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Abstract

App Review Analysis via Active Learning:

Reducing Supervision Effort Without Compromising

Classification Accuracy

Automated app review analysis is an important avenue for extracting

a variety of requirements-related information. Typically, a first step toward

performing such analysis is preparing a training dataset, where developers

(experts) identify a set of reviews and, manually, annotate them according

to a given task. Having sufficiently large training data is important for both

achieving a high prediction accuracy and avoiding overfitting. Given millions

of reviews, preparing a training set is laborious.

We propose to incorporate active learning, a machine learning paradigm,

in order to reduce the human effort involved in app review analysis. Our app

review classification framework exploits three active learning strategies based

on uncertainty sampling. We apply these strategies to an existing dataset of

4,400 app reviews for classifying app reviews as features, bugs, rating, and user

experience. We find that active learning, compared to a training dataset cho-

sen randomly, yields a significantly higher prediction accuracy under multiple

scenarios.
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Chapter 1

Introduction

Smart devices including smartphones, tablets, and a variety of wear-

ables are ubiquitous; so is developing software applications or apps for these

smart devices. According to the latest estimates, there are over 2.5 billion

smartphone users, and over 12 million app developers who develop apps for

these devices [9]. These developers have made available over five million smart

device apps on digital distribution stores such as Google Play, Apple App Store

and Amazon Appstore, garnering over 200 billion application downloads [39].

The app users describe their interaction and experience with an app as

app reviews on application distribution stores. App reviews are a rich source

of information for app developers. Specifically, app reviews contain a wealth

of information related to requirements, e.g., bug reports [24], change requests

[8], privacy requirements [40], nonfunctional requirements [1, 21], and even the

features within an app that users like [11] and the rationales for their likes

and dislikes [20]. It is crucial for developers to recognize and act on such

information in a timely manner [28]. Otherwise, given the amount of choices,

users could simply move to an alternative app [43].

According to a recent empirical study [33], apps on digital distribution
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platforms receive on an average 22 reviews every day and, depending on an

app’s popularity, this number could go as high as a few thousands per day. Of

these reviews, only about a third are helpful to the analysts and developers

[6]. With the sheer amount of the review data that is being generated every

day, it is extremely labor-intensive for developers to manually vet all reviews

to identify the ones that are useful for their purposes. Accordingly, it is not

surprising that app developers, typically, do not respond to app reviews al-

though responding may have positive effects such as users increasing ratings

as a result of a developer response [27].

The need for automated approaches to app review analysis has been

well recognized in the literature. Broadly, there are two categories of au-

tomated app review analysis techniques: (1) supervised approaches such as

classification, e.g., [4, 8, 24]; and (2) unsupervised approaches such as cluster-

ing and topic modeling, e.g., [6, 14]. A key difference between these two types

of approaches is that supervised approaches need “labelled” data instances for

training whereas unsupervised approaches can be trained with unlabelled data

instances.

Labeling data requires human effort (or supervision). Hence, one may

argue in favor of using an unsupervised technique, such as the one proposed

by Villarroel et al. [43], instead of using a supervised approach such as Maalej

and Nabil’s approach [24]. However, unsupervised techniques are not effective

when the number of classes are unknown [32] and may need a very large

dataset to be effective. Further, unsupervised approaches may perform well for

2



simple tasks such as categorizing reviews as informative versus not informative

reviews [6], but may fail to make finer distinctions such as feature versus bug,

or privacy versus security requirements. In contrast, a classifier (supervised)

learns from user-provided labels and predicts classes for unlabeled instances.

However, to obtain a satisfactory accuracy, it may still require a large number

of labels, incurring significant human effort.

The review labelling task, typically performed by developers or subject-

matter experts (SMEs), is extremely labor-intensive considering the amount of

noise in reviews, the informal language often used, and the ambiguities inherent

to natural language. Further, it is necessary to obtain labels from multiple

developers for each review to create a reliable training dataset. Requiring

significant manual effort, especially from experts, weakens the argument for

automated app review analysis.

CrowdRE [10] is a promising avenue for engaging the crowd (general

public) in human-intensive RE tasks such as classifying reviews and extracting

requirements [3]. CrowdRE could substantially reduce labeling workload on

developers, but it may not be effective for all review labeling tasks. For exam-

ple, the crowd’s lack of domain knowledge limits their ability to distinguish

bug reports from feature requests; such miscategorization severely impacts the

accuracy of the resulting models [15]. Further, it would be desirable to engage

the crowd (and human intelligence, in general), for creative [30] as opposed to

mundane tasks such as labeling.
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Contributions

We seek to effectively utilize the available human resources in the pro-

cess of automated app review analysis. This is an important challenge consid-

ering that app review analysis may incur significant time, effort, and money.

To this end, we summarize our contribution as follows.

Goal: Reducing the human effort required for app review analysis without

compromising the accuracy of analysis.

Method: We propose to exploit active learning, a well-known machine learn-

ing paradigm [37, 38], for app review classification. We describe a generic

active learning framework (pipeline) that seeks to minimize human effort

required for training a review classifier by intelligently selecting unla-

belled reviews for labelling via uncertainty sampling.

Evaluation: We conduct extensive experiments on an existing dataset [24]

consisting of 4,400 labelled reviews (consisting of four classes), comparing

active learning and baseline classifiers, considering (1) both binary and

multiclass problems; (2) three uncertainty sampling strategies; (3) dif-

ferent training set sizes and classification techniques.

Organization

Chapter 2 details our active learning approach to classify app reviews.

Chapter 3 describes our experiments. Chapter 4 discusses results. Chapter 5

4



describes the related works and Chapter 6 concludes the paper and talks about

the future work.
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Chapter 2

Methodology

In this section, we motivate the need for active learning for app review

analysis via an example scenario, demonstrating (intuitively) that choosing the

right training set can potentially enhance the review classification accuracy.

Then, we describe the three active learning strategies our approach explores.

2.1 Motivating Example

Consider a cloud storage app, CloudDrive which helps users store

and share files on the cloud (similar to Dropbox and Google Drive). Suppose

that the developers of the app want to analyze its reviews to identify the

features requested by the app’s users. Since CloudDrive has more than a

million reviews, the developers would like to employ an automated classifier

to identify reviews corresponding to feature requests.

The first step toward realizing an app review classifier is to build a

training set consisting reviews labelled as a feature request (3) or as a non-

feature request (7). The CloudDrive’s developers intend to crowdsource

these labels. However, being a startup, CloudDrive has a limited budget

for acquiring the labels. To simplify the example, imagine that CloudDrive’s

6



Table 2.1: Sample reviews of the CloudDrive app. The shaded reviews are
labelled as feature request or not, and the unshaded reviews are unlabelled

ID Review Feature

r1 Very convenient app where I can store all of my photos+
videos with easy access

7

r2 Plz add scan with jpg format 3

r3 The app is ok but their plans are too expensive 7

r4 Please introduce something like Dropbox lite! 55Mb
app size is way too much!

3

r5 It does not support multi-selection that I need to
download one by one on web version

?

r6 Please add dark themes ?
r7 No support for OCR on PDFs? I’m looking to move... ?
r8 Introducing an option to automatically save photos

from Micro SD card will be great!
?

. . . . . . . . .

target is to acquire labels for five reviews (in practice, one would acquire labels

for a larger number of reviews).

As shown in Table 2.1, suppose that the developers have somehow

acquired labels for four reviews (r1–r4) so far. The question, then, is which

review to acquire the fifth label for. Suppose that there are four candidates

(r5–r8) to choose the fifth review from (in practice, the number of candidates

is much larger—every unlabelled review is a potential candidate).

A simple approach is to choose the next review to label randomly from

the candidate pool. Suppose that the randomly chosen review is r6. Next, the

developers train a review classifier on the training set (consisting of five labelled

reviews) and predict whether each of the remaining three reviews (r5, r7, and
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r8) is a feature request or not. Assume that each of these remaining three

reviews is a feature request (ground truth). Further, given this training set,

consider that the classifier somehow learns that reviews consisting of tokens

“add” and “introduce” are feature requests and others are not. Then, the

classifier would predict r8 as a feature request, and r5 and r7 as not, yielding

a very low (33%) prediction accuracy.

Instead of choosing r6 as the fifth training instance, what if we somehow

chose r5? From this training set, the classifier may have learned that the

tokens “add,” “introduce,” and “not support” are indicative of a review being

a feature request. This classifier would, then, predict each of the remaining

reviews (r6–r8) as a feature request, yielding 100% accuracy.

Thus, a key question is: how do we decide to choose r5 instead of

r6 before acquiring the label (and training the classifier with five instances)?

The problem with adding r6 as the fifth training instance is that it provides

no new information to the classifier in the training process. That is, the

classifier can learn from the original four training instances that the token

“add” indicates that a review is potentially a feature request; and, including

r6 (which, too, consists of “add”), does not provide any new information. In

contrast, including r5 provides an opportunity for the classifier to learn that

the token “not support” may also be indicative of a review being a feature

request. Active learning (Section 2.3) exploits this intuition to choose the

right training set.

Note that the scenario above is a simplifying example. In practice,

8



(1) one may acquire labels for hundreds, if not thousands, of reviews; (2) the

number of potential candidates to choose the next review to label from may be

tens of thousands; (3) there may be more than two classes (feature, bug, and

rating); and (4) a classifier’s decision boundary may be much more complex

than deciding whether an instance belong to a class based on certain keywords.

Yet, the idea that a classifier can learn better from some training sets than

others also applies to more complex scenario as we describe next.

2.2 An Active Review Classification Framework

Figure 2.1 shows an overview of our active (learning) review classifica-

tion framework. In a nutshell, the framework takes a large pool of unlabelled

app reviews as input and outputs categorized reviews. In this process, the

framework employs:

Review Classifier Classified ReviewsApp Store

Active Learner 
(Iterative)

Bug

Feature Request

Praise

Rating

A Pool of 
Unlabelled Reviews

A Set of 
Labelled Reviews

Review Oracle
(e.g., Crowd Labeler)

Requirements Engineers, 
Developers, Testers, etc.

Assign the most 
uncertain reviews 
for manual labelling

Figure 2.1: An active learning pipeline for classifying app reviews
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An active learner that (iteratively) chooses unlabelled reviews for labelling;

A set of review oracles (human labellers), who assign each review selected

by the active learner to one (or more, depending on the classifier) predefined

categories; and

A review classifier that, given a set of labelled reviews, automatically learns

a model capable to predicting the categories (labels) for new (unlabelled)

reviews.

Other works have explored techniques for classifying reviews and for

exploiting review oracles (described in Section 5). The crux of our work is the

active learner.

Figure 2.2 shows the steps involved in active learning a review classifier

from a large pool of unlabelled reviews. We employ one of the most common

active learning frameworks known as uncertainty sampling [38]. The process

of active learning via uncertainty sampling involves the following steps.

Initialization: Randomly sample a small set of unlabelled reviews and ac-

quire labels for those from the review oracles. Note that the initial sample

needs to be large enough such that it is possible to train a classifier from it

(how good that classifier is does not matter at this stage).

Training: Train a classifier from the training set of labelled reviews. Any

classifier can be used in this stage. However, it is required to ascertain an

uncertainty score for each prediction the classifier makes. Most probabilistic

classifiers (such as naive Bayes and logistic regression) meet this requirement,

10



A large pool of 
unlabelled reviews

Acquire labels for the selected 
reviews from the oracles

Randomly select a (small) 
sample of unlabelled reviews

Train a Classifier with the 
labelled reviews

Predict the class for each remaining 
unlabelled review from the classifier

Desired accuracy achieved, 
labelling budget exhausted, or 
no more unlabelled reviews?

Choose reviews corresponding 
to most uncertain predictionsStop

Yes No

Figure 2.2: A flowchart depicting the steps employed by the active learner

where the probability of an instance belonging to a class is indicative of the

uncertainty (e.g., for a binary classification problem, the closer the proba-

bility of a prediction is to 0.5, the higher the uncertainty of the classifier’s

prediction). Similarly, for margin-based classifiers such as Support Vector

11



Machines (SVMs), the uncertainty can be measured as a function of the dis-

tance of an instance from the decision boundary (the separating hyperplane

for SVM) [42]—the closer an instance is to the boundary, the higher the

corresponding uncertainty.

Prediction: For each remaining unlabelled review, predict the class label and

ascertain the uncertainty of prediction.

Choose the most uncertain predictions: Order the reviews by their re-

spective uncertainty of prediction, and choose the reviews corresponding to

the k most uncertain predictions. The choice of k is a tradeoff between

classification accuracy and training efficiency—ideally, k should be low, but

choosing a very low value (e.g., k = 1) slows the training process without

considerably enhancing the classification accuracy.

Repeat: The reviews chosen in the step above are the ones for which the

classifier is most unsure of the labels. In essence, acquiring labels for these

reviews can potentially be most informative to the classifier. Thus, we acquire

the labels for these reviews from the review oracles, add these labelled reviews

to the training set in the second step above, and repeat the process. The

process stops when (1) the desired classification accuracy is reached, (2) the

labelling budget is exhausted, or (3) there are no more unlabelled reviews.

2.3 Uncertainty Sampling Strategies

A key step in the active learning process above is ascertaining the un-

certainty of predictions. We experiment (Section 3) with well-known strategies

12



[37, 38] for doing so. We briefly describe these strategies below to be self con-

tained.

As shown in Figure 2.2, each iteration of the active learning process

starts with a training set T of labelled reviews, and a set R of unlabelled

reviews. Let C be the set of all labels (classes). Suppose that we train a

probabilistic classifier from T and let Θ be the parameters of the classifier.

Then, for an r ∈ R and a c ∈ C, Pθ(c|r) indicates the probability that r

belongs to class c as predicted by the classifier. Our objective is to choose one

unlabelled review (let k = 1), r∗ ∈ R, to add to the training set in the next

iteration of the process. We describe three uncertainty sampling strategies for

selecting r∗.

Least Confident Prediction (LC) Perhaps, the simplest strategy to choose

the most uncertain review is to choose the review for which the classifier is the

least confident about predicting a class [7]. A probabilistic classifier, typically,

predicts the class of an unlabelled instance to be the class corresponding to

the highest predicted probability. Let ĉ = argmaxc∈C Pθ(c|r) be the predicted

class. Then, we can choose r∗LC as follows:

r∗LC = argmax
r∈R

[
1− Pθ(ĉ|r)

]
For example, considering that C = {c1, c2, c3}, R = {r1, r2, r3}, and

the prediction probabilities as shown in Table 2.2, the LC strategy chooses

r∗LC = r1.

13



Smallest Margin (M) Although potentially effective, a problem with the

LC strategy is that it only considers probability of one class (that correspond-

ing to the highest predicted probability). However, just the highest probability

may not be indicative of the uncertainty of the prediction. An alternative strat-

egy is to employ margin—the difference of the two highest probabilities—in

the computation of uncertainty [36]. Let ĉa and ĉb be the classes corresponding

to two highest predicted probabilities, respectively. Then, we can choose:

r∗M = argmin
r∈R

[
Pθ(ĉa|r)− Pθ(ĉb|r)

]
,

For example, as Table 2.2 shows, although LC chooses r1, M chooses

r2 since the margin for r2 is smallest of the three.

Highest Entropy (H) The last strategy we consider is based on the classic

notion of entropy. Although the margin strategy considers top two probabil-

ities, it does not consider the entire distribution of probabilities across the

classes. This is particularly important for multiclass classification problems

where the number of classes is greater than three. The entropy-based strategy

computes the entropy over class prediction probabilities for each unlabelled

instance and chooses the instance with the highest entropy. That is:

r∗H = argmax
r∈R

[
−
∑
c∈C

Pθ(c|r) logPθ(c|r)
]

14



For example, in Table 2.2, the entropy-based strategy (H) chooses r3

over r1 and r2.

Table 2.2: Examples demonstrating the choice of r∗ for each of the three
uncertainty sampling strategies

r Pθ(c1|r) Pθ(c2|r) Pθ(c3|r) 1− LC M H r∗

r1 0.3 0.2 0.5 0.5 0.2 0.447 r∗LC

r2 0.05 0.55 0.4 0.45 0.15 0.37 r∗M

r3 0.24 0.25 0.51 0.49 0.26 0.448 r∗H

As shown in Table 2.2, for the same set of predictions, each of three

strategies may choose a different review instance for labelling next. However,

it is important to note that the three strategies are equivalent for a binary

classification problem. That is, in a binary classification problem, each of

three strategies chooses the same review instance for labelling next.

15



Chapter 3

Experiments

Evaluating our active learning pipeline is challenging, considering that

there are multiple sources of variation, including: (1) the type of classification

task (binary versus multiclass), (2) the size of the training set, (3) the classifi-

cation technique, and (4) the active learning strategy. We systematically vary

these parameters, and, for each case, evaluate the benefits of incorporating

active learning for app review classification.

3.1 Dataset

For our evaluation, we require a dataset that (1) consists of labelled re-

views (to serve as training set as well as ground truth for evaluation), (2) con-

sists of more than two labels (to experiment with multiclass active learning

and the corresponding strategies), and (3) is sufficiently large (so that we can

experiment with training sets of varying sizes). Accordingly, we employ the

dataset provided by Maalej et al. [24, 25]. Table 3.1 summarizes this dataset,

showing the classes in it, the class distribution, and an example review for

each class.

16



Table 3.1: The class distribution and example reviews from the app review
dataset we employ

Class Size Example review

Feature request 299 This app is awesome and makes recording every-
thing so easy, the only thing I can request is to
make it compatible with iPads!

Bug report 378 I liked very much the upgrade to pdfs (divisions
and search) However, they aren’t displaying any-
more. Fix it and it will be perfect.

User experience 737 This is a great little app; especially for those with
hectic schedules, it keeps you in like for visual peo-
ple like me.

Rating 2,721 Very nice app.

3.2 Experimental Setup

3.2.1 Binary and Multiclass

We train four binary classifiers (feature request, bug, user experience,

and rating) and a multiclass classifier. We create a dataset for each type of

classifier. For each binary classifier, we choose reviews from the corresponding

class as positive set and a sample of reviews from the remaining three classes

as negative set. For the multiclass classifier, we select reviews from all four

classes.

3.2.2 Incremental Training

Given a classifier’s dataset, we divide it into three sets as shown in

Figure 3.1. We chose the sizes of initial training (20%) and final test (30%)

sets, based on experimentation, such that there were sufficient reviews from
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each class for initial training and final test, respectively.

Initial 
Training Data Final Test Data

Experimental Data (ED)
20% 70%

50%0% 100%

Training Set @50% ED Test Set @50% ED

Training Test

Figure 3.1: Experimental setup for incremental training

We employ an incremental training setup common for evaluating active

learning. That is, each of our experiments involves multiple training and

testing iterations. In the first iteration, the training set consists of initial

training data and the test set consists of the experimental data (ED) and

the final test data. In the subsequent iterations, we select instances from the

experimental data, adding them to the training set and removing them from

the test set. We stop this process when the size of the test set reaches the size

of the final test data.

3.2.3 Text Preprocessing

We use scikit-learn’s [35] tf-idf vectorizer (term frequency-inverse doc-

ument frequency) for the bag-of-words approach to identify the features from

the reviews in the training set. By doing this, we have a dictionary of all the

words in the reviews present in the dataset and calculate the frequency of it’s

occurrence in the review of a certain type. This is known as term frequency. It
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is important to note that we disabled the calculation of the inverse document

frequency in this tf-idf vectorizer. After removing stop words and lemmatizing

the tokens, we consider each remaining token (unigram) as a feature. We did

not perform feature selection since our objective is to measure the effectiveness

of active learning. Feature selection is an additional step in the pipeline which

can influence the effectiveness of both active and baseline learning methods.

3.2.4 Classifiers

We experiment with three classification algorithms—naive Bayes, logis-

tic regression, and SVM. We employ the Scikit-learn implementation of each.

For most experiments (unless noted otherwise), we found similar patterns of

results for each classifier; thus, we only report results for the naive Bayes

classifier.

3.2.5 Baseline and Active Learning

We train two binary classification variants: baseline (BL) and active

learning (AL). For multiclass, we train a baseline (BL) variant, and a variant

for each active learning strategy (ALLC , ALM , and ALH).

The experimental setup is identical for each variant. Each variant em-

ploys the same initial training set. However, in the subsequent iterations, their

training (and test) sets differ. Whereas the baseline strategy randomly incre-

ments the training set, the active learning variants increment the training set

according to their uncertainty sampling strategy (Section 2).
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3.3 Metrics

We evaluate classification performance via the standard metrics of pre-

cision, recall, and F1 scores. For multiclass, we compute per-class and aggre-

gate measures (macro-precision, macro-recall, and macro-F1 scores measure

the mean values of per-class precision, recall, and F1 scores, respectively).

Precision and recall may not be equally important for all usecases. For

instance, in the usecase of automatically assigning bugs from app reviews to

developers, it may be more important to precisely classify whether or not a

review is a bug report. On the other hand, if the usecase is to find creative

feature requests from app reviews, a high recall may be preferable since we

want to go through as many feature requests as possible to identify the creative

ones.

Our work explores app review analysis as a generic technique, not for

a specific purpose. Accordingly, we report F1 scores (weighing precision and

recall equally). Depending on the goal of app review analysis, one may weigh

precision and recall differently. In such cases, a weighted version of F score,

Fβ, can be used to evaluate a classifier [2].

3.4 Statistical Tests

Our experimental setup has two sources of randomness. First, the

initial training set is randomly selected. Second, for the baseline classifier,

the training set is selected randomly at each iteration. Thus, the results of
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our experiment can vary from one run to another. To make sure that the

differences in results we observe are not purely by chance, we run our exper-

iment 30 times and compare the samples via Wilcoxon’s ranksum test, which

is non-parametric and does not make any assumptions about the underlying

distributions [16].
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Chapter 4

Results and Discussion

4.1 Binary Classification

Figures 4.1, 4.2, 4.3 compares the evaluation metrics for the baseline

and the active learning classifiers for the binary classification task. Since we re-

peated our experiments 30 times, we show the mean values measured from the

30 runs of the experiments in this and other similar plots. Figures 4.4, 4.5, 4.6

compares the distribution of F1 scores, precision and recall respectively for

baseline and active learning classifiers when the training size is maximum, i.e.,

initial training data plus 100% experimental data (ED). We make several key

observations from Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6.

4.1.1 F1 Scores

As evident from Figure 4.1, the F1 scores for active learning are con-

sistently higher than those for the baselines across training set sizes and for

each binary classifier. Further, as Figure 4.4 shows, the differences between the

baseline and active learning classifiers are statistically significant. Accordingly,

we conclude that:

A binary app review classifier trained on an actively learned training set
yields a higher F1 score than a baseline classifier trained from passively (ran-
domly) chosen training set.
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Figure 4.1: Comparing F1 score in active learning and baseline classifiers in
the binary classification task
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Figure 4.2: Comparing precision in active learning and baseline classifiers in
the binary classification task

24



0 20 40 60 80 100

0.4

0.6

0.8

1

Training set size (%ED)

R
ec

al
l

Bug Report

0 20 40 60 80 100

0.4

0.6

0.8

1

Training set size (%ED)
R

ec
al

l

Feature Request

0 20 40 60 80 100

0.4

0.6

0.8

1

Training set size (%ED)

R
ec

al
l

User Experience

0 20 40 60 80 100

0.4

0.6

0.8

1

Training set size (%ED)

R
ec

al
l

Rating

Baseline Classifier Active learning Classifier

Figure 4.3: Comparing recall in active learning and baseline classifiers in the
binary classification task
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classifiers for maximum training set (100% ED)
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Figure 4.5: Comparing the Precision for baseline (BL) and active learning
(AL) classifiers for maximum training set (100% ED)
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Figure 4.6: Comparing the Recall for baseline (BL) and active learning (AL)
classifiers for maximum training set (100% ED)
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4.1.2 Precision

From Figures 4.2 and 4.5, we observe that, the precision values for

active learning are significantly better for Bug Report, Feature Request, and

User Experience classifiers. However, the difference is not significant for the

Rating classifier. We attribute this result to the way in which active learning

picks training instances in our setting. That is, as active learning picks new

training instances in each iteration, the resulting positive and negative classes

in the training set becomes increasingly more representative of the positive

and negative instances in the overall dataset, respectively. As a result, when

tested, the classifier yields fewer false positives, and thus, higher precision, in

each successive iteration. In contrast, we cannot claim the same pattern for

the baseline classifier. Since the baseline classifier adds new training instances

randomly, the distributions of reviews in the classes may not be representative

of the of entire dataset even when we increase the training set, explaining our

observation that precision curves are almost flat for the baseline classifiers.

For the Rating classifier, we note that the Rating class is much larger

than other classes (Table 3.1). Further, the class is also “noisy” or less-

structured in that there are a variety of ways to merely express a rating.

In such cases, we conjecture that active learning, similar to baseline, is unable

to pick representative reviews for the training set.

A binary AL classifier yields a higher precision than a BL classifier when
the classes are sufficiently well structured. For app review analysis, the Bug
Report, Feature Request, and User Experience classes are sufficiently well
structured.
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4.1.3 Recall

For all but Rating classifier, the recall values for both baseline and

active learning are high, in general. Further, in all cases, the recall for active

learning increases as the training set size increases. Although the recall for

active learning is slightly lower than the baseline initially, it picks up and

outperforms baseline for larger training sets.

We attribute this observation to the distribution of reviews between

positive and negative classes in the dataset. Specifically, in these binary classi-

fication tasks, the positive classes contain similar reviews whereas the negative

classes are a lot more diverse. For example, for the Bug Report classifier, the

positive class contains reviews about Bug Reports whereas the negative class

contains all other types of reviews. As a result, the classifiers (AL or BL)

tend to classify more reviews as positive class, in essence, yielding high recall

values. Further, as active learning makes the positive class in the training set

more representative of the same in the test set, it is able to increase the recall,

but the baseline fails to do so.

A binary AL classifier yields a higher recall than a BL classifier when the
training set size is sufficiently high.

To further demonstrate the value of active learning, Table 4.1 shows

the evaluation metrics for the baseline classifier when the training set size is

maximum (100% ED), and the training set size active learning requires to

consistently outperform baseline on each of the evaluation metrics.
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Table 4.1: Training set size (in %ED) the active learning classifier takes to
consistently outperform the baseline classifier trained with maximum (100%
ED) training set

Class Precision
AL

Recall
AL

F1
AL

(%ED) (%ED) (%ED)

Bug Report 0.67 14 0.92 68 0.77 18
Feature Request 0.72 12 0.90 56 0.80 25
User Experience 0.67 9 0.86 54 0.75 14
Rating 0.51 68 0.50 5 0.50 5

In all binary app review classification tasks, active learning outperforms the
baseline on all evaluation metrics with only a fraction of the training dataset
the baseline employs.

4.2 Multiclass Classification

Figures 4.7, 4.8, 4.9 shows the per-class precision, recall and F1 score

respectively for the multiclass classifiers and Figure 4.10 shows the macro-

averaged evaluation metrics for the multiclass classifiers. It compares the

metrics for baseline classifier and the classifier for each active learning strategy.

Figure 4.11 compares the distribution of the macro metrics when the training

set is maximum (100% ED).

4.2.1 Macro-Averaged Metrics

As evident from Figure 4.10, the classifiers trained via active learning

strategies outperform the baseline classifier, on each macro-averaged evalua-

tion metric, consistently across different training set sizes, demonstrating that
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Figure 4.7: Comparing per-class F1 Score for baseline and active learning
(three strategies) multiclass classifiers
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Figure 4.8: Comparing per-class precision for baseline and active learning
(three strategies) multiclass classifiers
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Figure 4.9: Comparing per-class recall for baseline and active learning (three
strategies) multiclass classifiers
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Figure 4.10: Comparing macro-averaged metrics for baseline and active learn-
ing (three strategies) multiclass classifiers
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Figure 4.11: Macro evaluation metrics for the baseline (BL), and least confi-
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active learning is valuable for multiclass classification.

An actively trained multiclass app reviewer classifier yields a better overall
(macro) precision, recall, and F1 score than a passively trained multiclass
app reviewer classifier.

The multiclass classifiers (baseline or active learned) yield a lower ac-

curacy compared to their binary counterparts. This is not surprising—going

from two to four classes, learning the class (decision) boundaries is much more

complex.

4.2.2 Per-Class Metrics

We observe from Figures 4.7, 4.8, 4.9 that the per-class metrics for

active learning strategies are better than those for baseline in all cases with

two main exceptions. First, for the Rating class, the precision values of the

active learning strategies and baseline are almost same. Second, for Feature

Request class, the recall values for the active learning strategies seem to be

slightly worse than the baseline.

We borrow intuitions from the binary classification results to explain

the exceptions above. First, as we mentioned, the Rating class is larger and

less-structured compared to the other classes. Thus, both baseline and active

learning fail to choose a training set representative of the corresponding class

in the overall dataset. Second, we note that Feature Request is the minority

class among the four classes (Table 3.1). As we observed in the binary case,

the recall was lower for active learning when the training set size was small.

We conjecture that the recall for the Feature Request class in the multiclass
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case is lower for a similar reason, and that it will go up when more training

instances are added to that class.

An actively trained multiclass app reviewer classifier yields a better per-
class precision, recall, and F1 score than a passively trained multiclass app
reviewer classifier when the corresponding class is sufficiently large and well
structured.

4.3 Uncertainty Sampling Strategies

Based on the comparisons in Figures 4.7, 4.8, 4.9, 4.10 and 4.11, we

note that, there were no significant differences in the performances of the

three uncertainty sampling strategies we employed. However, this result was

specific to the naive Bayes classifier.

Tables 4.2, 4.3, 4.4 shows a snapshot of our results for additional classi-

fiers. For the logistic regression and support vector machines (SVM) classifiers,

we observe that AL strategies based on least confident prediction (ALLC) and

margin (ALM) outperform the strategy based on entropy (ALH). However,

these results were not consistent across all settings we tried.

For the active multiclass classification, there was no clear winner among the
the uncertainty sampling techniques across (macro and per-class) metrics,
classification techniques, and training set sizes. However, for logistic regres-
sion and SVM, ALLC and ALM outperform ALH on macro metrics.

Our finding above is similar to Settles and Craven’s finding [38] that

there was no clear winner among different active learning strategies (they

compare active learning strategies for different sequence labelling tasks on

multiple corpora).
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Table 4.2: The Macro-averaged metrics for Naive Bayes multiclass classifiers
trained at 100% ED size

BL ALLC ALM ALH

P R F1 P R F1 P R F1 P R F1

0.55 0.54 0.52 0.66 0.59 0.60 0.65 0.59 0.59 0.64 0.58 0.59

Table 4.3: The Macro-averaged metrics for Logistic Regression multiclass clas-
sifiers trained at 100% ED size

BL ALLC ALM ALH

P R F1 P R F1 P R F1 P R F1

0.58 0.58 0.57 0.69 0.68 0.69 0.69 0.68 0.68 0.66 0.65 0.65

Table 4.4: The Macro-averaged metrics for Support Vector Machines multi-
class classifiers trained at 100% ED size

BL ALLC ALM ALH

P R F1 P R F1 P R F1 P R F1

0.55 0.55 0.54 0.68 0.67 0.67 0.70 0.69 0.69 0.64 0.63 0.63

4.4 Summary

We highlighted our main findings above. Overall, they suggest that

active learning classifiers outperform baseline classifiers under several app re-

view classification settings. However, smaller training set sizes and the extent

of noise in a class may degrade the active learning performance.

In general, active learners are more effective than corresponding passive

learners for most classification tasks. However, as Castro and Nowak [5] prove,

the extent to which an active learner is more effective than a passive learner
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can vary significantly—from trivial to orders of magnitude improvements—

based on noise conditions in the data. Thus, the benefits of active learning

must be quantified specific to each domain. In that spirit, our work is the first

to empirically evaluate active learning for app review classification.

4.5 Threats to Validity

We identify three threats to the validity of our results and describe our

efforts toward mitigating those threats.

First, the accuracy of our results depend on the quality of the labelled

ground truth data. To mitigate a construct validity threat of labeling bias, we

use an existing dataset [24] labelled with the majority class for each review—

bug report, feature request, experience, or rating. However, the genralizability

of our findings is still a threat. Although we chose a dataset which is a random

sample of over 1,300,000 reviews for about 1,200 iOS and Android apps, we

acknowledge that experiments with additional datasets are necessary to claim

generalizability.

Second, the baseline approach in our evaluation randomly chooses an

initial set to acquire labels. Because of randomness, the baseline approach

can get lucky (or unlucky). To mitigate this bias, we run our experiments

multiple times (n = 30), and report mean values of the metrics as well as their

distributions in most cases. Further, we conduct rigorous statistical tests to

indicate whether our findings are significant or not.
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Finally, we notice that several reviews in the dataset we use could be

classified under more than one class label, but the truth labels only contain the

majority class. While our focus was to reduce human effort in labeling and not

to improve classification accuracy, future works could consider building and

using a dataset with multiple labels and employing multi-label classification

techniques to improve classification accuracy.
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Chapter 5

Related Work

Several research works have focused on analyzing app reviews [6, 14,

20, 43], app descriptions [18], and discussions about apps on various platforms

including Reddit and Twitter [12, 17, 19], to assist app developers and analysts

better understand end-user needs. We review these works and others related

to active learning in software engineering.

5.1 App Reviews Analysis

Guzman and Maalej [14] mine app features and sentiments associated

with these features. Their approach is frequency based where non-common

features can go undetected.

Johann et al. [18] propose a technique for gathering feature information

from app pages and app reviews. They match features extracted from reviews

and app description via binary text similarity function, results of which are not

always accurate if the number of words in both candidates being compared are

not same. The deep manual approach adopted in their work can be simplified

by incorporating active learning.

Researchers have also employed unsupervised techniques to analyze re-
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views. Chen et al. [6] propose AR-miner to filter noninformative reviews from

informative reviews, and rank the reviews based on their significance. Binary

class classification is a simpler problem where we need to learn one boundary

to distinguish. Achieving high accuracy on a multiclass problem with unsuper-

vised learning is challenging. Gu and Kim [11] develop SUR-Miner, a review

summarization framework. It classifies reviews, identifies various aspects and

opinions about those aspects in the review, and generate visual summaries.

Iacob and Harrison [17] develop MARA, a tool to extract feature re-

quests from app reviews. MARA mines features via manually crafted keywords

and linguistic rules, and employs LDA to identify topics associated with fea-

tures. McIlroy et al. [26] deal with automatically assigning multilabels to user

reviews for detecting anomalous apps, and experiment with various multilabel-

ing approaches and classifiers.

Villarroel et al. [43] show how user reviews can be clustered and pri-

oritized for release planning. Unlike our approach, the reviews in their work

are classified as either bug reports or features using Random Forest machine

learning algorithm on basis of predictor variables (i.e., ratings in this case).

Palomba et al. [34] use clustering algorithms to group user reviews with similar

user needs and feature suggestions. They classify reviews as either information

giving, information seeking, feature request or problem discovery, and cluster

preprocessed source code and user feedback. These clusters of feedback are

linked to corresponding classes in source code which require modifications for

accommodating user suggested features.
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5.2 Requirements Analysis and Classification

Guzman, Alkadhi and Seyff [12] discuss the importance of analyzing

reviews to improve an application. They perform a manual content analysis of

tweets and identify tweet categories relevant to different stakeholders. They

automate the manual process by employing SVM and decision trees.

Williams and Mahmoud [45] manually classify 4,000 tweets as bug re-

ports and user requirements, and then employ SVM and naive Bayes to cat-

egorize useful tweets. Guzman, Ibrahim and Glinz [13] also mine tweets to

identify requirements. Active learning could assist in labeling process of these

works.

Other relevant RE research works include frameworks and techniques

to analyze, classify or extract user requirements either manually or automat-

ically. Munaiah et al. [29] build one-class classification technique for security

requirements. Their approach relies on security and non-security requirements

being labelled. Thomas et al. [40] develop an analytic framework and tech-

nique to identify privacy requirements from contextual factors such as actors,

information and places, and to refine the identified requirements. Kanchev et

al. [19] propose Canary, a query language to extract requirements including

arguments supports and rebuts from online discussions. Canary depends on

crowd annotated database. Crowd effort in Canary can be made effective by

employing active learning.
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5.3 Active Learning in Software Engineering

While active learning has not been employed in requirements engineer-

ing or for app review analysis, with a motivation to reduce the labeling effort,

few works have employed active learning in software engineering to classify

test cases and to identify defects. Lucia et al. [23] propose an active learn-

ing approach to classify true positives and false positives in anomaly reports.

Wang et al. [44] propose LOAF, an active learning based technique to clas-

sify test reports that are useful and that are not. They compare LOAF with

three baseline active learning strategies—margin sampling, least confidence,

and informative and representative and found that LOAF yields better accu-

racy and efficiency than the baseline. However, these works are limited to

binary classification.

Murukannaiah and Singh [32] develop Platys, an active learning based

framework to learn a user’s model of places. They empirically evaluate Platys

via a developer study and find that their framework significantly reduces devel-

opment effort. Murukannaiah and Singh’s work elicits users places via active

learning. The effectiveness of incorporating this approach in eliciting detailed

requirements from users remains to be seen. A key challenge here is to not

frustrate the users.

Most similar to our work is Thung, Li and Lo’s [41] work on defect

categorization. They develop an active and semisupervised multi-class classi-

fication method to classify defects into three defect families—control and data

flow, structural, and non-code, and find that their approach performs signifi-
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cantly better than the baseline. Compared to Thung, Li and Lo’s dataset that

only contain 500 bug reports for three apps, our dataset draws a sample of

4,400 reviews from over 1,300,000 reviews covering nearly 1,200 apps. Whereas

bug reports are likely to be better structured since they are written by testers

and developers, app reviews written by end users are likely to be more un-

structured and noisy, making the task of app review classification significantly

harder.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Two emerging themes in RE are exploiting Artificial Intelligence (e.g.,

machine learning and NLP for RE), and exploiting human intelligence (e.g.,

Crowd RE). These two themes are complimentary [31] in that AI techniques

are often inexpensive, but may not be effective to the creative field of RE

without human involvement. In contrast, Crowd RE techniques are expensive

and may not be viable without some automation.

Active learning, as we employ in the paper, seeks to bridge these two

themes by efficiently spending the human effort in an automated review clas-

sification task. Although automated approaches have been proposed to assist

in searching for valuable app reviews, unsupervised techniques fail to achieve

nuanced tasks, whereas supervised techniques incur a labelling expense in the

form of human effort. We propose to exploit active learning as a middleground

solution, which reduces the human effort incurred in a supervised approach by

choosing the most informative training set. As our results indicate, active

learning can significantly reduce the human effort required for training app

review classifiers valuable to RE.
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6.2 Future Work

6.2.1 Active and Semisupervised Learning

Although active learning optimizes the human effort spent for labelling,

eventually it only learns from labelled instances, ignoring a much larger set

of unlabelled reviews. A technique that is often paired with active learning

is semisupervised learning [47]. Semisupervised learning is complementary to

active learning in that it exploits the unlabelled instances that a classifier is

most confident in predicting, e.g., via self-training, in contrast to an active

learner that solicits human labelling for instances the classifier is least confi-

dent about. A future direction is to combine the two themes in a pipeline,

where the active learner first picks reviews to be labelled by humans and the

semisupervised learner is trained with both labelled and unlabelled reviews.

We conjecture that such a pipeline would perform better than a solo active or

semisupervised learning pipeline. However, a semisupervised learner assumes

that there is an inherent structure in the unlabelled data that the learner can

recognize. It remains to be seen how well that assumption holds for the noisy

review data.

6.2.2 Active Multilabel Classification

We manually analyzed several misclassified instances by both baseline

and active learning classifiers. For the baseline, when an instance was mis-

classified, there were not any reviews similar to it in the training set but there

were many such test instances. These are the cases where active learning is
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potentially beneficial.

We also analyzed scenarios in which active learning failed to make

correct predictions and made an interesting observation. Often, both active

learned and baseline classifiers made incorrect predictions when the ground

truth was controversial. For example, the following review is labelled as a

Feature Request in the training dataset: “This app is quite nice but ever since

the last update it keeps auto deleting. I have re-installed it thrice including

today. That is just wrong!” However, one may argue that this review could

have been labelled as a Bug Report (and there are similar reviews labelled

as Bug Reports). Such instances throw off the active learner (as well as the

baseline).

A promising direction toward addressing the challenge above is multil-

abel classification. As McIlroy et al. [26] suggest a third of app reviews raise

more than one type of issue, for instance, a review might contain both a fea-

ture request and a bug report. Specifically, researchers have proposed active

learning techniques for multilabel classification problems [22, 46]. Their effec-

tiveness for classification of app reviews is an interesting direction for future

work.

6.2.3 Active Learning in Context

We employed active learning in a passive learning scenario, where the

app reviews have assumed to have been generated, but we are seeking labels

for them. However, active learning can also be used in more “active” scenarios
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where feedback can be elicited in real time. To this end, Murukannaiah and

Singh [32] describe an active learning strategy for eliciting context labels from

smartphone users. An interesting extension to this work would be to elicit

requirements from users in context via active learning.
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