
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2009

Towards virtual machine integrity using introspection Towards virtual machine integrity using introspection

Sammy Lin

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Lin, Sammy, "Towards virtual machine integrity using introspection" (2009). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/130?utm_source=repository.rit.edu%2Ftheses%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

 - i -

Towards Virtual Machine Integrity using
Introspection

By

Sammy Lin

Thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Science in
Computer Security and Information Assurance

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

April 4, 2009

 - ii -

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in
Computer Security and Information Assurance

Thesis Approval Form

Student Name: _____Sammy Lin_________________________

Thesis Title: Towards Virtual Machine Integrity using
Introspection

Thesis Committee

Name Signature Date

Charles Border
Chair

Bo Yuan
Committee Member

Luther Troell
Committee Member

 - iii -

Abstract

The Integrity Measurements Architecture (IMA) [5] provides attestation and integrity for

Linux hosts. But what if an administrator wants to provide IMA functionality to an older

(non-IMA capable) or a non Linux-based OS? If the system is deployed on top of a

hypervisor, IMA functionality can be provided at the hypervisor level. This paper applies

Virtual Machine Introspection (VMI) to provide IMA functionality to virtualized guest

OSes. We implement a proof of concept library (using a shallow shadow filesystem) and

integrate it with the Kernel-based Virtual Machine (KVM) hypervisor. The

modifications provide the Linux host OS the ability to see when and what files are being

accessed by the guest OS. This paper outlines the approach to its design, concept of

execution, and describes the challenges encountered. The library is tested with a sample

bash script created in a monitored partition; a hash of the file is printed before the file is

loaded into memory.

 - iv -

Table of Contents

1 Introduction... 1
1.1 Related Work... 2

2 IMA Overview.. 3
3 KVM Background... 4
4 EXT2 Background .. 4
5 Proof of Concept ... 6

5.1 Environment .. 6
5.2 The Virtual Disk.. 7
5.3 Design.. 9

5.3.1 The Shadow Filesystem.. 9
5.4 Concept of Execution .. 12
5.5 Building the Lookup Table.. 15
5.6 Translating Sectors to Logical Blocks... 16

6 Conclusions... 16
7 Future Work & Challenges ... 17
8 Acknowledgments... 21
9 References... 22
10 Appendix A... 24

10.1 shadow_fs.c ... 24
10.2 shadow_fs.h... 32
10.3 Makefile .. 34
10.4 block-raw-posix.patch ... 35

 - v -

Table of Figures
Figure 3-1: PCR Extend Operation .. 3
Figure 5-1: Blocks of Inode [19] .. 5
Figure 6-1: Image Creation Command ... 7
Figure 6-2: fdisk Output ... 8
Figure 6-3: Mount Boot Partition Command.. 8
Figure 6-4: Mount Root Partition Command.. 9
Figure 6-5: Disk Layout ... 9
Figure 6-6: Lookup Table... 10
Figure 6-7: s_block Structure... 10
Figure 6-8: s_inode Structure... 11
Figure 6-9: s_shadow_fs Structure ... 11
Figure 6-10: Software Flow Diagram... 12
Figure 6-11: Kernel Module Install Commands ... 13
Figure 6-12: Starting KVM Command... 13
Figure 6-13: Guest OS Output.. 14
Figure 6-14: Host OS Output.. 14
Figure 8-1: ps.sh Contents .. 17
Figure 8-2: 1.out ... 18
Figure 8-3: 2.out ... 18
Figure 8-4: 3.out ... 19
Figure 8-5: 4.out ... 20

 - vi -

Table of Tables
Table 3-1: Sample Measurement List [17] ... 4
Table 6-1: Hardware System Configuration... 6
Table 6-2: Software System Configuration .. 7
Table 8-1: File Modifications Summary... 18

 - 1 -

1 Introduction

Today, more systems owners are realizing their hardware is being under-utilized, and

virtualization is becoming a common solution. Virtualization allows multiple server

instances to exist on the same hardware, reducing Size, Weight, and Power (SWAP),

while still providing isolation. In a virtualized environment, a new layer is introduced

between the hardware and the server software. This virtualization layer provides an

environment to monitor the activity of virtual machines. This monitoring code lives

outside the guest OS, making it less susceptible to attacks. While being isolated from the

guest OS provides a security advantage, a high level view of its activity is lost. The

challenge lies in rebuilding this view and being able to identify guest OS activity (e.g.,

disk activity, process loading). Providing this of view in to the VM is called Virtual

Machine Introspection. VM Introspection can be applied to provide various security

benefits to VMs [1] [2] [3]; one of them being integrity measurements.

The virtualization layer handles requests from VMs for data on a hard disk drive. The

guest OS makes requests for data to this layer, and uses sector numbers to specify which

unit of data it's requesting. This research builds upon the fundamental theory of building

a table of logical block numbers, and using that table to map blocks to logical files.

Being able to do this provides the virtualization layer a view into what files are being

accessed by the guest OS. In order to realize this theory, the filesystem to be monitored

needs to be parsed and its meta-data stored. More specifically, for each file in the

filesystem, its logical blocks need to be recorded, essentially building a shallow shadow

filesystem.

The goal of this research is to be able to measure files (of the virtual disk) before they're

loaded by their respective VM. A measurement is a SHA-1 hash of the file contents. A

shallow shadow filesystem is used, in contrast to a deep shadow filesystem, which is a bit

for bit copy. Our approach uses only the meta-data of a target filesystem, and doesn't

need to clone the entire filesystem. A proof of concept is developed to illustrate the

feasibility and challenges associated with this application of VMI. For our proof of

concept the Kernel-based Virtual Machine (KVM) is used for the hypervisor, Gentoo

Linux as the guest OS, and the Second Extended Filesystem (EXT2) for the filesystem.

 - 2 -

The scope of this research is limited to the notification of files being accessed, and

hashing the contents. File writes will not be a part of this research, but will be discussed

in Challenges and Future Work (7).

In the next sections (2, 3, and 4), we give an overview of IMA, KVM, and the EXT2

filesystem. We outline the proof of concept and explanation of the environment in

section 5. We realize that the work in this paper is limited in scope, and is only

scratching the surface of integrity in Virtual Machines; we outline the challenges that

were encountered and possible future work in section 7.

1.1 Related Work

Currently, COTS hypervisors already provide VM Introspection utilities. VMware offers

a proprietary technology for Virtual Infrastructure called VMSafe [11]. This technology

allows 3
rd

 party vendors to develop security tools that take advantage of VM

Introspection. VMSafe allows a security application to view the contents of Memory

pages, CPU state, network packets, and storage, but didn't appear to have the ability to

examine a file before it is loaded.

Payne, Carbone, and Lee implemented the XenAccess [7] monitoring library for VMs

using the Xen hypervisor. Their research allowed for introspection of virtual memory

and disk. XenAccess is similar to the work presented in this paper, because the inference

engine is dependant on knowledge of the filesystem in use [7]. So far, knowledge has

been included in the inference engine to be able to determine only file/directory

creation/removal operations under the ext2 filesystem, although knowledge about other

filesystems can be incorporated [7]. We have taken their research one step further, by

allowing the hypervisor to know which files are loaded.

Kourai and Chiba implement a solution called HyperSpector [9], which uses a full

shadow filesystem. Instead of providing a shallow copy of the monitored filesystem,

HyperSpector creates a full clone, and has a mediator that handles I/O requests from the

shadow-filesystem to the real filesystem.

 - 3 -

2 IMA Overview

The Integrity Measurements Architecture (IMA) [6] motivates the research presented in

this paper. IMA is the implementation of a secure integrity measurement system for

Linux. Integrity and attestation play an important role in high assurance applications [10]

[6]. IMA provides an OS with the ability to passively take measurements on all files

loaded in to memory. IMA follows the operating principle of, "measuring software

before loading it". A system following this principle would record the fact that software

has been loaded, even if it is malicious. Malicious software cannot change this fact

because the measurement is taken prior to being loaded, and IMA maintains the

measurements list in the kernel.

In TPM-based Attestation, after a value is added to the measurement list, the list is

hashed and the value is extended in Platform Configuration Register (PCR - normally

160 bits) #10 of the Trusted Platform Module (TPM) hardware chip [11]. The Trusted

Platform Module is a secure crypto-processor that store cryptographic keys, and other

valuable information. The PCR always contains an aggregate of the current measurement

list. PCR values of the TPM cannot be overwritten directly; they can only be extended.

The extend operation of the PCR is handled by taking the new value and hashing it with

the previous, as described in Figure 2-1.

Figure 2-1: PCR Extend Operation

Using the measurements list, and the aggregate value (hash of list) in the PCR, a verifier

can recreate (or verify) the software that was loaded on the target machine. A verifying

host would perform the following to validate an IMA enabled host:

• Gather measurement list and value held in PCR #10

• For each measurement in the list, generate a hash of the measurement along with

the previous value in the PCR.

After the entire measurement list has been processed, the value computed is compared to

the value gathered from PCR #10. The verifier is essentially recreating the current PCR

value and so it can make a decision on the validity of software running on the host.

PCR := SHA-1(OldVal + measurement)

 - 4 -

The table below is a sample of the entries of an integrity measurements list.

Table 2-1: Sample Measurement List [17]

#007 CFBC7EC3302145AB78A307C0D41DBB9A4251377B mmap-file libnss_files-

2.3.2.so Library

#008 805572455CF5BF50A7EE42E3CC6B0EDA65AF17A4 mmap-file initlog Executable
#009 C95CBC5625719649103E0D1C3595967474842F7B mmap-file hostname Executable
#010 0CAA342424F420FF29B7FB2FCF278F973600681B mmap-file mount Executable

In an IMA enabled host, the TPM would be the hardware root of trust, and a verifier does

not have to rely on the trustworthiness of the software environment. The only caveat of

IMA is it's only available for capable Linux kernels. Systems using older Linux kernels

would need a back port of IMA for that specific kernel version. This doesn't take into

account systems that aren't Linux based. For this research, we pull IMA functionality out

of the VM and use the virtualization layer as the root of trust, since it is the mechanism

that takes the measurements. Pulling the IMA functionality out of the guest OS removes

the OS type restriction as well.

3 KVM Background

KVM, is a Linux virtualization infrastructure, which provides a native virtualization

environment but requires modifications to the host OS (the KVM kernel module), in

contrast to paravirtualization which requires no modification to either guest or host (e.g.,

VMware Workstation). KVM uses a modified version of the QEMU emulation software

to provide address space, simulated I/O, and mapping display back to the host. The most

relevant portion of QEMU to this research is the I/O code. This I/O code is where we

inject lookup code to our shadow filesystem. It is also where we will call our

measurement code.

KVM parent company Qumranet was recently (Sept. 2008) acquired by RedHat, and the

kernel component of KVM is included in mainline Linux, as of 2.6.20.

4 EXT2 Background

For this research, EXT2 is selected as the filesystem. EXT2 implements a common set of

UNIX filesystem concepts, the most relevant concept to this research being the inode.

 - 5 -

The inode represents files and directories and contains all meta-data related to a file

including:

• Type

• Permissions

• Timestamps (access, create, modified)

• Size

• Pointers to data

Figure 4-1: Blocks of Inode [23]

Figure 4-1 illustrates the structure of the inode. Infos represent the meta-data described

above. The rest of the inode contain 32-bit pointers to the data blocks. Each inode has

room for 15 addresses (represented by the EXT2_N_BLOCKS macro), but only elements

0 to 11 store addresses of actual data blocks. Block 12 contains the address to another

table of block addresses called indirect blocks; block 13 contains an address to a table of

addresses to tables of addresses of data blocks called double indirect blocks; block 14

holds triple indirect blocks.

In order to read the inodes of an EXT2 filesystem, a library called libext2fs is

required. Many of the Linux filesystem tools (e.g., mke2fs, e2fsck) use this library to

carry out their duties. This library contains functions to read the superblock, inodes, data

blocks, and other data types of the filesystem. For this research, we are interested in

 - 6 -

iterating through each inode and recording the block numbers that it contains. The

libext2fs library is contained in the Linux package e2fsprogs.

5 Proof of Concept

This research develops a proof of concept to illustrate the feasibility of being able to

identify a file is being loaded into memory by knowing its blocks. In this section we

describe our hardware and software environment, how the virtual disk is constructed, the

design of the lookup table, and how the library works.

5.1 Environment

For the proof of concept, the following hardware and software system configurations is

utilized:

Table 5-1: Hardware System Configuration

Hardware Item Configuration

Northbridge Chipset Intel Q35

CPU Intel E6750

RAM 3GB PC5300

Hard Disk 2x250GB

The hardware was specifically chosen because the E6750 CPU offers Intel®

Virtualization Technology (VT). AMD also has hardware virtualization technology

called AMD-V™. In order to take advantage of this CPU feature, the Q35 was required.

Rather than build a custom machine, this machine was procured from Lenovo using

readily available configurations. Intel® VT is needed because KVM requires this feature

to provide native virtualization.

Table 5-2 describes the software configuration for development of the proof of concept.

Open source software is used when available, and trial licenses were obtained as needed.

64 bit Redhat Enterprise Linux Server 5 is used as the host OS, and Gentoo Linux

(2008.0 profile) is used as the guest. The reason for the difference in OSes is because we

didn’t want an installer to partition our virtual disk for us; also, we didn’t want to use

Logical Volume Manager (LVM). e2fsprogs provides libext2fs and OpenSSL

provides the cryptographic library.

 - 7 -

Table 5-2: Software System Configuration

Software Item Configuration

Host OS Redhat Enterprise Linux Server 5 x86_64

Hypervisor Kernel-based Virtual Machine-77

Guest OS Gentoo Linux 2008.0

Guest OS Filesystem ext2/3

Guest OS Virtual disk format raw

Filesystem library e2fsprogs-1.39

Cryptographic library openssl-0.9.8j

5.2 The Virtual Disk

Like host OSes, VMs need a disk to boot from and store its files. VMs usually use a

large file to represent the virtual disk. This virtual disk will represent the hard disk in

which KVM can boot from and store guest OS files. KVM comes with a tool called

qemu-img, which creates the virtual disk in various formats. For portability and

simplicity reasons, we've chosen to use the default raw image format for our virtual disk.

The raw format is a plain binary image of the hard disk, and supports copying directly to

and from the host OS.

To create the virtual disk the following command is used:

Figure 5-1: Image Creation Command

This command allocates a 10GB virtual disk to a file called vdisk.img using the raw

format. The raw format is used by default, which is why no command line option is used.

#qemu-img create vdisk.img 10GB

 - 8 -

Figure 5-2: fdisk Output

Once the virtual disk is created, partitions are created and formatted. Figure 5-2 illustrates

the output from fdisk for the virtual disk. A traditional Linux partition scheme is

chosen for simplicity, which consists of three partitions: boot, swap, and root ('/'). The

boot partition uses an ext2 filesystem, while the root partition utilizes an ext3 partition

with journaling.

In order to handle this virtual image like a physical disk, a couple of technologies will

need to be used. The mount command is used to mount a filesystem, but since this is not

a physical disk, a couple of options need to be used. If the virtual disk were to be

mounted on a Linux system, the following command would be used:

Figure 5-3: Mount Boot Partition Command

This command makes an internal call to losetup to create the loop device and use an

offset into the disk image. The offset determines which partition is to be mounted. In

order to come up with the number for the offset, a couple of parameters need to be

gathered: (block size, partition start position). Looking at the partition scheme in Figure

5-2, and using the u command in fdisk to switch the units to sectors, we can see that the

#mount -o loop,offset=32256 vdisk.img /mnt/image

 - 9 -

boot partition starts at sector 63. Each sector is 512 bytes, which means the boot partition

begin at 32256 bytes from the start of the file. The formula for the calculation is as

follows:

32556 512)(63 =×

If the root partition were to be mounted, the following command would be used:

Figure 5-4: Mount Root Partition Command

For this proof of concept, we're limiting the shadow filesystem to the boot partition since

it contains fewer files.

Figure 5-5 illustrates the disk and shows the physical layout of the disk. The test file

ps.sh resides in the boot partition.

Figure 5-5: Disk Layout

5.3 Design

The following section describes the detailed design for the library that is developed to

support the shadow filesystem and the shadow filesystem implementation itself.

5.3.1 The Shadow Filesystem

The shadow filesystems main component is the lookup table. The lookup table is

composed of 3 core structures: s_inode, s_block, and s_shadow_fs.

#mount -o loop,offset=41126400 vdisk.img /mnt/image

 - 10 -

Figure 5-6: Lookup Table

Figure 5-6 illustrates the look up table for our shadow filesystem. The array of blocks

contains pointers to the inode in which it belongs to, allowing quick reverse lookups for

any block. Each inode in the array of inodes contain a pointer to the first block of the

inode as described later (s_inode).

Figure 5-7: s_block Structure

The s_block structure encapsulates the meta-data for a block of data. The first

attribute of the structure is a Boolean to determine if the block is the first of a group of

blocks of a file. KVM receives requests for blocks independently, making it necessary to

add logic to determine which block represents a file. Without this logic, each block

request would look like a file request. For example, given a file fileA (made up of

blocks {1, 2, 3}) that is loaded into memory, KVM would see requests for blocks 1, 2,

 - 11 -

and 3. Without the first Boolean, the shadow filesystem would interpret that as three

separate attempts to access fileA. Using the first Boolean, we would only take into

account when the first block is loaded, making the assumption that the VM is trying to

load fileA, because files normally load bytes in sequence. Only requests for blocks

that have the first attribute set to 1 are processed, while others are discarded.

block_num is a number of the type blk_t (from libext2fs) and represents the

block number. The inode_p attribute is a pointer to the inode this block belongs to.

Figure 5-8: s_inode Structure

The s_inode structure represents the meta-data for an inode, currently the

file_name attribute serves as a placeholder for a meaningful file name. The EXT2

filesystem represents files as inodes and inodes can have multiple names associated with

it. Associating a filename would give more meaning than an inode number.

inode_num represents the inode number, which is most relevant, but not as useful as a

filename. i_size represents the size of the file, which is used for hashing its contents.

The first_block attribute is a pointer to the first block for this particular inode.

Figure 5-9: s_shadow_fs Structure

The s_shadow_fs structure encapsulates our shadow filesystem. It contains

information relevant to the filesystem it is shadowing. image is a string representation

 - 12 -

of the path for the hard disk image, dev represents the loop device the virtual disk image

is attached to, and offset represents the offset into the virtual disk. It also includes

pointers to functions which setup/close as well as provides lookup information.

The open_shadow_fs function contains functionality to create the loop device, read

the filesystem information, and build the lookup table. The

get_inode_from_block function gets the inode given a block number. The

hash_inode function hashes the contents of an inode and prints the SHA-1 hash out to

console. close_shadow_fs performs cleanup and removes the loop device.

5.4 Concept of Execution

Figure 5-10: Software Flow Diagram

Figure 5-10 illustrates the flow of execution for our proof of concept. In order to take

advantage of Intel® VT and the hardware virtualization technology, the kvm and kvm-

intel kernel modules need to be loaded into the kernel.

 - 13 -

Figure 5-11: Kernel Module Install Commands

We launch the hypervisor by executing the following command, specifying our virtual

disk using the hda option and allocate 384MB of ram for the guest OS.

Figure 5-12: Starting KVM Command

Once KVM has been launched (initial state in flow diagram), control is passed to the

shadow filesystem to read and process the contents of the original filesystem. It creates a

loop device so it can read the file as a block device. The filesystem is loaded and a

mapping is built (detailed in section 5.5). Control is passed back to KVM to load the

virtual disk and let the guest OS use it to boot. When the guest OS is operational, the

shadow filesystem is ready to service requests for lookup. When the guest OS makes a

request for a block, control is passed to the shadow filesystem to lookup the blocks and

determines which inode is being accessed. This information is collected, the contents of

the inode is hashed and reported back to the host OS via console. Figure 5-13 illustrates

what is happening inside the guest OS, while Figure 5-14 illustrates the host OS. The

guest OS mounts the boot partition (the partition we're monitoring), and executes the file

(/boot/bin/ps). This creates the output on Figure 5-13. The guest OS continues to

print information pertaining to the file to verify the proper inode has been hashed. A

directory listing is performed to include inode numbers and the inode for

/boot/bin/ps is 8037. Also, inside the guest OS, a hash is generated for the file and

produces the same output as our shadow filesystem, validating our proof of concept.

#qemu-system-x86_64 -hda vdisk.img -m 384

#insmod kernel/x86/kvm.ko

#insmod kernel/x86/kvm-intel.ko

 - 14 -

Figure 5-13: Guest OS Output

Figure 5-14: Host OS Output

 - 15 -

The hash is computed by using the OpenSSL cryptographic library. The shadow

filesystem keeps track of which blocks belong to an inode. In order to hash the contents

of an inode, the lseek and read functions are used to read a file from the virtual disk.

The call to lseek would include the offset into the virtual disk. The offset is calculated

by multiplying the sector number (of the file being accessed) and 512 (bytes per sector).

The assumption is that data blocks for an inode are contiguous. Even if this assumption

is false, all blocks for a given inode are still available in our lookup table.

Once the data of the file are obtained, calls to the OpenSSL EVP API [23] are made to

hash them. EVP is a high level interface to the OpenSSL cryptographic functions. Bytes

are read from the virtual disk in segments, so the MD_CTX (message digest context)

structure is used. As bytes are read, they are fed into the MD_CTX structure using the

EVP_DigestUpdate function. After all bytes are read, a call to

EVP_DigestFinal_ex is made to indicate the end of input and resources are cleaned

up using EVP_MD_CTX_cleanup. The final computed hash is stored in an allocated

character buffer.

Due to the fact that the raw disk format is being used, the raw block driver is used by

KVM (block-raw-posix.c). This is the file that requires modification to include

lookup code to our shadow filesystem. More specifically, the raw_aio_read function

houses the code which setups up asynchronous access to data on the virtual disk. One of

the parameters passed to the raw_aio_read function is the sector number needed by

our lookup function.

5.5 Building the Lookup Table

Building the lookup table involves using the libext2fs library to read the filesystem

information. The following section describes how the shadow filesystem is built in the

proof of concept. In order to read the virtual disk as a block device, a loop device needs

to be created using losetup and the virtual disk needs to be attached to it. Once the

loop device is created, the libext2fs library can be used on the device as if it was a

physical hard disk.

 - 16 -

The filesystem is opened using ext2fs_open. libext2fs uses an abstract structure

called ext2_inode_scan to scan the filesystem. The ext2_get_next_inode

function is used to iterate through all inodes of the filesystem. Only inodes that contain

valid blocks, and is not a directory is processed. Inodes up to 10 are reserved and 11 is

lost+found, so they’re not included either. Within the iteration loop, a call to

ext2fs_block_iterate is executed with a function pointer (callback). The pointer

refers to a function we define that contains logic to record the block number and map it to

the inode currently being processed. Once all inodes are processed, the filesystem could

be unloaded, and KVM can resume loading the virtual disk.

5.6 Translating Sectors to Logical Blocks

A block is the most basic unit of a filesystem; on the other hand disks use sectors.

Sectors are normally 512 bytes, while our proof of concept use blocks of 1024 bytes. The

KVM code uses sectors, and our shadow lookup table uses blocks. In order to make the

lookup, a translation needs to be performed. Translating from block numbers to sectors

requires the following formula:

+

 ×
=

sizetor

offset

sizetor

sizeblockblock
tor

_sec_sec

)_(
sec

Translating from sectors to blocks requires the following formula:

sizeblock
sizetor

offset
torblock _

_sec
sec ×

−=

The proof of concept handles this translation by providing internal functions

translate_sector_to_block and translate_block_to_sector.

6 Conclusions

From the proof of concept, we are able to determine that observing low level disk

activity; high level information can be inferred. If it is known which blocks belong to

which files, a shadow filesystem can be built and used to do a reverse lookup based on

blocks/sectors being read/written. This would theoretically work on any filesystem that

provides APIs for reading the internal data structures. There would have to be a method

 - 17 -

of synchronizing changes from the loaded filesystem to the shadow, otherwise data from

the shadow filesystem would become stale.

It would also help that the VMM is open source, so we can inject code to do the lookup.

Being able to pull IMA functionality out of the kernel and into the hypervisor allows for

VMs to run any OS. This also allows any VM to reliably attest to a verifier.

7 Future Work & Challenges

Since the shadow filesystem is being built when the VM is first loaded and doesn't

receive updates during operation, the research is unable to fully shadow the filesystems

state during the operation of the VM. Filesystem modifications are kept in memory in the

virtual machine, so there's no trivial method of updating the shadow filesystem as the

original filesystem changes.

Modifications to the filesystem such as file writes is an area not covered in this research,

but some analysis on EXT2 file modification has been performed to prepare future work.

The data blocks of a file called ps.sh are monitored and the following behavior is

observed. The file contains the following code:

Figure 7-1: ps.sh Contents

The file is modified in three different ways to show filesystem behavior. Table 7-1

describes the changes that were made and illustrate the blocks of the file after

modification. 1.out shows the original data blocks for the file (inode 8036). In

2.out, the contents of the file changed, but the file size the same (the casing of a word

was changed inside the file). It is observed that the data block pointers remained the

same. When new content is added to the file, the data block pointers change and a new

contiguous group of blocks are allocated to accommodate the new content, as shown in

3.out. When content is removed from the file, the blocks remain the same (4.out).

Table 7-1 summarizes the modifications and the effect it had on the data blocks.

#!/bin/sh

ls / > /dev/NULL

 - 18 -

Table 7-1: File Modifications Summary

Modification Change in Blocks Output File

Original None 1.out

Changed the file contents (no change

in size)
Stayed the same, contents changed 2.out

Contents were added to file
New data blocks were allocated to

file to accommodate new size
3.out

Contents removed
Block numbers remain the same,

contents changed
4.out

Figure 7-2: 1.out

Figure 7-3: 2.out

Inode: 8036; Block number: 39945

Inode: 8036; Block number: 39946

Inode: 8036; Block number: 39947

Inode: 8036; Block number: 39948

Inode: 8036; Block number: 39949

Inode: 8036; Block number: 39950

Inode: 8036; Block number: 39951

Inode: 8036; Block number: 39952

Inode: 8036; Block number: 39953

Inode: 8036; Block number: 39954

Inode: 8036; Block number: 39955

Inode: 8036; Block number: 39956

Inode: 8036; Block number: 39958
Inode: 8036; Block number: 39959

Inode: 8036; Block number: 39945

Inode: 8036; Block number: 39946

Inode: 8036; Block number: 39947

Inode: 8036; Block number: 39948

Inode: 8036; Block number: 39949

Inode: 8036; Block number: 39950

Inode: 8036; Block number: 39951

Inode: 8036; Block number: 39952

Inode: 8036; Block number: 39953

Inode: 8036; Block number: 39954

Inode: 8036; Block number: 39955

Inode: 8036; Block number: 39956

Inode: 8036; Block number: 39958
Inode: 8036; Block number: 39959

 - 19 -

Figure 7-4: 3.out

Inode: 8036; Block number: 39991

Inode: 8036; Block number: 39992

Inode: 8036; Block number: 39993

Inode: 8036; Block number: 39994

Inode: 8036; Block number: 39995

Inode: 8036; Block number: 39996

Inode: 8036; Block number: 39997

Inode: 8036; Block number: 39998

Inode: 8036; Block number: 39999

Inode: 8036; Block number: 40000

Inode: 8036; Block number: 40001

Inode: 8036; Block number: 40002

Inode: 8036; Block number: 40004

Inode: 8036; Block number: 40005

Inode: 8036; Block number: 40006

Inode: 8036; Block number: 40007

Inode: 8036; Block number: 40008

Inode: 8036; Block number: 40009

Inode: 8036; Block number: 40010

Inode: 8036; Block number: 40011

Inode: 8036; Block number: 40012

Inode: 8036; Block number: 40013

Inode: 8036; Block number: 40014

Inode: 8036; Block number: 40015

Inode: 8036; Block number: 40016

Inode: 8036; Block number: 40017

Inode: 8036; Block number: 40018

Inode: 8036; Block number: 40019

Inode: 8036; Block number: 40020

Inode: 8036; Block number: 40021

Inode: 8036; Block number: 40022

Inode: 8036; Block number: 40023

Inode: 8036; Block number: 40024
Inode: 8036; Block number: 40025

 - 20 -

Figure 7-5: 4.out

A different file modification scenario could occur where the file /bin/ps could be

removed and replaced with a new one. Files are represented by inodes, and inodes can be

referred to by different file names, if one was to remove /bin/ps and replace it with

another file from a different location, the new /bin/ps would have a different inode. If

the new file is loaded into memory, it would appear as if a totally different file is loaded.

A filename would have to be included to differentiate the two.

Due to the nature of the filesystem, we are not able to easily map file names to the inodes.

This is due to the fact that inodes can have multiple file names associated to it.

Inode: 8036; Block number: 39991

Inode: 8036; Block number: 39992

Inode: 8036; Block number: 39993

Inode: 8036; Block number: 39994

Inode: 8036; Block number: 39995

Inode: 8036; Block number: 39996

Inode: 8036; Block number: 39997

Inode: 8036; Block number: 39998

Inode: 8036; Block number: 39999

Inode: 8036; Block number: 40000

Inode: 8036; Block number: 40001

Inode: 8036; Block number: 40002

Inode: 8036; Block number: 40004

Inode: 8036; Block number: 40005

Inode: 8036; Block number: 40006

Inode: 8036; Block number: 40007

Inode: 8036; Block number: 40008

Inode: 8036; Block number: 40009

Inode: 8036; Block number: 40010

Inode: 8036; Block number: 40011

Inode: 8036; Block number: 40012

Inode: 8036; Block number: 40013

Inode: 8036; Block number: 40014

Inode: 8036; Block number: 40015

Inode: 8036; Block number: 40016

Inode: 8036; Block number: 40017

Inode: 8036; Block number: 40018

Inode: 8036; Block number: 40019

Inode: 8036; Block number: 40020

Inode: 8036; Block number: 40021

Inode: 8036; Block number: 40022

Inode: 8036; Block number: 40023

Inode: 8036; Block number: 40024
Inode: 8036; Block number: 40025

 - 21 -

Another aspect of IMA that isn’t part of this research is taking the measurements list,

hashing it and storing it in the TPM. This should theoretically be trivial given the

availability of the TrouSerS [23] TCG software stack.

Finally, logic is needed for non contiguous data blocks for a given inode.

8 Acknowledgments

The author would like to thank all those who helped complete this work.

• Dr. Charles Border of the NSSA department at RIT; for his guidance and advising

throughout the entire thesis process.

• David R. Safford of the T. J. Watson Research Center at IBM; for helping

develop the idea for this work.

 - 22 -

9 References

The following are text and supporting documents referenced within this paper

[1] T. Garfinkel and M. Rosenblum. "A Virtual Machine Introspection Based

Architecture for Intrusion Detection". Proc. of the 2003 Network and

Distributed System Security Symposium, 2003

[2] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. "Detecting Past and

Present Intrusions through Vulnerability-specific Predicates". Proc. of the

2005 SOSP, Oct. 2005

[3] X. Jiang, X. Wang, D.Xu. "Stealthy Malware Detection Through VMM-Based

'Out-of-the-Box' Semantic View Reconstruction" 2007

[4] R. Sailer, T. Jaeger, X. Zhang, L. van Doorn, "Attestation-based Policy

Enforcement for Remote Access" in 11th ACM Conference on Computer and

Communications Security (CCS), 2004

[5] R. Sailer, X. Zhang, T. Jaeger, L. van Doorn, "Design and Implementation of a

TCG-based Integrity Measurement Architecture" in Proceedings of the 13th

USENIX Security Symposium, 2004

[6] R. Meushaw and D. Simard. "NetTop: Commercial Technology in High

Assurance Applications". Tech Trend Notes: Preview of Tomorrow’s

Information Technologies, Sept. 2000

[7] Bryan D., Payne Martim D. P. de A. Carbone, Wenke Lee. "Secure and Flexible

Monitoring of Virtual Machines". 2007

[8] T. Jaeger, R. Sailer, U. Shankar, "PRIMA: Policy-Reduced Integrity

Measurement Architecture" in ACM Symposium on Access Control Models

and Technologies , 2006

[9] K. Kourai and S. Chiba. "HyperSpector: Virtual Distributed Monitoring

environments for Secure Intrusion Detection" Proc. of the 1st ACM/USENIX

international conference on Virtual execution environments, June 2005

[10] High Assurance Platform.

http://www.nsa.gov/ia/industry/HAP/HAP.cfm?MenuID=10.2.1.6

 - 23 -

[11] VMsafe: A Security Technology for Virtualized Environments.

http://www.vmware.com/technology/security/vmsafe.html

[12] XenAccess Library. http://code.google.com/p/xenaccess/

[13] Trusted Computing Group, Trusted Platform Module Specification.

https://www.trustedcomputinggroup.org/specs/TPM/

[14] Trusted Computing Group. https://www.trustedcomputinggroup.org

[15] Kernel-based Virtual Machine. http://www.linux-kvm.org/page/Main_Page

[16] The Second Extended Filesystem. http://e2fsprogs.sourceforge.net/ext2.html

[17] Integrity Measurement Architecture.

http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_ima.index

.html

[18] TrouSerS – the open-source TCG Software Stack. http://trousers.sourceforge.net/

[19] OpenSSL EVP API. http://openssl.org/docs/crypto/evp.html

[20] Design and Implementation of the Second Extended Filesystem.

http://e2fsprogs.sourceforge.net/ext2intro.html

 - 24 -

10 Appendix A
Attached is the source code required for implementation of a shadow filesystem and changes to the KVM

source to support it.

10.1 shadow_fs.c
/*

 * shadow filesytem implementation (shadow_fs.c)

 *

 * Created on: January 17, 2009

 * Author: Sammy Lin <scl9891@cs.rit.edu>

 */

#include "shadow_fs.h"

#define BYTES_PER_SECTOR 512

#define BYTES_PER_BLOCK 1024

ext2_inode_scan scan = NULL;

ext2_filsys fs = NULL;

unsigned int blocks_count;

unsigned int block_size;

/* Our lookup tables */

s_block *blocks_array = NULL;

s_inode *inodes_array = NULL;

/*

 * Build the command for creating the loop device

 * syntax:

 * /sbin/losetup -o offset device image

 * Note: this function is internal only, due to the fact that

 * this function dynamically allocates memory for the strings

 * and requires the caller to free it

 */

static

char

*build_losetup_command(int offset, char *dev, char *image)

{

 char *losetup = "/sbin/losetup -o ";

 char *fullcommand;

 char str_offset[20];

 sprintf(str_offset, "%d", offset);

 /* 3 = two spaces and a trailing null terminator */

 fullcommand = (char *)malloc(strlen(losetup) + (strlen(str_offset) +

 strlen(dev) + strlen(image) + 3)

 * sizeof(char));

 strcpy(fullcommand, losetup);

 strcat(fullcommand, str_offset);

 strcat(fullcommand, " ");

 strcat(fullcommand, dev);

 strcat(fullcommand, " ");

 strcat(fullcommand, image);

 return fullcommand;

}

/*

 * Load the filesystem and initialize the error table

 *

 */

static

int

load_fs(int offset, char *dev, char *image)

{

 int status = 0;

 - 25 -

 errcode_t err = 0;

 char *losetup_command;

 losetup_command = build_losetup_command(offset, dev, image);

 status = system(losetup_command);

 free(losetup_command);

 if(status){

 printf("Error creating loop device %s, for image %s\n",

 dev, image);

 return 1;

 }

 initialize_ext2_error_table();

 /* Open the filesystem */

 printf("Opening filesystem %s \n", dev);

 err = ext2fs_open(dev, EXT2_FLAG_JOURNAL_DEV_OK,

 0, 0, unix_io_manager, &fs);

 if(err){

 com_err("shadow_fs", err,

 "while retrying to open fs %s", dev);

 return 1;

 }

 blocks_count = fs->super->s_blocks_count;

 block_size = fs->blocksize;

#ifdef DEBUG

 printf("Number of blocks: %d, Blocksize: %d \n",

 blocks_count, block_size);

#endif

 return 0;

}

/*

 * Build the command for deleting the loop device

 * syntax:

 * /sbin/losetup -o /dev/loop0

 * Note: this function is internal only, due to the fact that

 * this function dynamically allocates memory for the strings

 * and requires the caller to free it

 */

static

char

*build_losetup_delete_command(char *dev)

{

 char *losetup = "/sbin/losetup -d ";

 char *fullcommand;

 /* 3 = two spaces and a trailing null terminator */

 fullcommand = (char *)malloc(strlen(losetup) + strlen(dev) + 3

 * sizeof(char));

 strcpy(fullcommand, losetup);

 strcat(fullcommand, dev);

 return fullcommand;

}

/*

 * Unload the file system and cleanup used resources

 */

static

int

unload_fs(char *dev)

{

#ifdef DEBUG

 printf("Removing device: %s\n", dev);

#endif

 int status = 0;

 errcode_t err = 0;

 char *losetup_command;

 ext2fs_close_inode_scan(scan);

 - 26 -

 /* Close the filesystem */

 err = ext2fs_close(fs);

 if(err){

 com_err("shadow_fs", err,

 "while trying to close fs %s", dev);

 return 1;

 }

 /* Delete loop device */

 losetup_command = build_losetup_delete_command(dev);

 status = system(losetup_command);

 free(losetup_command);

 if(status){

 printf("Error removing loop device %s\n", dev);

 return 1;

 }

 return 0;

}

/*

 * Build the pseudo file system (our look-up table)

 */

static

int

build_table()

{

 char *dev;

 /*Initialize the look up tables */

 int num_blocks = 0;

 int num_inodes = 0;

 errcode_t err = 0;

 static s_inode *inodes_arr_iter = NULL;

 static s_block *blocks_arr_iter = NULL;

 num_blocks = fs->super->s_blocks_count;

 num_inodes = fs->super->s_inodes_count;

 blocks_array = (s_block *) malloc(num_blocks * sizeof(s_block) + 1);

 inodes_array = (s_inode *) malloc(num_inodes * sizeof(s_inode));

 dev = (char *) malloc(strlen(fs->device_name) + 1);

 strcpy(dev, fs->device_name);

 inodes_arr_iter = inodes_array;

 blocks_arr_iter = blocks_array;

 /* Start the scan of the inodes of the filesystem */

 err = ext2fs_open_inode_scan(fs, 0, &scan);

 if(err){

 com_err("shadow_fs", err,

 "while trying to establish a scanner for fs %s",

 fs->device_name);

 return 1;

 }

 ext2_ino_t inode_num;

 struct ext2_inode inode;

 err = ext2fs_get_next_inode(scan, &inode_num, &inode);

 if(err){

 com_err("shadow_fs", err,

 "while trying to get next inode for fs %s",

 fs->device_name);

 return 1;

 }

 - 27 -

 /*

 for each inode, get the inode number, add the inode number to the

 array of inode numbers,

 for each block for that inode, create a s_block struct containing

 the block number and a pointer to inode number for which it belongs

 */

 while(inode_num != 0){

 inodes_arr_iter->inode_num = inode_num;

 inodes_arr_iter->i_size = inode.i_size;

 inodes_arr_iter->first_block = blocks_arr_iter;

 /* get the filename */

 blocks_arr_iter->inode_p = inodes_arr_iter;

 blocks_arr_iter->first = 1; //Make this block the first

 if(ext2fs_inode_has_valid_blocks(&inode) &&

 ext2fs_check_directory(fs, inode_num) ==

 EXT2_ET_NO_DIRECTORY &&

 inode.i_blocks != 0 &&

 inode_num > 11){

 //inodes up to 10 are reserved, inode 11 is lost+found

#ifdef DEBUG

 printf("INODE Number %d, has %d blocks, size: %d:\n",

 inode_num, inode.i_blocks, inode.i_size);

#endif

 //inodes_arr_iter->has_first = 0;

 ext2fs_block_iterate(fs, inode_num,

 BLOCK_FLAG_DATA_ONLY,

 NULL, block_iterate_callback,

 &blocks_arr_iter);

 }

 inodes_arr_iter++;

 err = ext2fs_get_next_inode(scan, &inode_num, &inode);

 if(err){

 com_err("filesystemviewer", err,

 "while trying to get next inode for fs %s",

 fs->device_name);

 return 1;

 }

 }

 //*inodes_arr_iter = NULL;

 unload_fs(dev);

 return 0;

}

/*

 * Given a block number, and the beginning of the array of blocks,

 * find the inode for which that block belongs

 * Returns 0 if found, 1 if not found

 */

static

int

get_inode_from_block2(const blk_t block_num, s_block *blockp, int len,

 s_inode **inode)

{

 int i;

 for(i = 0; i < len; i++, blockp++){

 if(blockp->block_num == block_num){

#ifdef DEBUG

 printf("Found inode: %u\n",

 (blockp->inode_p)->inode_num);

#endif

 *inode = blockp->inode_p;

 return 0;

 }

 }

 return 1;

}

 - 28 -

/*

 * Translate a sector number to a block number

 */

blk_t

translate_sector_to_block(unsigned int sector, s_shadow_fs *sfs)

{

 /*

 To translate a sector to a block, we need to apply the

 following formula:

 block = (sector - offset (in sectors) * 512)/1024

 */

#ifdef DEBUG

 printf("s2b sector: %u, offset=%u\n", sector, sfs->offset);

#endif

 return ((sector - (sfs->offset / BYTES_PER_SECTOR)) *

 BYTES_PER_SECTOR)/BYTES_PER_BLOCK;

}

/*

 * Translate a block number to a sector number

 */

unsigned int

translate_block_to_sector(blk_t block, s_shadow_fs *sfs)

{

 /*

 To translate a block to a sector, we need to apply the

 following formula:

 sector = ((blocks*1024)/512)+(sfs->offset / BYTES_PER_SECTOR)

 */

#ifdef DEBUG

 printf("b2s sector: %u, offset=%u\n", block, sfs->offset);

#endif

 return ((block*BYTES_PER_BLOCK)/BYTES_PER_SECTOR)+

 (sfs->offset/BYTES_PER_SECTOR);

}

/*

 * Check if a sector is first of a file

 */

int

is_first(unsigned int sector_num, s_shadow_fs *sfs)

{

 //translate the sector to block, then find if this block is first in a file

 int i;

 s_block *block_iter;

 blk_t block_num = translate_sector_to_block(sector_num, sfs);

 block_iter = blocks_array;

 for(i = 0; i < blocks_count; i++){

 if(block_iter->block_num == block_num){

 if(block_iter->first == 1)

 return 1;

 else

 return 0;

 }

 block_iter++;

 }

 return 0;

}

/*

 * Public interface to the shadow file system - Open the filesystem

 */

int

open_shadow_fs(s_shadow_fs *sfs)

{

 load_fs(sfs->offset, sfs->dev, sfs->image);

 build_table();

 return 0;

}

/*

 - 29 -

 * Public interface to the shadow file system - Close the filesystem

 */

int

close_shadow_fs(s_shadow_fs *sfs)

{

 free(inodes_array);

 free(blocks_array);

 return 0;

}

/*

 * Callback used by libext2fs for iterating the blocks of a filesystem

 */

int

block_iterate_callback(ext2_filsys FS, blk_t *BLOCKNR, int BLOCKCNT,

 void *PRIVATE)

{

 s_block **sblockpp = (s_block**)PRIVATE;

 (*sblockpp)->block_num = *BLOCKNR;

 s_inode *temp_inop = (*sblockpp)->inode_p;

#ifdef DEBUG

 printf("Inode: %u; Block number: %u\n",

 ((*sblockpp)->inode_p)->inode_num, *BLOCKNR);

#endif

 (*sblockpp)++;

 (*sblockpp)->inode_p = temp_inop;

 (*sblockpp)->first = 0;

 return 0;

}

/*

 * Returns the hash for the inode, this value is dynamically allocated

 * it must be free'd once it's purpose has been fulfilled

 */

int

hash_inode(s_inode const *inode, s_shadow_fs *sfs, unsigned char **hash,

 unsigned int *hash_len)

{

#ifdef DEBUG

 printf("Hashing inode %u\n", inode->inode_num);

#endif

 int fd;

 unsigned int sector_num;

 off_t off;

 unsigned char buf[BYTES_PER_BLOCK];

 char *digest = "sha1";

 //unsigned int bytes_rec = 0;

 unsigned int left_to_read = inode->i_size;

 unsigned int read_amt; //How much to read

 ssize_t got;

 /* OpenSSL EVP variables */

 EVP_MD_CTX mdctx;

 const EVP_MD *md;

 //unsigned char md_value[EVP_MAX_MD_SIZE];

 //unsigned char *md_value;

 hash = (unsigned char)malloc(EVP_MAX_MD_SIZE *

 sizeof(unsigned char));

 fd = open(sfs->image, O_RDONLY, O_LARGEFILE);

 if(fd == -1){

 printf("Could not open image %s for reading %s\n", sfs->image,

strerror(errno));

 return 1;

 }

 OpenSSL_add_all_digests();

 md = EVP_get_digestbyname(digest);

 EVP_MD_CTX_init(&mdctx);

 EVP_DigestInit_ex(&mdctx, md, NULL);

 //foreach block do hash it

 - 30 -

 //How do we get the blocks of a inode?

 //hash block, block++ while block != first?

 //if the first block is NOT first, report error

 if((inode->first_block)->first != 1){

 printf("Expected first block, but didn't get it\n");

 free(hash);

 return 1;

 }

 s_block *block_iter = inode->first_block;

 //printf("Size of this inode: %u\n", inode->i_size);

 do{

#ifdef DEBUG

 printf("Starting loop\n");

 if(block_iter == NULL){

 printf("ERROR READING NEXT BLOCK\n");

 }

 printf("Hashing block %u\n", block_iter->block_num);

#endif

 read_amt = (left_to_read > BYTES_PER_BLOCK) ?

 BYTES_PER_BLOCK : left_to_read;

 /*if(left_to_read > NUM_BYTES)

 read_amt = NUM_BYTES;

 else

 read_amt = left_to_read;

 */

 sector_num = translate_block_to_sector(block_iter->block_num,

 sfs);

#ifdef DEBUG

 printf("Sector num being read %u\n", sector_num);

 printf("Going to read %u bytes\n", read_amt);

#endif

 off = lseek(fd, sector_num * BYTES_PER_SECTOR, SEEK_SET);

 got = read(fd, buf, read_amt);

 if(read_amt < BYTES_PER_BLOCK){

 buf[read_amt] = '\0';

 }

#ifdef DEBUG

 printf("Contents: %s####\nSize: %" PRId64 "\nSupposedly reading %u\n",

 buf, strlen(buf), read_amt);

 printf("Moved %" PRId64 " bytes from beginning of file\n", off);

 if(got < 0){

 printf("An error occured during reading\n");

 printf("GOT %" PRId64 " bytes\n", got);

 }

#endif

 //bytes_rec+= strlen(buf);

 left_to_read -= BYTES_PER_BLOCK;

 EVP_DigestUpdate(&mdctx, buf, got);

 block_iter++;

#ifdef DEBUG

 printf("Advancing to next block\n");

 if(block_iter == NULL)

 printf("Next pointer is NULL\n");

 printf("Next block number: %u first? %d\n",

 block_iter->block_num, block_iter->first);

 printf("Ending loop\n");

#endif

 }while(block_iter->first != 1);

 close(fd);

 EVP_DigestFinal_ex(&mdctx, *hash, hash_len);

 EVP_MD_CTX_cleanup(&mdctx);

#ifdef DEBUG

 printf("Returning\n");

#endif

 return 0;

}

 - 31 -

/*

 * Get an inode given the block

 */

int

get_inode_from_block(const blk_t block_num, s_inode **inode)

{

 return get_inode_from_block2(block_num, blocks_array,

 blocks_count, inode);

}

 - 32 -

10.2 shadow_fs.h
/*

 * Header file for shadow file-system implementation (shadow_fs.h)

 *

 * Created on: Jan 17, 2009

 * Author: Sammy Lin <scl9891@cs.rit.edu>

 */

#ifndef _SHADOW_FS_H

#define _SHADOW_FS_H

#define _GNU_SOURCE

#include <ext2fs/ext2fs.h>

#include <ext2fs/ext2_fs.h>

#include <ext2fs/ext2_io.h>

#include <et/com_err.h>

#include <ext2fs/ext2_err.h>

#include <openssl/evp.h>

#include <stdio.h>

#include <stdlib.h>

#include <inttypes.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

struct s_inode;

typedef struct s_block{

 int first; /* First block in the file? */

 blk_t block_num;

 struct s_inode *inode_p;

}s_block;

typedef struct s_inode{

 ext2_ino_t inode_num;

 unsigned int i_size;

 //Used to determine if the first block for this inode has been set

 int has_first;

 s_block *first_block;

 /*

 Since an inode can possibly have multiple filenames

 files could point to the "first" file name that represents

 this inode

 */

 //char *files;

}s_inode;

typedef struct s_shadow_fs{

 char *image;

 char *dev;

 int offset;//THIS SHOULD BE A UNSIGNED INT

 int (*get_inode_from_block)(const blk_t block_num, s_inode **inode);

 int (*open_shadow_fs)(struct s_shadow_fs *sfs);

 int (*close_shadow_fs)(struct s_shadow_fs *sfs);

}s_shadow_fs;

extern

int

open_shadow_fs(s_shadow_fs *sfs);

extern

int

is_first(unsigned int sector_num, s_shadow_fs *sfs);

extern

blk_t

translate_sector_to_block(unsigned int sector, s_shadow_fs *sfs);

 - 33 -

extern

unsigned int

translate_block_to_sector(blk_t block, s_shadow_fs *sfs);

extern

int

close_shadow_fs(s_shadow_fs *sfs);

extern

int

get_inode_from_block(const blk_t block_num, s_inode **inode);

extern

int

block_iterate_callback(ext2_filsys FS, blk_t *BLOCKNR, int BLOCKCNT,

 void *PRIVATE);

extern

int

hash_inode(s_inode const *inode, s_shadow_fs *sfs, unsigned char **hash,

 unsigned int *hash_len);

#endif

 - 34 -

10.3 Makefile
#Compiler macros

CC = gcc

CC_OPTS = -Wall

#Files

C_FILES = shadow_fs.c main.c

#H_FILES = shadow_fs.h

OBJ_FILES = $(SOURCEFILES:.c=.o)

SOURCEFILES = $(C_FILES)

#SOURCEFILES = $(C_FILES) $(H_FILES)

EXECUTABLE = shadow_tester

LIBS = -lext2fs -lcom_err -lcrypto

#Targets

all: clean $(EXECUTABLE)

$(EXECUTABLE): OBJ

 $(CC) $(CC_OPTS) $(DEBUG) $(OBJ_FILES) $(LIBS) -o $(EXECUTABLE)

OBJ:

 $(CC) $(CC_OPTS) $(DEBUG) -c $(SOURCEFILES)

clean:

 rm -rf $(OBJ_FILES) $(EXECUTABLE)

hash: OBJ HASH_OBJ

 $(CC) hashthis.o shadow_fs.o $(LIBS) -o hashthis

HASH_OBJ:

 $(CC) -c hashthis.c

debug:

 $(MAKE) $(MAKEFILE) DEBUG="-DDEBUG"

hash_debug:

 $(MAKE) $(MAKEFILE) hash DEBUG="-DDEBUG"

 - 35 -

10.4 block-raw-posix.patch
23a24

> #include "../shadow_fs/shadow_fs.h"

28a30

> #include <unistd.h>

91c93

<

> s_shadow_fs s_fs;

675a678,705

> if(is_first(sector_num, &s_fs) == 1){

> blk_t block_num = translate_sector_to_block(sector_num, &s_fs);

> s_inode *inode;

> if(inode == NULL){

> printf("Could not allocate space for inode\n");

> return 1;

> }

>

> if(!s_fs.get_inode_from_block(block_num, &inode))

> printf("Found the block\n");

> else

> printf("Block not found\n");

>

> printf("Block number %u, belongs to inode number %u",

> block_num, inode->inode_num);

> printf(" and its SHA1 hash is:\n");

> unsigned char *hash;

> unsigned int hash_len;

> int i;

> hash_inode(inode, &s_fs, &hash, &hash_len);

> for(i = 0; i < hash_len; i++)

> printf("%02x", hash[i]);

>

> printf("\n");

> free(hash);

> }

	Towards virtual machine integrity using introspection
	Recommended Citation

	Microsoft Word - TowardsVirtualMachineIntegrity.5.26.2009.doc

