
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-2019

Exploring the Effectiveness of Privacy Preserving Classification in Exploring the Effectiveness of Privacy Preserving Classification in

Convolutional Neural Networks Convolutional Neural Networks

Prathibha Rama
psr6237@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Rama, Prathibha, "Exploring the Effectiveness of Privacy Preserving Classification in Convolutional Neural
Networks" (2019). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10169?utm_source=repository.rit.edu%2Ftheses%2F10169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Exploring the Effectiveness of Privacy Preserving
Classification in Convolutional Neural Networks

Prathibha Rama

Exploring the Effectiveness of Privacy Preserving
Classification in Convolutional Neural Networks

Prathibha Rama
July 2019

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Department of Computer Engineering

Exploring the Effectiveness of Privacy Preserving
Classification in Convolutional Neural Networks

Prathibha Rama

Committee Approval:

Dr. Marcin Lukowiak Advisor Date
Department of Computer Engineering

Dr. Stanis law Radziszowski Date
Department of Computer Science

Dr. Cory Merkel Date
Department of Computer Engineering

i

Acknowledgments

They say it takes a village to raise a child, but what they did not say is that it also

takes a village to defend a Master′s thesis. I am lucky to have so many people in my

life that have been there for me throughout this journey.

Thank you to my fellow researchers, both past and present, from the Applied

Cryptography and Information Security Lab: Michael Foster, Daniel Stafford, Cody

Tinker, Stephanie Soldavani, Andrew Ramsey, Jason Blocklove, and Eric Scheler.

Not only have you been so supportive, you have also kept me company when I needed

it the most. Also a special shout-out to Cody, Kevin and Yash for responding to my

last-minute questions even when I could have answered them myself.

Thank you to everyone at the RIT research cluster for providing me with the

resources necessary to gather results. A month before meeting you, I honestly did

not think I was going to finish in time. Sidney, Jen, and Andrew, I would have no

results without you and for that I am eternally grateful.

Thank you to my committee members for taking the time to sit in on my defense

and, more importantly, for providing me with the necessary guidance to succeed.

Thank you Dr. Merkel for being the Deep Learning expert in a group of cryptog-

raphers; you answered the simplest questions without judgment, making it easy to

ask no matter the task. Thank you Dr. Radziszowski for being the inspiring math-

ematician that you are and for showing me the ropes in Foundations of Cryptog-

raphy/Advanced Cryptography; I am still in awe at the vast amount of knowledge

you have and I look forward to emailing you with my future security queries. To Dr.

Lukowiak, I cannot thank you enough for all that you have done to guide me through-

out this process; you helped me when I needed it the most and always provided a

path to solve the problems I did not think I could solve.

Thank you to my friends who supported me in person or via phone. Neha and

Karn, you did not have to sit through an hour-long presentation about applied cryp-

ii

tography, but you did, and it meant a lot.

Last, but certainly not least, I want to give a special thanks to my family. We

have had an interesting run these past 7 years and while there were times I wanted to

wallow in self-pity, you all found a way to bring me out and cheer me up. Thank you

Apoorva for understanding the stress of graduate school; sometimes I just wanted to

vent and you were a phone call away. Thank you Dad for providing sound and stable

advice; you are a calm voice of reason in an otherwise noisy environment. Finally,

thank you Mom for just being there; you have put up with my unpredictable stress,

you have stood by my side during my darkest moments, and ultimately I am proud

to call you my friend.

iii

Abstract

A front-runner in modern technological advancement, machine learning relies heavily

on the use of personal data. It follows that, when assessing the scope of confiden-

tiality for machine learning models, understanding the potential role of encryption is

critical. Convolutional Neural Networks (CNN) are a subset of artificial feed-forward

neural networks tailored specifically for image recognition and classification. As the

popularity of CNN increases, so too does the need for privacy preserving classifica-

tion. Homomorphic Encryption (HE) refers to a cryptographic system that allows

for computation on encrypted data to obtain an encrypted result such that, when

decrypted, the result is the same value that would have been obtained if the op-

erations were performed on the original unencrypted data. The objective of this

research was to explore the application of HE alongside CNN with the creation of

privacy-preserving CNN layers that have the ability to operate on encrypted images.

This was accomplished through (1) researching the underlying structure of preexisting

privacy-preserving CNN classifiers, (2) creating privacy-preserving convolution, pool-

ing, and fully-connected layers by mapping the computations found within each layer

to a space of homomorphic computations, (3) developing a polynomial-approximated

activation function and creating a privacy-preserving activation layer based on this

approximation, (4) testing and profiling the designed application to asses efficiency,

performance, accuracy, and overall practicality.

iv

Contents

Signature Sheet i

Acknowledgments ii

Abstract iv

Table of Contents v

Acronyms viii

1 Introduction 1

1.1 Motivation and Problem . 1

1.2 Homomorphic Encryption . 3

1.3 This Work . 3

2 Background 5

2.1 Privacy Preservation Techniques . 5

2.1.1 Secure Hardware: Intel SGX 5

2.1.2 Secure Multi-party Computing 6

2.1.3 Homomorphic Encryption . 6

2.2 Types of Homomorphic Cryptosystems 7

2.3 High Level Fully Homomorphic Encryption (FHE) 8

2.3.1 FHE Blueprint . 9

2.3.2 Noise Growth . 9

2.4 Convolutional Neural Networks . 10

3 Related Work 12

3.1 Privacy Preserving Deep Computation Model on Cloud for Big Data

Feature Learning . 13

3.2 CryptoNets: Applying Neural Networks to Encrypted Data with High

Throughput and Accuracy . 14

3.3 Privacy Preserving Classification on Deep Neural

Network . 14

3.4 CryptoDL: Deep Neural Networks over Encrypted Data 15

v

CONTENTS

4 Mathematics of Homomorphic Encryption 17

4.1 Mathematic Structures . 17

4.1.1 Lattices . 17

4.1.2 Rings . 19

4.2 Hard Problems . 20

4.2.1 Shortest Vector Problem . 20

4.2.2 Learning With Errors . 20

4.2.3 Ring Learning With Errors . 22

5 Fully Homomorphic Encryption 24

5.1 Practical FHE . 24

5.2 FHE Functions . 24

5.2.1 Homomorphic Addition . 25

5.2.2 Homomorphic Multiplication 25

5.3 Popular FHE Cryptosystems . 25

5.3.1 FV Cryptosystem . 26

5.3.2 BGV Cryptosystem . 28

5.4 HElib vs. Microsoft SEAL . 30

6 HElib Functions, Security and Parameter Selection 35

6.1 Math Notation . 35

6.2 Functions . 36

6.2.1 ContextGen . 36

6.2.2 Key Generation . 36

6.2.3 Encryption . 37

6.2.4 Decryption . 37

6.2.5 Addition and Multiplication 37

6.2.6 Modulus Switching . 38

6.2.7 Bootstrapping . 38

6.3 Security . 38

6.4 Parameter Selection . 39

6.4.1 Parameters for Security . 39

6.4.2 Parameters for Functionality 40

7 Design 43

7.1 CNN Layers . 43

7.1.1 Fully Connected . 43

vi

CONTENTS

7.1.2 Convolution . 44

7.1.3 Activation . 45

7.1.4 Pooling . 46

7.2 Layer Design . 47

7.2.1 HElib Encoding and Functions 47

7.2.2 Fully Connected Design . 48

7.2.3 Convolution Design . 49

7.2.4 Activation Design . 50

7.2.5 Pooling Design . 53

8 Privacy Preserving Logic Gates 55

8.1 Logic Gates . 55

8.2 Network . 56

8.3 Test Environment . 56

8.4 Results . 57

9 Privacy Preserving CNN 60

9.1 Dataset . 60

9.2 Network . 61

9.2.1 Training . 62

9.2.2 Testing . 63

9.3 Test Environment . 63

10 Profiling Results 65

10.1 Timing . 65

10.2 Scale Variation . 69

10.3 Security Parameter Variation . 73

10.4 Level Variation . 76

10.5 Column Variation . 79

10.6 Thread Variation . 81

10.7 Fast Configuration . 83

11 Conclusion and Future Work 84

Bibliography 86

vii

Acronyms

ANN Artificial feed-forward Neural Networks

ASVP Approxmate Shortest Vector Problem

BGV Brakerski-Gentry-Vaikuntanathan

CIFAR10 Canadian Institute for Advanced Research

CNN Convolutional Neural Networks

FHE Fully Homomorphic Encryption

FV Fan and Vercauteren

HE Homomorphic Encryption

Intel SGX Intel Software Guard Instructions

LWE Learning with Errors

MNIST Modified National Institute of Standards and Technology

MPC Secure Multi Party Computing

OWF One Way Function

PHE Partially Homomorphic Encryption

PKE Public Key Encryption

PRNG Pseudo Random Number Generator

ReLU Rectified Linear Unit

viii

Acronyms

RLWE Ring Learning with Errors

RSA Rivest Shamir Adleman

SIS Short Integer Solution

SIVP Shortest Independent Vectors Problem

SRC Secure Remote Computation

SVP Shortest Vector Problem

SWHE Somewhat Homomorphic Encryption

SYY Sander Young Yung

UNUM Universal Number

uSVP Unique Shortest Vector Problem

YASHE Yet Another Somewhat Homomorphic Encryption Scheme

ix

Chapter 1

Introduction

1.1 Motivation and Problem

The rise of information technology in the everyday human experience brings forth a

new form of currency: privacy of the individual. A search for restaurants near me,

while seemingly cost-free, is only possible when the individual searching discloses their

current location. Personal data is traded daily and it is only upon close inspection

that the potential vulnerability of sharing such information becomes obvious. As a

front-runner in technological advancement, that plays a lead role in many modern

innovations, machine learning relies heavily on the use of personal data. In ma-

chine learning, analytic models are utilized to make informed predictions on provided

datasets. Because input datasets can vary from public images of handwritten digits

to more sensitive information such as personal medical history, the rise in machine

learning naturally leads to an urgency for privacy within specific applications. In

addition, many machine learning models need significant computing power to process

large amounts of data in an efficient manner. A solution to this conundrum is to take

advantage of cloud resources. From a security perspective, a cloud based solution

opens the door for a myriad of vulnerabilities. But what if it were possible to have

the best of both worlds? Is there potential for taking advantage of cloud resources,

while simultaneously maintaining security of the individual? If it is assumed that an

1

CHAPTER 1. INTRODUCTION

already trained model is hosted on the cloud, can an individual encrypt their data,

send the encrypted data to the cloud, process the encrypted data through the model,

and receive an encrypted result that only the individual can decrypt? This exact

scenario has been proven possible via privacy preserving classification. Understand-

ing the use of encryption within privacy-preserving classification is therefore essential

when assessing the confidentiality and efficiency of a system. The privacy-preserving

classification problem is concerned with the idea of making encrypted predictions

on an encrypted dataset. In machine learning, there are three datasets involved in

the creation and execution of a predictive model: training, validation, and testing.

During the learning phase, a training dataset is utilized to determine the weights

that make up the predictive model. Throughout the learning phase these weights are

updated until either a minimum error threshold has been met or a maximum num-

ber of iterations has been achieved. A validation dataset is used during the learning

phase to fine-tune the architecture and meta-parameters of the model and query the

models performance on unseen data. This fine-tuning helps minimize the potential

for over-fitting. Following the learning phase, a testing dataset is used to confirm the

predictive power of the final model. This portion is called the classification phase.

In the context of privacy-preserving classification, the learning phase works with un-

encrypted datasets while the inference phase works with encrypted datasets. This

scenario assumes a client-server model where the server has already trained the pre-

dictive model, but would now like to modify the model to classify encrypted inputs.

The learning phase follows the same procedure of updating weights and fine-tuning

model architecture using unencrypted training and validation datasets. The differ-

ence in process can be observed during the classification phase, where the testing

dataset is encrypted with a secret key before it is fed through the model that out-

puts an encrypted prediction. This output prediction can then be decrypted by the

secret key used to encrypt the input data in the first place. Proposed solutions to

2

CHAPTER 1. INTRODUCTION

the privacy-preserving classification problem are based on various approaches that

include Secure Multi Party Computing (MPC), Secure Remote Computation (SRC),

and Homomorphic Encryption (HE). Although each approach theoretically provides a

viable solution, those that take advantage of HE have been successfully implemented

and documented. The focus of this study is to take a closer look at an approach based

on HE and observe the intersection of security and ease of use.

1.2 Homomorphic Encryption

Derived from the Greek words for same form, homomorphism is a structure-preserving

transformation of one algebraic set into another. In the field of cryptography, HE

describes a cryptosystem where the transformation from the plaintext space to the

ciphertext space preserves relationships between elements. This property allows for

meaningful computation on ciphertexts. Such computations generate an encrypted

result that, when decrypted produce the same value that would have resulted from

the plaintext computation.

1.3 This Work

Several solutions to the privacy-preserving classification problem are based on HE

[1] [2] [3] [4]. While these solutions boast accuracy and efficiency, they are largely

unverified and understudied. In fact, with limited documentation and unavailable

source code, finding even a simple case-study proves difficult. This research focuses

on a more in depth exploration of using HE alongside Convolutional Neural Networks

(CNN).

In this study, HElib, an open source cryptographic library based on the Brakerski-

Gentry-Vaikuntanathan (BGV) scheme [5], was integrated with CNN. Although it

is possible to do both encrypted training and encrypted classification, the primary

3

CHAPTER 1. INTRODUCTION

focus of this study was to explore the feasibility of encrypted classification and the

intricacies involved with HElib.

To work with HE functions, low degree polynomial-approximations of both the

Rectified Linear Unit (ReLU) and Sigmoid activation functions were designed. Train-

ing of the CNN was done with the original activation functions on unencrypted data

and classification was done with the polynomial-approximated activation functions on

data encrypted by HELib. In addition to the activation layers, a privacy-preserving

convolution layer, privacy-preserving pooling layer, and privacy-preserving fully con-

nected layer were created. To verify the correctness of these privacy-preserving layers,

initial tests were done utilizing a simple three-layer network. This was used to pre-

dict the output of a specified logic gate based on an encrypted input vector and an

unencrypted weights file produced during the training phase. This network was then

tested to illustrate that classification on encrypted data is indeed possible and to

highlight some basic metrics regarding smaller privacy-preserving classifiers.

Following initial results, a larger eight-layer network was created to perform en-

crypted classification on the Modified National Institute of Standards and Technology

(MNIST) handwritten digit dataset. This application was profiled and tested for ac-

curacy, efficiency, performance, and overall practicality. The results of this experiment

illustrate the potential role of HE in many modern information systems, specifically

those that utilize CNN.

To analyze the behavior of privacy-preserving classification from a security/cryptographic

perspective, the HE parameters were varied to observe the effects of parameter size

on efficiency and of noise on accuracy. To analyze the behavior of privacy-preserving

classification from a Deep Learning perspective, the effects of varied scaling were

noted, specifically the relationship between the number of fixed bits used to represent

the weights/biases and overall classification accuracy. How many bits are needed for

successful classification? At what point does the classification accuracy deteriorate?

4

Chapter 2

Background

2.1 Privacy Preservation Techniques

A primary focus for this study is the method of privacy preservation used to secure

CNN; not only should the chosen method allow for secure computation, it must also

provide a robust level of security. Three popular privacy preservation techniques that

were explored in the interest of protecting CNN are SRC, MPC, and HE.

2.1.1 Secure Hardware: Intel SGX

The SRC problem is defined by an individual′s ability to execute software on a remote

computer while maintaining a level of security [6]. The SRC problem assumes that

the remote computer is hosted by a non-trustworthy party and therefore emphasizes

the necessity for both data confidentiality and data integrity.

Introduced as a solution to the SRC problem, Intel Software Guard Instructions

(Intel SGX) aims to secure user-level code with the use of enclaves or protected regions

of memory. Equipped with a special set of CPU instructions, a user can upload data

into a secure container where private computations may be executed. Unlike other

secure hardware platforms, which use attestation for a considerable amount of code,

Intel SGX uses attestation to vouch specifically for the enclave and its contents. On

the surface the Intel Intel SGX appears to be the perfect solution to the SRC problem,

5

CHAPTER 2. BACKGROUND

but recent studies have shown that this platform has certain drawbacks. In fact, it

has been demonstrated that the Intel Intel SGX is particularly vulnerable against

cache timing attacks [7]. In addition, according to sources the Intel SGX security

claims do not hold for cloud environments [6] [7]. For example, there is a potential

scenario where there is co-location between a logical processor running Intel SGX and

a logical processor running malicious code. Because the motivation for this study is

to increase security in the cloud, secure hardware was ruled out [6].

2.1.2 Secure Multi-party Computing

MPC refers to a protocol that grants the ability to calculate functions in a distributed

manner. The idea behind MPC is to create a method that allows for several parties

to perform computations with one another while maintaining the privacy of each

party’s input data i.e. collaborative computation without disclosing private data

[8]. With MPC, participating parties each provide their input data. This is divided

into distinct pieces, each of which are masked with a random value and sent out to

various servers. This process ensures the privacy of each individuals personal input

data, while allowing for joint computation [9].

2.1.3 Homomorphic Encryption

A form of encryption that allows computation on ciphertexts, HE has many potential

applications. In a broad sense, HE cryptosystems function like many other Public

Key Encryption (PKE) cryptosystems, where data is encrypted with a public key

and decrypted with a private key. Unlike other cryptosystems, once the data is

encrypted with the public key, HE allows for valid arithmetic operations on encrypted

data. For example if an operation, say homomorphic addition, is performed between

two encrypted values, the output will be the encrypted result of the unencrypted

values added together. Operations done within the ciphertext space therefore mimic

6

CHAPTER 2. BACKGROUND

operations done in the plaintext space. This can be observed in figure 2.1.

Figure 2.1: High Level Diagram of Homomorphic Encryption

Of the three privacy-preserving techniques mentioned, solutions based on Fully

Homomorphic Encryption (FHE) have been successfully implemented and documented.

For the purpose of this study, the BGV encryption scheme was chosen as it is the most

effective FHE scheme for polynomial evaluations [10]. An open source implementation

of BGV, HELib was integrated alongside a CNN.

2.2 Types of Homomorphic Cryptosystems

There are three types of HE: Partially Homomorphic Encryption (PHE), Somewhat

Homomorphic Encryption (SWHE), and FHE.

PHE is a cryptosystem that allows for one type of operation on encrypted data.

This operation can be performed an unlimited number of times within the cipher-

7

CHAPTER 2. BACKGROUND

text space. Famous examples of PHE cryptosystems include Rivest Shamir Adleman

(RSA), which allows for unlimited multiplication, El-Gamal, which allows for unlim-

ited multiplication, and Pallier, which allows for unlimited addition [11]. Practical

uses for PHE have manifested in the form of electronic voting, where votes are homo-

morphically added, and Private Information Retrieval, where values are homomor-

phically compared [11].

SWHE is a cryptosystem that allows for a limited number of operations on en-

crypted data. These operations can only be performed a limited number of times

within the ciphertext space. Examples of SWHE include BGN, which allows for un-

limited addition and one multiplication, Polly Cracker, which allows for arbitrary

additions/multiplication, and Sander Young Yung (SYY), which allows for unlimited

ANDs and one OR/NOT [11]. Practical uses for SWHE are generally seen when the

depth of the evaluation operation is constant [11].

FHE is a cryptosystem that allows for an unlimited number of operations on

encrypted data. These operations can be performed an unlimited number of times

within the ciphertext space. Examples of FHE include Gentrys FHE scheme and

BGV, both of which allow for unlimited addition and unlimited multiplication. Be-

cause FHE cryptosystems allow for an unlimited number of operations an unlimited

number of times, they can theoretically be used for any application [11].

2.3 High Level FHE

FHE is a type of HE that allows for an unlimited number of operations on encrypted

data. The first FHE scheme was introduced in 2009 by Craig Gentry [12]. Based

on the mathematics of ideal lattices, Gentrys FHE scheme is comprised of two steps.

The first step is to start with a Somewhat HE scheme (SWHE). SWHE is a type of

HE that allows for both homomorphic addition and homomorphic multiplication a

fixed number of times on encrypted data. This fixed number of operations is a result

8

CHAPTER 2. BACKGROUND

of how SWHE schemes are constructed. Built on the Learning with Errors (LWE)

problem, each ciphertext has some noise that hides the original message. The pri-

mary limitation with this construction is the inevitable noise growth that results from

arithmetic operations; once the noise reaches a certain threshold, the original message

is irretrievable. The second step is to add a Bootstrapping mechanism to the SWHE

scheme to refresh the ciphertext. Bootstrapping essentially consists of homomorphi-

cally evaluating the decryption circuit for noise reduction. Although this method is

both secure as well as functionally correct, it is not considered practical. This lack

of practically is largely because of high computation cost and high memory cost.

Following Gentrys 2009 scheme, several other FHE schemes have been developed.

These include schemes based on ideal lattices (Gentrys scheme)[12], schemes based

on (Ring) LWE (BGV)[5], and schemes based on integers (Van Dijks scheme)[13].

2.3.1 FHE Blueprint

PKE schemes contain the following three functions: KeyGen, Encrypt, and Decrypt.

KeyGen is used to generate both the secret key and the public key, Encrypt is used

to encrypt the plaintext data into a ciphertext, and Decrypt is used to decrypt the

ciphertext data into a plaintext. FHE schemes contain the following four functions:

KeyGen, Encrypt, Decrypt, and Evaluate. KeyGen, Encrypt, and Decrypt are the

same as any other PKE scheme, but the addition of an Evaluation function allows for

computations on ciphertexts. Evaluation performs some function with a set of cipher-

texts as inputs and outputs a ciphertext that corresponds to a functional plaintext.

For FHE schemes, the evaluate function will consist of Addition and Multiplication.

2.3.2 Noise Growth

The base construction of practical FHE schemes focuses on the concept of noisy

ciphertexts, where each ciphertext has noise that hides the message. This concept

9

CHAPTER 2. BACKGROUND

is like hidden error correcting codes, where the intended message is the codeword,

but the sent message is the codeword with some error. If the noise is small, then the

receiver can use the knowledge of a hidden code to remove the noise. However, if the

noise is large, decryption is impossible for the receiver.

When performing any mathematical operation on noisy ciphertexts, noise growth

is inevitable. Thus, both addition and multiplication will increase noise. While

addition adds the noise vectors, multiplication multiplies the noise vectors, making

the noise growth extremely large. Recall that for a cryptosystem to be considered

fully homomorphic, the operations must have the ability to be performed an unlimited

number of times. If noise growth renders the ciphertext meaningless after only a few

multiplications, the cryptosystem is not fully homomorphic. This implies that for

multiplication to be considered meaningful for an unlimited number of times, noise

growth must be managed.

2.4 Convolutional Neural Networks

Neural networks or Artificial feed-forward Neural Networks (ANN) refer to computer

systems that are inspired by the human brain. Comprised of multiple layers, the

nodes found within neural networks are interconnected like neurons found within the

brain. Neural networks constitute three types of layers: input layer, hidden layers,

and output layer. The input layer takes in the various features of an input data point

and relays these features to the hidden layer. The hidden layer then computes a

function over values gained from the previous layer and passes the calculated values

to the next layer. The output layer then performs the final computation on values

gained from the hidden layer [14]. CNN are a type of Neural Network used specifically

for image recognition. Like ANN, CNN consist of an input layer, hidden layer, and

output layer. In addition to the common types of layers observed in ANN, CNN

also have one or more convolutional layers. This new layer is created with spatial

10

CHAPTER 2. BACKGROUND

convolutional filtering in mind and therefore facilitates image processing. At a high-

level CNN take an input image and then, through a series of layers, transforms this

data into an output of label scores. Layers within CNN are ordered one after another,

where each one is linked to a layer before and a layer after. In this case, the output

of a function applied to the neurons of the current layer will be the input neurons to

the next layer [15].

11

Chapter 3

Related Work

Although privacy preserving deep learning is a relatively new area of research, recent

studies have proven successful with the integration of cryptography and deep learning.

The primary metric for success in most of these studies is the ability to preserve the

accuracy of the original Neural Network even after the introduction of HE.

It should also be noted that there is a distinction between encrypted training and

encrypted classification. Like CNN, designing a privacy preserving CNN involves both

a training phase and a classification phase. In the context of encrypted data, this

means the privacy preserving CNN can be trained on encrypted data and classified on

unencrypted data, trained on unencrypted data and classified on encrypted data, or

trained on encrypted data and classified on encrypted data. The motivation behind

encrypted training is to avoid model leakage; if the model is trained on encrypted data,

it is difficult to infer anything about the data even with heavy statistical analysis.

The motivation behind privacy preserving classification is to ensure individual privacy

while maximizing the efficiency of cloud computing; if a server is hosting an already

trained model can it be modified so that the client can secure their data before sending

it for classification?

Prior to privacy preserving deep learning, efforts were made to integrate HE with

basic machine learning classifiers. In a 2015 study, Bost et. al created three private

classifiers with the Hyperplane, Decision Tree, and Naive Bayes classifiers [16]. Each

12

CHAPTER 3. RELATED WORK

private classifier proved both robust and efficient when tested on relevant datasets.

This study provided the necessary groundwork for future attempts at incorporating

HE with Machine Learning.

3.1 Privacy Preserving Deep Computation Model on Cloud

for Big Data Feature Learning

In a study done by Chen et. al [1] privacy preserving deep computation is explored

during the training phase. The goal of this experiment is to improve the efficiency of

training by offloading expensive operations to the cloud. Input data is encrypted using

the BGV encryption scheme and then uploaded to the cloud where the high-order

back propagation can be performed. Because HE does not support exponentiation,

the primary modification introduced is the Taylor series approximation of the Sigmoid

Activation function. Timing and accuracy results were gathered for both the original

high-order back propagation algorithm outlined in the paper and the modified privacy

preserving back propagation algorithm which incorporated the computing power of

the cloud. Results of this experiment clearly show an improvement in efficiency,

with the privacy preserving scheme being two times more efficient, with regards to

timing, than the non privacy preserving scheme. This comparison was done . At

the same time, the privacy preserving scheme introduces a 2% accuracy degradation

when compared to the conventional scheme. Although this experiment does not focus

specifically on privacy preserving CNN, it does examine how to integrate HE with a

deep learning model by using a Taylor Series representation of the Sigmoid activation

function.

13

CHAPTER 3. RELATED WORK

3.2 CryptoNets: Applying Neural Networks to Encrypted

Data with High Throughput and Accuracy

One of the first commercial examples of integrating HE with Neural Networks, Microsoft′s

CryptoNets [2] presents a method for converting learned neural networks to neural

networks that can be applied to encrypted data. The goal of this experiment is to

improve the efficiency of Neural Network classification using the cloud. Input data

is encrypted using the Yet Another Somewhat Homomorphic Encryption Scheme

(YASHE) encryption scheme and then uploaded to the cloud, where the privacy

preserving neural network classifies the encrypted data. Because HE only supports

addition and multiplication, the primary modification introduced is the replacement

of the non-linear layers. The ReLU activation layer is replaced with the square func-

tion and the Max Pooling layer is replaced with Sum Pooling. Using the modified

privacy-preserving Neural Network, classification accuracy on the MNIST dataset is

98.95%, where as state of the art accuracy is 99.77%. This experiment is tested on a

small CNN that has a total of 9 layers with two activation layers. This study shows

how to implement a small-scale privacy preserving CNN with the modification of

non-linear layers.

3.3 Privacy Preserving Classification on Deep Neural

Network

It is important to note that because the square activation function has an unbounded

derivative, too many of these activation layers will lead to unstable training. This

means CryptoNets becomes largely ineffective for large CNN where there are many ac-

tivation layers or non-linear layers in general. To overcome this drawback, Chabanne

et. al [3] suggests improvements to the CryptoNets solution with the introduction

14

CHAPTER 3. RELATED WORK

of batch normalization (Ioffe and Szegedy) to both the training and classification

phase. During the training phase, the original ReLU function is used, max pooling is

replaced with sum pooling, and a batch normalization level is added before each acti-

vation layer. During the privacy-preserving classification phase, the ReLU function is

replaced with a low-degree polynomial approximation, max pooling is replaced with

sum pooling, and a batch normalization level is added before each activation layer.

Initial accuracy result show that this approach while successful on a light CNN (9

total layers, 2 activation layers) shows a fair amount of accuracy degradation on a

deep CNN (24 total layers, 6 activation layers). Following initial accuracy analysis,

improvements are made by building new polynomial approximations learned form a

distribution close to output distribution of batch normalization. Results show that

non-private classification accuracy (ReLU) is 99.59% while private classification ac-

curacy is 99.30%. This study highlights how batch normalization and low degree

polynomial approximation of the ReLU activation function can be used to improve

the accuracy of privacy preserving CNN.

3.4 CryptoDL: Deep Neural Networks over Encrypted Data

A study done by Hesamifard et. al [4] takes into consideration the aforementioned pit-

falls and attempts to improve the accuracy of privacy preserving CNN by studying the

behavior of approximated activation functions. The methods for approximating the

ReLU function include: numerical analysis, Taylor series, standard Chebyshev poly-

nomials, modified Chebyshev polynomials, and their approach based on the derivative

of the ReLU function. Using the best method of approximation, ReLU derivative, a

privacy preserving CNN was implemented and tested on both the MNIST and Cana-

dian Institute for Advanced Research (CIFAR10) datasets. The model achieved a

classification accuracy of 99.52% for the MNIST dataset. Because the approximation

based on the derivative of the ReLU function yielded the greatest accuracy, this is

15

CHAPTER 3. RELATED WORK

the approximation utilized for this study.

16

Chapter 4

Mathematics of Homomorphic Encryption

The foundation of all FHE schemes relies on the mathematics of lattices. Because the

mathematics of lattices contain various hard problems, it lends itself to the field of

cryptography. Two popular hard problems include the Short Integer Solution (SIS),

used to create One Way Function (OWF) and collision resistant hashing, and LWE,

used to create Pseudo Random Number Generator (PRNG) and PKE [17]. Based on

these hardness assumptions as well as others, existing FHE schemes can be divided

into four categories: Ideal Lattice-Based, Integer-Based, (Ring) LWE, and NTRU-

Based. Currently, Ring Learning with Errors (RLWE)-Based cryptosystems are the

primary focus of FHE.

4.1 Mathematic Structures

4.1.1 Lattices

An abstract structure in mathematics, an n-dimensional lattice is all integer linear

combinations of n basis vectors b1, b2, ..., bn. Depending on the basis, the same lattice

can be generated in multiple different ways. An n-dimensional lattice can be observed

in figure 4.1.

Generally speaking, short vectors are considered good basis while long vectors are

considered bad basis [17]. An example of a good basis versus a bad basis for the same

17

CHAPTER 4. MATHEMATICS OF HOMOMORPHIC ENCRYPTION

Figure 4.1: n-dimensional Lattice [17]

lattice can be observed in figure 4.2.

Figure 4.2: Good basis vs Bad basis for the same Lattice [17]

In simple terms lattices are partially ordered sets where each pair of elements has

a unique combination comprised of an upper bound and a lower bound. A popular

example of a lattice is the natural numbers where the lower bound between two

elements is the greatest common divisor and the upper bound between two numbers

is the least common multiple. The order relation in this example would be divisibility

[18]. This order relation can be observed in figure 4.3.

18

CHAPTER 4. MATHEMATICS OF HOMOMORPHIC ENCRYPTION

Figure 4.3: Lattice based on natural numbers with divisibility as the order relation: GCD,
LCM [19]

4.1.2 Rings

A ring R is defined as a set of elements with two operations: addition and multipli-

cation. Therefore, if two elements are added/multiplied within a ring, it will produce

another element in the ring. A ring is an abelian group under addition: addition is

both associative and commutative and there exists and additive identity and additive

inverses. This property of a ring makes subtraction possible. A ring is a monoid un-

der multiplication: multiplication is associate, but not commutative and there usually

exists a multiplicative identity, although it is not required. This property of a ring

makes division impossible. In a ring, multiplication is distributive with respect to

addition [20]. To summarize, a ring is a set of elements that contains addition, sub-

traction, and non-commutative multiplication, but does not contain division. rings

are useful for generalizing structures such as matrices. For example, the 2X2 matrices

with real numbers form a ring as matrix multiplication is not commutative [21].

19

CHAPTER 4. MATHEMATICS OF HOMOMORPHIC ENCRYPTION

4.2 Hard Problems

In cryptography the computation hardness assumption refers to the hypothesis that a

practical size problem cannot be solved in polynomial time, making it impractical for

a computer to solve. The mathematics of lattices contains many such hard problems.

4.2.1 Shortest Vector Problem

The Shortest Vector Problem (SVP) is one of the most commonly known hardness

problems. This problem states that given a basis, find a shortest non-zero vector,

where λ1 is the length of the shortest non-zero vector. An example of the SVP in 1-

Dimensional space is finding the greatest common denominator between two elements.

On a small scale, this problem seems easy, but as many cryptosystems have shown this

problem can prove difficult to solve. From SVP stems two permutations: Approxmate

Shortest Vector Problem (ASVP) and Shortest Independent Vectors Problem (SIVP)

[22].

The ASVP states that given a basis, find α-approximate shortest vector. In other

words, find a non-zero vector of length at most αx1. This permutation suggests that

the goal is not to find the exact shortest vector, but vector that is relatively close to

the shortest [23].

The SIVP states that given a basis, find n vectors of length at most λn, where

λn = min { r: there are n linearly independent lattice vectors of length ≤ r } [23]

4.2.2 Learning With Errors

The hard problem used in PKE is LWE. LWE takes the easy problem of solving a

system of linear equations and transforms it into the hard problem of solving a system

of approximate linear equations [23]:

20

CHAPTER 4. MATHEMATICS OF HOMOMORPHIC ENCRYPTION

Original:

~s ∗

∣∣∣∣∣∣∣
5 1 3

6 2 1

∣∣∣∣∣∣∣ =

∣∣∣∣11 3 9

∣∣∣∣→ Find ~s

Modified:

~s ∗

∣∣∣∣∣∣∣
5 1 3

6 2 1

∣∣∣∣∣∣∣ +

∣∣∣∣e1 e2 e3

∣∣∣∣ =

∣∣∣∣11 3 9

∣∣∣∣→ Find ~s

where e1, e2, e3 are small values.

The slight perturbation caused by the error vector is what makes this problem

computationally difficult to solve. At a high-level, LWE states that given many noisy

equations on a secret s, it is impossible to find s. Formally, LWE can be defined as:

(A, sTA+ eT)→ Find ~s (4.1)

where AεZmxn
q , ~sεZn

q , e is a ”small” error vector.

A variant of the LWE problem, that is as hard as LWE, is the decisional-LWE

problem. At a high-level, decisional-LWE states that given many noisy equations on

a secret s, it is impossible to distinguish them from random values [23]. Formally,

decisional-LWE can be defined as:

(A, sTA+ eT) = (A, b) (4.2)

where AεZmxn
q , ~sεZn

q , e is a ”small” error vector, b is uniformly random.

In cryptography, the hardness of LWE naturally lends itself to both a OWF and

21

CHAPTER 4. MATHEMATICS OF HOMOMORPHIC ENCRYPTION

a PRNG. Given the function:

gA(s, e) = (sTA+ eT) (4.3)

If LWE is assumed, then gA is an OWF and if decisional-LWE is assumed, then

gA is a PRNG.

4.2.3 Ring Learning With Errors

Another example of a ring are the polynomials with integer coefficients. In this case,

addition, subtraction and multiplication will successfully produce another polynomial

with integer coefficients, while division will not.

Polynomial Ring K[X] in X over a field K: a0 + a1x+ ...mod aiεK

Quotient Ring K[X]/[b0 + b1x+ ...+ bnx
n]: a0 + a1x+ ...mod b0 + b1x+ ...+ bnx

n

RLWE is an extension of LWE that utilizes ring elements:

(A, sTA+ eT)→ Find ~s (4.4)

where eT is a ”small” error vector.

RLWE is used over LWE because it is more efficient to compute and store ring

elements. The following example illustrates addition and multiplication with ring

elements on Zq[x]/xn + 1:

Say that q = 17 and n = 4 then:

a := 15 + 2x+ 4x2 + 7x3εZ17[x]/(x4 + 1)

22

CHAPTER 4. MATHEMATICS OF HOMOMORPHIC ENCRYPTION

b := 8 + 9x+ 3x2 + 4x3εZ17[x]/(x4 + 1)

Addition:

a+ b = ((15 + 2x+ 4x2 + 7x3) + (8 + 9x+ 3x2 + 4x3)) mod (17, x4 + 1)

= 23 + 11x+ 7x2 + 11x3 mod (17, x4 + 1)

= 6 + 11x+ 7x2 + 11x3 mod (17, x4 + 1)

Observe that the coefficients of the polynomial are bounded by 17 while the poly-

nomial itself is bounded by x4 + 1. This is the reason why 23 becomes 6 in the final

two lines as 23 mod 17 = 6.

Multiplication:

a ∗ b = ((15 + 2x+ 4x2 + 7x3) ∗ (8 + 9x+ 3x2 + 4x3)) mod (17, x4 + 1)

= (120 + 151x+ 95x2 + 158x3 + 83x4 + 37x5 + 28x6) mod (17, x4 + 1)

= (120 + 151x+ 95x2 + 158x3 + 83(−1) + 37(−x) + 28(−x2) mod (17, x4 + 1)

= (37 + 114x+ 67x2 + 158x3) mod (17, x4 + 1)

= (3 + 12x+ 16x2 + 5x3) mod (17, x4 + 1)

Similar to the addition example, the coefficients of the polynomial are bounded by

17 while the polynomial itself is bounded by x4 + 1. Because x4 = −1 mod (x4 + 1),

x4 is replaced with -1, x5 is replaced with -1x, and x6 is replaced with -1x2.

23

Chapter 5

Fully Homomorphic Encryption

5.1 Practical FHE

Considered the Holy Grail of HE, FHE is a cryptosystem that allows for an unlim-

ited number of operations an unlimited number of times within the ciphertext space.

While theoretically suitable for any application, practically FHE faces certain limita-

tions. To understand these limitations, the underlying structure of well-known FHE

schemes must first be explored.

5.2 FHE Functions

From a high-level perspective, most HE schemes are constructed as follows [24]:

1. Let m be a Plaintext message

2. Let a shared public key be a random odd integer p

3. Choose a random large integer q, small r, |r| ≤ p/2

4. Ciphertext c = pq + 2r +m (Ciphertext c is close to multiple of p)

5. Perform homomorphic addition/multiplication as required

6. Decrypt m = (c mod p) mod 2

FHE schemes contain the following four functions: KeyGen, Encrypt, Decrypt,

and Evaluate. KeyGen, Encrypt, and Decrypt are the same as any other PKE scheme,

but the addition of an Evaluation function allows for computations on ciphertexts.

24

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

Evaluation performs some function with a set of ciphertexts as inputs and outputs a

ciphertext that corresponds to a functional plaintext. In PHE schemes the evaluation

function allows for either homomorphic addition or homomorphic multiplication, in

FHE schemes, the evaluation function allows for both homomorphic addition and

homomorphic multiplication.

Using the same high-level example, the corresponding homomorphic addition and

homomorphic multiplication operations can be seen below [24]:

5.2.1 Homomorphic Addition

c1 = q1 ∗ p+ 2 ∗ r1 +m1

c2 = q2 ∗ p+ 2 ∗ r2 +m2

c1 + c2 = (q1 + q2) ∗ p+ 2 ∗ (r1 + r2) + (m1 +m2)

5.2.2 Homomorphic Multiplication

c1 = q1 ∗ p+ 2 ∗ r1 +m1

c2 = q2 ∗ p+ 2 ∗ r2 +m2

c1 ∗ c2 = ((c1 ∗ q2) + q1 ∗ c2 ∗ q1 ∗ q2) ∗ p+ 2(2 ∗ r1 ∗ r2 + r1 ∗m2 +m1 ∗ r2) +m1 ∗m2

5.3 Popular FHE Cryptosystems

Two popular FHE cryptosystems are Fan and Vercauteren (FV), and BGV. Both FV

and BGV are built on the RLWE hardness assumption. As a result the plaintext

and ciphertext spaces are defined with regard to some ring R. In this case, the ring

is defined as the polynomials with integer coefficients where addition, subtraction

and multiplication successfully produce another polynomial with integer coefficients.

Formally, R is defined as Z[x]/φd(x), where the polynomial degree is less than n =

φ(d). Generally these polynomials can be represented as a vector of coefficients.

Ciphertext coefficients are reduced modulo q and mapped into the range [−q/2, q/2],

25

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

where [.]q represents the modulus operation itself and Rq represents ring elements

with coefficients modulo q. Plaintext coefficients are reduced modulo t, where t < q.

Additional notation seen in these cryptosystems includes lw,q, where w is an integer

used in a radix-w system and lw,q = [logw(q)] + 1 [25].

The following two functions can be seen in one or both of the cryptosystems:

PowersOf: This serves as a mapping function, where ring elements are converted

to a vector of lw,q elements. Each mapped ring element has coefficients scaled by the

radix integer. In this case the radix integer is iteratively exponentiated based on the

value states after PowersOf, i.e Powersof2 [25].

WordDecomp: This serves as a mapping function, where ring elements are con-

verted to a vector of lw,q elements. Each mapped ring element has coefficients that

are the word decomposition of the original coefficients [25].

5.3.1 FV Cryptosystem

The FV cryptosystem is a FHE scheme that allows for both addition and multi-

plication. Like most FHE schemes, FV encryption is based on noisy ciphertexts,

where each ciphertext has noise that hides the message. A modification of Braker-

ski’s scale-invariant FHE scheme, the FV scheme operates under the RLWE hardness

assumption [26]. A generalized version of the FV scheme, detailed in a study done

by Lepoint et al., can be seen in the example below:

5.3.1.1 Parameter Generation

FV.ParamsGen(λ): Given the security parameter λ, fix a positive integer d that

determines R, moduli q and t with 1 < t < q, distributions χkey, χerr on R and an

integer base w > 1. Output d, q, t,, χkey, χerr, w [25].

26

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

5.3.1.2 Key Generation

FV.KeyGen(d, q, t, χkey, χerr, w): Sample s← χkey, a← Rq uniformly at random, and

e← χerr and compute b = [−(as+ e)]q. Sample a← R
lw,q
q uniformly at random, e←

χ
lw,q
err , compute ((PowersOfw,q(s

2)− (e+ a ∗ s))q, a)εRlw,q and output (pk, sk, evk) =

((b, a), s, γ) [25].

5.3.1.3 Encrypt

FV.Encrypt((b, a),m): This message space is R/tR. For a message m + tR, sample

u← χkey, e1, e2 ← χerr, and output the the ciphertext c = ([δ[m]t+bu+e1]q, [au+e2]q)

ε R2 [25].

5.3.1.4 Decrypt

FV.Decrypt(s, c): Decrypt a ciphertext c = (c0, c1) by m = [[t/q ∗ [c0 + c1 ∗ s]q]]t ε R

[25].

5.3.1.5 Add

FV.Add(c1, c2): Given ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), output cadd =

([c1,0, c2,0]q + [c1,1, c2,1]q) [25].

5.3.1.6 ReLin

FV.ReLin(cmult, evk)): Let (b, a) = evk and let cmult = (c0, c1, c2). Output the ci-

phertext [25]

[c0+ < WordDecompw,q(c2), b >]q, [c1+ < WordDecompw,q(c2), a >]q

5.3.1.7 Mult

FV.Mult(c1, c2, evk)): Output the ciphertext cmult = FV.ReLin(cmult, evk), where

[25]

27

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

cmult = (c0, c1, c2) = ([[t/q∗c1,0∗c2,0]]q, [[t/q∗(c1,0∗c2,1+c1,1∗c2,0)]]q, [[t/q∗c1,1∗c2,1]]q)

5.3.2 BGV Cryptosystem

The BGV cryptosystem is a FHE scheme that allows for both addition and multi-

plication. Like most FHE schemes, BGV encryption is based on noisy ciphertexts,

where each ciphertext has noise that hides the message. A generalized version of the

BGV scheme, detailed in a study done by Lepoint et. al, can be seen in the example

below [25]:

5.3.2.1 Parameter Generation

BGV.ParamsGen(λ, L): Given the security parameter λ, fix a positive integer d that

determines R and a distribution χ on R. For j = L down to 0, generate a decreasing

ladder of moduli qi. Outputd, qi, χ [25].

5.3.2.2 Key Generation

BGV.KeyGend, qi, χ: For j = L down to 0, sample s′i ← χ and set s1 = (1, s′i).

Sample a′i ← Rqi and an element ei ← χ and set bi = a′is
′
i + 2ei. Set ai = (bi,−a′i)T .

Set s′j = sjxsjεR
(2/2)
qj . Set bi = ai + Powersof2(si) (Add Powersof2(s1)εR

[log2(qi)]
qi to

a’s first column). Set τs′j+1→sj = bi except for when j = L. Set the secret key sk to a

vector of si and the public key pk a vector of ai and a vector of τs′j+1→sj is a public

parameter [25].

5.3.2.3 Encrypt

BGV.Encryptpk,m: To encrypt a message mεR2, set m = (m, 0)εR2
2. Sample r ← χ

and e← χ2 output the ciphertext [25]

c = m+ 2 ∗ e+ aTL ∗ rεR2
qL

28

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

5.3.2.4 Decrypt

BGV.Decryptsk, c: Suppose the ciphertext c is encrypted under sj. To decrypt c,

compute [25]

m = [[< c, sj >]qj]2

5.3.2.5 Switch Key

BGV.SwitchKeyτs′j+1→sj , c, qj: Output the new ciphertext [25]

c1 = BitDecomp(c)T ∗ bj

5.3.2.6 Refresh

BGV.Refreshτs′j+1→sj , c, qj: Suppose the ciphertext is encrypted under s′j. Do the

following [25]:

1. Switch Keys: Set c1 ← BGV.SwitchKeyτs′j+1→sj , c, qj for modulus qj.

2. Switch Moduli: Set c2 ← BGV.Scalec1, qj, qj−1, 2, a ciphertext under sj−1 for

modulus qj−1.

5.3.2.7 Add

BGV.Addpk, c1, c2: Takes two ciphertexts encrypted under the same key sj [25].

c3 = c1 + c2 cadd = Refresh(c3, τs′j→sj−1
, qj, qj−1)

5.3.2.8 Mult

BGV.Multpk, c1, c2: Takes two ciphertexts encrypted under the same key sj [25].

c3 = Llongc1,c2
(x ∗ x) cmult = Refresh(c3, τs′j→sj−1

, qj, qj−1)

29

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

5.4 HElib vs. Microsoft SEAL

To date, there are few practical implementations of FHE cryptosystems. A popular

implementation of the FV scheme is the Microsoft SEAL library. SEAL supports

Python and C++ development and can be used for a myriad of applications. A

popular implementation of the BGV scheme is HELib. Like the Microsoft SEAL

library, HElib is also suitable for Python and C++. Both libraries have similar

capabilities, so when selecting which library to utilize the comparison below was

considered [27] [28].

Initial comparison was done on the basic features that each library provides.

These features include asymmetry, serialization/deserializationn, negative computa-

tions, and encryption parameter/ciphertext size [24]. This can be observed in table

5.1.

Table 5.1: Basic Features

Basic Features SEAL HElib

Asymmetric Yes Yes

Serialization and Deserialization of keys and ciphertexts Yes Yes

Negative Computations Support Yes No

Ciphertext size (less than 1MB for 1 input) No No

Can run on less than 2GB RAM No Yes

Microsoft SEAL and HElib provide asymmetry or implement a PKE scheme. Re-

call that PKE cryptosystems have both a public key, that is used to encrypt the

plaintext data, and a private key, that is used to decrypt the ciphertext data. The

public key can be shared with various users while the private key remains a secret

and is held only by the individual authorized to decrypt the ciphertext data. Both

libraries also provide for the Serialization and Deserialization of keys and ciphertext.

30

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

This means the developer does not have to implement an API for local storage and re-

trieval when it comes to input/output for the encryption schemes. The first difference

between Microsoft SEAL and HElib can be observed with Negative computations. In

integer arithmetic, certain operations can result in a negative value. One such opera-

tion is subtraction, where the second operand is greater than the first operand. While

HElib does not have the ability to encode for negative values, Microsoft SEAL pro-

vides an Integer Encoder or Fractional Encoder that supports negative computation.

Both libraries have a ciphertext size of a least 1MB for 1 input. This size is primarily

due to choice of input encryption parameters. These parameters include the plain

modulus, coefficient modulus, polynomial modulus, etc. Size of these parameters not

only affects ciphtertext size, but RAM requirements as well. Although HElib can still

effectively run on less than 2GB of RAM, Microsoft SEAL cannot.

Following the basic feature comparison, the advanced features of both libraries

were considered. These features include noise budget, recryption, cipthertext packing,

relinearization, and multithreading [24]. This can be observed in table 5.2.

Table 5.2: Advanced Features

Advanced Features SEAL HElib

Noise affected after each computation Yes Yes

Recryption No Yes

Relinearization Yes Yes

Ciphertext packing Yes Yes

Multithreading Yes Yes

Because Microsoft SEAL and HElib are built upon RLWE cryptosystems, they

are both noise affected after each computation. Recall that LWE, in this case RLWE,

cryptosystems work by hiding the plaintext with noise and that, after a certain thresh-

old, a noise encrypted plaintext will not decrypt to it’s original state. When these

31

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

ciphertexts are operated upon, the noise grows. With addition/subtraction, noise

growth is fairly manageable, but with multiplication, noise growth can become ex-

tremely large. One way to manage such noise growth is recryption. The process of

recryption converts bounded depth homomorphism to unbounded depth homomor-

phism, resetting the ciphertext noise. HElib allows for recryption, while Microsoft

SEAL does not. In addition to recryption, relinearization can be used to manage

noise growth. Relinearization focuses on reducing the size of the output ciphertext of

the multiplication operation. Microsoft SEAL and HElib both provide a method for

relinearlization.

For the purpose of speed-up Microsoft SEAL and HElib have a ciphertext packing

feature. This technique takes advantage of the Chinese Remainder Theorem and

packs multiple plaintext values into a single ciphertext vector. Operations can then

be performed on the entire vector resulting in faster computation. This process

is called Single Instruction Multiple Data or SIMD. For additional speedup, both

libraries have multithreading capabilities. Microsoft SEAL contains many functions

that are thread-safe by default, whereas HElib can be made thread-safe by setting a

few flags.

Table 5.3 illustrates the basic operations that both libraries provide [24].

32

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

Table 5.3: Operations

Operations SEAL HElib

Addition/Subtraction Yes Yes

Multiplication Yes Yes

Comparison No No

Division No No

Boolean Op. No No

Bitwise Op. Yes Yes

Matrix Op. Yes Yes

Exponentiation Yes Yes

Square Yes Yes

Negation Yes Yes

Addition/Subtraction/Multiplication Plain Yes No

Microsoft SEAL and HElib allow for basic addition, subtraction, and multiplica-

tion between ciphertexts. Neither library allows for comparison, division, or boolean

operations between ciphertexts. Both libraries also provide the capability of bitwise

operations, matrix operations, exponentiation, square, and negation of ciphertexts.

The only difference between the two libraries with regards to operations is that Mi-

crosoft SEAL supports addition, subtraction, and multiplication between a ciphertext

and a plaintext.

Looking at the comparison between Microsoft SEAL and HElib, both libraries

provide similar functionality and operations. The primary difference between the

two libraries is that Microsoft SEAL has negative computation support and explic-

itly defined functions for addition/subtraction/multiplication between plaintexts and

ciphertexts while HElib can run on less than 2GB RAM and provides recryption sup-

port. Although HElib does not have negative computation support, it is still possible

33

CHAPTER 5. FULLY HOMOMORPHIC ENCRYPTION

to differentiate between negative and positive values. Take the plaintext modulus,

p, any value less than p/2 is considered positive and any value greater than p/2 is

considered negative. HElib also has two functions, addConstant and multiplyByCon-

stant, that produce the same functionality as basic arithmetic between ciphertexts

and plaintexts. In this case, the plaintext is just treated as a constant vector. Un-

fortunately, while it is possible for HElib to mimic the missing functionality seen in

Microsoft SEAL, it is not possible for Microsoft SEAL to run on less than 2GB of

RAM or replicate recryption. In addition, while there is limited documentation on

both libraries, when it comes to privacy preserving CNN, HElib appears to be the

library of choice. For these reasons, the library chosen for this study is HElib.

34

Chapter 6

HElib Functions, Security and Parameter Selection

6.1 Math Notation

The HELib implementation uses polynomial rings over integers modulo an irreducible,

cyclotomic polynomial. This is represented as R = Zq[x]/φ(x), where φm(x) is the

mth cyclotomic polynomial. In the case of a composite integer q the polynomial ring

is defined as Rq = Z[x]/(φm(x), q) where Aq is the set of integer polynomials of degree

up to φm(x) modulo q.

The plaintext space is binary polynomials R2. The ciphertext and key space are

the vectors defined over polynomial ring R. Also plaintext a is in the coefficient

representation, where a =< a0, a1, ..., aφ(m)−1 > εZ/qZφ(m) is a list of the coefficients

in the polynomial a(X) = Σi<φ(m)aiX
i.

Below is a list of parameters that will be used to describe the functions found in

HElib.

λ: security parameter, representing 2λ security against unknown attacks

n: dimension

q: current integer modulus

χ: noise distribution

N : additional integer parameter

35

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

6.2 Functions

The following section describes the basic functions provided by HElib [29].

6.2.1 ContextGen

Context Generation refers to the process of calculation the ciphertext modulus q,

the variance error distribution σ, and the dimension n. In order to successfully

calculate these three variables, context generation requires the plaintext modulus p,

the multiplicative depth L, and the security parameter λ.

6.2.2 Key Generation

Secret Key: To generate the current secret key sk

s′ ← χN (6.1)

sk = s← (1, s′[1], ..., s′[n])εRn+1
q (6.2)

Public Key: To generate the current public key pk

A′ ← RNxn
q (6.3)

e← χN (6.4)

b← A′s′ + 2e (6.5)

36

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

6.2.3 Encryption

To encrypt a message aεR2

a← (a, 0, ..., 0)εRn+1
q (6.6)

r ← RN
2 (6.7)

c← a+ AT rεRn+1
q (6.8)

Here, the transpose of the public key AT is multiplied by a sample r and then

added to the message a.

6.2.4 Decryption

To decrypt a ciphertext c

a← [[< c, s > mod φm(x)]q]2 (6.9)

Here, the inner product between c and the secret key s over the polynomial ring

Aq is computed, where q is the current modulus. This result is then reduced once

more modulo 2.

6.2.5 Addition and Multiplication

Homomorphic addition is done by simply adding two ciphertext vectors over Rq with

respect to the same secret key and modulus q. Homomorphic multiplication is done

by taking the tensor product of two ciphertext vectors over Rq with respect to the

same secret key and modulus q. This operation changes the current key.

37

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

6.2.6 Modulus Switching

To manage the inevitable noise growth that comes with homomorphic operations

BGV achieves FHE with the use of recursive modulus switching. Modulus switching

allows for the transformation of ciphertext c mod q to ciphertext c′ mod p by scaling

the original ciphertext by a factor of p/q and rounding the result accordingly. This

process reduces the magnitude of the noise [30].

6.2.7 Bootstrapping

An alternative way to manage noise growth, Bootstrapping is used in BGV as an op-

timization to allow for unlimited homomorphic operations. Bootstrapping is defined

as the process of refreshing a ciphertext by homomorphically evaluating the decryp-

tion function. Refreshing is done by encrypting the ciphertext with a second layer

and decrypting the first layer homomorphically. In order to decrypt the ciphertext

homomorphically, the user must encrypt the secret key and use it as an input to the

Evaluation function alongside the ciphertext to be refreshed [31].

6.3 Security

Since HElib is as an implementation of the BGV cryptosystem and the BGV cryp-

tosystem is based on the RLWE, the security of HElib will be based on attacks against

RLWE. Based on current research, the best known attacks against RLWE schemes

are those used against the LWE problem.

Currently, there are three well known attack algorithms against LWE. These at-

tacks are: The Unique Shortest Vector Problem (uSVP) attack, the decoding attack,

and the dual attack. The uSVP attack works by taking several LWE sample vectors

and translating them into a matrix where each row represents a lattice. This matrix

contains information that reveals the secret errors from each vector such that if the

38

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

shortest vector is discovered, the secret can be recovered as well. To find the shortest

vector, the iterative block-wise algorithm for basis reduction also known as BKZ can

be utilized. The decoding attack works to solve the search-LWE problem. This prob-

lem is solved by treating it as the Bounded Distance Decoding problem, where the

BKZ basis reduction is utilized followed by the recursive Nearest Plane algorithm.

The dual attack is used for ’small’ secrets by aiming to solve the decisional problem

and not the secret. This attack utilizes BKZ to find the shortest non-zero vector.

This short vector is then used to distinguish the samples based on the sample size

[32].

6.4 Parameter Selection

Parameter selection within HElib plays an important role when it comes to both the

security and functionality of the overall system. This section details recommended

parameters for both security and functionality.

6.4.1 Parameters for Security

To achieve a minimum level of security, is important to note that certain input pa-

rameters need to be initialized appropriately. One such parameter is the ciphertext

modulus q. In a study done by Chase et al. researchers use the uSVP attack, decod-

ing attack, and dual attack to determine the necessary size of q to achieve a specific

security level for a given dimension n. In this case, q value recommendations were

made for 3 different security levels: 128 bits, 192 bits, and 256 bits. In figure 6.1 a

recommended log2 q is given for n = 210 to n = 215 for each security level. Estimated

running time for the uSVP attack, decoding attack, and dual attack are given in bits

[32].

39

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

Figure 6.1: Security Parameter Recommendations [32]

6.4.2 Parameters for Functionality

When utilizing HElib, each parameter is associated with a different functionality. Be-

low is a detailed explanation of what each parameter represents [33].

m represents the specific modulus or ciphertext base. This value is the same q value

mentioned in the ’Parameters for Security’ section. As detailed before, this value is

important when it comes to the security of the overall cryptosystem. In HElib, the

FindM function takes k, L, c, p, d, s and outputs an appropriate m. The value for m

can also be manually set.

p represents the plaintext base. This value needs to be a prime number and is used

as the coefficient modulus. In other words, computations are done modulo p.

r represents the lifting value. This value is also part of the native plaintext space

and the default is r = 1. When r = 1 computations are done modulo p. In the case

40

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

r! = 1, computations are done modulo pr.

L represents the number of levels in the modulus chain. Levels are an integral part

of the underlying cryptosystem used by HElib. From a high-level perspective, levels

refer to a non-fixed ciphtertext space and are used to reduce the noise inside cipher-

texts. This noise reduction is done using the modulus switching technique mentioned

earlier. Levels are normally changed after ciphertext multiplication as this is the op-

eration that generates the most noise. This means the level value is largely dependent

on the evaluation function [34].

c represents the number of columns in the key-switching matrix. The number of

columns plays a key role in the relinerazation process. Recall that the purpose of

relinearization is to reduce the overhead in ciphertext multiplication and can be used

to manage noise growth. Ultimately this value is also dependent on the multiplication

depth of the evaluation function. The default value is c = 3 [34].

w represents the Hamming weight of the secret key.

d represents the degree of field extension. The default value is d = 1.

k represents the security parameter. This is the same λ value mentioned in the

’Parameters for Security’ section. The default value is k = 80. Setting k = 128 is

considered equivalent to the security of AES-128.

s represents the minimum number of slots. This value is used for ciphertext pack-

ing and allows for SIMD. Recall packing refers to the process of combining several

messages into one ciphertext. This is generally used to reduces the overall number

41

CHAPTER 6. HELIB FUNCTIONS, SECURITY AND PARAMETER
SELECTION

of ciphertexts and to speedup computation time. In HElib there are two types of

packing: pack into coefficients, and pack into subfields (CRT based packing) [34].

42

Chapter 7

Design

In this study, an approach to integrate HE and CNN was explored. HE was utilized

to perform the necessary classification on an encrypted dataset, such that when the

information is decrypted, the decrypted result matches the would be result of classi-

fication on unencrypted data. To successfully create a privacy preserving CNN, it is

important to study the building blocks of these networks: layers. Prior to creating a

privacy preserving CNN each layer was studied, implemented, and tested in both the

plaintext space and the ciphertext space. The plaintext layers were used as a baseline

comparison to ensure that the encrypted classification was indeed correct.

7.1 CNN Layers

CNN are made up of cascading layers that take an input layer of image data and

transform it into an output layer of label scores. The four common layers used

in CNN include: Fully Connected Layer, Convolutional Layer, Pooling Layer, and

Activation Layer [35].

7.1.1 Fully Connected

Fully Connected layer is the layer where each neuron is connected to all the neurons

in the previous layer. In this layer the total number of weights is equivalent to the

product of the total number of neurons in the previous layer and the total number

43

CHAPTER 7. DESIGN

of neurons in the current layer. In the context of CNN, the Fully Connected layer

appears as the final layer which outputs an N dimensional vector where N is the

number of classes the program can choose from [35]. This can be seen in figure 7.1.

Figure 7.1: Fully Connected Layer [36]

7.1.2 Convolution

Convolution layer is the layer that applies a sliding filter to an input image and outputs

the sum of elementwise multiplications between filter weights and neurons from the

previous layer. The purpose of using a filter is to extract certain characteristics

from an image, thus several filters can be used in the same layer to extract different

characteristics. The sliding filter(s) used in this layer are 3 dimensions and contain

a set of weights that are learned during the training phase. The output of applying

the 3-dimensional filter is a 2-dimensional matrix which is then stacked with all other

filter outputs to create a 3-dimensional result. This layer is unique to CNN and is

based on the technique of convolutional filtering found in image processing [35]. This

can be seen in figure 7.2.

44

CHAPTER 7. DESIGN

Figure 7.2: Convolution Layer [37]

7.1.3 Activation

Activation layer is the layer that applies a nonlinear activation function to each neuron

of the previous layer. Activation layers allow ANN and CNN to solve more complex

classification problems by introducing a non-linear component. In fact, without the

addition of this layer or the Pooling layer CNN are only able to classify linearly. Two

popular activation functions are the ReLU function and the Sigmoid function. The

ReLU activation applies f(x) = max(0, x) to then input neuron and the Sigmoid acti-

vation function applies f(x) = 1
1+e−x

to then input neuron. Generally, the Activation

layer is found after the Fully Connected layer or the Convolutional layer [35]. This

can be seen in figure 7.3.

45

CHAPTER 7. DESIGN

Figure 7.3: Sigmoid Activation and ReLU Activation [38]

7.1.4 Pooling

Pooling layer is the layer that applies a function on non-overlapping subsections form

the previous layer to output one neuron. Like the Activation layer, the Pooling layer

is a non-linear layer. In addition to non-linearity, the pooling layer is also used to

reduce the total number of neurons by reducing spatial size. Two of the most common

pooling layers are the Max Pooling layer and the Average Pooling layer. The Max

Pooling layer outputs the maximum value within the subsection and the Average

Pooling layer outputs the average of the values within the subsection. Generally, the

Pooling layer is found after the Activation layer [35]. This can be seen in figure 7.4.

Figure 7.4: Pool Layer [37]

46

CHAPTER 7. DESIGN

7.2 Layer Design

The focus of this study is only on encrypted classification, therefore the layers were

only created with the feed-forward phase in mind. Backpropagation was not included.

HElib only supports additions and multiplications. This means that not only does

HElib work best when computing low-degree polynomials, it cannot compute inverses

or exponents. Thus, the primary challenge was dealing with the non-linear layers,

specifically the activation layer and the max-pooling layer. To combat this challenge,

the same approach as the experiment done by Hesamifard et. al [4] was implemented.

Layers in the plaintext space were designed in C++. These layers take inputs that

are vectors of data type long and outputs vectors of data type long. Layers in the

ciphertext space were designed in C++ utilizing HElib. These layers take inputs that

are vectors of data type Ctxt and outputs vectors of data type Ctxt.

7.2.1 HElib Encoding and Functions

In the creation of each privacy preserving layer, HElib played a major role. Two

major considerations when working with HElib were how to encode the input image

and what functions to utilized in order to achieve the desired results.

7.2.1.1 Encoding

To encode any input values for HElib encryption, the value was simply converted to

the polynomial ZZX form. This was done by utilizing the toZZX function provided

by the NTL library. It is important to note that the toZZX function is unable to

operate on floating point values, but because each input image consisted of pixels

represented by a positive integer within the range of [0-255] this was not an issue.

Thus each pixel was simply encoded with the toZZX function before being encrypted.

In the case that the input value was a floating point number, this number would have

47

CHAPTER 7. DESIGN

to be scaled into an integer before utilizing the toZZX function.

7.2.1.2 Functions

To create a successful privacy preserving CNN there were certain high-level functions

from HElib that were utilized. These functions are detailed below:

1. Encrypt: This function takes as input a public key and a value to be encrypted.

This value must first be encoded in the format polynomial ZZX. This function outputs

a ciphertext value. The public key is generated during the initialization phase and is

represented by the FHEPubKey class.

2. Decrypt: This function takes as input a secret key and a value to be decrypted.

This function outputs a plaintext value in the format polynomial ZZX. The secret

key is generated during the initialization phase and is a subclass of FHEPubKey.

3. AddConstant: This function takes as input a plaintext value and a ciphertext

value. This function adds the values together and outputs a ciphertext.

4. MultiplyByConstant: This function takes as input a plaintext value and a ci-

phertext value. This function multiplies the values together and outputs a ciphertext.

5. Ciphertext Addition: Denoted simply by the ’+’ symbol, this function takes

as input two ciphertext values. This function adds the values together and outputs a

ciphertext.

6. Ciphertext Multiplication: Denoted simply by the ’*’ symbol, this function

takes as input two ciphertext values. This function multiplies the values together and

outputs a ciphertext.

7.2.2 Fully Connected Design

The input to this function is a 1-Dimensional weights vector holding type long and a

1-Dimensional input vector holding either type long or Ctxt depending on if the input

is unencrypted/encrypted. The output of this function is also a 1-Dimensional vector

48

CHAPTER 7. DESIGN

holding either type long or Ctxt depending on if the input is unencrypted/encrypted.

This layer consists of performing the dot product between the input vector and weight

vector. The bias vector is then added elementwise to the result. In the plaintext fully

connected layer, the input vector, weights vector, bias vector, and output vector are

all unenecrypted. In the ciphertext fully connected layer, the input vector and output

vector are encrypted while the weights vector and bias vector are unencrypted. HElib

provides the ability to perform addition and multiplication between plaintexts and

ciphertexts with the AddConstant function and MultiplyByConstant function.

Algorithm 1 Fully Connected Layer

Input: in, nInput, nOutput, weight, bias, scale
Output: out
inSize⇐ nInput
outSize⇐ nOutput
for i = 0, 1, ...outSize do

for j = 0, 1, ...inSize do
tmp⇐ in[j]
tmp⇐ tmp ∗ weight[j][i]
if j = 0 then

out[i]⇐ tmp
else

out[y][x][k]+ = tmp

out[i]⇐ b[i] ∗ scale

7.2.3 Convolution Design

The input to this function is a 4-Dimensional weights vector holding type long and a

3-Dimensional input vector holding either type long or Ctxt depending on if the input

is unencrypted/encrypted. The output to this function is also a 3-Dimensional vector

holding either type long or Ctxt depending on if the input is unencrypted/encrypted.

This layer consists of performing the dot product between the input vector and weight

vector within the confines of a sliding filter or kernel. The number of kernels applied

to the input vector determines the depth of the output vector. The bias vector is then

49

CHAPTER 7. DESIGN

added elementwise to the result. In the plaintext convolution layer, the input vector,

weights vector, bias vector, and output vector are all unenecrypted. In the ciphertext

convolution layer, the input vector and output vector are encrypted while the weights

vector and bias vector are unencrypted. HElib provides the ability to perform addition

and multiplication between plaintexts and ciphertexts with the AddConstant function

and MultiplyByConstant function.

Algorithm 2 Convolution Layer

Input: in, inHeight, inWidth, depth, kernelHeight, kernelWidth, nkernels, weight, bias, scale
Output: out
count⇐ 0
outHeight⇐ inHeight− (kernelHeight− 1)
outWidth⇐ inWidth− (kernelWidth− 1)
for k = 0, 1, ...nkernels do

for y = 0, 1, ...outHeight do
for x = 0, 1, ...outWidth do

for c = 0, 1, ...depth do
for ky = 0, 1, ...kerenelHeight do

for kx = 0, 1, ...kerenelWidth do
tmp⇐ in[y + ky][x+ kx][c]
tmp⇐ tmp ∗ weight[ky][kx][c][k]
if count = 0 then

out[y][x][k]⇐ tmp
count+ +

else
out[y][x][k]+ = tmp
count+ +

if count = (kernelHeight ∗ kernelWidth ∗ depth) then
count = 0

out[y][x][k]⇐ b[k] ∗ scale

7.2.4 Activation Design

HElib provides only linear operations, therefore any non-linear layer had to be modi-

fied. Because the activation layer is by definition non-linear, the functions needed to

be modified accordingly. The input to both activation functions are a 1-Dimensional/3-

Dimensional input vector holding either type long or Ctxt depending on if the input

50

CHAPTER 7. DESIGN

is unencrypted/encrypted. The output to both activation functions are also a 1-

Dimensional/3-Dimensional vector holding either type long or Ctxt depending on if

the input is unencrypted/encrypted. In the plaintext activation layer, the input vec-

tor and output vector are unenecrypted. In the ciphertext activation layer, the input

vector and output vector are encrypted.

7.2.4.1 ReLU

For the ReLU activation layer, the approximation approach taken by Hesamifard

et. al [4] was implemented. In this experiment authors decided to take a different

approach and approximate the derivative of the ReLU function. This approach was

taken because of the derivative′s impact on both error calculation and weight updates.

Authors noted that a simulation of the ReLU derivative, the Step function, mimics

the behavior of the Sigmoid function. From this observation, authors calculated the

integral of the polynomial approximation of the Sigmoid function. This integral was

then used to approximate the ReLU function. The polynomial approximation used

is: 0.0012x2 + 0.5x + 52. Results from the study done by Hesamifard et al. indicate

that this function yielded the best approximation of the ReLU when compared to

other methods: numerical analysis, Taylor series, standard Chebyshev, and modified

Chebyshev. The comparison of this approximation and the ReLU function can be

seen in the figure below.

HElib is unable to operate on floating point values. As a result, the coefficients

seen in the polynomial approximation of the ReLU activation function had to be

scaled by a factor of 10000. This allows each coefficient to be treated as an integer

instead of a float. This scaling needs to be taken into account when observing the

final output.

51

CHAPTER 7. DESIGN

Figure 7.5: Approximation of ReLU function

7.2.4.2 Sigmoid

For the Sigmoid activation layer, a Taylor series approximation was implemented.

Because HElib only works well with lower degree polynomials, the Taylor series ap-

proximation is limited to a degree 3 polynomial. The polynomial approximation used

is: −0.002x3 + 0.25x+ 0.5.

HElib is unable to operate on floating point values. As a result, the coefficients

seen in the polynomial approximation of the Sigmoid activation function had to be

scaled by a factor of 10000. This allows each coefficient to be treated as an integer

instead of a float. This scaling needs to be taken into account when observing the

final output.

52

CHAPTER 7. DESIGN

Algorithm 3 ReLU Layer

Input: in, nInput, nOutput
Output: out
scale = 10000
c0 = 520000
c1 = 5000
c2 = 12
inSize⇐ nInput
for i = 0, 1, ...inSize do

out[i]⇐ in[i] ∗ in[i] ∗ c2 + in[i] ∗ c1 + c0

Algorithm 4 Sigmoid Layer

Input: in, nInput, nOutput
Output: out
scale = 10000
c0 = 5000
c1 = 2500
c2 = −200
inSize⇐ nInput
for i = 0, 1, ...inSize do

out[i]⇐ in[i] ∗ in[i] ∗ in[i] ∗ c2 + in[i] ∗ c1 + c0

7.2.5 Pooling Design

HElib does not provide any comparison operation, therefore the Max Pool layer had

to be modified. In this case the max pool layer was replaced with a sumpool layer.

Instead of outputting the largest value within a sliding window, sum pool just adds

all the values within the sliding window and outputs that value. The input to this

function is a 3-Dimensional input vector holding either type long or Ctxt depending

on if the input is unencrypted/encrypted. The output to this function is also a 3-

Dimensional vector holding either type long or Ctxt depending on if the input is

unencrypted/encrypted. This layer consists of adding the values within the confines

of a sliding window. In the plaintext sum pool layer, the input vector and output

vector are unenecrypted. In the ciphertext sum pool layer, the input vector and

output vector are encrypted. HElib provides the ability to add ciphertexts with one

another, thus this functionality was used in the ciphertext sum pool layer.

53

CHAPTER 7. DESIGN

Algorithm 5 SumPool Layer

Input: in, inHeight, inWidth, depth, pooly, poolx
Output: out
count⇐ 0
outHeight⇐ inHeight/pooly
outWidth⇐ inWidth/poolx
for c = 0, 1, ...depth do

for y = 0, 1, ...outHeight do
for x = 0, 1, ...outWidth do

for i = 0, 1, ...pooly do
for j = 0, 1, ...poolx do

tmp⇐ in[y ∗ pooly + i][x ∗ poolx+ j][c]
if count = 0 then

out[y][x][c]⇐ tmp
count+ +

else
out[y][x][c]+ = tmp
count+ +

if count = (pooly ∗ poolx) then
count = 0

54

Chapter 8

Privacy Preserving Logic Gates

To test the basic functionality of privacy preserving classification, a small neural

network was created to predict the output of logic gates. This neural network works

by taking an input vector and weights file, feeding them through the network, and

predicting the output based on the logic gate specified.

8.1 Logic Gates

Logic gates are the basic building blocks of any digital system. An electronic circuit

that has one or more inputs and only one output, logic gates provide the perfect

system for a basic neural network classifier. For the purpose of this experiment, the

focus will be on two-input logic gates with the exception of the NOT gate, which has

only one input. Figure 8.1 details the truth table for the logics gates to be classified

by the privacy preserving neural network.

Figure 8.1: Logic Gate Truth Tables [39]

55

CHAPTER 8. PRIVACY PRESERVING LOGIC GATES

Looking at the various truth tables, the privacy preserving neural network will

work by taking in an input vector consisting of the values in columns B and A and

output a vector consisting of the values in column X.

8.2 Network

The privacy preserving neural network used to predict the output of the logic gate

consists of two layers: Fully Connected layer followed by a Sigmoid Activation layer.

The idea behind using such a small network is to imitate the behavior of a basic

perceptron. Here the input data is converted to an array and the weights data is

converted to an array. A dot product is then performed between these two arrays

and the result is fed through the Sigmoid activation function. A high level diagram

of this network can be seen in the figure 8.2.

Figure 8.2: Perceptron [40]

8.3 Test Environment

Computations were run on a computer with 4GB RAM, Intel Core i3 processor, 2.4

GHz and Ubuntu 16.04.

56

CHAPTER 8. PRIVACY PRESERVING LOGIC GATES

8.4 Results

For the purposes of this small example, there was no training portion done to output

a weights file. Instead, a predetermined weights file was fed through the privacy

preserving classifier just to observe the performance of the encrypted arithmetic.

Table 8.1 details the output of the encrypted classifier when given the input data

file and input weights file for the NOT gate.

Table 8.1: NOT

A actual expected

0 1.0 1

1 0.0 0

Table 8.2 details the output of the encrypted classifier when given the input data

file and input weights file for the AND gate.

Table 8.2: AND

A B actual expected

0 0 0.0 0

0 1 0.0 0

1 0 0.0 0

1 1 1.0 1

Table 8.3 details the output of the encrypted classifier when given the input data

file and input weights file for the OR gate.

57

CHAPTER 8. PRIVACY PRESERVING LOGIC GATES

Table 8.3: OR

A B actual expected

0 0 0.0 0

0 1 1.0 1

1 0 1.0 1

1 1 1.0 1

Table 8.4 details the output of the encrypted classifier when given the input data

file and input weights file for the NAND gate.

Table 8.4: NAND

A B actual expected

0 0 1.0 1

0 1 1.0 1

1 0 1.0 1

1 1 0.0 0

Table 8.5 details the output of the encrypted classifier when given the input data

file and input weights file for the NOR gate.

Table 8.5: NOR

A B actual expected

0 0 1.0 1

0 1 0.0 0

1 0 0.0 0

1 1 0.0 0

58

CHAPTER 8. PRIVACY PRESERVING LOGIC GATES

Table 8.6 details the output of the encrypted classifier when given the input data

file and input weights file for the NOR gate.

Table 8.6: XOR

A B actual expected

0 0 0.0 0

0 1 1.0 1

1 0 1.0 1

1 1 0.0 0

It can be noted that all gates performed as expected, yielding the correct output

with both the encrypted input as well as the Sigmoid approximation. The exam-

ple was used as a proof-of-concept before proceeding to a larger network for image

classification.

59

Chapter 9

Privacy Preserving CNN

The primary motivation behind the creation of privacy preserving CNN is to maintain

a level of information anonymity for all parties involved. While privacy preserving

CNN are not needed in everyday scenarios, there are certainly situations that call for

such measures. For example, when dealing with medical data, oftentimes the privacy

of a patients personal information is of extreme importance or the model utilized by

the hospital to predict a certain diagnosis can be proprietary information. In such

a situation, privacy preserving CNN can allow patients to send personal information

and receive a diagnosis, where both the information and the diagnosis are inaccessible

to all parties except for the patient. In addition to this, the hospital can keep their

model private from the patients, while still utilizing their classifier on the encrypted

data.

9.1 Dataset

The privacy preserving CNN was trained and tested using the MNIST data set.

This datasets was specifically chosen because of it’s wide use in the deep learning

community. This allowed for accuracy comparison with existing studies. This dataset

consists of 60,000 images, with 50,000 image for the training portion and 10,000

images for the testing portion. Images in the MNIST database are 28x28 pixel arrays.

Each pixel is a positive integer within the range of [0-255]. An example of images

60

CHAPTER 9. PRIVACY PRESERVING CNN

from the MNIST dataset can be seen in figure 9.1.

Figure 9.1: MNIST image sample

9.2 Network

The Network that was created to train and classify the MNIST data set can be seen

in figure 9.2.

The following is a description of the Network seen in the figure 9.2.

1. Convolution Layer: Input image is 28x28x1. The convolution has 20 kernels of

size 5x5 and a stride of (1,1). The output of this layer is 24x24x20.

2. Sum Pool Layer: Input is 24x24x20. The stride is (2,2). The output of this

layer is 12x12x20.

3. Convolution Layer: Input is 12x12x20. The convolution has 50 kernels of size

5x5 and a stride of (1,1). The output of this layer is 8x8x50.

4. Sum Pool Layer: Input is 8x8x50. The stride is (2,2). The output of this layer

is 4x4x50.

5. Flatten Layer: Input is 4x4x50. The output of this layer is 800.

61

CHAPTER 9. PRIVACY PRESERVING CNN

Figure 9.2: Privacy Preserving Convolutional Neural Network

6. Fully Connected Layer: This layer fully connects the incoming 800 nodes to

the outgoing 500 nodes or is equivalently a multiplication by a 800x500 matrix.

7. ReLU Activation Layer: Takes the ReLU of the value at each input node.

8. Fully Connected Layer: This layer fully connects the incoming 500 nodes to

the outgoing 10 nodes or is equivalently a multiplication by a 500x10 matrix.

9.2.1 Training

During the training phase, the original ReLU function was used and max pooling was

replaced with sum pooling. The CNN was trained with the Keras framework with a

Tensorflow backend on the MNIST database. Training was done on batches of size

128 for a total of 10 epochs.

The optimization algorithm used for training was Adam or the Adaptive Moment

Estimation. The reason this was chosen is because Adam has low memory require-

ments and works well with little tuning of hyperparameters. Default parameters

provided by Keras were utilized [41]:

62

CHAPTER 9. PRIVACY PRESERVING CNN

Learning Rate = 0.001

beta1=0.9

beta2=0.999

epsilon=1e-8

9.2.2 Testing

During the privacy-preserving classification phase, the ReLU function was replaced

with a low-degree polynomial approximation and max pooling was replaced with sum

pooling.

The privacy preserving CNN takes as input a PNG image file representing a hand-

written digit from 0-9 and the weights file computed during the training phase. The

privacy preserving CNN then encrypts the image, classifies the encrypted image, and

decrypts the output of the final layer. This decrypted vector contains 10 values each

associated with a digit from 0-9. Whichever value from 0-9 is associated with the

highest value found in the vector is the classifiers prediction.

HElib is unable to operate on floating point values. As a result, the values within

the weights/bias file had to be scaled appropriately. Scaling was done simply by

multiplying the input value by some large integer value ranging from 1-512. Addi-

tionally, because operating over encrypted data takes a significant amount of time and

memory, images were not classified in batches. Instead each image was individually

processed by the privacy preserving classifier.

9.3 Test Environment

Initial attempts were made to run computations on the same test environment used

for the privacy preserving logic gates. Unfortunately, this environment did not have

enough memory to handle the privacy preserving CNN. As a result, tests were run on

the Rochester Institute of Technology research computing cluster. This environment

63

CHAPTER 9. PRIVACY PRESERVING CNN

provides 2304 cores and 24 TB RAM. The entire privacy preserving CNN application

utilizes about 300000 MB/300 GB.

64

Chapter 10

Profiling Results

When assessing the practicality of any cryptosystem, two of the most important fac-

tors to take into consideration are accuracy and timing: does this correctly classify

the image and how long does it take to classify the image? In the interest of explor-

ing the capabilities of HElib, the privacy preserving CNN was tested under various

conditions to observe the effects of different parameters on both accuracy and timing.

For timing, the number of seconds it took to encrypt/decrypt the image and execute

each layer was measured. For accuracy, normally the value is calculated by running

the privacy preserving CNN over the entire test dataset, but because of limited re-

sources a very basic test had to be implemented. Instead of testing all 10,000 images,

a random image was selected from the testing dataset and run through the privacy

preserving CNN. The entire privacy preserving CNN application utilizes about 300000

MB/300 GB.

10.1 Timing

During initial stages of testing, it was observed that the classification of one encrypted

image can take up to three hours. In the interest of exploring where the classification

may be spending most of its time, timing measurements for encryption/decryption

and each layer were noted. The two tables below detail the time it took to read the

image, encrypt the image, calculate the output of each layer, and decrypt the final

65

CHAPTER 10. PROFILING RESULTS

result. All timing values listed below were calculated with the thread capabilities

disabled, scale set to 128, security parameter set to 80 bits, columns set to 3, and

levels set to 11.

Table 10.1 illustrates the time it took for each layer to execute.

Table 10.1: Breakdown of Running Time for CNN Model

Layer Time (seconds)

Convolution Layer (20 feature maps) 1176.8500

SumPool Layer 12.4079

Convolution Layer (50 feature maps) 6084.8600

SumPool Layer 2.3229

Flatten Layer 0.4046

Fully Connected Layer 1529.1300

ReLU Layer 23.3203

Fully Connected Layer 27.2122

From the timing results in Table 10.1, it can be seen that the convolution layers

take the longest to calculate followed by the fully connected layers, the ReLU layer

and the sum pool layers.

Recall that the convolution layer consists of taking the dot product between the

previous layer and a 3-dimensional sliding filter(s) of weights. This process therefore

involves a combination of homomorphic multiplication with a constant and homo-

morphic addition with a constant. The first convolution layer takes as input the

encrypted image of dimension 28x28x1 and has 20 feature maps of size 5x5 with a

stride of 1. With this information, the number of dot product operations can be cal-

culated as (20)*(28-(5-1))*(28-(5-1))*(1)*(5)*(5)= 288000. Because this layer takes

1176.85 seconds, it can be inferred that one dot product computation takes roughly

0.00408 seconds. The second convolution layer takes as input the output of the first

66

CHAPTER 10. PROFILING RESULTS

sum pool layer with the dimension 12x12x20 and has 50 feature maps of size 5x5 with

a stride of 1. With this information, the number of dot product operations can be

calculated as (50)*(12-(5-1))*(12-(5-1))*(20)*(5)*(5)= 1600000. Because this layer

takes 6084.86 seconds, it can be inferred that one dot product computation takes

roughly 0.00380 seconds, which is fairly consistent with the first convolution layer. It

should be noted that the convolution layer also includes the addition of a bias vector

following the dot product computation, but this has been omitted from the estimate

as it is fairly negligible.

The fully connected layered also takes the dot product between an input layer and

a 1-dimensional weights vector, but because the convolution layer consists of several

3-dimensional filters, it takes less time to compute. None-the-less, the fully connected

layers take the second longest to compute after the convolution layer. The first fully

connected layer connects 800 input neurons to 500 output neurons resulting in a total

of 400000 dot product operations. Because this layer takes 1529.13 seconds, it can be

inferred that one dot product computation takes roughly 0.00382 seconds. The second

fully connected layer connects 500 input neurons to 10 output neurons resulting in a

total of 5000 dot product operations. Because this layer takes 27.2122 seconds, it can

be inferred that one dot product computation takes roughly 0.00544 seconds. Like

the convolution layer, the fully connected layer also includes the addition of a bias

vector following the dot product computation, but this has been omitted from the

estimate as it is fairly negligible.

The ReLU layer is the most computationally intensive layer as it estimates the

activation function with the following equation 0.0012x2+0.5x+52. This computation

involves both homomorphic multiplication and homomorphic addition. The ReLU

layer takes as input the output of the first fully connected layer with the dimension

of 500 neurons. Because this layer takes 23.3203 seconds, it can be inferred that one

polynomial computation takes roughly 0.4664 seconds.

67

CHAPTER 10. PROFILING RESULTS

The sum pool layer consists of only homomorphic addition operations. The first

sum pool layer takes as input the output of the first convolution layer with the dimen-

sion of 24x24x20 and has a pool size of 2x2 with a stride of 2. With this information,

the number of addition operations can be calculated as (24/2)*(24/2)*(20)*(2)*(2)=

11520. Because this layer takes 12.4079 seconds, it can be inferred that one addition

computation takes roughly 0.001077 seconds. The first sum pool layer takes as input

the output of the second convolution layer with the dimension of 8x8x50 and has a

pool size of 2x2 with a stride of 2. With this information, the number of addition

operations can be calculated as (8/2)*(8/2)*(50)*(2)*(2)= 3200. Because this layer

takes 2.32292 seconds, it can be inferred that one addition computation takes roughly

0.000726 seconds.

Looking at both convolution layers and fully connected layers, it takes about

0.0038-0.0054 seconds to perform one homomorphic dot product operation, where

the multiplication is between a ciphertext and a constant and the addition is between

two ciphertexts. Next, looking at the ReLU layer, it takes about 0.4664 seconds to

compute one polynomial computation. Finally, looking at both sum pool layers, it

takes about 0.0007-0.001 seconds to perform one homomorphic addition operation.

These results are consistent with the idea that homomorphic multiplication is the most

expensive operation as the layer that involves the multiplication between ciphertexts,

ReLU layer, takes the longest per individual computation. Ultimately the convolution

layers take the longest to calculate because of the sheer volume of computations.

Table 10.2 illustrates the time it took for reading the image, encrypting the image,

and decrypting the image.

68

CHAPTER 10. PROFILING RESULTS

Table 10.2: Breakdown of Running Time for Encryption/Decryption

Operations Time (seconds)

Read Image 0.0006

Encryption 16.7634

Decryption 0.2503

From the timing results in Table 10.2, it can be seen that the time it takes to read

the image is quite small at 0.000595 seconds. Encryption takes 16.7634 seconds, so

to encrypt one pixel it takes about 16.7634/(28*28*1) = 0.2137 seconds. Decryption

takes 0.250251 seconds, so to decrypt one value it takes about 0.250251/(10) = 0.025

seconds.

Based on the initial timing results seen in Table 10.1 and Table 10.2, it is clear that

the bottleneck in computation is from the Convolution Layer and Fully Connected

Layers.

10.2 Scale Variation

HElib is unable to operate on floating point values. As a result, the values within

the weights/bias file had to be scaled appropriately. Scaling was done simply by

multiplying the input value by some large integer value ranging from 1-512 (1-9 bits).

In this section, the scale was varied to observe the speedup in overall computation

time. All timing values were calculated with the thread capabilities disabled, security

parameter set to 80 bits, columns set to 3, and levels set to 11. In addition, for the

sake of consistency, the network was retrained every time the scale value was changed

to accommodate for the parameter change. This means a different weights file was

used for each encrypted classification.

Figure 10.1 illustrates the time it took for each layer to execute based on variation

69

CHAPTER 10. PROFILING RESULTS

in scale.

Figure 10.1: Timings for each Layer based on Scale Variation

From the results in Figure 10.1, as the scale grows so too does the amount of time

it takes to evaluate each layer. Looking at the layers that take the longest to compute

(Conv1/Conv2/FC1) from a scale of 1 (1 bit) to a scale of 512 (9 bits), there is a 5.5x

increase in computation time.

Figure 10.2 illustrates the total time to execute the network based on variation in

scale.

From the results in Figure 10.2, it can be seen that while the overall time does

indeed increase as the scale increases, the growth is not linear. Instead it appears to

rapidly grow from 1-8 (0-3 bits) and plateau around 256-512 (8-9 bits). That being

said, the total time it takes with a scale of 1 (1 bit) is roughly 1600 seconds and

the total time it takes with a scale of 512 (9 bits) is roughly 8800 seconds, which

is a difference of 2 hours. This brings into question timing at the cost of accuracy,

specifically how much accuracy one is willing to sacrifice for faster computation.

70

CHAPTER 10. PROFILING RESULTS

Figure 10.2: Total Time based on Scale Variation

Table 10.3 illustrates the time it took for reading the image, encrypting the image,

decrypting the image, and if the image was correctly classified based on the scale.

Recall that for accuracy, normally the value is calculated by running the privacy

preserving CNN over the entire test dataset, but because of limited resources a very

basic test had to be implemented. Instead of testing all 10,000 images, a random

image was selected from the testing dataset and run through the privacy preserving

CNN.

71

CHAPTER 10. PROFILING RESULTS

Table 10.3: Scale Variation

Scale Correctly Predicted? Read Image(s) Encrypt(s) Decrypt(s)

1 No 0.0006 15.6955 0.01749

2 No 0.0006 16.0526 0.0177

4 No 0.0006 16.0523 0.1160

8 No 0.0006 16.0651 0.2226

16 Yes 0.0006 16.2280 0.2229

32 Yes 0.0006 16.3002 0.2217

64 Yes 0.0006 16.1879 0.0040

128 Yes 0.0006 16.2058 0.2222

256 Yes 0.0006 16.1387 0.2221

512 Yes 0.0006 16.2236 0.2227

From the timing results in Table 10.3, it can be seen that scale variation does

not have much effect on the time it takes to read the image or the time it takes to

encrypt/decrypt the image. On the other hand, scale variation does appear to have

an effect on accuracy. It is important to note that because the entire testing set could

not be processed with the available computation power, the accuracy metric seen

here is in no way indicative of how the network would perform over all of the images.

That being said, for the few random images tested if the scale was set between 1-8

(0-3 bits), the classifier was unfortunately unable to correctly predict the value in the

encrypted image. If the scale was set between 16-512 (4-9 bits), the classifier was is

able to correctly predict the value in the encrypted image. A potential explanation for

this difference in predictive capability could be the loss of precision with the smaller

scale values. Because the scaling was done simply by multiplying the input value with

an integer, if the input floating point from the weights file was a value much smaller

than 1, multiplying it by a scale value of 1-8 may not have been enough. Recall that

72

CHAPTER 10. PROFILING RESULTS

HElib operates only on integer values, thus if the scale did not round to a value larger

than 0, the weight would be considered 0. A weight with the value 0 changes the

forward propagation calculation, leading to a potential misclassification.

Something important to note is when utilizing the non privacy preserving layers,

unencrypted classification yields the same results as encrypted classification. This

is because the non privacy preserving layers were built with the same mathematical

modifications as the privacy preserving layers. Although it was not tested, if the

original non-modified CNN layers were utilized to classify unencrypted images, scaling

may have had a similar effect on the accuracy results. This is because while the images

were tested with the scaled values, they were not trained with the scaled values.

10.3 Security Parameter Variation

HElib has a few parameters that are essential when it comes to the security of the

privacy preserving CNN. One such parameter is k/λ also known as the security pa-

rameter. The default value is k = 80 and is the value that has been used for the

other experiments. In this section, the security parameters were varied to observe the

threshold for calculation and overall security. All timing values were calculated with

the thread capabilities disabled, scale set to 128, columns set to 3, and levels set to

11.

For HElib, setting k = 128 is considered equivalent to the security of AES-128,

setting k = 192 is considered equivalent to the security of AES-192, setting k = 256

is considered equivalent to the security of AES-256. As a result, these are the three

security parameters tested aside from the default k = 80.

Figure 10.3 illustrates the time it took for each layer to execute based on variation

in security parameter.

From the results in Figure 10.3, as the security parameter grows so too does the

amount of time it takes to evaluate each layer. Looking at the layers that take the

73

CHAPTER 10. PROFILING RESULTS

Figure 10.3: Timings for each Layer based on Security Variation

longest to compute (Conv1/Conv2/FC1) from a security parameter of 80 bits to a

security parameter of 256 bits, there is a 1.8x increase in computation time.

Figure 10.4 illustrates the total time to execute the network based on variation in

security parameter.

Figure 10.4: Total Time based on Security Parameter Variation

From the results in Figure 10.4, it can be seen that the larger the security param-

eter, the larger the computation time. Based on the graph presented, the relationship

between the security parameter value and the total time for classification appears to

74

CHAPTER 10. PROFILING RESULTS

be linear with a gradual slope. With a security parameter of 80 bits the total time it

takes to classify an encrypted image is 8856.51 seconds, with a security parameter of

128 bits it takes 9977.31 seconds, and with a security parameter of 192 bits it takes

12209.61 seconds. It is important to note that the security parameter of 256 was

unable to completely classify the encrypted image as the noise growth was too large

and there were not enough levels to accommodate the security parameter. The time

difference between using a security parameter of 80 bits vs a security parameter of 192

bits is roughly 40 minutes. This brings into question timing at the cost of security:

are there scenarios where one would be willing to wait longer to ensure a higher level

of security?

Table 10.4 illustrates the time it took for reading the image, encrypting the image,

decrypting the image, and if the image was correctly classified based on the security

parameter.

Table 10.4: Security Variation Timings Encrypt/Decrypt

Sec Param FindM Read Image(s) Encryption(s) Decryption(s) Correctly Predicted?

128 11987 0.0006 19.9479 0.2279 Yes

192 15179 0.0005 24.5930 0.3600 Yes

256 18281 0.0053 31.0589 N/A No

From the timing results in Table 10.4, it can be seen that, unlike scale variation, se-

curity parameter variation does have an effect on the time it takes to encrypt/decrypt

the image. As the security parameter gets larger, so too does the amount of time it

takes to encrypt the image. This difference in time is only a few seconds and therefore

negligible in the grand scheme of things.

Security parameter variation also appears to have an effect on accuracy. While

scale variation incorrectly classifies the encrypted image because of the bit precision

of the weights, the security parameter of 256 bits incorrectly classifies because there

75

CHAPTER 10. PROFILING RESULTS

were not enough levels provided to support 256 bits of security. To solve this issue,

the network was run again with the security parameter set to 256 bits and the levels

set to 15.

10.4 Level Variation

Another important parameter found in HElib is L or the number of levels in the

modulus chain. Levels are normally changed after ciphertext multiplication as this

is the operation that generates the most noise. This means the level value is largely

dependent on the evaluation function. There is no default value suggested for the

number of levels, so L = 11 is the value that has been used for the other experiments

as it is the minimum value to successfully classify an encrypted image. In this section,

the levels were varied to observe the threshold for calculation and overall timings. All

timing values were calculated with the thread capabilities disabled, security parameter

set to 80 bits, scale set to 128, and columns set to 3.

Figure 10.5 illustrates the time it took for each layer to execute based on variation

in number of levels.

Figure 10.5: Timings for each Layer based on Level Variation

76

CHAPTER 10. PROFILING RESULTS

From the results in Figure 10.5, as the number of levels grow so too does the

amount of time it takes to evaluate each layer. Looking at the layers that take the

longest to compute (Conv1/Conv2/FC1) from number of levels set to 1 to number of

levels set to 15, there is a 65x-70x increase in computation time.

Figure 10.6 illustrates the total time to execute the network based on variation in

number of levels.

Figure 10.6: Total Time based on Level Variation

From the results in Figure 10.6, it can be seen that the greater the number of levels,

the greater the computation time. Based on the graph presented, the relationship

between the number of levels and the total time for classification appears to be linear

with an average slope. It is important to note that if the number of levels was less

than 11, the network was unable to completely classify the encrypted image as the

noise growth was too large. The time difference between using 11 levels vs 15 levels

is roughly 80 minutes. In addition, the slope in Figure 10.6 is much steeper than

the slope in Figure 10.4. The for a faster computation time, it makes more sense to

minimize the number of levels as much as possible over the security parameter.

Table 10.5 illustrates the time it took for reading the image, encrypting the image,

77

CHAPTER 10. PROFILING RESULTS

decrypting the image, and if the image was correctly classified based on the number

of levels.

Table 10.5: Level Variation Timings Encrypt/Decrypt

Levels Read Image(s) Encryption(s) Decryption(s) Correctly Predicted?

1 0.0005 0.7648 N/A No

3 0.0005 2.2317 N/A No

5 0.0005 5.1763 N/A No

7 0.0006 8.1466 N/A No

9 0.0006 12.7384 N/A No

11 0.0005 16.1540 0.2225 Yes

13 0.0006 21.0840 0.2870 Yes

15 0.0006 25.6875 0.2819 Yes

From the timing results in Table 10.5, it can be seen that, unlike scale variation,

level variation does have an effect on the time it takes to encrypt/decrypt the image.

As the number of levels increase, so too does the amount of time it takes to encrypt

the image. This difference in time is only a few seconds and therefore negligible in

the grand scheme of things.

Level variation also has effect on accuracy. There is clearly a minimum number of

levels needed to successfully classify the encrypted image and manage noise growth.

While there is no easy way to compute the necessary number of levels, generally

number of levels corresponds with the number of multiplications in the evaluation

circuit. The network tested in this experiment contains 4 dot products and a degree

two polynomial calculation. Because of this, initial experiments were done with levels

set to 6. When results showed an error message, guess and check was done to find

the minimum number of levels. In this case, the minimum number of levels necessary

for a successful classification is 11.

78

CHAPTER 10. PROFILING RESULTS

10.5 Column Variation

Another important parameter found in HElib is c or the number of columns in the

key-switching matrix. The number of columns plays a key role in the relinerazation

process and can be used to manage noise growth. Like the number of levels, this value

is also dependent on the multiplication depth of the evaluation function. The default

value is c = 3 and is the value that has been used for the other experiments. In this

section, the columns were varied to observe the threshold for calculation and overall

timings. All timing values were calculated with the thread capabilities disabled,

security parameter set to 80 bits, scale set to 128, and levels set to 11.

Figure 10.6 illustrates the time it took for each layer to execute based on variation

in number of columns.

Figure 10.7: Timings for each Layer based on Column Variation

From the results in Figure 10.6, unlike the security parameter value and num-

ber of levels, as the number of columns grow the time it takes to evaluate each

layer actually decreases. Looking at the layers that take the longest to compute

(Conv1/Conv2/FC1) from number of columns set to 1 to number of columns set to

79

CHAPTER 10. PROFILING RESULTS

5, there is a 0.5x-0.6x decrease in computation time.

Figure 10.7 illustrates the total time to execute the network based on variation in

number of columns.

Figure 10.8: Total Time based on Column Variation

From the results in Figure 10.7, it can be seen that the greater the number of

columns, the less the computation time. Based on the graph presented, the relation-

ship between the number of columns and the total time for classification appears to

be linear with an average slope. The time difference between using 5 columns vs 1

column is roughly 76 minutes.

Table 10.6 illustrates the time it took for reading the image, encrypting the image,

decrypting the image, and if the image was correctly classified based on the number

of columns.

80

CHAPTER 10. PROFILING RESULTS

Table 10.6: Column Variation Timings Encrypt/Decrypt

Columns Read Image(s) Encryption(s) Decryption(s) Correctly Predicted?

1 0.0005 23.6943 0.3644 Yes

2 0.0005 18.6674 0.2673 Yes

3 0.0006 16.2449 0.2235 Yes

4 0.0006 15.3336 0.2153 Yes

5 0.0005 14.1503 0.1621 Yes

From the timing results in Table 10.6, it can be seen that column variation does

have an effect on the time it takes to encrypt/decrypt the image. As the number of

columns increase, the amount of time it takes to encrypt the image decreases. This

difference in time is only a few seconds and therefore negligible in the grand scheme

of things. Table 10.6 also shows that, at least in this case, column variation has no

effect on accuracy. In the interest of reducing overall computation time, it makes

sense to maximize the total number of columns.

10.6 Thread Variation

In addition to the basic functionality provided, HElib has an option for multithread-

ing. In order to allow for this capability, HElib had to be rebuilt with NTL THREADS=on.

In addition certain changes needed to be made in the layer design to allow for the

NTL thread macro.

In this section, the thread count was varied to observe the speedup in overall

computation time. All timing values were calculated with the security parameter set

to 80 bits, scale set to 128, and levels set to 11 and columns set to 3.

Table 10.7 illustrates the time it took for each layer to execute based on variation

in number of threads.

81

CHAPTER 10. PROFILING RESULTS

Table 10.7: Thread Variation Timings for each Layer

Threads Conv1 SP1 Conv2 SP2 Flatten FC1 ReLU FC2

1 1176.8500 12.4079 6084.8600 2.3229 0.4046 1529.1300 23.3203 27.2122

4 343.8590 3.6240 1777.1200 0.3925 0.6780 446.5910 6.8110 7.9470

12 130.7450 1.3780 675.7100 0.4162 0.2580 169.8000 2.5890 3.0220

36 61.3830 0.6468 317.2350 0.4032 0.1210 79.7214 1.2160 1.4190

From the results in Figure 10.7, threading clearly helps with computation time. As

the total number of threads increase, the computation time for each layer significantly

decreases. In fact going from 1 thread to 36 threads has a speedup of 20x, more than

any parameter variation provides.

Table 10.8 illustrates the time it took for reading the image, encrypting the image,

decrypting the image, and if the image was correctly classified based on the number

of threads.

Table 10.8: Thread Variation Timings Encrypt/Decrypt

Number of Threads Read Image (s) Encryption (s) Decryption (s)

1 0.000572 16.1563 0.223557

4 0.000645 16.6239 0.249485

12 0.0006 16.2086 0.228941

36 0.000626 16.7332 0.264578

From the results in Figure 10.8, multithreading has no effect on the time it takes

to read the image or encryption/decryption time. Regardless, the significant im-

provement in computation time makes threading extremely valuable in the process of

encrypted classification. In the case that it is possible to enable multithreading, the

scale value, security parameter value, number of levels, and number of columns can be

82

CHAPTER 10. PROFILING RESULTS

set to any value within reason. Of course, with regard to the scale value and number

of levels, the accuracy of the evaluation circuit must be taken into consideration.

10.7 Fast Configuration

Based on the aforementioned results, a final test was done to gather timing for the fast

configuration. Fast configuration refers to a combination of the parameters that had

the best timing, while still maintaining a correct prediction. In this section timing

values were calculated with the security parameter set to 80 bits, scale set to 128,

levels set to 11, columns set to 5, and threads set to 36.

Table 10.9: Fast Configuration Timings for each Layer

Conv1 SP1 Conv2 SP2 Flatten FC1 ReLU FC2

51.128 0.445 249.716 0.085 0.020 62.957 0.746 1.139

Table 10.9 shows that the fast configuration does indeed achieve the best time for

this network, with the timing for each layer reaching an all time low.

83

Chapter 11

Conclusion and Future Work

One significant limitation to this study was the available computing power, specifically

number of cores and overall memory. Although it was eventually possible to access

greater resources with the help of RIT research computing cluster, time constraints

led to the creation of a privacy preserving CNN that, while successful, was only able to

classify a small number of images from the MNIST dataset. With greater computing

power and more time, not only will it be possible to classify the entire MNIST dataset,

a larger privacy preserving classifier could also be implemented. Additionally, a larger

dataset could be trained and tested. One such dataset is CIFAR10.

While this study did not generate results on overall classification accuracy, various

studies indicate that the drawback of privacy preserving CNN is the loss in accuracy

[1] [2] [3] [4]. Results show that when HE is integrated with Deep Learning, the

classification accuracy is not comparable state-of the art classification accuracy. To

improve classification accuracy, a future study could be done to explore the potential

of a deep learning number system known as Universal Number (UNUM). This could

be integrated with the implementation presented by Hesamifard et. al [4]. Similar to

the floating point format, UNUM was proposed by John Gustafson as a replacement

to the IEEE format. Type III UNUM or Posits perform well with regard to accuracy

in the range near one. This quality makes Posits particularly useful in the realm of

deep learning [42].

84

CHAPTER 11. CONCLUSION AND FUTURE WORK

For even greater computation speedup, a future study could take advantage of

other advanced functionalities HElib provides. One such functionally is Ciphertext

packing or Single Instruction Multiple Data. Using this feature take advantage of

a HElib feature that combines several messages into one ciphertext. This process

would reduce the overall number of ciphertexts and speedup the computation time.

Of course this would involve changing the structure of the inputs to each layer as well

as the way each weights file is processed and stored.

Overall, this study proved to be a successful proof of concept with regards to

encrypted image classification. Results showed that it is not only possible to utilize

HElib alongside a CNN to create a privacy preserving classifier, it is possible to

create various types of evaluation circuits as well. Although a significant speedup

was achieved towards the end of experimentation with the help of multithreading, in

some cases multithreading is not possible. If multithreading is not possible, then a

simple change in scale value, security parameter value, number of levels, and number

of columns can have an effect on the overall computation time of the privacy preserving

CNN. Some parameters, such as number of levels and security parameter value, have

a greater effect on timing while others, such as number of levels and scale value,

have a distinct effect on accuracy. It is thus extremely important to note that when

selecting parameters in any HElib evaluation circuit, each value plays a significant

role with regards to computation time and overall accuracy.

85

Bibliography

[1] Q. Zhang, L. T. Yang, and Z. Chen, “Privacy preserving deep computation
model on cloud for big data feature learning,” IEEE Transactions on Computers,
vol. 65, no. 5, pp. 1351–1362, May 2016.

[2] N. Dowlin, R. Gilad-Bachrach, K. L. Sin, K. Lauter, M. Maehrig,
and J. Wernsing, CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy, February 2016.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/

[3] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff, “Privacy-
preserving classification on deep neural network,” IACR Cryptology ePrint
Archive, vol. 2017, p. 35, 2017.

[4] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural networks
over encrypted data,” CoRR, vol. abs/1711.05189, 2017. [Online]. Available:
http://arxiv.org/abs/1711.05189

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” ACM Trans. Comput. Theory, vol. 6, no. 3,
pp. 13:1–13:36, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2633600

[6] V. Costan and S. Devadas, “Intel sgx explained,” 2016, https://eprint.iacr.org/
2016/086.

[7] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel
sgx,” in Proceedings of the 10th European Workshop on Systems Security, ser.
EuroSec’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:6. [Online]. Available:
http://doi.acm.org/10.1145/3065913.3065915

[8] S. Samet and A. Miri, “Privacy-preserving classification and clustering using
secure multi-party computation,” in Privacy-Preserving Classification and Clus-
tering Using Secure Multi-Party Computation, 2008.

[9] J. Colarossi and C. Soler. What is secure multiparty compu-
tation? [Online]. Available: https://www.bu.edu/research/articles/
secure-multiparty-computation/

[10] L. Barthelemy. A brief survey of fully homomorphic encryption, computing
on encrypted data. [Online]. Available: https://blog.quarkslab.com/
a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.
html

86

https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
http://arxiv.org/abs/1711.05189
http://doi.acm.org/10.1145/2633600
http://doi.acm.org/10.1145/2633600
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
http://doi.acm.org/10.1145/3065913.3065915
https://www.bu.edu/research/articles/secure-multiparty-computation/
https://www.bu.edu/research/articles/secure-multiparty-computation/
https://blog.quarkslab.com/a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.html
https://blog.quarkslab.com/a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.html
https://blog.quarkslab.com/a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.html

BIBLIOGRAPHY

[11] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., vol. 51, no. 4, pp. 79:1–79:35, Jul. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3214303

[12] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stan-
ford University, 2009.

[13] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Proceedings of the 29th Annual International
Conference on Theory and Applications of Cryptographic Techniques, ser.
EUROCRYPT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 24–43.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-13190-5 2

[14] O. Davydova. A beginner’s guide to understanding convolutional neu-
ral networks. [Online]. Available: https://medium.com/@datamonsters/
artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2

[15] A. Deshpande. A beginner’s guide to understanding convolutional neural
networks. [Online]. Available: https://adeshpande3.github.io/A-Beginner%
27s-Guide-To-Understanding-Convolutional-Neural-Networks/

[16] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification
over encrypted data,” IACR Cryptology ePrint Archive, vol. 2014, p. 331, 2014.
[Online]. Available: http://eprint.iacr.org/2014/331

[17] V. Vaikuntanathan. The mathematics of lattices i. [On-
line]. Available: https://www.youtube.com/watch?v=LlPXfy6bKIY&list=
PLgKuh-lKre139cwM0pjuxMa YVzMeCiTf

[18] C. Manwani. Mathematics—partial orders and lattices. [Online]. Available:
https://www.geeksforgeeks.org/mathematics-partial-orders-lattices/

[19] Lattice of integer divisors of 60, ordered by ”divides”. [On-
line]. Available: https://en.wikipedia.org/wiki/Lattice (order)#/media/File:
Lattice of the divisibility of 60.svg

[20] T. Gupta. Mathematics—rings, integral domains and fields. [Online]. Available:
https://www.geeksforgeeks.org/mathematics-rings-integral-domains-and-fields/

[21] M. Harrison and K. Harrison. Abstract algebra: The definition of a ring.
[Online]. Available: https://www.youtube.com/watch?v=6RC70C9FNXI

[22] L. Barthelemy. The brief survey of fully homomorphic encryption,
computing on encrypted data. [Online]. Available: https://blog.quarkslab.com/
a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.
html

87

http://doi.acm.org/10.1145/3214303
http://dx.doi.org/10.1007/978-3-642-13190-5_2
https://medium.com/@datamonsters/artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2
https://medium.com/@datamonsters/artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
http://eprint.iacr.org/2014/331
https://www.youtube.com/watch?v=LlPXfy6bKIY&list=PLgKuh-lKre139cwM0pjuxMa_YVzMeCiTf
https://www.youtube.com/watch?v=LlPXfy6bKIY&list=PLgKuh-lKre139cwM0pjuxMa_YVzMeCiTf
https://www.geeksforgeeks.org/mathematics-partial-orders-lattices/
https://en.wikipedia.org/wiki/Lattice_(order)#/media/File:Lattice_of_the_divisibility_of_60.svg
https://en.wikipedia.org/wiki/Lattice_(order)#/media/File:Lattice_of_the_divisibility_of_60.svg
https://www.geeksforgeeks.org/mathematics-rings-integral-domains-and-fields/
https://www.youtube.com/watch?v=6RC70C9FNXI
https://blog.quarkslab.com/a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.html
https://blog.quarkslab.com/a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.html
https://blog.quarkslab.com/a-brief-survey-of-fully-homomorphic-encryption-computing-on-encrypted-data.html

BIBLIOGRAPHY

[23] V. Vaikuntanathan. The mathematics of lattices ii. [On-
line]. Available: https://www.youtube.com/watch?v=SZkTJMorxnM&list=
PLgKuh-lKre139cwM0pjuxMa YVzMeCiTf&index=2

[24] S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhattacharya,
“A review of homomorphic encryption libraries for secure computation,” CoRR,
vol. abs/1812.02428, 2018.

[25] T. Lepoint and M. Naehrig, “A comparison of the homomorphic encryption
schemes fv and yashe,” vol. 8469, 05 2014.

[26] K. Hariss, M. Chamoun, and A. E. Samhat, “On dghv and bgv fully homomor-
phic encryption schemes,” in 2017 1st Cyber Security in Networking Conference
(CSNet), Oct 2017, pp. 1–9.

[27] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library - seal
v2.1,” 04 2017, pp. 3–18.

[28] M. S. H. Cruz. 2+3 using helib. [Online]. Available: https://mshcruz.wordpress.
com/2016/06/17/2-3-using-helib/

[29] S. Halevi and V. Shoup, “Algorithms in helib,” 08 2014.

[30] H. P. Blog. The bgv scheme. [Online]. Available: http://heat-h2020-project.
blogspot.com/2015/04/the-bgv-scheme.html

[31] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 18, p. 111, 01 2011.

[32] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoff-
stein, K. Lauter, S. Lokam, D. Moddy, T. Morrison, A. Sahai,
and V. Vaikuntanathan, Security of Homomorphic Encryption, July
2017. [Online]. Available: http://homomorphicencryption.org/white papers/
security homomorphic encryption white paper.pdf

[33] T. M. DuBuisson. Secure computation with helib. [Online]. Available:
https://tommd.github.io/posts/HELib-Intro.html

[34] W. Lu. Ring-learning with errors and helib. [Online]. Available: https:
//www.slideshare.net/ssuser4c5f79/h-elib

[35] K. Ujjwal. An intuative explanation of convolutional neural networks. [Online].
Available: https://ujjwalkarn.me/2016/08/11/intuitiv

[36] R. B. Zadeh and B. Ramsundar. Fully connected deep neural networks.
[Online]. Available: https://www.oreilly.com/library/view/tensorflow-for-deep/
9781491980446/ch04.html#ch4-fclayer

88

https://www.youtube.com/watch?v=SZkTJMorxnM&list=PLgKuh-lKre139cwM0pjuxMa_YVzMeCiTf&index=2
https://www.youtube.com/watch?v=SZkTJMorxnM&list=PLgKuh-lKre139cwM0pjuxMa_YVzMeCiTf&index=2
https://mshcruz.wordpress.com/2016/06/17/2-3-using-helib/
https://mshcruz.wordpress.com/2016/06/17/2-3-using-helib/
http://heat-h2020-project.blogspot.com/2015/04/the-bgv-scheme.html
http://heat-h2020-project.blogspot.com/2015/04/the-bgv-scheme.html
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
https://tommd.github.io/posts/HELib-Intro.html
https://www.slideshare.net/ssuser4c5f79/h-elib
https://www.slideshare.net/ssuser4c5f79/h-elib
https://ujjwalkarn.me/2016/08/11/intuitiv
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html#ch4-fclayer
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html#ch4-fclayer

BIBLIOGRAPHY

[37] D. Cornelisse. An intuitive guide to convolutional neural
networks. [Online]. Available: https://www.freecodecamp.org/news/
an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

[38] S. Sharma. Activation functions in neural networks. [Online]. Available: https:
//towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

[39] P. VV. How to teach logic to your neural net-
works. [Online]. Available: https://medium.com/autonomous-agents/
how-to-teach-logic-to-your-neuralnetworks-116215c71a49

[40] F. Camillo. Neural representation of logic gates. [Online]. Available: https:
//towardsdatascience.com/neural-representation-of-logic-gates-df044ec922bc

[41] J. Brownlee. Gentle introduction to the adam optimization algorithm
for deep learning. [Online]. Available: https://machinelearningmastery.com/
adam-optimization-algorithm-for-deep-learning/

[42] Gustafson and Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomput. Front. Innov.: Int. J., vol. 4, no. 2, pp. 71–86, Jun.
2017. [Online]. Available: https://doi.org/10.14529/jsfi170206

89

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49
https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49
https://towardsdatascience.com/neural-representation-of-logic-gates-df044ec922bc
https://towardsdatascience.com/neural-representation-of-logic-gates-df044ec922bc
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://doi.org/10.14529/jsfi170206

	Exploring the Effectiveness of Privacy Preserving Classification in Convolutional Neural Networks
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Abstract
	Table of Contents
	Acronyms
	Introduction
	Motivation and Problem
	Homomorphic Encryption
	This Work

	Background
	Privacy Preservation Techniques
	Secure Hardware: Intel SGX
	Secure Multi-party Computing
	Homomorphic Encryption

	Types of Homomorphic Cryptosystems
	High Level fhe
	fhe Blueprint
	Noise Growth

	Convolutional Neural Networks

	Related Work
	Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning
	CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy
	Privacy Preserving Classification on Deep Neural Network
	CryptoDL: Deep Neural Networks over Encrypted Data

	Mathematics of Homomorphic Encryption
	Mathematic Structures
	Lattices
	Rings

	Hard Problems
	Shortest Vector Problem
	Learning With Errors
	Ring Learning With Errors

	Fully Homomorphic Encryption
	Practical FHE
	FHE Functions
	Homomorphic Addition
	Homomorphic Multiplication

	Popular FHE Cryptosystems
	FV Cryptosystem
	BGV Cryptosystem

	HElib vs. Microsoft SEAL

	HElib Functions, Security and Parameter Selection
	Math Notation
	Functions
	ContextGen
	Key Generation
	Encryption
	Decryption
	Addition and Multiplication
	Modulus Switching
	Bootstrapping

	Security
	Parameter Selection
	Parameters for Security
	Parameters for Functionality

	Design
	CNN Layers
	Fully Connected
	Convolution
	Activation
	Pooling

	Layer Design
	HElib Encoding and Functions
	Fully Connected Design
	Convolution Design
	Activation Design
	Pooling Design

	Privacy Preserving Logic Gates
	Logic Gates
	Network
	Test Environment
	Results

	Privacy Preserving CNN
	Dataset
	Network
	Training
	Testing

	Test Environment

	Profiling Results
	Timing
	Scale Variation
	Security Parameter Variation
	Level Variation
	Column Variation
	Thread Variation
	Fast Configuration

	Conclusion and Future Work
	Bibliography

