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Abstract

The continuous demand for ultra-high resolution and improved video performance

on increasingly larger active-matrix displays has advanced the research field of thin

film transistors (TFTs) materials, processes and devices. Performance improvements

demonstrated by amorphous Indium-Gallium-Zinc-Oxide (IGZO) TFTs has enabled

a commercialized backplane technology adopted for AM-OLED displays, providing

advantages in device performance and uniformity at a much lower cost than Low

Temperature Poly-crystalline Silicon (LTPS). However as the display size gets larger

and the pixel density increases, charge transfer from the column driver to the pixel

through the addressed row TFT within the required time interval becomes increas-

ingly difficult. As the pixel size shrinks and the panel size grows, interconnects that

must be scaled down in cross-section have to transport charge over longer distances.

In addition, as the numbers of rows increase in a display, the time allowed for charge

transfer decreases to maintain a high image refresh frequency. These challenges must

be addressed by lower interconnect delay, thus the advantage in transitioning to Cu for

long interconnect rows and columns. The gate electrodes are usually implemented as

an appendage of the row interconnect, thus Cu-gate TFTs would avoid added process

complexity while supporting high-speed interconnects and low production costs. The

following work presents a study on Cu-gate integration and potential channel contam-

ination on bottom-gate IGZO TFTs with a newly established baseline process. Cu

was used in place of Mo as the gate electrode, with an underlying Ti layer to promote

adhesion to the oxidized silicon substrate. The experimental design input factors

included the option of a Ti capping layer on the Cu-gate, and the anneal conditions

of the gate dielectric (PECVD SiO2) prior to IGZO sputtering. Distinct differences

in physical and electrical responses over all treatment combinations were identified.

Experimental results demonstrated that while the Ti capping layer promoted adhe-

sion to the gate dielectric, it served as a source of contamination on pre-annealed

iv



treatments causing pronounced electrical characteristic shifting and dielectric failure.

The anneal process was found to promote adhesion between the Cu-gate and the gate

oxide without the use of Ti capping layer, as well as reduce oxide charge levels. Cop-

per contamination did not appear to be an issue in treatment conditions at or below

400oC, however pitting of the gate electrode occurred at anneal temperature above

400oC, as well as electrical results that suggest evidence of Cu contamination. Visual

observations and electrical characteristics are presented with a detailed discussion on

comparisons between treatment combinations, with reference to the baseline IGZO

devices.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

Display technology has seen tremendous change over the past two decades from seg-

ment type display to active matrix displays. Active matrix liquid crystal displays

(AMLCD) are the major devices used for flat panel displays in recent times. Stud-

ies state that the display market is expected to grow from 137.7 billion in 2019 to

167.7 billion by 2024 at a compound annual growth rate of 4 % from 2019 to 2024

[16]. The increasing demand for displays of higher resolution, faster response rate and

better quality has directed this industry to move towards breakthrough innovations

and growth in the field such as bendable and rollable displays for unbreakable rugged

displays. This demand for better performance of AMLCDs and Active matrix Or-

ganic Light Emitting Diode (AMOLED) displays has advanced research in the field of

thin film transistors (TFTs) and materials. The increasing demand for large displays

with better resolution and higher refresh rates (240Hz for UHDs), drives the need to

find alternative materials for TFTs as amorphous silicon (a-Si) has low mobility (µ

< 1-cm2/(Vs)) which restricts high frequency response for back planes [17].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Comparison of IV characteristics of TFTs with different active channel mate-
rials [1]

Two materials that have been promising as a replacement for a-Si are amorphous

oxide semiconductor (AOS) materials and Low-Temperature Poly-crystalline Silicon

(LTPS) due to high process compatibility and low process temperature, as these TFTs

are fabricated on glass substrates which have a thermal tolerance of around 600 oC.

Large area uniformity is an important factor to be considered for fabrication of TFTs

as FPD panel sizes have advanced to Gen10.5 with dimensions are 3370 × 2940mm

which is 180% larger than Gen 8.5. From Fig 1.2 it is observed that manufacturing

capacity for Gen 10+ FPDs have increased over the years to meet the demands.[2]
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CHAPTER 1. INTRODUCTION

Figure 1.2: FPD manufacturers are adding significant production capacity for Gen10+
FPDs, represented by the orange bar segments. The total production capacity added each
year (201819 estimated), in thousands of sheets per month is represented by each bar. [2]

The shipment of 65+ inch displays has increased from 8 million in 2016 to about

an expected 30 million in 2020 [2]. Electrical uniformity over such large areas can

be challenging. Amorphous Indium Gallium Zinc Oxide (IGZO) has proven to be

the most promising AOS, already commercialized for large 8K OLED displays. This

has been preferred over its counterpart due to its large area uniformity owing to

amorphous nature, large mobility, higher aperture ratio, low leakage current, high

on-off ratio for lower power consumption, low cost of fabrication and ease of adoption

as a replacement for a-Si.

The growth of display market is expected to grow by double digits in the next

five years for applications such as smartphones and other larger display devices. With

the growth being doubled, the cost of these are expected to be low which makes it

critical for mass production. This can be done by tighter process specifications and

adoption of AOS such as IGZO for FPD backplanes.
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CHAPTER 1. INTRODUCTION

1.2 RECENT DEVELOPMENT IN BACKPLANE TECH-

NOLOGY

AMLCDs received lot of attention in the initial transition of displays from CRTs to

FPDs. AMOLEDs are now emerging as an alternative technology for display devices.

AMOLEDs offer higher brightness due to their ability to eliminate backlight by inte-

grating the OLED with the TFT pixel electrode circuit. Their ease of manufacturing,

higher efficiency and wider viewing angle makes it advantageous over the AMLCD

displays. The technological and material requirements for both the above-mentioned

technologies are tabulated below.

Conventional AM-LCDs are driven by a-Si TFTs, but due to their low mobility

they are not practical for use in advanced displays. The material property require-

ment of uniform amorphous phase, higher mobility and visible light transparency

paves way for the adoption of IGZO TFTs in the active matrix FPD industry. IGZO

TFT has received significant attention in a variety of applications such as televisions,

4



CHAPTER 1. INTRODUCTION

mobile phones, flexible displays, etc. owing to its material properties. Because of its

lower power consumption, as low as a tenth that of conventional a-Si screens, IGZO

devices contribute to a longer battery life [18]. Their touch sensitivity is very high,

and this promotes detection of even the faintest signals. This makes possible ultra-

high sensitive displays that enables natural handwriting input like that on paper [18].

Due to its highly sensitive sensors that can transform X-rays into high-resolution

images, IGZO imaging arrays are found in medical device application. These prop-

erties of a-IGZO add to its advantages over that of low-temperature polycrystalline

silicon (LTPS) thin film transistors. LTPS has advantages over a-IGZO in some seg-

ments due to higher mobility that can easily exceed 100 cm2/(V s) which can provide

better resolution over smaller displays, however these devices exhibit poor electrical

uniformity over larger substrates due to grain boundaries.

1.3 STRUCTURE OF DISPLAY DEVICES

The purpose of this section is to understand the structure of the display device and

the role of TFT in the backplane for a display device. Pixel addressing in both the

passive matrix and an active matrix structure is discussed in brief. Hence, this gives

us a vivid picture of why an active matrix structure is better for higher resolution

display devices.

1.3.1 LIQUID CRYSTAL DISPLAY

A liquid crystal display (LCD) is a device that utilizes the electro-optical characteris-

tics of a liquid crystal which is matter having properties of both a liquid and crystal;

to convert an electric stimulus into a visual signal [4]. These liquid crystals can be

manipulated by applying appropriate voltage through the thin film transistor (TFT)

to the common electrode to either block or transmit light through it to a variable

degree. The color filter in the front of each sub-pixel allows only light of a certain

5



CHAPTER 1. INTRODUCTION

wavelength to pass through it to emit certain color. The unpolarized light emitted

by backlight light emitting diode (LED) is passed through a bottom polarizer which

allows only light of vertical wavelength to pass through it. The polarized light is then

passed through the liquid crystal and passed through another polarizer which trans-

mits only light of horizontal wavelength. The function of the polarizer is to improve

color and definition without which it will not be possible to read the display. The

entire structure of an LCD display is pictorially shown below in Fig 1.3.

Figure 1.3: Structure of Liquid crystal display [3]

Liquid crystal display does not generate light of their own and hence a strip

of LEDs is used for backlight illumination which is shown in the figure above. The

adoption of LED for this purpose allows for thinner panels, brighter display, bet-

ter contrast and low power consumption. Its significance is observed in good color

reproduction and broad color gamut.

Addressing is the process of conversion of information to be displayed into

sequential pulses to switch on individual pixels. The different methods of addressing

pixels in a display device are direct addressing, passive matrix addressing and active

6



CHAPTER 1. INTRODUCTION

matrix addressing. In a passive matrix display, one electrode is patterned into M

columns and the other electrode is patterned into N rows for addressing a matrix

of M × N pixels. Bonding pads are fabricated at each end of the rows and column

bus lines for applying pulses of voltage to be sent. The contrast of the pixel in a

passive matrix addressing reduces with larger number of rows. With larger displays,

the power consumption and RC delay increases and becomes unmanageable. In an

active matrix structure there is better control of voltage to the pixel and the gray

level by exploiting the use of a switching device and a capacitor. The switching

device is this case is implemented through thin film transistors whose channel layer

is a thin film deposited by plasma enhanced chemical vapor deposition (PECVD) on

a non- conducting substrate like glass. Hence with the implementation of AMLCDs,

high contrast and fast LC mixture is obtained with minimized crosstalk. This can

be used for high information content and graphical applications. Comparison of the

pixel addressing using a passive matrix and an active matrix displays is shown by its

circuitry in the Fig 1.4a and b.

Figure 1.4: Circuit diagram for pixel addressing in a) passive matrix LCD b) active matrix
LCD [4]

1.3.2 THIN FILM TRANSISTOR

TFTs are like a conventional Metal Oxide Semiconductor Field Effect Transistor

(MOSFET) except in structure where the devices are fabricated on an insulating
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CHAPTER 1. INTRODUCTION

substrate such as glass. The structure of TFT consists of three electrodes, the gate,

source and drain. The devices do not have a conducting base substrate and hence

they have negligible body bias. The channel between the drain and source is formed

by a thin layer of active semiconductor material deposited by PECVD as it is difficult

to grow epitaxial silicon on glass substrate. The gate metal is deposited on the glass

substrate and a dielectric material is deposited on top of it to avoid contact between

the gate and the channel material. The source and drain metal are deposited on

top of the semiconductor material to make contact. The operation is like that of a

MOSFET where a gate voltage controls the conduction in the channel region.

Figure 1.5: Cross section of a thin film transistor (staggered bottom gate structure)

1.3.3 AM-OLED DISPLAY

OLEDs are light emitting diodes whose luminescence is obtained from the organic

stack of material that constitutes the structure of the device. The principle of working

is that electroluminescence is an optical and electrical phenomenon where light is

emitted by the organic material when electric current is passed through it or when it

is subjected to strong electric field. The excited electrons emit energy in the form of

photon light.

8



CHAPTER 1. INTRODUCTION

Figure 1.6: Structure of AM-OLED screen [5]

The device consists of a substrate, anode, cathode, emissive layer and a conductive

layer. The anode is generally made up of a transparent electrode with indium titanium

oxide (ITO) and the cathode is usually metals such as aluminum depending on the

type of device. The organic layers between the anode and cathode are made up of

several organic layers as seen in Fig 1.7.

Figure 1.7: Structure of the OLED stack [5]

AM-OLEDs are preferred over the AMLCDs as OLED panels can be thin, light

weight and their main significance being they do not require backlight. They can

produce true-black contrast ratio. The AMOLED panel consists of fewer layers as

seen in Fig than the AMLCD panels which contribute for the thinner and light weight
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CHAPTER 1. INTRODUCTION

of the panels.

Figure 1.8: The graph represents steady growth in the shipment of OLED display panels
each year with an expected 39% growth from 2018 to 2022 [2]

The growth of AMOLED panels in the industry has increased drastically with

the shipment of these panels expected to be 39% increase from 2018 to 2022 which

can be seen in Fig 1.8 [2].

1.4 MOTIVATION OF STUDY

There has been tremendous interest in thin film transistors with higher mobility and

uniform performance over a large display. Amorphous silicon process has been well

established as a TFT material in the field of display devices but there is increasing

demand for higher resolution, reduced power, and high performance. These become

impossible to be adapted for higher resolution displays. IGZO has proven to be a

better replacement due to their high mobility of 10- 13 cm2/(V.s)−1 (10 times greater

than that of a-Si), low off state leakage current and higher switch ratio of 109 which is

100 times greater than that of polysilicon. IGZO has also proven to be more reliable

for large displays in comparison with LTPS owing to their amorphous structure. Even

though LTPS offers higher mobility of 100 cm2/V s the additional recrystallization

steps increase the cost of production and adds more complexity. One more problem
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with Excimer laser annealing poly silicon is that it has high off- state gate leakage

which are major factors to be considered. The ease of fabrication of IGZO adds to

all the other advantages as they do not have grain boundary formation issues. IGZO

with the high transparency in the visible region and broader bandgap of 3.05eV,

opens a wide spectrum of applications such as transparent electronics and sensors.

This has significant properties which make it a much better material for TFT than

a-Si and LTPS for large panel displays.

Figure 1.9: Transmittance of IGZO in the visible region of the spectrum

There are certain challenges to fabrication of IGZO TFTs on a large scale. From

previous studies, it was observed that the main problem to manufacture these were

their instabilities with thermal and bias stress. Shift in the threshold voltage under

thermal and bias stress has been observed. This instigated further studies in the

thermal instabilities and ways of improving the stability of the IGZO devices.
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Figure 1.10: Comparison of different channel materials and their scalability along with
their incorporation in the display industry [6]

The instability and non-uniformity issues could be compensated in LCDs by using

compensation circuit. But with the adoption of OLEDs which require high mobility

which emit light by electrical current injection, the a-Si TFTs could not support high

current devices. And hence it was necessary to move to a material with high mobility

as even the slightest variation in Vt of the TFT would cause significant variation in

brightness of the pixels. The luminance would vary by 16% for a +/- 1V change in

threshold voltage [2]. AOS were adopted for this purpose and their advantages over

a-Si had been mentioned in the previous sections. With increasing panel size and a

higher frame rate of greater than 120Hz required for improving video quality and 3D

capability, a few challenges need to be addressed. One of the major challenges is the

lack of charging time to apply video data to each pixel. As the pixel density increases

for large area displays, interconnects are scaled in x-direction. As the number of rows

increases, the time for charge transfer decreases to maintain a high image refresh

frequency. This can be addressed by either changing the driving architecture to

increase the turn on time or by improving the charging capability. Improvements in

the RC delay needs to be addressed while transitioning to higher definition panels.

With Al/Mo as the gate or Source/ drain metal, this becomes difficult and hence a

low resistance metal must be adopted for the gate line. Copper is known to have
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higher bulk thermal and electrical conductivities and is a promising candidate as a

replacement for Mo/Al as gate metal with appropriate process integration.

1.5 GOALS AND OBJECTIVES

The goal of this study is to investigate the influence of annealing conditions on copper

diffusion with and without a titanium interface layer. The objectives are

1. Verify method for copper adhesion.

2. Design of experiment for investigation with treatments that promote a measur-

able electrical response to metallic contaminants (i.e. VT shift, SS).

3. Measurement and interpretation of electrical characteristics.

4. Re-establish a baseline TFT process that produces consistent and reproducible

electrical characteristics and good stability. [Ensures electrical interpretation

is not influenced by process variation or instability which has been a recent

problem]

1.6 DOCUMENT OUTLINE

Chapter 1 summarizes the recent developments in the display industry and the role

of TFT in the structure of an active matrix display device. The different materials

adapted for thin film transistors have been summarized and the advantages of a-IGZO

over the other materials have been discussed briefly. Emphasis is given to motivation

of this work and the goal and objectives of the study.

Chapter 2 is dedicated to the electronic and material properties of IGZO. The chem-

ical structure of IGZO is discussed along with the conduction mechanism in the ma-

terial. The motive behind this chapter is to understand the material and its behavior
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with different treatments and processes of fabrication. This enhances designing ex-

periments for the devices to study the devices.

Chapter 3 discusses the detailed fabrication process for IGZO TFTs. The different

electrode configurations used for the study along with the various process parameters

changed to enhance the TFT performance has been discussed along with the changes

in its electrical characteristics. The change in the material properties of IGZO moti-

vated designing experiments to re-establish a baseline process for the fabrication of

the IGZO TFTs for display devices. The results obtained by varying different param-

eters such as IGZO thickness, passivation dielectric thickness and anneal conditions

are discussed and a new baseline process will be adopted for further study.This chap-

ter also discusses about the thermal stability of the bottom gate and double gate

devices. The results of the thermal stability of the devices fabricated with the modi-

fied baseline process was compared with the results of the devices fabricated with the

previously used baseline process. This was analyzed and discussed briefly.

Chapter 4 discusses the integration of copper as the bottom gate electrode. The mo-

tivation behind the incorporation of copper in the IGZO TFT is provided. Copper

being a low resistance material is an obvious replacement for molybdenum to obtain

low RC delay and faster transmission. But there are challenges to incorporating cop-

per in the process and this is discussed in detail in this chapter. Various process

variations such as gate stack, gate dielectric stack and anneal conditions are sug-

gested and experimented to see an enhancement in performance. The experimental

results with these variations are provided and compared with the baseline process

with molybdenum as the bottom gate electrode.

Chapter 5 provides a summary of work done to incorporate copper as the bottom

gate electrode. The process of re-establishing a baseline process and studying the

thermal stability of the devices to be able to adopt copper as the gate electrode for

IGZO TFTs.
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Chapter 2

ELECTRONIC AND MATERIAL PROPERTIES OF IGZO

IGZO has proven to be a promising candidate for the active channel material of

the TFT in FPDs. The role of TFT in AMLCD and AMOLED panels have been

discussed. The major advantage of using IGZO for large panel displays as discussed

previously is its low processing temperature and uniformity over a large area. In

this chapter we will dive deep into the structure and characteristics of the material

along with its conduction mechanism and TCAD model to better understand the

relationship between the electrical characteristics and the material defect state model.

Amorphous oxide semiconductors have mobility higher than a-Si due to the

ionic bonding of material. Also, they also have lower values for subthreshold swing

(SS) which promotes better overall performance of the device. The lower value for

SS and higher mobility are due to lower influence of trap states near the conduction

band.

2.1 MATERIAL PROPERTIES OF IGZO

IGZO is an n-type amorphous oxide semiconductor. The amorphous nature of the

material is due to the composition of the material. It is a ternary metal oxide with

In2O3, Ga2O3 and ZnO in the ratio of 1:1:2, resulting in an elemental In:Ga:Zn:O

ratio of 1:1:1:4.
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Figure 2.1: Molecular structure of a-IGZO [7]

Amorphous semiconductors are expected to exhibit deteriorated performance

such as low mobility in comparison with the crystalline materials due to their strong

scattering of the disordered structure. Conduction mechanism in both covalent and

ionic amorphous semiconductor is studied.

Figure 2.2: Conduction mechanism in ionic and covalent semiconductors in both their
crystalline and amorphous phase [8]
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Chemical bond in covalent semiconductor such as a-Si is made up of sp3 orbitals

which have strong spatial directivity. Conduction in a-Si is due to overlap of these

highly directional sp3 orbitals which are very sensitive to bond angle variation unlike

a crystalline material. The material possess short range order and follows carrier

hopping conduction mechanism where the electron is captured in a localized state

and re-emitted into extended states significantly affecting carrier mobility. Unlike a-

Si (covalent bonding), conduction in an ionic semiconductor material such as a-IGZO

is through band conduction [8]. The valence band is formed by filled p-orbitals of

oxygen anion and the conduction band is formed by empty s-orbitals of the heavy

metal cation. Charge transfer between these results in Madelung potential which is

shown in Fig 2.3. The distance between these bands (bandgap) is 3.2 eV with RF

sputtering technique. The wide band gap in the structure attributes to the optical

transparency of the material[10].

Figure 2.3: Madelung potential resulted from the transfer of electrons from the valence
band to the conduction band of amorphous oxide material (a-IGZO)[9][10]

The s-orbitals of the metal cations are spherically symmetric. A significant overlap

with the s orbitals of neighbouring metal cations provides a pathway for electron

transport. The spatial spread is determined by the principle quantum number, n, of

the metal cation. The larger values for n, such as in the case of post transition metals,

causes significant overlap between the metal cations which reduces the effective masses

of the electron. The lower effective electron mass leads to higher mobility in the
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material. The non-bonded metal cation (i.e. oxygen vacancy defect) produces a

shallow donor level which contributes to the free electron concentration. The oxygen

vacancy formation in IGZO has not been conclusive as there are different theories

proposed.

The dependence of Hall mobility on the compositional structure of the material

is discussed in detail by several groups. A study by Kamiya et-al. stated that Ga

concentration strongly influenced the Hall mobility and free carrier density. With

increase in Ga content, both the mobility and carrier density of the material decreased

due to the strong Ga-O bond. The strong bond is due to the strong ionic potential of

Ga+3 which suppresses electron injection. Zinc incorporated materials such as IZO

have the highest mobility in comparison with the other binary oxides[4]. However

to be adopted for TFTs, the free carrier concentration needs to be controlled. The

incorporation of Ga+3 suppressed the density of oxygen vacancies. Indium ion (In+3)

provides electron transport path in the conduction band through its large 5s-orbital.

Amongst the three metal cations, In+3 is the only ion that meets the criteria of

(n− 1)d10ns0 of a heavy post transition metal cation.

Studies conducted by Kamiya et-al on the composition of the material is shown

in Fig 2.4. Thus from the above mentioned reasons, IGZO with elemental ratio of

1:1:1:4 (In:Ga:Zn:O) is the adopted composition for TFT channel material.
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Figure 2.4: Hall mobility dependence on composition of the material (a-IGZO)[11]

Strong ionic nature of bonding in this structure promotes formation of defects

easily due to the non-bonding of the transition metal ions with its neighboring ions.

This causes poor long-term stability and makes it difficult for doping owing to their

self- compensation effect. Studies have proved that the instability might be due

to grain boundary effects which deteriorates the short-range uniformity in a poly-

crystalline structure. Due to the amorphous nature of IGZO, grain boundary effect

is not seen, thus promoting uniformity.
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2.2 CONDUCTION MECHANISM IN IGZO

Figure 2.5: Schematic illustration of conduction and electronic structure around conduc-
tion band edge. This represents the percolation conduction mechanism in IGZO where the
electron path finds lower energy states to travel[12]. An arrow is an electron conduction
path. (left bottom) potential distribution cross-section. Eth and EF denote threshold en-
ergy at above which carrier moves freely and Fermi level, respectively. (Right) Density of
state [13]

Controllability of the carrier concentration is critical in IGZO (amorphous oxide semi-

conductors in general) as they can easily form defects. The primary defects formed

during deposition are oxygen vacancies (Vo) which act as shallow donors in IGZO.

Hall mobility has a functional dependence on the carrier concentration and tempera-

ture. Thus, the mobility increases with increase in carrier concentration unlike that of

crystalline materials where the mobility decreases with increase in free carrier concen-

tration. This increase in mobility can be explained through a percolation conduction

model as seen in Fig 2.5. Due to the strong ionicity of oxides, both the conduction

band and valence band are formed by ionic species. As mentioned in the previous

section, the conduction band is formed by empty s-orbitals of the heavy transition

metal cations and valence band is formed by filled p-orbitals of oxygen anions. The

spherical symmetry of the s-orbital has a large spatial spread. This causes a signif-

icant overlap with the neighboring cation resulting in a path for electron transport.
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The oxygen vacancies defects (V0) are formed near the conduction band due to the

non-bonding of the transition metal ions with the neighboring ions. These V0 act as

shallow donors, typically generating free electrons as follows[13] [8] [12].

Vo → V 2+
o + 2e− (2.1)

Figure 2.6: Generation of oxygen vacancy (Vo2+) and free electrons from the metal oxide
where M( + 2) is the metal cation and O( − 2) is the oxygen anion. [9][10]

This carrier concentration can be controlled by varying the deposition parameters

such as oxygen partial pressure or sputter power experimentally [15]. With increase

in oxygen partial pressure the density of oxygen vacancies and free electrons decreases

[15]. This confirms the source of free electrons as mentioned above in Eq 2.1. Am-

bient conditions during post metal annealing also has a significant influence on the

electronic properties of IGZO and the M-S contact behavior [19]. Optimum degree

of oxidant exposure during annealing with the right ambient conditions (time and

temperature) will result in reduction of defect state concentration [19]. The ability

to control the carrier concentration makes IGZO a good choice of material for TFTs

in display devices.

2.3 DENSITY OF STATES

The band structure of as-deposited a-IGZO with density of states distribution within

the bandgap is presented in Fig 2.7. Incomplete bonding is observed due to the amor-

phous structure which causes the formation of a high density of sub-gap states. Trap
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states can either be donor-like or acceptor-like. Since IGZO is an n-type channel mate-

rial, the focus here will be primarily on the sub-gap states near the conduction band

which influences the TFT characteristics. Density of sub-gap states can be char-

acterized by contributions from four defect distributions; acceptor-like exponential

function, acceptor-like Gaussian function, donor-like exponential function, donor-like

Gaussian function. The exponential functions are used to represent tail states and

the Gaussian function is used to represent deeper sub-gap states. The tail states in

the conduction band are observed due to the variation in bond angle of In-O. The

band tail states near the conduction band minimum are very wide, 80-150meV, with

these values close to Urbach energy [20]. The width of the band tail states of the

conduction band become smaller in the deeper bandgap region. Oxygen vacancies

act as donor-like states near in the conduction band. Change in the density of states

in this region will cause a shift in the threshold voltage. Increase in the density will

make the IGZO more conductive by generating more electrons and acts as metals

instead of a semiconductor. Fermi level lies 0.15eV below the conduction band mini-

mum and this shifts towards the conduction band when there is an increase in VGS.

This causes electron trapping in these states. The sub-gap density of states 0.15eV

below the conduction band are smaller which explains the higher mobility, small sub-

threshold swing and low operating voltage in a-IGZO TFTs. The amorphous nature

of the material breaks the coherent hybridization of 2p orbitals of Oxygen anion and

forms strongly localized states isolated from the valence band. The density of this

deep sub-gap states is >5X1020 cm−3 with a width of 1.5eV. The sub gap density

of states of a-IGZO annealed at 400oC is 2-3 orders of magnitude lower than a-Si

near the conduction band which results in smaller subthreshold swing. This is an

important criterion for turning off the n-channel TFT [14].
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Figure 2.7: Band structure of a-IGZO with tail states and Density of states (DOS) dis-
tribution [14]

2.4 IGZO TFT CHARACTERISTICS

The performance of the device can be evaluated from various parameters obtained

from the output transfer characteristics of the device. On-current Ion and Off-current

Ioff are important characteristics to be determine for current devices like OLEDs

as Ioff is useful for determining the minimum power consumption of the device.

Threshold voltage is the gate voltage required to induce band bending at the surface

of the semiconductor layer. Threshold voltage Vt of the device is the voltage at which

the TFT starts conducting and this is important as fluctuations in this value can

cause serious brightness variation in an OLED device which might further affect its

performance and lifetime. Hence it is important to understand the fundamentals of

physics to determine these parameters. In this section we will discuss in detail about

the most important parameters for a TFT.

23



CHAPTER 2. ELECTRONIC AND MATERIAL PROPERTIES OF IGZO

Figure 2.8: Comparison of the transfer characteristics of both experimental and simulated
BG TFT with dimensions of L=21µm and W=100 µm

Fig 2.8 shows a comparison of the simulated and measured I-V characteristics of

bottom gate passivated device of 21 µm length and 100 µm width. The simulated

value matched very well with the measured data. The material and device model

used for TCAD simulation of these devices will be discussed in the next section.

2.5 MATERIAL MODELLING FOR TCAD SIMULATION

Device simulation aids in better understanding of the influence of defect states and

various other process parameters on the device operation. Visualization of the various

effects in the TFT channel and interface region is made possible to understand the

basic physics behind these. The presence of band tail states accounts for non-ideal

behavior in the electrical characteristics of IGZO TFTs which are not represented well

by the conventional models available. Extracting the basic TFT parameters such as

mobility and threshold voltage is difficult due to the presence of defect states and

gate voltage dependent source-drain resistance (RSD).

In this section, we will discuss the TCAD simulation model developed which
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provides an excellent overlay to the measured characteristics. Silvaco Atlas was used

for simulating the TFTs interdigitated capacitors (IDC) and the establish material

and device model parameters. The density of states g (E) for both acceptor and

donor like band tail states and oxygen vacancy donor states defined by exponential

and Gaussian distributions are represented as follows

Where gTA(E) and gTD(E) are the density of acceptor-like conduction band tail

states and donor-like valence band tail states respectively. Ec and Ev are the energy

levels at the conduction and the valence band edge. NTA and NTD represent the

density of acceptor-like states in the tail distribution at the conduction band edge and

density of donor-like states in the tail distribution at the valence band edge. WTA

and WTD is the characteristic decay energy of the conduction and valence band-tail

states. gGD(E) is the density of donor-like states (oxygen vacancies). NGD, EGD and

WGD are the peak value, mean energy and energy standard deviation, respectively,

defining a Gaussian distribution for donor-like states, gGD(E) [15].

The non-ideal characteristics of the TFT were modelled by inclusion of interface

defects to have a reasonable fit with the measured data. In this case of a good device,

the influence of interface defects on the TFT characteristics was negligible and the

bulk state defects. The band tail state density at the valence band edge and the

donor-like valence band tail states do not influence the on state of the device.

To account for the defect states in a passivated device, additional parameters were

added establishing interface traps and charge centers at the back-channel interface
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of IGZO and the dielectric. Fixed charge density of Nf = −1.9x1012cm−2 and a

Gaussian distribution of donor-like interface traps (Nvo) were adopted to provide

a reasonable match to the characteristics. These modified parameters were used

to account for threshold voltage shift. EGD and WGD values for interface traps

were consistent with that provided for bulk states; the peak of the distribution was

adjusted to 2x1012cm−2/eV . The total integrated donor interface trapped charge

state density NIT ∼ 5x1011cm−2 and a net back-channel surface state density NSS ∼

−1.4x1012cm−2 was obtained.

Figure 2.9: Modified parameter values for material and device model in TCAD [10] [15]

The total space charge in the channel material due to oxygen vacancies integrated

over both energy and thickness of the film is Nbulk ∼ 2.5x1010cm−2. The influence of

interface charge over the TFT characteristics can be dominant in the case of non-ideal

behavior[21] [19].
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Chapter 3

IGZO TFT PROCESS DEFINITION AND BASELINE
PROCESS MODIFICATION

This chapter outlines the standard IGZO fabrication process in detail. Two different

electrode configurations, the bottom-gate (BG) and the double-gate (DG) structure

and their electrical characteristics are presented. Electrical characteristics of devices

tested recently were inconsistent with results previously established, and so this de-

viation became a significant piece of this investigation. It was observed that the

electrical operation of the TFTs varied from process runs done over several months,

with a notable shift towards depletion-mode operation. This suggests that the ma-

terial properties of IGZO had varied over this time period, hence experiments were

designed to vary parameters in the fabrication process such as IGZO sputter condi-

tions and thickness, passivation material thickness and anneal conditions. The results

obtained from the design of experiments were used to modify the baseline process for

fabrication, which was then used for further experiments in this study. The devices

fabricated using the modified baseline process were thermally stressed at high tem-

peratures of 140oC and 200oC to investigate the thermal stability of these devices.

The results will be discussed along with the future work to be done.
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3.1 TFT FABRICATION

A 6-inch silicon wafer with 6500 Å of thermally grown silicon dioxide is used as the

base substrate for processing to represent the fabrication of IGZO TFTs on glass.

For the bottom gate electrode, 50 nm of molybdenum is sputter deposited by phys-

ical vapor deposition using CVC601. Once sub-microtorr base pressure is achieved,

the sputter deposition is done in argon ambient at a pressure of 2.7 mT. An 8-inch

target was used at 1000 W power for 200 s to obtain the target thickness. The gate

electrode is then patterned using a GCA g-line stepper, and subtractive etched using

molybdenum etchant which is a combination of acetic, nitric and phosphoric acid.

The gate dielectric (100 nm SiO2) is deposited using plasma enhanced chemical va-

por deposition (PECVD) in an AMAT-P5000 with tetraethyl orthosilicate (TEOS)

and oxygen as precursors at 390oC. The oxide is then annealed (densified) in nitrogen

ambient at 600oC for 2 hours. After densification, 50 nm of IGZO is RF sputter de-

posited at Corning Incorporated using an AMAT Centura system. Reactive sputter

is done with the substrate temperature maintained at 200oC using a target compo-

sition of In2O3 : Ga2O3 : ZnO in the ratio of 1:1:2, in argon with oxygen partial

pressure of 7%. The IGZO is patterned and wet etched using H2O: HCl in the ratio

of 6:1. Devices with and without back-channel passivation were fabricated. For an

un-passivated device, the gate contact cut is patterned and etched using BOE (10:1)

to make contact to the bottom gate. S/D patterning is done using negative resist

and then the metal is sputter deposited using the CVC601 in argon flow 20 sccm at

2.7 mT, using DC power of 200 W. A molybdenum/aluminum bilayer stack (each 50

nm thick) was used as the source/drain metal, where the molybdenum serves as the

contact metal and aluminum provides resistance to thermal oxidation during anneal-

ing. The metal is patterned using a lift off process done by subjecting the wafers to

ultrasonic energy in PG remover solvent at 45oC for 20-25 minutes. The wafers are

28



CHAPTER 3. IGZO TFT PROCESS DEFINITION AND BASELINE PROCESS
MODIFICATION

then subjected to an anneal at 400oC for 30 minutes in nitrogen ambient, with an air

ramp down. This is done to reduce the IGZO conductivity by reducing the number

of oxygen vacancies and in turn reducing the electron concentration, thus providing

appropriate semiconducting properties for TFTs. For passivated devices, 100 nm

of passivation SiO2 is deposited following the S/D metal, using the AMAT-P5000

PECVD TEOS process. An anneal is done in an oxygen ambient at 400oC for 8hours

with a 5 hour ramp down. ALD alumina (10-15 nm) is deposited as an optional bar-

rier layer at 200oC. The substrates are immediately taken for ALD deposition after

annealing to minimize exposure to air ambient. The passivation open patterning is

then done to contact the electrode pads and wet etched using 10:1 BOE for 5minutes.

The devices are then ready for testing.

3.1.1 DIFFERENT ELECTRODE CONFIGURATION

Staggered and co-planar electrode configurations are used for TFT structures [22]

[23], but this study will focus on the staggered BG and DG arrangements. These two

configurations and their electrical characteristics will be discussed and analyzed.

3.1.1.1 BOTTOM GATE STRUCTURE

The staggered BG structure is shown in Fig 3.1. The TFT is typically fabricated

with a passivation dielectric, however devices without back-channel passivation were

used for baseline comparisons.
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Figure 3.1: Cross sectional view of a bottom gate configuration of IGZO TFT

Fig 3.2 shows the I-V characteristics of a passivated bottom gate device measured

using a HP4145 analyzer with a gate sweep of −5 V to +10 V and low drain bias of

0.1 V and a high drain bias of 10 V.

Figure 3.2: Characteristics of a bottom gate passivated IGZO TFT of L=24 µm and
W=100 µm
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The electrical characteristics of the BG TFT show a minor influence of interface

traps at the back-channel which appears as slight degradation in subthreshold opera-

tion. This can be overcome by the DG electrode configuration shown in Fig 3.3. Over

a year’s time the BG passivated devices demonstrated process drift, exhibiting poor

electrical characteristics such as poor subthreshold slope, DIBL (drain induced barrier

lowering) like separation on long channel devices. They exhibited the weakest ability

to overcome the influence of interface trap states and control the TFT operation.

Figure 3.3: Cross sectional view of a double gate configuration of IGZO TFT

3.1.1.2 DOUBLE GATE STRUCTURE

The DG device has a similar process of a bottom gate device with an additional top

gate electrode over the ALD passivation material. The top gate electrode is aluminum

which is thermally evaporated and patterned using a lift off process. Subtractive etch

was replaced with a lift off process to have a controlled patterning of the metal.

The double gate structure shows advantage over the bottom gate device as they

have better control of the back-channel layer which is prone to trap charges causing

instability of the device. A more detailed description of this instability is discussed

in the next section of the chapter. Figure 3.4 shows the I-V characteristics of a DG

device measured using a HP4145 analyzer with a gate sweep of −5 V to +10 V and
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low drain bias of 0.1 V and a high drain bias of 10 V.

Figure 3.4: Characteristics of a double gate IGZO TFT of L/W= 24/100 µm

The transfer characteristics of the double gate device showed improvement of both

the on-state and off-state performance of the TFT due to improved electrostatics.

The presence of an additional top gate enhanced the performance of the device by

improving the SS from 260 mV/dec to 180 mV/dec and essentially a two-fold increase

in channel charge (i.e. drain current).

3.2 PROBLEM STATEMENT

The electrical operation of the TFTs varied from process runs done over several

months, with a notable shift towards depletion-mode operation. The BG passivated

devices exhibited poor subthreshold behavior and a separation of transfer charac-
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teristics on long channel devices; both indicative of back-channel charge and lack of

gate control. While the influence on DG devices was not as pronounced, this source

of variation had to be identified and suppressed. The focus initially shifted to the

BG unpassivated device process for baseline comparisons. It was observed in the I-V

characteristics of an un-passivated device that the standard anneal was not adequate

to reduce the sub-gap states in the channel region. The threshold voltage of the de-

vice was left shifted drastically. Ripening is the process of exposing the channel to

ambient environment; this promotes the self-passivation of high-density trap regions

at the back-channel [24]. The devices were left in ambient conditions for ripening

process. But after ripening it was observed that the devices seemed to behave like

an under annealed device with the threshold voltage left shifted from the ideal value

close to 0-V with significant trap associated barrier lowering (TABL) as seen in Fig

3.5. This effect is due to in-homogeneity of donor states at the topside IGZO inter-

face that presents regions with distinctly different effective charge levels In the case

of passivated bottom gate devices, the 8hrs anneal in O2 ambient at 400oC did not

suffice in reducing the number of oxygen vacancies in the channel and the interface.

Increased annealing did not seem to be effective in restoring the transfer characteris-

tics. This then steered us to the hypothesis that there could have been a change in

the target composition which made the channel very conductive.
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(a) (b)

Figure 3.5: Characteristics of an unpassivated BG TFTs with IGZO thickness of 50 nm
whose L/W=12/24 µm initial results tested on different days to observe the ripening effect
in room ambient with a) standard anneal conditions b) L=24,12,6 µm tested after aggressive
annealing conditions .

Figure 3.5a is the characteristic response of unpassivated devices with standard

anneal in N2 ambient for 30 mins and ripening process. It is observed that these

devices even after 6 days of ripening in ambient does not yield good characteristics as

observed in Fig 1.8 whereas the 24 µm length devices in the Fig 3.5b after aggressive

annealing conditions (30min in N2 ambient, 1hr in O2 ambient with 4 hour ramp down

inO2) yielded good TFT characteristics with steep subthreshold and threshold voltage

of the device close to ideal value. These devices did not exhibit Trap Associated

Barrier Lowering,which is the mechanism to describe the long channel DIBL-like

separation as observed in Fig 3.5a but short channel devices of L=12 µm and 6 µm

showed significant TABL and left shift in the characteristics. This was conclusive of

the hypothesis stated above.
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(a) (b)

Figure 3.6: Characteristics of a) passivated BG (left) and b) DG (right) devices with
channel length L=12 µm with standard anneal conditions in O2 ambient for 8hrs at 400oC

The devices exhibited poor electrical characteristics with shallow SS and signif-

icant TABL in the case of passivated bottom gate device with standard O2 anneal

at 400oC for 8hrs as observed in Fig 3.6a. Whereas the double gate devices with

the same anneal conditions and without ALD capping layer exhibited good results as

shown in Fig 3.4.

3.3 DESIGN OF EXPERIMENTS ON FABRICATION OF

TFTs

The devices fabricated with the standard process parameters as stated in the above

section exhibited anomalies in their behavior that need to be addressed to yield

devices with good TFT characteristics as seen in Fig 3.2 and 3.4. The parameters that

influence these anomalies in the device behavior were, thickness of the channel layer,

passivation and anneal conditions. This section discusses the experiments designed
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Table 3.1: Design of experiments with IGZO thickness and oxygen partial pressure

Device Configuration IGZO thickness (nm) Oxygen partial pressure
BG 20 7%
BG 35 7%
BG 45 7%
BG 50 7%
BG 30 13%
BG 50 13%

to modify the electrical characteristics behavior of the TFT and their results.

3.3.1 IGZO THICKNESS AND BACKCHANNEL INTERFACE

The effect of channel thickness on the electrical characteristics of the TFT is investi-

gated in this section. Design of experiments (DOE) with various thicknesses of IGZO

and the oxygen partial pressure during deposition was proposed. The characteristic

response of the TFTs with the varying conditions will be discussed in detail. Ta-

ble 3.1 presents the different thickness along with the oxygen partial pressure varied

during deposition experimented in this study. Increasing the oxygen partial pressure

to 13% by doubling the gas flow was done to reduce the number of defects in the

channel (Vo). Increasing the partial pressure increased the deposition rate by 50%

thus rendering a thicker film. Thinner channel material was obtained by as-deposited

thin layer and back channel etching process. There was significant difference in the

device performance of these different treatments.
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Figure 3.7: I-V characteristics of BG passivated devices with different channel thicknesses
of L/W=12/24 µm with 50 nm SiO2 with 4hr anneal in O2 ambient

From fig 3.7 it was observed that there was no significant change in the electrical

characteristics of the devices with IGZO thinned by wet etch process 20 nm and 38 nm

thickness in comparison with the 50 nm device. The thickness of the channel mate-

rial does not affect the SS but affects the threshold voltage of the device.However the

dependence of threshold voltage on thickness is questionable considering the inconsis-

tent shift shown in Fig. 3.7. This can be observed from the results obtained but there

is no significant variation in the threshold voltage. Devices with as-deposited thin-

ner channel material showed poor characteristics in comparison to the back-channel

etched devices. Wet etch of IGZO is critical and there was inconsistency in the be-

havior of these devices which is not well understood and hence 50nm as-deposited

IGZO was preferred as the standard thickness for future experiments and study.
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Figure 3.8: IV characteristics of a BG passivated device of W/L of 24/12 µm with 50 nm
IGZO annealed at 400oC for 8hrs in O2 ambient

Figure 3.8 shows that the electrical characteristics of the passivated BG device

with thinner passivation dielectric and standard 8hr anneal but these show poor

electrical characteristics with shallow SS. Whereas the BG device as seen in Fig 3.7

with 4hr anneal shows improved electrical behavior.

3.4 PASSIVATION AND ANNEAL CONDITIONS

Reducing the thickness of the channel material did not render significant improvement

in the electrical characteristics of the device. The experimentation was then focused

on the reduction of passivation dielectric thickness and the modification in anneal

conditions. From Fig 3.7 it was observed that reducing the passivation dielectric

improved the electrical characteristics of the device. Experiments were designed with

50 nm passivation dielectric with 10 nm ALD alumina annealed for different times.
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The design of experiments is for different IGZO thickness and anneal conditions are

tabulated in Table 3.2. Increasing the annealing was proven not to be effective at

restoring the electrical properties of the device as this depleted the devices further

(left shifting the I-V characteristics) and exhibited pronounced TABL (separation

between the high drain and low drain characteristics).

Table 3.2: Design of experiments with different passivation anneal conditions

Device Configuration IGZO thickness Passivation material Annealing conditions

BG passivated 20,30,50nm SiO2 + 10nm Al2O3 3-6 hrs at 400oC in O2ambient

Annealing in oxygen ambient is done to reduce the electron concentration by

reducing the number of sub-gap defect states in the channel material. From Fig 3.7

it was seen that reduction in anneal time to 4 hours, when in combination with the

thinner (50 nm) passivation oxide, had a significant significant affect in the reduction

of electron concentration which right shifted the characteristics. Anneal times were

varied from 3hrs to 6hrs to identify the ideal conditions for the stack mentioned in

this study.
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(a) (b)

Figure 3.9: Transfer characteristics of BG passivated devices of under different anneal
conditions a) 4hr anneal on a BG passivated device of L/W=6/24 µm b) 3hr O2 anneal on
BG passivated devices of L/W=6/24 µm

It was observed from the results in Fig 3.9b that 3hr anneal has characteristics

similar to the 4hr anneal with threshold voltage of the device shifted further to the

right. Results suggest that the 3hr anneal is ideal for modifying the material prop-

erties of IGZO and improves the electrical characteristics of the device with right

shift in comparison to the 4hr anneal as seen in Fig 3.9b. It also reduces the time of

fabricating the device.

3.4.1 MODIFIED FABRICATION PROCESS FLOW

The results of the experimentation done in the previous section has helped re-establish

a new process for the fabrication of TFT to yield good devices. The modified process

conditions for the process will be summarized in this section to be used for future ref-

erence. The process parameters that will be modified are thickness of the passivation

dielectric, anneal conditions and source/drain metal stack. The standard thickness of
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the channel layer (IGZO) used was 50 nm with the oxygen partial pressure being 7%.

In the modified process, the thickness and deposition conditions of IGZO remained

the same. The S/D metal deposited is 50/50 nm of Mo/Al by sputter deposition

with the deposition conditions as mentioned in fabrication process. The devices are

then passivated with 50 nm of SiO2 deposited by PECVD with TEOS and oxygen

as precursors at 390oC. The anneal conditions were modified from 8hrs to 3hrs at

400oC in an O2 ambient. The devices are then immediately deposited with another

passivation layer of 10 nm Al2O3 by ALD at 200oC. It is important to not subject the

device to ambient conditions with oxygen and water vapor as these when absorbed

act like donors in the channel region which will cause instability in the device. The

devices fabricated with these modified process parameters showed improvement in

the IV characteristics such as steeper subthreshold sweep, right shift in the charac-

teristics which is due to reduction in the number of oxygen vacancies which leads to

better control of the density of electron concentration in the channel region. The IV

characteristics of the devices fabricated with the modified process is shown in Fig

3.9b.

3.5 THERMAL INSTABILITY OF IGZO TFTs

It is well established that IGZO is extremely reactive to ambient conditions, both

during and after TFT fabrication. Long lifetime of the devices is a requirement for

display devices and hence stability of the TFTs is important. The stability of the

devices with thermal stress is important and must be studied as the devices degrade in

performance when subjected to elevated temperature (e.g. T 200oC) following TFT

fabrication during chip-on-glass attachment for the bonding mechanism. Thermal

stability of IGZO TFTs were previously studied at applied temperatures of 140oC and

200oC, as these temperatures were considered essential for process integration. When

the TFTs, both BG and DG were subject to 200oC on a hot plate with SiO2 as the
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back-channel passivation, significant left shift in the IV characteristics of the BG TFT

was observed after an hour of stress. This was more pronounced in the DG devices

which upon stress for 20-min on a hot plate showed resistor-like behavior. These

results motivated further investigation as the devices showed stable characteristics

after the final passivation anneal at 400oC.

(a) (b)

Figure 3.10: a)BG and b)DG TFTs of L=24µm with SiO2 as the back-channel passivation
material which show degradation in performance when stressed on a hot plate at 200oC

An additional layer of capping between the SiO2 and aluminum was deposited

using atomic layer deposition at 200oC which was found to suppress the reaction of

water with the top gate. Both the BG and DG TFTs showed good stability when

the devices were passivated with an additional capping layer of 10 nm of Al2O3 using

atomic layer deposition[25].
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(a)

(b)

Figure 3.11: a)BG and b) DG devices with 10 nm Al2O3 capping layer between back-
channel passivation dielectric and the top gate metal (aluminum)

3.5.1 THERMAL STRESS RESPONSE ON MODIFIED BASELINE PRO-

CESS

The devices fabricated with the modified baseline process both bottom gate and dou-

ble gate devices were stressed at 100oC, 140oC and 200oC to observe their response.
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(a) (b)

Figure 3.12: a) BG TFTs of L=4 µm and b) L=24 µm thermally stressed at various
temperatures as indicated in the plot

From the Fig 3.12a it is observed that the bottom gate devices upon thermal stress

of up to 200oC showed stable behavior without any drastic shift in characteristics.

The thermal stability of these devices with the modified process is similar to the

results obtained with the old process conditions as mentioned in Fig-3.11a. There is

consistency in the device behavior of a BG device when subjected to thermal stress.

When the DG devices were subjected to thermal stress, both the short channel and

long channel devices degraded by significantly shifting to the left after 140oC hot

plate bake. After 200oC, the devices failed which can be observed in Fig 3.13. This is

inconsistent with the observations made in the previous section as shown in Fig-3.11

where the small channel devices are stable with thermal stress and the longer devices

(L ≥ 24µm)fail.
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(a) (b)

Figure 3.13: DG devices of a) L=4 µm and b) L=24 µm thermally stressed on a hot plate
at various temperatures as indicated in the plot

There is difference in the behavior of the short channel and long channel device

as seen in Fig.3.13. The short channel devices of length 4 µm, when subjected to

140oC hot plate treatment causes a left shift in the characteristics of the device by

less than one volt whereas in the case of a longer channel device of L=24 µm shift

the characteristics is significant by almost two volts.

3.6 SUMMARY

The chapter summarizes the various experiments done to reestablish a baseline pro-

cess for the fabrication of IGZO TFTs. The process parameters used initially yielded

TFTs that had poor electrical characteristics with significant TABL and poor SS in

an unpassivated device. This was inconsistent with the results obtained previously.

Multiple experiments with different anneal and passivation conditions were done to

study the change in the channel material properties. It was observed that the elec-

trical characteristics of the devices with 3hr anneal time showed steeper SS and a
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significant right shift which is evident in Fig 3.9b with their threshold voltage 0V.

A baseline process was reestablished with no modifications in the thickness of IGZO

and its deposition conditions (50 nm with 7% oxygen partial pressure was used),

the thickness of the passivation dielectric reduced from 100 nm to 50 nm and the

anneal conditions varied from 8hr to 3hrs at 400oC in O2 ambient. This was then

used for investigating the thermal instability of the BG and DG devices. Thermal

stability of the devices is important as the devices will be subjected to higher tem-

perature processing during bonding mechanism for chip-on glass attachment. In this

study, the devices were subjected to higher temperatures of 140oC and 200oC on

a hot plate in room ambient and their electrical characteristics were measured. It

was observed in previous study that the bottom gate devices were stable even after

200oC hot plate treatment for one hour. Whereas the DG device when subjected

to 140oC, showed channel length dependence on their instability. The longer chan-

nel devices failed at 140oC whereas the shorter channel length device was stable at

140oC. When the device fabricated with the modified baseline process was subjected

to higher temperature, the bottom gate devices remained stable and, in some cases,

showed improvement in the behavior of the TFTs. The DG device behavior was in-

consistent with the previously obtained results where both the short channel and long

channel devices failed. This inconsistency in the behavior of the DG devices needs to

be investigated.
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INTEGRATION OF COPPER AS THE BOTTOM GATE
ELECTRODE

Large panel size, high resolution and high scan frequency are main factors to be

considered in the advanced flat panel display market. With the already existing

research and development done with IGZO TFTs for driving large area LCD and

OLED panels, RC delay has become an important issue that needs to be addressed.

In large displays such as 100 inch displays with 4K resolution the pixel size is 200 µm

whereas with an 8K resolution the pixel size is reduced to 90 µm or less. With an 8K

display where the number of pixels and gate and data signal lines are increasing, it

becomes important to reduce the time constant (RC) associated with moving charge

on and off the pixel driver TFT. The time constant depends on three primary factors

in a display device; signal line resistance, signal line cross-over capacitance and device

parasitic capacitance. Hence it is important to reduce these three factors as faster

transmission of signals is required [26]. Reducing the sheet resistance can be done

in conventional process by increasing the thickness of the film but this can lead

to breakage of glass due to stress of the film, or surface topography issues. This

can also be done by incorporation of a metal with lower resistance for the gate bus

lines and data bus lines. Amongst the various metals available copper is appropriate

for the electrode material for display devices due to their properties such as low

resistance, low cost and high corrosion resistance [27].Conventional a-IGZO TFT
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uses molybdenum as the gate metal. Incorporating copper as the gate electrode has

proven to be advantageous in that copper can be used as both the gate metal and

the row enable that transfers charge from each column to the respective pixel in that

particular row. This has a significant improvement on the RC delay of the devices as

compared to the TFT with molybdenum as the gate electrode. In order for copper

to be adopted in large scale manufacturing, certain challenges need to be addressed.

These challenges of integrating copper in the IGZO TFT as the bottom gate electrode

is studied and discussed in detail in the next section.

4.1 CHALLENGES OF COPPER INTEGRATION

Copper is of high interest in the display industry as an interconnect and electrode

material in IGZO TFT backplanes for display panels. Copper is known to have good

bulk thermal and electrical conductivities and low electromigration[28] [29], making

this a good candidate for larger area displays. High conductivity translates to fast

transmission of signals through bus lines. The incorporation of copper in the BG TFT

structure poses several challenges of which the primary being the diffusion of copper

through the gate dielectric and into the active channel region which has been shown

to degrade the TFT characteristics [30], and poor adhesion of copper to the glass sub-

strate. Copper diffusion into the channel region, the gate dielectric and the interface

degrade the device performance by inducing interface traps[30]. This causes a nega-

tive shift in threshold voltage Vth of the device and degradation of the subthreshold

swing and the effective channel mobility of the device. In addition, copper diffusion

may result in gate dielectric failure. Hence a diffusion barrier layer may be required

to inhibit the diffusion of copper. The adhesion of the gate metal to both the glass

substrate and the gate dielectric material is also an issue of great importance. Cop-

per has poor adhesion to dielectric materials which can result in delamination during

elevated temperature process due to difference in thermal expansion or changes in
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material morphology.

4.1.1 PROCESS INTEGRATION

Copper has emerged as an important metal for interconnects in the display industry.

There have been various studies on promoting the adhesion of copper on glass; a few

common methods studied are annealing, alloying and use of an interlayer [31]. In

this study a design of experiments with different treatments for the gate metal stack

and anneal conditions following the gate dielectric deposition are investigated, with

details shown in Table 4.1.

Figure 4.1: (a) Ti/Cu and (b) Ti/Cu/Ti gate metal film stacks employed to investigate
copper electrode adhesion and copper diffusion effects on the gate dielectric and IGZO
channel.

Table 4.1: Design of experiments to study the challenges incorporating copper as the gate
electrode for IGZO TFT

Wafer BG metal BG dielectric thickness IGZO thickness Pre-anneal conditions

1 Ti/Cu 100 nm SiO2 50 nm No anneal

2 Ti/Cu 100 nm SiO2 50 nm 400oC N2 anneal

3 Ti/Cu 100 nm SiO2 50 nm 600oC N2 anneal

4 Ti/Cu/Ti 100 nm SiO2 50 nm No anneal

5 Ti/Cu/Ti 100 nm SiO2 50 nm 400oC N2 anneal

6 Ti/Cu/Ti 100 nm SiO2 50 nm 600oC N2 anneal

In this study the focus is to experiment on different annealing conditions and use

of a metallic interlayer. Much attention has been focused on using refractory metals

such as titanium and chromium as interlayers for glass and copper. These refractory
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metals have good adhesion to glass and hence a thin layer of these metals between

copper and glass is used[32]. But in this study, titanium will be used which has good

adhesion to glass. To replicate the process on a glass substrate, 500 nm of SiO2 was

grown on a silicon wafer. The different gate stacks proposed are a)20 nm titanium/

80 nm copper and b) 10 nm of titanium/ 80 nm of copper/ 10 nm of titanium. 100

nm of SiO2 is the gate dielectric used for both a) and b). An addition layer of

titanium is deposited in b) to study if this promotes adhesion of gate dielectric to

the metal and inhibits diffusion of copper to the channel region. One major challenge

of incorporating titanium is that when the devices are subject to high temperature

process during fabrication, there will be diffusion of titanium into copper which might

increase the sheet resistance of the film[33]. This led to the increasing interest in

eliminating the use of interlayer metal between copper and glass. This steered way

to promoting the adhesion by treating the surface of glass before the deposition of

copper. Another common method to promote adhesion is by annealing the film,

which was investigated in this study. Annealing decreases the stress of the film by

an amount that varies significantly with the thickness of the film[ref]. In this study

the thickness of the film was not varied, but experiments were done by varying the

temperature at which the devices were annealed after the deposition of gate dielectric.

This study was done to investigate the different temperatures for pre-annealing with

a constant gate electrode thickness. The different annealing temperatures used in

this study are shown in table 4.1. Silicon dioxide is not a good diffusion barrier for

copper. SiON and SiNx are used to prevent copper ion diffusion into the channel in

a lot of research work done previously. This study investigates the influence of gate

stack and the impact of annealing on the diffusion of copper into the channel. Gate

dielectric stack of Si3N4/SiO2 is proposed for devices with no metal interlayer for

gate electrode. This is proposed to be a good diffusion barrier to copper ions. If a

single layer of Si3N4 is adopted as the gate dielectric, weakly bonded H+ ions will
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inject into the channel layer and will cause serious influence on the threshold voltage

of the device by causing a shift and short the channel [34]. Hence it is necessary to

have SiO2 interface with the channel layer. The fabrication process for these devices

are described briefly in the next section. The device characteristics for the various

processes done will be explained in detail in the following sections.

4.1.2 DEVICE FABRICATION

A base substrate like our conventional process was used where 500 nm of silicon

dioxide was grown on a 6-inch silicon substrate to replicate processing on a glass. The

substrate is initially coated with HMDS prime and then spin coated with negative

resist. Bottom gate lithography is done using g-line stepper and developed. Then

the wafers are loaded into the E-beam evaporator for deposition of both titanium

and copper as the gate electrode. 20 nm titanium and 80 nm copper is deposited on

one case and 10 nm titanium with 80nm copper and 10nm titanium is deposited on

another set of wafers. Lift off patterning is done using PG remover to obtain good

definition of bottom gate metal. 100 nm of SiO2 is deposited using PECVD at 300oC

to avoid contamination of the tool. The densification of oxide deposited is done in

a nitrogen ambient at temperatures mentioned in the table. Post densification of

the gate dielectric, 50 nm of IGZO is RF sputter deposited at 200oC in an ambient

containing 7% oxygen. The channel layer is then patterned using dilute HCl (6:1 of

H2O: HCl) for 15 seconds. Gate vias are patterned for contact with the bottom gate

using 10:1 Buffered oxide etch (BOE). Molybdenum/aluminum bilayer is deposited

using a DC sputter tool and patterned using lift off process for gate/ source/ drain

electrodes. Silicon dioxide SiO2 with a thickness of 100nm is deposited using PECVD

as the passivation material for these devices. This is then annealed in oxygen ambient

at 400oC for 3hrs with a 2hr ramp down in air. This is then immediately taken

for ALD deposition to have very little exposure to ambient. This is done to avoid
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absorption of water molecules or moisture which can degrade the device performance.

10 nm of Al2O3 is deposited. Passivation open patterning is done to open contacts

to source, drain and gate electrodes.

4.2 RESULTS

The results obtained from the different fabrication treatment conditions will now be

discussed. There were key observations made during visual inspection and electri-

cal characterization which have led to certain conclusions surrounding the treatment

combinations investigated. These observations are described, followed by an inter-

pretation on the mechanism(s) involved.

4.2.1 MATERIAL DELAMINATION AND PITTING DEFECTS

4.2.1.1 COPPER/SiO2 DELAMINATION

The devices fabricated with Ti/Cu as the bottom gate electrode with no annealing

done shows large area delamination over copper which can be observed in the Fig

4.2. This occurred during the passivation TEOS PECVD process which was done at

390oC, and further aggravated by the passivation anneal. This effect on Ti/Cu sam-

ples with 400oC and 600oC pre-anneal treatments was minimal; it was also minimal

on Ti/Cu/Ti treatments.
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Figure 4.2: Top view of TFT fabricated with Ti/Cu as the bottom gate electrode with
no pre-annealing done

Literature supports the enhancement of adhesion between copper and silicon diox-

ide by annealing [31], done under right circumstances, which appears to be before the

IGZO sputter deposition. From the experimentation done, it appears than Ti/Cu

samples with 400oC and 600oC anneal did not exhibit any delamination as seen in

Fig 4.2. All the devices were subjected to passivation dielectric annealing at 400oC

in O2 ambient after IGZO deposition. This concludes that the bottom gate dielectric

anneal plays an important role in the adhesion of SiO2 to copper.

4.2.1.2 PITTING DEFECTS

Devices with either Ti/Cu or Ti/Cu/Ti gate electrodes that were subjected to pre-

annealing at 600oC exhibited a strange defect effect that was observed only after the

passivation anneal, shown in Fig. 4.3. These defects were not observed on samples

with no pre-anneal and 400oC pre-anneal treatments. SEM images as seen in Fig.

4.4 show pitting of the gate electrode film stack appearing to originate from the

underlying titanium layer.
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Figure 4.3: Microscopic view of the devices fabricated and annealed at 600oC a)Ti/Cu
and b)Ti/Cu/Ti as the gate electrode stack

(a) (b) (c)

Figure 4.4: Scanning electron microscopic (SEM) images of defects in the gate stack due
to annealing the Ti/Cu/Ti devices at 600oC a) top view of the gate electrode b) gate stack
at 45o view angle c) defect in the gate electrode.

There is distinct difference in the appearance of the pit defects between the Ti/Cu

and Ti/Cu/Ti stacks. The Ti/Cu stack has less pronounced defects uniformly dis-

tributed over the electrode area except the channel region, whereas the sample with

Ti/Cu/Ti stack shows relatively sparse and pronounced defects that form preferen-

tially at the edge of the gate electrode. The defects are suppressed in the channel

region in both the gate metal stacks, however they are notably absent in the channel
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region of the sample with Ti/Cu stack. As seen in Fig. 4.5 the Ti/Cu/Ti exhibits

visual defects in the channel region of large area channel devices.

(a) (b)

Figure 4.5: Pitting defect distribution of the a) Ti/Cu and the b)Ti/Cu/Ti devices in the
large area channel region

The fact that these defects were not observed until the 400oC O2 passivation an-

neal and not immediately following the 600oC pre-anneal indicates that the origin

may be thin-film mechanical stress established as a result of the 600oC pre-anneal

process. These defects may have been apparent after the passivation TEOS deposi-

tion done at 390oC, but the devices are typically not inspected using a microscope

between the passivation dielectric deposition and the anneal process. The absence of

the defects in the channel region of the Ti/Cu device, and the differences in defect ap-

pearance and distribution indicates some interaction with the top Ti layer. Proposed

differences in film stress in the channel region could be due to either the IGZO film

and/or the overlapping source/drain electrode. It is also observed that there are no

defects on the edge of the gate electrode where there is S/D metal overlap, including

regions without IGZO present. The pitting mechanism may involve a localized chem-

ical reaction that is stress enhanced or induced. One possible scenario is a reaction

of the bottom Ti layer with the underlying SiO2 during the passivation anneal [32],

with suppression in the channel region due to the presence of either the IGZO or the

S/D metal. Regardless of the mechanism involved it is clear that pitting defects are
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not acceptable, and thus a 600oC pre-anneal must be avoided.

4.2.2 ELECTRICAL CHARACTERISTICS

The electrical characteristics of devices demonstrated distinct differences between

treatment combinations, some of which are directly attributed to the visual defects

described. Comparisons of device characteristics are used to provide a comprehensive

assessment of each individual treatment. Figure 4.6 shows representative electrical

characteristics of five out of the six treatment combinations investigated.
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Figure 4.6: Representative electrical characteristics of treatment combinations investi-
gated; all devices are L = 8 µm and W = 24 µm. Note that the Ti/Cu/Ti treatment with
600oC pre-anneal (TC-6) did not yield operational devices.[a) Ti/Cu with no pre-anneal;
b) Ti/Cu with 400oC pre-anneal; c)Ti/Cu with 600oC pre-anneal; d)Ti/Cu/Ti with no
pre-anneal; e) Ti/Cu/Ti with 400oC pre-anneal
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4.2.2.1 Ti/CU DEVICE OPERATION

Devices from the Ti/Cu sample with no pre-anneal treatment (TC-1) exhibited in-

ferior transfer characteristics in comparison to samples TC-2 and TC-3 that were

pre-annealed at 400oC and 600oC, respectively. The characteristics were shallow and

distorted indicating lack of gate control which may be directly related to the poor

interface quality between the Cu gate electrode and the SiO2 dielectric. The charac-

teristics on pre-annealed Ti/Cu treatments TC-2 and TC-3 were markedly superior.

The 600oC TC-3 pre-anneal treatment is right-shifted in comparison to TC-2, which

promotes enhancement-mode operation. Unfortunately this treatment also shows

a slightly shallower sub-threshold slope and higher off-state leakage; both of which

suggest some influence of Cu contamination. Electrical results have shown that Cu

contamination of IGZO devices presents acceptor-like trap states that spread and

tilt the transfer characteristics toward the right [35] [36] which is consistent with the

electrical characteristics of TC-3.

4.2.2.2 Ti/Cu/Ti

The characteristics on the Ti/Cu/Ti treatment without pre-anneal (TC-4) was no-

tably superior to TC-1, and remarkably similar to TC-2. The subthreshold operation

of TC-4 indicated the influence of interface traps, which was not resolved on pre-

annealed treatments. Rather, the 400oC TC-5 pre-anneal treatment was significantly

left-shifted, and the 600oC TC-6 pre-anneal treatment experienced gate-source shorts

which resulted in non-functional devices.

4.2.2.3 PITTING DEFECTS AND Ti CONTAMINATION

The pitting defects seemed to have no influence on the electrical characteristics of

the Ti/Cu TC-3 devices; however appear to be responsible for the catastrophic gate

leakage on Ti/Cu/Ti TC-6. Pitting defects were observed on TC-6 in the channel
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regions of large-area devices, whereas they were expressly suppressed on TC-3 which

had zero gate shorts. However the short-circuit conditions were also demonstrated by

TC-6 on small-area devices which had no observable pitting. Pitting in the channel

region and short-circuit behavior may both be associated with the top Ti layer, how-

ever the shorting issue may be a response due to Ti contamination rather than pit

formation. The TC-5 Ti/Cu/Ti device pre-annealed at 400oC shows a pronounced

left-shift in characteristics compared to the Ti/Cu devices with the same pre-anneal

(TC-2) or higher (TC-3), and the Ti/Cu/Ti device with no pre-anneal (TC-4). This

result suggests an influence of titanium contamination originating from the gate elec-

trode and diffusing through the gate SiO2 dielectric to the IGZO channel region [32],

eventually leading to device failure at the higher pre-anneal temperature.

4.3 SUMMARY

This chapter has presented research towards adopting copper as the bottom gate

electrode for IGZO TFTs. Titanium was used as an interface layer to promote ad-

hesion to SiO2, and to potentially serve as a barrier to Cu diffusion. Observations

and analysis of the experimental results identified distinct differences in physical ap-

pearance and electrical response of the treatment combinations investigated. The

Ti/Cu treatment without pre-anneal experienced Cu/SiO2 delamination during a

subsequent process that was significantly suppressed by gate dielectric pre-annealing

prior to IGZO sputter deposition. The Ti/Cu treatments with pre-annealing at 400oC

did not appear to have issues with either delamination or Cu contamination affecting

the device operation. The Ti/Cu devices pre-annealed at 600oC resulted in electrical

characteristics that were very similar to the standard molybdenum gate TFT that

was pre-annealed at 600oC, as described in chapter 3 (see Fig. 3.9b). However the

shallower sub-threshold slope and distortion are evidence of Cu contaminants. The

Ti/Cu/Ti treatment without pre-anneal was operational, however the subthreshold
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operation was inferior to pre-annealed Ti/Cu treatments. Pre-annealed Ti/Cu/Ti

treatments resulted in characteristics showing either significant left-shifting (400oC)

or gate dielectric failure (600oC), attributed to Ti contamination. Both metal gate

stacks pre-annealed at 600oC resulted in pitting defects, with associated differences

in both visual appearance and electrical response. These defects effectively remove

this pre-anneal condition as an option, thus limiting the pre-anneal temperature to

not much higher than 400oC. Unfortunately reducing the pre-anneal temperature

to 400oC appears to result in a compromising characteristic left-shift of 2 V. This

is most likely due to oxide charge which is effectively removed during the 600oC

pre-anneal, but remains with process temperature limited to 400oC.
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CONCLUSION

This chapter will provide a summary of the results and findings in the described study

of copper implementation as the bottom gate electrode for IGZO TFTs. The main

goal of this study was to investigate the influence of annealing conditions and a tita-

nium capping layer on copper integration and potential channel contamination. An

experimental design was defined with factor settings that took into consideration the

standard process conditions and the likelihood of promoting an electrical response to

metallic contaminants (i.e. VT shift, SS, distortion) into consideration. To ensure that

the electrical interpretation was not influenced by process variation or instability, a

baseline process had to be re-established which involved adjustments in the PECVD

SiO2 passivation oxide thickness and the process recipe for the subsequent O2 pas-

sivation anneal at 400oC. This effort resulted in operating characteristics consistent

with previous work [21], as represented in Fig. 5.1. The devices also exhibited good

resistance to thermal and bias stress testing.
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Figure 5.1: Electrical characteristics of a Mo bottom gate passivated device of L/W=4/24
µm with 50nm IGZO and 50 nm passivation dielectric (SiO2) annealed in O2 ambient at
400oC for 3hrs with a 2hr ramp down in O2

The experimental design that was used for this study identified distinct differences

in physical and electrical responses over all treatment combinations. First and fore-

most was the response of material adhesion between the metal gate electrode and the

gate SiO2 dielectric. The only conditions that experienced significant delamination

was the Ti/Cu stack without a pre-anneal prior to IGZO sputter deposition. This

resulted in low device yield, and compromised electrical operation on devices that

remained intact. The Ti/Cu/Ti stack devices did not have issues with delamination;

thus the use of Ti as a capping layer over Cu was successful in that regard. However

the application of Ti at the interface to the gate dielectric demonstrated issues with

Ti contamination, having a profound impact on pre-annealed devices that was not

experienced by the Ti/Cu stack devices. Thus an alternative interface layer should

be considered such as refractory nitrides (e.g. TiN, TaN) that are commonly used

as Cu diffusion barrier layers in back-end IC fabrication [37], or a metal with proven

gate electrode properties such as molybdenum. Pre-annealing the gate dielectric on

Ti/Cu devices had benefits in both material adhesion and device operation. Both
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pre-anneal conditions demonstrated good adhesion, thus the 400oC treatment was a

sufficient temperature for that specific purpose. In addition, the 400oC pre-anneal

treatment (TC-2) demonstrated steep subthreshold operation indicating a reduction

in interface traps in comparison to the Ti/Cu/Ti device without pre-anneal (TC-4),

shown in Fig. 5.2. Having this pre-anneal performed prior to IGZO and the passi-

vation oxide deposition seems important, considering that the passivation anneal is

also done at 400oC for an extended time period. Considering the similarity between

TC-2 and TC-4, issues with Cu or Ti contamination in either of these samples appear

unlikely.

Figure 5.2: Transfer characteristic overlay of select treatment combinations. Comparisons
between TC-4 (blue diamond, shallow subthreshold), TC-2 (red squares, steep subthreshold)
and TC-3 (green circles, right-shifted) are made in the narrative.

The Ti/Cu 600oC pre-anneal treatment (TC-3) had a shallower subthreshold,

however was right shifted by 1 V from the 400oC anneal, indicating a reduction in

fixed charge or bulk oxide charge that requires the higher temperature process. The
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origin of the compromise in subthreshold operation is possibly due to Cu contami-

nation, which has been shown to degrade electrical characteristics in an equivalent

manner[35]. Regardless, it was established that 600oC would not be an option for

the pre-anneal process due to pitting that occurred on the gate electrode, potentially

contributing to zero yield on the Ti/Cu/Ti device. Alternative gate dielectric and

pre-anneal options must be considered to provide lower charge levels while maintain-

ing a temperature limit of 400oC, and demonstrate comparable performance as the

baseline device shown in Fig. 5.1.
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