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Efficient Techniques for Simultaneous

Variable Selection and Sensor Selection via

Convex Selection Inducing Penalties
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eMail: epfeqa@rit.edu

January 3, 2011

Abstract

This paper extends results from the traditional D-optimality machinery to derive an efficient tech-
nique for simultaneous variable selection and sensor selection. An important advantage of the
proposed technique is the convexity of the formulated optimization task along with a byproduct of
straightforward sparsity. The theoretical foundation of the proposed method is explored at great
length, and a variety of examples are provided to demonstrated the effectiveness of our technique.
Comparisons with existing techniques are offered that provide evidence as the superiority of our
technique on a variety of indicators.

Keywords: Variable Selection, Convex optimization, Bayesian analysis, Optimal Experimental Design,
Sensor selection, Sparsity, D-Optimality.

1 Introduction

Let x>
j ≡ (xj1, xj2, · · · , xjp) denote a p-dimensional vector of some observable characteristics of inter-

est. Consider a p-dimensional vector β = (β1, β2, · · · , βp)> of regression coefficients, then assume that
a response (measurement) Yj of interest at point xj can be written as

Yj = x>

j β + εj , j = 1, · · · , n.

Throughout this paper, we shall assume that the εj’s are i.i.d N(0, σ2). Note also that, for simplicity,
we have restricted ourselves to a model that passes through the origin. Under this homoscedastic
noise model, the maximum likelihood estimator β̂MLE of β is such that

β̂MLE =





n
∑

j=1

xjx
>

j





−1
n
∑

j=1

yjxj and cov(β̂MLE) = σ2





n
∑

j=1

xjx
>

j





−1

In traditional optimal experimental design, one has a set of n potential points of measurement or
sensors, and the goal is to choose those k sensors or points of measurement that yield the ”best”
estimation of β. For instance, with β̂MLE being an unbiased estimator, a reasonable criterion for
measuring the goodness of β̂MLE will naturally be based on its covariance matrix. In fact, we will
see later that all the three criteria used for measuring the optimality of the design will be based on
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functions of the covariance matrix of β̂MLE. The problem in optimal experimental design is then two-
fold: (i) Which k � n sensors or points of measurement to choose out of the n possible ones; and (ii)
How many times can each chosen sensor be used, while making the total number of uses at most equal
to k. One of the most commonly used optimality criteria is the so-called D-optimality that seeks to
choose those points that minimize the determinant of the covariance matrix of β̂MLE. In order words,
if each πj , j = 1, 2, · · · , n represents the frequency of use of measurement point j, then a k-point
D-optimal design is obtained as a solution to the relaxed sensor selection convex optimization problem

Maximize log det





n
∑

j=1

πjxjx
>

j





Subject to 0 ≤ πj ≤ 1, j = 1, · · · , n and

n
∑

j=1

πj = k

(1)

The k-point D-optimal design is therefore the subset ξ = {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n} that corre-
sponds to set of sensors or measurements with the k largest values of πj. (Joshi and Boyd 2009)
proposes an approximate solution obtained by making the constraint πj ∈ (0, 1) implicit in the objec-
tive function so that the resulting convex optimization problem is

Maximize log det





n
∑

j=1

πjxjx
>

j



+ κ





n
∑

j=1

log(πj) +

n
∑

j=1

log(1− πj)





Subject to

n
∑

j=1

πj = k.

(2)

Let wk ∈ (0, 1) denote the importance (relevance) of variable xk. Consider a diagonal matrix

W =











w1

w2

. . .

wp











= diag(w1,w2, · · · ,wp)

Instead of using the input vector (x1, x2, · · · , xp), consider using x̃j = Wxj , so that the response Yj

is now Yj = x>
j W

>β + εj, j = 1, · · · , n. Now, let

Pen(W ) =

[

p
∑

k=1

log(wk) +

p
∑

k=1

log(1−wk)

]

and X>X =





n
∑

j=1

xjx
>

j





Variable selection can be achieved by solving the problem formulated in equation (4).

E(W ) = log det
(

W>X>XW
)

+ νPen(W ) (3)

The corresponding optimization problem is











Maximize E(W )
Subject to 0 ≤ wk ≤ 1, k = 1, · · · , p

p
∑

k=1

wk = ω.

(4)

where ω is a fraction of p indicating the extend of parsimony desired. It is worth noting that that second
part of the constraint need not be specified in practice during the optimization procedure. Typically,
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one may want to use wk’s that are indicator variables, so as to perform straightforward selection.
However, it turns out that using real numbers between 0 and 1 has many advantages as discussed
by (Joshi and Boyd 2009) and (Fokoue and Goel 2009). For instance, values of ν less than 0.5 force
the resulting wk’s to be close to 0 or 1, thereby providing a strong determination of the importance
(relevance) of the corresponding variable. Another important advantage is both computational and
numerical: to see, let’s assume that p = 2 and n = 2. Then

g(W ) = W>X>XW =













w2

1

3
∑

i=1

x1ixi1 w1w2

3
∑

i=1

xi1xi2

w1w2

3
∑

i=1

xi2xi1 w2

2

3
∑

i=1

xi2x2i













Throughout the optimization procedure, it is crucial that this matrix remain well conditioned. Now, if
the wk’s are binary indicators, then the matrix cannot stay full rank. For instance, if w2 = 0, then the
matrix collapses to a scalar and the whole computation cannot continue. However, with wk ∈ (0, 1),
the matrix remains well conditioned throughout. This advantage is crucial to obtaining the desired
variable selection solution, but also makes the procedure doable throughout traditional methods like
Newton’s method.

Theorem 1 If A ∈ IRp×p and B ∈ IRp×p are two symmetric matrices, then

∂ log detA>BA

∂A
=

∂ log detA>BA

∂A>BA

∂A>BA

∂A
= (A>BA)−>

∂A>BA

∂A
= 2(A>BA)−>BA.

Therefore,

∂g(W )

∂W
= 2(W>X>XW )−1X>XW

Let D = X>X. Then, we need to derive

g′′(W) =
∂(W>DW )−1DW

∂W

=
∂(W>DW )−1

∂W
DW + (W>DW )−1

∂DW

∂W

=
∂(W>DW )−1

∂W>DW

∂W>DW

∂W
DW + (W>DW )−1D

= −(W>DW )−> ⊗ (W>DW )−12DWDW + (W>DW )−1D

Perhaps the most importance advantage of our proposed scheme lies in the fact that we have a convex
optimization problem, with the guarantee of a unique solution.

Ŵ = argmax
W

E(W )

This is even a better advantage because once could even think of simultaneously achieving variable
selection and the corresponding D-optimal design.

E(W ,Z) = log det
(

W>X>ZXW
)

+ νPen(W ) + κPen(Z) (5)

where

Pen(Z) =





n
∑

j=1

log(zj) +
n
∑

j=1

log(1− zj)



 (6)
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with Z = diag(z1, z2, · · · , zn) is the diagonal matrix whose entries act on the sensors. The convex
optimization problem to solve in order to achieve that is

















Maximize E(W ,Z)

Subject to 0 ≤ wk ≤ 1, k = 1, · · · , p and

p
∑

k=1

wk = ω.

0 ≤ zj ≤ 1, j = 1, · · · , n and
n
∑

j=1

zj = ζ.

(7)

The solution
(Ẑ) = argmax

W ,Z
E(W ,Z)

provides a total n + p estimates, all in (0, 1), with the ŵk’s allowing variable selection while the ẑj ’s
allow sensor selection. It is worth emphasizing once again that we have the great advantage of convex
optimization.

Theorem 2 If A ∈ IRp×p and B ∈ IRp×p are two symmetric matrices, then

∂ log detA>BA

∂B
=

∂ log detA>BA

∂A>BA

∂A>BA

∂B
= (A>BA)−>

∂A>BA

∂B
= A(A>BA)−>A>.

From this proposition, the derivative of h(Z) = log det
(

W>X>ZXW
)

is given by

∂h(Z)

∂Z
= XW

(

W>X>ZXW
)−1

W>X>.

Obviously, the case W = Ip corresponds to the traditional D-optimality.

1.1 Traditional approximate D-optimality

Let Z = diag(z1, z2, · · · , zn) be the diagonal matrix whose entries act on the sensors.

E(Z) = log det
(

τX>ZX +Q−1

)

+ κ





n
∑

j=1

log(zj) +
n
∑

j=1

log(1− zj)



 (8)

The convex optimization problem to solve in order to achieve that is

















Maximize E(Z)

Subject to 0 ≤ wk ≤ 1, k = 1, · · · , p and

p
∑

k=1

wk = ω.

0 ≤ zj ≤ 1, j = 1, · · · , n and

n
∑

j=1

zj = ζ.

(9)

The solution
(Ŵ , Ẑ) = argmax

W ,Z
E(W ,Z)

provides a total n + p estimates, all in (0, 1), with the ŵk’s allowing variable selection while the ẑj ’s
allow sensor selection. It is worth emphasizing once again that we have the great advantage of convex
optimization.

4



Theorem 3 If A ∈ IRp×p and B ∈ IRp×p are two symmetric matrices, then

∂ log detA>BA

∂B
=

∂ log detA>BA

∂A>BA

∂A>BA

∂B
= (A>BA)−>

∂A>BA

∂B
= A(A>BA)−>A>.

From this proposition, the derivative of h(Z) = log det
(

W>X>ZXW
)

is given by

∂h(Z)

∂Z
= XW

(

W>X>ZXW
)−1

W>X>.

Obviously, the case W = Ip corresponds to the traditional D-optimality.
Let Z = diag(z1, z2, · · · , zn) denote the diagonal matrix of sensor pointers (weights).

f(Z) = − log(det(τX>ZX+Q−1))− κ

n
∑

j=1

{log zj + log(1− zj)}

W =
[

X>ZX
]−1

and V = XWX>

Clearly,

∂ log(det(τX>ZX+Q−1))

∂Z
=

∂ log(det(τX>ZX+Q−1))

∂X>ZX

∂X>ZX

∂Z

= −vec((X>ZX)−>)>X> ⊗X>

= X(X>ZX)−1X>

As a result, the Jacobian would then be

∇f = −diag(V) − κ

(

1

zj
− 1

1− zj

)

Now,

∂X(X>ZX)−1X>

∂Z
=

∂X(X>ZX)−1X>

∂(X>ZX)−1

∂(X>ZX)−1

∂Z

= X⊗X
∂(X>ZX)−1

∂X>ZX

∂X>ZX

∂Z

= X⊗X(X>ZX)−> ⊗ (X>ZX)−1X> ⊗X>

= [X(X>ZX)−1X>]⊗ [X(X>ZX)−1X>]

Therefore, the Hessian in this case is given by

H = ∇∇f = V⊗V + κ diag

(

1

z2j
+

1

(1− zj)2

)

2 Numerical demonstrations and simulations

Example 1: In order to gain insights into the similarities and the differences between D-optimal
support points and relevant vectors, we first consider a simple univariate function

f(x) = −x+
√
2 sin

(

π3/2x2

)

with x ∈ [−1,+1].

With this, our data consists of pairs {(x1, y1), · · · , (xn, yn)}, where the xi’s are equally spaced points
in [−1,+1]. From a traditional D-optimal design standpoint, we need to specify a model in order to
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form the data matrix. A natural candidate in this case is the polynomial regression model. A quick
snoop at the scatterplot suggests that an 8th polynomial could capture the underlying function, i.e.,

Yj = β0 + β1xj + β2x
2

j + · · ·+ β8x
8

j + εj.

For the relevance vector machine, we used the gaussian radial basis function kernel, and found the
bandwidth of r = 0.5 to be adequate for this data.
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Figure 1: (left) D-optimal support points; (right) RVM relevant vectors.

For simplicity, the noise variance σ2 is assumed known and fixed at 0.22. As far as the similarities
go, most of the points are identical for both methods. Regarding the differences, the relevance vector
machine yields fewer points, for the obvious reason that it applies an extra constraint driven by
the response values and therefore achieves more tuning. Besides, it is important to recall that the
strongest motivation behind RVM is sparsity (fewer relevant vectors), while D-optimality sets out to
find a k-point design. The number is fixed in one case, while the minimum number is sought in the
other.

Example 2: As our second example, we take a look at the commonly used sinc function

f(x) =
sin 10x

10x
with x ∈ [−1,+1].

For this example, our noise variance is still σ2 = 0.22, but our response variable is now expressed as
a weighted sum of Legendre or Chebyshev orthogonal polynomials to which we add the homoscedastic
gaussian noise ε ∼ N(0, σ2) as before. Figure (2) shows the results obtained from both the D-
optimality criterion (left) and the Relevance vector machine approach (right). Again, while it is
obvious that the two methods are looking for the points that most affect the variance of the estimates
of the parameters, it seems clear that RVM retains fewer points than D-optimality. The reason is that
the results presented here are obtained using the generic D-optimality criterion of equation (??). We
solved this using CVX, a package for specifying and solving convex programs (Joshi and Boyd 2009).
Once the D-optimality criterion is enriched with the selection inducing Beta as in equation (??), a
more sparse solution should be expected. Also, the complete reformulation of equation should produce
results that are fairly identical to the output from the Relevance Vector Machine of (Tipping 2001).

3 Conclusion, discussion and future work

We have shown in this paper that the statistical problem underlying the now very popular Relevance
Vector machine can essentially formulated as an adaptive D-optimal design problem. The formulation
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Figure 2: (left) D-optimal support points; (right) RVM relevant vectors.

derived in this paper provides a crucial advantage in that the problem is now a convex optimization
task with the guarantee of a unique solution, as opposed to original RVM that is known not to yield a
unique solution. Our immediate future work is to numerically implement the new formulation and also
use our derived scheme on real life problems. Another aspect worth exploring is the reconstruction
of the primal problem corresponding to the dual definition of the RVM. Much later, we hope to
investigate the theoretical aspects of this connection a little further, and also consider exploring how
this affects Relevance Vector Classification.
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