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Optimal Predictive Kernel Regression via

Feature Space Principal Components

Ernest Fokoué

Center for Quality and Applied Statistics, Rochester Institute of Technology

98 Lomb Memorial Drive, Rochester, NY 14623, USA

eMail: ernest.fokoue@rit.edu

Abstract

We propose a simple use of principal component analysis in feature space that allows

the derivation of optimal predictive kernel regression. The proposed approach is shown

to perform well on both artificial and real data. Despite its incredible simplicity, the

proposed method is found to compete very well with sophisticated statistical approaches

like the Relevance Vector Machine and the Support Vector Machine.

Keywords: Kernel Regression, Sparsity, Principal Component Analysis.

1 Introduction

We are given a training set D = {(xi, yi), i = 1, · · · , n : xi ∈ X ⊂ IRp, yi ∈ IR} where yi are
realizations of Yi = f ∗(xi) + εi, and εi is the noise term. For simplicity and without loss of
generality, we shall assume throughout this paper that the data are standardized. We assume
that the true function f ∗ can be approximated by

fn(x) =
n

∑

j=1

wjK(x,xj), (1)

where K : X × X → IR is the Gaussian radial basis function kernel defined by

K(xi,xj) = exp

(

−‖xi − xj‖2
2ω2

)

, (2)

for some bandwidth ω > 0. Now, the function fn as defined in Eq. (1) is called a radial basis
function (RBF) with weights w1,w2, · · · ,wn and centers x1,x2, · · · ,xn, assumed to be pairwise
distinct. We shall consider HK, the family of radial basis functions (RBF) generated by K, i.e.

HK =

{

h : IRp → IR : ∀x ∈ IRp, h(x) =

k
∑

i=1

wiK (x, ξi) : k ∈ N, ξi ∈ IRp,wi ∈ IR

}
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The great appeal of HK resides in the fact that, for any given continuous function f , there exist
(a) a kernel K(·, ·), (b) an optimum number of basis functions k, (c) a set of weights {wi}ki=1

and (d) a set of centers {ξi}ki=1 such that the corresponding function hk ∈ HK approximates f
to any desired precision. This approach to regression really became popular after the invention
and publication by [1] of the Relevance Vector Machine (RVM). [7] provides one of the earliest
and most comprehensive coverage of kernel methods as used in machine learning. However, it is
important to note that kernel methods - as they are called in the machine learning community
- owe the vast popularity partly to a strong theoretical justification by Kimerdolf and Wahba
(1971)’s representer theorem. The reader is referred to [11] for a more detailed account of
the above fundamental result. Kernel methods have come under intense and careful scrutiny in
recent years. Researchers - probably fueled by the guarantee provided by such important results
as the representer theorem - continually dig deeper into the framework, exploring a variety of
aspects of it. One of the most important aspects of kernel regression - besides the crucial issue
of the choice of the kernel - is the search for a sparse representation. Indeed, sparsity was the
professed motivation of [1], and later of [3], [2]. In fact, for most situations and indeed most
kernels, the statistical estimation of the weights wj ’s by traditional error minimization (least
squares) or density maximization (MLE) methods turns out to be an ill-posed problem, for
which there is no hope of a decent solution without some form of regularization or constraints
to help stabilize the solution. Of course, regularization in and of itself does not necessarily
yield a sparse solution. Indeed, the form of the regularizer and/or appropriate subsequent
refinements performed on the regularized solution are the keys to obtaining the desired level of
sparsity.

Definition 1 Given a vector w> = (w1, · · · ,wn) ∈ IRn, we define supp(w) = {j : wj 6= 0},
and the zero-norm of w will simply be

‖w‖0 = |supp(w)| = number of nonzeroes entries in w

Definition 2 Let s ∈ N be a natural number. We shall say that a solution w∗ is s-sparse if

‖w∗‖0 ≤ s, i.e. if w∗ has at most s nonzero entries.

Throughout this paper, we make the usual assumption that the noise terms are independent

zero-mean Gaussian random variables with the same variance σ2, i.e. εi
iid∼ N (0, σ2). As a

result, we have the likelihood

p(y |w, σ2) = N n(y |Kw, σ2In), (3)

corresponding to the model of equation (1) conveniently rewritten in vector-matrix form as

y = Kw + ε, (4)

where y = (y1, y2, · · · , yn)T, w = (w1,w2, · · · ,wn)
T, ε = (ε1, ε2, · · · , εn)T and K = (Kij) where

Kij = φ(‖xi − xj‖), i, j = 1, · · · , n. We ideally seeks to solve

min
w̃∈IRn

‖w̃‖0 subject to ‖y −Kw̃‖2 < η

where η might be related to the variance of the noise term ε.
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1.1 Main result

We consider obtaining a least squares solution to the estimation of the weight vector w. How-
ever, it turns out that

ŵols = (K>K)−1K>y

cannot be obtained in practice, because the matrix (K>K) is typically ill-conditioned. Various
authors have restored to techniques of regularization such Ridge Regression [8] and LASSO [9]
to isolate a unique solution. A typical ridge regression solution would be of the form

ŵridge = (K>K+ λI)−1K>y

where the ridge constant (tuning parameter) can be estimated through cross validation or
generalized cross validation. It turns out that the ridge regression approach in this context is
fraught with various difficulties due to the nature of the matrix K.

1.2 Our approach

In this paper, however, we consider a straightforward technique based on the spectral decom-
position of (K>K), namely

K>K = PΛP>.

• We use Λ to determine q, the number of relevant rows to retain in P and then form the
relevant projection matrix Q ∈ R

n×q made up of the first q columns of P.

• We then form the new n× q relevant ”design” matrix

Z = KQ

• Then we get the q-dimensional estimate ŵpck of the relevant weights

ŵpck = (Z>Z)−1Z>y

• For each new vector xnew, we first compute

anew = (K(xnew,xj),K(xnew,x2), · · · ,K(xnew,xn))
>,

then we crucially form the q-dimensional relevant version of anew as

znew = Q>anew

• The point estimate of the response at xnew is then given by

ŷnew = z>newŵpck = f̂pck(xnew)

3



The immediate gain here lies in the fact that we use only standard spectral decomposition
elements, and not complex computation is involved. We are therefore in the presence of a
computationally efficient approach to prediction in kernel regression.

An even bigger benefit comes from the fact our initial computational results on both artificial
and real life data show that our straightforward and intuitively simple technique works very
well, and even outperforms sophisticated techniques like the relevance vector machine and the
support vector machine.

Rm(f) =
1

m

∑

(xnew,ynew)∈Test

(ynew − f(xnew)
2

which the empirical version of

R(f) = E[(Y − f(X))2] =

∫

(xnew,ynew)

(ynew − f(xnew)
2dP (xnew, ynew)

2 Numerical explorations

2.1 First artificial example

As our first illustrative example, we consider recovering the univariate sinc function from noisy
observations. The choice of the sinc function is motivated by the fact that it has become the
de facto benchmark example in nearly all papers on kernel regression since its use by Vladimir
Vapnik in some of the earliest computational examples of statistical learning theory.

f(x) =
sin x

x
x ∈ [−10,+10]

We generate n = 99 points with noise variance σ2 = 0.32.

PCK SVM RVM

Training Error 0.0297 0.0300 0.0307

Test Error 0.2036 0.2145 0.2093
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Figure 1: Results of the PCK algorithm for the hill function. The panel on the left shows

that our technique picks up around 11 relevant components. Note that this corresponding to

essentially to the totality of the variation.
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Figure 2: Comparison of the predictive performances. PCK seems to have a minute edge, but

clearly, the three methods are performing equally well on this data.

2.2 Second Artificial Example

As our second artificial example, we consider exploring the hill function defined as

f(x) = −x +
√
2 sin(π3/2x2) with x ∈ [−1,+1]

This function is somewhat qualitatively different from the previous one. Like before, we generate
n = 99 points, and use a noise variance of σ2 = 0.32.
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Figure 3: Results of the PCK algorithm for the hill function. The panel on the left shows

that our technique picks up around 16 relevant components. Note that this corresponding to

essentially to the totality of the variation.
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Figure 4: Comparison of the predictive performances. PCK seems to have a minute edge, but

clearly, the three methods are performing equally well on this data.

2.3 Real life example

The Boston housing data set is a well known benchmark data set often used to test the perfor-
mance of regression methods.

PCK SVM RVM

Training Error 0.0002 0.0002 0.0001

Test Error 0.0174 0.0201 0.0181
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For this data set, the Principal Component approach retains 49 relevant components.

PCK SVM RVM
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2.4 Summary of performances

PCK SVM RVM

Sinc 0.2036 0.2145 0.2093

Hill 0.0109 0.0210 0.0170

Boston 0.0171 0.0197 0.0181

Table 1: Comparison of the predictive performance of three methods based on the root mean

squared error on the test set. In this case, m = 50 replications is used each for each data set.

The proposed method PCK is compared to both SVM and RVM

3 Conclusion

We have proposed a simple use of principal component analysis in feature space that allows the
derivation of optimal predictive kernel regression. The proposed approach is shown to perform
well on both artificial and real data. Despite its incredible simplicity, the proposed method is
found to compete very well with sophisticated statistical approaches like the Relevance Vec-
tor Machine and the Support Vector Machine. The proposed method merits to be considered
seriously because of simplicity. An aspect worth investigating in our future work is the deriva-
tion of way to trace back the relevant vectors themselves rather than settle with the relevant
components.
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