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Exceptional Sets and Antoine’s Necklace

William Basener

Department of Mathematics and Statistics, Rochester Institute of Technology,
Rochester NY 14414

Abstract

We study Cantor sets which occur as minimal sets for homeomorphisms of R n.
The minimality is modelled on an infinite product of finite cyclic groups and on a
generalized adding machine. An interesting example is a homeomorphisms on R 3

which has Antoine’s Necklace as a minimal set. We also discuss some open problems
concerning homeomorphism that have a Cantor set as a minimal set.

Key words: minimal set; solenoid, exceptional set, Antoine’s necklace

1 Introduction

For a homeomorphism f : X → X of a topological space X, a nonempty
compact subset Y ⊂ X is a minimal set if for every y ∈ Y the orbit of
y is dense in Y . If X itself is a minimal set then f is said to be minimal.
In [G], Gottschalk discussed the question of what sets can be minimal sets.
A minimal set which is a Cantor set is called an exceptional set. Our main
result is a collection of homeomorphisms that have interesting exceptional sets.
The term exceptional set has a generalization to flows (direction 1-foliations)
and higher dimensional foliations. For a k-dimensional foliated manifold M , a
foliated subset of M is an exceptional set if it is the closure of every leaf in the
subset and the intersection of any transversal with the subset is a Cantor set.
Since minimal sets must be compact and perfect, they tend to be manifolds
and an exceptional sets.

Gottschalk specifically questioned whether Antoine’s Necklace, which is an
interesting Cantor set (see Figure 3.2), could appear as a minimal set for a
homeomorphism on R 3. In [Z] Zang answers this in the affirmative with an
explicit example. Each of the homeomorphisms g and h in Section 3.2 has
Antoine’s necklace as a minimal set, and Zang’s example is included as the
special case with qi = 4 for all i.
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In Section 2 we prove that certain homeomorphisms on a model symbol space
G are minimal. In Section 3 we define homeomorphisms on D2 and R 3 that
are conjugate to the model homeomorphisms when restricted to a Cantor set.
Suspensions of these homeomorphisms could appropriately be called general-
ized solenoids. We discuss a generalization of Gottschalk’s conjecture about
Antoine’s necklace and related open questions in Section 4.

2 The Model Space

Any topological group which is homeomorphic to the Cantor set is called a
Cantor group. In this section we define a Cantor group G and two homeomor-
phisms α, β : G → G which are minimal. These symbolic dynamical systems
serve as our models for the dynamical systems in Section 3.

Let q1, q2, . . . be an infinite sequence of positive integers. Let G be the group

G =
∞∏

n=1

Z qn

with elements denoted by x = (x1, x2, . . . ). Define a basis of open sets for the
topology to be cylinders

Cy1,y2,...,yk
= {x |xi = yi for all i ≤ k}.

Our first homeomorphism only is minimal in the case where every pair qi, qj

with i 6= j are relatively prime. Define α : G → G to be addition by the
element (1, 1, . . . ),

α(x1, x2, . . . ) = (x1 + 1 mod q1, x2 + 1 mod q2, . . . ).

It is easy to see that α is minimal as follows. Let x ∈ G and we will show that
the orbit through x is dense. Given any point y ∈ G, the first coordinate of
αn(x) must agree with the first coordinate of y for some 0 ≤ n ≤ q1. Next the
first two coordinates of αn(x) must agree with the first two coordinates of y
for some 0 ≤ n ≤ q1q2. Continuing in this manner, for any k there is an n such
that αn(x) agrees with y in the first k coordinates. Hence the orbit through
x intersects any neighborhood of any point y ∈ G and the orbit is dense.

The second homeomorphism is sometimes called a generalized adding machine
or odometer. Define the homeomorphism β : G → G inductively as follows.
Suppose β(x) = y. Then define y1 by

y1 = x1 + 1 mod q1.
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For i > 1, define yi inductively by

yi =





xi + 1 mod qi if yj = 0 for all j < i

xi else.

The argument that β is minimal is similar to that for α. Let x ∈ G. Given any
point y ∈ G, the first coordinate of βn(x) must agree with the first coordinate
of y for some 0 ≤ n ≤ q1. Since q1 and q2 are relatively prime, the first two
coordinates of βn(x) must agree with the first two coordinates of y for some
0 ≤ n ≤ q1q2. Continuing in this manner, for any k there is an n such that
βn(x) agrees with y in the first k coordinates. Hence the orbit through x
intersects any open neighborhood of any point y ∈ G and the orbit is dense.

In Section 3 we define a homeomorphism between the G and an imbedded
Cantor set and define homeomorphisms which are conjugate to α and β on
the Cantor set.

3 The Homeomorphisms

3.1 Am Exceptional Set which is the Intersection of Nested Disks

Let q1, q2, . . . be an infinite sequence of positive integers such that each pair qi

and qj with i 6= j are relatively prime. Let D be a closed disk. Let D0, D1, . . . , Dq1−1

be disjoint closed disks contained in the interior of D such that a rotation
of D by 2π/q1 takes Di to Di+1 mod q1 . Let D(0,0), D(0,1), . . . , D(0,q2−1) be dis-
joint closed disks which are contained in the interior of D0 such that a ro-
tation of D0 by 2π/q2 takes D(0,i) to D(0,i+1 mod q2). Let D(i,j) be the image
of D(0,j) under a rotation of D by i2π/q1. This is shown in Figure 1 with
q1 = 3, q2 = 5, q3 = 7. Continuing in this manner gives a nested sequence of
compact sets C1 ⊃ C2 ⊃ · · · defined by

Cn =
⋃

{(x1,x2,...,xn)|0<xi≤qi−1}
D(x1,x2,...,xn).

Let C denote the Cantor set

C =
∞⋂

n=1

Cn.

Notice that if qi = 2 for all i and every disk has its center on the x−axis then
C is a standard “middle thirds” Cantor set (depending on the diameters of
the disks.)
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Figure 1. The first three steps in creating the Cantor set C.

The natural homeomorphism between C and G is

Γ(x1, x2, . . . ) = D ∩Dx1 ∩D(x1,x2) ∩ · · · .

We now define the homeomorphism on D which has C as a minimal set. Let
q1, q2, . . . be an infinite sequence of positive integers. Let g1 be a rotation of
D by 2π/q1. For each disk Di define a larger disk Di such that Di contains
Di in its interior, all of the Di are disjoint, and the center of Di is the same
as the center of Di. Define a homeomorphism g2 which is the identity on the
compliment of the Di and which is a rotation by 2π/q2 on each Di. This can
be done as follows. Foliate the annulus Di − Di by circles. Define a bump
function ρ on these circles which is 1 on ∂Di and 0 on ∂Di. Then define g2 to
be a rotation on each circle by ρ2π/q2. Define g3 in an analogous manner so it
rotates each D(i,j) by 2π/q3 and is the identity off of disks D(i,j). Continuing
in this manner we get infinitely many homeomorphisms gn. Define g : D → D
by

g(x) = lim
n→∞ gn ◦ · · · ◦ g2 ◦ g1(x)

This is well defined and continuous on D − C since any x ∈ D − C is only
moved by finitely many of the gi. It is well defined on C because for any x ∈ C,
the sequence g1(x), g2 ◦ g1(x), g3 ◦ g2 ◦ g1(x), . . . converges. It is continuous at
points in C as follows. Let x ∈ C. For any ε > 0, there exists an n such that
the diameter of D(x1,x2,...,xn) is less than ε. Let δ = d(x, ∂Dx1,x2,...,xn)). Then if
y is a point such that d(x, y) < δ then d(g(x), g(y)) < ε. Hence this is well
defined and continuous on all of D. Now it is clear that for x ∈ C,

G(x) = Γ ◦ α ◦ Γ−1(x).
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So g is a continuous homeomorphism on D which has C as a minimal set.

The homeomorphism which is conjugate to β on C is defined in a similar man-
ner. Let q1, q2, . . . be an infinite sequence of positive integers, not necessarily
pairwise relatively prime. Let h1 be a rotation of D by 2π/q1. Define a disk D0

such that D0 contains D0 in its interior, D0∩Dj = ∅ for j 6= 0, and the center
of D0 is the same as the center of D0. Define a homeomorphism h2 which is
the identity on the compliment of the D0 and which is a rotation by 2π/q2 on
D0. This can be done as before for g2. Define h3 in an analogous manner so it
rotates D(0,0) by 2π/q3 and is the identity off of a disk D(0,0). Continuing in
this manner we get infinitely many homeomorphisms hn. Define h : D → D
by

h(x) = lim
n→∞hn ◦ · · · ◦ h2 ◦ h1(x)

This is well defined and continuous following the same arguments as for g.
Now it is clear that for x ∈ C,

h(x) = Γ ◦ β ◦ Γ−1(x).

So h is a continuous homeomorphism on D which has C as a minimal set.

3.2 A Homeomorphism on R 3 with Antoine’s Necklace as a Minimal Set

Antoine’s Necklace can be defined in the following way. Let q1, q2, . . . be an
infinite sequence of positive integers. Let T = S1×D2 be a solid torus coordi-
natized by (θ, φ, r) where θ ∈ [0, 2π] mod 2π is the coordinate on S1 and (φ, r)
are polar coordinates on D2. Inside T define a chain of solid tori T0, . . . , Tq1−1

as follows. (See figure 3.2.) For each i ∈ {0, 1, . . . , q1−1} let pi = (i2π/q1, 0, 0).
For each i let γi be the circle of radius 3π/4q1, centered at pi, and contained
in {(θ, φ, r) |φ = i2π/q1}. Note that the linking number of γi with γj is ±1 if
|i − j mod q1| = 1 and γi is the image of γi−1 mod q1 under the rotation of T
by (θ, φ, r) → (θ + i2π/q1, φ + i2π/q1, r). From now on we refer to this home-
omorphism simply as rotation by (i2π/q1, i2π/q1). For each i define Ti to be
a torus neighborhood of γi such that all of the Ti are disjoint and a rotation
of T by (i2π/q1, i2π/q1) takes Ti to Ti+1 mod q1 . Denote the union of these tori
by C1 =

⋃q1−1
i=0 Ti.

In T0 define a chain of q2 pairwise disjoint solid tori, T(0,0), . . . , T(0,q2−1), such
that a rotation of T0 by (2π/q2, 2π/q2) takes T(0,i) to T(0,i+1 mod q2). Let T(i,j)

be the image of T(0,j) under a rotation of T by (2π/q1, 2π/q1) and let C2 =⋃q2−1
j=0

⋃q1−1
i=0 T(i,j). Continuing in this manner results in a nested sequence of

compact sets · · · ⊂ C2 ⊂ C1 and Antoine’s necklace is the set

A =
∞⋂

i=1

Ci.
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The topologically interesting property of Antoine’s necklace are that it is a
Cantor set and it’s complement is not simply connected when imbedded in
R3.

Figure 2. The first two steps in creating Antoine’s Necklace.

The natural homeomorphism Π : G → A is

Π(x1, x2, . . . ) = T ∩ Tx1 ∩ T(x1,x2) ∩ · · · .

To define the homeomorphism on T which has A as a minimal set, let q1, q2, . . .
be an infinite sequence of positive integers such that each pair qi and qj with
i 6= j are relatively prime. Let g1 be a rotation of T by (2π/q1, 2π/q1). For
each Ti define a solid torus T i such that T i contains Ti in its interior, T i is
also a torus neighborhood of γi, g1(T i) = T i+1 mod q1 , and all of the T i are
disjoint. Define a homeomorphism g2 which is the identity on the compliment
of ∪iT i and which is a rotation by (2π/q2, 2π/q2) on each Ti. This can be done
as follows. Foliate the thickened torus T i−Ti by tori. Define a bump function
ρ on these tori which is 1 on ∂Ti and 0 on ∂T i. Then define g2 to be a rotation
on each torus in the foliation by (ρ2π/q2, ρ2π/q2). Define g3 in an analogous
manner so it rotates each T(i,j) by (2π/q3, 2π/q3) and is the identity off of the
T (i,j). Continuing in this manner we get infinitely many homeomorphisms gn.
Define g : T → T by

g(x) = lim
n→∞ gn ◦ · · · ◦ g2 ◦ g1(x)

This is well defined and continuous on T−A since any x ∈ T−A is only moved
by finitely many of the gi. It is well defined on A because for any x ∈ A the
sequence g1(x), g2 ◦ g1(x), . . . converges. The argument that it is continuous
at points in A follows as the argument that g is continuous at points in C.
Specifically, let x ∈ A. For any ε > 0, there exists an n such that the diameter
of T(x1,x2,...,xn) is less than ε. Let δ = d(x, ∂Tx1,x2,...,xn)). Then if y is a point
such that d(x, y) < δ then d(g(x), g(y)) < ε. Hence this is well defined and
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continuous on all of A. It is clear from the definition that g is conjugate to α,

g(x) = Π ◦ α ◦ Π−1(x)

So g is a continuous homeomorphism on T which has A as a minimal set. It
is possible to extend the definition of g to all of R 3 by defining as above on
some imbedded solid torus T and making it the identity off of a neighborhood
of T .

The homeomorphism on T which is conjugate to β on A is defined in a similar
manner. Let q1, q2, . . . be an infinite sequence of positive integers, not neces-
sarily pairwise relatively prime. Let h1 be a rotation of T by (2π/q1, 2π/q1).
Define a solid torus T 0 such that T 0 contains T0 in its interior, T 0 is also a
torus neighborhood of γ0, and T 0 ∩ Ti = ∅ for all i 6= 0. Define a homeomor-
phism h2 which is the identity on the compliment of the T 0 and which is a
rotation by (2π/q1, 2π/q1) on T0. This can be done as before for g2. Define
h3 in an analogous manner so it rotates T(0,0) by (2π/q3, 2π/q3) and is the
identity off of a tours T (0,0). Continuing in this manner we get infinitely many
homeomorphisms hn. Define h : T → T by

h(x) = lim
n→∞ hn ◦ · · · ◦ h2 ◦ h1(x)

This is well defined and continuous following the same arguments as for g.
Now it is clear that for x ∈ A,

h(x) = Γ ◦ β ◦ Γ−1(x).

So h is a continuous homeomorphism on T which has A as a minimal set. It
is clear that h could be extended to a homeomorphism on R 3 which has A as
a minimal set.

4 Remarks and Open Questions

Remark 1. An important topological invariant of a minimal set is the The
D-function, developed by Ye in [Y]. Suppose that f : X → X is a continuous
map of a compact Hausdorff space and that Y is a minimal set for f . The
D-function for Y is the function fY : N → N which takes the natural number
n to the number of distinct minimal sets of fn which are contained in Y . The
D-function for α is easy to compute (and hence so is the D-function for g and
g.) If q1, q2, ... is the sequence of pairwise relatively prime positive integers
defining α then the D-function of α is

s(n) = Π{qi:qi|n}qi.
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The D-function for β is more complicated. As remarked in [Y], for any function
s ∈ Y one can choose the {qi} so that the D-function of β is s. (The space Y
is the space of all possible D-functions as defined in [Y].)

In [Y], Ye defines a subshift which also has minimal sets with every possible
D-function, and mentions the question of whether this subshift is conjugate
to the adding machine β. The two systems are not conjugate because the β is
not expansive but a subshift is, and expansiveness is preserved by conjugacy.
(A dynamical system f : X → X is expansive if for every x, y ∈ X, d(x, y) <
d(fn(x), fn(y)) for some positive integer n.) This observation was shown to
the author by Brian Marcus during a personal conversation.

Remark 2. Our construction can be extended to a more general setting in
several ways, one of which we describe loosely here. Let M ba a n-dimensional
manifold imbedded in M × Dk with k ≥ M , and let G be the group of
isometries of M . Let G1 be a discrete subgroup of G. Let x ∈ M × {0}. For
each g1 ∈ G1, let xg1 = g1(x) (so x = xid.) Also for each g1 ∈ G1, let Mg1 be a
copy of M imbedded in M × dn so that xg1 ∈ Mg1 and g1(Mid) = Mg1 , where
we are extending g1 : M → M to g1 : M × Dn → M × Dn via the identity
on the Dn coordinate. One could repeat the process from Section 3 to obtain
a Cantor set C with points x(g1,g2,...) ∈ G, where G = Π∞

i=1 and each Gi is a
discrete subgroup of isometries of M . Such generalizations raise questions of
knotting and linking, as well as the question of whether a Z action would be
sufficient to make this a minimal set or if Zm, m ≤ ∞ would be required. We
note the special cases from Section 3 have M = S1 and k = 2 or 3.

Open Questions One can generalize the question of Gottschalk as “Which
imbeddings of Cantor sets can occur as an exceptional set for a homeomor-
phism on an n−dimensional manifold?”

A simple example of Cantor sets in R 3 that cannot be a minimal set for any
homeomorphism of R 3 is as follows. It is clear that if a Cantor set has two
points x, y such that some neighborhood of x in R n is not homeomorphic
(preserving C) to any neighborhood of y then there does not exist a home-
omorphism with this Cantor set as a minimal set. Such an example can be
defined similar to the definition of Antoine’s Necklace by making some of the
tori knotted, say all tori Tx1,x2,... knotted if x1 = 0 but unknotted if x1 = 1.
An interesting question is: Is there an imbedding of a Cantor set that does
not have this obstruction and which is not the minimal set for any homeomor-
phism?

Another interesting question is whether there exists a manifold which admits
a periodic orbit free flow (map) but not a minimal flow (map). A solution to
the Gottschalk conjecture of whether there exists a minimal flow on S3 in the
negative would provide such an example.
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