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Abstract 
 

Heat generation in electronic hardware has become a major limiting factor in achieving maximum 

efficiency in modern computer parts.  Classically forced flow convection systems are used to remove this 

heat at high rates but can be costly to implement and can take up space that may be needed for other critical 

components.  In response to this, systems that use fewer parts scale in compact spaces are needed. In these 

situations, pool boiling as a heat transfer mechanism can excel.  Pool boiling removes heat through the 

evaporation of fluid. On a flat surface pool boiling is chaotic and this random nature may hinder its ability 

to remove heat as effectively.  The surface geometry of a pool boiling system can be altered to direct the 

flow of generated vapor bubbles to allow for increased heat flow and higher heat transfer performance.  By 

creating paths for the vapor to follow we can induce currents in the flow of cool fluid to the heater surface, 

creating a faster cycle of vapor production therefore cooling the heated surface at a faster rate. 

The purpose of this study is to investigate angled chip notches as an alternative to already existing high 

heat transfer surfaces in pool boiling.  These alternative chips may prove cheaper or easier to produce the 

alternative which may incorporate fine, hard to produce features or post process coatings like sintering and 

the addition of hydrophobic materials.  This study will examine the effect these specifically designed 

notches have on the interaction between the directed vapor and the liquid pathways they create.  By creating 

notches in the surface of the chip, vapor bubble is given sites to nucleate and form vapor pathways.  The 

angle walls on the one side of the notch will act as a wedge when water being driven toward the notch 

pushes the nucleating bubble up and out of the notch.  Combined with pairing nucleating notches up with 

another oppositely facing one the vapor bubble is departing earlier then it would have had it not been 

assisted by these surface elements.  With just these paired notches placed in row, an HTC improvement of 

158% was recorded, compared to a plain copper surface.  With the inclusion of microchannels this 

improvement was brought up to 161%. 
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NOMENCLATURE 

q = Heat Flux (W/cm2) 

k = Thermal Conductivity (W/m-K) 

T = Temperature (°C) 

ABBREVIATION 

CHF = Critical Heat Flux 

CNC = Computer Numerical Control 

HTC = Heat Transfer Coefficient 

c.t.c.  = Center to Center
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1. INTRODUCTION 
 

Modern computing is demanding more energy for large more elaborate calculations in an ever-shrinking 

space.  As the computer becomes smaller and more powerful the energy demand and resulting heat creation 

grows in kind.  Boiling allows for fast removal of heat as the phase change from liquid to gas consumes 

substantial energy.  Boiling takes two main forms depending on the motion of the fluid.  If the bulk fluid is 

being forced by an external mechanism like a pump or gravity across a heated surface it is called flow 

boiling.  Flow boiling benefits from the constant introduction of cool fluid over the surface achieving very 

high heat flux.  In certain situations, it may be too expensive or take up too much room to be able to 

incorporate the mechanical systems necessary to force the fluid over the heated element.  In these cases, 

pool boiling becomes an effective means to cool the system.  In pool boiling the water is stagnant and the 

only motion driving the fluid is from the creation of vapor and it rising out of the liquid. There are 

limitations to how much heat can be effectively extracted from a surface in pool boiling because the rate of 

bulk fluid reaching the surface is limited by several factors.  The section following will describe the process 

and steps pool boiling takes as surface temperatures rise. 

 

1.1. Pool Boiling 

Pool boiling contains several distinct regions that follow a series of stages thought to be first considered by 

Nukiyama [1] and further refined by Farber and Scorah [2] and described as a physical interpretation seen 

in Figure 1.  As heat rises the rate of vapor formation does as well and in turn alters the currents that are 

taken by fluid flowing in to replace the evaporated fluid.  These initial experiments aimed to discern the 

relationship between wall temperature and heat flux and what physical properties caused it to vary so 

drastically as surface temperature claimed.  Many of these older experiments used a fine wire as a heating 

element creating differences from the flat surfaces used normally today but did offer initial insight to the 

issues of vapor production chocking off the heated surface. 
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Figure 1 Physical Interpretation of Boiling Curve Faber and Scorch 1948 

1.1.1. Natural Convection Boiling 

 

As a fluid is heated, it first experiences heat transfer primarily through diffusion until it reaches a point 

defined by the Rayleigh number, after which it will experience movement due to a difference in density 

and enter the natural convection boiling region.  This is a single phase heat transfer mechanism so no vapor 

will be formed.  Heat flow is mainly from the exchange of less dense warm fluid rising up and denser cool 

fluid sinking down.  These convection current’s effectiveness far exceeds that of the heat diffusing through 

conduction. 

 

1.1.2. Nucleate Boiling  

 

In the second region past point A, bubbles will begin to nucleate on the heated surface.  Point A is described 

as the Onset of Nucleate Boiling (ONB).  After this point but before point B, vapor bubbles will form on 

the heated surface but not rise to the surface of the liquid, often collapsing if they leave the bottom since 

the liquid is too cold to maintain their vapor state.  The temperature of the bulk fluid must be greater than 

the saturation temperature of the fluid for the pressure inside the vapor bubble for the bubble to grow or to 
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maintain its current size as it rises.  Small crevasse in the material will act as nucleation sites.  These crevices 

allow for gas to be trapped in the creating low pressure zones for bubble nucleation.  At lower temperatures 

bubbles will require larger cavitation to be able to form.  As the temperature continues to rise the areas that 

meet requirements for nucleation sites increases.  With increased temperature bubbles no longer collapse 

while rising and make it to the surface.  This begins the sub region seen after point B.  This area sees the 

most dramatic change in turbulence of the fluid as bubble begin to rapidly depart the heated surface, quickly 

pulling water into the void they have created.  Further heating sees bubbles forming columns and 

condensing into larger bubbles. 

 

1.1.3. Transition boiling 

 

Point C indicates the Critical Heat Flux (CHF) and the point where the vapor begins to interfere with the 

fluids ability to reach the heated surface.  Without fluid contacting the surface as frequently, there is less 

heat being removed.  As the surface temperature increases from lack of cooling, more areas on the surface 

begin to meet criteria for vapor production.  This results in the surface becoming covered in larger patches 

of vapor reducing the transfer capability. Excessive heat will begin to build in the heated surface which 

may damage the components that where being cooled.  In practical applications reaching CHF is not usually 

desired since it can hurt equipment, so cooling systems aim to stay below a safe range CHF while providing 

maximum heat transfer.  Another goal of these pool boiling systems is to achieve the greatest heat flux at 

the lowest temperature, further protecting components from high heat.  In the experiments performed in 

this study this region of the boiling curve will not be achieved.  Instead once CHF has been hit, the boiling 

curve will move horizontally from the CHF peak to a point on the rising line in the film boiling region.  

This is because an electric heater is used to produce the heat in this experiment.  The electric heater is 

controlled by a varying voltage input so no direct control over the surface temperature is possible.  It is 

possible to achieve this region in a system that has direct control over the surface temperature such as by 

pumping temperature-controlled oil under the heated surface to maintain a constant temperature.  

 

1.1.4. Film Boiling 

 

After further increase in temperature the surface will entirely covered in vapor, the effectiveness of boiling 

in removing heat becomes negligible, and radiation takes over as the primary source of heat transfer. After 

this point D, the Leidenfrost point, film boiling insulates the fluid from the heated surface.  The fluid will 
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now boil instantly upon contact with the surface and the vapor is hot enough to exceed the saturation 

temperature of the fluid therefore it is able to maintain a constant barrier of vapor.  With the fluid unable to 

wet the heated surface HTC is greatly reduced and temperature will begin to spike.  In the experiment 

performed, this region marks a runaway point as the voltage input will continuously increase the 

temperature with no way to quickly dissipate heat.  Since the radiation will not be effective enough to 

remove excess energy the system will quickly approach dangerous temperatures which will mark the end 

of the experiments. 

 

1.1.5. Separate Liquid Vapor Pathways 

 

In order to increase the heat transfer coefficient and delay the onset of film boiling alterations to the heated 

surface can be made.  One of the proven and basic examples is to increase surface area to allow for more 

regions through which your heat can pass into the fluid thereby increasing heat flux.  Another method 

involves the deliberate placement of regions that encourage nucleation to direct vapor formation.  With 

sperate nucleating and non-nucleating zones channels of vapor rising and fluid sinking can be formed.  

These separate regions, called liquid-vapor pathways, enhance flow rate of cool water to the surface 

increasing the heat transfer capable by the system and increasing CHF.  As cool fluid contacts the surface 

in the non-nucleating zones it reduces the surface temperature in this region reducing the chance of 

nucleation as well as pre heating the fluid.  Once a vapor bubble departs it creates a void that the fluid near 

the surface rushes into and evaporates.  This bubble will depart and force new fluid downward continuing 

the cycle.  The specific arrangement of these zones and the method by which the surface is enhanced to 

create them can drastically improve heat flux and CHF over a plain surface or surfaces with similar surface 

area but no organization. 

Multiple methods exist for the purpose of creating separate liquid vapor pathways.  These include, adding 

sintered metal regions to the top of the heated surface, altering the wettability of the surface through the 

application of hydrophobic and hydrophilic regions, and the addition of small surface fins in the form of 

microchannels.  This study will use surface enhancements in the form of small engraved areas in the surface 

to produces nucleation sites in desired areas.  
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2. Literature Review 
 

What is considered the first research into the phenomena of nucleate boiling was done between the World 

Wars by Mosciki and Broder [3] [4].  By heating a platinum wire in water, they found that the water 

temperature did not dictate the temperature at which the highest heat transfer was achieved.  Later on, 

Nukiyama [1] would present the boiling curve that gave predictions for the process by which the state of 

nucleate boiling follows but was unable to connect the downward slope of the curve between the maxima 

and minima due to lack of ability to precisely alter wall superheat .  The observation that there existed a 

thin layer in between the vapor bubble and surface was introduced by Hendricks and Sharp [5].  This micro 

fluid layer is fed from around the bubble and evaporates readily into the bubble increasing its volume and 

in turn increasing the contact region.  They concluded that this mechanism accounted for most of the heat 

transfer seen in the system.  Han [6] created a compressive explanation for heat transfer at a superheated 

surface.  He found that when a vapor bubble departs the surface it pulls in liquid from around it in an area 

about twice the size of the departing bubble as well as how contact angle can determine bubble departure 

size.  This new fluid would then undergo convection until a new vapor bubble was formed and repeated the 

process creating a forced fluid flow over the surface.  With this, if the size and rate of bubble departure can 

be increased you can increase heat transfer from your surface, but the surface will still need to be able to be 

reachable by the incoming fluid. 

 

 

Figure 2 Micro stacks of sintered copper in a two height arrangement from [7] 

Many studies have been done into the effects to nano and micro structures on heated surfaces to augment 

conditions for the improvement of heat transfer.  While this study will be focusing on a scale of micro 

channels and the large-scale currents in the fluid they create, the nanostructure created by the surface finish 

are also of interest.  Both of these surface enhancements help to combat the effects of film boiling.   Novak 

Zuber [8] proposed that one of the mechanisms limiting nucleate boiling was that fluid flow was restricted 

from reaching the heated surface by the upward flow of vapor.  He describes the stages the departing vapor 



6 

 

goes through before reaching a stage right before CHF where the bubbles have essentially coalesced into a 

single vapor jet.  As a means of ensuring cool fluid reached the surface, Liter and Kaviany [7] created 

heated surfaces with strategically placed porous conical towers of sintered coper particles as seen in Figure 

2 Micro stacks of sintered copper in a two height arrangement from .  The towers would reach up into the 

bulk fluid supply and allow capillary action to draw cool fluid down toward their bases. Nucleation would 

then occur near the bottom of the pillars and vapor would rise around them.  The efficiency of this setup 

was determined by the fluids ability to reach the base quickly and could be predicted by the viscous motion 

of the fluid though the sintered pillars.  Although by building these relatively tall towers, 1mm to 1.8mm, 

add extra insulation to the top of the chips. Alternatively, Jaikumar and Kandlikar [9] cut channels into the 

surface of a copper chip.  This created pathways for fluid to flow across the chip improving access at high 

temperatures when vapor flow begins to limit fluid access to certain areas.  At set intervals equal to the 

critical capillary length for water at 100°C, intersecting microchannel where cut perpendicular to the rest.  

This provided further accessibility to cool fluid as vapor nucleates inside the microchannels.  This study 

will follow closely to this Jaikumar and Kandlikar research using cut geometries in the surface to influence 

nucleation regions to drive a convective current down to the surface.  But unlike the Jaikumar1 and 

Kandlikar study and another study by the same team [10], initially instead of using channels cut into a 

surface or fins, this study will guide the fluid current onto the machined chip surface itself.  The fluid 

impacting the surface will then be driven at the divots pushing new cool fluid into the nucleation zones and 

preventing nucleation in the blank areas between the divot pairs.  After the effectiveness of the notches in 

the surface was proven the addition of microchannels provided additional heat transfer and fluid flow 

similar to the effect seen in previous studies.  Looking more directly at the dimensions of the channels, 

Dwight Cooke and Satish G. Kandlikar found the best performing channels tend to be “wide and deep” 

with the highest performing channel having a width of 375μm and depth of 400μm [11].  This 400μm is 

used in the majority of the chips produced in this study as both a width and depth.  These dimensions 

showed the greatest results in this study as well.  The remainder of chip dimensions and efficiency can be 

seen in table 1 and Figure 3 and Figure 4.  The study also explains how the channel sizes alter vapor 

production and how incoming liquid supply id heated from three sides increasing its ability to cool the 

surface and preheat before nucleation faster than in other designs. 
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Table 1 Dimensions for chips used in [11] 

Chip # 

Channel 

width 

(μm) 

Fin 

width 

(μm) 

Channel 

depth 

(μm) 

# of 

channels 

Surface area 

augmentation 

factor 

1 200 200 208 25 2.06 

2 197 200 335 25 2.7 

3 197 300 100 20 1.4 

4 209 288 115 20 1.46 

5 273 224 233 20 1.95 

6 295 200 212 20 1.86 

7 288 213 445 20 2.83 

8 400 200 278 16 1.89 

9 375 230 400 16 2.3 

10 340 260 380 16 2.22 

 

 

 

 

Along with the blockage of fluid flow to the surface, the inability of a porous surface to reliably wet and 

fill voids left by departing vapor inhibits the effects of nucleate boiling and can result from vapor being 

trapped in the porous layer preventing the liquid from permeating the matrix.  This can lead to worse 

performance from additional insulation and early film boiling [12]. To increase fluid flow through surfaces, 

several studies have worked with the nanostructure scale to arranges specifically designed nanostructures 

to increased wettability or combined porous surfaces with other mechanisms to allow for increased wetting.  

Shojaeian and Koşar [13] reviewed and concluded that while purposefully designed nanostructures alone 

Figure 3 Heat Flux vs Wall super heat for chips in 

[11] 

 

Figure 4 Heat Transfer Coefficient vs Wall Superheat 

for chips in [11] 
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saw heat transfer improvement, many were lacking compared to what microstructures could achieve and 

was comparable to results from other less resource consuming methods such as sintered metal surfaces.  

Although some of the results from this review showed extremely positive enhancements both of which 

involved a series of crossing pathways and some form of tunnelways imbedded into the surface.  The first 

of which used a copper mesh that had been laminated with several layers and cold rolled onto the surface 

of a copper chip [14].  This system had an increase of 27-fold in heat flux at low temperatures and pressure 

compared to a plain copper surface.  They attribute the results to developing meshes with proper hole sizes 

allowing for fluid to easily flooding the heated surface.  With finer mesh a steeper boiling curve is seen but 

with reduced CHF.  The other study used a tube covered in a fish scale like surface with hollow pockets 

underneath to trap fluid [15].  Both of these studies along with the other nanoscale studies reviewed in [13] 

illustrated the importance of departing vapor not obstruction the rewetting mechanisms of the surface 

geometry.  Imaging from this studies is show in Figure 5 Magnification of cold rolled mesh and cutaway 

[left], Scale like tube exterior and cutaway [right].  In contrasted much success is seen in very easily made, 

commercially available means.  X.S. Wang, Z.B. Wang and Q.Z. Chen [16] describe the creation of porous 

surfaces through sintering and how these surfaces greatly enhance the heat transfer rate compared to a plain 

surface as long as the porous layer is not to thick. As an addition to the microstructure of fins with feeder 

channels, Patil and Kandlikar [17] added electrodeposited copper particles to just the tops of the fins.  This 

encouraged nucleation on the tops of the fins over the low regions in the channels.  Without nucleation in 

the channels the fluid flowed more freely through them, feeding the electrodeposited regions and further 

reducing nucleation in the channels. This was also the basis for the test in this study comparing the effect 

of sintered copper on the area between the pairs of notches while leaving the liquid pathway free of sintered 

copper.  This aimed to recreate the effect of reducing nucleation in the free pathways and focus it into the 

area between the notches. 
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Figure 5 Magnification of cold rolled mesh and cutaway [left], Scale like tube exterior and cutaway 

[right] 

Each notch is shaped in a way to impart force on the nucleation bubble such that it will move away from 

the vertical wall and up the ramp.  At this scale the nucleation momentum [18] and the force of the incoming 

fluid as seen with similar shaped ramps on either side of fins by Kandlikar [19].  The production of these 

fins was very different involving a negative to be pressed into a blank and provided different constraints on 

dimensional control.  In this study the ramp is positioned as close to the vertical wall as possible but is 

impeded by CNC machining capabilities. 

Several other methods for augmenting the surface to improve CHF have yielded successful results in recent 

years.  Austin Hayes’ used additive manufacturing to create volcano like structures that acted like cooling 

towers by focusing steams of vapor up and out of the top and pulling cool water in from holes in the base 

[20].  These micro volcanoes printed on the top of the chip where able to increase CHF by 81%.  Another 

is the augmentation of the contact angle through the usage of hydrophobic and hydrophilic areas.  By 

creating a hydrophilic surface with a pattern of hydrophobic dots on top Betz et al. [21] saw an increase of 

CHF of 65% and a HTC increase of 100%.  The hydrophilic surface increases surface wettability preventing 

vapor sheets from forming.  The hydrophobic zones in turn promote nucleation by increasing the fluid 

contact angle and lowering the vapor pressure inside the nucleating bubble allowing for easier vapor 

formation.   Recently the contact line of the fluid vapor interface has become a larger area of study such as 

[22] where shallow microchannel where used to increase the contact line region, to in turn increase CHF.  

On top of the normal evaporation, there is a significant amount of heat transfer through the microlayer of 
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fluid formed at the contact line around the base of the bubble.  The vapor will not fully fill the microgrooves 

leaving fluid in the corners of the groove greatly increasing contact line area. 

 

  

 

  

Figure 7 Spacing of hydrophobic 

[white] and hydrophilic [black] 

coating on surface from [21] 

Figure 6 visual of how the vapor fluid contact line is altered 

by microchannels in [22] 
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3. Scope of Work 
 

In this study novel geometry will be cut into the surface of pre-prepared copper chips in order to create 

separate liquid vapor pathways.  Chips would then be tested for their heat transfer performance in a pool 

boiling setup.  After initial designs were tested, new designs were created to reflect the success seen in the 

original chips.  All of the chips where studied with a laser microscope to ensure correct dimensions and 

check surface roughness. 

1. Manufacturing was performed using a CNC machine and microscale endmills.  All designs are 

original with some dimensions based on successful trials in other pool boiling papers.  Copper was 

chosen as the medium to construct chips from due to its high thermal conductivity and its 

availability and price.  Copper has the downsides of oxidizing and having moderate machineability. 

2. All chips are tested in the same pool boiling setup to study their HTC and CHF.  During these 

experiments a Photrom FASTCAM 1024 PCI is used to capture high speed video of the nucleation.  

This allows for the measurement of bubble departure diameter which can be fed back into the chip 

design as well as visualizing the separate liquid vapor pathways. 

3. All chips where measured using a Keyence VK-9700 violet laser scanning microscope to examine 

the surface roughness of the base chip as well as the machined surfaces cut into the chip.  Roughness 

can be a major factor in nucleation so ensuring that the chips have similar surface roughness is 

necessary so that factor can be accounted when comparing results. 
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4. Experimental Work 
 

4.1. Pool Boiling Setup 
 

All chips were tested in a pool boiling apparatus shown in Figure 8.  Figure 9 describes the components of 

the pool boiling apparatus.  Each chip tested in this setup had the exterior dimensions depicted in Figure 

17.  The copper used had a conductivity of 391 W/m-K. Water was degassed using a pressure cooker method 

that is the same as the one described by [23].  Heat was generated by four 400W cartridge heaters running 

off of a voltage controller that where embedded in a large copper block with a column that came in contact 

with the bottom of the test chip.  Sandwiched in between the chip and the heater was a thin sheet of graphite 

foil used to reduce the contact resistance between the two components.  There is a fifth cartridge heater in 

the bulk fluid chamber to allow for heating up of the bulk as to hasten the onset of nucleation controlled by 

a separate voltage controller. 

For temperature measurements three thermocouples were placed into the 3 holes drilled into the copper test 

chip.  These thermocouples are labeled 1, 2, and 3 for the top, middle, bottom.  The temperature reading 

for these thermocouples is represented by T1, T2, and T3.  A LabVIEW program recorded the temperature 

at these three points continuously.  An increasing voltage was applied to the cartage heaters until nucleation 

was seen.  From this point voltage would be increased in steps, the system was allowed to reach steady 

state, and then 10 seconds of temperature data was recorded.  After this voltage would be stepped up again 

and this would repeat. 

Heat flux was found using 1D heat transfer equation for Fourier’s Law: 

𝑞" = −𝑘
𝑑𝑇

𝑑𝑥
 

Temperature gradient was found using Taylor Series approximation as explained in [11] 

𝑑𝑇

𝑑𝑥
=

3𝑇1 − 4𝑇2 + 𝑇3

2𝐿𝑡
 

Lt is the distance between the center of the thermocouples which in all tests was 3mm.  After the heat flux 

is know we can calculate the wall super heat using the thermal conductivity of copper and the distance from 

the top thermocouple to the heated surface: 

𝑇𝑤𝑎𝑙𝑙 𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡 = 𝑇1 −
𝑞" ∗ 𝐿𝑠

𝑘
− 100°C 

Here we are assuming the saturation temperature of the water to be 100°C.  Ls is the distance from the 

center of the top thermocouple and the top surface.  In all the chips this value is 1.7mm. 
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Figure 8. Pool Boiling Setup 
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Figure 9 Diagram of Pool Boiling Experimental Setup 

 

4.2. High Speed Camera 
 

A Photrom FASTCAM 1024 PCI camera capable of speeds in excess of 10,000 fps was used for the high-

speed photography.  All highspeed was taken at 1000 fps unless otherwise noted.  For the measurement of 

bubble diameter, a rod of known diameter was inserted into the test chamber and brought into focus.  Using 

the diameter as a reference, bubbles in the same plane as the rod could be measured. 

4.3. Design of Chips 
 

Chips were first machined from copper blanks to match the dimensions is Figure 17 which is the standard 

base that is used for all of the tests.  After machine work all chips where then cleaned with isopropyl alcohol 

to remove cutting fluid and any residual metal particles.  After this several designs were created to be cut 

into the top surface to provide nucleation points. Optimally the chips where to be produced with a sharp 

45-degree angle seen in Figure 10.  Since this would be difficult to produce with the available techniques 



15 

 

it was instead decided to make geometries that would be possible with computer numerical control (CNC) 

machining.  For this a rounded corner design with a flat floor was created as seen in Figure 11 Cutaway of 

first series of chip design.  This general shape would be maintained across all the chip designs with 

variations on the notch spacing and width.  This new 90-degree corner had relevant geometry to the study 

of vapor bubbles pushing from walls performed by Kandlikar [19].  Form this study we can see an 

unbalanced force is created forcing the bubble out way from the corner horizontally potentially driving it 

up the angled ramp in the divot.  The purpose of the tightly grouped lines of paired divots in the sintered 

and un-sintered chips several purposes.  Firstly, the small divots, instead of a line, could act as individual 

nucleation sites.  They were also closely paired with the other groups such that any divot could contribute 

to neighboring vapor bubble with the ramp focusing them toward the center of the pair.  With the pairs 

being in a row, the departing vapor, now in a curtain formation, would not interfere greatly with the 

incoming cool fluid.  As the fluid flows down in between the vapor curtains it meets the chip surface and 

is forced into the side of the bubbles.  This would provide a sweeping fluid flow over the surface increasing 

the amount of heat that could be carried away improving heat transfer though forced convection.  The 

distance between the machined divots was chose based on [11] as the depth and width of the channels where 

decided based on the chip 8 design seen in Table 1 and guidance from Kandlikar.  The design would 

hopefully encourage bubbles to form independently then merge once they passed a certain diameter.  This 

new merged diameter would then depart quickly. 

 

Figure 10 Originally theorized notch dimensions 

The first set of chips was designed in a way to easily visualize the hypothesized merging bubbles.  A single 

row of three sets of paired notches was cut into a chip creating the 3 Notch Pair chip.  This provided a line 

of nucleation action that would develop into a 2D curtain of vapor.  This way the high-speed camera with 

its narrow field of focus could hone in on just this section to be able to visualize the bubble merger.  After 

the bubble merger was confirmed to be functioning as desired a second simple chip was made to see if these 

induced currents resulted in higher heat flux out of the chip resulting in the 9 notch pair chip. 
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Figure 11 Cutaway of first series of chip design 

The second set of chips was created to test the inclusion of a sintered strip in between the pairs of divots.  

Two chips where made with the same specifications so that one would act as a control while the other would 

have a thin line of sintered copper running in between the chips.  For ease of applying the sintered row the 

space between the divot pairs was widened to 0.5mm.  For the sintering application, after the chips were 

made, Kapton tape was used to cover over the holes and a mixture of two-parts 20 μm copper particle and 

one-part sintering oil was put into the areas not cover by tape.  The tape was removed and the part was 

sintered at 450°C for 30 minutes and then again at 800°C for 1 hour.  In addition to the spacing change a 

smaller end mill was purchased such that the back face of the divot could be made to include a flat section 

with the hope of increasing the force applied to the vapor bubbles pushing them toward the ramp.  The 

sintered strip would provide nucleation site for lower wall superheat with the hope that a vapor curtain 

would form in this area first moving water and preventing nucleation in the areas between the pairs of 

notches. 

 

Figure 12 Sintered and un-sintered notch side profile 

For the third iteration of chips it was decided to place the notches at the bottom of microchannel in order to 

create better flow regions.  The short fins would help to guide fluid flow to the nucleating zones.  The walls 

would also provide a surface for the vapor bubbles to adhere to.  This would allow the vapor to vacate the 

notches allowing for new fluid to enter them.  From issues with the un-sintered and sintered spacing, the 

ramps in the notches were brought together and the pairs of notches where spaced out to be 3mm apart. 



17 

 

Another chip was designed again with more space between pairs but instead of a 45° ramp a curved slope 

was used instead.  The slope would allow for a tight nucleation zone like in the ramp notches while reducing 

the overall volume of the notch, forcing the vapor bubble to sit higher up on the surface.  With more of the 

volume out of the notch the effect of the liquid stream driving the vapor columns together will have more 

surface area to act on pushing the vapor bubble together with more force. 

 

Figure 13 Curved slope notch side profile 

 

The final design group involved the usage of microchannels with notches in the bottom of the channels to 

act as nucleation sites.  The channels acted to direct water and allow continued access of water to nucleating 

regions from the bulk fluid to prevent the surface being chocked by vapor.  The channels also act to cool 

the non-nucleating region to prevent unwanted boiling in this area as well as preheating the fluid before it 

reaches the nucleation zones.  Three chips where produced with similar dimensions but different channel 

and wall widths.  The chips had 300µm, 400µm, and 500µm wide walls and microchannels respectively. 

The better performing chip, the 400µm microchannel with notches chip, dimensions where used to make 

an integrated heater chip.  This varied from previous designs as the heater block used to heat the base of 

the previous chip design would instead be integrated into the chip.  This cuts down on thermal resistance 

and allows for greater heat flux though the surface of the chip without damaging the cartridge heater being 

used.  Making this integrated heater chip was necessary as the previously used method for heating the 

microchannel chip was not able to achieve CHF in the microchannel chips. 
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Figure 14 Microchannel with notches side profile 
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3 Notch Pair 

 

 
9 Notch Pair 

 

 
Un-sintered 

 

 
Sintered 

 

 
Curved Slope Notch 

 

 
400µm Microchannels with 

Notches 

 

 
300µm Microchannels with 

Notches 

 

 
500µm Microchannels with 

Notches 

 

 
Pitted Chip 

Figure 15 Images of all chips created for testing 
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Table 2 Notch Placement for all chips. Colum letter correspond to Figure 16 Guide for chip  

Chip 

Corner 

Radius 

(µm) 

Slope 

Angle 

(°) 

Distance 

between Paired 

Notches (mm) 

Width of non-

Nucleating 

Zones (mm) 

Center to Center 

Distance of 

Paired Notches 

(mm) 

Wall Thickness 

Between 

Notches (mm)  

Number 

of Rows 

      A B C D   

3 Pair 200 45 0.2 0.7 2.5 N/A 1 

9 Pair 200 45 0.2 0.7 2.5   3 

Un-

Sintered 
150 45 0.5 0.5 2.5 0.4 12 

Sintered 150 45 0.5 0.5 2.5 0.4 12 

Curved 

Slope 
150   0 1.6 3.6 0.4 12 

300µm 

Micro 
150 45 0 2 3 0.3 16 

400µm 

Micro 
150 45 0 2 3 0.4 12 

500µm 

Micro 
150 45 0 2 3 0.5 9 

 

 

Figure 16 Guide for chip dimensions 
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Figure 17 base chip dimensions (mm) 

 

4.4. Laser microscope measurements 
 

A laser scanning microscope was used to check the dimensions of the machined geometry.  The microscope 

used was a Keyence VK-9700 violet laser scanning microscope capable of 4X, 10X, 50X and 150X 

magnification.  For each chip a tilt correction was applied to ensure the scanned image was more level and 

a noise reduction was run on the normal setting to remove noise from the laser scan.  Profiles for the pairs 

of notches was difficult to test as the magnification for fitting both into view was not accurate enough to 

see their geometry without major distortion so a 10X magnification was used for all chips. The software 

paired with the machine allowed for checking that the dimensions were correctly held as well as examining 

the roughness of the surfaces from the blank chip and milled areas.  
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Roughness calculations where done using arithmetical mean deviation. 

𝑅𝑎 =
1

𝑛
∑|𝑦𝑖|

𝑛

𝑖=1

 

In Table 3 Laser Scanning Microscope Measurments, Ra Surface describes the roughness of the flat surface 

of the chip while Ra Bottom describes the roughness of the surface at the bottom of the notch.  Slope defines 

the angled portion of the notch with the target slope being 45°.  The largest error in this slope was about 

6% seen in the 9 notch pair chip.  Notch width is the distance from side to side of the shorter distance of 

the notches.  This measurement is perpendicular to the induced fluid/vapor flow.  Notch depth describes 

the normal distance from the top surface of the chip, the heated surface, to the bottom of the notch while 

channel depth is from the top to bottom of the channel.  The image in Figure 18 Scanning Laser Image of 

400µm Microchannel with Notches Chip shows a resulting image from the laser scanning microscope with 

both color and contours drawn by the high measurements.  The dark lines are not part of the actual color 

image and are drawn on by the software to emphasize high contours much like on a terrain high map. 

 

 

Figure 18 Scanning Laser Image of 400µm Microchannel with Notches Chip 10x magnification 
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Figure 19 Scanning Laser Height Map of 400µm Microchannel with Notches Chip 

 

Surface roughness plays a large part in the effectiveness of pool boiling.  As shown in Walunj and 

Sathyabhama [24] as well as Jones et al. [25], the differences in roughness displayed in Table 3 Laser 

Scanning Microscope Measurments can have noticeable effect on the heat flux and max HTC.  In both 

studies HTC rose as the roughness increased over the range from 1µm to 10µm on a flat surface undergoing 

pool boiling.  In these measurements the 9 notch pair and sintered chips both had around double the 

roughness in their milled notches.  This could contribute to a higher than normal HTC.  In the 9 notch pair 

chip it isn’t much concern as the chip was mainly used for a proof of concept.  In the sintered chip the 

difference in effectiveness seen between it and its un-sintered counterpart is more so due to the addition of 

the sintered particles than the difference in roughness of the notches. 

Larger discrepancies were present in the length and depth of the notches and channels.  The width of 

notches was closer than any other element to their target value.  Undercut measurements can be attributed 

to wear on the very small endmill which measured 300µm in diameter and the starting co-ordinates used 

on the CNC machine.  Since the notches where sloped at one end, if the mill was set slightly too high this 
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would result in the depth of the notch being reduced but would also reduce the overall length.  This can 

especially be seen in the magnified images of any chip that had touching slopes like in Figure 18 

Scanning Laser Image of 400µm Microchannel with Notches Chip.  In many of these the notches did not 

touch indicating that the end mill was too high.  Since the width had no sloped walls it was affected far 

less by this issue which is important because the width and depth where the more crucial elements in the 

chip design. 

The curved slope notch chip has no straight slope listed as it had a decreasing slope following the path of 

an arc of a circle.  The nominal radius of the circle was set at 1mm.  To check the actual value of the 

radius four points where taken.  The points where taken in sets of three and used to solve for the 

determinants A, B, C, and D in the following which gives the equation for the circular slope. 

𝐴 = |
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

|      𝐵 = − |

𝑥1
2 + 𝑦1

2 𝑦1 1

𝑥2
2 + 𝑦2

2 𝑦2 1

𝑥3
2 + 𝑦3

2 𝑦3 1

|      𝐶 = |

𝑥1
2 + 𝑦1

2 𝑥1 1

𝑥2
2 + 𝑦2

2 𝑥2 1

𝑥3
2 + 𝑦3

2 𝑥3 1

|      𝐷 = − |

𝑥1
2 + 𝑦1

2 𝑥1 𝑦1

𝑥2
2 + 𝑦2

2 𝑥2 𝑦2

𝑥3
2 + 𝑦3

2 𝑥3 𝑦3

| 

Using these values, we can find the center position of the circle: 

𝑥0 =
−𝐵

2𝐴
     𝑦0 =

−𝐶

2𝐴
 

And then the radius can be found using: 

𝑟 = √(𝑥0 − 𝑥1)2(𝑦0 − 𝑦1)2 

The four points taken results in six radii which the average of was 1.076mm.  This falls into similar error 

range as the other machined dimensions. 
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5. Results 
 

5.1. Uncertainty Analysis 
 

Uncertainty present in the resulting data stems from the collection and processing of the heat flux data.  An 

analysis was preformed to determine the bias and precision uncertainty present.  For each experiment data 

was measured at each wall temperature point for 10 seconds at 10Hz to achieve a large enough sample size 

and mitigate random error.  Uncertainty is comprised of two parts, bias and precision uncertainty.  Bias 

uncertainty arises from the accuracy of the measuring instruments used in the experiment.  The uncertainty 

of each instrument can often be found as a value given by manufactures that is checked for during 

production or though calibration done on the measurement devices.  Bias uncertainty can be expressed 

generally as: 

𝐵𝑝 = √∑ (
∂p

∂σ𝑖
𝑈𝜎𝑖

)
2𝑛

𝑖=1

 

Where Bp is the total bias uncertainty and Uσi is the uncertainty of each component of the final value.  ∂p/∂σi 

represents the sensitivity coefficient that needs to be solved for each variable in the heat flux function. ∂p 

represents the change in the dependent variable, in this case q” and ∂σi the independent variable that 

correlates with the uncertainty being expressed in this portion of the equation seen in Table 4 Sources of 

Uncertainty as Variable. 

As shown in 4.1 the heat flux can be expressed as: 

𝑞" = −𝑘
3𝑇1 − 4𝑇2 + 𝑇3

2𝐿𝑡
 

This function contains all of the variables whose uncertainties will combine to form the total uncertainty in 

the heat flux. 

Table 4 Sources of Uncertainty 

Item Source of Uncertainty Variable Uncertainty 

Thermal Conductivity of Copper Varies over temperature range k 9 W/m2K [26] 

Distance Between the thermocouples Machining Error Lt 127µm 

Temperature at each thermocouple Error in thermocouple reading T1, T2, T3 0.1K 
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The thermal conductivity of copper changes with temperature of the metal but in the chip there is a 

temperature gradient.  For this reason, the largest a static number for thermal conductivity uncertainty that 

cover a range from room temperature to the highest operating temp is chosen.  A worst possible case is 

chosen for all points so that the real value will fall inside this uncertainty range.  Even with this the 

relative uncertainty of the thermal conductivity is <3%.  We can expand out the general uncertainty 

formula with the uncertainty terms listed in the Table 4 Sources of Uncertainty.   

𝐵𝑞"

𝑞"
=

√
(

∂q"
∂k

𝑈𝑘)
2

+ (
∂q"
∂L𝑡

𝑈L𝑡
)

2

+ (
∂q"
∂T1

𝑈T1
)

2

+ (
∂q"
∂T2

𝑈T2
)

2

+ (
∂q"
∂T3

𝑈T3
)

2

𝑞"2
 

Each of the sensitivity coefficients can be calculated using the function for heat flux. 

∂q"

∂k
= − (

3𝑇1 − 4𝑇2 + 𝑇3

2𝐿𝑡
) =

q"

k
 

∂q"

∂k
= −𝑘 (

3𝑇1 − 4𝑇2 + 𝑇3

2𝐿𝑡
2 ) =

−q"

𝐿𝑡
 

Let α = 3T1-4T2+T3 

∂q"

∂T1
= −𝑘 (

3

2𝐿𝑡
) =

3q"

α
 

∂q"

∂T2
= −𝑘 (

4

2𝐿𝑡
) =

−4q"

α
 

∂q"

∂T3
= −𝑘 (

1

2𝐿𝑡
) =

q"

α
 

So, the final expression for bias uncertainty can be written as: 

𝐵𝑞"

𝑞"
=

√
(

q"
k 𝑈𝑘)

2

+ (
−q"
𝐿𝑡

𝑈L𝑡
)

2

+ (
3q"

α 𝑈T1
)

2

+ (
−4q"

α 𝑈T2
)

2

+ (
q"
α 𝑈T3

)
2

𝑞"2
 

The precision uncertainty is expressed as standard deviation for discrete random variables in the form of: 

𝑃𝑞" = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1
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Where 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

The Total uncertainty resulting from both the bias uncertainty and precision uncertainty is: 

𝑈𝑞" = √𝑃𝑞"
2 + 𝐵𝑞"

2  

Figure 20 Un-sintered Chip Total Uncertainty displays the total relative uncertainty for the un-sintered 

chip.  This example reflects the trend of uncertainty through all other tests.  Total uncertainty will rise but 

the relative uncertainty will exponentially decay until it drops below 5% where it begins to bottom out. 

 

Figure 20 Un-sintered Chip Total Uncertainty 

5.2. Chip Performance 
 

The 3 Notch Pair chip in Figure 15 Images of all chips created for testing was the first chip created and 

tested.  Results from the first test showed some improvement over a plain copper surface even with the 

simple geometry addition.  The 3 Notch Pair chip also provided a single plane of bubble nucleation that 

allowed for easier photography of the merging bubbles.  With these successful results, an additional 2 rows 

of paired notches where added resulting in the 9 Notch Pair chip Figure 21 shows the boiling curve for this 

chip, the plain chip and a chip from previous work used as a comparison.  The chip used for comparison, 

the last chip shown in Figure 15 Images of all chips created for testing, had pits running across half of its 
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surface but the exact dimensions are unknown.  The 3 Notch Pair chip was created for use in photography 

and no heat transfer data was taken.  With only 3 pairs in a single plane it was easier to capture the bubble 

formation and departure and this was the chip used to produce the high-speed photography in Figure 31.  It 

can be seen in Figure 21 that the chips with divots in their surface created a change in the boiling curve and 

increased the CHF slightly over the plain chip.  Of note the 9 Notch Pair chip had a higher heat transfer 

than the pitted chip, despite the large difference in nucleation sites.  Even with only 18 nucleation sites on 

the 9 notch pair chip as opposed to the 110 number of pits on the pitted chip the heat transfer was the same 

and sometimes better.  This is significant as the cost of time to produce the 9 notch pair chip if both were 

machined would be much lower.  The 9 Notch Pair chip can be seen hitting CHF slightly under 140 W/cm2.   

 

 

Figure 21 Pitted, Plain and 9 Notch Pair chips boiling curve 

Figure 22 sintered and un-sintered boiling curve with uncertainty shows the results of the sintered and un-

sintered chips.  For each chip 2 experiments were run and the show graph is the composite of both those 

runs for each chip.  Noticeably the sintered chip achieved CHF at a lower temperature and around 185 

W/cm2 while the unstirred hit CHF at around 200 W/cm2.  During the high-speed recordings for these tests 

it could be seen that the sintered strip running between the divot pairs was not performing as expected.  

Vapor bubbles did not sit on the sintered strip and it acted as a barrier between the two paired rows of divots 

causing bubbles to merge randomly with other rows ad well as their paired divots.  This caused there to be 
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no distinct vapor pathways which may have lowered the effectiveness of the sintered chip.  The un-sintered 

chip was not without its problems as vapor bubbles on during high speed recording were also seen merging 

with unpaired rows but to a lesser extent than in the sintered chip. 

 

Figure 22 sintered and un-sintered boiling curve with uncertainty 

In the next series of chips only one was fabricated and tested.  Three experiment runs where performed 

with this chip.  In all three runs the chip achieved CHF.  Figure 23 Curved Slopes Notch boiling curve 

with uncertainty contains the combined data from the experiments performed with this chip.  This curved 

slope notch chip achieved the greatest CHF of any chip up to this point, giving support to the effect of 

greater spacing between the pairs of notches.  Compared to the issues with the sintered and un-sintered 

chip whose c.t.c. distance was 2.5 mm with a non-nucleating zone of width 0.5mm, this chip with its c.t.c. 

of 3.6 and non-nucleating region of 1.6 had more favorable results.  Individual vapor curtains where more 

prevalent in this chip compared to others further supporting this increase in distance allowing bubbles to 

fully form and depart in their individual rows without margining with neighboring rows and disturbing 

the downward fluid flow.  Despite the chip having longer notches than in the previous chips, the volume 

of each notch was lower due to the curved nature of the slope.  The sintered and un-sintered chips had an 

individual notch volume of 0.08mm3 while the curved slope chip had 0.0783.  The longer notch with a 

shallower slope near the edge may have provided less volume for the bubble to form in causing it to rise 
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further out of the notch than in other configurations.  With it further out of the notch it is more likely to 

merge with a paired bubble and be affected by the flow of incoming fluid. 

 

Figure 23 Curved Slopes Notch boiling curve with uncertainty 

The final series of chips created included microchannel to greatly increase surface area and fluid flow 

direction.  Three chips where made with different channel and wall widths of 300µm, 400µm, and 500µm.  

Microchannel chips function well as the channels provide good conditions for vapor nucleation and at high 

temperatures allow for increased wettability.  Each chip was run through the experiment three times in order 

to obtain reliable data.  The 300µm microchannel with notches chip ran into issues with hitting CHF at very 

low temperatures in comparison to the other chips.  As seen in Figure 24 300µm Microchannel with Notches 

Chip Boiling Curve with Uncertainty Runs 1 and 3 started film boing at lower temperatures while Run 2 

was able to achieve much higher temperatures and heat flux.  This heat flux is very good in comparison to 

earlier chip sets but is over taken in efficiency by the 400µm chip which was able to achieve similar heat 

flux at lower temperatures and did not have issues with reaching CHF early.  In all runs of the 400µm chip 

CHF was not reached and test was not continued to higher temperatures to avoid damaging the equipment.  

Figure 25 400µm Microchannel with Notches Chip Boiling Curve with Uncertainty shows that the 400µm 

chip was able to achieve 200 W/cm2 several degrees below that of the 300µm chip. The 500 µm also 

performed poorly in comparison to both the 300 µm and 400 µm chips.  In all three runs it achieved CHF 
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at about the same heat flux.  Only at lower temperature ranges did it outperform the other two microchannel 

chips. 

  

 

Figure 24 300µm Microchannel with Notches Chip Boiling Curve with Uncertainty 
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Figure 25 400µm Microchannel with Notches Chip Boiling Curve with Uncertainty 
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Figure 26 500µm Microchannel with Notches Chip Boiling Curve with Uncertainty 

After the completion of the three microchannel chips the integrated heater chip was made using the 400µm 

chip design.  This chips dimensions ended up being much closer to the design specifications than the 

original 400µm chip seen in the values listed in Table 3 Laser Scanning Microscope Measurments.  The 

tests for this chip followed the same as before except seven runs where performed on this chip. Compared 

to the other chips this one presented a slowly worsening effectiveness over the first three runs so several 

more where done to see if this trend continued.  After the fourth run the efficiency of the chip stopped going 

down as can be seen in Figure 27 400µm Microchannel with Notches Integrated Heater Chip Boiling Curve 

with Uncertainty.  The decrease is quite significant and may have been caused by an outside factor.  

Observing the chip surface with the laser microscope there was an area with a clack raised substance on it.  

This is believed to be a small amount of melted plastic that had adhered to the surface and burnt onto it 

during an experimental run.  Since this chip was physically attached to the heater block there was no way 

to remove it after CHF had been achieved.  Normally the chip would be raised off the heater block in order 

to cool it and prevent damage to the plastic gasket on its surface and other parts of the testing apparatus.  

Since temperatures of the surface achieve 300°C it could have easily melted plastic.  A syringe with a rubber 

tube affixed to it was used to pull out some of the hot water while cooler water was introduced to help keep 

the system cool.  The plastic may have originated from the gasket or the syringe tube and negatively 

imparted the efficiency as it burnt onto the surface.  Both the best and worst run from this chip is displayed 

on the combined chart in Figure 28 All Chips Boiling Curve Combined.  The best efficiency show could 

be achievable based on trials from previous experiments done with microchannel.  Since this chip is more 

dimensionally accurate to the design, it may have produced better results before becoming contaminated.  

Also, for consideration of these chips is the aging of the metal due to the elevated temperatures of the metal 

being cooled by water which can lead to oxidation and alteration of metal properties which can also add to 

the slowly decreasing efficiency.  This chip was still not able to exceed the 250W/cm2 heat transfer. 
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Figure 27 400µm Microchannel with Notches Integrated Heater Chip Boiling Curve with Uncertainty 
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5.3. High-Speed Video Capture 
 

Figure 29 shows the flow conditions that were theorized to occur from having one flat wall and one angles 

wall for vapor bubbles to climb up.  High-speed footage of the 3 Notch Pair chip showed promising results 

that mirrored the predicted flow of the individual angled divot nucleating bubbles that can be seen in Figure 

31.  These bubbles then fused with the other bubble from the pair and soon departed giving evidence to the 

idea that these nucleation site pairs would promote faster bubble departure while leaving more room for 

incoming fluid.  However, the bubbles seemed to be minimally affected by the slope present and the spacing 

of the pairs appeared to influence how the bubbles merged instead.  The camera also provided good 

visualization that the bubbles nucleated in their respective pairs uniformly across all chips.  Even the 

microchannel chips showed initial nucleation in the notches inside the microchannels.  This showed that 

the notches had proper dimensions to initiate vapor formation at lower temperatures compared to nucleation 

that might occur on the surface from the roughness of the chip.  It is important that this nucleation start in 

the desired notch areas so that distinct vapor columns would form leading to the formation of the separate 

liquid vapor pathways. 

High speed of the sintered and un-sintered chips reviled there was some issue with the adjustment made to 

the spacing between the paired notches.  As stated previously the separate pairs of notches were too close 

to each other while the paired notches were too far.  The decision to widen the gap between paired notches 

was made so applying sinter would be easier. Figure 32 shows the bubbles combining in the liquid pathway.  

This happened more frequently on the sintered chip. 

In all chips at high heat flux, capturing useful images was difficult as the vapor pathways would break down 

into a single chaotic stream after leaving the surface.  At this point the wettability and the chips ability to 

hold water on the surface became a large factor in increased CHF.  This can account for the greater success 

the 400µm microchannel with notches chip had at elevated temperatures.  As previously stated in the initial 

tests the 400µm microchannel with notches chip never achieved CHF because the pool boiling setup could 

not increase the heat any further with possible damage to the heaters.  While both of the other two 

microchannel chips hit CHF at relatively low heat fluxes.  Due to the 400µm chips success it was the design 

used to construct a chip with an integrated heater allowing for the experimental setup to increase the 

temperature further without damaging the electrical set up.  

The high-speed photograph also allowed for imaging of bubble departure diameters.  Due to the usually 

non circular shape of the departing bubbles it was assumed that they maintained an ovaloid shape and 

volume calculations where performed based on this assumption.  After the volume was found a radius of a 

sphere was calculated based on the resulting volume.  To find a scale while viewing footage of the bubble 

development a thin rod was inserted into the plane of focus of the camera and recorded to achieve a known 
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distance inside the captured footage.  The rod measured 0.5mm in diameter and using pixel distances on 

the images the radii of the vapor bubbles could be found.  This was done to achieve a standard departure 

size for these chips.  Each tested footage proved difficult to find uniformly sized vapor bubbles in as they 

varied greatly on the same chip most likely skewed by the turbulent nature of the boiling.  It was found that 

most vapor bubble during heat fluxes where individual bubbles out be discerned measured between 2.2 and 

2.5 mm in diameter and most remained under 3 mm in diameter.  This diameter with some additional space 

added for vapor movement made up the basis for the paired notch spacing from the curved slope chip 

iteration onward. 

 

 

Figure 29 vapor columns forming pathways for cool water 

 

 

Figure 30 Rows of vapor bubbles sit on curved slopes chip 
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Figure 31 high speed photography of bubbles combining 3 notch pair chip 

 

Figure 32 High speed photography of bubbles incorrectly combining over liquid pathway on sintered 

chip 
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6. Conclusions 
 

The alterations made to the geometry of a heated surface in this study showed heat transfer improvements 

over plain surfaces in pool boiling.  Multiple designs where created based on geometry from previous 

experimentation with pool boiling and then additional chips where manufactured based on the results from 

initial designs.  High speed imaging confirmed that vapor bubble where nucleating inside individual notches 

and then condensing into a single lager bubble in the area between the two paired notches.  With this 

information several designs where developed to utilize this phenomenon to promote separate liquid vapor 

pathways to increase HTC. 

First Series of chips, 3 and 9 Notch Pair 

1. Angled notches in a surface will promote nucleation and provided they are close enough will allow 

for vapor bubble merger.  This when formed into a pattern can create beneficial separate liquid 

vapor pathways and can be used to control the movement of the fluid around them. 

2. Organized notches that produce vapor jets, even in small number, can increase the effectiveness of 

nucleate boiling over that of a plain surface or an unorganized roughed up surface as was seen with 

the 9 notch pair chip.  With only 18 small holes added to the results about a 19% increase in HTC. 

Second series of chips, Sintered and un-Sintered 

1. Sintering provided drastic reduction in temperature needed to produce vapor flow, greatly 

increasing HTC. 

2. Reducing the size of the non-nucleating zone to that of about half the vapor bubble departure 

diameter negativity impacts the formation of separate liquid vapor pathways.  This will lead to 

chaotic vapor flow at reduced temperatures leading to issues of not being able to reach higher 

surface temperatures. 

Third Chip, Curved Slope Notch 

1. Increasing the width of the non-nucleating zone provides better HTC and increases CHF.  This and 

subsequent chips maintained at least a 3mm c.t.c. distance, slightly larger than the size of the 

departing vapor bubble.  Imaging showed this led to better separate liquid vapor pathways. 

2. The increased length and decreased volume of the notches may allow for faster removal of newly 

nucleated bubbles promoting greater heat flux.  Since the bubble sit less deeply in the notches, they 

are influenced more by the fluid motion. 
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Fourth Series, Microchannels with Notches 

1. Microchannel created largely increased surface area and a heat flux.  This is due to their ability to 

allow the surface to be wetted even at higher heat fluxes by giving the fluid a path to travel and 

store itself out of the way of rising vapor that might prevent its access to the surface. 

2. Compared to similar trials that used microchannel of comparable depth that lacked the notches in 

the base, these ones that included the notch appear to have functioned worse.  The microchannels 

6 and 8 as seen in Table 1 Dimensions for chips used in  and Figure 4 Heat Transfer Coefficient vs 

Wall Superheat for chips in  have dimensions similar to the 300µm and 400µm microchannel with 

notches chips respectively.  They in turn had maximum HTC of 190 and 170 kW/m2/K while the 

300µm and 400µm microchannel with notches chips reached max of 113 and 141 kW/m2/K as 

show in Table 5 Summery of all chip’s improvement over plain surfaces. 

3. If the integrated heater chip functioned reliably and performed like it did in the first run it will have 

provided an excellent HTC for the dimensions of the chip.  Compared to other microchannel tests 

in Table 1 Dimensions for chips used in  and Figure 4 Heat Transfer Coefficient vs Wall Superheat 

for chips in , it would place higher than a majority of the tested dimensions. 

 

Table 5 Summery of all chip’s improvement over plain surfaces sorted by HTC 

Chip Name 

Critical Heat 

Flux 

(W/cm^2) 

Percent 

Improvement 

Max HTC 

(kW/m^2/K) 

Percent 

Improvement 

Plain Chip 124.9  52.4   

9 Pair 142.1 13.8 64.1 22.3 

Sintered 190.4 52.4 142.9 172.7 

500µm Microchannels 191.2 53.1 117.2 123.7 

Un-sintered 212.1 69.8 100.6 92.0 

Curved Slopes 220.6 76.6 139.6 166.4 

400µm Microchannels 242.1 93.8 141.2 169.5 

Integrated Heater 245.9 96.9 230.3 339.5 

300µm Microchannels 250.4 100.5 112.9 115.5 
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7. Future Work 
 

The results from this research could help with the usage of minor surface enhancements to increase the 

efficiency of pool boiling.  While there are many other very efficient methods of surface enhancement, 

they often need high precision manufacturing or coatings that can wear down.  

1. Look into the success of the curved slope design and the reason for why this design exceeded 

microchannels at low temperatures.  This design could possibly be reworked to function at even 

higher surface temperatures.  In combination with microchannels, the curved slop could prove 

very efficient.  The integrated heater microchannel design also showed promise in its first run and 

if the chip could be cleaned or replicated it might perform well compared to other similar designs 

that have shallow microchannels.  The inclusion of these small nucleation zones may boost the 

efficiency beyond what was seen in the shallow microchannels from [11].   

2. Better visualization of the currents in the designs not involving microchannel would be helpful to 

see how the fluid flow effects the vapor movement and merger if at all.  This could be done 

through the addition of particles to the fluid in order to be able to see the current motion on 

camera.  This may reveal current dead zones that could be better utilized to move fluid more 

efficiently to the surface and help to detach bubbles at a faster rate.   

3. The manufacturing technique used in this study took a significant time to process each chip.  

Possibly look into faster methods of chip creation either for production or for future research 

turnaround times.  Laser engraving is able to cut fairly intricate designs into copper.  Other 

ablation process exist that may create surfaces with more uniform roughness, which can help 

eliminate roughness as a factor when studying these types of surface enhancements. 
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