
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

7-18-2019 

Autocorrelation Reduction and Consistency Analysis of Autocorrelation Reduction and Consistency Analysis of 

Correlation for Human Brain Activity Data Correlation for Human Brain Activity Data 

Xiaowen Zhou 
xz6955@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Zhou, Xiaowen, "Autocorrelation Reduction and Consistency Analysis of Correlation for Human Brain 
Activity Data" (2019). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10178?utm_source=repository.rit.edu%2Ftheses%2F10178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


i 

 

 

R·I·T 

 
 

 

Autocorrelation Reduction and 

Consistency Analysis of Correlation for 

Human Brain Activity Data 
 

 

by 

 
Xiaowen Zhou 

 

 
A Thesis Submitted in Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Applied Statistics  

School of Mathematical Sciences, College of Science 

 
Rochester Institute of Technology 

Rochester, NY 

July 18, 2019 
 



ii 

 

 

Committee Approval:  
 
 
Peter Bajorski                                                                                     Date  

 

Professor, School of Mathematical Sciences  

Thesis Advisor  

 

 

 

 

 

 
Linlin Chen                                                                                            Date  

  

Associate Professor, School of Mathematical Sciences 

Committee Member  

 

 

 

 

 

 

Minh Pham                                                                                             Date  

 

Assistant Professor, School of Mathematical Sciences 

Committee Member  

 



iii 

 

 

ABSTRACT 

 

In recent years, the number of studies using functional magnetic resonance imaging (fMRI) on 

human brain activity has increased rapidly, which has become a hot topic in medical and 

academic fields. The autocorrelation and correlation problems in the time series of human brain 

activity have also become an important research direction. It is found that there are relative 

residuals in the time series of human brain activity processed by smoothing splines. To solve this 

problem, B-spline is used to smooth the curve. By choosing the right knots, a better smoothness 

method to process the human brain activity data is provided. In addition, the study also found 

that the time series of human brain activity has correlations. The multiple scans of the same 

person were analyzed to see if these correlations were consistent. In order to evaluate this point, 

correlation is used as a response variable Y and person as a factor X to fit a random effect model. 

By calculating the percentage of variation in Y to determine whether the scans are similar to each 

other. The results show that the mean-centering time series data with 0th order difference has the 

most consistent correlation. 
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1 Introduction 
 

Functional magnetic resonance imaging (fMRI) is one of the best tools for the human to study 

brain activity. Scientists use neuroimaging processing to extract frequency data of different brain 

regions for further analysis and intensive study. The research of fMRI data has produced a large 

number of noise data with a complex correlation structure. An important role was played by 

statistics in analyzing the nature of the large size, high-dimensional and noisy data and 

interpreting the results. The large data size, high dimensionality, and noise of fMRI data make 

statistical analysis challenging (Chen, 2015). 

The linear parameter regression model of fMRI time series data has autocorrelated residuals 

(Carew et al., 2002). It will violate the independence hypothesis if the residuals have an 

autocorrelation structure; also, the estimated standard error will be biased. This may lead to the 

incorrect degree of freedom and the expansion of test statistics. Therefore, scientists conducting 

fMRI studies must deal with autocorrelations in order to make effective statistical inferences. 

Two general methods for dealing with these autocorrelations are smoothing and whitening 

(Carew et al., 2002). It is very difficult to obtain an accurate estimation of intrinsic 

autocorrelation. Friston et al. (2000) state that the better way to minimize bias was to smooth 

rather than whiten the data. Therefore, it is prudent to study the applicability of various 

smoothing methods for fMRI data. 

In statistics and image processing, smoothing a data set is mainly to grasp the main patterns in 

the data by establishing approximation functions and remove noise, structural details and 

instantaneous phenomena (Wikipedia, 2019). In the smoothing process, the signal data points are 

modified. The individual data points generated by noise are reduced, and the points lower than 
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the adjacent data points are raised to obtain a smoother signal. Smoothing can be used in data 

analysis in two important forms. First, if the assumptions of smoothing are reasonable, more 

information can be obtained from the data. Second, providing a flexible and robust analysis. 

There are many different algorithms for smoothing. This paper focuses on the use of B-spline as 

the main smoothing tool in time series analysis of human brain activity. By choosing the right 

knots, finding the most suitable smoothness for the time series of human brain activity data. 

2 Check the Autocorrelation 

2.1 Data Structure 

The initial experiment included 820 people scanned by functional magnetic resonance imaging 

(fMRI) and four times for each person. Through the complex imaging processing, the fMRI 

images were converted into frequency data. In this process, the original fMRI images were 

identified as 116 brain regions, and each brain region contains 1200 frequency data points. The 

full data is stored in a four-dimension array with the following dimensions: 

 [1200 (points in time), 116 (brain regions), 4 (scans) and 820 (people)].  

At present, a small subset of all data was used to concentrate on specifics. There are 4 scans for 

each person, and 3 people for this small subset. Load both the original data and smoothed data 

for analysis. They both are stored in four-dimension arrays [1200, 116, 4, 3].  
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2.2 Residual Analysis 

 

Figure 1. Residual plot (Subset.Resid.arr[,1,1,1]) 

Based on the residual plot above, the residuals are randomly dispersed around the horizontal 

axis. And it shows no systematic nor other special patterns. That means the residuals are pretty 

random and independent. 

 

Figure 2. Normal Probability Plot of Residual 
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From the normal probability plot of the residuals, it shows that the residuals are close to the 

diagonal line which represents the normal distribution. It is reasonable to assume that the 

residuals are normally distributed. 

To check the variability for the residuals, the control chart could be used. The X-Bar chart shows 

how much variation exists in the process over time. This chart is used to monitor the mean of a 

process based on samples collected from the process at a given time (such as hours, days, 

months, years, etc.). The measurement of the sample at a given time constitutes a subgroup. 

Usually, an initial series of subgroups is used to estimate the mean and standard deviation of a 

process. Then, the mean and standard deviation are used to generate control limits for the 

average value of each subgroup (NCSS, 2019). Control limits reflect the actual amount of 

variation that is observed. Assuming that the variation can be described by the normal 

distribution. It means that 99.73% of all of our observations will fall somewhere between three 

standard deviations below the mean (-3) and three standard deviations above the mean (+3). 

Here, this principle was used to set as control limits. 

The ‘qcc’ function in R library could be used to generate the X-Bar control chart. 
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. 

Figure 3. X-Bar Control Chart 

From Figure 3, the out-of-control points were highlighted in red. The standard deviation was 

reported in the legend for the chart. It is easy to see that one measurement around 676 was above 

the Upper Control Limit (UCL) and three measurements between 439 and 518 were below the 

Lower Control Limit (LCL). In general, it is in control, because there were only a few 4 out of 

over 1000 observations.   

2.3 Test of Randomness 

Runs test can be used to determine whether data sets come from random processes (Bradley, 

1968). A run is defined as a series of increasing or decreasing values. The number of increasing 

or decreasing values is the length of the run. In random data sets, it follows a binomial 

distribution when the probability of the (𝑖 + 1)𝑡ℎ value is greater or less than the 𝑖𝑡ℎ value. This 

forms the basis of runs test (NIST, 2012).  
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Runs test is a test for the randomness of a numeric sequence X by studying the runs frequency R. 

Usually, by comparing each element of a sequence with its median, each numeric sequence can 

be converted into binary data defined as 1 and 0. Given n 1 and m 0, the runs R is defined as a 

series of similar responses with a statistical distribution. On the basis of known distribution, the 

exact p-value of small sample data can be calculated. When the sample size is large, one can use 

the normal approximation with mean µ =
2𝑚𝑛

𝑚+𝑛
+ 1 and variance 𝜎 =

2𝑚𝑛(2𝑚𝑛−𝑚−𝑛)

(𝑚+𝑛)2∗(𝑚+𝑛−1)
.  

Here we are not sure how the process will deviate from randomness, then the possibility of either 

a cyclic effect or a trend effect should be allowed. In this case, if r ≥ c or r ≤ c, the null 

hypothesis of randomness should be rejected, and the alternative hypothesis of either a cyclic 

effect or a trend effect should not be rejected (PSU, 2018). 

 
Runs Test 
 
data:  R 
statistic = -8.2596, runs = 458, n1 = 600, n2 = 600, n = 1200, p-value < 2.2e-16 
alternative hypothesis: nonrandomness 
 

 Table 1. Runs Test 

Based on the table 2.3.1, the p-value is very small, which means nonrandom. So, the nature of 

this non-randomness need to be explored. Trying to plot the residuals vs. fitted values (smoothed 

values), and check if 𝑒𝑖 depends on 𝑒𝑖−1. 
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Figure 4. Residuals vs. Fitted values 

From the plot above, the residuals seem pretty symmetrically distributed, tending to cluster 

towards the middle of the plot. It looks a little spreading when the fitted value increases around 

0. And notice that as the smoothed value continuous increases, there is a narrow down and 

centralized trend of the residuals around the zero residuals line. This is to be expected because 

there are fewer observations at the end. It indicates that the non-constant variances problem is 

not very obvious. So, the patterns could identify the error is random.  

2.4 Autocorrelation Check 

2.4.1 The Autocorrelation Function of Residuals 

When the data is a time series, the autocorrelation function (ACF) is widely used to do the 

analysis. Specifically, the ACF shows the correlation between the points separated by different 

time lags. The representation is ACF (N, the number of time periods between points) = the 
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correlation between the points separated by N time periods. For example, ACF(0)=1 means all 

data are completely correlated with themselves; ACF(1)=0.7 means the correlation between one 

point and the next point is 0.7. Therefore, ACF indicates how relevant points are with each other, 

based on the number of time steps they are separated by. This is the point of autocorrelation, 

which is the correlation between past data points and future data points, for different values of 

time intervals. Normally, the ACF is expected to drop to zero as the points become more 

separated (N becomes larger) because it is usually difficult to predict the future by the future 

from a given set of data.  

The ACF will reveal if there is any autocorrelation in the residuals. The following plot shows an 

ACF of the residuals from the brain activity time series data. 

 

Figure 5. ACF of Residuals 

There is a lot of significant spikes are seen in the ACF plot above. It suggests that a large amount 

of autocorrelation in the residuals.  
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2.4.2 Durbin-Watson Test 

Another test of autocorrelation that is designed to take account of the regression model is 

the Durbin-Watson (DW) test. It is used to test the hypothesis that there is no lag one 

autocorrelation in the residuals. If there is no autocorrelation, the DW distribution is symmetric 

around 2. Most computer packages will report the DW statistic automatically, and should also 

provide a p-value. A small p-value indicates that there is a significant autocorrelation remaining 

in the residuals. For the brain activity data, based on the table below, the DW value is less than 2 

which means there is some positive autocorrelation in the residuals. And the p-value is really 

small. So, the DW test reveals some significant lag one autocorrelations. 

 

Durbin-Watson test 

 

data:  R ~ Index 

DW = 1.1941, p-value < 2.2e-16 

alternative hypothesis: true autocorrelation is not 0 

 

Table 2. Durbin-Watson test 

Both the ACF plot and the DW test show that some autocorrelations remaining in the residuals. 

This means some information remaining in the residuals that can be exploited to obtain better 

forecasts. So, other ways of smoothing need to be explored, so that the autocorrelation effect 

could be minimized while keeping other good properties. 

3 Smoothing the Data 

3.1 B-spline 

B-spline constitutes an attractive method for nonparametric estimation of a series of statistical 

objects of interest (Racine, 2018). A spline function is a function constructed piecewise from 

polynomial functions. This term comes from a tool that drafters use to create smooth shapes with 

the desired characteristics. Racine (2018) argue that drafters have long used a flexible strip that 
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fixed in a location at multiple points. By relaxing these points, a smooth curve passing through 

them was formed. Combining the malleability of spline material with the constraints of control 

points will minimize the energy required to bend the strip between the fixed points, which will 

be the smoothest and most reasonable shape. This class of splines is "B splines", which is short 

for “basis spline". 

The B-spline function is a combination of flexible strips passed through the amount of control 

points and constructs smooth curves. These functions allow multiple points to be used to create 

and manage complex shapes and surfaces. Therefore, B-spline function and Bezier function are 

widely used in shape optimization methods (Talebitooti, 2015). The B-spline is defined by its 

order (n) and the number of internal knots (k). Because there are two endpoints as themselves 

knots, the total number of knots will be k+2. The degree of B-spline polynomial would be spline 

order n-1, that is, degree = n-1 (Racine, 2018). 

B-spline is a generalization of Bezier curve, that is, a B-spline without internal knots is a Bezier 

curve. So, the Bezier curve can be expressed as well as the B-spline. Moreover, because B-spline 

introduces the feature that the number of control points is independent of the curve order, the 

control ability for the lower order curve could be better. Therefore, B-spline has a larger degree 

of freedom and can define many control points without worrying about the high order of curves 

causing the difficulty of calculation. Compared with Bezier curve, B-spline curve can control the 

shape of the curve better. If the same control point is defined, the lower curve order is, the farther 

the curve is from the point. If the spline curve needs to be transformed, only the sequence of 

control points of B-spline needs to be transformed. The parameter interval and the number of 

times remain unchanged. These are very good qualities in practical applications. Users usually 

get more control points by adding knots and increasing the number of knots. Furthermore, 
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without affecting the overall trend of the curve, the partial modification mode of B-spline is used 

to specify and adjust the curve. 

The B-spline function has been widely used in many fields such as computer-aided design, 

imaging processing, manufacturing, numerical control, etc. The most challenging task in these 

applications is to determine the number of knots and their corresponding locations (Dung and 

Tjahjowidodo, 2017). In this paper, the first difficulty is to select different sets of knots for 

locations and continuity levels. Secondly, choose the right locations of knots, analyze the 

residuals and autocorrelation. The ultimate goal is to minimize autocorrelation. 

 

 

Figure 6. B-spline with 4 knots and equidistance 

The figure above is a B-spline plot with taking 4 knots of equal distance. 
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3.2 Select and Reduce the Number of Knots 

3.2.1 Find a Large Number of Knots 

Identify knots at all the maximum and minimum points through all observations. 

Specifying knots at the maximum and minimum locations as follows: 

Maximum location: ss[i-1]<ss[i] & ss[i+1]<ss[i] 

Minimum location: ss[i-1]>ss[i] & ss[i+1]>ss[i] 

The number of observations is 1200, and the range of i is from 2 to 1200. The total number of 

knots at the maximum and minimum location are 650, which is shown in following R code. 

 

 
Index <- 1:1200  
ss<-Subset.Scans.arr[,1,1,1] 
i<-2:1200 
location<-as.numeric(which((ss[i-1]<ss[i] & ss[i+1]<ss[i])|(ss[i-1]>ss[i] &  

ss[i+1]>ss[i]))) 
length(location) 
[1] 650 
 

 

Use B-spline function in R and run bs() smoothing. The bs() function in R produces B-splines, a 

computationally efficient way to compute cubic regression splines. The set of knots that was 

calculated before can be used in the bs() function. 

 
require(splines) 
regr.spline <- lm(ss ~ bs(Index, df = NULL, knots=location, degree = 3, 
intercept=T)) 
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Figure 7. B-spline with 650 knots 

 

Figure 8. Fitting model plot 
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The figure above is fitting models with splines by adding the fitted curve based on the model to a 

scatter plot. This is likely to be overfitting the data. Therefore, the number of knots should be 

reduced appropriately. 

3.2.2 Reducing the Number of Knots 

Identify the local minimum and maximum from the smoothed data with an additional rule that 

they should not be too close to each other. Assume the knots should be at least 5 intervals apart. 

By using a loop, check for at least 5 intervals apart (knots locations going from left to right), and 

eliminating the knot. The selection R code is shown below: 

 
count=0 
n=5       # set n is 5 intervals apart 
for (j in 1:(nrow(set.knots)-1)){ 
   j=j-count 
   #the knots should be at least 5 intervals apart  
   #the minima or maxima location minus the previous one is greater than 5  
   l = set.knots$location[j+1]-set.knots$location[j] 
   if (l<n){ 
   #delete the knot which is too close to the previous one 
     set.knots=set.knots[-(j+1),]  
     count=count+1 
   } 
   else{ 
     set.knots=set.knots 
   } 
 } 
set.knots 
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Figure 9. Select new set of knots (5 intervals apart) 

 

Figure 10. B-spline with reduced knots 
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Figure 11. Fitting model plot 

Based on the plots above, the number of knots was reduced a little bit.  

In order to test whether the B-spline smoothing method and the selected knots provide a better 

smoothing, residual analysis and autocorrelation check are necessary. 

 

Figure 12. Residuals vs. Fitted value plot (B-spline method and reduced knots) 
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From the residuals vs. fitted values plot, the residuals seem pretty symmetrically distributed, 

tending to cluster towards the middle of the plot. It looks random.  

 

        Durbin-Watson test (B-spline smoothing and reduced knots) 
 

data:  res ~ Index 
DW = 1.471, p-value < 2.2e-16 
alternative hypothesis: true autocorrelation is not 0 
 

Table 3. Durbin-Watson test (B-spline smoothing and reduced knots) 

 

 

        Durbin-Watson test (original smoothing) 

data:  R ~ Index 

DW = 1.1941, p-value < 2.2e-16 
alternative hypothesis: true autocorrelation is not 0 

 

Table 4. Durbin-Watson test (original smoothing) 

If there is no autocorrelation, the DW distribution is symmetric around 2. Based on the two 

tables above, the DW value both are less than 2 which means there are some positive 

autocorrelations in the residuals.  But with the knots reduced, the DW value became a little larger 

than the original data. And the p-value is still really small. So, the DW test still reveals some 

significant lag one autocorrelation.  

 

Figure 13. ACF comparison plot (L: new smoothed; R: original smoothed) 
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Compared to the plot of original smoothed data (the plot on the right side), the value of 

significant spikes in the ACF plots are decreased. This might suggest that the number of 

autocorrelations in the residuals are reduced.  

3.2.3 Further Reduction of Knots 

First of all, calculate the baseline of the correlation value. Then, use a loop in R code to conduct 

the reduction. For each knot, check how much the correlation between consecutive residuals is 

reduced when the knot was removed.  

 

Table 5. Knots reduction information  

Remove the knot which gives the best (highest) reduction in correlations. 
 

 
# search for the largest positive reduction  
subset(correlation.a, reduction > 0) 
[1] k.loc       correlation reduction   
    <0 rows> (or 0-length row.names)  
# choose the highest reduction in correlations 
cor.max<-which.max(correlation.a$correlation) 
cor.max 
[1] 144 
value<-correlation.a[cor.max,] 
value 
    k.loc correlation  reduction 
144   826   0.2644662 -0.0961923 
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Based on the R code above, there is no positive reduction after selecting knots which should be 

at least 5 intervals apart. So the rule of selection might be changed a little. In order to increase 

the number of knots selected, we reduced n to 4, which means the knots would be at least 4 

intervals apart. Therefore, change the n=4, and run the selection R code again to choose a new 

set of knots. The number of knots increased from 206 to 246. After running the DW test, the DW 

value increased from 1.471 to 1.6634, which became closer to 2. Besides, the correlation value 

reduced a little, from 0.2644661 to 0.1682831, compared to those when n=5. Now we need to 

continue checking the correlation and reduction between consecutive residuals. 

 
subset(correlation.a, reduction > 0) 
    k.loc correlation    reduction 
92    442   0.1682804 2.769645e-06 
99    472   0.1682415 4.158100e-05 
140   675   0.1682821 9.839158e-07 
155   748   0.1682802 2.945366e-06 
174   834   0.1682811 2.065723e-06 
175   838   0.1682819 1.264286e-06 
198   961   0.1682731 1.002078e-05 
199   966   0.1682601 2.303033e-05 
 

Table 6. A subset of the positive reduction 

Based on the table above, some positive reductions can be seen when selecting knots at least 4 

intervals apart. So, the largest reduction 4.1581e-05 could be selected and this knot was deleted. 

After that, check the correlation and DW value after removing the knot which gives the max 

reduction. The DW value increased from 1.471 to 1.6635 which is larger than that before, and 

more close to 2. The correlation value decreased a little, from 0.1682831 to 0.1682415. 

Back to previous steps until no further reduction can be achieved. Based on the result table 

below, after reducing the number of knots and checking the correlation, the value keeps 

decreasing until removed 6 knots. After that, the value became increase again. Also, the DW 
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value became a little larger (from 1.6634 to 1.6636) when 6 knots were removed. It shows that 

the autocorrelation in the residuals is reduced after deleting 6 knots.  

 
N of 

knots 

removed 

1 2 3 4 5 6 7 8 

DW 1.6635 1.6635 1.6635 1.6635 1.6635 1.6636 1.6635 1.6635 

cor 
0.1682

415 

0.1682

185 

0.1682

156 

0.1682

132 

0.1682

111 

0.1682

101 

0.1682

104 

0.1682

109 

 
Table 7. Autocorrelation comparison (4 intervals apart) 

From Table 7, there is no further reduction that can be achieved after 6 knots have been deleted, 

and this is based on the rule of knots selection that knots were at least 4 intervals apart. However, 

the correlation value was reduced to 0.1682101 which was still not close to 0. In addition, the 

DW value was increased to 1.6636, but it still less than 2. So, more knots might be added, and 

see what happens.  

In order to increase the number of knots, n will be reduced to 3, which means the knots would be 

at least 3 intervals apart. The number of knots increased from 246 to 308.  

 
Durbin-Watson test 
 
data:  res ~ Index 
DW = 2.1261, p-value = 0.03106 
alternative hypothesis: true autocorrelation is not 0 
 

Table 8. Durbin-Watson test (3 intervals apart) 

Table 8 shows the DW value was increased to 2.1261, which was close to 2. The correlation 

value reduced a lot, from 0.1682101 to -0.06303416, which was almost 0. Then, the correlation 

and reduction between consecutive residuals still need to be checked. 
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Figure 14. ACF comparison plot (L: n=3; R: n=4) 

Compared to the right ACF plot (when n=4), the value of significant spikes decreased in the left 

ACF plot (n=3). This states that the amount of autocorrelation in the residuals was reduced. 

Furthermore, by comparing to the plot of original smoothed data (Figure 13, the plot on the right 

side), the autocorrelations in the residuals are reduced a lot. It might indicate that the B-spline 

smoothing method with choosing the right set of knots works well.  

 

N of 

knots 

removed 

1 2 3 4 5 6 7 8 

DW 2.1264 2.1266 2.1266 2.1267 2.1267 2.1267 2.1267 2.1268 

cor 

-

0.0632

0119 

-

0.0632

7865 

-

0.0633

056 

-

0.0633

3018 

-

0.0633

496 

-

0.0633

6668 

-

0.0633

7282 

-

0.0633

7849 

Table 9. Autocorrelation comparison (3 intervals apart) 

After reducing the number of knots when n=3, the absolute value of correlation keeps increasing 

(became far from 0). Besides, the DW value still getting larger (greater than 2) when the knots 

were removed. It shows that the autocorrelation in the residuals is increased after deleting knots.  

Try to keep increasing the number of knots and reduced n to 2, which means the knots would be 

at least 2 intervals apart. The number of knots increased from 308 to 419. After doing the DW 
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test and calculation the correlation, the DW value (2.521) and the absolute value of correlation (-

0.2605046) were both increased. Based on the results, the number of knots should be kept when 

choosing the knots at least 3 intervals apart (n=3), which could give the best DW value and the 

smallest correlation value. 

4 Correlation Analysis 

4.1 Centered Data 

In regression problems and some machine learning algorithms, as well as in the process of 

training neural networks, the original data usually needs to be centralized (Zero-centered or 

Mean-subtraction) and standardized (Standardization or Normalization). Centering is to subtract 

the mean from the original data, while standardization is to subtract the mean from the original 

data and divide it by standard deviation. The data obtained contains the mean is 0 and the 

standard deviation is 1. Data centralization aims to unify the scales of data with different 

variables. This is a basic work of data mining. Because different evaluation indicators often have 

different dimensions and units, this situation frequently affects the results of data analysis. To 

eliminate the dimension effect between indicators, data centralization and standardization are 

needed to solve the comparability between data indicators. After data centralization and 

standardization, the indicators of the original data are in the same order of magnitude, which is 

suitable for comprehensive comparative evaluation (CSDN, 2017). 

Mean-centering involves subtracting variable averages from the original data. Since multivariate 

data is typically processed in table format (i.e. matrix) with columns as variables, mean-centering 

is usually known as column-centering (Sanchez, 2014). All we have to do with mean-centering is 
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to calculate the average value of each variable and subtract it from the data. It implies that each 

column will be converted in such a way that the mean of the resulting variable is zero. 

Mean-centering can be done with the apply() function in R. In this case, the idea is to remove the 

mean in each column. This is done by declaring the apply() function and performing the mean-

centering operation. Specify a vector of MARGIN, like c(1, 3, 4) you get the mean of the 

columns for each row and level of the third and fourth dimensions. The whole dataset Scans.arr 

is a four-dimensional array with the following dimensions: 

 [1200 (points in time), 116 (brain regions), 4 (scans), 820 (people)] 

The time series ‘mean.w’ corresponds to the average work of the whole brain during the time of 

the fMRI scan. This might reflect the general life processes during that time. Use the apply() 

function to subtract the mean from each column. Then use the original full data Scan.arr minus 

mean.w, the centered data Scan.cent could be achieved. Hence Scan.cent describes the remaining 

activity after those general life processes were subtracted.  

The example plot below takes 200 points of the first brain regions in one scan of one person as 

the horizontal axis (index from 1 to 200). The colors of the lines correspond to the following:  

 Black line: Scan1 (a subset of the original data) 

 Red line: Scan1.cent (a subset of the centered data) 

 Green line: Mean.w (a subset of the mean on each column) 
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Figure 15. Example plot (three lines) 

4.2 Check the Correlation between Variables 

Compute a correlation matrix that is used to investigate the dependence between multiple 

variables at the same time. The result is a table containing the correlation coefficients between 

each variable and the others. Also, the histogram of the correlation matrix can clearly show the 

frequency of the coefficient values, and can clearly provide whether the variables have a positive 

or negative correlation. 

For the centered data Scan.cent, the histogram of the correlation matrix (Figure 16) looks 

symmetrical when the correlation coefficient value is 0. It looks normal, but the tail of the 

distribution extends a little further to the right than it does to the left. It has both positive and 

negative correlations between the variables. 
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Figure 16. Histogram of correlation matrix (centered data) 

 

 

 
Figure 17. Histogram of correlation matrix (original data) 

Based on the plot, it shows most correlation coefficient values are greater than 0. It shows some 

positive correlations between the variables in the original data. It means that as one variable 

increases, the other one tends to increase as well. 
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4.3 Calculate a Difference of a Series 

4.3.1 Diff() Function 

Calculating a difference of a time series could use diff() function in R. A common operation of 

time series, usually on non-stationary time series, is to get a difference of the series. A series of 

differences is an application that recursively calls the difference function n times. A simple way 

to look at an individual (first-order) difference is to treat them as x (t) - x (t - k) (DataCamp, 

2018). Here, k is the number of lags to go back. The high-order difference is only a reapplication 

of each previous result difference. In R, the diff() function takes two notable arguments. The first 

one is the lag that is the number of periods. The second is differences, which is the order of 

difference. 

For both the original data and the centered data, take differences of the 𝑘𝑡ℎ order as in diff(arr, 

k=k). For each dataset, consider 5 cases with k=0, 1, …, 4, where k=0 is the original data. 

4.3.2 ACF Plot Analysis 

The dashed horizontal lines in the plots are intended to give critical values for testing whether or 

not the autocorrelation coefficients are significantly different from zero. These limits are based 

on the approximate large sample standard error that applies to a white noise process, namely.  
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For the centered data: 

  

  
Figure 18. ACF plots (centered data, k=1,2,3,4) 

The ACF plots above are the sample estimate of the autocorrelation function of 1-4st differences for the 

centered data. The above ACF plots note the alternating and tapering pattern. 

Dif1 plot: Notice that the sample ACF values exceed these rough critical values at lags 1 and 8. 

This looks like it has negative lag 1 and lag 8 autocorrelations. But at 8 lag the significance is not 

very strong.  

Dif2 plot: The sample ACF values exceed these rough critical values at lags 1 and 2. Lag 2 

became significant, and lag 8 became not significant. It has an ACF which is near 0 for lags over 

2 as predicted theoretically. 
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Dif3 plot: The sample ACF values also exceed the rough critical values at lags 1 and 2. But lag 2 

is a little more significant that it was in Dif2 plot. 

Dif4 plot: The sample ACF values also exceed the rough critical values at lags 1 and 2. Besides, 

lag 3 became significant, and lag 2 is still more significant than it was in Dif3 plot. 

For the original data: 

  

  
Figure 19. ACF plots (original data, k=1,2,3,4) 

The above plots are the sample estimate of the autocorrelation function of 1-4st differences for the 

original data. The above ACF plots note the alternating and tapering pattern. 
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Dif1 plot: Notice that the sample ACF values exceed these rough critical values at lags 1, 7 and 

8. This seems that it has negative lag 1, lag 7 and lag 8 autocorrelations. But at lag 7 and lag 8, 

the significance is not very strong.  

Dif2: The sample ACF values exceed the rough critical values at lags 1 and 2. But, lag 7 and lag 

8 became not significant. It has an ACF which is near 0 for lags over 2 as predicted theoretically. 

Dif3: The sample ACF values exceed the rough critical values at lags 1 and 2, but lag 2 is a little 

more significant than it was in Dif2 plot. 

Dif4: The sample ACF values exceed the rough critical values at lags 1, 2 and 3. Also, lag 2 and 

lag 3 are more significant than these were in Dif3 plot. 

 

4.4 Correlations Consistent Check 

4.4.1 Calculate the Correlations  

Calculate correlations through the R code as follows, where Scans.arr is either the original data 

or differences, depending on which case are calculated. corr.arr should have dimensions: 116 x 

116 x 4 (scans) x 820 (people). 

corr.arr <- apply(Scans.arr, 3:4, cor) 

corr.arr <- array(corr.arr,c(116,116,4,820)) 

dim(corr.arr) 

[1] 116 116  4  820 

 

The total number of calculations is 10 cases, including the original data and the differences with 

k=1,2,3,4 (5 cases), as well as the centering data and its differences with k=1,2,3,4 (5 cases). 

If taking the correlations Y = corr.arr[1,2,,], it will have 4 values (from 4 scans) for each of the 

820 people. Individual differences between people are likely to cause brain activity to be very 
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different. However, multiple scans on the same person are likely to be consistent. To verify this 

assumption, the study of checking the consistency of correlations for different scans of the same 

person could be carried out. In order to assess that, take Y as a response variable and fit a 

random effect model with a person as a factor X. Then the percent p of variability in Y explained 

by X could be calculated. The value of p close to 100% means that scans are very similar to each 

other. Hence, a large value of p is looked for. 

4.4.2 Fit a Random Effect Model 

The completely randomized design with a random effect assumes the following model.  

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗   

𝑗 = 1,2, … , 𝑛𝑖;  𝑖 = 1,2, … , 𝑘;  𝑤ℎ𝑒𝑟𝑒 𝛼𝑖~𝑖𝑖𝑑𝑁(0, 𝜎𝛼
2) 𝑎𝑛𝑑 𝜖𝑖𝑗~𝑖𝑖𝑑𝑁(0, 𝜎𝜖

2) 

𝑤𝑖𝑡ℎ {𝛼𝑖} 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 {𝜖𝑖𝑗}  

If the data is perfectly balanced with equal numbers of individuals in each group (𝑛𝑖 = n for all i), 

it is possible to make modifications to a fixed effect ANOVA analysis by computing a different 

expected mean square (EMS) for inference (Larget, 2007).  

First set the person from 1 to 820 as a factor X as the only independent variable. And the 

correlation Y which already calculated in previous steps as the dependent variable. Then use 

linear regression models to build the random effect model. 

4.4.3 Calculate the Percent p of Variability in Y 

In simple linear regression, 𝑟2 is often called the coefficient of determination, because it is equal 

to the proportion of variability in Y (outcome variable) which is determined by the linear 
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relationship between X and Y. So here the value of p is equal to 𝑟2. The summary function in R 

can be used to conduct 𝑟2 after fitting the model.  

model <- lm( y ~ x , data=df ) 
summary(model)$r.squared 
[1] 0.6662254 

 

4.4.4 Find a Better Value of p (r squared) 

 Top 10 largest p 

There are 116*115/2 cases of correlations. Because there are a large amount of cases of Y 

variables, a larger value of p should be found. Use a nested loop to calculate all the value of p 

over through all the 6670 cases and pick the top ten. The R loop code example is as follows:  

res<-vector("numeric") 
res<-matrix(nrow = 116, ncol = 116) 
# generate a factor x from 1 to 820 as the person variable  
x<-as.factor(rep(1:820,rep(4,820)))  
for (i in 1:115) { 
  for (j in ((i+1):116)) { 
    Y<-corr.arr.o[i,j,,]    # 116*115/2 total cases of correlations 
    y<-as.vector(Y)        
    m<-lm( y ~ x )          # fit a model 
    p<-summary(m)$r.squared # calculate the value of p   
    res[i,j]<-p             # save all the p  
  } 
} 
Res 
# pick 10 largest values of p  
res[order(res, decreasing=TRUE)][1:10]  

[1] 0.7937858 0.7614425 0.7570771 0.7549371 0.7504789 0.7496170 0.7437273 0.7
410131 0.7406593 0.7398214 

 

The result shown above is just in one data case (the original data). After that, the 10 data cases 

need to be compared, among them, find which could give us better values of p overall. The 10 

cases include the original data and its differences with k=1,2,3,4 (5 cases), as well as the centered 

data and its differences with k=1,2,3,4 (5 cases). Details are shown in Table 10. 
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Case1: original data, k=0 Case6:   centered data, k=0 

Case2: original data, k=1 Case7:   centered data, k=1 

Case3: original data, k=2 Case8:   centered data, k=2 

Case4: original data, k=3 Case9:   centered data, k=3 

Case5: original data, k=4 Case10: centered data, k=4 

Table 10. Ten data case information details 

There are many ways to compare the two cases. For example, take differences between values of 

p, and check if the overall distribution (over 116*115/2 cases of correlations) tends to be more 

positive or negative and by how much.  

 

Figure 20. Comparison distribution between case1 and case2 (d1 vs.d2) 

Based on the plot, the distribution 1 (d1) tends to be more positive than distribution 2 (d2). The 

following plot shows the distribution of delta_p (the difference between the two cases, res1-

res2). The difference tends to be positive can be seen. 
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Figure 21. The difference between two cases (delta_p=res1-res2) 

 

Figure 22. Ten distributions of ten data cases (d1~d10) 

Figure 22 shows the ten distributions of ten data cases. It shows that d1 (case1 original data, k=0) 

might have larger values of p among all the distributions, and d10 (case10 centered data, k=4) 
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might have the smallest. To compare the difference between values of p among overall 

distributions, d10 would be chosen as the base. 

 

Figure 23. Delta_p plot (res10 as the base) 

Based on the Delta p plot above and 9 previous density plots, most distributions trend to be 

positive. Delta1 and Delta6 tend to be more positive among all the distributions, and Delta5 

tends to be more negative. 

 Top 20~50 largest values of p 

Start with the top 20 or 50 values of “res1” and then check the corresponding values for all 10 

cases for the same 20 or 50 variables. Create a function to calculate 20 or 50 largest values of p 

for each data case (ten groups). Then create a line chart and combine the ten groups of the largest 

values.  
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Figure 24. 20 largest values of p  

 

Figure 25. 50 largest values of p 
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Based on the two plots above (Figure 24, 25), by comparing the ten cases, Case6 contains more 

large values of p which are more concentrated as well. On the contrary, the values of p in the 10th 

case are the smallest and the most dispersed. So the largest case of p values should be Case6. 

 Symmetric plot 

For each case, the 116*115/2 values of p can be organized into a symmetric 116 by 116 matrix. 

Then use image() function to plot a color image to represent those values. There are total ten 

color plots (case1~case10). 
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Figure 26. Symmetric matrix (case1~case10) 

By comparing the ten plots above, Case6 has the lightest color, and the overall color distribution 

looks relatively uniform. However, Case9 and Case10 have the darkest overall color. Since the 

color intensity increases from red to white (dark to light), it shows Case6 contains the most 

number of large values of p. 

5 Conclusions 

One of the main purposes of this study is to reduce the autocorrelation of residuals by choosing 

the best smoothing method. It is found that the time series of human brain activity processed 

directly by smoothing splines have some problems including over-fitting and a large number of 

autocorrelations. To solve these issues, B-spline is selected for the curve smoothing in this 

research. The optimal smoothness is found by choosing the right knots and adjusting the number 

of knots. In the process of selecting knots, a set of knots is preliminarily screened out by 
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determining all the peaks and troughs (i.e. maximum and minimum) of the curve. Next, by 

specifying a fixed interval apart to filter the knots, the scope can be narrowed so that the knots do 

not get too close to each other. Then, the knots with the highest reduction in correlation are 

removed for further reduction. As a result, it was finally found that when the knots were at least 

3 intervals apart, the DW value was closest to 2 and the correlation value was smallest. 

In addition, this paper also finds that multiple fMRI scans of the same person also have 

correlations. And these correlations are kind of consistent. The study evaluates this by fitting a 

random effect model with people as a factor and correlation as a response variable. By 

calculating r-square, which is the percentage of variation in Y, whether the scans are similar to 

each other can be found. Finally, the study shows that the correlation is indeed consistent, and 

the correlation is the most consistent in the centered data with 0th order. 

6 Limitation and Future Researches 

In smoothing technology, this study only used B-spline as a smoothing curve method. In future 

research, the advantages of the knot insertion technique and curve fitting method could be 

combined more reasonably and effectively. 

In the aspect of the knot insertion algorithm, this research chooses the drastically changing area 

in the data as knots, such as the location of maximum and minimum values. Other methods of 

knot selection can also be considered. For example, setting more knots in the place with complex 

data changes; on the contrary, fewer knots will be selected in place that seems more stable.  

Beside, cross-validation is also a good method. A study also could be conducted by comparing 

the efficiency and accuracy of these different methods. 
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Appendix 

Appendix 1. Select a set of knots at least 3 intervals apart and analysis plot 

load(“C:/Users/Subset.Smooth.arr”) 

dim(Subset.Smooth.arr) 

load("C:/Users/Subset.Scans.arr") 

dim(Subset.Scans.arr) 

Subset.Resid.arr <- Subset.Scans.arr - Subset.Smooth.arr 

Index <- 1:1200  

plot(Index,Subset.Resid.arr[,1,1,1],main="Residuals from Smoothing") 

ss<-Subset.Scans.arr[,1,1,1] 

 

# Identify knots at all the maximum and minimum points through all 
observations  

i<-2:1200 

location<-as.numeric(which((ss[i-1]<ss[i] & ss[i+1]<ss[i])|(ss[i-1]>ss[i] & 
ss[i+1]>ss[i]))) 

length(location) 

 

# create a data frame included knots locations and values 

y.value<-ss[location] 

set.knots<-data.frame(location, y.value) 

colnames(set.knots) <- c("location","y.value") 

 

# start a loop to select knots  

count=0 

n=3     # at least 3 intervals apart 

for (j in 1:(nrow(set.knots)-1)){ 

  j=j-count 

  #the knots should be at least 3 intervals apart  

  #the minima or maxima location minus the previous one is greater than 3  

  l = set.knots$location[j+1]-set.knots$location[j] 

  if (l<n){ 
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    #delete the knot which is too close to the previous one 

    set.knots=set.knots[-(j+1),]  

    count=count+1 

  } 

  else{ 

    set.knots=set.knots 

  } 

} 

head(set.knots) 

 

require(splines) 

k.loc<-set.knots$location 

regr.spline <- lm(ss ~ bs(Index, df = NULL, knots=k.loc, degree = 3, 
intercept=T)) 

fits.bs.mm <- regr.spline$fitted # from spline model 

res<-Subset.Scans.arr[,1,1,1]-fits.bs.mm 

 

# D-W test 

# library(lmtest) 

dwtest(res~Index, alt="two.sided") 

cor(res[-1], res[-length(res)]) 

 

#count number of knots 

length(set.knots$location) 

 

# fitting models with splines 

# plotting the data with the regression spline overlain: 

x.values <- seq(from=min(Index), to=max(Index), length=1200) 

plot(Index, ss); lines(x.values, predict(regr.spline, 
data.frame(x=x.values)),col='red') 

 

# the baseline of the correlation value   

cor.baseline<-cor(res[-1], res[-length(res)]) 

cor.baseline 



41 

 

Appendix 2. Further reduction and autocorrelation check 

#check how much the correlation between consecutive residuals is reduced  

correlation<-c() 

reduction<-c() 

 

for (k in 1:length(k.loc)) { 

  regr.spline <- lm(ss ~ bs(Index, df = NULL, knots=k.loc[-k], degree = 3, 
intercept=T)) 

  fits.bs.mm <- regr.spline$fitted  

  res<-Subset.Scans.arr[,1,1,1]-fits.bs.mm 

  correlation[k]<-cor(res[-1], res[-length(res)]) 

  # Compare the current correlation to the baseline, get the reduction 

  reduction[k]<-cor.baseline - correlation[k] 

}  

correlation.a<-data.frame(k.loc, correlation, reduction) 

 

# searching for a positive or the largest reduction 

subset(correlation.a, reduction > 0) 

cor.max<-which.max(correlation.a$reduction) 

cor.max 

value<-correlation.a[cor.max,] 

value 

 

# delete the knot which gives the max reduction 

k.loc<-k.loc[-cor.max] 
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Appendix 3. Calculate the largest 10 value of p (R-square)  

# To increase the storage capacity 

memory.limit(size=56000) 

# load in the original data 

load("C:/Users/Scans.arr") 

dim(Scans.arr) 

corr.arr<-apply(Scans.arr, 3:4, cor) 

dim(corr.arr) 

corr.arr<-array(corr.arr, c(116,116,4,820)) 

dim(corr.arr) 

 

res<-vector("numeric") 

res<-matrix(nrow = 116, ncol = 116) 

x<-as.factor(rep(1:820,rep(4,820))) 

Sys.time() 

for (i in 1:115) { 

  for (j in ((i+1):116)) { 

    Y<-corr.arr[i,j,,] 

    y<-as.vector(Y)  

    m<-lm( y ~ x ) 

    p<-summary(m)$r.squared 

    res[i,j]<-p  

  } 

} 

Sys.time() 

res 

 

# 10 largest values 

v <- res[order(res, decreasing=TRUE)][1:10] 

# find the posision of 10 largest values 

p <- which(res>=sort(res, decreasing = T)[10], arr.ind = T) 

# determine the order of the 10 largest values in decreasing order 

v.order <- order(res[p], decreasing = T) 

p[v.order, ] 
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Appendix 4. Comparison plot (d1~d10) 

d1 <- (density(res1, bw = 0.05)) 

d2 <- (density(res2, bw = 0.05)) 

d3 <- (density(res3, bw = 0.05)) 

d4 <- (density(res4, bw = 0.05)) 

d5 <- (density(res5, bw = 0.05)) 

d6 <- (density(res6, bw = 0.05)) 

d7 <- (density(res7, bw = 0.05)) 

d8 <- (density(res8, bw = 0.05)) 

d9 <- (density(res9, bw = 0.05)) 

d10 <- (density(res10, bw = 0.05)) 

plot(range(d1$x, d2$x, d3$x, d4$x, d5$x, d6$x, d7$x, d8$x, d9$x, d10$x),  

     range(d1$y, d2$y, d3$y, d4$y, d5$y, d6$y, d7$y, d8$y, d9$y, d10$y),  

     col=c(1:8,"purple","brown"), type = "n", xlab = "x", ylab = "Density") 

lines(d1, col = 1) 

lines(d2, col = 2) 

lines(d3, col = 3) 

lines(d4, col = 4) 

lines(d5, col = 5) 

lines(d6, col = 6) 

lines(d7, col = 7) 

lines(d8, col = 8) 

lines(d9, col = 9) 

lines(d10, col = 10) 

legend("topleft", 
legend=c("d1","d2","d3","d4","d5","d6","d7","d8","d9","d10"), 

       col=c(1:8, "purple","brown"), lty=1, cex=0.8) 
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Appendix 5. Comparing plot (largest 20 or 50 values) 

# 20 largest values 

largest20 <- function(X){ 

  largest <- X[order(X, decreasing=TRUE)][1:20] 

  largest 

} 

#largest20(res1) 

# Create Line Chart 

largest_list<-
list(largest20(res1),largest20(res2),largest20(res3),largest20(res4), 

                   
largest20(res5),largest20(res6),largest20(res7),largest20(res8), 

                   largest20(res9),largest20(res10)) 

largest_p <- do.call(cbind, largest_list) 

xrange20 <- range(c(1:11)) 

yrange20 <- range(c(0.7:1)) 

# set up the plot  

plot(xrange20, yrange20, type="n", xlab="Case", 

     ylab="largest_p" )  

colors <- rainbow(20)  

linetype <- c(1:20)  

# add lines  

for (i in 1:20) {  

  lines(c(1:10), largest_p[i,], type="l", lwd=1.5, 

        lty=linetype[i], col=colors[i])  

}  

# add a title and subtitle  

title("Largest p", "20 lines plot") 

# add a legend  

legend("topright", legend=c(1:10), cex=0.8, col=colors, lty=linetype, 
title="values of p") 
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Appendix 6. Symmetric matrix plot  

#make a symmetric 116 by 116 matrix 

sym_mat1 <- matrix(rep(0,116*116), nrow=116) 

sym_mat1[lower.tri(sym_mat1)] <- res1 

#transpose matrix 

sym_mat1 <- t(sym_mat1) 

#populate the lower triangle, which was formerly the upper triangle 

sym_mat1[lower.tri(sym_mat1)] <- res1 

sym_mat1 

#check symmetry using the isSymmetric() function 

isSymmetric(sym_mat1) 

image(sym_mat1, main = "Case 1 Symmetric Matrix", font.main = 4) 
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