
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

6-2019

Performance Analysis of Fixed-Random Weights in Artificial Performance Analysis of Fixed-Random Weights in Artificial

Neural Networks Neural Networks

Humza Syed
hxs7174@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Syed, Humza, "Performance Analysis of Fixed-Random Weights in Artificial Neural Networks" (2019).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10187?utm_source=repository.rit.edu%2Ftheses%2F10187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Performance Analysis of Fixed-Random Weights
in Artificial Neural Networks

Humza Syed

Performance Analysis of Fixed-Random Weights
in Artificial Neural Networks

Humza Syed
June 2019

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Department of Computer Engineering

Performance Analysis of Fixed-Random Weights
in Artificial Neural Networks

Humza Syed

Committee Approval:

Dr. Dhireesha Kudithipudi Advisor Date
Professor, RIT, Department of Computer Engineering

Dr. Cory Merkel Date
Assistant Professor, RIT, Department of Computer Engineering

Dr. Raymond Ptucha Date
Assistant Professor, RIT, Department of Computer Engineering

i

Acknowledgments

I would like to acknowledge my adviser, Dr. Dhireesha Kudithipudi, and the members

of the Neuromorphic AI Lab at the Rochester Institute of Technology for helping

make this work possible. I would also like to acknowledge Dr. Panos Markopoulos for

assistance in understanding tensor decompositions and the Air Force Research Labs

for helping to fund part of this work. Lastly, I would like to acknowledge my friends

and family who have supported me throughout my college career.

ii

I would like to dedicate this work to my family who have continuously supported me

throughout my life. My father would have been proud to see how far I’ve come and

he will be forever remembered.

iii

Abstract

Deep neural networks train millions of parameters to achieve state-of-the-art per-

formance on a wide foray of applications. However, finding a global minimum with

gradient descent approaches leads to lengthy training times coupled with high compu-

tational resource requirements. To alleviate these concerns, the idea of fixed-random

weights in deep neural networks is explored. More critically the goal is to maintain

performance akin to fully trained models.

Metrics such as floating point operations per second and memory size are compared

and contrasted for fixed-random and fully trained models. Additional analysis on

downsized models that mimic the number of trained parameters of the fixed-random

models, shows that fixed-random weights enable slightly higher performance. In a

fixed-random convolutional model, ResNet achieves ∼57% image classification accu-

racy on CIFAR-10. In contrast, a DenseNet architecture, with only fixed-random fil-

ters in the convolutional layers, achieves∼88% accuracy for the same task. DenseNet’s

fully trained model achieves ∼96% accuracy, which highlights the importance of ar-

chitectural choice for a high performing model.

To further understand the role of architectures, random projection networks trained

using a least squares approximation learning rule are studied. In these networks, deep

random projection layers and skipped connections are exploited as they are shown to

boost the overall network performance. In several of the image classification experi-

ments conducted, additional layers and skipped connectivity consistently outperform

a baseline random projection network by 1% to 3%. To reduce the complexity of the

models in general, a tensor decomposition technique, known as the Tensor-Train de-

composition, is leveraged. The compression of the fully-connected hidden layer leads

to a minimum ∼40x decrease in memory size at a slight cost in resource utilization.

This research study helps to gain a better understanding of how random filters and

weights can be utilized to obtain lighter models.

iv

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables xv

Acronyms xvii

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Objectives . 2

2 Background & Related Work 6

2.1 The Perceptron and Multi-Layer Perceptrons 6

2.2 Convolutional Neural Networks . 10

2.2.1 AlexNet . 11

2.2.2 VGG . 13

2.2.3 ResNet . 13

2.2.4 DenseNet . 14

2.3 Random Weights in ANNs . 15

2.3.1 The Importance of Architecture Design 16

2.3.2 Random Weights in DNNs Achieving Comparable Performance 16

2.4 Random Projection Networks . 23

2.4.1 ELM . 23

2.4.2 Random Vector Functional Link Network 25

2.5 Tensor Decomposition . 26

2.5.1 Tensor-Train Decomposition 30

v

CONTENTS

3 Methodology 33

3.1 Hypothesis . 33

3.2 Evaluation . 34

3.3 Semi-Random CNNs . 38

3.4 Extensions to the ELM . 42

3.4.1 Convolutional ELM . 43

3.4.2 Convolutional Random Vector Functional Link - Fully Connected 44

3.4.3 Tensor-Train Extreme Learning Machine 45

4 Results & Discussion 48

4.1 Semi-Random CNNs . 48

4.2 Extensions to the ELM . 69

5 Conclusion & Future Work 76

5.1 Future Work . 77

Bibliography 79

5.2 Appendix . 86

vi

List of Figures

2.1 Illustration of a Perceptron taking the weighted sum of its inputs and

an additional bias term. 7

2.2 Illustration of an MLP. In this architecture each progressive layer takes

the weighted sum of its inputs. 8

2.3 The LeNet-5 shallow CNN architecture consisting of convolutional,

pooling, and FC layers [1]. 12

2.4 The AlexNet CNN architecture consisting of multiple convolutional,

pooling, and FC layers illustrating the impact of deep neural networks

[2]. 12

2.5 A ResNet residual block consisting of the use of skipped additive con-

nectivity to alleviate the vanishing and exploding gradient problems

[3]. 14

2.6 A DenseNet dense block consisting of the use of skipped concatenating

connectivity to increase the number of features extracting in each layer

[4]. 15

2.7 Reconstructions of 3 images when utilizing a fully random VGG net

and a fully trained VGG net [5]. The visualization from the pool5

layer exhibits certain features learned in the trained net that inhibits

reconstruction. 17

2.8 Generated textures from several images when utilizing a fully random

VGG net and a fully trained VGG net [5]. In this figure each row

corresponds to a convolutional layer in the random VGG net while a

comparison is made between the 4th convolutional layer of both the

trained and random nets. 18

2.9 Neural style transfer of images when utilizing a fully random VGG net

and a fully trained VGG net [5]. The first row depicts the original

image, while the second and third rows show the random VGG net

and trained VGG net’s content images with the applied style transfer.

Note: The reference [13] in this image refers to [6]’s paper. 19

vii

LIST OF FIGURES

2.10 Experiments utilizing a percentage and a k amount of trained weights

in deep Convolutional Neural Network (CNN) architectures. The white

area indicates the percentage of weights trained, while the gray area

indicates training on only k number of filters per convolutional layer.

The blue line indicates the rest of the weights in the layer were left

untrained, while the green line indicates the rest of the weights in the

layer were zeroed out [7]. 20

2.11 The WRN and DenseNet networks compared on both the CIFAR-10

(left) and CIFAR-100 (right) datasets at various training fractions per

convolutional layer. Green and blue solid lines indicate networks with

a fraction of trained weights and the rest left random. Green and

blue dashed lines indicate the performance of the WRN and DenseNet

networks with trained weights. Note: when frac = 1.0, this is actually

when only a single filter is trained per convolutional layer [7]. 22

2.12 Illustration of tensors in varying orders, or dimensions. 26

2.13 Illustration of a tensor decomposition in which an input T is approxi-

mated by the summation of rank-one tensors. These rank-one tensors

are calculated from the outer product of 1st order tensors a, b, and c. 28

2.14 Illustration of the Tucker decomposition in which an input T is ap-

proximated into a compressed core G. This compressed core is then

multiplied by the matrices representing rank-one tensors; A, B, and C. 29

2.15 Illustration of a 5th order tensor decomposition into respective cores

of the Tensor-Train (TT) format. 31

3.1 The CIFAR-10 dataset containing various classes ranging from air-

planes to trucks [8]. 35

3.2 The SVHN dataset containing digits 0 through 9 in a similar manner

to MNIST, but in natural scenery [9]. 35

3.3 The UCM dataset containing aerial imagery of 21 classes [10, 11]. . . 36

3.4 The MSTAR dataset containing 10 unique vehicle classes [12]. 37

3.5 The small NORB dataset containing 5 classes ranging from four-legged

animals to cars [13]. 37

3.6 The FMNIST dataset containing 10 classes of fashion items ranging

from pullovers to boots [14]. 38

viii

LIST OF FIGURES

3.7 Diagram depicting the operations required for SGD. (a) illustrates the

forward pass as well as the error calculation and gradient calculation

for the backward pass. (b) illustrates the weight update as well as

calculations for regularization and momentum [15]. 41

3.8 Illustration of the CELM architecture which makes use of an initial

convolution layer as a feature extractor and then 2 FC layers. Skipped

connections are utilized to observe their effectiveness in the possibility

of increasing performance. 43

3.9 Illustration of the CRVFL-FC architecture. A convolutional layer is

used to extract features that are sent to a pooling layer to reduce

the spatial size of the feature maps. A normalization layer is used to

decrease covariance shift and then the output is fed to the last 2 Fully

Connected (FC) layers. A skipped connection is used from the input

to the first FC layer as this was used in the original architecture. . . . 44

3.10 Illustration of an FC layer and its representation in a TT-FC layer

format. The initial layer’s inputs are decomposed into several TT

cores that act as unfolded auxiliary matrices to the output. 45

4.1 Plot of each ResNet-20 configuration on the Canadian Institute for

Advanced Research (CIFAR)-10 dataset averaged over 10 runs with a

confidence interval of 99%. Fixed-random refers to the case of trained

and fixed-random filters and downsized refers to the case of fewer filter

models. The case of Linear refers to the increase of trained weights with

each convolutional layer in the network. It’s noted that models with

trained and fixed-random filters outperform the downsized versions

of the models across all cases. This difference is more noticeable at

smaller fractional amounts of trained filters. This is due to the fixed-

random filters enabling for a greater feature space to be extracted from

in comparison to the downsized models. 49

ix

LIST OF FIGURES

4.2 Statistics plot of each ResNet-20 configuration on the CIFAR-10 dataset

averaged over 10 runs with a confidence interval of 99%. The config-

urations consist of fixed-random filters in the convolutional layer and

downsized models with fewer filters in the convolutional layer. It can

be seen that the downsized filter models utilize fewer Giga-FLOPs

(GFLOPs) in comparison to the fixed-random and fully trained mod-

els. This is because the fixed-random filter models need to backprop-

agate the entire network back due to their mix of trained and random

filters. In contrast, downsized models demand fewer resources because

less filters are utilized in these models as well as fewer operations on

the last FC layer. 51

4.3 Image of a frog from CIFAR-10. 52

4.4 Image of an automobile from CIFAR-10. 52

4.5 Activated outputs of each convolutional layer in ResNet-20 on the input

image of a frog from CIFAR-10. Features can be seen to be more

distinguishable in the early layers as opposed to the latter layers of the

architecture. 53

4.6 Activated outputs of each convolutional layer in ResNet-20 on the input

image of an automobile from CIFAR-10. Similarly to the frog, features

can be seen to be more distinguishable in the early layers as opposed

to the latter layers of the architecture. 53

4.7 Plot of each ResNet-20 configuration on the Street View House Num-

bers (SVHN) dataset averaged over 10 runs with a confidence interval

of 99%. Fixed-random refers to the case of trained and fixed-random

filters and downsized refers to the case of fewer filter models. The case

of Linear refers to the increase of trained weights with each convolu-

tional layer in the network. Unlike the results from CIFAR-10, random

projection shows a surprisingly high performance, while the other mod-

els show more comparable performances to one another. This is most

likely due to the higher number of training samples and possibly more

simple imagery in comparison to CIFAR-10. 55

x

LIST OF FIGURES

4.8 Statistics plot of each ResNet-20 configuration on the SVHN dataset

averaged over 10 runs with a confidence interval of 99%. The config-

urations consist of fixed-random filters in the convolutional layer and

downsized models with fewer filters in the convolutional layer. The

downsized models utilize fewer GFLOPs as less operations are occur-

ring in these networks. Additionally, the downsized models require

fewer operations in their forward passes leading to a greater decrease

in the number of operations and an additional decrease in memory size

as fewer parameters are available in these models. The fixed-random

models utilize a similar amount of GFLOPs to the fully trained models

due to backpropagation occurring across all layers. 57

4.9 Plot of each DenseNet100-BC configuration on the CIFAR-10 dataset

averaged over 5 runs with a confidence interval of 99%. Fixed-random

refers to the case of trained and fixed-random filters and downsized

refers to the case of fewer filter models. The case of Linear refers to

the increase of trained weights with each convolutional layer in the

network. The performance of random projection shows surprisingly

that DenseNet’s concatenating skipped connectivity can be beneficial

with random weights as features are extracted and trained on at the

last FC layer of the architecture. 58

4.10 Statistics plot of each DenseNet100-BC configuration on the CIFAR-10

dataset averaged over 5 runs with a confidence interval of 99%. The

configurations consist of fixed-random filters in the convolutional layer

and downsized models with fewer filters in the convolutional layer.

Similarly to the previous statistic plots, the downsized models show a

decrease in GFLOPs and memory size over the fixed-random models.

In addition to this, the fixed-random weights for random projection

is shown to actually have approximately 12% of the weights trained.

This is due to the concatenation skipped connectivity leading to more

features trained on the output layer. 61

4.11 Activated outputs of every 5 convolutional layers of DenseNet100-BC

on the input image of a frog from CIFAR-10. Features can be seen

to be more distinguishable in the early layers as opposed to the latter

layers of the architecture. 62

xi

LIST OF FIGURES

4.12 Activated outputs of every 5 convolutional layers of DenseNet100-BC

on the input image of an automobile from CIFAR-10. Similarly to the

frog, features can be seen to be more distinguishable in the early layers

as opposed to the latter layers of the architecture. 63

4.13 Plot of each DenseNet100-BC configuration on the SVHN dataset av-

eraged over 5 runs with a confidence interval of 99%. Fixed-random

refers to the case of trained and fixed-random filters and downsized

refers to the case of fewer filter models. The case of Linear refers to

the increase of trained weights with each convolutional layer in the

network. In contrast to the results from CIFAR-10, random projec-

tion shows high performance comparable to that of the other models.

This may be due to the additional samples available to train on for the

few trained layers of the network. In addition to this, the other ar-

chitectures illustrate near comparable performance to the fully trained

model. 64

4.14 Statistics plot of each DenseNet100-BC configuration on the SVHN

dataset averaged over 5 runs with a confidence interval of 99%. The

configurations consist of fixed-random filters in the convolutional layer

and downsized models with fewer filters in the convolutional layer.

Similarly to the previous statistic plots, the downsized models show a

decrease in GFLOPs and memory size over the fixed-random models.

The random projection model with only fixed-random convolutional

layers is shown to have approximately 12% of the weights trained due

to concatenated features trained on the output layer. 66

4.15 Plot of each ResNet-50 transfer learning configuration on the SVHN

dataset averaged over 10 runs with a confidence interval of 99%. Fixed

refers to the case of trained and fixed filters, from the pretrained model,

and Linear refers to the increase of trained weights with each convo-

lutional layer in the network. Fine-tuning the entire network shows

increased performance over partial fine-tuning, however, near compa-

rable accuracies can be achieved with partial fine-tuning and fewer

resources are utilized as fewer memory writes occur. Additionally, the

results show that performance over that of Scott et al.’s work [16] can

be achieved with the partial fixed networks. 67

xii

LIST OF FIGURES

4.16 Performance of the random projection architectures on the Moving and

Stationary Target Acquisition and Recognition (MSTAR) dataset. The

CELM network with skipped connectivity to both the FC layers shows

the highest test accuracy as more features are available on the output

to train on. 70

4.17 Statistics of the random projection architectures on the MSTAR dataset.

The architectures utilizing additional layers require more GFLOPs and

additional memory to store all of their parameters. It’s important to

note that the Tensor-Train Extreme Learning Machine (TT-ELM) and

TT-Random Vector Functional Link Neural Network (RVFL) are able

to achieve a smaller model with the cost of more GFLOPs due to the

additional operations occurring in the layer. 71

4.18 Performance of the random projection architectures on the small-NYU

Object Recognition Benchmark (NORB) dataset. Similarly to the

MSTAR dataset, the Convolutional ELM (CELM) with skipped con-

nectivity to both FC layers achieves the highest performance as addi-

tional features are trained in this layer. 72

4.19 Statistics of the random projection architectures on the small-NORB

dataset. The architectures utilizing additional layers require more

GFLOPs and additional memory to store all of their parameters. The

TT networks achieve a smaller model at the cost of additional GFLOPs

due to the additional operations occurring in the layer. 73

4.20 Performance of the random projection architectures on the Fashion-

MNIST (FMNIST) dataset. As with the other datasets, the CELM

with skipped connectivity to both FC layers achieves the highest per-

formance. However, there is less of a distinguishable gap in this more

complex dataset. 74

4.21 Statistics of the random projection architectures on the FMNIST dataset.

The architectures utilizing additional layers require more GFLOPs and

additional memory to store all of their parameters. The TT networks

achieve a smaller model at the cost of additional GFLOPs due to the

additional operations occurring in the layer. 75

5.1 Image of an airplane from CIFAR-10. 87

5.2 Image of a dog from CIFAR-10. 87

5.3 Image of a truck from CIFAR-10. 87

xiii

LIST OF FIGURES

5.4 Activated outputs of each convolutional layer in ResNet-20 on the input

image of an airplane from CIFAR-10. Features can be seen to be more

distinguishable in the early layers as opposed to the latter layers of the

architecture. 87

5.5 Activated outputs of each convolutional layer in ResNet-20 on the input

image of a dog from CIFAR-10. Similarly to the frog, features can be

seen to be more distinguishable in the early layers as opposed to the

latter layers of the architecture. 88

5.6 Activated outputs of each convolutional layer in ResNet-20 on the input

image of a truck from CIFAR-10. Similarly to the frog, features can be

seen to be more distinguishable in the early layers as opposed to the

latter layers of the architecture. 88

5.7 Activated outputs of every 5 convolutional layers of DenseNet100-BC

on the input image of an airplane from CIFAR-10. Similarly to the

other activated images, features can be seen to be more distinguishable

in the early layers as opposed to the latter layers of the architecture. 89

5.8 Activated outputs of every 5 convolutional layers of DenseNet100-BC

on the input image of a dog from CIFAR-10. Similarly to the other

activated images, features can be seen to be more distinguishable in

the early layers as opposed to the latter layers of the architecture. . 90

5.9 Activated outputs of every 5 convolutional layers of DenseNet100-BC

on the input image of a truck from CIFAR-10. Similarly to the other

activated images, features can be seen to be more distinguishable in

the early layers as opposed to the latter layers of the architecture. . 91

xiv

List of Tables

2.1 Performance achieved when learning only a fraction of filters for the

CIFAR-10 dataset for training epochs of 200 on WRN and 300 on

densenets. Eff. Params indicates the number of trained parameters,

while * indicates the performance when the parameters for random

weights were zeroed out [7]. 21

2.2 Performance on the Tiny-ImageNet dataset using the WRN model with

various percentages of trained weights [7]. 22

4.1 Performance on the CIFAR-10 dataset using the ResNet-20 architec-

ture. A dividing line is used to separate networks with trained and

fixed-random filters and downsized networks with fewer filters. The

network is averaged over 10 runs and a confidence interval of 99% is

used. From the results, the fixed-random networks are able to achieve

more comparable accuracies to the fully trained model as opposed to

the downsized network cases. 50

4.2 Performance on the SVHN dataset using the ResNet-20 architecture.

A dividing line is used to separate networks with trained and fixed-

random filters and downsized networks with fewer filters. The network

is averaged over 10 runs and a confidence interval of 99% is used.

The results illustrate clearly how the fixed-random models outperform

the downsized models even if marginally. Additionally, the random

projection network shows a surprisingly high accuracy. This may be

attributed to additional samples and possibly more simple imagery. . 56

4.3 Performance on the CIFAR-10 dataset using the DenseNet100-BC ar-

chitecture. A dividing line is used to separate networks with trained

and fixed-random filters and downsized networks with fewer filters.

The network is averaged over 5 runs and a confidence interval of 99%

is used. From the results, the fixed-random networks are able to achieve

more comparable accuracies to the fully trained model as opposed to

the zeroed out network cases. In addition to this, the random projec-

tion network with a 0 trained fractional amount is able to achieve over

88% accuracy. 59

xv

LIST OF TABLES

4.4 Performance on the SVHN dataset using the DenseNet100-BC archi-

tecture. A dividing line is used to separate networks with trained and

fixed-random filters and downsized networks with fewer filters. The

network is averaged over 5 runs and a confidence interval of 99% is

used. The results show surprisingly that both fixed-random and down-

sized models lead to performance extremely similar to the fully trained

model. The random projection case even shows performance akin to

the fully trained model. This may be attributed to a greater num-

ber of samples available as well as simpler imagery when compared to

CIFAR-10. 65

4.5 Performance on the CIFAR-10 dataset after training each deep CNN

for additional epochs up until 500 total trained epochs. 65

4.6 Performance on the UCM dataset by transfer learning the ResNet-50

architecture. The network is averaged over 10 runs and a confidence

interval of 99% is used. A dividing line is used to separate the fixed

networks fine-tuned in this work compared to that of Scott et al. [16].

Near comparable accuracies can be achieved with partial fine-tuning

in comparison to entire fine-tuning of the network. In all cases, except

for only training the FC layer of the network, the accuracy is shown to

surpass that of the work of Scott et al. [16]. 68

xvi

Acronyms

ANN

Artificial Neural Network

ANNs

Artificial Neural Networks

CELM

Convolutional ELM

CIFAR

Canadian Institute for Advanced Research

CNN

Convolutional Neural Network

CNNs

Convolutional Neural Networks

CP

canonical polyadic

CPUs

Central Processing Units

CRVFL

Convolutional Random Vector Functional Link Neural Network

DNN

Deep Neural Network

xvii

Acronyms

DNNs

Deep Neural Networks

ELM

Extreme Learning Machine

ESN

Echo State Network

FC

Fully Connected

FLOPs

Floating Point Operations per Second

FMNIST

Fashion-MNIST

GFLOPs

Giga-FLOPs

GPUs

Graphics Processing Units

LSM

Liquid State Machine

MLP

Multi-Layer Perceptron

xviii

Acronyms

MNIST

Mixed National Institute of Standards and Technology

MPP

Moore-Penrose Pseudoinverse

MSTAR

Moving and Stationary Target Acquisition and Recognition

NORB

NYU Object Recognition Benchmark

PCA

Principle Component Analysis

ReLU

Rectified Linear Unit

RVFL

Random Vector Functional Link Neural Network

SGD

Stochastic Gradient Descent

SVHN

Street View House Numbers

TT

Tensor-Train

xix

Acronyms

TT-ELM

Tensor-Train Extreme Learning Machine

UAVs

Unmanned Aerial Vehicles

UCM

UC Merced Land Use

VGG

Visual Geometry Group

WRN

Wide ResNet

xx

Chapter 1

Introduction

Deep Neural Networks (DNNs) are achieving state-of-the-art performance in several

application domains such as image classification [17], target detection [18], and fore-

casting tasks [19]. The backpropagation algorithm [20] in these networks can train

the weighted parameters to learn important features from their inputs. This enables

the network to generalize to new data and classify the data to their respective classes.

1.1 Research Motivation

Unfortunately, the iterative update of these weighted parameters is a computation-

ally intensive process with long training times. For example, convolutional neural

networks (CNNs) (eg: AlexNet [2] and ResNet [3]), require lengthy training times

for complex tasks, such as ImageNet [21]. More recent studies show that training

AlexNet on ImageNet for 100 epochs and a batch size of 512 on the powerful DGX-1

station requires 6 hours and 10 minutes [22]. Training ResNet-50 on ImageNet for

90 epochs and a batch size of 256 on a DGX-1 station requires 21 hours [22]. Al-

ternatively, with enough computational resources, such as 3,456 Tesla V100 GPUs,

ResNet-50 was trained in 2 minutes [23].

Such long training times and massive demand on resources are impractical for a

growing subset of applications, such as lifelong learning systems [24] and edge appli-

cations [25, 26]. For example, in [27], the authors focus on utilizing Convolutional

1

CHAPTER 1. INTRODUCTION

Neural Networks (CNNs) for on-device object detection in Unmanned Aerial Vehicles

(UAVs). They observe that conventional DNNs incur high computational costs to

process frames of a video on-device. Additionally, in many UAVs, Central Processing

Units (CPUs) are used over Graphics Processing Units (GPUs) due to power con-

cerns. This work showcases lightweight networks designed for resource constrained

applications. A critical design constraint is to design algorithms that can be trained

on-device, in real-time, to adapt to dynamic environments. Another example is learn-

ing from few samples through methodologies such as meta-learning [28]. In [28], the

authors illustrate how specialized training techniques can enable for networks to train

on few samples with minimal gradient calculations. This leads to a network that can

train quickly for new tasks. This type of training methodology is ideal for continual

lifelong learning systems that require learning new tasks quickly in a computationally

efficient fashion. In contrast to faster training models, faster inference models with

low latency features are available to accelerate the post-deployment phase of DNNs

[29, 30]. However, the training time bottleneck for large and small datasets, is still

an active research problem [31, 32]. With the evolving need to move training to the

edge, it is critical to study compute-lite architectures with fast training times.

1.2 Research Objectives

The central objective of this research is to study how fixed-random weights can poten-

tially reduce resources and training time in Artificial Neural Networks (ANNs) and

deep CNNs while retaining high performance. In this context, fixed-random weights

refer to weights that are initialized to a random value and then left untrained, or fixed,

throughout the network’s training process. The utilization of fixed-random weights is

one methodology for decreasing training time and resource utilization. Other method-

ologies include the usage of compression [33] or pruning [34] to decrease the number

of parameters in a pre-trained network or while training the network. This can lead

2

CHAPTER 1. INTRODUCTION

to a decrease in the number of Floating Point Operations per Second (FLOPs) for

the forward pass of the network, which can be beneficial for inference. However, these

techniques do not address the amount of time needed to train these networks as addi-

tional computations can occur from the compression or pruning overhead [35, 36, 37].

Alternatively, the use of fixed-random weights can potentially allow for reduced train-

ing time while retaining the network’s large parameter space. Maintaining the large

parameter space can be beneficial as the input’s initial dimensionality can be ex-

tracted into a larger dimensionality allowing for separability between the data [38].

This can enable the network to optimize its trained weights while leveraging the

features extracted from the random weights. To evaluate the use of fixed-random

weights, various methodologies are explored in this work, such as setting entire lay-

ers of networks to fixed-random weights, setting portions of layers to fixed-random

weights, and setting the first layer of a network to fully random, or 100% random,

and then slowly decreasing the percentage of random weights in layers further down

throughout the network’s architecture.

In addition to the above methodologies, the second objective of this work is to ex-

tend the architecture of random projection networks trained using the Moore-Penrose

Pseudoinverse (MPP) [39] to approximate the least squares solution [40, 41, 42, 43,

44, 45]. These networks are shown to train in orders of magnitude faster than stochas-

tic gradient descent approaches. In [43] and [44], a CNN is first trained end to end

with a softmax classification layer and then transfer learned as a feature extractor for

a random projection network that is used in place of the fully-connected layers from

the original CNN. This method enabled their models to achieve high performance on

digestive organ classification for wireless capsule endoscopy and traffic sign recogni-

tion. Unfortunately, these works don’t highlight the memory requirements for the

transfer learned models. In [45], the authors train a random projection network with

convolution and pooling layers. The network utilized random weights in all layers and

3

CHAPTER 1. INTRODUCTION

only trained on the output layer. The authors showed that high performance could be

achieved on handwritten digit recognition, but didn’t address the memory required

with the addition of each additional layer. Additionally, few works explore the use of

skipped connectivity in random projection literature [46, 47, 48]. The use of skipped

connectivity was shown to increase performance in these works but this connection

was limited to skipped connectivity from the input to the output layer and did not

further explore the use of greater connectivity. Increased skipped connectivity may be

beneficial to explore as these connections have been shown to boost the performance

of many DNNs today [3, 4]. To address these concerns, random projection networks

are extended further with additional layers, containing fixed-random weights, as well

as concatenating skipped connectivity, similar to that of DenseNet [4]. The use of

additional random projection layers are shown to lead to transformations in the data

that are beneficial for the trained portion of these networks. Likewise, the use of

skipped concatenating connectivity allows for earlier layer features to be utilized in

the training process to obtain optimal weights.

The third objective is to use a tensor decomposition technique to support com-

pressed layers in an Extreme Learning Machine (ELM) and thereby reduce the model

size. Tensor decomposition allows for tensors, or multi-dimensional arrays, to be

transformed into their respective low-rank model enabling for an approximation of

the original model. This can potentially lead to a decrease in parameters and lead

to savings in resource utilization. This idea is utilized in a random projection net-

work to decrease the demand on memory and to assess if a high performance model

can be achieved with little to no performance drop as compared to its uncompressed

counterpart.

To summarize, the main objectives of this work are the following:

1. Empirically evaluate the performance of networks utilizing fixed-random weights

and assess the benefits of using this technique in comparison to smaller equiv-

4

CHAPTER 1. INTRODUCTION

alent networks.

2. Extensions of feed-forward random projection networks to enable high perform-

ing models at fast training times.

3. Exploration of tensor decomposition in random projection networks to minimize

the parameter space while retaining performance.

5

Chapter 2

Background & Related Work

In this chapter a brief overview of ANNs is initially discussed. The practice of utilizing

random weights in ANNs as a means to decrease the number of trained parameters

and the training time of these network is then reviewed. The chapter concludes with

the usage of pruning and compression techniques in Artificial Neural Network (ANN)

literature.

2.1 The Perceptron and Multi-Layer Perceptrons

An ANN is a computational model that learns an approximation for a function given

a series of inputs [49]. ANNs make use of artificial neurons for computations with

synaptic connections between these neurons. These artificial neurons are typically

of the Perceptron model introduced by Frank Rosenblatt in [50]. The Perceptron

model consists of a neuron with synaptic connections, or weights, connected to its

respective inputs. The neuron takes a weighted sum of its inputs and utilizes an

activation function to obtain an output. An illustration of the Perceptron can be

seen in Figure 2.1 as well as its respective calculation in (2.1).

ŷ = f(
n∑

i=1

xi ∗wi + b) (2.1)

Depicted in both the figure and equation are the terms x, w, b, and ŷ. x is the

6

CHAPTER 2. BACKGROUND & RELATED WORK

Input Layer Output Layer

�1

�2

��

�̂

�1

�2

��

�

Figure 2.1: Illustration of a Perceptron taking the weighted sum of its inputs and an
additional bias term.

input to the neuron with its weights, w, and a bias term b, which is added on to

offset the boundary decision of the algorithm. ŷ is the predicted output after the

weighted sum of the inputs is sent through an activation function f(). This activation

function can be as simple as a threshold value to perform binary classification on an

input. To update the weights of the model, a stochastic learning rule was employed

as shown in (2.2).

w(t+1) = wt + η(y(i) − ŷ(i))x(i) (2.2)

t is the current training epoch of the model, η is the learning rate to adjust how

much the weights would be changed, and y(i) is the ground truth observation for

sample i. The Perceptron by itself could only perform linear separability between its

inputs. Therefore, to handle problems that were not linearly separable, the Multi-

7

CHAPTER 2. BACKGROUND & RELATED WORK

Layer Perceptron (MLP) was created. The MLP, as illustrated in Figure 2.2, makes

use of a number of Perceptrons as artificial neurons in an ANN structure. The artificial

neurons in this network create a hidden layer that takes the weighted sum of its inputs

which is then sent to a nonlinear activation function. A set of common activation

functions utilized in ANNs include sigmoid, hyperbolic tangent, or tanh, and Rectified

Linear Unit (ReLU)) [51]. The equations for these activation functions can be seen

in (2.3), (2.4), and (2.5).

�1

�2

��

Input Layer Hidden Layer Output Layer

�� ��

�1 �1ˆ

�2ˆ

��ˆ

�� ��

�2

��

Figure 2.2: Illustration of an MLP. In this architecture each progressive layer takes the
weighted sum of its inputs.

sig(z) =
1

1 + e−z
(2.3)

tanh(z) =
ez − e−z

ez + e−z
(2.4)

ReLU(z) = max(0, z) (2.5)

Through these activation functions the input’s value is transformed to be within a

smaller number range. In the sigmoid activation function the values would be between

8

CHAPTER 2. BACKGROUND & RELATED WORK

a range of [0, 1], while the tanh function sets the value to be between a range of [-1, 1].

Alternatively, the ReLU activation function keeps the original value if it’s equal to or

above 0. These activation functions enable ANNs to learn more complex structures

of its inputs. After taking the activated weighted sum of its inputs the network can

perform a softmax activation function on the output layer to calculate which class

the data is classified to be. The softmax operation can be seen in (2.6).

g(zc) =
ezc∑c
i=1 ezi

(2.6)

The softmax operation takes its inputs, zc and calculates the probability of which

class the input would be associated with. The highest probability would be considered

the classified class for the given input. To configure the network such that it classifies

its input correctly, a cost, or loss, function needs to be minimized as well as an

adjustment to the weights in the network. A number of loss functions have been

introduced, but in this work the log loss, or cross-entropy loss function, seen in (2.7),

is focused on as it’s commonly used in image classification tasks.

Loss(i) = −log(
e(oi

yi)∑c
j=1 eoi

c
) (2.7)

In this loss function, o is the output of the last layer and yi is the correct class, or

ground truth, of the sample i across all classes c. To minimize this loss the weights

in a network are updated with learning rules, such as Stochastic Gradient Descent

(SGD) through the backpropagation algorithm [20]. In this algorithm, each weight

of the network is adjusted such that the loss would decrease over the training time.

Through the use of multiple layers an ANN could learn to map its inputs to its

selected outputs such that the data would be separated.

9

CHAPTER 2. BACKGROUND & RELATED WORK

2.2 Convolutional Neural Networks

In this section CNNs are discussed as these networks are further explored in this work.

Initially introduced in [52], CNNs are ANNs that consist of convolutional layers as

well as dense, or Fully Connected (FC), layers used in MLPs. The convolutional

layers used in these network are made up of filters with receptive fields, or filter sizes,

that convolve over input images at a given stride. For each filter a single value is

outputted by taking a weighted sum of its inputs. This allows for a similar operation

to the FC layers, as a weighted sum of the inputs is taken, but in a sparse manner.

Similarly to FC layers, a non-linear activation is typically applied to the output of a

convolutional layer.

The sparse manner of the convolutional layer to the FC layer is illustrated through

the calculation of the input weights of both the FC and convolutional layers. The

comparison of the number of weights used in an FC layer as opposed to a convolutional

layer is illustrated in (2.8) and (2.9) respectively.

Win = w ∗ h ∗ d ∗N (2.8)

Win = K2 ∗ F ∗ d (2.9)

The number of weights, denoted by Win, to be calculated in an FC layer would

be equal to the product of the input’s width, height, and depth, denoted by w, h,

and d, respectively, and the number of neurons in the FC layer, N. Alternatively, a

convolutional layer would only require the product of its filter size, K, squared, the

number of filters, F , and the depth of the input. This means for a given input image of

dimensions 32×32×3 and 64 neurons, a FC layer would require 32∗32∗3∗64 = 196, 608

input weights to be trained as opposed to a convolutional layer with 64 filters and

10

CHAPTER 2. BACKGROUND & RELATED WORK

a filter size of 3 × 3 requiring only 3 ∗ 3 ∗ 64 ∗ 3 = 1, 701 weights to be trained.

Additionally, unlike the FC layers, which require that the input image is flattened

down to a vector form, convolutional layers can convolve over an input while retaining

the given width, height, and depth allowing for spatial features to be preserved from

the input.

In addition to convolutional layers, CNNs typically make use of pooling layers.

Pooling layers are sub-sampling layers that decrease the dimensionality of an input.

The most common pooling layers are max pooling layers and average pooling layers.

In max pooling layers, the highest valued pixel, given a receptive field, is selected

as the output. This operation occurs across the entire image to obtain a maximally

activated output from an input. In contrast, the average pooling operation takes the

average pixels in its receptive field. This allows for a low pass filtering operation on

the input. This type of layer is commonly used after convolutional layers to transform

and decrease the dimensionality of the input.

[52] illustrated how an end to end Convolutional Neural Network (CNN) could be

trained with the backpropagation algorithm. In [1], the LeNet-5 CNN architecture,

shown in Figure 2.3, was introduced as an improved version of the original design.

This architecture consisted of 2 convolutional layers, 2 pooling layers, and 3 FC layers.

Through the use of successive convolutional and pooling layers hierarchical features

were able to be extracted from input images and then densely connected through the

FC layers. This network was able to effectively learn representations from its input

without the need for hand crafted features. It also paved the way for further research

into CNNs.

2.2.1 AlexNet

Although LeNet-5 showed the initial potential of CNNs, CNNs were not widely

adopted as they required large amounts of data to train on and were expensive in

11

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.3: The LeNet-5 shallow CNN architecture consisting of convolutional, pooling,
and FC layers [1].

terms of resources due to the tuning process of the weights, or parameters, in their

networks. It wasn’t until the introduction of AlexNet, depicted in Figure 2.4 that

CNNs became popularized and widely used. AlexNet was merely a variant on the

architecture of LeNet-5. It utilized convolutional, pooling, and FC layers just as

LeNet-5 did. However, the authors of the AlexNet paper emphasized how depth

played an important role in achieving high performance. They illustrated this by us-

ing an 8 layer network, containing 5 convolutional layers and 3 FC layers, as well as an

additional 3 max pooling layers after some of the convolutional layers, that achieved

state-of-the-art performance on the ImageNet dataset. This led to the beginning of

the deep learning era as more researchers began to adopt deep CNN architectures to

evaluate the effectiveness of these models on other aspects of computer vision.

Figure 2.4: The AlexNet CNN architecture consisting of multiple convolutional, pooling,
and FC layers illustrating the impact of deep neural networks [2].

In addition to introducing a deeper CNN architecture. The authors make use

12

CHAPTER 2. BACKGROUND & RELATED WORK

of techniques, such as utilizing ReLU activation functions, data augmentation, and

dropout [53]. The method of using ReLU activation functions led to faster convergence

as opposed to activation functions, such as sigmoid and tanh. While data augmenta-

tion and dropout assisted in regularizing the network. All 3 of these techniques have

since been utilized on various networks.

2.2.2 VGG

Following AlexNet was the Visual Geometry Group (VGG) Network which achieved

state-of-the-art results on ImageNet surpassing AlexNet’s performance [54]. In these

VGG networks, many 3× 3 filter sizes were used as well as additional convolutional

layers leading to variants of the architecture, such as VGG-16 and VGG-19, where

the number after the hyphen denotes the number of layers not including the pooling

layers. With the additional layers used in this architecture, the number of trained

parameters increased as well as the number of resources needed to compute.

2.2.3 ResNet

As research into CNNs continued, researchers found that creating deeper networks

didn’t necessarily always increase performance and in most cases would actually lead

to decreased performance. This was due to the vanishing and exploding gradient

problem [55, 56]. In the vanishing gradient problem, gradients calculated using back-

propagation grow closer to 0 in the earlier layers due to saturation in the non-linear

activation functions of these deep networks. This leads to little changes to the param-

eters space in early layers. In contrast, the exploding gradient problem is where large

gradients occur in the network leading to large changes in the parameter space. This

can lead to an unstable network that does not converge properly. The ResNet ar-

chitecture alleviates these problems through the introduction of residual connections.

These residual connections are skipped connections from previous layers that map to

13

CHAPTER 2. BACKGROUND & RELATED WORK

later layers enabling for identity mapping, depicted in Figure 2.5. More specifically,

this skipped connection is an addition operation on a previous input and a current

layer’s output. With the usage of these residual connections, the ResNet architec-

ture was able to obtain state-of-the-art performance on numerous datasets, including

ImageNet and the MS COCO datasets [57]. With these residual connections, much

deeper networks could be created while enjoying an increase in performance rather

than a degradation.

Figure 2.5: A ResNet residual block consisting of the use of skipped additive connectivity
to alleviate the vanishing and exploding gradient problems [3].

2.2.4 DenseNet

Taking inspiration from networks with skipped connectivity, such as ResNet, the

DenseNet architecture was formed [4]. This architecture enables for a large number

of features to be extracted as all layers were connected through feature map con-

catenation, as opposed to ResNet’s summing of feature maps. This leads to L(L+1)
2

connections in a network as opposed to L connections, where L denotes the number of

layers in a network. In DenseNet architectures few filters are used to extract features

for each layer, but as more features are concatenated to the entire amount of feature

maps collected a substantial amount of salient feature can be extracted from these

dense blocks, as shown in Figure 2.6.

As this dense connectivity can lead to a large amount of parameters, measures are

taken to decrease the parameter space. The dense blocks of the network employed the

14

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.6: A DenseNet dense block consisting of the use of skipped concatenating con-
nectivity to increase the number of features extracting in each layer [4].

use of bottleneck layers, introduced in [58, 59]. Bottleneck layers consist of applying

1×1 filters prior to 3×3 filters to decrease the number of parameters in the network as

opposed to taking direct 3×3 filters on the input. In addition to the bottleneck layers,

the number of feature maps between dense blocks were reduced. This meant that the

intermediate, or transition, layers could output fewer feature maps to be fed into their

next dense block. Through these techniques and the dense connectivity of the network

design, a high performing model could be achieved with fewer parameters. This led

to state-of-the-art performance surpassing the ResNet on datasets, such as ImageNet.

Few networks were able to surpass DenseNet and of those that did many employed the

use of large amounts of data augmentation, regularization, or an increased parameter

space leading to higher resource utilization.

2.3 Random Weights in ANNs

In this section the use of fixed-random weights in ANNs is discussed. More specifically

this section highlights the impact that the architecture has on the performance of a

network with and without random weights. It additionally illustrates that comparable

accuracies can be achieved in networks utilizing fixed-random weights on a number

of tasks.

15

CHAPTER 2. BACKGROUND & RELATED WORK

2.3.1 The Importance of Architecture Design

A number of works have explored the usage of fixed-random weights. In this section

a brief overview is given for a few of these works. In [60], the authors show that a

shallow CNN with random weights and normalization can achieve comparable per-

formance to a trained system on the Caltech-101 dataset [61]. The shallow networks

consisted of convolution layers with 64 filters in the first layer and 256 filters in the

second layer, both with 9 × 9 kernel sizes, that are then passed to a linear classi-

fier. The performance was found to be sub-par in comparison to a trained network

when evaluated on a dataset with greater labeled samples, such as the NYU Object

Recognition Benchmark (NORB) dataset [13]. However, this work illustrates how

random weights still enable features to be extracted from the input to enable fairly

high performance.

The authors in [62] delve deeper into the work of [60]. They highlight the fact

that random weights only result in a slightly worse performance than trained weights

and explore the reasoning for this. The authors find that CNNs with random weights

in their convolution and pooling layers can be frequency selective and translation

invariant. Through a comparison of various trained and random CNN architectures,

it’s found that there are cases where an architecture containing random weights can

outperform a different architecture that has been trained. Therefore the authors

conclude that the architecture alone plays an important role in key feature extrac-

tion from inputs and that the learning algorithm used in these networks may not

necessarily need to be the focus in yielding a high performance model.

2.3.2 Random Weights in DNNs Achieving Comparable Performance

In [5], the authors illustrate the usage of fixed-random weights in image reconstruc-

tion, synthesizing textures, and utilizing neural style transfer [6]. They make use of a

VGG-19 CNN as their chosen network and replace the maximum pooling layers of the

16

CHAPTER 2. BACKGROUND & RELATED WORK

architecture with average pooling. All weights of the architectures were initially set to

random values from a Gaussian distribution with zero mean and a standard deviation

of 0.015. After random weights were initialized they stack the network layer by layer

with new random weights in a greedy manner. In their new constructed network,

they first sample images with an array of random weight combinations to find a set

that minimizes the loss for one layer. They then repeat the process until the network

leads to ideal random weights. A comparison of the reconstructions of images for the

randomized VGG, denoted by ranVGG, and a fully trained VGG net on ImageNet,

denoted by VGG, can be seen in Figure 2.7.

Figure 2.7: Reconstructions of 3 images when utilizing a fully random VGG net and a
fully trained VGG net [5]. The visualization from the pool5 layer exhibits certain features
learned in the trained net that inhibits reconstruction.

A clear difference can be seen perceptually between the fully random and trained

VGG nets for the pool5 layer. The image reconstruction for the random network is

shown to be more visually appealing. However, the authors take a greedy approach

in constructing the ranVGG network. Additional experiments from the author show

that textures can be generated as shown in Figure 2.8. Additionally, neural style

transferred images can be generated as shown in Figure 2.9.

17

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.8: Generated textures from several images when utilizing a fully random VGG
net and a fully trained VGG net [5]. In this figure each row corresponds to a convolutional
layer in the random VGG net while a comparison is made between the 4th convolutional
layer of both the trained and random nets.

A difference can be seen between both the images of the textures and the neural

style transferred images. For example, in the texture images, Figure 2.8, the conv4 1

of the random VGG for the floors shows textures that are not as sharp as trained

conv4 1. However, across the other textures, this is visually unnoticeable. Although

the textures are not as distinct, in comparison to the trained net, the random net is

18

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.9: Neural style transfer of images when utilizing a fully random VGG net and
a fully trained VGG net [5]. The first row depicts the original image, while the second
and third rows show the random VGG net and trained VGG net’s content images with the
applied style transfer. Note: The reference [13] in this image refers to [6]’s paper.

still able to extract textures from the given input.

This can be additionally seen in the neural style transferred images as the trained

net depicts sharper more noticeable changes in the transferred content image for Der

Schrei. However, this is not as visually noticeable when utilizing the other style

images. These transferred content images are still able to obtain features from both

style and content as the architecture enables for various features to be extracted from

the input.

To explore the impacts of random weights even further, the authors in [7] exper-

iment on training only portions of the weights in CNNs while leaving the untrained

weights to their initialized random values. Many previous works explore the usage of

layers containing random weights, but this work explores the use of layers containing

a mixture of trained and random weights. They observe the effects of training con-

volutional layers with a percentage of trained filters while the rest are left untrained.

Additionally, these experiments included tests on leaving only a value of k filters

trained per convolutional layer. For these experiments the FC layers of each architec-

ture consisted of weights that were trained. These experiments on both the Canadian

19

CHAPTER 2. BACKGROUND & RELATED WORK

Institute for Advanced Research (CIFAR)-10 [8] and CIFAR-100 [8] datasets can be

seen in Figure 2.10.

Figure 2.10: Experiments utilizing a percentage and a k amount of trained weights in
deep CNN architectures. The white area indicates the percentage of weights trained, while
the gray area indicates training on only k number of filters per convolutional layer. The
blue line indicates the rest of the weights in the layer were left untrained, while the green
line indicates the rest of the weights in the layer were zeroed out [7].

The architectures used in this experiment, from left to right in Figure 2.10, include

DenseNet with a depth of 100 and a growth rate of 12, Wide ResNet (WRN) [63]

with 28 layers and a widen factor of 4, VGG-19, and AlexNet. The experiments show

that each architecture was able to achieve fairly high performance even with a large

portion of weights left random. Additionally, across many of the architectures the

random weights a small increase in performance over leaving the weights zeroed out.

It is also seen that even learning a subset of k filters while leaving the rest untrained

can lead to fairly high performance most notably in the DenseNet architecture.

Unfortunately, in this experiment the authors fail to illustrate the accuracy achieved

by a fully trained model after the 10 epochs of training. It’s also unclear if a greater

number of training epochs would have substantial effects on the accuracies achieved

by these networks with random weights. Fortunately, the authors conduct an experi-

20

CHAPTER 2. BACKGROUND & RELATED WORK

ment where they train the WRN model and DenseNet model for 200 and 300 epochs,

respectively, as shown in Table 2.1.

Table 2.1: Performance achieved when learning only a fraction of filters for the CIFAR-10
dataset for training epochs of 200 on WRN and 300 on densenets. Eff. Params indicates
the number of trained parameters, while * indicates the performance when the parameters
for random weights were zeroed out [7].

Method Fraction Eff. Params x 106 Perf Perf*

WRN 0.1 3.66 94.12 91.53
WRN 0.4 14.6 95.75 95.49

densenets 0.1 0.09 88.73 82.11
densenets 0.4 0.3 93.33 92.46

In this experiment the WRN and DenseNet models were compared with small

fractions of trained convolutional weights and large fractions of random or zeroed

out convolutional weights on the CIFAR-10 dataset. It can be seen that the random

weights are more influential when a small fraction of weights (0.1) is trained. How-

ever, the experiments of zeroing out the weights for the 0.4 trained fraction amount

indicates that the random weights only assist the performance marginally (<1%).

Another experiment comparing the two networks for 200 and 300 epochs of training,

respectively, on the CIFAR-10 and CIFAR-100 datasets can be seen in Figure 2.11.

This figure illustrates how even learning 70% of the weights is a substantial amount

in enabling for a model that reaches performance comparable to its respective trained

equivalent for both the CIFAR-10 and CIFAR-100 datasets. The authors evaluate

on one more dataset, namely the Tiny-ImageNet dataset [64]. This dataset is an

alternative to the ImageNet dataset and consists of 200 classes with 500 training and

50 validation images for each class. Each image is of RGB color and size 64×64. The

experiments conducted on this dataset consisted of training only the WRN model for

45 epochs with an initial learning rate of 0.1 which was decreased by a factor of 10

every 15 epochs. The result of this experiment is shown in Table 2.2.

It can be seen that even if 40% or 70% of the weights are used to train the network

21

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.11: The WRN and DenseNet networks compared on both the CIFAR-10 (left)
and CIFAR-100 (right) datasets at various training fractions per convolutional layer. Green
and blue solid lines indicate networks with a fraction of trained weights and the rest left
random. Green and blue dashed lines indicate the performance of the WRN and DenseNet
networks with trained weights. Note: when frac = 1.0, this is actually when only a single
filter is trained per convolutional layer [7].

Table 2.2: Performance on the Tiny-ImageNet dataset using the WRN model with various
percentages of trained weights [7].

% Params Top-1 Accuracy (%) # Params

10 21.75 .83M
40 30.13 2.58M
70 33.22 4.33M
100 35.54 6.1M

while all other weights are left random high accuracies can be achieved. This work

illustrates how much of an impact the architecture can have on the performance of

deep CNNs as initially discussed in [62]’s work.

Overall, the research into the field of fixed-random weights in ANNs illustrates how

these networks may not necessarily need to be fully tuned. However, the architectural

design of the ANN plays an important role in extracting meaningful features from the

input. Additionally, a purely random network can yield comparable performance in

some cases to fully tuned networks. This brings into question, though, of how many

22

CHAPTER 2. BACKGROUND & RELATED WORK

parameters need to truly be tuned in a network? It’s not necessarily true that all

parameters need to be tuned as a purely random network illustrates the impact of

the architecture. On the other hand, if only portions of a network are tuned then a

network can still reach comparable performance to its respective trained model.

2.4 Random Projection Networks

Aside from the works discussed above, many other works highlight the use of random

weights in ANNs. In the work of [40], the extreme learning machine (ELM) architec-

ture is introduced. This architecture is a feed-forward architecture, similar in design

to a single hidden layer MLP, that makes use of random projection from its inputs to

a hidden layer and conducts training on the output layer weights. A similar concept

is utilized in the form of recurrent ANNs. This concept, better known as reservoir

computing, is explored in two works by [41] and [42] through the introduction of the

Echo State Network (ESN) and Liquid State Machine (LSM), respectively. In both

works the input to hidden layer weights are left as a random projection along with

a reservoir layer containing recurrent neurons with random weights and connectivity

to other neurons. Through the random nature of the reservoir layer, feedback signals

are introduced from temporal inputs enabling for an innate form of fading memory.

Similarly to the ELM, the ESNs and LSMs are trained only on their output layer

weights.

2.4.1 ELM

The ELM approach to fixed-random weights has become increasingly adopted in the

literature [65]. The ELM architecture is a shallow feedforward ANN that makes use of

two fully connected (FC) layers, similar to that of the structure of an MLP illustrated

previously in Figure 2.2. In this architecture, the input to hidden layer weights are

kept fixed and random. This allows for a random projection from the input space to

23

CHAPTER 2. BACKGROUND & RELATED WORK

a larger more separable space as the hidden layer nodes in the network are typically

greater than the number of input nodes. The hidden to output layer weights are then

trained using an alternative training paradigm to SGD, namely taking the MPP [39]

of the output weights given all training samples. By taking the inverse of a matrix a

least squares solution can be calculated. However, the matrix must be square to take

the inverse. Unfortunately, it is rare for this to occur given most data. Therefore, by

using the MPP, a least squares approximation of the output weights can be computed

by taking the generalized inverse of the matrix. The evaluation of the output layer’s

weights in an ELM is calculated using (2.10), (2.11), and (2.12).

H† = (HTH + λI)−1HT (2.10)

Wout = H†y (2.11)

ŷ = HWout (2.12)

Initially the MPP of H is taken using (2.10), where H† is the MPP of H, H is

the output of the hidden layer, and λ acts as a regularization term multiplied by an

identity matrix, I. Equation (2.11) then highlights the calculation of the least squares

approximation. In this equation the output weight matrix, Wout, is calculated by

multiplying H† by y, which is the ground truth labels. Once the output weights

are calculated, the output predictions, ŷ, are calculated in (2.12) by multiplying the

output of the hidden layer and the output weights. The output predictions are then

used to compare to the ground truth labels to evaluate the network’s performance.

24

CHAPTER 2. BACKGROUND & RELATED WORK

2.4.2 Random Vector Functional Link Network

Prior to the introduction and popularization of the ELM, there was another network

that introduced random projection, namely the Random Vector Functional Link Neu-

ral Network (RVFL) [46]. In this network, hidden layer nodes were called enhance-

ment nodes. The weighted connection between the input and enhancement nodes

were set to fixed-random values during the training process while the output weights

were trained. The training paradigms used in this network would consist of either a

gradient based approach or training in one step through the utilization of the MPP.

Many similarities can be seen between the ELM and this network, however, this net-

work makes use of an additional link, or skipped connection, from its input to its

output. This skipped connection was a concatenation of the input-to-output weights

to the enhancement-to-output weights. Therefore, in the calculation of the MPP of

the output layer’s weights of the network, the H matrix of (2.10) would consist of the

additional initial inputs. Through the use of this skipped connection, the RVFL was

shown to be able to approximate functions well in comparison to a normal MLP.

An in depth evaluation of the skipped connection was studied in [47] for this

network. The authors tested this connection on 121 datasets from the UCI machine

learning repository [66] to assess the direct input-to-output connection. They found

that the connection led to an increase in accuracy for the datasets when compared to

an RVFL lacking this connection. They concluded that this link acted as a regularizer

for the randomized weights and enhanced the performance of the network.

The authors in [48] introduce the Convolutional Random Vector Functional Link

Neural Network (CRVFL), which is a combination of the concepts used in CNN archi-

tectures and the RVFL architecture. This architecture made use of a convolutional

layer, an average pooling layer, a normalization layer, and a FC layer, as well as

the input-to-output skipped connection, to perform visual tracking. Similarly to the

RVFL, the CRVFL left the weighted connections in the intermediate layers fixed and

25

CHAPTER 2. BACKGROUND & RELATED WORK

random. Training only occurred on the output layer and the training paradigm con-

sisted of a recursive least squares approach as visual tracking was a task that occurred

over time as opposed to image classification which is purely spatial. Using this ar-

chitecture, the authors showed results on a 51 video sequence of tracking objects and

showed comparable performance to CNN backpropagation methods.

2.5 Tensor Decomposition

In many ANNs today the flow of data is typically represented in terms of vectors or

matrices. For example, an MLP with a single hidden layer of H neurons has weighted

connections from its input to a successive layer. The H neurons are represented in

the form of a vector, while the weighted connections are represented in the form

of a matrix. In mathematics there is another method of representing these matrices

through the use of tensors. Tensors are multidimensional arrays where each dimension

is a vector space [67]. The dimension of a tensor goes by many names, such as its order,

number of ways, or number of modes [67]. These terms are used interchangeably in

the literature, however, clarification is given to ensure readability of this work. A

clear example of the dimensionality of tensors can be seen in Figure 2.12.

Vector Matrix

3rd Order Tensor2nd Order Tensor1st Order Tensor

Figure 2.12: Illustration of tensors in varying orders, or dimensions.

In this figure tensors in their respective dimensions are shown. A tensor of d = 1

is a vector or 1st order tensor, a tensor of d = 2 is a matrix or 2nd order tensor, a

26

CHAPTER 2. BACKGROUND & RELATED WORK

tensor of d = 3 is a 3rd order tensor, and lastly a tensor of d = N is an Nth order

tensor. Additionally, a tensor of d = 0 is merely a scalar. In this work, tensors of

order 3 or higher are denoted with bold upper-case letters, such as X, as opposed to

matrices denoted by italicized upper-case letters, such as X. Vectors are denoted by

lower case scripted letters, such as a.

Decomposing data, or compressing it, to a smaller or approximate form is ben-

eficial as it decreases the dimensionality of the data. Many applications, such as

signal processing [68], image compression [69], machine learning [70], etc., require the

use of compression techniques to decrease the number of resources used. Therefore,

the tensor decomposition has become popularized as it presents effective methods in

decomposing high dimensional data [67].

In order to understand tensor decompositions, it’s important to first understand

matrix decomposition. In matrix decomposition problems, an initial matrix X is

approximated by a low-rank model M . M is calculated by taking the sum of a subset

of rank-one matrices as shown in (2.13).

X ≈M =
r∑

l=1

al ⊗ bl = ABᵀ = [AB] (2.13)

The outer product, denoted by ⊗, of vectors a and b is taken with l as the index

into the vectors across all r, which is the total number of ranks. This is equivalent to

ABᵀ, where Bᵀ is the transpose of B.

Under tensor representations, an Nth order rank-one tensor can be represented

as the outer products of its respective 1st order tensors, or vectors. Rank-one tensors

refer to an Nth order tensor that can be decomposed into the outer product of

N 1st order tensors. For example, suppose we have a rank-one tensor of order 3,

T ∈ Rm×n×p, this tensor can be represented by the outer product of its 1st order

27

CHAPTER 2. BACKGROUND & RELATED WORK

tensors, a ∈ Rm, b ∈ Rn, and c ∈ Rp, as shown in (2.14).

T = a⊗ b⊗ c (2.14)

Aside from the example of a rank-one tensor, the rank of a tensor is defined

as the summation of the minimum number of rank-one tensors whose summation

produce the original tensor [71]. However, determining the rank required to produce

an original tensor is found to be an NP-hard problem [72, 73]. Although, determining

the rank is an NP-hard problem, the use of tensor decomposition still holds benefits

over matrix decomposition as it extends to higher orders.

To gain an understanding of tensor decomposition, one of the more well known and

original tensor decomposition is the canonical polyadic (CP) decomposition [74]; also

known as the CANDECOMP/PARAFAC decomposition [75, 76]. In this method

of decomposing a tensor, a tensor is approximated by respective rank-one tensors.

Figure 2.13 illustrates an example of CP decomposition on a 3rd order tensor, T,

which is approximated by rank-one tensors, a, b, c. Equation (2.15) presents the

calculation for an Nth order tensor.

T ≈

a1

c1b1

a2

c2b2

ar

crbr+ + +

Figure 2.13: Illustration of a tensor decomposition in which an input T is approximated
by the summation of rank-one tensors. These rank-one tensors are calculated from the outer
product of 1st order tensors a, b, and c.

T ≈
r∑

l=1

al ⊗ bl ⊗ cl = [ABC] (2.15)

In this decomposition, the outer product of a single instance of al⊗bl⊗cl is called

28

CHAPTER 2. BACKGROUND & RELATED WORK

a component and the matrices [ABC] are referred to as factor matrices that describe

the 3rd tensor T. By summing the rank-one tensors across r ranks the original tensor

T can be approximated. In contrast to matrix decomposition, tensor decomposition

holds the benefit of enabling for less rigidness in unique solutions. The matrix decom-

position to approximate a low-rank model typically doesn’t hold a unique solution

unless additional constraints are made to the matrices. For example, various matri-

ces A and B can enable for an approximate model M to be formed [77]. However,

tensor decomposition can approximate a low-rank model with less rigid constraints

as deterministic approaches can be made to either compute or enable uniqueness in

the decomposition [71]. As the mathematical proofs for this uniqueness is out of the

scope of this work, the readers are referred to [71] for additional information on this

topic. Additionally, a survey on tensor decomposition techniques is discussed in detail

in [67].

A number of tensor decomposition techniques exist in the literature [74, 78, 79, 80],

however, the most commonly used techniques consist of CP and Tucker decomposition

[74, 78]. The CP decomposition was illustrated above through a tensor, T, being

approximated by rank-one tensors. While the Tucker decomposition is illustrated in

Figure 2.14 and calculated in (2.16).

T G≈ A

B

C

Figure 2.14: Illustration of the Tucker decomposition in which an input T is approxi-
mated into a compressed core G. This compressed core is then multiplied by the matrices
representing rank-one tensors; A, B, and C.

29

CHAPTER 2. BACKGROUND & RELATED WORK

T ≈ G×1 A×2 B ×3 C =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr ap ⊗ bq ⊗ cr = [G;ABC] (2.16)

The Tucker decomposition decomposes an original tensor, T into a core tensor,

G, which is multiplied by factor matrices, A, B, and C, representing the rank-one

tensors. The original tensor’s dimensionality is of T ∈ RI×J×K , the core tensor is

of dimensionality, G ∈ RP×Q×R, and lastly the factor matrices are of dimensionality,

A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R. The Tucker decomposition is considered a

higher-order Principle Component Analysis (PCA) where the factor matrices are the

principle components, while the core tensor represents the intractability between each

component [67]. When the components, or number of columns, P , Q, and R, are less

than I, J , and K, then the core tensor G is considered to be a compressed form of

the original tensor T [67, 81].

2.5.1 Tensor-Train Decomposition

Although both the CP and Tucker decomposition enable for a decomposed form of

their input tensors, they have drawbacks. As previously discussed above, the cal-

culation for the ranks of tensors is NP-hard [67, 82]. Additionally, approximation

methods for the ranks can fall into local minima and therefore don’t always converge

to a global minimum [82]. Although stable, the parameter space for Tucker decom-

position leads to an exponential increase relative to the order of the original tensor

and is therefore preferred for smaller dimensionalities [82].

In this work, the Tensor-Train (TT) decomposition [82] is used as it offers the

benefits of stability and a decreased number of parameters. TT decomposition is

a tensor decomposition method that makes use of auxiliary unfolded matrices to

approximate the original tensor. A tensor, T, of Nth order can be approximated by

30

CHAPTER 2. BACKGROUND & RELATED WORK

N unfolded matrices, G. These unfolded matrices can be represented in the form of

3rd order tensors of dimensionality rk−1×nk×rk, where n refers to a single dimension

in the total number of dimensions N and k is an indexing variable relative to a max of

N . The first and last tensors would consist of r0 and rN and are equal to the value of

1 as boundary conditions [82]. An illustration of the TT format, or the decomposed

tensor format, of a 5th order Tensor can be seen in Figure 2.15 and the calculations

for the case of an Nth order tensor can be seen in (2.17).

 �2 �3 �3 �1 �2 �2 �3 �4 �4

 �0 �1 �1 �4 �5 �5

Figure 2.15: Illustration of a 5th order tensor decomposition into respective cores of the
TT format.

T ≈
N∑
k=1

Gr0,n1,r1Gr1,n2,r2 . . .GrN−1,nN ,rN (2.17)

In this figure, a 5th order tensor is decomposed into 5 tensors of varying dimen-

sions. When decomposed, these tensors are referred to as cores. The 2 cores at

the beginning of the TT format consist of the dimensionality cases of r0 = rN =

1, leading to 2nd order tensors for the first and last tensors, while the central cores

consist of 3rd order tensors. Each core is summed up across all dimensions N for each

separate element to approximate the original tensor T. These cores, when unfolded,

are referred to as unfolded matrices, which, as discussed above, are represented as

3rd order tensors. To best approximate the original tensor the following condition in

31

CHAPTER 2. BACKGROUND & RELATED WORK

(2.18) must be satisfied.

‖T−M‖F ≤ ε‖M‖F (2.18)

Where M is the approximation of the original tensor T, F is the Frobenius norm

and ε is the target error desired for the approximation. To best approximate the

model, an ε of 0% would be desired, however, a more compressed tensor can be ac-

quired with lower ranks. The authors in [82] present an empirical method to determine

the ranks using the singular value decomposition, however, this results in a costly op-

eration as this empirical method requires an iterative method to determine the ranks

across the dimensionality of the tensor [82]. Once the ranks are determined, the core

dimensions are acquired as the ranks, r0 to rN , to determine the dimensionality of

each core given the input tensors dimensionalities, nk.

32

Chapter 3

Methodology

In this chapter, a hypothesis is initially discussed to illustrate the main goals of

the experiments performed in this work. An explanation of the experiments is then

conducted as well as an intuitive analysis of why these specific experiments were

executed.

3.1 Hypothesis

As discussed in Chapter 2, previous research has highlighted how ANNs utilizing

fixed-random weights are able to extract rich features from their inputs relative to

their architecture and their training paradigm. Therefore, in this work, it is hypoth-

esized that fixed-random weights can reduce the demand on computational resources

while retaining performance akin to their trained network counterparts. This is due

to fewer operations occurring in the backwards pass, or backpropagation, through

the network. Only trained weights would need to have their weights updated, while

random weights would retain their values. Additionally, in this work, it is hypoth-

esized that the employment of fixed-random weights enable for networks to learn

supplemental features to increase performance over downsized DNNs. This is hy-

pothesized as the parameter space of the original network is retained leading to a

greater feature extraction across each layer. To clarify, downsized models refer to

fully trained smaller versions of the original architecture. For example, if a trained

33

CHAPTER 3. METHODOLOGY

model had a convolution layer with 16 filters and the trained fractional amount was

50%, then in the random case there would be 8 filters trained and 8 filters would

be left with initialized fixed-random weights while in the downsized case there would

be just 8 filters trained. The downsized case is meant to further highlight that the

fixed-random weights can still extract supplemental features from the input leading

to high performance along with a decrease in training time.

3.2 Evaluation

To assess each network and their performances, a number of image classification

datasets are employed. The first dataset employed is the CIFAR-10 dataset, which

consists of 32 × 32 RGB images of various classes. These classes included airplanes,

automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks as illustrated

in Figure 3.1. The dataset includes 60,000 images, where 50,000 images are used

for training, while 10,000 images are used for testing. The images are normalized

with means 0.4914, 0.4822, 0.4465 and standard deviations of 0.247, 0.243, 0.261.

Additional data augmentations of random horizontal flips and a random crop with

padding of 4 are used. This dataset adds a layer of complexity as the images are RGB

rather than grayscale. Therefore, this dataset is utilized to evaluate fixed-random

weights with more complex data.

In addition to the CIFAR-10 dataset, the Street View House Numbers (SVHN)

dataset [9] is used as an additional test to the CIFAR-10 dataset. This dataset consists

of 32× 32 RGB real-world imagery, shown in Figure 3.2, that is similar to the Mixed

National Institute of Standards and Technology (MNIST) dataset [83] in which digits

are classified with labels from 0 to 9. However, these images are of digits in a natural

scenery, such as on streets or on other structures. Additionally, the RGB channels

in the dataset increase the difficulty in contrast to the MNIST dataset. The dataset

is split such that 73,257 images are used for training and 26,032 images are used for

34

CHAPTER 3. METHODOLOGY

Figure 3.1: The CIFAR-10 dataset containing various classes ranging from airplanes to
trucks [8].

testing. For this dataset, the images are normalized with means of 0.5, 0.5, 0.5 and

standard deviations of 0.5, 0.5, 0.5.

Figure 3.2: The SVHN dataset containing digits 0 through 9 in a similar manner to
MNIST, but in natural scenery [9].

The next dataset utilized is the UC Merced Land Use (UCM) dataset [10]. This

dataset consists of 256 × 256 RGB aerial imagery, as seen in Figure 3.3. The 21

classes of the dataset range from agriculture and beach to airplane and buildings.

The dataset is made up of 2,100 images of 21 classes, which are split into 80% train-

ing, or 1,680 training samples, and 20% testing, or 420 testing samples. The data is

35

CHAPTER 3. METHODOLOGY

normalized with means of 0.48678258, 0.49174392, 0.45313206 and standard devia-

tions of 0.21827406, 0.20301312, 0.19686365.

Figure 3.3: The UCM dataset containing aerial imagery of 21 classes [10, 11].

The last three datasets used are the Moving and Stationary Target Acquisition and

Recognition (MSTAR) dataset [84], small NORB dataset, and the Fashion-MNIST

(FMNIST) dataset [14]. The MSTAR dataset contains 6,894 128×128 grayscale syn-

thetic aperture radar (SAR) images of vehicles captured at varying angles. Specifi-

cally, in this work, the vehicles are at 15 and 17-degree depression angles. The dataset

is are split into randomly shuffled 80% training and 20% testing set splits, leading to

5,499 images for training and 1,395 images for testing. The images are downscaled

to 28 × 28 and normalized with a mean of 0.14816141 and a standard deviation of

0.14638391. The dataset consists of 10 unique vehicle classes as shown in Figure 3.4.

From this figure it can be seen that this dataset offers noisy images in comparison to

other cleaner datasets, such as MNIST.

The small NORB dataset consists of 96 × 96 grayscale images of 5 classes. The

classes are made up of four-legged animals, human figures, airplanes, trucks, and cars

at various lighting conditions and elevations as presented in Figure 3.5. The dataset

consists of 24,300 image pairs which can be split into training and test splits of varying

sizes. For these experiments, the images are downscaled to 28 × 28 and normalized

36

CHAPTER 3. METHODOLOGY

Figure 3.4: The MSTAR dataset containing 10 unique vehicle classes [12].

with a mean of 0.5 and a standard deviation of 0.5. The train split is 80% while the

test split is 20%.

Figure 3.5: The small NORB dataset containing 5 classes ranging from four-legged animals
to cars [13].

The FMNIST dataset is meant to be a drop in replacement for the MNIST dataset

37

CHAPTER 3. METHODOLOGY

as researchers were able to obtain near 100% accuracy on the MNIST dataset [85].

Therefore, to add a layer of complexity the authors in [14] downscaled images of

fashion items and set their color channels from RGB to grayscale. The dataset consists

of 10 fashion items at grayscale image sizes of 28 × 28 as depicted in Figure 3.6.

Similarly to MNIST, 60,000 images are used for training and 10,000 images are used

for testing. Due to the nature of the classes and their features, such as pullover

and coat, the dataset was shown to be more difficult when compared to the MNIST

dataset. For these experiments, the images are normalized with a mean of 0.5 and a

standard deviation of 0.5.

Figure 3.6: The FMNIST dataset containing 10 classes of fashion items ranging from
pullovers to boots [14].

3.3 Semi-Random CNNs

To assess the hypotheses stated above, a number of experiments are conducted. The

first set of experiments consists of utilizing fixed-random weights in the convolutional

layer of deep CNNs, similarly to [7]’s work. These networks are denoted as Semi-

Random CNNs. In these experiments 2 deep CNNs are looked at, namely ResNet-

38

CHAPTER 3. METHODOLOGY

20, DenseNet-BC-100. The ResNet and DenseNet architectures are chosen as they

illustrate widely used deep architectures that make use of skipped connectivity to

enhance performance over networks lacking this skipped connectivity. The use of

fixed-random weights in these architectures allow for a comparison of how effective

the different skipped connectivities, summation or concatenation, perform.

In these experiments, each convolutional layer of the selected architecture would

consist of a fraction of trained filters vs fixed-random or omitted filters. The other

layers in the network are left trained as these architectures primarily make use of

convolutional layers meaning that these layers consist of a large percentage of the

total number of parameters. These fractional amounts would consist of utilizing full

random projection, various quarter fractions of trained filters, as well as a linear in-

crease in trained weights. For each architecture, their initialized random distributions

are left the same and each layer’s weights would be fixed-randomly depending on the

specified percentage of trained weights. To clarify, in the instances of the quarter of

trained filters, let’s assume we had the example of 64 filters in a convolutional layer.

If 75% of the filters are set to trained, then 48 filters would be trained, while 16 filters

are either set to fixed-random or would be omitted during the training process. If

the filters are left fixed-random then we have a fixed-random version of the original

architecture, while if the filters were omitted then we have a shrunken, or downsized

architecture. Thus in total, for that layer there would be either 64 filters in total or

48 filters in total, but in both cases only 48 filters would be trained.

If the fractional amount is set to ’Linear’, then the network would initially contain

random filters in its first convolutional layers and as the network’s deeper layers were

reached, the number of random filters in the deeper layers would be decreased. To

clarify, if the architecture contains 20 convolutional layers, then the first convolutional

layer would have only fixed-random filters, while the second convolutional layer would

have 5% of the number of filters set to trained. This pattern would continue until the

39

CHAPTER 3. METHODOLOGY

last convolutional layer, where the last convolutional layer would contain all trained

filters in its layer as opposed to its predecessor layers containing random filters. This

methodology was adopted from the use of random projection in networks, such as

the ELM. The intuition behind this idea of random projection in the initial layers of

a network extracting smaller features while the trained weights in the deeper layers

would consist of more finely tuned features. An additional experiment that is explored

in these random deep CNNs is training them for a greater number of epochs in

comparison to their trained equivalent models. In [7]’s work, the authors only show

training for a set number of epochs and only compare to the trained equivalent models

for 1 set of experiments. This test is to see if a partially random model can achieve

the same or better performance to its trained equivalent model after a longer period

of training.

The last experiment conducted on these Semi-Random DNNs is a transfer learning

experiment. In this experiment, a ResNet-50 model is used for transfer learning on

the UCM dataset. The ResNet-50 model is chosen to show a comparison with the

work of [16]. In this work, the authors transfer learn using a ResNet-50 model on

the UCM dataset by fine-tuning the network and applying data augmentation to the

original dataset. The data augmentation included 7◦ rotations as well as transposes

of the images. In this work, similar data augmentations are used, except instead of

transposing the images, horizontal and vertical flips are applied as they are similar in

nature to transposing the image. In this experiment, the ResNet-50 model is transfer

learned and has quarter fractions of trained filters to assess how partial fine-tuning

of the network performs against fine-tuning the entire network.

These experiments are aiming to explore how random weights can alleviate the

demand on resources and training times while still retaining high performance in

models. Additional statistics are gathered apart from the accuracies achieved from

these models, such as an approximation of the number of Giga-FLOPs (GFLOPs), as

40

CHAPTER 3. METHODOLOGY

well as the memory to store the weights of each model, to assess if random weights can

alleviate these resource concerns. The time to train these models wasn’t used as this

can be variable to optimizations in programs and the machine that is running these

programs. However, by measuring the number of FLOPs, a more accurate analysis of

training time can be achieved. In addition to the following measurements, the filters

of the initial layers of these networks are visualized to assess if the fixed-random filters

capture any meaningful features.

To calculate the number of FLOPs, the forward and backward passes of these

networks needs to be calculated. In the work of [15], the authors illustrate how the

number of FLOPs can be calculated relative to the forward pass of the network. The

authors present the diagram shown in Figure 3.7.

Figure 3.7: Diagram depicting the operations required for SGD. (a) illustrates the forward
pass as well as the error calculation and gradient calculation for the backward pass. (b)
illustrates the weight update as well as calculations for regularization and momentum [15].

In this figure it can be seen that the forward pass’s operations are effectively

equivalent to the error and gradient calculation. To clarify, a summation and multi-

plication are taken in each unit leading to a near equivalency in number of operations.

Therefore, the calculations of the backward pass of SGD trained networks can be ap-

proximated to 3 times the forward pass’s number of FLOPs, as shown in (3.1), if all

weights in the network are trained; ignoring the additional weight update, regular-

ization, and momentum calculations. In this equation, F simply denotes the number

41

CHAPTER 3. METHODOLOGY

of FLOPs in the forward pass.

FLOPs = 3F (3.1)

Similarly, to calculate the number of FLOPs in networks using fixed-random

weights, the calculation would be equivalent. This is due to the fact that the net-

work’s gradient update in the backwards pass would still require the need to look at

all weight values to calculate the trained weights of the network. Even if a subset of

the weights were left fixed and random, to propagate back to a layer with any trained

weights would require the entire backwards pass. Therefore, the backward pass can-

not be approximated with fewer operations in the cases of fixed-random weights. The

only exception to this would be in the random projection cases, but only if all previ-

ous layers to the final trained layer are left fixed and random. Although a minimal

effect, the use of fixed-random weights does alleviate the memory writing resources

of these networks.

3.4 Extensions to the ELM

The second set of experiments consist of extending the ELM architecture. As the

ELM is limited to a single hidden layer, the architecture is extended on with addi-

tional layers, such as convolution, pooling, normalization, and fully connected layers.

However, with each additional layer, all weights are left randomly fixed and training

occurs only on the output layer weights using the MPP, similar to the ELM’s training.

It’s believed that through the addition of these layers a higher accuracy model can

be achieved with insignificant additions to training time.

42

CHAPTER 3. METHODOLOGY

3.4.1 Convolutional ELM

The first architecture explored is the Convolutional ELM (CELM), which consists of

a single convolutional layer as a feature extractor and 2 FC layers, as depicted in Fig.

3.8. In addition to the convolutional layer, an input-to-output connection is adopted,

in which the input is appended onto the output of the last FC layer. This connection

is taken as inspiration from both DenseNet and the RVFL networks. Typically a

skipped connection like the following is utilized in DNNs as information is lost across

the deeper layers of these architectures [3, 4]. In this work, the skipped connection is

explored to evaluate if it is effective in a smaller architecture that makes use of the

MPP training paradigm.

Figure 3.8: Illustration of the CELM architecture which makes use of an initial convolution
layer as a feature extractor and then 2 FC layers. Skipped connections are utilized to observe
their effectiveness in the possibility of increasing performance.

To observe the effects of the skipped connectivity even further with this archi-

tecture, the skipped connection is adopted in 3 different methodologies. A skipped

connection from the input to the first FC layer (Skip 1), a skipped connection from

the input to the second FC layer (Skip 2), and lastly a skipped connection from the

43

CHAPTER 3. METHODOLOGY

input to the first and second FC layers (Skip 1 & 2). Once again, to clarify, these con-

nections are appending onto the respective layer and not performing an element-wise

summation, such as in ResNet’s architecture.

3.4.2 Convolutional Random Vector Functional Link - Fully Connected

Another architecture that utilizes the ideas of the RVFL and ELM is the previously

discussed CRVFL. The CRVFL consists of a convolutional layer, average pooling

layer, normalization layer, and a single FC layer. An additional direct connection

from the input to the last FC layer was also used in this architecture. The authors

in [48] showed that the CRVFL was able to effectively perform visual tracking while

benefiting from fast training times. Therefore, this architecture is adopted in this

work to evaluate its performance as it enables for a greater transformation of the

feature space across its layers. However, small modifications are made to the CRVFL

network by adding in an additional FC layer as the number of outputs from the model

approach memory limits. This problem will be further discussed in Chapter 4. With

the additional FC layer, we refer to this architecture as CRVFL-FC, shown in Figure

3.9.

Figure 3.9: Illustration of the CRVFL-FC architecture. A convolutional layer is used to
extract features that are sent to a pooling layer to reduce the spatial size of the feature
maps. A normalization layer is used to decrease covariance shift and then the output is fed
to the last 2 FC layers. A skipped connection is used from the input to the first FC layer
as this was used in the original architecture.

44

CHAPTER 3. METHODOLOGY

3.4.3 Tensor-Train Extreme Learning Machine

The last architecture used in this work is an ELM with a TT-FC layer in its hid-

den layer as opposed to the use of a FC layer in the hidden layer. The origination

of the TT-FC layer is discussed in [86]. The TT-FC is a TT decomposed, previ-

ously discussed in Chapter 2, FC layer into its respective TT format. An illustration

comparing an FC layer and TT-FC layer can be seen in Figure 3.10.

Figure 3.10: Illustration of an FC layer and its representation in a TT-FC layer format.
The initial layer’s inputs are decomposed into several TT cores that act as unfolded auxiliary
matrices to the output.

In the FC layer, a dense weighted connection, denoted by Win, is taken from its

input to a successive layer and then the layer outputs to either another layer or is

passed to a classifier. In contrast to this, the TT-FC layer utilizes multiple weighted

connections, denoted by WC1, WC2, . . . WC(N−1), and WCN, between auxiliary

45

CHAPTER 3. METHODOLOGY

matrices, where N + 1 is the total number of ranks used in the TT format and N is

the dimensionality of the input tensor. To clarify, in the TT-FC format, the input

tensors can be of varying order. For example an image can either by grayscale or

rgb leading to 2nd or 3rd order tensors, however, the input can be reshaped into

tensors of higher order. This enables for a higher number of ranks to be used as

the ranks need to be N + 1. With the higher dimensionality of the original tensor

input, more auxiliary matrices can be formed for the decomposition. This increase

in auxiliary matrices is shown to empirically influence performance as the original

tensor is approximated to a certain error, ε, as discussed in Chapter 2. It should be

clarified that the output is set to the same order as the input for the multiplications

to be performed properly in the neural network architecture.

In contrast to the dense FC layer, the weighted connections in the TT-FC layer are

typically much smaller leading to a reduction in the total number of parameters stored

for the network [86] while still enabling for the same amount of output neurons. To

clarify, fixed-random weights are still used for the weighted connections of the new

TT-FC layer. Therefore, to leverage the use of fixed-random weights and the TT

format, the Tensor-Train Extreme Learning Machine (TT-ELM) is formed. The TT-

ELM consists of a single TT-FC layer in its hidden layer and then a dense connection

to the output classes, where training occurs on the output weights between the hidden

and output layer. This enables for random projection through the auxiliary matrices

of the TT-FC layer, while taking the outputs of the layer as part of the calculation

for the MPP to find the output weights. A similar network can be constructed as the

TT-RVFL, which is equivalent to the TT-ELM except for the added input-to-output

concatenating skipped connection.

Similarly to the Semi-Random CNNs, the number of FLOPs is calculated in these

ELM architectures. Aside from the FLOPs from the forward pass of the network,

additional calculations are made in the MPP operation. As described in Chapter 2,

46

CHAPTER 3. METHODOLOGY

the MPP takes the last output of the hidden layer, H, to calculate the output weights.

Operations, such as matrix multiplication and the inverse, occur using H and thus

to approximate the number of FLOPs that occur in the MPP the number of FLOPs

for these operations need to be calculated. For matrix multiplication, given matrices

A ∈ Rm×n and B ∈ Rn×p, the number of FLOPs is calculated to equal 2mnp [87]. In

[88], given a matrix C ∈ Rq×q, the number of FLOPs in the matrix inverse operation

is approximated to 2q2+3q2−5q
6

and then furthermore approximated to 2q3

3
, where the

latter is used in the calculations for this work. The calculations for the total number

of FLOPs for these architectures can then be presented in (3.2).

FLOPs = F + Mx + I (3.2)

In this equation, F denotes the number of FLOPs in the forward pass, while x

denotes the number of matrix multiplications that occur. M denotes the number of

FLOPs for matrix multiplication and I denotes the number of FLOPs for the inverse

operation. By taking the sum of all these elements, the number of FLOPs for the

random projection architectures are approximated.

47

Chapter 4

Results & Discussion

4.1 Semi-Random CNNs

Initial experiments on the Semi-Random CNNs consisted of varying trained fractional

amounts on the two DNNs, ResNet-20 and DenseNet100-BC. In this experiment,

ResNet-20 was trained in a similar manner to the original paper by [3]. The network

was trained on CIFAR-10 for 200 epochs with a batch size of 128 at an initial learning

rate of 0.1 that decreased by a factor of 10x at epochs 80 and 120. SGD was used

with a weight decay of 0.0001 and a momentum of 0.9. This network was averaged

over 10 runs and only the convolutional layers’ weights were modified to have fixed-

random weights. In addition to the statistics discussed earlier, the size of storing the

weights of the network, as well as the input data, is recorded in megabytes. A plot of

accuracies to fractional amount of trained filters with respect to the original model

on the ResNet-20 architecture for CIFAR-10 is presented in Figure 4.1. Additionally,

Table 4.1 clarifies the accuracies shown in the plot.

From the results, it can be seen that the fully trained model achieves the highest

test accuracy. However, both the fixed-random and downsized configurations with

trained fractions of 0.75, 0.5, and Linear, illustrate comparable accuracies within

3% of the fully trained model. It’s worthy to note that, in the comparison of the

fixed-random and downsized configurations, the fixed-random weights perform better

48

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Filters with Respect to Original Model

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

Accuracy Type
Train
Test
Architecture
Fixed-Random
Downsized
Linear

Figure 4.1: Plot of each ResNet-20 configuration on the CIFAR-10 dataset averaged over
10 runs with a confidence interval of 99%. Fixed-random refers to the case of trained
and fixed-random filters and downsized refers to the case of fewer filter models. The case of
Linear refers to the increase of trained weights with each convolutional layer in the network.
It’s noted that models with trained and fixed-random filters outperform the downsized
versions of the models across all cases. This difference is more noticeable at smaller fractional
amounts of trained filters. This is due to the fixed-random filters enabling for a greater
feature space to be extracted from in comparison to the downsized models.

across all cases, even if slightly. This performance difference is more noticeable in the

50% and Linear cases, and even more so in the 25% case. Intuitively, the reasoning for

this is due to the additional parameter space available in the fixed-random models as

opposed to the downsized models. This parameter space enables for more features to

be extracted from the input which can be trained on by the trained filters and other

trained layers of the network. Unfortunately, the fully random projection network

shows poor performance in comparison to all other configurations. This is due to

less than only 0.8% of the network containing trained parameters leading to little

49

CHAPTER 4. RESULTS & DISCUSSION

Table 4.1: Performance on the CIFAR-10 dataset using the ResNet-20 architecture. A
dividing line is used to separate networks with trained and fixed-random filters and down-
sized networks with fewer filters. The network is averaged over 10 runs and a confidence
interval of 99% is used. From the results, the fixed-random networks are able to achieve
more comparable accuracies to the fully trained model as opposed to the downsized network
cases.

Trained Fraction Train Acc (%) Test Acc (%)

R
an

d
om

1 94.53 ± 0.04 91.79 ± 0.23
0.75 93.23 ± 0.06 90.55 ± 0.21
0.5 90.67 ± 0.08 89.14 ± 0.19
0.25 84.98 ± 0.19 85.57 ± 0.42

0 53.34 ± 0.95 57.62 ± 0.75
Linear 91.97 ± 0.08 88.94 ± 0.30

D
ow

n
-

si
ze

d 0.75 92.73 ± 0.11 90.33 ± 0.13
0.5 88.91 ± 0.09 88.25 ± 0.31
0.25 79.68 ± 0.23 81.91 ± 0.25

actual training of the network to learn from its inputs. The random projection of

the Linear method, though, enabled for performance comparable to the 50% random

and downsized networks. In the Linear configuration, complete random projection

is used in the first convolutional layer and then decreased over each convolutional

layer. With the first few convolutional layers having a majority of random weights,

lower level features are projected to become separable, while the network learns more

complex features at its later layers from the untrained low level features. It could be

stated that the use of partial random projection of the initial layer do not hinder the

network’s performance substantially, however, another network or dataset needs to be

discussed before claiming this. Additionally, the Linear configuration utilizes nearly

the same amount of trained parameters in comparison to the 0.75 configuration, as

highlighted in Figure 4.2.

This is due to a greater quantity of filters being used in the later layers of the

architecture leading to a greater amount of trained filters. Setting 75% of each con-

volutional layer to trained weights led to a fairly distinct difference in performance of

nearly 2% in comparison to the Linear case. Therefore, the use of random projection

50

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Parameters

0

1000

2000

3000

4000

5000

6000
GF

LO
Ps Architecture

Fixed-Random
Downsized
Linear
Size (MB)
1.37
2.85
4.47
6.21

Figure 4.2: Statistics plot of each ResNet-20 configuration on the CIFAR-10 dataset
averaged over 10 runs with a confidence interval of 99%. The configurations consist of
fixed-random filters in the convolutional layer and downsized models with fewer filters in the
convolutional layer. It can be seen that the downsized filter models utilize fewer GFLOPs in
comparison to the fixed-random and fully trained models. This is because the fixed-random
filter models need to backpropagate the entire network back due to their mix of trained and
random filters. In contrast, downsized models demand fewer resources because less filters
are utilized in these models as well as fewer operations on the last FC layer.

in the early layers of the architecture may actually have slightly hindered the features

learned in the network.

Although entire convolutional random projection in the ResNet-20 architecture

may not be beneficial, it can be seen that comparable performance can be achieved

when using trained amounts of 0.75 and 0.5. Additionally, in terms of the number of

resources used in these networks, resource utilization can be decreased minimally in

the fixed-random case in comparison to the fully trained network for the backward

pass as fewer memory writes occur in these models. However, networks with fewer

51

CHAPTER 4. RESULTS & DISCUSSION

Figure 4.3: Image of a frog from
CIFAR-10.

Figure 4.4: Image of an automobile
from CIFAR-10.

filters leads to fewer FLOPs in both the forward and backward passes. This is high-

lighted in the 0.75 case, where fewer FLOPs occur in comparison to fixed-random

weights. Furthermore, the 0.75 downsized case leads to a substantial decrease in re-

sources over even the fixed-random weight case of 0.25 while retaining performance

comparable to the fixed-random weight case of 0.75. Therefore, it’s difficult to rec-

ommend the usage of fixed-random weights in this architecture type as a smaller

version of the original trained network can utilize fewer FLOPs leading to a decrease

in training time while resulting in a high performance model.

To gain a greater understanding as to why the performance of the fixed-random

ResNet-20 performs fairly well, visualizations of the activations for each convolutional

layer of the fixed-random network using 50% training and fixed-random filters were

taken for two example images of a frog and automobile from CIFAR-10. The example

images are shown in Figures 4.3 and 4.4. The layer by layer activations of a fixed-

random filter and trained filter for the ResNet-20 model are presented in Figures 4.5

and 4.6.

For all images of the visualizations, the left images of each layer illustrates the

fixed-random filter case while the right filtered image illustrates the trained filter

case. From the visualization of the activations from the convolutional layers of the

52

CHAPTER 4. RESULTS & DISCUSSION

LAYER
Fixed-

Random Trained

1

2

3

4

5

LAYER
Fixed-

Random Trained

6

7

8

9

10

LAYER
Fixed-

Random Trained

11

12

13

14

15

LAYER
Fixed-

Random Trained

16

17

18

19

20

CIFAR-10 | CLASS: FROG | RESNET-20

Figure 4.5: Activated outputs of each convolutional layer in ResNet-20 on the input image
of a frog from CIFAR-10. Features can be seen to be more distinguishable in the early layers
as opposed to the latter layers of the architecture.

LAYER
Fixed-

Random Trained

1

2

3

4

5

LAYER
Fixed-

Random Trained

6

7

8

9

10

LAYER
Fixed-

Random Trained

11

12

13

14

15

LAYER

Fixed-
Random Trained

16

17

18

19

20

CIFAR-10 | CLASS: AUTOMOBILE | RESNET-20

Figure 4.6: Activated outputs of each convolutional layer in ResNet-20 on the input image
of an automobile from CIFAR-10. Similarly to the frog, features can be seen to be more
distinguishable in the early layers as opposed to the latter layers of the architecture.

frog image from CIFAR-10, it can be seen that distinct features are more visible in

the initial layer activations for both the fixed-random and trained filter cases. These

53

CHAPTER 4. RESULTS & DISCUSSION

visualizations are far less distinct in later layers where deeper representations are

extracted. In the fixed-random filters, textures of the frog can be seen as well as

activations on the frog’s body leading to a lighter green hue effect. In comparison

to this, the trained weights illustrate a similar activation to the textures. In both

filter cases, textures are the dominating visualization that can be seen. However,

the trained filters illustrate more visible changes in the representation of the image.

This is most likely due to the trained filters learning to become more activated on

certain aspects of the image in contrast to other elements. This visualization supports

[5]’s work where the authors discuss how fixed-random filters learn textures from

their inputs. It also supports how fixed-random filters can be frequency selective, as

discussed in [62], which can be seen in how the filters activate to certain portions of

the images.

To illustrate the visualizations further, another image from CIFAR-10 is taken.

This image is of an automobile which has less of a focus on the background. This can

be seen more clearly as the filters are more activated on the body of the automobile,

which is more distinct in the initial layers as opposed to the later layers. Similarly

to the image of the frog, both the fixed-random and trained filters activate on the

textures, which can be seen in how the automobile has mostly uniform activation.

A contrast in the activations can be seen in the automobile’s wheels for the initial

layers, which is darker in the original image. The features are less distinguishable in

the deeper layers, but the trained filter is most likely learning representations that

help it to distinguish this image from another class. In contrast, the fixed-random

filter is extracting features that can be used in the trained layers of the training

process. Additional visualizations can be seen in the Appendix at 5.2.

In order to further evaluate the effects of fixed-random weights, the SVHN dataset

is trained on with the ResNet-20 architectures. The performance results for these

experiments can be seen in Figure 4.7 and Table 4.2.

54

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Filters with Respect to Original Model

84

86

88

90

92

94

96

98

100
Ac

cu
ra

cy
 (%

)

Accuracy Type
Train
Test
Architecture
Fixed-Random
Downsized
Linear

Figure 4.7: Plot of each ResNet-20 configuration on the SVHN dataset averaged over
10 runs with a confidence interval of 99%. Fixed-random refers to the case of trained
and fixed-random filters and downsized refers to the case of fewer filter models. The case
of Linear refers to the increase of trained weights with each convolutional layer in the
network. Unlike the results from CIFAR-10, random projection shows a surprisingly high
performance, while the other models show more comparable performances to one another.
This is most likely due to the higher number of training samples and possibly more simple
imagery in comparison to CIFAR-10.

From these results, a contrast can be seen in comparison to the CIFAR-10 dataset.

Although both datasets consist of 32× 32 RGB images, the SVHN dataset contains

more samples leading to higher performing models. However, the largest contrast to

CIFAR-10 is the accuracy of the random projection network having a test accuracy

different of less than 10% with the fully trained model. This can be attributed to

simpler imagery and a larger dataset to train on as the few weights left trained in

the architecture can be tuned to obtain a greater classification distinction. Likewise

to the CIFAR-10 results, the fixed-random weights achieve higher accuracies to the

55

CHAPTER 4. RESULTS & DISCUSSION

Table 4.2: Performance on the SVHN dataset using the ResNet-20 architecture. A divid-
ing line is used to separate networks with trained and fixed-random filters and downsized
networks with fewer filters. The network is averaged over 10 runs and a confidence interval
of 99% is used. The results illustrate clearly how the fixed-random models outperform the
downsized models even if marginally. Additionally, the random projection network shows
a surprisingly high accuracy. This may be attributed to additional samples and possibly
more simple imagery.

Trained Fraction Train Acc (%) Test Acc (%)
R

an
d
om

1 98.92 ± 0.03 95.69 ± 0.10
0.75 98.83 ± 0.02 95.54 ± 0.10
0.5 98.62 ± 0.03 95.01 ± 0.06
0.25 98.11 ± 0.03 94.01 ± 0.10

0 84.41 ± 0.39 86.42 ± 0.26
Linear 98.82 ± 0.02 95.14 ± 0.09

D
ow

n
-

si
ze

d 0.75 98.73 ± 0.02 95.57 ± 0.09
0.5 98.36 ± 0.02 95.02 ± 0.11
0.25 96.77 ± 0.08 93.19 ± 0.19

downsized models, albeit only slightly. This can be attributed to the additional

feature space that is available to be trained on in the portions of the layers that

contain trained weights. Similarly to the ResNet-20 CIFAR-10 results, additional

statistics are gathered as depicted in Figure 4.8.

As the data consists of similar sized images to CIFAR-10, the memory size needed

to store the parameters is equivalent to CIFAR-10. However, the number of GFLOPs

needed to operate on SVHN for a single epoch of training is higher due to the addi-

tional number of samples available to train on. The trend of high GFLOPs utilized

occurs for the fixed-random cases as the network needs to perform the entire back-

ward pass to modify the trained portions of the network. However, the downsized

cases decrease this as fewer filters are actually used in the architecture.

To further study the use of fixed-random weights in deep CNNs, the DenseNet

architecture is evaluated on as a contrast to ResNet’s summation skipped connectivity.

The DenseNet architecture’s results are presented in Figure 4.9 and Table 4.3. In this

experiment, similar to how the ResNet-20 experiment was set up, DenseNet-BC with

56

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Parameters

0

2000

4000

6000

8000

10000
GF

LO
Ps Architecture

Fixed-Random
Downsized
Linear
Size (MB)
1.37
2.85
4.47
6.21

Figure 4.8: Statistics plot of each ResNet-20 configuration on the SVHN dataset averaged
over 10 runs with a confidence interval of 99%. The configurations consist of fixed-random
filters in the convolutional layer and downsized models with fewer filters in the convolutional
layer. The downsized models utilize fewer GFLOPs as less operations are occurring in these
networks. Additionally, the downsized models require fewer operations in their forward
passes leading to a greater decrease in the number of operations and an additional decrease
in memory size as fewer parameters are available in these models. The fixed-random models
utilize a similar amount of GFLOPs to the fully trained models due to backpropagation
occurring across all layers.

100 layers, denoted as DenseNet100-BC, was trained in a similar manner to its original

paper in [4]. The network was trained on CIFAR-10 for 300 epochs with a batch size

of 64 at an initial learning rate of 0.1 that decreased by a factor of approximately

10x at epochs 150 and 225. SGD was used with a weight decay of 0.0001 and a

momentum of 0.9. This network was averaged over 5 runs and only the convolutional

layers’ weights were modified to have fixed-random weights.

From the results, it was expected that the fully trained model performs the best.

57

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Filters with Respect to Original Model

86

88

90

92

94

96

98

100
Ac

cu
ra

cy
 (%

)

Accuracy Type
Train
Test
Architecture
Fixed-Random
Downsized
Linear

Figure 4.9: Plot of each DenseNet100-BC configuration on the CIFAR-10 dataset averaged
over 5 runs with a confidence interval of 99%. Fixed-random refers to the case of trained
and fixed-random filters and downsized refers to the case of fewer filter models. The case of
Linear refers to the increase of trained weights with each convolutional layer in the network.
The performance of random projection shows surprisingly that DenseNet’s concatenating
skipped connectivity can be beneficial with random weights as features are extracted and
trained on at the last FC layer of the architecture.

However, it’s intriguing to see that the fully random projection convolutional layers

achieved performance that is only approximately 8% below the fully trained model.

Only 12% of the network was trained in this instance as all convolutional layer filters

were set to fixed-random values. In contrast to this performance, the ResNet-20

model’s use of random projection convolutional layers led to poor performance. To

clarify, ResNet-20 with the fully random projection convolutional layers achieved an

average test accuracy of 57.61% as highlighted in Table 4.1. That is an approximately

35% difference from its fully trained model, which achieved 91.87%. In contrast to

58

CHAPTER 4. RESULTS & DISCUSSION

Table 4.3: Performance on the CIFAR-10 dataset using the DenseNet100-BC architecture.
A dividing line is used to separate networks with trained and fixed-random filters and
downsized networks with fewer filters. The network is averaged over 5 runs and a confidence
interval of 99% is used. From the results, the fixed-random networks are able to achieve
more comparable accuracies to the fully trained model as opposed to the zeroed out network
cases. In addition to this, the random projection network with a 0 trained fractional amount
is able to achieve over 88% accuracy.

Trained Fraction Train Acc (%) Test Acc (%)
R

an
d
om

1 95.55 95.34
0.75 95.14 ± 0.02 94.69 ± 0.05
0.5 94.33 ± 0.08 94.05 ± 0.17
0.25 93.04 ± 0.08 92.46 ± 0.08

0 87.51 ± 0.23 88.27 ± 0.29
Linear 94.47 ± 0.04 93.96 ± 0.20

D
ow

n
-

si
ze

d 0.75 94.91 ± 0.06 94.57 ± 0.15
0.5 93.72 ± 0.10 93.81 ± 0.12
0.25 89.68 ± 0.20 90.93 ± 0.44

this, DenseNet only had an 8% difference. This illustrates how DenseNet’s use of

connectivity may be beneficial in the process of classifying its inputs. Additionally,

the use of extra layers in this architecture is most likely assisting the network’s ability

to hierarchically feature extract from the input.

When comparing the accuracies of the fixed-random and downsized architectures,

the fixed-random accuracies are comparable to the downsized versions. However, the

use of fixed-random weights out performs the downsized cases even if negligibly. A

more clear distinction between the performances can be seen in the 0.25 trained frac-

tion amount. The difference in performance is around 1%, but this highlights how the

fixed-random weights aren’t hindering the training process. Additionally, the random

projection convolutional layers show high performance even with the network having

a large majority of random weights. [62] discussed how important the architecture is

in terms of achieving high performance regardless of trained or fixed-random weights,

and the random projection case highlights this. The use of random projection is

able to still extract features from the input which the 12% of trained parameters can

59

CHAPTER 4. RESULTS & DISCUSSION

make use of to allow for separability in the data. As DenseNet’s structure concate-

nates the features of each successive layer, the random weights are actually assisting

as features are still able to be obtained with each successive layer, without fine tuning

during the backwards pass of the network. However, in comparison to the number of

FLOPs, illustrated in Figure 4.10, required in this network, it’s preferable to utilize

the downsized models that require fewer filters as they demand less FLOPs to achieve

comparable performance to their fixed-random equivalents. Additionally, the down-

sized models can achieve greater performance to the random projection model in all

cases meaning that training a smaller network can be beneficial as fewer resources

are demanded on leading to a decrease in training time.

Similarly to ResNet-20, the DenseNet architecture has activated convolutional

layer visualizations taken for the two CIFAR-10 images of the frog and automobile,

shown above in Figures 4.3 and 4.4. The visualizations for DenseNet100-BC can be

seen in Figures 4.11 and 4.12. To ensure that the images are more visible and clear,

the activations for every 5 convolutional layers is taken. From the images of the frog,

activations on the body of the frog can be seen in the first layer. However, after

this initial layer, textures are the more prominent activation for the image. However,

the 15th layer output can be seen to still capture the shape of the frog for both

fixed-random and trained filters. The fixed-random filters show less distinct feature

extraction in comparison to the trained filter in later layers. This can be seen more

clearly in the automobile’s extraction. In layer 30 the car is still more noticeably

activated on for the trained filter in comparison to the fixed-random filter which

looks to be activated to the input in multiple places. In the deeper layers for both

images, the features are less distinct to tell how the trained filter is learning from the

input image as opposed to the fixed-random filter. Overall, in both cases, the trained

filter has more distinct feature extraction over the fixed-random filter. Additional

visualizations can be seen in the Appendix at 5.2.

60

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Parameters

0

10000

20000

30000

40000

50000
GF

LO
Ps Architecture

Fixed-Random
Downsized
Linear
Size (MB)
17.29
34.95
52.94
71.31

Figure 4.10: Statistics plot of each DenseNet100-BC configuration on the CIFAR-10
dataset averaged over 5 runs with a confidence interval of 99%. The configurations consist
of fixed-random filters in the convolutional layer and downsized models with fewer filters in
the convolutional layer. Similarly to the previous statistic plots, the downsized models show
a decrease in GFLOPs and memory size over the fixed-random models. In addition to this,
the fixed-random weights for random projection is shown to actually have approximately
12% of the weights trained. This is due to the concatenation skipped connectivity leading
to more features trained on the output layer.

Likewise to ResNet-20, DenseNet100-BC was trained on the SVHN dataset to

evaluate how a different dataset performed on the fixed-random and downsized ar-

chitectures. The performance results of these experiments can be seen in Figure 4.13

and Table 4.4. Astoundingly, in these results the random projection network shows

near comparable accuracies to all other networks. Only a small margin of around 2%

can be seen in comparison to the fully trained model. The fixed-random weighted and

downsized models obtain nearly the same accuracies. These results can be attributed

to the dataset containing more samples to train on as well as simpler imagery in com-

61

CHAPTER 4. RESULTS & DISCUSSION

CIFAR-10 | CLASS: FROG | DENSENET100-BC

LAYER
Fixed-

Random Trained LAYER
Fixed-

Random Trained LAYER
Fixed-

Random Trained

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Figure 4.11: Activated outputs of every 5 convolutional layers of DenseNet100-BC on the
input image of a frog from CIFAR-10. Features can be seen to be more distinguishable in
the early layers as opposed to the latter layers of the architecture.

parison to CIFAR-10. Similarly to CIFAR-10, the memory size and number of truly

trained parameters are the same, as highlighted in Figure 4.14, because the input’s

dimensions are the same at 32× 32× 3. However, in contrast to CIFAR-10, a greater

amount of samples are available leading to an increase in the number of GFLOPs.

The next experiment conducted on these deep CNNs consisted of training their

75% trained/fixed-random model on CIFAR-10 for a greater number of epochs at

their last learning rates and at a 10x decrease in the learning rate. The experiments

62

CHAPTER 4. RESULTS & DISCUSSION

CIFAR-10 | CLASS: AUTOMOBILE | DENSENET100-BC

LAYER
Fixed-

Random Trained LAYER
Fixed-

Random Trained LAYER
Fixed-

Random Trained

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Figure 4.12: Activated outputs of every 5 convolutional layers of DenseNet100-BC on
the input image of an automobile from CIFAR-10. Similarly to the frog, features can be
seen to be more distinguishable in the early layers as opposed to the latter layers of the
architecture.

were conducted such that the networks ran up until they reached a test accuracy

of greater than or equal to their fully trained model’s equivalents. This training

occurred until 500 epochs of total training was reached, meaning that if the network

was trained for 200 epochs then it would train for 300 more epochs. This experiment

was meant to evaluate if a network with a mixture of trained and fixed-random filters

could achieve a similar performance to its trained equivalent with more training. The

63

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Filters with Respect to Original Model

93

94

95

96

97

98

99

100
Ac

cu
ra

cy
 (%

)

Accuracy Type
Train
Test
Architecture
Fixed-Random
Downsized
Linear

Figure 4.13: Plot of each DenseNet100-BC configuration on the SVHN dataset averaged
over 5 runs with a confidence interval of 99%. Fixed-random refers to the case of trained
and fixed-random filters and downsized refers to the case of fewer filter models. The case of
Linear refers to the increase of trained weights with each convolutional layer in the network.
In contrast to the results from CIFAR-10, random projection shows high performance com-
parable to that of the other models. This may be due to the additional samples available to
train on for the few trained layers of the network. In addition to this, the other architectures
illustrate near comparable performance to the fully trained model.

75% trained/fixed-random weight models were chosen as they consist of a majority

of trained filters meaning that they may be tuned further with additional epochs to

achieve equivalent or greater test accuracy. The results of this experiment can be

seen in Table 4.5.

The results of this experiment show that even training a network with a larger

percentage of trained weights for longer does not converge to the same as a fully

trained equivalent network. To put in perspective, the trained accuracies for ResNet-

20 and DenseNet100-BC were averaged to be 91.79 and 95.34, respectively. The

64

CHAPTER 4. RESULTS & DISCUSSION

Table 4.4: Performance on the SVHN dataset using the DenseNet100-BC architecture. A
dividing line is used to separate networks with trained and fixed-random filters and down-
sized networks with fewer filters. The network is averaged over 5 runs and a confidence
interval of 99% is used. The results show surprisingly that both fixed-random and down-
sized models lead to performance extremely similar to the fully trained model. The random
projection case even shows performance akin to the fully trained model. This may be at-
tributed to a greater number of samples available as well as simpler imagery when compared
to CIFAR-10.

Trained Fraction Train Acc (%) Test Acc (%)
R

an
d
om

1 98.11 ± 0.01 96.55 ± 0.12
0.75 98.79 ± 0.39 96.46 ± 0.16
0.5 97.90 ± 0.02 96.24 ± 0.05
0.25 97.61 ± 0.03 96.02 ± 0.10

0 96.72 ± 0.09 94.70 ± 0.13
Linear 98.11 ± 0.04 96.54 ± 0.16

D
ow

n
-

si
ze

d 0.75 97.93 ± 0.01 96.56 ± 0.08
0.5 97.63 ± 0.01 96.41 ± 0.10
0.25 96.70 ± 0.03 95.56 ± 0.10

Table 4.5: Performance on the CIFAR-10 dataset after training each deep CNN for addi-
tional epochs up until 500 total trained epochs.

Model Trained Fraction Learning Rate Train Acc (%) Test Acc (%)

ResNet-20 0.75 0.001 98.98 90.75
DenseNet100-BC 0.75 0.001 99.98 94.76

ResNet-20 0.75 0.0001 98.71 90.75
DenseNet100-BC 0.75 0.0001 99.98 94.81

accuracies achieved from training longer are within the same accuracies as previously

reported for the 0.75 cases of each deep network meaning they may have reached

a minima, whether a global or local minima. Therefore, unfortunately, training for

longer did not allow for fixed-random weights to act as a supplementary factor for

enabling the trained weights to adjust towards the more ideal solution.

The last experiment conducted on these Semi-Random CNNs is the use of fixed

weights in transfer learning with fine-tuning. The ResNet-50 model is utilized for

this experiment to show a comparison between this work and the work of Scott et al.

[16], who perform transfer learning with ResNet-50 on the UCM dataset. Similarly

65

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Parameters

0

10000

20000

30000

40000

50000

60000

70000
GF

LO
Ps Architecture

Fixed-Random
Downsized
Linear
Size (MB)
17.3
34.95
52.94
71.31

Figure 4.14: Statistics plot of each DenseNet100-BC configuration on the SVHN dataset
averaged over 5 runs with a confidence interval of 99%. The configurations consist of fixed-
random filters in the convolutional layer and downsized models with fewer filters in the
convolutional layer. Similarly to the previous statistic plots, the downsized models show
a decrease in GFLOPs and memory size over the fixed-random models. The random pro-
jection model with only fixed-random convolutional layers is shown to have approximately
12% of the weights trained due to concatenated features trained on the output layer.

to their setup, the input data of the UCM dataset is augmented with 7◦ rotations

and random horizontal and vertical flips are utilized. Additionally, a learning rate

of 0.001 and a momentum of 0.9 is utilized as stated in their work. As the number

of training epochs is not specified in this work, 100 epochs of training with a batch

size of 64 is used as this led to convergence for the model. The network is averaged

over 10 runs with a confidence interval of 99%. The results for the transfer learning

experiment can be seen in Figure 4.15 and Table 4.6, to clarify the accuracy values

achieved.

66

CHAPTER 4. RESULTS & DISCUSSION

0.00 0.25 0.50 0.75 1.00
Fraction of Trained Filters with Respect to Original Model

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0
Ac

cu
ra

cy
 (%

)

Accuracy Type
Train
Test
Architecture
Fixed
Linear
Scott et al. [16]

Figure 4.15: Plot of each ResNet-50 transfer learning configuration on the SVHN dataset
averaged over 10 runs with a confidence interval of 99%. Fixed refers to the case of trained
and fixed filters, from the pretrained model, and Linear refers to the increase of trained
weights with each convolutional layer in the network. Fine-tuning the entire network shows
increased performance over partial fine-tuning, however, near comparable accuracies can be
achieved with partial fine-tuning and fewer resources are utilized as fewer memory writes
occur. Additionally, the results show that performance over that of Scott et al.’s work [16]
can be achieved with the partial fixed networks.

From the results of this experiment, it can be seen that the use of partial fixed

weights is effective in obtaining high performance on the UCM dataset. In this

experiment, the ImageNet transferred weights are useful as it gives the networks

pretrained weights that have been trained on a variety of imagery. Fine-tuning of

the entire network shows that changing the weights for the new task is still the best

way to achieve the highest accuracy. However, the partial fine-tuned networks, or

fixed networks, are able to achieve performance akin to the fully fine-tuned model.

These models, aside from the model that had a trained fraction of 0, were able to

67

CHAPTER 4. RESULTS & DISCUSSION

Table 4.6: Performance on the UCM dataset by transfer learning the ResNet-50 architec-
ture. The network is averaged over 10 runs and a confidence interval of 99% is used. A
dividing line is used to separate the fixed networks fine-tuned in this work compared to that
of Scott et al. [16]. Near comparable accuracies can be achieved with partial fine-tuning in
comparison to entire fine-tuning of the network. In all cases, except for only training the
FC layer of the network, the accuracy is shown to surpass that of the work of Scott et al.
[16].

Trained Fraction Train Acc (%) Test Acc (%)
F

ix
ed

1 98.85 ± 0.03 99.19 ± 0.25
0.75 98.86 ± 0.03 98.60 ± 0.36
0.5 98.82 ± 0.04 98.76 ± 0.18
0.25 98.71 ± 0.03 98.60 ± 0.38

0 98.42 ± 0.04 97.33 ± 0.34
Linear 98.93 ± 0.01 98.95 ± 0.21

1 [16] - 98.50 ± 1.40

outperform the work of Scott et al. [16]. The pretrained weights from ImageNet most

likely allowed for this with partial fine-tuning as it effectively had been trained on a

wide variety of imagery leading to models that could distinguish between the classes

of the UCM dataset. This can also be seen by the use of entire fixed layers for the

trained fraction of 0. Only the FC layer was fine-tuned and the architecture is still

able to achieve performance within 2% of the fully fine-tuned model.

Overall, the experiments on both the deep CNNs with and without transfer learn-

ing illustrate how the architecture is the most important part as previously discussed

in Chapter 2. The DenseNet architecture highlights how using random projection

convolutional layers still enabled the network to learn to classify the different classes

of both the CIFAR-10 and SVHN datasets as features were concatenated over each

layer. Of the 2 architectures shown, DenseNet illustrated how its architectural design

enables for features to be extracted in an effective manner. Additionally, results from

transfer learning show how freezing many of the weights of a previously trained Ima-

geNet model leads to networks with nearly the same performance as entire fine-tuning

trained models.

68

CHAPTER 4. RESULTS & DISCUSSION

4.2 Extensions to the ELM

In this section extensions to the ELM are explored to evaluate if increased perfor-

mance can be achieved using random projection across multiple layers with the use of

concatenating skipped connectivity similar to that of DenseNet’s. Additionally, the

use of TT is explored in the TT-ELM network. For each network evaluated on, the

last FC layer is left at a constant 1,000 neurons, the lambda regularization rate is

adjusted to values of 0.1 and 0.01, and the number of filters are evaluated on either

16 or 32 filters. Each network is averaged over 10 runs and trained on up to 10,000

training samples. To denote skipped connectivity for the CELMs, a ’Skip’ to their

respective layer is depicted. For example, ’CELM Skip 1’ refers to the architectures

that feeds the input image to a convolutional layer and additionally concatenates the

input to the first FC layer. To evaluate these networks, their training and testing

accuracies, training time in minutes, GFLOPs, and memory size in megabytes are

recorded. The training time is recorded relative to a machine containing an Intel

Core i5-6500 CPU @ 3.20 GHz, 16 GB RAM, with an NVIDIA Titan X GPU. The

PyTorch framework [89] is used for each test of this process. The reasoning as to

why training time is recorded in this sections as opposed to the previous section is to

highlight the rapid training that can be achieved with these networks with the ability

to obtain high performance. The number of GFLOPs will also highlight why these

networks are able to train so quickly.

The MSTAR dataset is the first to be experimented on to evaluate these architec-

tures. The train set of 5,499 training images is used to train these networks and the

results of these experiments are shown in Figures 4.16 and 4.17.

In these plots the accuracies, training times, GFLOPs, and memory size required

to store the parameters of the model are presented. In terms of the time to train each

model, the difference is negligible across all models. As these times are fractions of

69

CHAPTER 4. RESULTS & DISCUSSION

0.13 0.14 0.15 0.16 0.17 0.18
Training Time (Minutes)

92

93

94

95

96

97

98

99

100

Ac
cu

ra
cy

 (%
)

Accuracy Type
Train
Test
Architecture
ELM
RVFL
CELM No Skip
CELM Skip 1
CELM Skip 2
CELM Skip 1 & 2
CRVFL-FC
TT-ELM
TT-RVFL

Figure 4.16: Performance of the random projection architectures on the MSTAR dataset.
The CELM network with skipped connectivity to both the FC layers shows the highest test
accuracy as more features are available on the output to train on.

a minute, the difference between 0.13 and 0.18 is only 3 seconds. This fast training

time is due to less than 2.5 GFLOPs required to train the network. In addition to

the quick training time, high performance of over 90% in all cases can be obtained

with these networks on the grayscale 28× 28 images. The network that achieved the

highest performance is most notably the CELM model with skipped connectivity to

the 1st and 2nd FC layers. This performance increase is attributed to the additional

feature space that is available to train on in this model. The original input as well as

features from each successive layer is utilized in a large feature space that can become

separable. This claim is also supported when observing how the RVFL and CELM

with a skipped connectivity to the 2nd FC layer also achieved comparable accuracies.

It’s also important to note how each network surpasses the performance of the

original ELM except for the TT-ELM. This is due to the TT-FC layer’s approximation

of an FC layer. Although, there is an accuracy difference, the model size of the

network is substantially smaller by approximately 40x as fewer parameters are stored.

70

CHAPTER 4. RESULTS & DISCUSSION

0.0 0.5 1.0 1.5 2.0
GFLOPs

0

20

40

60

80

100

M
od

el
 S

ize
 (M

B)

Filters
0
16
32
Architecture
ELM
RVFL
CELM No Skip
CELM Skip 1
CELM Skip 2
CELM Skip 1 & 2
CRVFL-FC
TT-ELM
TT-RVFL

Figure 4.17: Statistics of the random projection architectures on the MSTAR dataset.
The architectures utilizing additional layers require more GFLOPs and additional memory
to store all of their parameters. It’s important to note that the TT-ELM and TT-RVFL
are able to achieve a smaller model with the cost of more GFLOPs due to the additional
operations occurring in the layer.

To illustrate why the parameter space is smaller, the ELM consisted of 1,000 hidden

neurons in its FC layer, while the input was of size 28 × 28. This leads to an input

matrix of 784 × 1, 000, or 7,840,000 parameters. In contrast to this, the TT-ELM

changes the original inputs tensor size to decrease the parameter space. The input

modes, or dimensions, of the input tensor would be reformed from 784 to <4, 7, 7,

4>, which when reshaped to a 1st order tensor obtains 784. To clarify the notation

used here, the use of ’<>’ denotes a list of dimensions that the tensor takes the form

of. To approximate the 1,000 output neurons, output modes are set to values of <4,

8, 8, 4>, which when reshaped to a 1st order tensor obtains 1,024. The tensor train

cores are then formed relative to rank modes <1, 2, 2, 2, 1>which were determined to

be these values as the authors in [82] present favorable results with this configuration

in their FC net. In addition to this, the number of ranks must be equal to N+1,

where N is the number of input dimensions, and the ranks must consist of r0 = rN

71

CHAPTER 4. RESULTS & DISCUSSION

= 1 to enable the TT compression. From these ranks, cores are obtained such that

weighted parameters between cores consisted of the following matrices: 4×4, 14×14,

14×14, and lastly 8×8. These add to a total number of 472 parameters in comparison

to the 7,840,000 parameters of the original ELM’s FC layer. Therefore, although a

small accuracy drop can be seen, the TT-ELM presents a useful architecture that

achieves rapid training time with little memory usage. However, to fully make this

claim, it’s important to test each of these networks more thoroughly. For this reason,

experiments on the small-NORB and the FMNIST datasets can be seen in Figures

4.18, 4.19, 4.20, and 4.21.

0.06 0.07 0.08
Training Time (Minutes)

92

93

94

95

96

97

98

99

100

Ac
cu

ra
cy

 (%
)

Accuracy Type
Train
Test
Architecture
ELM
RVFL
CELM No Skip
CELM Skip 1
CELM Skip 2
CELM Skip 1 & 2
CRVFL-FC
TT-ELM
TT-RVFL

Figure 4.18: Performance of the random projection architectures on the small-NORB
dataset. Similarly to the MSTAR dataset, the CELM with skipped connectivity to both
FC layers achieves the highest performance as additional features are trained in this layer.

For both datasets, 10,000 samples are trained on to ensure that each network

would run within the GPU’s memory limits when performing the MPP operation.

For the small-NORB experiments, the CELM consisting of skipped connectivity to

both FC layers achieves the highest accuracy due to its additional parameter space.

In comparison, the other networks show gaps in performance between one another.

72

CHAPTER 4. RESULTS & DISCUSSION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0

20

40

60

80

100

M
od

el
 S

ize
 (M

B)

Filters
0
16
32
Architecture
ELM
RVFL
CELM No Skip
CELM Skip 1
CELM Skip 2
CELM Skip 1 & 2
CRVFL-FC
TT-ELM
TT-RVFL

Figure 4.19: Statistics of the random projection architectures on the small-NORB dataset.
The architectures utilizing additional layers require more GFLOPs and additional memory
to store all of their parameters. The TT networks achieve a smaller model at the cost of
additional GFLOPs due to the additional operations occurring in the layer.

This may mean that the dataset has certain classes that can’t be distinguished as

well without the use of skipped connectivity to the last FC layer. Both the RVFL

and TT-RVFL networks impressively surpass the CELM with skipped connectivity.

It’s difficult to understand the reasoning for this, but the weights of the convolutional

layer are also fully random with 32 filters in this CELM case. It may be that the

transformed input is hindering the separability between classes in comparison to the

use of the FC layer. However, with skipped connectivity from the input to both

FC layers the features are still available for the first FC layer to make use of. This

allowed for the CELM with skipped connectivity to both FC layers to surpass the

other models.

Although the usage of additional layers and skipped connectivity enable for a

greater performance, this comes at the cost of a demand on resources and memory to

store the parameters. Similarly to what was seen in the MSTAR results, the deeper

73

CHAPTER 4. RESULTS & DISCUSSION

0.02 0.03
Training Time (Minutes)

82

84

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

Accuracy Type
Train
Test
Architecture
ELM
RVFL
CELM No Skip
CELM Skip 1
CELM Skip 2
CELM Skip 1 & 2
CRVFL-FC
TT-ELM
TT-RVFL

Figure 4.20: Performance of the random projection architectures on the FMNIST dataset.
As with the other datasets, the CELM with skipped connectivity to both FC layers achieves
the highest performance. However, there is less of a distinguishable gap in this more complex
dataset.

architectures utilize more memory to store their parameters, while the ELM, RVFL,

and their TT equivalents use trivial amounts.

The last experiment to assess these networks is shown in the results of FMNIST.

In contrast to the other two datasets, this dataset showed complexity in its imagery

of fashion items leading to testing accuracies below 90%. In addition to this, many

of the networks show near comparable accuracies and training times to one another.

However, similarly to the previous datasets, the CELM with skipped connectivity to

both FC layers achieved the highest test accuracy. Although, this comes at the cost

of demand on resources and memory size. The TT-RVFL presents the most favorable

results with the smallest memory footprint and near comparable accuracies to the

other networks.

74

CHAPTER 4. RESULTS & DISCUSSION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0

20

40

60

80

100

M
od

el
 S

ize
 (M

B)

Filters
0
16
32
Architecture
ELM
RVFL
CELM No Skip
CELM Skip 1
CELM Skip 2
CELM Skip 1 & 2
CRVFL-FC
TT-ELM
TT-RVFL

Figure 4.21: Statistics of the random projection architectures on the FMNIST dataset.
The architectures utilizing additional layers require more GFLOPs and additional memory
to store all of their parameters. The TT networks achieve a smaller model at the cost of
additional GFLOPs due to the additional operations occurring in the layer.

75

Chapter 5

Conclusion & Future Work

This work presents how networks with fixed-random weights can achieve performance

akin to their trained equivalent models. Both deep networks with and without trans-

fer learning are evaluated on, where, in both cases, fixed-random weights were shown

to enable effective learning due to the architecture. Additionally, smaller, or down-

sized, versions of the original trained networks are evaluated on to assess how effective

the fixed-random weights were to the learning process. From these networks, accu-

racies comparable to the fixed-random weight models were achieved. However, the

fixed-random weighted models show a slight increase over the downsized models. On

the other hand, the downsized models were able to use less resources in most cases

compared to the fixed-random weighted models. This illustrates how smaller models

of the original trained architecture could be more beneficial in terms of the demand

on resources and training time. However, this does not discount the effectiveness

of fixed-random weights achieving a higher performance over these smaller models.

Therefore, the fixed-random weights may be beneficial to alleviate some of the de-

mand on resources in comparison to trained equivalent models, but downsized models

may be even more beneficial in more resource constraint applications. Likewise, for

transfer learned weights, the use of fixed weights for partial fine-tuning shows per-

formance akin to that of entire fine-tuning of a network except with fewer memory

writes occurring as fewer weights had to be updated in this process.

76

CHAPTER 5. CONCLUSION & FUTURE WORK

In addition to the experiments discussed above, the ELM random projection net-

work is extended on to illustrate how the use of additional layers and skipped con-

nectivity enables the network to train just as quickly with higher performance. This

performance difference, though, does come at the price of a higher demand on re-

sources. However, the tensor decomposed ELM presents how the use of random

projection and tensor decomposition can be combined to enable for a fast training

network with near comparable accuracies to their original networks, such as the ELM

and RVFL. The TT-ELM and TT-RVFL present networks that decrease the memory

needed to store the weights of the model by approximately 40x and still enables for

a high performance model.

Overall, the main contributions of this research can be summarized as the fol-

lowing. The use of fixed-random weights in networks is shown to not hinder the

training process significantly as high performing models can still be obtained with

these weights in comparison to downsized models. The use of additional layers and

skipped connectivity enable for higher performing models when using the ELM train-

ing paradigm. Lastly, the use of TT-FC layers allow for fewer parameters to be utilized

in ELMs leading to a decrease in memory size at an insignificant cost in resources

and performance. This research also opens up an avenue for gaining a greater under-

standing of how simple techniques can be utilized to obtain less resource demanding

models with faster training times.

5.1 Future Work

Many aspects of the use of random weights can be further extended from this work.

In this work, CNNs are the chosen network type to evaluate how fixed-random filters

perform in the network’s learning. However, other types of ANNs can be explored,

such as recurrent neural networks and generative adversarial networks. Additionally,

different datasets can be evaluated on that illustrate a higher complexity or a noisier

77

CHAPTER 5. CONCLUSION & FUTURE WORK

input. Likewise with the other types of networks, different tasks can be evaluated on.

As previously discussed in Chapter 2, the use of fixed-random weights in neural style

transfer and image generation illustrated the intriguing properties of fixed-random

weights on these tasks.

In addition to exploring the use of fixed-random weights in other types of networks,

the extension of the ELM is discussed in this work. With changes to the architectural

design, the base ELM design can be further extended to enable for a higher performing

model that can also be lightweight in terms of memory size. TT was used as the tensor

decomposition to obtain a lightweight version of the ELM and RVFL architectures.

However, many other tensor decompositions exist that can potentially enable for a

greater compression and smaller reduction in the performance gap. Additionally, the

properties of the tensor decomposition can be explored in the use of other layers aside

from only the FC layer explored in this work. With the use of tensor decomposition

and fixed-random weights, other concepts, such as pruning, can be further explored

to analyze how randomness can potentially help while decreasing the demand on

resources and training time.

78

Bibliography

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov 1998.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’12.
USA: Curran Associates Inc., 2012, pp. 1097–1105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999134.2999257

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

[4] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017, pp. 2261–2269.

[5] K. He, Y. Wang, and J. Hopcroft, “A powerful generative model using
random weights for the deep image representation,” in Advances in
Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates,
Inc., 2016, pp. 631–639. [Online]. Available: http://papers.nips.cc/paper/
6568-a-powerful-generative-model-using-random-weights-for-the-deep-image-representation.
pdf

[6] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convo-
lutional neural networks,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016, pp. 2414–2423.

[7] A. Rosenfeld and J. K. Tsotsos, “Intriguing properties of randomly weighted
networks: Generalizing while learning next to nothing,” CoRR, vol.
abs/1802.00844, 2018. [Online]. Available: http://arxiv.org/abs/1802.00844

[8] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[9] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in NIPS Workshop
on Deep Learning and Unsupervised Feature Learning 2011, 2011. [Online].
Available: http://ufldl.stanford.edu/housenumbers/nips2011 housenumbers.pdf

[10] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for
land-use classification,” in Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser. GIS

79

http://dl.acm.org/citation.cfm?id=2999134.2999257
http://papers.nips.cc/paper/6568-a-powerful-generative-model-using-random-weights-for-the-deep-image-representation.pdf
http://papers.nips.cc/paper/6568-a-powerful-generative-model-using-random-weights-for-the-deep-image-representation.pdf
http://papers.nips.cc/paper/6568-a-powerful-generative-model-using-random-weights-for-the-deep-image-representation.pdf
http://arxiv.org/abs/1802.00844
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

BIBLIOGRAPHY

’10. New York, NY, USA: ACM, 2010, pp. 270–279. [Online]. Available:
http://doi.acm.org/10.1145/1869790.1869829

[11] V. Jovanovic and V. Risojevi, “Aggregated color descriptors for land use classi-
fication,” Telfor Journal, vol. 7, pp. 91–96, 01 2015.

[12] H. Wang, S. Chen, F. Xu, and Y.-Q. Jin, “Application of deep-learning
algorithms to mstar data,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2015 IEEE International. IEEE, 2015, pp. 3743–3745.

[13] Y. LeCun, Fu Jie Huang, and L. Bottou, “Learning methods for generic object
recognition with invariance to pose and lighting,” in Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004., vol. 2, June 2004, pp. II–104 Vol.2.

[14] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” CoRR, vol. abs/1708.07747, 2017.
[Online]. Available: http://arxiv.org/abs/1708.07747

[15] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” in Advances in Neural
Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates,
Inc., 2018, pp. 7675–7684. [Online]. Available: http://papers.nips.cc/paper/
7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf

[16] G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis,
“Training deep convolutional neural networks for landcover classification of high-
resolution imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 4,
pp. 549–553, April 2017.

[17] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018,
pp. 7132–7141.

[18] B. Singh, M. Najibi, and L. S. Davis, “Sniper: Efficient multi-scale
training,” in Advances in Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. Curran Associates, Inc., 2018, pp. 9310–9320. [Online]. Available:
http://papers.nips.cc/paper/8143-sniper-efficient-multi-scale-training.pdf

[19] X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. WOO, “Con-
volutional lstm network: A machine learning approach for precipitation now-
casting,” in Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Asso-
ciates, Inc., 2015, pp. 802–810. [Online]. Available: http://papers.nips.cc/paper/
5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.
pdf

80

http://doi.acm.org/10.1145/1869790.1869829
http://arxiv.org/abs/1708.07747
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf
http://papers.nips.cc/paper/8143-sniper-efficient-multi-scale-training.pdf
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf

BIBLIOGRAPHY

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.
[Online]. Available: https://doi.org/10.1038/323533a0

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[22] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training
in minutes,” in Proceedings of the 47th International Conference on Parallel
Processing, ser. ICPP 2018. New York, NY, USA: ACM, 2018, pp. 1:1–1:10.
[Online]. Available: http://doi.acm.org/10.1145/3225058.3225069

[23] H. Mikami, H. Suganuma, P. U.-Chupala, Y. Tanaka, and Y. Kageyama,
“Imagenet/resnet-50 training in a flash,” CoRR, vol. abs/1811.05233, 2018.
[Online]. Available: http://arxiv.org/abs/1811.05233

[24] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,” Neural
Networks, vol. 113, pp. 54 – 71, 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0893608019300231

[25] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[26] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[27] C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. Bouganis,
“Dronet: Efficient convolutional neural network detector for real-time uav ap-
plications,” in 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2018, pp. 967–972.

[28] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adap-
tation of deep networks,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 1126–1135.

[29] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in The IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[30] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more complicated
network with less inference complexity,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in ICML, 2015.

81

https://doi.org/10.1038/323533a0
http://doi.acm.org/10.1145/3225058.3225069
http://arxiv.org/abs/1811.05233
http://www.sciencedirect.com/science/article/pii/S0893608019300231
http://www.sciencedirect.com/science/article/pii/S0893608019300231
http://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

[32] R. Anil, G. Pereyra, A. Passos, R. Ormándi, G. E. Dahl, and
G. E. Hinton, “Large scale distributed neural network training through
online distillation,” CoRR, vol. abs/1804.03235, 2018. [Online]. Available:
http://arxiv.org/abs/1804.03235

[33] R. Zhao, Y. Hu, J. Dotzel, C. D. Sa, and Z. Zhang, “Improving neural net-
work quantization without retraining using outlier channel splitting,” CoRR,
vol. abs/1901.09504, 2019.

[34] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 4857–4867. [Online]. Available: http://papers.nips.cc/paper/
7071-learning-to-prune-deep-neural-networks-via-layer-wise-optimal-brain-surgeon.
pdf

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 1135–1143. [Online]. Available: http://papers.nips.cc/paper/
5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf

[36] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep
neural network compression,” 10 2017, pp. 5068–5076.

[37] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression
and acceleration for deep neural networks,” arXiv preprint arXiv:1710.09282,
2017.

[38] H. Xie, J. Li, and H. Xue, “A survey of dimensionality reduction techniques
based on random projection,” CoRR, vol. abs/1706.04371, 2017. [Online].
Available: http://arxiv.org/abs/1706.04371

[39] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 51, no. 3, p. 406413, 1955.

[40] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, “Extreme learning ma-
chine: a new learning scheme of feedforward neural networks,” in 2004 IEEE In-
ternational Joint Conference on Neural Networks (IEEE Cat. No.04CH37541),
vol. 2, July 2004, pp. 985–990 vol.2.

[41] H. Jaeger, “The” echo state” approach to analysing and training recurrent neural
networks-with an erratum note’,” Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report, vol. 148, 01 2001.

82

http://arxiv.org/abs/1804.03235
http://papers.nips.cc/paper/7071-learning-to-prune-deep-neural-networks-via-layer-wise-optimal-brain-surgeon.pdf
http://papers.nips.cc/paper/7071-learning-to-prune-deep-neural-networks-via-layer-wise-optimal-brain-surgeon.pdf
http://papers.nips.cc/paper/7071-learning-to-prune-deep-neural-networks-via-layer-wise-optimal-brain-surgeon.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://arxiv.org/abs/1706.04371

BIBLIOGRAPHY

[42] W. Maass and H. Markram, “On the computational power of circuits of spiking
neurons,” Journal of Computer and System Sciences, vol. 69, no. 4, pp. 593
– 616, 2004. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0022000004000406

[43] J. Yu, J. Chen, Z. Q. Xiang, and Y. Zou, “A hybrid convolutional neural net-
works with extreme learning machine for wce image classification,” in 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Dec 2015, pp.
1822–1827.

[44] Y. Zeng, X. Xu, Y. Fang, and K. Zhao, “Traffic sign recognition using extreme
learning classifier with deep convolutional features,” 2015.

[45] S. Pang and X. Yang, “Deep convolutional extreme learning machine and its
application in handwritten digit classification,” Computational Intelligence and
Neuroscience, vol. 2016, pp. 1–10, 01 2016.

[46] Y. . Pao and Y. Takefuji, “Functional-link net computing: theory, system archi-
tecture, and functionalities,” Computer, vol. 25, no. 5, pp. 76–79, May 1992.

[47] L. Zhang and P. Suganthan, “A comprehensive evaluation of random vector
functional link networks,” Information Sciences, vol. 367-368, pp. 1094 –
1105, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020025515006799

[48] L. Zhang and P. N. Suganthan, “Visual tracking with convolutional random vec-
tor functional link network,” IEEE Transactions on Cybernetics, vol. 47, no. 10,
pp. 3243–3253, Oct 2017.

[49] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, vol. 4, no. 2, pp. 251 – 257, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/089360809190009T

[50] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain,” Psychological Review, pp. 65–386, 1958.

[51] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ser. ICML’10. USA: Omnipress, 2010,
pp. 807–814. [Online]. Available: http://dl.acm.org/citation.cfm?id=3104322.
3104425

[52] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural Computation, vol. 1, no. 4, pp. 541–551, Dec 1989.

[53] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,”

83

http://www.sciencedirect.com/science/article/pii/S0022000004000406
http://www.sciencedirect.com/science/article/pii/S0022000004000406
http://www.sciencedirect.com/science/article/pii/S0020025515006799
http://www.sciencedirect.com/science/article/pii/S0020025515006799
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425

BIBLIOGRAPHY

CoRR, vol. abs/1207.0580, 2012. [Online]. Available: http://arxiv.org/abs/
1207.0580

[54] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in International Conference on Learning Representations,
2015.

[55] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5,
no. 2, pp. 157–166, March 1994.

[56] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelli-
gence and Statistics, 2010.

[57] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common
objects in context,” in ECCV, 2014.

[58] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 1–9.

[59] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.

[60] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-
stage architecture for object recognition?” in 2009 IEEE 12th International
Conference on Computer Vision, Sep. 2009, pp. 2146–2153.

[61] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 594–611, Apr. 2006.
[Online]. Available: https://doi.org/10.1109/TPAMI.2006.79

[62] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, “On random
weights and unsupervised feature learning,” in Proceedings of the 28th interna-
tional conference on machine learning (ICML-11), 2011, pp. 1089–1096.

[63] S. Zagoruyko and N. Komodakis, “Wide residual networks,” CoRR, vol.
abs/1605.07146, 2016.

[64] Y. Le and X. J. Yang, “Tiny imagenet visual recognition challenge,” 2015.

[65] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32 – 48,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0893608014002214

84

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://doi.org/10.1109/TPAMI.2006.79
http://www.sciencedirect.com/science/article/pii/S0893608014002214
http://www.sciencedirect.com/science/article/pii/S0893608014002214

BIBLIOGRAPHY

[66] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[67] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1137/07070111X

[68] A. C. Bovik, Handbook of image and video processing. Academic press, 2010.

[69] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.

[70] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[71] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos, “Tensor decomposition for signal processing and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551–3582, July
2017.

[72] J. Hstad, “Tensor rank is np-complete,” Journal of Algorithms, vol. 11, no. 4,
pp. 644 – 654, 1990. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0196677490900146

[73] C. J. Hillar and L. Lim, “Most tensor problems are NP hard,” CoRR, vol.
abs/0911.1393, 2009. [Online]. Available: http://arxiv.org/abs/0911.1393

[74] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
J. Math. Phys, vol. 6, no. 1, pp. 164–189, 1927.

[75] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, Sep 1970. [Online].
Available: https://doi.org/10.1007/BF02310791

[76] R. A. Harshman, “Foundations of the parafac procedure: Models and conditions
for an ”explanatory” multimodal factor analysis,” 1970.

[77] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor de-
compositions and their applications in machine learning,” arXiv preprint
arXiv:1711.10781, 2017.

[78] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, Sep 1966. [Online]. Available:
https://doi.org/10.1007/BF02289464

[79] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimensionality,
or how to use svd in many dimensions,” SIAM J. Scientific Computing, vol. 31,
pp. 3744–3759, 2009.

85

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1137/07070111X
http://www.sciencedirect.com/science/article/pii/0196677490900146
http://www.sciencedirect.com/science/article/pii/0196677490900146
http://arxiv.org/abs/0911.1393
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02289464

BIBLIOGRAPHY

[80] W. Hackbusch and S. Kühn, “A new scheme for the tensor representation,”
Journal of Fourier Analysis and Applications, vol. 15, no. 5, pp. 706–722, Oct
2009. [Online]. Available: https://doi.org/10.1007/s00041-009-9094-9

[81] T. G. Kolda, “Multilinear operators for higher-order decompositions.” 4 2006.

[82] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Sep. 2011. [Online]. Available: http:
//dx.doi.org/10.1137/090752286

[83] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[84] E. R. Keydel, S. W. Lee, and J. T. Moore, “Mstar extended operating conditions:
A tutorial,” in Algorithms for Synthetic Aperture Radar Imagery III, vol. 2757.
International Society for Optics and Photonics, 1996, pp. 228–243.

[85] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of
neural networks using dropconnect,” in Proceedings of the 30th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, S. Dasgupta and D. McAllester, Eds., vol. 28, no. 3. Atlanta,
Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1058–1066. [Online]. Available:
http://proceedings.mlr.press/v28/wan13.html

[86] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing
neural networks,” in Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, pp. 442–450. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2969239.2969289

[87] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). Baltimore,
MD, USA: Johns Hopkins University Press, 1996.

[88] R. W. Farebrother, Linear Least Squares Computations. New York, NY, USA:
Marcel Dekker, Inc., 1988.

[89] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in
NIPS-W, 2017.

5.2 Appendix

86

https://doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://yann.lecun.com/exdb/mnist/
http://proceedings.mlr.press/v28/wan13.html
http://dl.acm.org/citation.cfm?id=2969239.2969289

BIBLIOGRAPHY

Figure 5.1: Image of an
airplane from CIFAR-10.

Figure 5.2: Image of a
dog from CIFAR-10.

Figure 5.3: Image of a
truck from CIFAR-10.

Figure 5.4: Activated outputs of each convolutional layer in ResNet-20 on the input image
of an airplane from CIFAR-10. Features can be seen to be more distinguishable in the early
layers as opposed to the latter layers of the architecture.

87

BIBLIOGRAPHY

Figure 5.5: Activated outputs of each convolutional layer in ResNet-20 on the input
image of a dog from CIFAR-10. Similarly to the frog, features can be seen to be more
distinguishable in the early layers as opposed to the latter layers of the architecture.

Figure 5.6: Activated outputs of each convolutional layer in ResNet-20 on the input
image of a truck from CIFAR-10. Similarly to the frog, features can be seen to be more
distinguishable in the early layers as opposed to the latter layers of the architecture.

88

BIBLIOGRAPHY

Figure 5.7: Activated outputs of every 5 convolutional layers of DenseNet100-BC on the
input image of an airplane from CIFAR-10. Similarly to the other activated images, features
can be seen to be more distinguishable in the early layers as opposed to the latter layers of
the architecture.

89

BIBLIOGRAPHY

Figure 5.8: Activated outputs of every 5 convolutional layers of DenseNet100-BC on the
input image of a dog from CIFAR-10. Similarly to the other activated images, features can
be seen to be more distinguishable in the early layers as opposed to the latter layers of the
architecture.

90

BIBLIOGRAPHY

Figure 5.9: Activated outputs of every 5 convolutional layers of DenseNet100-BC on the
input image of a truck from CIFAR-10. Similarly to the other activated images, features
can be seen to be more distinguishable in the early layers as opposed to the latter layers of
the architecture.

91

	Performance Analysis of Fixed-Random Weights in Artificial Neural Networks
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Research Motivation
	Research Objectives

	Background & Related Work
	The Perceptron and Multi-Layer Perceptrons
	Convolutional Neural Networks
	AlexNet
	VGG
	ResNet
	DenseNet

	Random Weights in ANNs
	The Importance of Architecture Design
	Random Weights in DNNs Achieving Comparable Performance

	Random Projection Networks
	ELM
	Random Vector Functional Link Network

	Tensor Decomposition
	Tensor-Train Decomposition

	Methodology
	Hypothesis
	Evaluation
	Semi-Random CNNs
	Extensions to the ELM
	Convolutional ELM
	Convolutional Random Vector Functional Link - Fully Connected
	Tensor-Train Extreme Learning Machine

	Results & Discussion
	Semi-Random CNNs
	Extensions to the ELM

	Conclusion & Future Work
	Future Work

	Bibliography
	Appendix

