.83 0.836 0.885 0.842 0.891
0.848 0.794 0.855 0.897 0.879 0.861 0.788 0.867 0.873
0.903 0.782 0.776 0.994 0.988 0.909 0.77 0.982 0.976
0.97 0.952

a = 0.35 0.812 0.806 0.818 0.824 0.8 0.83 0.836 0.842 0.891 0.885
0.848 0.794 0.855 0.897 0.879 0.861 0.788 0.867 0.903
0.873 0.782 0.776 0.994 0.909 0.988 0.982 0.77 0.976
0.97 0.952

a = 0.30 0.812 0.806 0.818 0.824 0.83 0.8 0.836 0.891 0.842 0.848
0.885 0.794 0.855 0.897 0.861 0.879 0.788 0.867 0.903
0.873 0.782 0.776 0.994 0.909 0.988 0.982 0.77 0.976
0.915 0.97

Continued on next page
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Table A.1 – Continued from previous page

a values Band wavelengths (µm)

a = 0.25 0.812 0.806 0.818 0.824 0.83 0.8 0.836 0.891 0.842 0.848
0.885 0.855 0.794 0.897 0.861 0.879 0.867 0.903 0.788
0.873 0.782 0.909 0.994 0.776 0.988 0.982 0.77 0.915
0.976 0.952

a = 0.20 0.812 0.818 0.806 0.824 0.83 0.8 0.836 0.891 0.842 0.848
0.885 0.855 0.897 0.794 0.861 0.879 0.903 0.867 0.788
0.873 0.782 0.909 0.994 0.776 0.988 0.982 0.915 0.77
0.976 0.952

a = 0.15 0.812 0.818 0.806 0.824 0.83 0.8 0.836 0.891 0.842 0.848
0.885 0.855 0.897 0.794 0.861 0.903 0.867 0.879 0.788
0.873 0.782 0.909 0.994 0.776 0.988 0.915 0.982 0.77
0.976 0.952

a = 0.10 0.812 0.818 0.806 0.824 0.83 0.836 0.891 0.8 0.842 0.848
0.855 0.897 0.885 0.794 0.861 0.903 0.867 0.879 0.873
0.788 0.782 0.909 0.994 0.776 0.988 0.915 0.982 0.77
0.976 0.952

a = 0.05 0.812 0.818 0.806 0.824 0.83 0.891 0.836 0.8 0.842 0.848
0.855 0.897 0.885 0.861 0.794 0.903 0.867 0.879 0.873
0.788 0.782 0.909 0.994 0.776 0.988 0.915 0.982 0.77
0.976 0.952

Table A.2: Best band for white boat material.

a values Band wavelengths(µm)

a = 0.99 0.406 0.4 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.976
0.933 0.455 0.461 0.467 0.758 0.812 0.479 0.473 0.485
0.945 0.509 0.97 0.515 0.873 0.77 0.63 0.842 0.788 0.988
0.891

a = 0.95 0.406 0.4 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.509 0.515 0.491 0.497
0.503 0.521 0.533 0.527 0.539 0.545 0.552 0.63 0.57
0.558 0.624

a = 0.90 0.406 0.4 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.509 0.491 0.515 0.497
0.503 0.521 0.533 0.527 0.539 0.545 0.552 0.558 0.57
0.564 0.576

a = 0.85 0.406 0.412 0.4 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.509 0.497 0.515
0.503 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.57
0.564 0.576

Continued on next page
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Table A.2 – Continued from previous page

a values Band wavelengths (µm)

a = 0.80 0.406 0.412 0.4 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.509 0.515
0.503 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.75 0.406 0.412 0.418 0.424 0.43 0.442 0.436 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.509 0.503
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576 0.582

a = 0.70 0.412 0.418 0.406 0.424 0.43 0.442 0.448 0.455 0.436
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.509 0.503
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576 0.582

a = 0.65 0.412 0.448 0.455 0.442 0.461 0.467 0.418 0.473 0.479
0.485 0.436 0.43 0.424 0.491 0.497 0.509 0.503 0.515
0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564 0.57
0.576 0.582 0.588

a = 0.60 0.455 0.461 0.448 0.467 0.473 0.442 0.479 0.485 0.491
0.436 0.497 0.43 0.503 0.509 0.515 0.521 0.527 0.424
0.533 0.539 0.545 0.552 0.558 0.418 0.564 0.57 0.576
0.582 0.588 0.594

a = 0.55 0.461 0.455 0.467 0.448 0.473 0.479 0.485 0.442 0.491
0.497 0.436 0.503 0.509 0.515 0.521 0.43 0.527 0.533
0.539 0.545 0.552 0.424 0.558 0.564 0.57 0.576 0.582
0.588 0.594 0.418

a = 0.50 0.461 0.455 0.467 0.473 0.448 0.479 0.485 0.491 0.442
0.497 0.503 0.509 0.436 0.515 0.521 0.527 0.533 0.43
0.539 0.545 0.552 0.558 0.564 0.57 0.424 0.576 0.582
0.588 0.594 0.6

a = 0.45 0.461 0.467 0.455 0.473 0.479 0.448 0.485 0.491 0.442
0.497 0.503 0.509 0.515 0.436 0.521 0.527 0.533 0.539
0.43 0.545 0.552 0.558 0.564 0.57 0.576 0.582 0.424
0.588 0.594 0.6

a = 0.40 0.461 0.467 0.455 0.473 0.479 0.485 0.448 0.491 0.497
0.442 0.503 0.509 0.515 0.521 0.436 0.527 0.533 0.539
0.545 0.552 0.43 0.558 0.564 0.57 0.576 0.582 0.588
0.424 0.594 0.6

a = 0.35 0.461 0.467 0.473 0.455 0.479 0.485 0.448 0.491 0.497
0.442 0.503 0.509 0.515 0.521 0.436 0.527 0.533 0.539
0.545 0.552 0.558 0.43 0.564 0.57 0.576 0.582 0.588
0.594 0.424 0.6

Continued on next page
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Table A.2 – Continued from previous page

a values Band wavelengths (µm)

a = 0.30 0.461 0.467 0.473 0.455 0.479 0.485 0.448 0.491 0.497
0.503 0.442 0.509 0.515 0.521 0.527 0.436 0.533 0.539
0.545 0.552 0.558 0.43 0.564 0.57 0.576 0.582 0.588
0.594 0.6 0.606

a = 0.25 .467 0.461 0.473 0.455 0.479 0.485 0.491 0.448 0.497
0.503 0.442 0.509 0.515 0.521 0.527 0.436 0.533 0.539
0.545 0.552 0.558 0.564 0.43 0.57 0.576 0.582 0.588
0.594 0.6 0.606

a = 0.20 0.467 0.461 0.473 0.455 0.479 0.485 0.491 0.448 0.497
0.503 0.442 0.509 0.515 0.521 0.527 0.533 0.436 0.539
0.545 0.552 0.558 0.564 0.43 0.57 0.576 0.582 0.588
0.594 0.6 0.606

a = 0.15 0.467 0.461 0.473 0.479 0.455 0.485 0.491 0.448 0.497
0.503 0.509 0.442 0.515 0.521 0.527 0.533 0.436 0.539
0.545 0.552 0.558 0.564 0.57 0.43 0.576 0.582 0.588
0.594 0.6 0.606

a = 0.10 0.467 0.461 0.473 0.479 0.455 0.485 0.491 0.448 0.497
0.503 0.509 0.442 0.515 0.521 0.527 0.533 0.436 0.539
0.545 0.552 0.558 0.564 0.57 0.43 0.576 0.582 0.588
0.594 0.6 0.606

a = 0.05 0.467 0.461 0.473 0.479 0.455 0.485 0.491 0.448 0.497
0.503 0.509 0.515 0.442 0.521 0.527 0.533 0.539 0.436
0.545 0.552 0.558 0.564 0.57 0.576 0.43 0.582 0.588
0.594 0.6 0.606

Table A.3: Best band for black tire material.

a = 0.99 0.873 0.867 0.861 0.576 0.515 0.497 0.491 0.442 0.43
0.424 0.406 0.4 0.879 0.418 0.539 0.891 0.885 0.467
0.685 0.855 0.679 0.848 0.842 0.461 0.545 0.836 0.897
0.994 0.988 0.982

a = 0.95 0.873 0.867 0.861 0.879 0.891 0.885 0.576 0.515 0.497
0.491 0.539 0.442 0.685 0.43 0.855 0.424 0.897 0.406
0.679 0.467 0.848 0.418 0.4 0.842 0.836 0.545 0.994
0.988 0.982 0.976

a = 0.90 0.873 0.867 0.861 0.879 0.891 0.885 0.897 0.576 0.515
0.685 0.855 0.497 0.539 0.848 0.491 0.842 0.679 0.903
0.909 0.836 0.994 0.988 0.982 0.976 0.97 0.964 0.442
0.958 0.43 0.83

Continued on next page
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Table A.3 – Continued from previous page

a values Band wavelengths (µm)

a = 0.85 0.873 0.867 0.891 0.879 0.885 0.861 0.897 0.903 0.576
0.909 0.855 0.685 0.915 0.848 0.842 0.515 0.539 0.679
0.994 0.988 0.982 0.976 0.97 0.964 0.836 0.497 0.958
0.945 0.83 0.824

a = 0.80 0.873 0.891 0.885 0.879 0.867 0.897 0.861 0.903 0.909
0.915 0.855 0.576 0.685 0.848 0.842 0.994 0.988 0.982
0.976 0.97 0.964 0.921 0.958 0.939 0.679 0.836 0.945
0.952 0.539 0.515

a = 0.75 0.891 0.873 0.885 0.879 0.897 0.867 0.903 0.861 0.909
0.915 0.921 0.855 0.848 0.685 0.842 0.994 0.988 0.982
0.976 0.97 0.964 0.576 0.939 0.927 0.945 0.958 0.952
0.836 0.679 0.83

a = 0.70 .891 0.885 0.873 0.897 0.879 0.903 0.867 0.909 0.915
0.861 0.921 0.855 0.927 0.939 0.848 0.945 0.994 0.988
0.982 0.976 0.97 0.964 0.958 0.842 0.685 0.952 0.933
0.576 0.836 0.83

a = 0.65 0.891 0.897 0.885 0.879 0.873 0.903 0.909 0.867 0.915
0.861 0.921 0.927 0.855 0.939 0.945 0.933 0.994 0.988
0.982 0.976 0.97 0.964 0.848 0.958 0.952 0.842 0.685
0.836 0.83 0.824

a = 0.60 0.891 0.897 0.885 0.879 0.903 0.873 0.909 0.915 0.867
0.921 0.861 0.927 0.939 0.933 0.855 0.945 0.994 0.988
0.982 0.976 0.97 0.964 0.952 0.958 0.848 0.842 0.685
0.836 0.83 0.824

a = 0.55 0.891 0.897 0.885 0.903 0.879 0.909 0.873 0.915 0.867
0.921 0.927 0.861 0.933 0.939 0.945 0.855 0.952 0.994
0.988 0.982 0.976 0.97 0.964 0.958 0.848 0.842 0.836
0.685 0.83 0.824

a = 0.50 0.891 0.897 0.885 0.903 0.879 0.909 0.915 0.873 0.921
0.867 0.927 0.861 0.933 0.939 0.945 0.855 0.952 0.994
0.988 0.982 0.976 0.97 0.964 0.958 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.45 0.897 0.891 0.903 0.885 0.909 0.879 0.915 0.873 0.921
0.867 0.927 0.861 0.933 0.939 0.945 0.952 0.855 0.958
0.994 0.988 0.982 0.976 0.97 0.964 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.40 0.897 0.891 0.903 0.885 0.909 0.879 0.915 0.873 0.921
0.927 0.867 0.933 0.861 0.939 0.945 0.952 0.958 0.855
0.994 0.988 0.982 0.976 0.97 0.964 0.848 0.842 0.836
0.83 0.824 0.818

Continued on next page
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Table A.3 – Continued from previous page

a values Band wavelengths (µm)

a = 0.35 0.897 0.891 0.903 0.885 0.909 0.879 0.915 0.921 0.873
0.927 0.867 0.933 0.861 0.939 0.945 0.952 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.30 0.897 0.903 0.891 0.909 0.885 0.915 0.879 0.921 0.873
0.927 0.867 0.933 0.939 0.861 0.945 0.952 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.25 0.897 0.903 0.891 0.909 0.885 0.915 0.879 0.921 0.873
0.927 0.867 0.933 0.939 0.861 0.945 0.952 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.20 0.897 0.903 0.891 0.909 0.885 0.915 0.879 0.921 0.873
0.927 0.867 0.933 0.939 0.945 0.861 0.952 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.15 0.897 0.903 0.891 0.909 0.885 0.915 0.879 0.921 0.873
0.927 0.933 0.867 0.939 0.945 0.861 0.952 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.10 0.897 0.903 0.891 0.909 0.885 0.915 0.879 0.921 0.927
0.873 0.933 0.867 0.939 0.945 0.952 0.861 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.05 0.897 0.903 0.891 0.909 0.885 0.915 0.879 0.921 0.927
0.873 0.933 0.867 0.939 0.945 0.952 0.861 0.958 0.994
0.988 0.982 0.976 0.97 0.964 0.855 0.848 0.842 0.836
0.83 0.824 0.818

Table A.4: Best band for green car material.

a = 0.99 0.758 0.745 0.752 0.4 0.739 0.406 0.733 0.764 0.448 0.77
0.455 0.442 0.806 0.794 0.461 0.897 0.436 0.812 0.467
0.782 0.8 0.788 0.412 0.727 0.952 0.964 0.424 0.933 0.43
0.418

a = 95 0.964 0.952 0.758 0.958 0.976 0.988 0.933 0.897 0.97
0.939 0.915 0.945 0.745 0.982 0.752 0.909 0.994 0.879
0.891 0.867 0.873 0.903 0.861 0.921 0.885 0.848 0.855
0.806 0.812 0.83

Continued on next page
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Table A.4 – Continued from previous page

a values Band wavelengths (µm)

a = 90 0.964 0.988 0.976 0.958 0.952 0.97 0.982 0.994 0.933
0.939 0.945 0.915 0.897 0.909 0.921 0.891 0.903 0.879
0.885 0.873 0.867 0.861 0.855 0.848 0.927 0.83 0.842
0.836 0.824 0.812

a = 0.85 0.988 0.976 0.964 0.994 0.982 0.97 0.958 0.952 0.945
0.939 0.933 0.915 0.909 0.897 0.921 0.903 0.891 0.879
0.927 0.885 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.80 0.988 0.976 0.994 0.982 0.964 0.97 0.958 0.952 0.945
0.939 0.933 0.915 0.921 0.909 0.897 0.903 0.927 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.75 0.988 0.994 0.976 0.982 0.964 0.97 0.958 0.952 0.945
0.939 0.933 0.915 0.921 0.909 0.897 0.927 0.903 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.70 0.988 0.994 0.976 0.982 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.915 0.921 0.909 0.927 0.897 0.903 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.65 0.988 0.994 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.921 0.915 0.927 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.60 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.921 0.915 0.927 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.55 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.921 0.915 0.927 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.50 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.921 0.927 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.45 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.921 0.927 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

Continued on next page
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Table A.4 – Continued from previous page

a values Band wavelengths (µm)

a = 0.40 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.921 0.927 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.35 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.927 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.30 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.927 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.25 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.927 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.20 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.933 0.927 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.15 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.927 0.933 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.10 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.927 0.933 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

a = 0.05 0.994 0.988 0.982 0.976 0.97 0.964 0.958 0.952 0.945
0.939 0.927 0.933 0.921 0.915 0.909 0.903 0.897 0.891
0.885 0.879 0.873 0.867 0.861 0.855 0.848 0.842 0.836
0.83 0.824 0.818

Table A.5: Best band for yellow wood.

a = 0.99 0.43 0.406 0.412 0.97 0.424 0.418 0.436 0.4 0.442 0.448
0.952 0.933 0.455 0.964 0.915 0.939 0.903 0.982 0.461
0.618 0.891 0.721 0.691 0.988 0.879 0.994 0.885 0.727
0.606 0.83

Continued on next page
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Table A.5 – Continued from previous page

a values Band wavelengths (µm)

a = 0.95 0.43 0.406 0.412 0.424 0.418 0.436 0.4 0.442 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.97 0.952 0.491 0.618
0.933 0.964 0.606 0.594 0.6 0.582 0.691 0.624 0.661
0.655 0.721

a = 90 0.43 0.424 0.406 0.412 0.436 0.418 0.442 0.4 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.97 0.618 0.582 0.594 0.606 0.6 0.576 0.564 0.588 0.624
0.612

a = 0.85 0.43 0.424 0.436 0.412 0.406 0.418 0.442 0.4 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.618 0.564 0.582 0.594 0.576 0.606 0.6 0.588 0.57 0.515
0.612

a = 0.80 0.43 0.436 0.424 0.412 0.418 0.406 0.442 0.4 0.448 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.564 0.582 0.576 0.594 0.57 0.618 0.6 0.588 0.606
0.558

a = 0.75 0.43 0.436 0.424 0.442 0.418 0.412 0.406 0.448 0.4 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.564 0.552 0.558 0.582 0.576 0.57 0.545
0.594 0.588

a = 0.70 0.43 0.436 0.424 0.442 0.418 0.412 0.406 0.448 0.4 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.552 0.545 0.533 0.564 0.539 0.558
0.57 0.576

a = 0.65 0.43 0.436 0.442 0.424 0.418 0.412 0.448 0.406 0.4 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.60 0.436 0.43 0.442 0.424 0.418 0.448 0.412 0.406 0.4 0.455
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.55 0.436 0.43 0.442 0.424 0.448 0.418 0.412 0.406 0.455 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.50 0.436 0.442 0.43 0.448 0.424 0.418 0.412 0.406 0.455 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

Continued on next page
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Table A.5 – Continued from previous page

a values Band wavelengths (µm)

a = 0.45 0.436 0.442 0.43 0.448 0.424 0.418 0.412 0.455 0.406 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.40 0.436 0.442 0.43 0.448 0.424 0.418 0.455 0.412 0.406 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.35 0.442 0.436 0.43 0.448 0.424 0.418 0.455 0.412 0.406 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.30 0.442 0.436 0.448 0.43 0.424 0.455 0.418 0.412 0.406 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.25 0.442 0.436 0.448 0.43 0.424 0.455 0.418 0.412 0.406 0.4
0.461 0.467 0.473 0.479 0.485 0.491 0.497 0.503 0.509
0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558 0.564
0.57 0.576

a = 0.20 0.442 0.436 0.448 0.43 0.455 0.424 0.418 0.412 0.406
0.461 0.4 0.467 0.473 0.479 0.485 0.491 0.497 0.503
0.509 0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558
0.564 0.57 0.576

a = 0.15 0.442 0.436 0.448 0.43 0.455 0.424 0.418 0.412 0.461
0.406 0.4 0.467 0.473 0.479 0.485 0.491 0.497 0.503
0.509 0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558
0.564 0.57 0.576

a = 0.10 0.442 0.436 0.448 0.43 0.455 0.424 0.418 0.412 0.461
0.406 0.4 0.467 0.473 0.479 0.485 0.491 0.497 0.503
0.509 0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558
0.564 0.57 0.576

a = 0.05 0.442 0.448 0.436 0.43 0.455 0.424 0.418 0.412 0.461
0.406 0.4 0.467 0.473 0.479 0.485 0.491 0.497 0.503
0.509 0.515 0.521 0.527 0.533 0.539 0.545 0.552 0.558
0.564 0.57 0.576
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Table A.6: Best band for green wood.

a = 0.99 0.552 0.564 0.558 0.545 0.57 0.576 0.582 0.588 0.539
0.594 0.533 0.6 0.606 0.612 0.618 0.715 0.63 0.642 0.636
0.624 0.952 0.927 0.709 0.721 0.43 0.527 0.424 0.648
0.703 0.412

a = 0.95 0.576 0.588 0.564 0.57 0.582 0.558 0.552 0.594 0.545 0.6
0.539 0.606 0.612 0.618 0.642 0.63 0.636 0.624 0.424
0.43 0.412 0.715 0.4 0.406 0.436 0.418 0.533 0.648 0.442
0.709

a = 90 0.588 0.582 0.594 0.576 0.57 0.6 0.564 0.606 0.558 0.552
0.612 0.618 0.412 0.4 0.424 0.43 0.406 0.642 0.418 0.436
0.63 0.636 0.442 0.624 0.648 0.545 0.655 0.715 0.448
0.709

a = 0.85 0.588 0.594 0.582 0.6 0.576 0.606 0.4 0.412 0.406 0.424
0.43 0.418 0.436 0.612 0.442 0.618 0.642 0.63 0.57 0.636
0.624 0.448 0.648 0.655 0.564 0.455 0.715 0.661 0.709
0.667

a = 0.80 0.4 0.594 0.406 0.412 0.424 0.43 0.418 0.588 0.436 0.6
0.442 0.606 0.612 0.618 0.642 0.448 0.63 0.636 0.582
0.624 0.648 0.655 0.455 0.661 0.576 0.667 0.715 0.709
0.721 0.673

a = 0.75 0.4 0.406 0.412 0.424 0.418 0.43 0.436 0.442 0.448 0.594
0.6 0.606 0.642 0.618 0.612 0.63 0.636 0.624 0.648 0.455
0.588 0.655 0.661 0.667 0.461 0.582 0.673 0.715 0.679
0.709

a = 0.70 0.4 0.406 0.412 0.424 0.418 0.43 0.436 0.442 0.448 0.642
0.455 0.63 0.618 0.636 0.612 0.648 0.606 0.624 0.6 0.655
0.594 0.661 0.461 0.667 0.588 0.673 0.679 0.715 0.685
0.721

a = 0.65 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.642 0.636 0.63 0.648 0.618 0.624 0.612 0.655 0.606 0.6
0.661 0.461 0.667 0.594 0.673 0.679 0.467 0.685 0.715
0.588

a = 0.60 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.642 0.636 0.648 0.63 0.618 0.655 0.624 0.612 0.461
0.661 0.606 0.667 0.6 0.673 0.594 0.679 0.467 0.685
0.715 0.721

a = 0.55 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.642 0.648 0.636 0.63 0.655 0.461 0.624 0.618 0.612
0.661 0.606 0.667 0.673 0.6 0.467 0.679 0.685 0.594
0.715 0.691

Continued on next page
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Table A.6 – Continued from previous page

a values Band wavelengths (µm)

a = 0.50 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.642 0.648 0.461 0.636 0.63 0.655 0.624 0.618 0.661
0.612 0.667 0.606 0.673 0.467 0.6 0.679 0.685 0.691
0.715 0.721

a = 0.45 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.642 0.648 0.636 0.655 0.63 0.624 0.618 0.661
0.612 0.667 0.467 0.606 0.673 0.679 0.6 0.685 0.691
0.473 0.721

a = 0.40 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.642 0.648 0.636 0.655 0.63 0.624 0.661 0.618
0.667 0.612 0.467 0.673 0.606 0.679 0.685 0.6 0.473
0.691 0.721

a = 0.35 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.642 0.655 0.636 0.63 0.624 0.661 0.618
0.667 0.467 0.612 0.673 0.606 0.679 0.685 0.473 0.6
0.691 0.721

a = 0.30 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.642 0.655 0.636 0.63 0.661 0.624 0.618
0.467 0.667 0.612 0.673 0.606 0.679 0.685 0.473 0.6
0.691 0.721

a = 0.25 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.642 0.655 0.636 0.63 0.661 0.624 0.467
0.618 0.667 0.612 0.673 0.606 0.679 0.473 0.685 0.691
0.6 0.697

a = 0.20 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.642 0.655 0.636 0.661 0.63 0.624 0.467
0.618 0.667 0.612 0.673 0.679 0.606 0.473 0.685 0.691
0.6 0.697

a = 0.15 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.655 0.642 0.636 0.661 0.63 0.467 0.624
0.667 0.618 0.673 0.612 0.679 0.606 0.473 0.685 0.691
0.6 0.697

a = 0.10 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.655 0.642 0.636 0.467 0.661 0.63 0.624
0.667 0.618 0.673 0.612 0.679 0.473 0.606 0.685 0.691
0.697 0.721

a = 0.05 0.4 0.406 0.412 0.418 0.424 0.43 0.436 0.442 0.448 0.455
0.461 0.648 0.655 0.642 0.467 0.636 0.661 0.63 0.624
0.667 0.618 0.673 0.612 0.679 0.473 0.606 0.685 0.691
0.697 0.721
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Figure A.21: Results for set with median target abundance of 4.46%.

Figure A.22: Results for set with median target abundance of 5.56%.

A.3 Orange Lifeboat Analysis

Figures A.21 - A.27 showing utility vs number of bands for orange lifeboat
in ocean. ACE1, SMF1, and SAM1 are results for bands calculated using
TBC using the three target detection methods. ACE2, SMF2, and SAM2
are results for bands calculated using BOTS.
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Figure A.23: Results for set with median target abundance of 6.29%.

Figure A.24: Results for set with median target abundance of 8.17%.
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Figure A.25: Results for set with median target abundance of 9.41%.

Figure A.26: Results for set with median target abundance of 10.34%.
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Figure A.27: Results for set with median target abundance of 11.01%.

A.4 Yellow Wood Analysis

Figure A.28 showing utility vs number of bands for yellow wood target.
The results show the average of the three target detection methods and
four images. Method 1 is the TBC method. Method 2 is the BOTS
method.

A.5 Green Wood Analysis

Figures A.29 - A.37 showing utility vs number of bands for green wood
target. Max value in each image shows the utiltiy value obtained using all
the bands. ACE1, SMF1, and SAM1 are results for bands selected using
TBC. ACE2, SMF2, and SAM2 are results for bands selected using BOTS.
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Figure A.28: Utility vs Number of Bands for Yellow Wood target.
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Figure A.29: a=0.1

Figure A.30: a=0.15
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Figure A.31: a=0.2

Figure A.32: a=0.25
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Figure A.33: a=0.3

Figure A.34: a=0.4
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Figure A.35: a=0.5

Figure A.36: a=0.6
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Figure A.37: a=0.7



B
Utility Selection Criteria

These are example situations in during operations that would drive
decisions for the minimum utility required that would lead to the feasibility
determination. This is only a guideline to illustrate the relationship
between required utility, situation, and operational requirements.
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Table B.1: Operational Criterion for Minimum Utility Value Selection

Utility Target Cross Cue Asset Availability

0.1 Stationary
target

Assets for verification available within 24
hours

0.3 Stationary
target

Assets for verification available within 48
hours

0.4 Mobile
target

Concurrent target presence verification
possible or cross cue available within 1 hour

0.5 Stationary
target

Assets for verification available within 72
hours

0.6 Mobile
target

Cross cue assets available within 4 hours

0.7 Permanent
target

Limited or no assets available for verification

0.8 Mobile
targets

Cross cue assets available within 12 hours



C
Recommendation Step by Step

This appendix provides more details along with the step by step
instruction to reaching the set of system recommendations for the example
mission scenario introduced in Chapter 1 with the assessment presented in
Chapter 8. Figure C.1 shows the recap of the example mission.

Mission: Collect weekly images from June to July to detect presence of
green vehicles in training areas of Ft Knox, KY.
Target - Green HMMWV
Location - Ft Knox, KY (Mostly vegetation, with urban area)
Situation - The presence of a target is easily verifiable by other intelligence
sources. Data processing capabilities for weekly images are a maximum of
15 bands.

Figure C.1: Example mission scenario with green vehicle target in suburban
background.
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Step 1: Determine the type of background and the scene
complexity metric to use. This is a non-homogenous scene, and so Vscene is
a more appropriate metric to use than Γ. It is similar to subset scenes 2, 3,
and 8 of the Trona, CA Suburban scene. Figure C.2 shows a Google earth
image of the location and the similar subset scenes.

Figure C.2: Google earth image of Ft Knox, KY. with comparable subset
scenes from the complex scene analyzed.
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Step 2: Estimate the scene complexity. Subset scenes 2, 3, and 8
had Vscene = 0.6 when rendered at 5m GSD. Figure C.3 shows the scene
volumes of the three subset scenes that were determined to be similar to
the mission location.

Figure C.3: Scene volume values for the Trona, CA Suburban scene. Subset
scene 2, 3, and 8 had a scene volue of 0.6 when rendered at 5m GSD.
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Step 3: Estimate TA saturation point and compare it to the
target size. The grass background and green target had a saturation point
at TA = 16%. Figure C.4 shows the trade curves of the grass background
utility prediction for the showing the saturation point of the green target.
The HMMWV is usually 4.5x2.0m in size which produces a maximum TA
value of 36% at 5m GSD. Therefore, it is capable of generating a target fill
fraction distribution above the saturation point.

Figure C.4: TA saturation points for the grass background composition. For
the green target, the saturation point was at TA = 0.16.
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Step 4: Estimate ideal SNR value. For the green target against
the grass background, there was a sharp increase in the predicted utility
when SNR = 20, and the utility increase slowed for higher SNR values.
Therefore the recommended noise parameter for this mission was SNR =
20. Figure C.5 shows the trade curves for the grass background utility
prediction for the noise with sharp increase up to SNR = 20.

Figure C.5: Utility vs SNR curves. Shows SNR = 20 is best for this mission
with limited increase in utility for higher SNR values.
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Step 5: Determine the maximum number of bands mission
resources would allow based on the required temporal frequency and
computational resources available. For this mission that required one
image per week, the maximum number of bands was 15. Figure C.6 shows
that the predicted utility for the green target using 15 bands was 0.1,
which met the minimum utility requirement. Therefore this mission was
determined to be feasible.

Figure C.6: Utility vs Number of Bands showing that utility of 0.1 is
achieved with 15 bands.
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Step 6: Determine the estimated ξ value at the predicted
saturation point using the Vscene at reference GSD. The recommended
system parameters should yield the required utility at the estimated ξ
value.

ξestimated =
TA

Vscene
=

0.16

0.6
= 0.27 (C.1)

Step 7: Look up the actual ξ value for each GSD for the required
utility.

Figure C.7 shows the minimum ξ value that achieves utility ≥ 0.1
is ξ = 0.7. Therefore a GSD of 10m did not produce the required utility
for a reasonable ξ value which indicates the TAmean and Vscene combined
value.

Figure C.7: Utility vs ξ curve from assessment. Showing images with 10m
GSD requires ξ ≥ 0.7 to achieve utility of 0.1.

Figure C.8 shows that the images rendered at 5m and 15m GSD
was able to achieve utility = 0.1 when ξ ≥ 0.3, which is a reasonable
TAmean and Vscene combination that was close to the estimated ξ value
based on the saturation point. There was limited difference between the
utility curves between the two GSDs, but the utility of the 5m GSD curves
increased faster as ξ increased. Therefore the recommended GSD for this
mission was 5m. This mission was determined to be feasible and the
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recommended system parameters were SNR = 20, Bopt = 15, EFL =
315mm, and Sensor Height = 350km.
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Figure C.8: Utility vs ξ curves from assessment. Shows images with 5m and
15m GSD only requires ξ ≥ 0.3 to achieve utility of 0.1.



Acronyms

ACE Adaptive Cosine Estimator. 90, 117, 118, 163

AUC Area Under the Curve. 22, 37, 89, 145, 158–161

BOTS Bands from Only the Target Spectrum. 79, 81, 89, 90, 94, 95, 98,
109, 111, 125, 131

BRDF Bi-directional Reflectance Distribution Function. 49, 50

CEM Constrained Energy Minimzer. 74–76, 81, 90, 118, 127, 177

CFPR Constant False Alarm Rate. 22

CPU Central Processing Unit. 71, 77, 110

DIRSIG Digital Imaging and Remote Sensing Image Generation. 48–51,
55, 58, 59, 79, 81, 83, 86, 89, 90, 93, 95, 99, 100, 106, 108, 109, 111,
124, 126–129, 132, 139–141, 147, 173

EFL Effective Focal Length. 14, 52, 54–56, 58, 59

FASSP Forecasting and Analysis of Spectro-radiometric System
Performance. 40, 41, 43, 79, 81, 83, 88, 90, 93, 95, 97, 99, 100, 106,
108, 111, 114, 118, 119, 124, 126, 127, 129, 130, 132, 139–141, 143,
147, 149, 153, 168, 173, 177

FPR False Positive Rate. 22, 23, 37, 42, 89, 90, 111, 140, 143, 149, 151,
158, 161, 169

FWHM Full-Width Half-Max. 29, 30, 35

GIQE General Image Quality Equation. 13, 15, 16, 18–20, 23, 36–38, 51,
52, 54, 56, 58

GRD Ground Resolved Distance. 36

216



List of Abbreviations 217

GSD Ground Sampled Distance. 13–15, 19, 23–25, 38, 39, 45, 52, 58, 59,
84, 97, 100, 104–106, 111–113, 117, 128–130, 133, 135, 136, 138, 149,
151, 156–161, 164, 167–172, 174, 176

GSUM General Spectral Utility Metric. 39

HSI Hyperspectral Images. vi, 2, 3, 5, 28, 33, 60–63, 65, 66, 69–71, 73, 75,
77, 79, 83, 85, 95, 133

HYDICE Hyperspectral Digital Imagery Collection Experiment. 38, 74,
79, 83, 84, 94, 127, 131, 133, 149

ICA Independent Component Analysis. 70, 71

ID Information Divergence. 79, 90, 94

LCMV Linearly Constrained Minimum Variance. 76, 79, 90, 94

MODTRAN Moderate Resolution Transmission. 41, 51

MSI Multispectral Images. 60–62

MTF Modulation Transfer Function. 18

NDVI Normalized Difference Vegetation Index. 61

NESR Noise Equivalent Spectral Radiance. 34, 35, 45

NIIRS National Image Interpretability Rating Scale. 13–15, 23, 52, 56, 58

NMF Non-negative Matrix Factorization. 69, 70, 74

PCA Principal Component Analysis. 65, 66, 69–71, 74, 75

PDA Perfect Detection Area. 22

PSF Point Spread Function. 24, 55, 100, 109, 128, 129

RER Relative Edge Response. iii, 13, 18, 19, 24, 30, 52, 55, 56, 58, 59

ROC Receiver Operating Characteristic. 22, 40–42, 81, 88–90, 97, 109,
113, 117, 127, 138, 140, 141, 145, 147, 156, 158–163

SAM Spectral Angle Mapper. 90, 117, 163

SCR Signal to Clutter Ratio. 27, 37



List of Abbreviations 218

SFPR Specified False Positive Rate. 22, 38

SHARE 2012 SpectTIR Hyperspectral Airborne Rochester Experiment
2012. 79, 81, 83, 84, 88, 90

SMF Spectral Matched Filter. 81, 90, 117, 118, 127, 139, 163

SNR Signal-to-Noise Ratio. 13, 16–19, 34, 36–38, 41, 42, 45, 52–54, 58,
88, 97, 100, 109, 110, 131, 132, 149, 153, 156, 171

SQE Spectral Quality Equation. 38

SQRS Spectral Quality Rating Scale. 36–38

SRER Spectral Relative Edge Response. 30, 35

SSV Spectral Similarity Value. 26, 27, 45, 125, 148, 153, 161, 168, 176

SUMO Simulation of Urban Mobility. 134, 136

SUV Sports Utility Vehicle. 135

SVD Singular Value Decomposition. 65

TA Target Abundance or Target Fill Fraction. 24, 25, 40–42, 81, 86, 97,
99, 100, 102–106, 111–114, 127–133, 135, 136, 140, 141, 143, 145, 148,
149, 156–158, 161–163, 167–172, 175–177

TBC Target and Background Comparison. 79, 90, 94, 95

TPR True Positive Rate. 22, 38, 41, 89, 90

VNIR Visible Near Infrared. 32, 38, 79, 121, 122, 131, 149, 176

WASP Wildfire Airborne Sensor Program. 83, 84



Bibliography

[1] Wheelon, A. D., “Corona: The First Reconnaissance Satellites,”
Physics Today 50, 24–30 (Feb. 1997).

[2] Van Zyl, J. and Kim, Y., [Synthetic aperture radar polarimetry ], JPL
space science and technology series, Wiley, Hoboken, NJ, 1st ed ed.
(2011).

[3] Stefanou, M. S., Spectral image utility for target detection applications,
PhD Thesis, Rochester Institiute of Technology (Aug. 2008).

[4] Oesa A. Weaver, An analytical framwork for assessing efficacy of
small satellites in performing imaging missions, PhD thesis, Rochester
Institiute of Technology, Rochester, NY, USA (July 2015).

[5] Riot, Vincent, “Space Program Innovation, One Small Satellite at a
Time,” Science and Technology Review , 4–11 (Apr. 2019).

[6] Fiete, R. D., “Image quality and λFN/p for remote sensing systems,”
Optical Engineering 38, 1229 (July 1999).

[7] Shen, S. S., “Spectral quality equation relating collection parameters
to material identification performance,” in [SPIE Conference
Proceedings Defense and Security ], Shen, S. S. and Lewis, P. E., eds.,
448 (June 2005).

[8] Messinger, D. W., Ziemann, Amanda, Baesner, Bill, and Schlamm,
Ariel, “Metrics of spectral image complexity with application to large
area search,” Optical Engineering 51, 036201 (Mar. 2012).

[9] Kerekes, J. and Landgrebe, D., “Simulation of optical remote sensing
systems,” IEEE Transactions on Geoscience and Remote Sensing 27,
762–771 (Nov. 1989).

[10] Kerekes, John P. and Landgrebe, David A., “An Analytical Model of
Earth-Observational Remote Sensing Systems,” IEEE Transactions
on Systems, Man, and Cybernetics 21, 125–133 (Feb. 1991).

219



BIBLIOGRAPHY 220

[11] Kerekes, John and Landgrebe, David, “Parameter Trade Offs for
Imaging Spectroscopy Systems,” IEEE Transactions on Geoscience
and Remote Sensing 29, 57–65 (Jan. 1991).

[12] Cao, X., Zhang, F., Lin, X., Sun, Z., and Xu, G., “Optical remote
sensing small satellite project,” Acta Astronautica 54, 139–143 (Jan.
2004).

[13] Jafarsalehi, A., Fazeley, H., and Mirshams, M., “Conceptual Remote
Sensing Satellite Design Optimization under uncertainty,” Aerospace
Science and Technology 55, 377–391 (Aug. 2016).

[14] Li, N., Huang, P., Zhao, H., and Jia, G., “The quantitative evaluation
of application of hyperspectral data based on multi-parameters joint
optimization,” Science China Technological Sciences 57, 2249–2255
(Nov. 2014).

[15] Jason West, Matched filter stochastic background characterization for
hyperspectral target detection, Master’s thesis, Rochester Institiute of
Technology (2005).

[16] Adam Cisz, Performance comparison of hyperspectral target detection
algorithms, Master’s thesis, Rochester Institiute of Technology (2006).

[17] Adam Grimm, Comparison of hyperspectral imagery target detection
algorithm chains, Master’s thesis, Rochester Institiute of Technology
(2005).

[18] Leachtenauer, J. C., Malila, W., Irvine, J., Colburn, L., and Salvaggio,
N., “General Image-Quality Equation: GIQE,” Applied Optics 36,
8322 (Nov. 1997).

[19] Leigh Harrington, David Blanchard, James Salacain, Stephen Smith,
and Philip Amanik, “General Image Quality Equation; GIQE version
5,” (Sept. 2015).

[20] Tantalo, T., “Comparison of SNR image quality metrics for remote
sensing systems,” Optical Engineering 40, 574 (Apr. 2001).

[21] Dimitris Manolakis, David Marden, and Gary A. Shaw,
“Hyperspectral Image Processing for Automatic Target Detection
Applications,” Lincoln Laboratory Journal 14(1), 79 – 116 (2003).

[22] Richards, J. A. and Jia, X., [Remote sensing digital image analysis:
an introduction ], Springer, Berlin (2006). OCLC: 225365047.



BIBLIOGRAPHY 221

[23] Sweet, J. N., Sharp, M. H., and Granahan, J. C., “Hyperspectral
analysis toolset,” in [SPIE Conference Proceedings Europe Remote
Sensing ], Fujisada, H., Lurie, J. B., Ropertz, A., and Weber, K., eds.,
396–407 (Feb. 2001).

[24] Kerekes, J. P., Cisz, A. P., and Simmons, R. E., “A comparative
evaluation of spectral quality metrics for hyperspectral imagery,” in
[SPIE Conference Proceedings Defense and Security ], Shen, S. S. and
Lewis, P. E., eds., 469 (June 2005).

[25] Martin, L., Vrabel, J., and Leachtenauer, J., “Metrics for Assessment
of Hyperspectral Image Quality and Utility,” Proceedings of
International Symposium of Spectral Sensing Research (1999).

[26] Eismann, M. T., [Hyperspectral remote sensing ], SPIE Press,
Bellingham, Wash (2012).

[27] Stefanou, M. and Kerekes, J., “Image-Derived Prediction of Spectral
Image Utility for Target Detection Applications,” IEEE Transactions
on Geoscience and Remote Sensing 48, 1827–1833 (Apr. 2010).

[28] Kerekes, J. P. and Hsu, S. M., “Spectral quality metrics for VNIR and
SWIR hyperspectral imagery,” in [SPIE Conference Proceedings
Defense and Security ], Shen, S. S. and Lewis, P. E., eds., 549 (Aug.
2004).

[29] Shen, S. S., “Spectral quality equation relating collection parameters
to object/anomaly detection performance,” in [SPIE Conference
Proceedings AeroSense ], Shen, S. S. and Lewis, P. E., eds., 29 (Sept.
2003).

[30] Simmons, R. E., Elder, T. D., Stewart, D. J., Cincotta, E. J.,
Kennedy, C. S., and Van Nostrand, R. C., “General spectral utility
metric for spectral imagery,” in [SPIE Conference Proceedings Defense
and Security ], Shen, S. S. and Lewis, P. E., eds., 457 (June 2005).

[31] Kerekes, J. and Baum, J., “Spectral imaging system analytical model
for subpixel object detection,” IEEE Transactions on Geoscience and
Remote Sensing 40, 1088–1101 (May 2002).

[32] Berk, A., Bernstein, L., Anderson, G., Acharya, P., Robertson, D.,
Chetwynd, J., and Adler-Golden, S., “MODTRAN Cloud and
Multiple Scattering Upgrades with Application to AVIRIS,” Remote
Sensing of Environment 65, 367–375 (Sept. 1998).



BIBLIOGRAPHY 222

[33] Kerekes, J., “Model-based Exploration of HSI Spaceborne Sensor
Requirements with Application Performance as the Metric,” in [2006
IEEE International Symposium on Geoscience and Remote Sensing ],
1613–1616, IEEE, Denver, CO, USA (July 2006).

[34] Ientilucci, E. J., “Oblique hyperspectral radiometric phenomenology
study,” in [SPIE Conference Proceedings Europe Remote Sensing ],
Bruzzone, L., Notarnicola, C., and Posa, F., eds., 74770N (Sept. 2009).

[35] Schott, J., Brown, S., Raqueño, R., Gross, H., and Robinson, G., “An
Advanced Synthetic Image Generation Model and its Application to
Multi/Hyperspectral Algorithm Development,” Canadian Journal of
Remote Sensing 25, 99–111 (June 1999).

[36] Schott, J. R., [Remote sensing: the image chain approach ], Oxford
University Press, New York, 2nd ed ed. (2007).

[37] Han, S. and Kerekes, J. P., “Overview of Passive Optical
Multispectral and Hyperspectral Image Simulation Techniques,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 10, 4794–4804 (Nov. 2017).

[38] Govaerts, Y. and Verstraete, M., “Raytran: a Monte Carlo ray-tracing
model to compute light scattering in three-dimensional heterogeneous
media,” IEEE Transactions on Geoscience and Remote Sensing 36,
493–505 (Mar. 1998).

[39] Jensen, H. W., [Realistic image synthesis using photon mapping ], A K
Peters, Natick, MA (2001).

[40] Goodenough, A. A. and Brown, S. D., “DIRSIG5: Next-Generation
Remote Sensing Data and Image Simulation Framework,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 10, 4818–4833 (Nov. 2017).

[41] Ientilucci, E. J. and Brown, S. D., “Advances in wide-area
hyperspectral image simulation,” in [SPIE Conference Proceedings
Targets and Backgrounds IX ], Watkins, W. R., Clement, D., and
Reynolds, W. R., eds., 5075, 110, SPIE, Orlando, FL (Sept. 2003).

[42] Hapke, B., “Bidirectional reflectance spectroscopy,” Icarus 67,
264–280 (Aug. 1986).

[43] Hapke, B., “Bidirectional reflectance spectroscopy,” Icarus 195,
918–926 (June 2008).



BIBLIOGRAPHY 223

[44] Litvinov, P., Hasekamp, O., Cairns, B., and Mishchenko, M.,
“Reflection models for soil and vegetation surfaces from
multiple-viewing angle photopolarimetric measurements,” Journal of
Quantitative Spectroscopy and Radiative Transfer 111, 529–539 (Mar.
2010).

[45] Meng, Q., Sun, Y., Xue, X., Gu, X., Vatseva, R., Zhang, J.-h., and
Jancso, T., “Study on a bidirectional reflectance distribution function
inversion model based on HJ-1 CCD imagery,” Environmental Earth
Sciences 75 (Sept. 2016).

[46] Berk A., Bernstein, L. S., and Robertson, D. C., [MODTRAN: a
moderate resolution model for LOWTRAN7 ], Air Force Geopysics
Lab, Hanscom AFB, MA (1989).

[47] Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and
van den Bosch, J., “MODTRAN6: a major upgrade of the
MODTRAN radiative transfer code,” in [SPIE Conference
Proceedings Defense and Security ], Velez-Reyes, M. and Kruse, F. A.,
eds., 90880H (June 2014).

[48] Han, S., Higbee, S., Siegel, L., and Kerekes, J. P., “Simulation
techniques for image utility analysis,” in [SPIE Conference
Proceedings ], 25, SPIE (May 2018).

[49] Gandhi, G. M., Parthiban, S., Thummalu, N., and Christy, A., “Ndvi:
Vegetation Change Detection Using Remote Sensing and Gis – A Case
Study of Vellore District,” Procedia Computer Science 57, 1199–1210
(2015).

[50] An, J., Zhang, X., Zhou, H., and Jiao, L., “Tensor-Based Low-Rank
Graph With Multimanifold Regularization for Dimensionality
Reduction of Hyperspectral Images,” IEEE Transactions on
Geoscience and Remote Sensing 56, 4731–4746 (Aug. 2018).

[51] Zhang, M., Du, B., Zhang, L., and Li, X., “A Low-Rank Tensor
Decomposition Based Hyperspectral Image Compression Algorithm,”
in [Advances in Multimedia Information Processing - PCM 2016 ],
Chen, E., Gong, Y., and Tie, Y., eds., 9916, 141–149, Springer
International Publishing, Cham (2016).

[52] Qu, J., Lei, J., Li, Y., Dong, W., Zeng, Z., and Chen, D., “Structure
Tensor-Based Algorithm for Hyperspectral and Panchromatic Images
Fusion,” Remote Sensing 10, 373 (Mar. 2018).



BIBLIOGRAPHY 224

[53] Huber-Lerner, M., Hadar, O., Rotman, S. R., and Huber-Shalem, R.,
“Compression of Hyperspectral Images Containing a Subpixel
Target,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 7, 2246–2255 (June 2014).

[54] Tipping, M. and Bishop, C., “Mixtures of probabilistic principal
component analysers,” Neural Computation , 443 – 482 (1999).

[55] Kerekes, J. P., Ludgate, K., Giannandrea, A., Raqueno, N. G., and
Goldberg, D. S., “SHARE 2012: subpixel detection and unmixing
experiments,” in [SPIE Conference Proceedings Defense, Security, and
Sensing ], Shen, S. S. and Lewis, P. E., eds., 87430H (May 2013).

[56] Jia, S. and Qian, Y., “Constrained Nonnegative Matrix Factorization
for Hyperspectral Unmixing,” IEEE Transactions on Geoscience and
Remote Sensing 47, 161–173 (Jan. 2009).

[57] Sun, W., Li, W., Li, J., and Lai, Y. M., “Band selection using sparse
nonnegative matrix factorization with the thresholded Earth’s mover
distance for hyperspectral imagery classification,” Earth Science
Informatics 8, 907–918 (Dec. 2015).

[58] Hyvärinen, A. and Oja, E., “Independent component analysis:
algorithms and applications,” Neural Networks 13, 411–430 (June
2000).

[59] Jing Wang and Chein-I Chang, “Independent component
analysis-based dimensionality reduction with applications in
hyperspectral image analysis,” IEEE Transactions on Geoscience and
Remote Sensing 44, 1586–1600 (June 2006).

[60] Wang, L., Li, H.-C., Xue, B., and Chang, C.-I., “Constrained Band
Subset Selection for Hyperspectral Imagery,” IEEE Geoscience and
Remote Sensing Letters 14, 2032–2036 (Nov. 2017).

[61] Rickard, L. J., Basedow, R. W., Zalewski, E. F., Silverglate, P. R.,
and Landers, M., “HYDICE: an airborne system for hyperspectral
imaging,” in [Optical Engineering and Photonics in Aerospace
Sensing ], Vane, G., ed., 173 (Sept. 1993).

[62] Karlholm, J. and Renhorn, I., “Wavelength band selection method for
multispectral target detection,” Applied Optics 41, 6786 (Nov. 2002).

[63] Cover, T. M. and Thomas, J. A., [Elements of information theory ],
Wiley-Interscience, Hoboken, N.J, 2nd ed ed. (2006). OCLC:
ocm59879802.



BIBLIOGRAPHY 225

[64] Chein-I Chang, Qian Du, Tzu-Lung Sun, and Althouse, M., “A joint
band prioritization and band-decorrelation approach to band selection
for hyperspectral image classification,” IEEE Transactions on
Geoscience and Remote Sensing 37, 2631–2641 (Nov. 1999).

[65] Chein-I Chang and Su Wang, “Constrained band selection for
hyperspectral imagery,” IEEE Transactions on Geoscience and
Remote Sensing 44, 1575–1585 (June 2006).

[66] Han, S., Kerekes, J., Higbee, S., Siegel, L., and Pertica, A., “Band
Selection Method for Subpixel Target Detection Using Only the
Target Signature,” Applied Optics , 14 (2019).

[67] Cui, Z., Kerekes, J., DeAngelis, C., Brown, S., and Nance, C. E., “A
comparison of real and simulated airborne hyperspectral imagery,” in
[2014 IEEE Western New York Image and Signal Processing
Workshop (WNYISPW) ], 19–22, IEEE, Rochester, NY, USA (Nov.
2014).

[68] Bloechl, K., De Angelis, C., Gartley, M., Kerekes, J., and Nance,
C. E., “A comparison of real and simulated airborne multisensor
imagery,” in [SPIE Conference Proceedings Defense and Security ],
Velez-Reyes, M. and Kruse, F. A., eds., 90880G (June 2014).

[69] Giannandrea, A., Raqueno, N., Messinger, D. W., Faulring, J.,
Kerekes, J. P., van Aardt, J., Canham, K., Hagstrom, S., Ontiveros,
E., Gerace, A., Kaufman, J., Vongsy, K. M., Griffith, H., Bartlett,
B. D., Ientilucci, E., Meola, J., Scarff, L., and Daniel, B., “The
SHARE 2012 data campaign,” in [SPIE Conference Proceedings
Defense, Security, and Sensing ], Shen, S. S. and Lewis, P. E., eds.,
87430F (May 2013).

[70] Canham, K., Goldberg, D., Kerekes, J., Raqueno, N., and Messinger,
D., “SHARE 2012: large edge targets for hyperspectral imaging
applications,” in [SPIE Conference Proceedings Defense, Security, and
Sensing ], Shen, S. S. and Lewis, P. E., eds., 87430G (May 2013).

[71] Sun, Y. and Kerekes, J., “An analysis task comparison of uncorrected
vs. geo-registered airborne hyperspectral imagery,” in [SPIE
Conference Proceedings Defense and Security ], Velez-Reyes, M. and
Kruse, F. A., eds., 94720I (May 2015).

[72] Exelis Visual Information Solutions, Boulder Colorado, “Environment
for Visualizing Images.”



BIBLIOGRAPHY 226

[73] Kemker, R., Salvaggio, C., and Kanan, C., “Algorithms for semantic
segmentation of multispectral remote sensing imagery using deep
learning,” ISPRS Journal of Photogrammetry and Remote
Sensing 145, 60–77 (Nov. 2018).

[74] The Astropy Collaboration, Robitaille, T. P., and Tollerud, E. J.,
“Astropy: A community Python package for astronomy,” Astronomy
& Astrophysics 558, A33 (Oct. 2013).

[75] The Astropy Collaboration, Price-Whelan, A. M., and Donath, A.,
“The Astropy Project: Building an Open-science Project and Status
of the v2.0 Core Package,” The Astronomical Journal 156, 123 (Aug.
2018).

[76] Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod,
Y.-P., Hilbrich, R., Lucken, L., Rummel, J., Wagner, P., and
WieBner, E., “Microscopic Traffic Simulation using SUMO,” in [2018
21st International Conference on Intelligent Transportation Systems
(ITSC) ], 2575–2582, IEEE, Maui, HI (Nov. 2018).

[77] Hilbrich, R., “SUMO - Simulation of Urban MObility DLR - Institute
of Transporation.”

[78] Presnar, M. D., Raisanen, A. D., Pogorzala, D. R., Kerekes, J. P., and
Rice, A. C., “Dynamic scene generation, multimodal sensor design,
and target tracking demonstration for hyperspectral/polarimetric
performance-driven sensing,” in [SPIE Conference Proceedings
Defense, Security, and Sensing ], 76720T (Apr. 2010).

[79] Han, S., Farfard, A., Kerekes, J., Gartley, M., Ientilucci, E., Savakis,
A., Law, C., Parhan, J., Turek, M., Fieldhouse, K., and Rovito, T.,
“Efficient generation of image chips for training deep learning
networks,” in [SPIE Conference Proceedings Defense and Security ],
10202, 1020203 (May 2017).


	Utility Analysis for Optimizing Compact Adaptive Spectral Imaging Systems for Subpixel Target Detection Applications
	Recommended Citation

	Introduction
	Motivation
	Imaging System Context
	Semantics
	Previous System Design Processes
	Objectives
	Example Mission
	Overview

	Panchromatic Image Quality
	National Image Interpretability Rating Scale
	Ground Sampled Distance
	Signal-to-Noise Ratio
	Relative Edge Response
	Summary

	Spectral Image Utility
	Utility Assessment Metric
	Spatial Resolution vs. Scene Complexity
	Spectral Separability
	Spectral Fidelity
	Spectral Sampling Interval
	Spectral Relative Edge Response
	Spectral Calibration Accuracy
	Spectral Fidelity Summary

	Optimal Number of Bands
	Noise Equivalent Spectral Radiance
	Spectral Image Utility Prediction
	Regression Approach
	Spectral-Spatial Confidence
	Forecasting and Analysis of Spectro-radiometric System Performance
	Image-derived Spectral Image Utility Approach
	Prediction Methods: Advantages and Disadvantages

	Summary

	Simulation
	Physics-based Simulation
	Digital Imaging and Remote Sensing Image Generation
	Sub-Models for Single Pixel Radiance Calculation
	Surface Reflectance and Emissivity of Materials
	Atmospheric Effects

	Simulation Validation
	Scene Design
	Ground Sampled Distance Calculation
	Signal to Noise Ratio Calculation
	Relative Edge Response Calculation
	GIQE Calculation

	Summary

	Band Selection
	Definition: HSI vs MSI
	Data Representation Methods
	Geometrical Representation
	Statistical Representation

	Dimension Reduction Methods
	Principal Component Analysis
	Non-negative Matrix Factorization
	Independent Component Analysis

	Band Selection Methods
	Target and Background Comparison (TBC) Method
	Information Divergence (ID) Method
	Linearly Constrained Minimum Variance (LCMV) based Method

	Motivation for Novel Band Selection Method
	Bands from Only the Target Spectrum (BOTS)
	Testing and Validation
	Testing with Utility Prediction Method (FASSP)
	Validation with Real Images (SHARE 2012)
	Cross-validation using simulation and perfect truth data
	Band Selection Results
	Computation Time
	BOTS Validation Summary

	Summary

	Overall Project Approach
	Analysis Methodology
	Prediction
	Spectral Image Simulation
	Spectral Imaging System Parameters: Sensor Characteristics
	Scene Development: Target and Background

	Assessment
	Post-processing
	Noise
	Band Selection
	Point Spread Function

	Spectral Utility Analysis
	Target Abundance
	Scene Complexity
	Detectability

	Target Detection
	Summary

	Process Description
	Operational Context
	Targets and Backgrounds
	Band Selection
	Comparison: Simple Scene
	Prediction
	Assessment

	Testing: Complex Scene
	Prediction
	Assessment

	Summary

	Results
	Open Ocean Scene Analysis
	Orange Target
	Black Target
	Summary

	Complex Scene Analysis
	Prediction
	Target Abundance
	Number of Bands
	Noise
	Background Complexity
	Prediction Summary

	Assessment
	Scene Complexity
	ROC Curves
	Target Detection Algorithms
	Detectability
	Summary

	Example Requirement Recommendation Flow Diagram
	Summary

	Summary
	Contributions
	Conclusions
	Future Research

	Coefficient Analysis for BOTS
	Bank Rankings
	Table of top 30 band wavelengths
	Orange Lifeboat Analysis
	Yellow Wood Analysis
	Green Wood Analysis

	Utility Selection Criteria
	Recommendation Step by Step

