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Abstract  

 

It has been shown that mild water deficit in grapevine contributes to wine quality, in terms 

of especially grape and subsequent wine flavor. Water deficit irrigation and selective harvesting 

are implemented to optimize quality, but these approaches require rigorous measurement of vine 

water status. While traditional in-field physiological measurements have made operational 

implementation onerous, modern small unmanned aerial systems (sUAS) have presented the 

unique opportunity for rigorous management across vast areas. This study sought to fuse 

hyperspectral remote sensing, sUAS, and sound multivariate analysis techniques for the purposes 

of assessing grapevine water status. High-spatial and -spectral resolution hyperspectral data were 

collected in the visible/near-infrared (VNIR; 400-1000nm) and short-wave infrared (SWIR; 950-

2500 nm) spectral regions across three flight days at a commercial vineyard in the Finger Lakes 

region of upstate New York. A pressure chamber was used to collect traditional field 

measurements of stem water potential (ψstem) during image acquisition. We completed some 

preliminary exploration of spectral smoothing, signal-to-noise ratio, and calibration techniques in 

forging our experimental design. We then correlated our hyperspectral data with a limited stress 

range (wet growing season) of traditional measurements for ψstem using multiple linear regression 

(R2 between 0.34 and 0.55) and partial least squares regression (R2 between 0.36 and 0.39). We 

demonstrated statistically significant trends in our experiment, further qualifying the potential of 

hyperspectral data, collected via sUAS, for the purposes of grapevine water management. There 

was indication that the chlorophyll and carotenoid absorption regions in the VNIR, as well as 
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several SWIR water band regions warrant further exploration. This work was limited since we did 

not have access to experimentally-controlled plots, and future work should ensure a full range of 

water stress. Ultimately, models will need validation in different vineyards with a full range of 

plant stress. 
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Chapter 1  

 

Introduction 
 

1.1   CONTEXT 

Grapes arguably are one of the most economically-important agricultural crops in the 

world; in 2007, vineyards comprised 7.8 million hectares around the world, with a yield of around 

65 million metric tons, per figures from Bayer Crop Science (Bayer 2019). While somewhat 

constrained to the more temperate geographic zones around the world, vineyards indeed stretch 

across the globe to include presence in countries like Spain, France, Italy, Turkey, China, USA, 

etc. If the specific geologic conditions coincide, vineyards can be found even in less than ideal 

locations, such as the Finger Lakes region of Upstate New York, USA. While much of the 

cultivated grape crop is dedicated for food or table grape purposes, the vast majority of cultivated 

grapes are destined for manufactured wine products. It is estimated that around 270 million 

hectoliters of wine products were produced worldwide in 2007 (Bayer 2019). Thus, it can be 

presumed that there is a significant interest in maintaining and increasing the associated quality of 

wine product for economic and cultural reasons. 

The eventual quality, taste, and style of wine products are highly influenced by terroir, a 

nod to the environmental, geographic, and human conditions under which grapevines are grown 
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and cultivated (Cornelis Van Leeuwen and Seguin 2006). Contrary to common convention with 

most agricultural crops, grapevine and associated harvest quality actually benefit from suboptimal 

ecological settings, especially in terms of mild moisture deficits, which has been shown to in fact 

aid the quality of cultivated grapes for wine. The presence of a mild moisture deficit in grapevines 

prompts a reduction in shoot growth, berry weight, and yield, all of which are factors that 

collectively serve to inflate berry anthocyanin and tannin levels and, as such, perceived quality 

(Cornelis Van Leeuwen et al. 2009). The idea of leveraging mild moisture deficit for quality 

potential is especially prevalent in red wine. With the opportunity to regulate quality, given 

moisture condition, comes the challenge to properly control water deficit in the vines, since severe 

deficit can be detrimental to yield and quality (Ojeda et al. 2002). 

Controlled deficit irrigation therefore has emerged as one method to induce mild moisture 

deficit stress in grapevines, and has been demonstrated to yield improved berry quality, while 

maintaining operationally acceptable yields (Chaves et al. 2007). Deficit irrigation, or partial 

irrigation, reduces vine vigour and shoot growth in a controlled manner that shifts plant metabolic 

processes to induce improved fruit quality (Matthews and Anderson 1989). Similarly, in vineyards 

where deficit irrigation techniques cannot be realized, the knowledge of vine water status may 

dictate selective harvesting practices, giving way to optimized quality and yield. Selective 

harvesting can be successfully implemented in both small quantity producing wineries, as well as 

those with large volume and flexible infrastructure (Bramley et al. 2005). It subsequently stands 

to reason that a scheme to control grapevine moisture inevitably demands accurate and rigorous 

measurements of grapevine moisture at any given time. 

Traditionally, management of vine moisture status has been facilitated by direct in-field 

measurement of sensitive physiological indicators. Stem water potential (ψstem), a measure of 

integral plant transpiration and an indicator of the capability for grapevines to conduct water from 

the soil to the atmosphere, has been validated as one such sensitive indicator that may aid vine 

moisture management (Chone et al. 2001). A pressure chamber typically is used to measure the 

negative pressure in the xylem of plants in order to gauge the underlying ψstem associated with a 

given vine (Scholander et al. 1965). The in-field direct measurement of ψstem with a manual 

pressure chamber, while proven valid for grapevine water status measurement (Chone et al. 2001), 

is challenging for large, commercial vineyards. While strides have been made in numerous 

vineyard settings to operationally respond to in-field measures of vine moisture status,  accurate 
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measurements often require an inordinate amount of time and labor, and progress in operational 

application remains gradual (Rodríguez-Pérez et al. 2007). 

It is in this context that remote sensing technology has become an increasingly common 

tool to remotely probe for plant physiological indicators, like plant moisture status, via 

observations of the unique electromagnetic spectral response related to plant moisture regimes. 

The potential superiority of non-destructive remote sensing techniques, for these purposes, lies in 

the cost-effective, exhaustive (“wall-to-wall”), and objective nature of application (Govender et 

al. 2009). Significant progress in the spectral and spatial granularity of enabling sensors has made 

the operational implementation of such sensors for precision field application more tenable. As 

such, many recent works have assessed remote sensing as a more realistic operational tool that 

could allow larger-scale decision making by vineyard managers (De Bei et al. 2011; Acevedo-

Opazo et al. 2008; Jones et al. 2009). 

Hyperspectral data collected via remote sensing techniques can be particularly useful when 

trying to ascertain underlying plant physiology, mainly due to the data type’s fine spectral 

granularity. In the visible (VIS) regime of the spectrum, i.e., 400-700 nanometers (nm), and the 

near-infrared (NIR) regime, 700-1000 nm, subtle variations in photosynthetic pigments, such as 

chlorophyll and carotenoids, and leaf structure variations are evident (Josep Peñuelas and Filella 

1998). In the shortwave infrared (SWIR) regime, i.e., 1000-2500 nm, several strong atmospheric 

absorption bands are present and vegetation moisture content dominates as the primary influence 

of plant spectral signatures (Behmann, Steinrücken, and Plümer 2014). Hyperspectral signatures 

of vegetation thus allow insight into specific spectral characteristics or indicators, which might be 

useful as proxies for key physiology states. However, with the very fine spectral nature of 

hyperspectral data, there is a need to apply sound modeling techniques to reduce data 

dimensionality, remove the noise associated with highly correlated variables, and identify 

wavelengths of greatest importance (Thenkabail, Lyon, and Huete 2011). 

It then becomes a question as to how exactly to collect, process, and analyze remote sensing 

data for use in plant physiological studies. Field spectroradiometers often are used in studies to 

enable relatively fast and simple data collection; however, spectroradiometers limit the operational 

utility for large area applications and arguably represent best-case, low-noise scenarios and results 

still require scaling to operational image resolutions and extents. The application of aircraft or 
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satellite platforms as the modalities via which to collect plant spectral data at a precise level 

remains inhibitive, on the other hand, mainly due to shortcomings in spatial and temporal 

resolutions, as well as strict adherence to weather conditions. It is in this context that small 

unmanned aerial systems (sUAS) platform for precision agriculture application arguably balances 

the demands for low cost, high spatial/spectral/temporal resolutions, and ease of use, and lends 

itself well to moisture management applications (Gago et al. 2015). We therefore attempted to 

further explore the utility of high-spectral, high-spatial resolution sUAS-collected data for 

grapevine moisture management. 

  Our research fused hyperspectral remote sensing, sUAS, and sound multivariate analysis 

techniques for the purposes of assessing grapevine water status. We conducted full airborne 

(sUAS) and ground (field truth) campaigns and analyzed our data using sound modeling 

techniques, all in order to present trends and conclusions to inform future efforts. The targeted 

objectives for the research are presented in the subsequent section. 

 

1.2   OBJECTIVES 

Our overarching objective was to assess the utility of sUAS-based (hyper-) spectral 

indicators for assessing limited variation in vineyard moisture status, toward establishing 

potential operational solutions. Our specific objectives were as follow: 

• Objective 1: Evaluate a sound data processing chain to relate hyperspectral data and field 

(moisture) physiological indicators for a commercial, rainfed vineyard. 

• Objective 2: Assess the overall potential of sUAS-based hyperspectral remote sensing 

for managing grapevine moisture status. 

• Objective 3: Identify pertinent spectral indicators in the VNIR spectral regime for 

discerning grapevine moisture status. 

• Objective 4: Identify pertinent spectral indicators in the SWIR spectral regime for 

discerning grapevine moisture status. 

The research findings from these objectives were reported as a conference proceedings 

paper and comprehensive technical manuscript for targeted outreach. 
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1.3   THESIS LAYOUT 

1.3.1   Chapter 2: Background 

This chapter provides a brief review of some of the seminal work done in relation to remote 

sensing for grapevine moisture assessment. It provides a more comprehensive background to set 

up and further motivate Chapters 3 and 4, the core research chapters. 

 

1.3.2   Chapter 3: A cursory analysis of real-time sUAS-based detection of grapevine water 

status in the Finger Lakes Wine Country of Upstate New York 

This chapter represents a paper that was presented and published in the Autonomous Air 

and Ground Sensing Systems for Agricultural Optimization and Phenotyping session of the SPIE 

Defense and Commercial Sensing Conference proceedings, April 2019 (Izzo et al. 2019). It details 

initial modeling and data analysis efforts for the VNIR data that we had collected at Fox Run 

Vineyards in Upstate New York, USA. This paper addresses Objectives 1, 2, and 3. 

 

1.3.3   Chapter 4: Combining hyperspectral imaging and small unmanned aerial systems for 

grapevine moisture stress assessment 

This chapter further expands upon the results of Chapter 3 by including the sUAS SWIR 

imagery and three days’ worth of field to better discern links to plant physiological phenomena. 

This chapter is written with the intent to publish in an applicable journal in the 2019 timeframe 

and addresses Objectives 2, 3, 4, and 5. 

 

1.3.3   Chapter 5: Summary 

This chapter provides a summary of the work and suggested improvements for future 

related research. 
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1.4   SCIENTIFIC CONTRIBUTIONS 

This research is by no means the first remote sensing study related to vineyard moisture 

assessment, with previous efforts focusing mostly on in situ spectroradiometers and multispectral 

sUAS platforms. However, our effort does represent cutting-edge work in fine-scale (high spatial 

resolution) hyperspectral imagery, across the full reflective domain (400-2500 nm). Specifically, 

we: 

• demonstrated sound data processing chain to relate hyperspectral data and field 

physiological indicators for a commercial rainfed vineyard, absent access to experimental 

field plots, including pixel classification and multivariate modeling techniques; 

• proved that correlation can be established between field ψstem and hyperspectral data of 

grapevine, even given a relatively narrow-range of ψstem response; and 

• showed statistically-significant trends when relating grapevine ψstem to downsampled 

hyperspectral data collected across the VNIR and SWIR spectral regimes (400-2500 nm) 

o in the VIS, we suggested the importance of understanding the chlorophyll and 

carotenoid absorption regions for grapevine, 

o in the NIR, we confirmed the minor water absorption feature (970 nm) a useful 

indicator for understanding grapevine moisture, as already indicated by a number 

of established spectral indices in the literature, and 

o in the SWIR, we pointed to select longer wavelength regions that might be 

considered in grapevine moisture studies 

 These contributions were presented and published in part in the Autonomous Air and 

Ground Sensing Systems for Agricultural Optimization and Phenotyping session of the SPIE 

Defense and Commercial Sensing Conference proceedings, April 2019 (Izzo et al. 2019) 

(Chapter 3), while we also intend to publish a journal article in the 2019 timeframe as a more 

comprehensive reporting of the work (Chapter 4). 
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Chapter 2  

 

Background 
 

 

2.1   FOREWORD 

This thesis is organized in a modern format, such that the primary chapters (Chapter 3 and 

Chapter 4) each represent past or intended publications. This chapter provides a brief literature 

review and background to further set up the primary Chapters 3 and 4. Chapter 2 therefore provides 

a review of previous related work in remote sensing of grapevine water across a number of data 

collection platforms and modeling techniques. 

 

2.2   PASSIVE REMOTE SENSING 

The major body of previous research in remote sensing studies of grapevine moisture, 

including the work presented in this thesis, is predicated on passive remote sensing. As such, this 

section seeks to provide a review of passive remote sensing studies completed in the optical and 

thermal sensing regimes. 
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2.2.1   Optical remote sensing 

Image and point-based spectral data can be collected in the visible (400-700 nm) and 

infrared spectral regimes (700-2500 nm) with optical remote sensing. The captured solar radiation 

reflected off of targets can provide an indication of the composition of such targets (Hall et al. 

2002). For example, vegetation has a known reflectance spectrum that can be interrogated, but 

even further, species and physiology can be ascertained from the detail of that spectral signal 

(Josep Peñuelas and Filella 1998). It should be noted that sensing in the visible regime typically is 

more affordable, practical, and even operational in experimental design, when compared to the 

infrared spectral regions, mainly due to material limitations in detectors. The utility of spectral 

signatures is often dependent upon the spectral resolution of the sensor used for data collection; 

specifically, multispectral imaging systems capture just a few broad bands, while hyperspectral 

sensors capture many (often hundreds) of narrow, contiguous bands. In the past remote sensing 

studies of grapevine moisture, while some of the work has tried to use multispectral technology, 

most implemented hyperspectral technology with fine spectral detail, but using in situ sensing 

approaches (Govender et al. 2009). 

Many previous studies have explored existing spectral indices to better understand the 

utility of these universal indices for ore specific applications. For example, Rodríguez-Pérez et al. 

(2007) related hyperspectral reflectance data (350-2500 nm), collected in a commercial vineyard 

of Pinot noir and using an integrating sphere and field spectroradiometer, to numerous known 

reflectance indices. They evaluated the difference between midday ψstem and pre-dawn leaf water 

potential, and achieved strong fits with the Red/Green Index (R2 = 0.619) and the structure 

intensive pigment index (R2 = 0.541). Serrano et al. (2012) used a spectroradiometer covering 400-

1100 nm to capture spectral data of leaves in a rainfed vineyard across 256 spectral channels. They 

aimed to investigate the relation between the normalized difference vegetation index (NDVI) and 

berry yield/composition during mild to moderate moisture stress conditions. They found NDVI to 

model total soluble solids (R2 = 0.81) and maturity index at harvest (R2 = 0.89) reasonably well, 

while the Water Index performed well with regards to titratable acidity (R2 = 0.62) and the maturity 

index (R2 = 0.67). 

Other researchers have proposed novel indices, which might prove useful in understanding 

grapevine moisture status, thereby recognizing the risk in applying universal spectral indices for 
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specific applications. Maimaitiyiming et al. (2017) worked in an experimental vineyard to apply 

different irrigation treatments to better understand grapevine moisture stress; the authors 

performed an exhaustive search of normalized difference spectral indices (NDSI) to propose those 

with strongest relationships to water proxies. They found that stomatal conductance was the best 

proxy for underlying water stress and that the wavelengths at 603 and 558 nm should be used in 

an normalized difference spectral index (NDSI). Rapaport et al. (2015) correlated visible and 

shortwave infrared data, collected with ground spectrometers, to midday leaf water potential, 

stomatal conductance, and non-photochemical quenching using partial least squares regression. 

Recognizing significant reflectance trends in the regions of 530-550 nm and near 1500 nm, they 

proposed three novel normalized water balance indices (WABI) utilizing these regions. 

Others still have explored whether retaining all data in spectral signatures, rather than 

downselecting to indices, would be beneficial in grapevine moisture studies. For example, 

Loggenberg et al. (2018) meshed machine learning techniques – random forest (RF) and extreme 

gradient boosting – and hyperspectral data with the aim to classify stressed versus non-stressed 

Shiraz grapevine. They found that using a subset, i.e., 18 of 176 wavelength bands collected, in 

fact aided with slightly better classification accuracy (1.7% to 5.5 %). Rather than using spectral 

indices, Zovko et al. (2019) applied partial least squares analysis techniques to classify four water 

treatments of grapevine in a Croatian experimental vineyard, and pointed to pertinent spectral 

indicators. They specifically found that the O–H, C–H, and N–H stretches in water, carbohydrates, 

and proteins were of most pertinence in separating the water treatments. 

 

2.2.1   Thermal remote sensing 

In thermal remote sensing, or thermography, naturally emitted thermal radiation, usually 

in the regions of 3-5 μm and 8-14 μm, is captured to provide an indication of a target’s temperature 

variation. Infrared thermography for instance can be used to interrogate the relationship between 

leaf stomatal closure and surface temperature (Jones et al. 2002). Since stomatal closure acts as a 

proxy for water activity in the plant, thermal imaging data can be useful in relating to plant 

physiological indicators. Recognizing this utility, we have seen a number of recent studies on 

grapevine moisture include thermal imaging as a means to relate to underlying physiological 
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indicators of grapevine moisture. 

Möller et al. (2006) explored the use of thermal imaging to investigate water stress 

conditions in a northern Israel vineyard of Merlot by applying various irrigation levels. Using a 

FLIR thermal imaging system, they were able to correlate physiological indicators – including 

stem water potential, leaf conductance, and leaf area index – with the Crop Water Stress Index 

(CWSI). The CWSI, which compares canopy temperatures and meteorological conditions, was 

found to be significantly correlated with leaf conductance and stem water potential. The most 

significant R2 metric was found in relating the CWSI to stomatal conductance (R2 = 0.91). Pou et 

al. (2014) set out to validate thermal indices that had been previously associated with water status 

in grapevine, including the stomatal conductance index (Ig) and the CWSI. They found both of the 

aforementioned indices to be highly representative of stomatal conductance, with best results 

obtained when data were collected on the shaded portion of the canopy during midday. Finally, 

Fuentes et al. (2012) worked towards automating thermography for discerning water stress in 

grapevines. Significant correlations were proven between canopy temperature indices and 

traditional field physiological indicators, and a more fully automated technique was proposed by 

using ancillary weather data. The advent of unmanned aerial systems (UAS), however, has led to 

studies exploring this novel platform for more operational application scenarios. 

 

2.3   UAS DATA COLLECTION PLATFORMS 

The use of aircraft or satellites to probe plant water status is limiting, due to a dependence 

on ideal atmospheric conditions, lack of high enough spatial/spectral/temporal resolutions, and 

cost; however, the growing accessibility of sUAS has made plant-level physiological observations 

over large areas more pragmatic. sUAS platforms serve to connect field-level assessment with leaf-

level observations in precision agriculture applications, where the response to plant physiology is 

often better understood at finer scales (Gago et al. 2015). The use of sUAS as a data collection 

platform in remote sensing thus allows for high spatial and temporal resolution, while remaining 

reasonable option for operational implementation on a larger spatial scale. 

The benefits of sUAS have come to the fore and sUAS have been used in some recent 

works, even though the specific application of the sUAS platform is still emerging in grapevine 
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moisture studies. Primicerio et al. (2012) built a sUAS platform for site-specific vineyard 

management at an experimental vineyard in central Italy, collecting 63 multispectral images in 

total. Their results included vigour maps that clearly delineated crop heterogeneity and matched 

their field data (ground truth). Baluja et al. (2012) collected multispectral (six bands at 530, 550, 

570, 670, 700 and 800 nm) and thermal imagery via sUAS to study water status variability in a 

commercial rainfed vineyard. The authors reported that the normalized difference vegetation index 

(NDVI) and TCARI/OSAVI (a ratio between chlorophyll absorption and a soil-adjusted index) 

exhibited the best correlation with ψstem, with R2 = 0.68 and R2 = 0.84, respectively. Zarco-Tejada 

et al. (2013), on the other hand, examined the Photochemical Reflectance Index (PRI) as a proxy 

for water stress condition in grapevine. Their data consisted of multispectral and thermal imagery 

captured during four airborne collection efforts. The authors presented a novel normalized PRI, 

taking into consideration canopy structure and chlorophyll content. Santesteban et al. (2017) more 

recently used a sUAS platform to assess water status variations within a vineyard, but implemented 

high-resolution (0.09 m) thermal images for a 7.5 ha vineyard; they found the crop water stress 

index (CWSI) to be well correlated with stem water potential and stomatal conductance. 

We used two separate platforms to accommodate two separate sensor suites and their 

supporting hardware for the research presented in this thesis; see Figure 2.1. The DJI Matrice 600 

multi-copter sUAS platform was selected as the base airframe for our flight campaigns due to its 

modular efficiency (https://www.dji.com/). Trimble Applanix-15 boards were implemented in the 

designs to further boast the direct georeferencing and inertial intelligence of the sUAS platforms 

(https://www.applanix.com/). Both flight sensor suites, one intended to encompass the VIS and 

NIR (VNIR) spectral regimes and the other the SWIR regime, were furnished by Headwall 

Photonics (http://www.headwallphotonics.com/). A Headwall Nano-Hyperspec® Hyperspectral 

Imaging Sensor, comprising 270 narrow bandwidth spectral bands from 400-1000 nanometers 

(nm), 640 spatial bands, and a 7.4 micrometer pixel width, covered the VNIR regime. Likewise, 

for the SWIR regime, the Headwall Micro-Hyperspec SWIR® extended spectral reach from 950-

2500 nm with 170 narrow bandwidth spectral bands. UgCS ground station software was used for 

mission planning to achieve the required altitude and speed parameters for the sUAS platforms 

(https://www.ugcs.com/). More detailed information regarding our air and ground campaigns can 

be found in the primary, i.e., Chapters 3 and 4. 
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Figure 2.1. Two separate multi-copter platforms were employed in our air campaign efforts. Both multi-copter 

designs exploited the modular DJI Matrice 600 flying platform. One of the multi-copters was equipped with a VNIR 

imaging sensor, while the other was equipped with a SWIR imaging sensor; both sensors boasted high spectral 

resolution – hyperspectral – sensors provided by Headwall Photonics 

 

2.4   RESEARCH GAP 

There still is a need to further evaluate sUAS-based, high spatial resolution, and especially 

hyperspectral imagery for different geographic regions, thereby validating past efforts for different 

regions and grape varieties. Most of the prior work utilizes data that were collected in situ via 

spectroradiometers. For those studies that did include a sUAS platform, many did not evaluate the 

optical domain and some did not correlate with reliable physiological indicators. We therefore 

attempted to bridge that gap to some extent in this work, fusing hyperspectral remote sensing, 

sUAS, and sound multivariate analysis techniques for the purposes of assessing grapevine water 

status. 
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Chapter 3  

 

A cursory analysis of real-time sUAS-based 

detection of grapevine water status in the 

Finger Lakes Wine Country of Upstate New 

York 
 

 

3.1   FOREWORD 

This chapter represents a paper that was presented and published in the Autonomous Air 

and Ground Sensing Systems for Agricultural Optimization and Phenotyping session of the SPIE 

Defense and Commercial Sensing Conference proceedings, April 2019 (Izzo et al. 2019). It details 

initial modeling and data analysis efforts for the VNIR data that we had collected at Fox Run 

Vineyards in Upstate New York. This paper addresses Objectives 1, 2, and 3. 

 

3.2   ABSTRACT 

The quality of grapes in the production of wine is highly influenced by vine water status, 

where optimal water deficit or selective harvesting can improve berry quality. It is in this context 
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that the rapid advancement in small unmanned aerial system (sUAS) technology and the potential 

application of real-time, high-spatial resolution hyperspectral imagery for vineyard moisture 

assessment, have become tractable. This study sought to further sUAS hyperspectral imagery as a 

tool to model water status in a commercial vineyard in Upstate New York. High-spatial resolution 

(2.5 cm ground sample distance) hyperspectral data were collected in the visible/near-infrared 

(VNIR; 400-1000nm) regime on three flight days. A Scholander pressure chamber was used to 

directly measure the midday stem water potential (ψstem) within imaged vines at the time of flight. 

High spatial resolution pixels enabled the targeting of pure (sunlit) vine canopy with vertically 

trained shoots and significant shadowing. We used the partial least squares-regression (PLS-R) 

modeling method to correlate our hyperspectral imagery with measured field water status and 

applied a wavelength band selection scheme to detect important wavelengths. We evaluated 

spectral smoothing and band reduction approaches, given signal-to-noise ratio (SNR) concerns. 

Our regression results indicated that unsmoothed curves, with the range of wavelength bands from 

450-1000 nm, provided the highest model performance with R2 = 0.68 for cross-validation. Future 

work will include hyperspectral flight data in the short-wave infrared (SWIR; 1000-2500 nm) 

regime that were also collected. Ultimately, models will need validation in different vineyards with 

a full range of plant stress. 

 

3.3   INTRODUCTION 

Remote sensing has become a widely adopted tool for informing the decisions of farmers 

and has served to further evolve the operational sphere of precision agriculture applications. 

Precision agriculture is recognized as the application of the right management practice, at the right 

place, and at the right time (Mulla 2013). However, remote sensing techniques were not always 

widely recognized for their potential commercial application in agriculture. As recently as the year 

2000, remote sensing was regarded as nothing more than a research tool in agriculture, seldom 

implemented at the operational level (Bastiaanssen, Molden, and Makin 2000). Today, however, 

the recent technical advancements in enabling sensors, coupled with the growing associations 

between scientists and farmers, have created the opportunity for remote sensing to significantly 

change the landscape of modern agricultural management. 

The relation between remote sensing spectral data and plant water response has been 
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broadly accepted as a worthwhile pursuit by both the remote sensing and agricultural communities. 

The mechanism of evapotranspiration, or the combined transpiration and evaporation of plant 

water throughout the life of a plant, can be inspected via the plant’s electromagnetic or spectral 

response (Damm et al. 2018). Spectral data, collected via remote sensing platforms, have been 

utilized for numerous works exploring plant water physiological response (Ač et al. 2015; Buitrago 

et al. 2016; Maimaitiyiming et al. 2017; Ballester et al. 2018). The advantages in using remote 

sensing technologies for remotely probing plant moisture status may include cost effectiveness, 

synoptic coverage, increased economic productivity, and objective physiological assessment 

(Govender et al. 2009). 

Grapevine has emerged as a sensible genus in which to exploit remote sensing technology 

for the purposes of precisely managing plant water status. Vine water conditions must be properly 

understood and ideally regulated, since the key factors affecting grape quality potential - climate, 

soil, and grapevine and their interactions known as “terroir” - are intimately related to the 

underlying vine water status (Cornelis Van Leeuwen and Seguin 2006). In vineyards where 

irrigation application can be regulated, the application of controlled deficit irrigation, or mild water 

stress condition, has been shown to provide economically sufficient yield, while improving berry 

and wine quality (Chaves et al. 2007). Even in vineyards where irrigation is not controlled, but 

rather environment alone dictates vine water uptake, the knowledge of vine water status could 

stimulate selective harvesting practices to optimize eventual quality and yield of end product 

(Bramley et al. 2005). The in-field direct measurement of stem water potential (ψstem) with a 

manual pressure chamber, while proven valid for grapevine water status measurement (Chone et 

al. 2001), is difficult for large, commercial vineyards. As a result, remote sensing has been gauged 

extensively by the scientific and agricultural communities as a more realistic operational tool that 

could allow larger-scale decision making by vineyard managers (De Bei et al. 2011; Acevedo-

Opazo et al. 2008; Jones et al. 2009). 

The use of aircraft or satellites to remotely probe plant water status, however, is severely 

limiting due to the inherent low resolution and infrequent sampling of a dynamic situation. The 

growing accessibility of small unmanned aerial systems (sUAS), on the other hand, has made 

plant-level physiological observations over large areas more pragmatic. The sUAS platform serves 

to connect field-level assessment with leaf-level observations in precision agriculture applications, 



16  CHAPTER 3.   An initial analysis of real-time sUAS-based detection of grapevine water 

status in the Finger Lakes Wine Country of Upstate New York 

 

 

 

where the response to plant physiology is often better understood at finer scales (Gago et al. 2015). 

The sUAS has been the platform of choice for a myriad of recent remote sensing studies examining 

grapevine water status (Bellvert et al. 2014; Baluja et al. 2012; D. Turner, Lucieer, and Watson 

2011). 

While the sensors utilized for remote sensing studies observing grapevine water status have 

varied, hyperspectral sensors have emerged as a particularly effective choice due to the fine 

spectral granularity offered. The many hundreds of spectral bands associated with hyperspectral 

sensors offer a glimpse into subtle plant response that simply may be missed with a coarser, more 

limited multispectral sensor. Recent works also have highlighted the utility of hyperspectral 

sensors for studying grapevine water status (Rapaport et al. 2015). It is in this context that our 

ongoing effort, presented in part in this manuscript, examines the potency of using hyperspectral 

data, collected via sUAS platform, for the purposes of accurately estimating real-time water status 

in grapevines. While many previous studies have examined the use of sUAS or hyperspectral 

sensing for observing grapevine water status, there remains a gap related to the combination of 

sUAS platforms and hyperspectral sensors for these purposes. 

 

3.4   METHODOLOGY 

3.4.1   Study area 

The field work for this study was completed at a single mature commercial vineyard in the 

Finger Lakes Wine Country of Upstate New York, namely Fox Run Vineyards. The Finger Lakes 

premium wine region has grown significantly over the last few decades, boasting more than 11,000 

acres of planted vineyards across more than 100 wineries, spread across Upstate New York in 2017 

(“Finger Lakes Wine” 2017). This region is a glaciated lake region with cold winters and moderate, 

humid summer and variable rainfall. Fox Run, with grapes first planted in 1984, sits upon the 

western edge of Seneca Lake, New York, USA. The vineyard grows five different grape 

varietals—Riesling, Chardonnay, Lemberger, Cabernet Franc, and Cabernet Sauvignon—and 

produced around 18,000 cases in 2018 (“History of Fox Run” 2019). 

Fox Run Vineyards is somewhat unique relative to many vineyards, due to its specific 

geological features. A significant portion of the property stands atop a thick layer of fertile, well-
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drained sandy loam, left behind due to the receding shoreline of Seneca Lake over time. Gravelly 

silty loam dominates much of the rest of the vineyard, leaving behind evidence of a paleodelta 

formed after glacial melting (“Geological Features of Fox Run Vineyards in the Finger Lakes” 

2019). Fox Run offers a complex terroir that provides a natural range of stress for environmental 

and scientific studies. A detailed vineyard map of Fox Run Vineyards is provided in Appendix A 

(“Vineyard Map of Fox Run Vineyards” 2019). 

3.4.2   Data collection 

This study consisted of both an air and ground campaign, to collect flight data to be 

properly correlated with in-field physiological measurements, taken at the time of flight, with more 

traditional measurement methods. Air and ground data, used to support the study, were collected 

on three sunny days during the 2018 growing season: 21 June, 15 August, and 17 September. 

The Rochester Institute of Technology (RIT) has developed an UAS research laboratory 

and provided access to two sUAS platforms for our airborne campaign. Both platforms support 

sensor suites on DJI Matrice 600 multi-copters, pictured in Figure 3.1 below, with inertial sensory 

information fed through a Trimble Applanix-15 board (DJI 2019; Trimble Navigation 2017). The 

spectral sensors aboard both multi-copters were provided by Headwall Photonics; the sensor suite 

on one of the platforms covered the visible-near infrared (VNIR) spectral regime, while the other 

covered the shortwave infrared (SWIR) spectral regime. It should be noted that the initial results 

provided in this manuscript focus only on the VNIR regime flights. 

The Headwall Nano-Hyperspec® Hyperspectral Imaging Sensor was selected for use on 

our VNIR platform. The wavelength range for the Nano-Hyperspec® extends from 400-1000 nm, 

consisting of 270 narrow spectral bands. The sensor uses CMOS camera technology, with 12-bit 

depth, 350 Hertz maximum frame rate, and detector with 7.4 micrometer pixel width (Headwall 

2018). 

UgCS ground station software facilitated the optimization of flight altitude and platform 

speed, based upon the desired ground sample distance (GSD; 2.5 cm in our case) (SPH 2019). It 

should be noted that there will be some level of image blur (platform motion) and effects due to 

the optical system’s point spread function. Consideration of these two effects becomes especially 

important when selecting an even finer spatial resolution during flights. A high spatial resolution 

(GSD), e.g., 1 cm, would require increased integration times to maintain the signal-to-noise ratio 
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and could lead to notable image degradation due to increased blur, if platform velocity is not 

adapted accordingly (Tico and Vehvilainen 2006). We also collected imagery via flight paths that 

ran parallel to vineyard rows, with the sensor directed exactly nadir, thereby easing the image post-

processing steps. 

One VNIR flight was flown on each of the three days of field study, for a total of three 

high spatial resolution flights, spanning the growing season from mid-June to mid-September. 

Flight locations were selected based upon the presence of a significant gradient elevation, with the 

expectation that such terrain would provide a gradient of vine stress. 

 

Figure 3.1. Our study used two Matrice 600 multi-copters, both equipped with Headwall hyperspectral imaging 

sensors. One of the on-suite sensors covered the VNIR regime from 400-1000 nm, while the other covered the 

SWIR regime from 1000-2500 nm. We focused on initial analysis of the VNIR flights in this manuscript. 

Two locations were identified in an East-West sloping vineyard at Fox Run, where the vine 

rows ran North-South. Several rows of mature Cabernet franc vines were selected at a higher 

elevation location known to have shallower soil, and at a lower elevation location known to have 

heavier soil, with silt loam present in both cases. Previous work in these locations has documented 

clear differences in drought stress during dry periods. Standard grower management was applied 

in both locations. 

We employed a Scholander pressure chamber, used to monitor water status of the vines, in 

order to calibrate our spectral data collected from the air to more traditional in-field measurements 

of plant stress. A Scholander pressure chamber measures the tension that has developed in leaves 
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when placed under a water stressed condition (N. C. Turner 1988). Specifically, we enclosed and 

sealed selected healthy, mature leaves inside aluminum foil-covered plastic bags, while leaves 

remained on the plant, as shown in Figure 3.2 below (Begg and Turner. 1970). This treatment 

remained in place for a minimum of 45 minutes to stop water loss from the leaf, and thus, allowing 

for the equilibration of the leaf with the internal plant-level water status. The leaf was then 

removed, placed in a thin plastic bag, sealed into a pressure chamber with the leaf stem extending 

through a gland, and the pressure raised slowly until water was seen at the cut end of the leaf stem. 

The resultant measured parameter is known as stem water potential (ψstem), and is expressed as a 

negative pressure value, often in the units of megapascal (MPa) or bars. Stem water potential has 

been found to be the best general measurement of water status in grapevines at any time (C. van 

Leeuwen, Pieri, and Vivin 2010). 

   

(a)                                                    (b) 

Figure 3.2. Our study used the field parameter stem water potential (ψstem) to directly measure vine water content at 

time of flight. (a) Leaves were bagged for at least 30 minutes prior to flight to allow for equilibration of leaves with 

vine plant; (b) A pressure chamber was used to capture real-time ψstem for 56 individual vine plots 

Two locations were identified in an East-West sloping vineyard at Fox Run, where the vine 

rows ran North-South. Several rows of mature Cabernet franc vines were selected at a higher 

elevation location known to have shallower soil, and at a lower elevation location known to have 

heavier soil, with silt loam present in both cases. Previous work in these locations has documented 

clear differences in drought stress during dry periods. Standard grower management was applied 

in both locations. 

Individual leaves in selected flyover locations were bagged in advance of each flyover. 

Circular reference markers were placed between rows, adjacent to sampled vines, to facilitate 

identification of sampled locations during post-processing. Since the water status of vines is known 
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to change and respond to weather conditions, we timed the flyover and measurement of ψstem to 

occur in as stable, sunny conditions as possible, as variable radiation can affect vine water status.  

As soon as a given UAS flyover was completed, the vine water status measurements were 

performed within 10 minutes at each location. 

Due to the high level of rainfall in the test area over the 2018 season, no significant water 

stress was measured with the greatest measured stress of about -7.0 bars, or 0.7 MPa. This is a 

limitation in the model development as a greater stress is needed to induce significant effects on 

vine growth or product quality. 

3.4.3   Data processing 

Processing of the sUAS imagery was largely completed in ENVI®(V5.5), the image 

analysis software provided by the Harris Corporation. The individual frames for a given vineyard 

block were mosaicked using the georeferenced mosaicking function in ENVI®. Upon 

orthorectification of individual frame shots captured during sUAS flights, frames are provided 

with underlying spectra in terms of raw digital count. The six mosaics associated with VNIR flights 

in this study were normalized to reflectance using the atmospheric correction packages available 

in ENVI®, to express all data in a normalized space that accounts for atmospheric variation and 

enables comparison of all VNIR flights, irrespective of varying illumination conditions. We 

utilized the 2-Point Empirical Line Method (ELM) to convert imagery to the reflectance space. 

ELM is largely considered one of the most proven and reliable means of converting spectral 

imagery to the reflectance space (Roberts 1985). The calibration method facilitates conversion to 

reflectance by establishing a linear relationship between, in this case, digital count and known 

reflectance. Known reflectance curves were provided by means of in-scene calibration panels; it 

is recommended that these panels cover varying brightness levels, be homogenous, and be placed 

flat upon the ground (Smith and Milton 1999). We used at least two panels, one light and one dark, 

as shown in Figure 3.3, and measured the reflectance curves of panels, either just before or just 

after each flight, using a Spectra Vista Corporation (SVC) HR-1024i spectroradiometer (SVC 

2019). When possible, we used more than two calibrations panels, dispersed throughout the extent 

of the vineyard. 
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Figure 3.3. We used the established 2-Point ELM to convert our imagery to reflectance. Around time of flight, we 

captured known reflectance curves of in-scene calibration panels, light and dark, via an SVC spectroradiometer. 

We used the Spectral Angle Mapping (SAM) classifier technique in order to identify and 

extract vine pixels from our mosaics for complex vineyard scenes. Our aim was to extract only 

vine pixels, i.e., no background, soil, or heavy shadow pixels, for use in subsequent modeling 

efforts, since these pure vine pixels are likely to contain the useful physiological information that 

will facilitate linking field- and UAS-based observations. The vertically trained nature of the vines 

results in very narrow cross section when viewed from the nadir angle, as shown in Figure 3.4. 

The SAM classifier works by comparing the angle between the desired endmember (target) 

spectrum vector and all other pixel vectors in n-dimensional space, to select those pixels most 

spectrally similar to the desired endmember, i.e., vine pixels for our purposes (Kuching 2007). The 

threshold associated with the allowed angular difference between pixels can be adjusted to be more 

or less strict, as shown in Figure 3.5; we used a strict threshold of 0.001 to be certain that we 

captured only pure, sunlit vine pixels for analysis. The average of all extracted pixels for a given 

field plot was taken to be a representative spectrum for that field plot; thus, 56 spectral curves or 

vectors, associated with 56 vine plots, were measured during VNIR flights. 



22  CHAPTER 3.   An initial analysis of real-time sUAS-based detection of grapevine water 

status in the Finger Lakes Wine Country of Upstate New York 

 

 

 

 

Figure 3.4. The complex nature of the vineyard necessitated the extraction of pure (sunlit) vine pixels for modeling. 

The tall, narrow, vertically trained vines made for small cross section in view of the sUAS platform directly above. 

Orange markers were placed at those locations that had field measurement taken at time of flight to facilitate post-

processing. 

 

(a)   (b)   (c)   (d) 

Figure 3.5. The Spectral Angle Mapping (SAM) classifier allows for accurate extraction of vine pixels from our 

imagery. By adjusting the allowed angular difference associated with the classifier, as shown in (a) through (d), one 

can be more or less strict with what is extracted in the classification. We chose a strict threshold, as shown in 

example in (d), for our purposes. We generated representative spectra by averaging all the extracted pixels in a plot. 
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Microsoft Excel was used for data formatting, after which data were analyzed in Python as 

a pandas data frame. Many hyperspectral analysis approaches require spectral smoothing in order 

to reduce extraneous noise while, at the same time, preserving critical local absorption features 

(Schmidt and Skidmore 2004). The Savitzky-Golay smoothing filter has become commonplace 

for robust smoothing of hyperspectral data during analysis efforts (Savitzky and Golay 1964). This 

smoothing filter fits a selected degree polynomial, usually of low degree, to successive and 

adjacent points across a curve using the linear least squares procedure. The Savitzky-Golay filter 

is often preferred for local smoothing of fine spectral curves, due to its ability to target and remove 

noise while maintaining local spectral features that are true to the signal. We performed tests with 

and without smoothing via the Savitzky-Golay filter, in order to evaluate whether local smoothing 

of our spectral vectors would improve modeling efforts. In parameterizing our filters, we followed 

the advice of recent hyperspectral spectroscopic work, and used second order polynomials with a 

filter size of 15 for local fitting (Prasad et al. 2015). Figure 3.6 below shows representative spectral 

curves, in terms of reflectance, both before and after smoothing. 
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(a)

 

(b) 

Figure 3.6. We applied a Savitzky-Golay smoothing filter to our spectral curves to explore how local smoothing 

could affect the efficacy of our modeling. Provided in this figure are the 56 spectral curves of vine pixels measured 

for water stress, normalized to reflectance, (a) before and (b) after application of the Savitzky-Golay filter. 

We subsequently computed the signal-to-noise ratio (SNR) for our spectral data to 

evaluate the signal vs. noise levels in our UAS imagery. SNR was simply computed by taking 

the ratio of the mean to standard deviation, based on wavelength band. This computation is 

visualized in Figure 3.7 below. As the SNR is relatively low in the region of 400-450 nm, we 
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evaluated our models with the full range of the spectra, from 400-1000 nm, as well as for the 

spectral range excluding the low SNR region. 

 

Figure 3.7. We computed the SNR of our spectral curves in order to assess true signal vs. underlying noise. Note 

that the SNR is relatively low for the region from 400-450 nm; we display a threshold at SNR equal to 4 in the 

figure. As such, we evaluated our models with the full range of spectra, while also excluding the low SNR region in 

a subsequent analysis. 

There do not seem to be immediately obvious trends present if we color code our spectral 

curve plot in an attempt to separate the curves into various classes, based upon their associated 

SWP ground measurement (Figure 3.8). This was attributed to the lack of significant variation in 

the SWP measurements, i.e., the narrow SWP range, underlying the spectral data. We arguably 

would have observed greater separation in the spectral curve plot - some evident visual trends may 

have emerged when looking at moisture classes - if greater variability in the SWP model ground 

parameter were present. In our case, we must rely on modeling results to demonstrate statistically 

significant trends. 
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Figure 3.8. We can color code our spectral curve plots across the VNIR wavelengths, to try to separate the curves 

into various classes based upon their associated moisture ground measurement. We color code the 56 spectral curves 

into four classes: red for -3.9 to -4.4 bars, green for -4.5 to -4.7 bars, blue for -4.8 to -5.1 bars, and purple for -5.1 to 

-6.9 bars. There are no immediately obvious trends in the spectra, based on their classes, since there was no 

significant variation in the measured stem water potential. 

3.4.4   Modeling methods 

Although hyperspectral data of vegetation often provide insight into unique physiological 

indicators, given the data type’s fine spectral granularity, it is often quite difficult to isolate the 

right bands that allow for robust, well-fitted models. Hyperspectral curves contain hundreds of, 

often highly correlated and redundant, predictor variables; most often, the number of predictor 

variables is significantly greater than the number of physiological or response variables. This 

generates the need for a modeling approach that can reduce data dimensionality, remove the noise 

associated with highly correlated variables, and identify wavelengths of greatest importance to 

explain the behavior in the dependent variable (Thenkabail, Lyon, and Huete 2011). We selected 

partial least squares-regression (PLS-R) as our modeling method of choice to overcome these 

challenges (De Bei et al. 2011; Santos and Kaye 2009). 

PLS-R is a matrix transformation technique that minimizes the covariance between 

predictor variables while, at the same time, maximizing the covariance between predictor variables 

and response. It is distinct from principal component regression, since it accounts for both 

predictor and response variables, by way of both inner and outer matrix transformations (Geladi 

and Kowalski 1986). 
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The predictor variable data block can be linearly transformed as 

𝑿 = 𝑻𝑷′ + 𝑬 = ∑ 𝒕𝒉𝒑′𝒉 + 𝑬 

where X is the matrix of predictor variables, T is a projection of X as components, P is a 

loading matrix containing factor scores, and E is a matrix of error terms. 

The response data block, our ψstem measurements, can be similarly deconstructed into 

𝒀 = 𝑼𝑸′ + 𝑭 = ∑ 𝒖𝒉𝒒′𝒉 + 𝑭 

where the transformations are the same as those for the predictor variables. 

PLS-R analyses for this study were completed in Python using the PLSRegression package 

in the Scikit-learn machine learning library (“Scikit-Learn” 2019). Data run through the 

PLSRegression package are automatically mean-centered, that is, centered to the mean and scaled 

to unit variance on a component-wise basis (Geladi and Kowalski 1986). The quantity of latent 

variables (LV) was determined by optimizing for the mean square error (MSE) of prediction; i.e., 

the number of LVs which minimized MSE was selected for a given model (Rapaport et al. 2015). 

While the use of PLS-R serves to remove the noise associated with high covariance, we 

also required a method for identifying wavelengths of importance in a variable selection scheme. 

Previous studies have used variable importance in projection (VIP) and used a VIP-statistic score 

(threshold) for removing less important wavelengths and thus optimize model performance 

(Rapaport et al. 2015). This work more plainly recognized the vector of regression coefficients, 

used to perform the PLS-R, as an indicator of the association between predictor variables and 

response (Mehmood et al. 2012). Variables, or wavelength bands, with lower absolute regression 

coefficients have lower relative correlation, or ability to explain, the response ψstem. We therefore 

iteratively removed wavelengths with the lowest absolute regression coefficients from 

consideration, until the MSE of prediction no longer improved upon recalibration of a given model 

(Andersen and Bro 2010). 

3.4.5   Statistical analysis 

We considered model performance in context of our smoothing procedure, as well as our 

SNR thresholding. Thus, we noted model performance for: the full spectral range of 400-1000 nm, 

with and without smoothing, and the reduced spectral range of 450-1000 nm, with and without 
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smoothing. We reviewed the number of LVs, coefficient of determination (R2) for calibration, 

coefficient of determination (R2) for cross-validation, root mean squared error of calibration 

(RMSEC), and root mean squared error of cross-validation (RMSECV) to assess model 

performance (Rapaport et al. 2015). For cross-validation, we used a k-folds cross-validation 

procedure with five folds. We expected a strong model to have a low number of LVs, high R2 

metrics, and low MSE metrics. 

 

3.5   RESULTS 

3.5.1   Latent variables 

The quantity of LVs, or PLS-R components used to build a regression for a given model, 

was determined by selecting the number of LVs which minimized MSE. Using the raw reflectance 

data frame, with associated ψstem field measurements, we ran our PLS-R regression with a variable 

number of LVs, up to a maximum of 25. We recorded the RMSECV associated with each model 

run, and selected the number of LVs, for a given model, which yielded the lowest RMSECV. 

We found that all variations of our data set, before and after variable selection efforts, 

considering spectral smoothing and wavelength range, were optimized with a relatively low 

number of LVs. For example, before variable selection, the largest quantity of LVs selected was 

for the smoothed data for the full spectral range from 400-1000 nm and was optimized with 10 

LVs. Figure 3.9 below demonstrates the selection of LVs for smoothed and unsmoothed spectral 

data for the range of 400-1000 nm. When model performance first increases and then decreases 

with additional LVs, as can be seen with our model runs demonstrated in Figure 3.9, it is a strong 

indication that using too many or suboptimal number of LVs could overfit the data and not yield 

robust models. We therefore were careful to select the optimal number of LVs for our reported 

model results. 
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(a)

 

(b) 

Figure 3.9. Using the raw reflectance data frame and associated ψstem field measurements, we ran our PLS-R 

regression with a variable number of LVs, up to a maximum of 25. We selected the number of LVs, for a given 

model, which yielded the lowest RMSECV. All variations of our considered data sets were optimized with a 

relatively low number of LVs; e.g., for the range of 400-1000 nm, (a) the smoothed data used 10 LVs and (b) the 

unsmoothed data used 5 LVs. 

3.5.2   PLS-R analyses 

As previously mentioned, we optimized the number of LVs and wavelength band variables 

for four separate data setups: smoothed and unsmoothed data for both the ranges of 400-1000 nm 



30  CHAPTER 3.   An initial analysis of real-time sUAS-based detection of grapevine water 

status in the Finger Lakes Wine Country of Upstate New York 

 

 

 

and 450-1000 nm. 

Figure 3.10 shows the regression fits for the smoothed and unsmoothed data for the range 

of 400-1000 nm, while Figure 3.11 shows the regression fits for the smoothed and unsmoothed 

data for the range of 450-1000 nm. Figure 3.12 provides an example of how we can visualize the 

wavelength bands that were selectively discarded from consideration in the calibration of a given 

model. Table 3.1 summarizes the relevant model performance metrics for the four data setups 

considered. 
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(a)

 

(b) 

Figure 3.10. The optimization of latent variables and wavelength band selection for the smoothed and unsmoothed 

data for the range of 400-1000 nm. The R2 cross-validation metric (CV) for (a) the smoothed data was 0.30 and for 

(b) the unsmoothed data was 0.51. 
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(a)

 

(b) 

Figure 3.11. The optimization of latent variables and wavelength band selection for the smoothed and unsmoothed 

data for the range of 450-1000 nm. The R2 cross-validation (CV) metric for (a) the smoothed data was 0.43 and for 

(b) the unsmoothed data was 0.68. 
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Figure 3.12. We can visualize which wavelengths have been selectively discarded from consideration in the 

calibration of our models. In the case of the unsmoothed data, for the range of 450-1000 nm, we discarded 159 of 

the original 270 wavelengths. Areas with light red background are those bands which were not considered in 

calibration, since they were shown to be lower in explanatory power. 

 

Table 3.1. Summary of the PLS-R model performance metrics for the four data setups we considered. The narrower 

450-1000 nm regime (removal of the low SNR bands) always performed better than the full spectral range. 

Furthermore, smoothing of the spectral data via the Savitzky-Golay filter reduced model performance. The 

difference between the calibration and cross-validation coefficients of determination is explained by the fact that the 

data sample size is relatively small. 

Spectral Range Spectral 

Smoothing 

R2 for 

Calibration 

R2 for Cross-

Validation 

400-1000 nm Yes 0.54 0.30 

400-1000 nm No 0.92 0.51 

450-1000 nm Yes 0.93 0.43 

450-1000 nm No 0.97 0.68 

 

The best performing model was the unsmoothed data for the 450-1000 nm range and the 

worst performing model was the smoothed data for the 400-1000 nm range, considering R2 (CV) 

as the metric of choice for comparison assessment. Spectral smoothing, via the Savitzky-Golay 

filter, consistently reduced model performance. The full spectral range (400-1000 nm) furthermore 

diminished performance, when compared to cases when the low SNR range (400-450 nm) was 

removed. 
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Even though we parameterized our smoothing filters based on results from recent 

hyperspectral studies, using second order polynomials with a filter size of 15 for local fitting, the 

spectral smoothing had an adverse impact on model performance in all cases. We attributed this 

outcome to the fact that, while the smoothing operation served to remove some noise in the spectra, 

the operation also suppressed local spectral absorption features, some of which proved paramount 

in our modeling efforts. For example, it seemed that the smoothing operation reduced the O2 

absorption feature near 750 nm and smoothed the intricate NIR regime to an excessive extent, 

based on visual inspection (Figure 3.6). It would be prudent to either further study the 

parameterization of an appropriate smoothing filter or to avoid smoothing altogether; this is an 

area that arguably warrants more study. 

We tested our models with both the full spectral range and absent the low SNR region (400-

450 nm) in order to better understand the impact of higher noise presence in the shorter 

wavelengths. It was clear after running our models that the underlying noise in the shorter 

wavelengths had a seemingly large impact on model performance. Considering that the noise at 

the extreme ends of the spectral range could likely be traced to the atmospheric calibration of the 

spectra, a more advanced technique than ELM may be worth exploring. This result also hints at 

the importance of computing SNR for a given data set to better understand the data set’s noise 

characteristics. 

In further reviewing the summary model performance results (Table 3.1), it is evident that 

the R2 (CV) metric was always lower than the more traditional R2 (calibration) metric. This effect 

was not surprising considering that the k-folds CV procedure is much more rigorous than 

computation of the traditional metric, since it tests a given model on an independent, internal 

partition of the data set. The R2 (CV) metric thus provides a more robust indication of how a given 

model would perform if completely new, independent data were considered. The relative 

difference between the calibration and cross-validation coefficients of determination is explained 

by the fact that the data sample size is relatively small, with only 56 samples to model; an 

expansion of the sample data set potentially could reduce the relative difference between our two 

R2 metrics. 

 

3.6   FUTURE WORK 
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This study represents our initial investigation and results into the use of sUAS-based 

hyperspectral imagery for assessment of vineyard moisture status. We contend that future efforts 

could focus on expanding the wavelength range, optimizing the selection of predictor variables, 

and providing more detail on the link between selected wavelengths and plant physiology. 

3.6.1   SWIR data 

We completed flights with both VNIR and SWIR sensors during the airborne campaign; 

flights with the SWIR sensor directly followed the VNIR flights. The results presented in this 

manuscript only considered data collected during the VNIR flights. Future work will follow similar 

methodology presented in this manuscript to expand the spectral range to 400-2500 nm, thereby 

enabling a more exhaustive analysis. Many other studies on grapevine water status assessment 

have pointed to the SWIR regime as important in the prediction of water status (Maimaitiyiming 

et al. 2017; De Bei et al. 2011; Rapaport et al. 2015). 

3.6.2   Wavelength band selection 

In this study we optimized our models with a variable selection scheme that removed less 

explanatory wavelength bands, given associated regression coefficients. Models often were 

optimized by removing more than 200 of the original 270 spectral bands collected. It may be 

worthwhile in future efforts to limit the number of wavelengths to the number and range which 

could be accommodated by a cheaper, simpler multispectral sensor. For example, the Tetracam 

Macaw camera series includes options for six or 12 user-selected spectral channels. 

3.6.3   Physiological links 

It is well understood that a predictive model in an environmental remote sensing 

application could only truly be characterized as “robust” if it utilizes variables that have 

physiological meaning, over and above strong predictive power. We therefore will confirm that 

the predictor wavelengths have some associated physiological meaning, in collaboration with plant 

physiologists. It could be argued that an end user of research-based models, such as a local 

vineyard manager, will only trust predictive tools that can be explained by factors well understood 

at the operational level. This must also provide proven enhancements in grape and vine quality to 

justify changes in management such as differential harvest or developing precision irrigation. 
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3.7   CONCLUSIONS 

This study examined the effectiveness of using hyperspectral data, collected via sUAS 

platform, for the purposes of accurately estimating real-time water status in grapevine. Whereas 

many previous studies have examined the use of sUAS or in situ hyperspectral sensing for 

observing grapevine water status, the current work bridged the gap between the two sensing levels. 

High-spatial resolution hyperspectral data were collected over an Upstate New York vineyard over 

three flight days, along with traditional field measurement of midday stem water potential (ψstem) 

at time of flight. A partial least squares-regression (PLS-R) modeling method was used to correlate 

flight collected spectra and field measurements. With the consideration of model parameter 

optimization and a variable selection scheme, we showed model performance as high as R2  (CV) 

= 0.68. Model performance was dependent on the smoothing and SNR data reduction applied, 

where unsmoothed spectral data and a reduced spectral range, respectively, performed better. 

Considering the limited range of stress we encountered, the modeling performance achieved is 

promising for the use of sUAS and hyperspectra in vineyard evaluation, and supplementary 

research efforts. Future work will seek to include flight data collected in the SWIR spectral regime, 

improved explanation of physiological links, and additional steps towards operationalizing 

commercial technology applications. While these models will require independent validation over 

a much larger range of vine stress, results such as these bode well for the application of sUAS-

based spectral sensing of vineyard moisture status, given the high value of the crop and relatively 

fine scale of the management needs. 
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Chapter 4  

 

Combining hyperspectral imaging and small 

unmanned aerial systems for grapevine 

moisture stress assessment 
 

 

4.1   FOREWORD  

This chapter further expands upon the results of Chapter 3 by including the SWIR data 

collected in the field and discerning links to plant physiological phenomena. This chapter will be 

submitted to Precision Agriculture (PRAG) and addresses Objectives 2, 3, 4, and 5. 

 

4.2   ABSTRACT 

It has been shown that mild water deficit in grapevine contributes to wine quality, in terms 

of especially flavor. Water deficit irrigation and selective harvesting are implemented to optimize 

quality, but these approaches require rigorous measurement of vine water status. While traditional 

in-field physiological measurements have made operational implementation onerous, modern 

small unmanned aerial systems (sUAS) have presented the unique opportunity for rigorous 

management across vast areas. This study sought to fuse hyperspectral remote sensing, sUAS, and 
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sound multivariate analysis techniques for the purposes of assessing grapevine water status. High-

spatial and -spectral resolution hyperspectral data were collected in the visible/near-infrared 

(VNIR; 400-1000nm) and short-wave infrared (SWIR; 950-2500 nm) spectral regions across three 

flight days at a commercial vineyard in upstate New York. A pressure chamber was used to collect 

traditional field measurements of stem water potential (ψstem) during image acquisition. We 

correlated our hyperspectral data with a limited stress range (wet growing season) of traditional 

measurements for ψstem using multiple linear regression (R2 between 0.34 and 0.55) and partial 

least squares regression (R2 between 0.36 and 0.39). We demonstrated statistically significant 

trends in our experiment, further qualifying the potential of hyperspectral data, collected via sUAS, 

for the purposes of grapevine water management. There was indication that the chlorophyll and 

carotenoid absorption regions in the VNIR, as well as several SWIR water band regions warrant 

further exploration. This work was limited since we did not have access to experimentally-

controlled plots, and future work should ensure a full range of water stress. 

 

4.3   INTRODUCTION 

It has been shown that environmental conditions have a significant impact on grape quality 

(flavor, acidity, sugar content, etc.), which has led to crop management interventions being 

leveraged to positively impact quality (Cornelis Van Leeuwen and Seguin 2006). Furthermore, 

grapevines and associated harvest quality actually benefit from suboptimal ecological settings, 

particularly in reference to vine moisture status, even though this runs contrary to common 

convention with most agricultural crops. The presence of a mild moisture deficit in grapevines 

prompts a reduction in shoot growth, berry weight, and yield, all of which are factors that 

collectively serve to inflate berry anthocyanin and tannin levels and, as such, perceived quality 

(Cornelis Van Leeuwen et al. 2009). Controlled deficit irrigation thus has emerged as a means to 

induce mild moisture deficit stress in grapevines, and has been demonstrated to yield improved 

berry quality, while maintaining operationally acceptable yield (Chaves et al. 2007). Similarly, 

taking into consideration vineyards where deficit irrigation techniques cannot be realized, the 

knowledge of vine water status may dictate selective harvesting practices, giving way to ideal 

quality and yield (Bramley et al. 2005). However, any reasonable operational implementation of 

vine moisture management demands accurate, precise, and ideally, spatially-exhaustive, 

measurement of vine moisture status. 
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Management of vine moisture status traditionally has been facilitated by direct in-field 

measurement of sensitive physiological indicators. Stem water potential (ψstem), a measure of 

integral plant transpiration and an indicator of the capability for grapevines to conduct water from 

the soil to the atmosphere, has been validated as one such sensitive indicator that may aid vine 

moisture management (Chone et al. 2001). The practice of gauging ψstem at midday is particularly 

alluring, as it grants insight to moisture status at time of peak plant transpiration activity. A 

pressure chamber typically is used to measure the negative pressure in the xylem of plants in order 

to gauge the underlying ψstem associated with a given vine (Scholander et al. 1965). While strides 

have been made in numerous vineyard settings to operationally respond to in-field measures of 

vine moisture status, accurate measurements often require an inordinate amount of time and labor, 

and progress in operational application remains gradual (Rodríguez-Pérez et al. 2007). 

It is in this context that remote sensing technology has become an increasingly common 

tool to remotely probe for plant physiological indicators, like plant moisture status, via 

observations of the unique (electromagnetic) spectral response related to plant moisture regimes. 

The potential superiority of non-destructive remote sensing techniques, for these purposes, lies in 

the cost-effective, highly productive, and objective nature of application (Govender et al. 2009). 

Significant progress in the spectral and spatial granularity of enabling sensors has made the 

operational implementation of such sensors for precision field application more tenable. In the 

visible (VIS) regime of the spectrum, i.e., 400-700 nanometers (nm), and the near infrared (NIR) 

regime, 700-1000 nm, subtle variations in photosynthetic pigments, such as chlorophyll and 

carotenoids, and leaf structure variations are evident (Josep Peñuelas and Filella 1998). In the 

short-wave infrared (SWIR) regime, i.e., 1000-2500 nm, several strong atmospheric absorption 

bands are present and vegetation moisture content dominates as the primary influence of plant 

spectral signatures (Behmann, Steinrücken, and Plümer 2014). This marriage of remote sensing 

and grapevine moisture status monitoring therefore has been examined and has shown promise 

(Möller et al. 2006; Rodríguez-Pérez et al. 2007; Acevedo-Opazo et al. 2008; Serrano, González-

Flor, and Gorchs 2012; Baluja et al. 2012; Bellvert et al. 2014; Pôças et al. 2015; Maimaitiyiming 

et al. 2017; Loggenberg et al. 2018; Zovko et al. 2019). 

Many past studies have applied a library of existing spectral narrow-band indices (e.g., the 

normalized ratio of two wavelengths), thereby isolating a few spectral bands to relate to underlying 
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plant physiological phenomena. However, the universal nature of established spectral indices 

typically ignores the unique disposition of spectral responses amongst distinct plant species of 

interest and their environment terroir (Rapaport et al. 2015). Furthermore, Zovko et al. (2019) 

stated that the reliance on spectral indices may pose the risk of neglecting otherwise useful 

information, inherent in the fine spectral character of modern hyperspectral sensors. The strict 

study of a specific species, like various grapevine varieties, for a targeted response should 

encourage the application of a high spectral resolution (hyperspectral) sensor and a rational 

downsizing to the most pertinent spectral bands, given the physiological response under 

investigation. Stated differently, the oversampling in the spectral domain via hyperspectral sensors 

(narrow, contiguous spectral channels) enables researchers to determine the subset of spectral 

channels required to assess specific plant physiological states, which leads to a potentially more 

operational multi-spectral (fewer wavelengths) solution (Delalieux et al. 2009).  This informed 

down-selection of wavelengths via sound multivariate analysis techniques enables practitioners to 

leverage the high spectral resolution of modern hyperspectral sensors, while distilling the data to 

emphasize spectral characteristics that are most pertinent to specific applications. 

Hyperspectral data, collected via in-situ spectroradiometers, have been extensively utilized 

in earlier vineyard moisture assessment studies, with some including only the VIS and NIR and 

others the more comprehensive VNIR-SWIR range. For example, Rodríguez-Pérez et al. (2007) 

related hyperspectral reflectance data (350-2500 nm) collected in a commercial vineyard of Pinot 

noir, using an integrating sphere and field spectrometer, to numerous reflectance indices and used 

the data to perform continuum removal analysis (Kokaly and Clark 1999). The authors evaluated 

the difference between midday ψstem and pre-dawn leaf water potential, and achieved strong fits 

with the Red/Green Index (R2 = 0.619) and the structure intensive pigment index (R2 = 0.541). 

They reported a fit of R2 = 0.509 for the continuum removal analysis, using the maximum band 

depth at the minor water absorption feature at 970 nm. Serrano et al. (2012) used a 

spectroradiometer covering 400-1100 nm to capture spectral data of leaves in a rainfed vineyard 

across 256 spectral channels. They aimed to investigate the relation between the normalized 

difference vegetation index (NDVI) and berry yield/composition during mild to moderate moisture 

stress. They found NDVI to reasonably model total soluble solids (R2 = 0.81) and maturity index 

at harvest (R2 = 0.89), while the Water Index performed well with regards to titratable acidity (R2 

= 0.62) and maturity index (R2 = 0.67). Similar to Rodríguez-Pérez et al. (2007), Rapaport et al. 
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(2015) also used an integrating sphere and field spectrometer to capture hyperspectral signatures 

(400-1700 nm) of grapevine leaves and used the partial least squares regression technique to 

identify reflectance trends related to stress. They identified opposing trends at 530-550 nm and 

1500 nm, which they associated with plant pigments and leaf water content. More recently, Zovko 

et al. (2019) implemented four water treatments of grapevine in an experimental vineyard setting 

to evaluate how well they could classify treatments and to identify pertinent spectral regions, given 

data collected via ground spectroradiometers. In the VIS and NIR regimes, they point to changes 

in the chlorophyll-a to chlorophyll-b ratio as indicative of water deficient vines. In the SWIR 

regime, the study lists a number of wavelengths as important to the classification, particularly 

wavelengths in the O-H stretch in water, as well as longer wavelengths in the SWIR, related to 

leaf water content. The next iteration of research inevitably involved scaling results to airborne 

platforms. 

The application of aircraft or satellite platforms as the media via which to collect plant 

spectral data at a precise level remains inhibitive, mainly due to shortcomings in spatial and 

temporal resolutions, as well as strict adherence to weather conditions. However, the ever-

increasing technological base for small unmanned aerial systems (sUAS) has presented the unique 

opportunity for rigorous management at the plant or zone level across vast field areas. In fact, the 

advent of the sUAS platform for precision agriculture application arguably balances the demands 

for low cost, high spatial/spectral/temporal resolutions, and ease of use, and lends itself well to 

moisture management applications (Gago et al. 2015). Recent scholarly work in precision 

viticulture has supported the notion that sUAS, as the remote sensing platform of choice, warrants 

further exploration in the realm of grapevine water status monitoring (Baluja et al. 2012; Bellvert 

et al. 2014). 

More recent studies in grapevine moisture stress have investigated sUAS platforms to 

collect plant spectral data for modeling purposes. Primicerio et al. (2012) built a sUAS platform 

for site-specific vineyard management at an experimental vineyard in central Italy, collecting 63 

multispectral images in total. Their results included vigour maps that clearly delineated crop 

heterogeneity matching their ground field truth. Baluja et al. (2012) collected multispectral (six 

bands at 530, 550, 570, 670, 700 and 800 nm) and thermal imagery via sUAS to study water status 

variability in a commercial rainfed vineyard. The authors reported that the normalized difference 
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vegetation index (NDVI) and TCARI/OSAVI (a ratio between chlorophyll absorption and a soil-

adjusted index) exhibited the best correlation with ψstem, with R2 = 0.68 and R2 = 0.84, respectively. 

It is worth noting that ground measurement of ψstem extended to greater than -14.0 bars, which led 

to their analysis including a relatively full range of moisture stress. Zarco-Tejada et al. (2013), on 

the other hand, examined the Photochemical Reflectance Index (PRI) as a proxy for water stress 

condition in grapevine. Their data consisted of multispectral and thermal imagery captured during 

four airborne collection efforts. The authors presented a novel normalized PRI, taking into 

consideration canopy structure and chlorophyll content. Santesteban et al. (2017) also used a sUAS 

platform to assess water status variations within a vineyard, but implemented high-resolution (0.09 

m) thermal images for a 7.5 ha vineyard; they found the crop water stress index (CWSI) to be well 

correlated with stem water potential and stomatal conductance. Finally, Caruso et al. (2017) 

deployed a sUAS platform, equipped with VIS-NIR cameras, to investigate vineyard parameters 

including leaf area index, leaf chlorophyll, and canopy geometric indicators. High spatial 

resolution sUAS-based hyperspectral studies, however, remain scarce. Thus, there still is a need 

to further evaluate sUAS-based, high spatial resolution, and especially hyperspectral imagery for 

different geographic regions, thereby validating past efforts for different regions and grape 

varieties. 

The overarching objective of this study therefore was to fuse hyperspectral remote sensing, 

sUAS, and sound multivariate analysis techniques for the purposes of assessing grapevine moisture 

status, for the geographical region of the Finger Lakes, NY, USA. While much work has been 

done to explore the use of hyperspectral data for modeling grapevine moisture status, few of these 

works explore the full VNIR-SWIR spectral range and even fewer collect their spectral data in an 

airborne campaign. This work aims to bridge this gap and work closer to a more operational 

solution for vineyard managers. The specific objectives for this work included (1) assessing the 

potential of sUAS-based hyperspectral remote sensing for managing grapevine moisture status; 

(2) identifying the most pertinent spectral regions for discerning grapevine moisture status; and 

(3) interpreting results to establish links to known plant physiological phenomena. In this work, 

data were collected via sUAS in the VIS, NIR, and SWIR spectral regimes, and analyzed using 

linear regression and partial least squares (PLS) analysis. We also will present results that are 

specific to the various regions, i.e., from the VIS/NIR (cheaper silicon detector range), to the longer 

wavelength SWIR domain, even though the latter implies additional sensor costs and data noise 
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considerations. 

This study’s original intent was to capture a level of variability in moisture status that 

would enable highly accurate predictive models; however, the lack of access to experimental plots 

with a large range in moisture stress conditions (ψstem), due to a growing season with a high level 

of precipitation, made this problematic. The focus of the work therefore shifted to the identification 

of statistically significant trends to inform past and future related efforts, specifically to assess the 

sensitivity of our identified spectral indicators to model narrow-range ψstem. We hypothesized that 

our results would confirm a statistically-significant correlation between moisture status and our 

spectral data, even though it may not be robust as an accurate predictive tool, due to our observed 

narrow-range ψstem. Given the limitations of the study, we expected to inspire future research that 

would further build upon trends and conclusions presented in this effort. 

 

4.4   METHODOLOGY 

4.4.1   Study area 

The Finger Lakes Wine Country of Upstate New York has grown in the last few decades 

to include more than 4,500 hectares of planted vineyards across no less than 100 wineries 

throughout Upstate New York, USA (Figure 4.1). The Finger Lakes region encapsulates eleven 

long and narrow bodies of water, forged through glacial activity in the Pleistocene Epoch 

(Newman 1986). Summer seasons are ordinarily characterized by moderate, humid conditions with 

fluctuating rainfall; the rainfall totals in the Finger Lakes during the 2018 season, examined in this 

work, were above normal. Specifically, between the months of June and September (2018), the 

rainfall total in Penn Yan, New York, amounted to 14.74 inches (~374 mm), in contrast to a past 

average of 14.05 inches (~357 mm), as per the NOAA regional climate center in the area. Winters 

are often cold, making for short growing seasons as compared to most other viticultural regions. 

Though faced with difficult climatic conditions, viniculture is made possible in the region due to 

microclimate factors, like air draining and lake effects. 

A mature, commercial vineyard on the western shore of Seneca Lake – Fox Run Vineyards 

– was used as the field site for this study. Fox Run Vineyards has complex soil patterns, dominated 

primarily by gravelly silty clay throughout most of the vineyard, and transitioning to a fertile and 
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well-drained sandy loam closer to the lake shore. The vineyard regularly grows five different grape 

varieties, namely Riesling, Chardonnay, Lemberger, Cabernet Franc, and Cabernet Sauvignon; 

however, our focus in this study was Cabernet Franc vines. Reminiscent of many vineyards in the 

Finger Lakes region, Fox Run bears its vines directly along the shore of its neighboring lake body, 

sloping downward towards Seneca Lake, with a minimum elevation of around 140 meters and a 

maximum elevation of around 210 meters above sea level (Figure 4.2a). Vine rows stretch from 

north to south and are vertically trained to supporting trellises (Figure 4.2b). The vineyard does 

not have active irrigation systems, but rather relies on careful timing of harvest. Fox Run extends 

an intricate terroir ideally suited for environmental studies of grapevine water. 

 

Figure 4.1. The Finger Lakes American Viticultural Area (AVA) boasts 11 glacial lakes and is prone to extreme 

winters and moderate, humid summers. The region sports microclimate factors, e.g., air draining and lake effects 

that make viticulture possible in a region otherwise not suited for such activities (Newman 1986). 
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(a)      (b) 

Figure 4.2. Our study levied a mature, commercial vineyard on the western edge of Seneca Lake in the Finger Lakes 

wine region of Upstate New York. (a) The vineyard exhibits a strong gradient of elevation relative to the lake edge, 

with elevation above sea level ranging from around 140-210 m. (b) The vines run North-South and are vertically 

trained to trellises. 

4.4.2   Data collection 

We conducted air and ground campaigns to facilitate the synthesis of hyperspectral 

imagery with more traditional evaluation techniques carried out on the ground; this was done in 

order to reliably correlate flight-collected spectral data with proven sensitive physiological 

indicators. All supporting data for the current study were collected across three days within the 

2018 growing season, spread out from mid-June to mid-September. During these three days of 

data collection, sky conditions were verified as either free of cloud cover or uniformly distributed 

with cloud cover, thereby aiding subsequent spectral calibration efforts. 

The DJI Matrice 600 multi-copter sUAS platform was as the base airframe for our flight 

campaigns (Figure 4.3) due to its modular efficiency (https://www.dji.com/). Trimble Applanix-

15 boards were implemented in the designs to further boast the direct georeferencing and inertial 

intelligence of the sUAS platforms (https://www.applanix.com/). Two separate platforms were 

adopted to accommodate two separate sensor suites and their supporting hardware. Both flight 

sensor suites, one intended to encompass the VIS and NIR (VNIR) spectral regimes and the other 

the SWIR regime, were furnished by Headwall Photonics (http://www.headwallphotonics.com/). 

A Headwall Nano-Hyperspec® Hyperspectral Imaging Sensor, comprising 270 narrow bandwidth 
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spectral bands from 400-1000 nanometers (nm), 640 spatial bands, and a 7.4 micrometer pixel 

width, covered the VNIR regime. Likewise, for the SWIR regime, the Headwall Micro-Hyperspec 

SWIR® extended spectral reach from 950-2500 nm with 170 narrow bandwidth spectral bands. 

We opted for a spatial resolution, or ground sample distance (GSD), of 2.5 cm in our experimental 

design, thereby ensuring a high enough spatial resolution to capture even sub-leaf level spectral 

detail. UgCS ground station software was used for mission planning to achieve the required 

altitude and speed parameters for the sUAS platforms (https://www.ugcs.com/). It should be noted 

that there will be some level of image blur and optical point spread function effects, given the 

motion of the sUAS platform and its optical components. Consideration of image blur and point 

spread function effects becomes especially important when selecting a high spatial resolution 

(GSD) during flights. Such a small GSD would require increased integration times and introduce 

risk for notable image degradation, should the platform velocity not be adapted accordingly (Tico 

and Vehvilainen 2006). 

One VNIR flight and one SWIR flight were flown over the same vineyard area, in 

successive fashion, between the times of 11h00-15h00 (EST) for each of the three flight campaign 

days. Flight paths were oriented parallel to vineyard rows and the sensor view was pointed in the 

nadir direction. The selection of flight locations was motivated by the geographical terrain features 

of the vineyard; we forecasted that terrain with a gradient in elevation might produce a natural 

range of vine moisture stress. Two separate blocks, or vineyard field partitions, in an east-west 

sloping vineyard were flown by the VNIR and SWIR platforms during each day of flight. Earlier 

examinations of these blocks had suggested disparity in the associated vine moisture status through 

the growing season. 

The PMS Model 600 Pressure Chamber Instrument permitted the real-time traditional field 

measurement of ψstem during time of flight (https://www.pmsinstrument.com/). We selected 

various Cabernet Franc vine locations prior to flights, where mature and healthy leaves could be 

wrapped with aluminum foil bags for at least 45 minutes (Figure 4.4a), to allow for leaf 

equilibration and thus an integral measure of ψstem of the vine as a whole (Begg and Turner. 1970). 

Upon extraction from a vine, a given leaf was removed from the aluminum foil, placed inside of a 

thin plastic bag, and inserted into the pressure chamber instrument with xylem protruding out of a 

gland (Figure 4.4b). The resulting ψstem was given as a pressure in negative units of bars. 
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The individual leaves chosen in flight locations were placed within the aluminum foil bags 

ahead of flight execution to allow for sufficient equilibration time. Bright reference markers were 

inserted on the ground, contiguous to measured vine locations, to streamline subsequent image 

processing and analysis. Considering that ψstem is known to be highly variable with respect to time 

of day and atmospheric condition, ground measurement and associated flights were conducted in 

the most stable circumstances possible (Chone et al. 2001). Pressure chamber measurements were 

taken within 10 minutes of flight at each location. Altogether, we captured associated ψstem for 56 

vines throughout all of the flights. The most significant water stress detected was -7.0 bars, which 

is considered to be a low level of stress (Möller et al. 2006). 

 

Figure 4.3. Two separate multi-copter platforms were employed in our air campaign efforts. Both multi-copter 

designs exploited the modular DJI Matrice 600 flying platform. One of the multi-copters was equipped with a VNIR 

imaging sensor, while the other was equipped with a SWIR imaging sensor; both sensors boasted high spectral 

resolution – hyperspectral – sensors provided by Headwall Photonics (Izzo et al. 2019). 
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(a)      (b) 

Figure 4.4. A PMS Model 600 Pressure Chamber Instrument was used to capture the real-time traditional field 

measurement of ψstem during time of flight. Leaves were placed inside of aluminum bags before measurement to 

allow for assessment of integral plant water status (a) and then inserted into the pressure chamber instrument for 

measurement of ψstem (b) (Izzo et al. 2019) 

4.4.3   Data preprocessing 

The geospatial analytics software ENVI® (V5.5) was used during the initial processing of 

sUAS-captured spectral imagery. A mosaicking (stitching) procedure was required, since the 

Headwall pushbroom sensors aboard the sUAS platforms capture large areas by producing smaller 

individual frames. ENVI® hosts an available mosaicking function that allowed us to conjoin 

individual frames into larger mosaics with high precision, given the underlying georeferenced 

metadata. We needed to normalize the spectral image data to the reflectance space, from the 

original units of digital count; conversion to reflectance allowed direct comparison of all flights 

by removing atmospheric effects, i.e., by normalizing for varying illumination conditions. We used 

the well-known 2-Point Empirical Line Method (ELM) for our normalization needs, since it has 

been extensively demonstrated as a sufficiently stable and predictable means of calibrating spectral 

imagery (Roberts 1985). We used a Spectra Vista Corporation (SVC) HR-1024i spectroradiometer 

to record the spectral reflectance curves of at least two in-scene calibration panels of varying 

brightness levels (Figure 4.5), collected during the time of flights (https://www.spectravista.com/). 

A simple linear relationship between our digital count data and our SVC reflectance data for the 

in-scene panels facilitated a conversion of mosaicked imagery to the normalized reflectance space. 

Next, an approach to separate or classify vine pixels from surrounding unwanted pixels 

was necessary, mainly because of the need to precisely associate flight data with particular vine 
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plots and pure foliage pixels. The extraction of vine pixels from the surrounding environment was 

critical, since the vine pixels in the sUAS imagery were those which we needed to associate with 

our in-field physiological measurements. A spectral classifier, called Spectral Angle Mapper 

(SAM), was utilized to identify the purest vine pixels against undesirable background pixels like 

soil, grass, and shadow. SAM is a classification technique that discerns spectral similarity based 

on an angular difference computation, given a reference spectral signature (Kuching 2007). We 

were able to extract a collection of vine pixels from field plots, by identifying a target vine pixel 

in the field plots and adjusting the allowable angular difference parameter as needed (Figure 4.6). 

The collection of SAM-classified pixels were averaged to obtain a single representative spectrum 

to associate with each field plot and associated ground measurement of ψstem.  This procedure was 

completed for both the VNIR and SWIR data, such that we had resulting VNIR and SWIR spectral 

signatures that we could use alongside our traditional ψstem ground measurements. 

 

Figure 4.5. We normalized all of our captured imagery to the reflectance space so that we could justifiably make 

direct comparison of all of our flight data across multiple days of flight. We placed in-scene calibration panels 

during all flights, and captured associated reflectance curves using an SVC spectrometer, to perform this 

normalization via the 2-point ELM (Izzo et al. 2019). 
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(a)   (b)   (c)   (d) 

Figure 4.6. A spectral classification technique, called Spectral Angle Mapper (SAM), was used to separate vine 

pixels in the sUAS imagery data from unwanted pixel responses such as soil, grass, and shadow. An adjustment of 

the angular difference tuning parameter controls the level of strictness regarding spectral similarity. Note the varying 

classification results with increasing strictness in (a) through (d). For our purposes, we selected a strict threshold, 

i.e., 0.0010, to boost confidence in eliminating unwanted background or mixed pixels (Izzo et al. 2019). 

Data analysis was carried out in Minitab® 19. We approached our analysis, with our 

objectives in mind, as three spectral ranges – VNIR only, SWIR only, and a mathematical 

conjoining of the two (Figure 4.7). Izzo et al. (2019) showed that the spectral data should be 

analyzed in its raw reflectance form, rather than after applying spectral smoothing, since there was 

the risk of removing potentially useful local absorption features with smoothing techniques. Due 

to low signal-to-noise ratio (SNR) in the region of 400-450 nm, these wavelength bands were 

discarded from consideration in our analyses (Izzo et al. 2019). Finally, given that the SWIR 

regime exhibits strong atmospheric water absorption features at approximately 1200 nm, 1400 nm, 

1900 nm, and 2500 nm, these broad wavelength regions were removed to avoid impacts due to 

atmospheric interference; this enabled us to focus on strong atmospheric transmission windows 

for analysis (Clevers, Kooistra, and Schaepman 2010). 
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(a) 

 

(b) 

Figure 4.7. We produced 56 individual spectra for both the VNIR (a) and SWIR (b) regimes to be used in data 

modeling efforts. For the VNIR data, we omitted wavelengths from 400-450 nm due to low SNR. For the SWIR 

data, we removed the broad wavelength regions near the known water absorption features, while retaining the 

stronger transmission windows. 

 

4.4.4   Modeling methods 

The benefits of the oversampled spectral nature of hyperspectral data must be balanced 

with the obligatory practice of applying sound multivariate modeling and analysis techniques to 
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sort through such data; in short, we need to avoid the curse of data dimensionality and associated 

model over-fitting. In vegetation or environmental analyses, the intention is often to exploit the 

spectral power of hyperspectral data (narrow, contiguous bands across a broad wavelength 

range), while at the same time intelligently isolating the most pertinent spectral information 

through a robust data dimensionality scheme. It is understood that hyperspectral curves often 

exhibit correlated predictor variables, a phenomenon called multicollinearity, given the 

contiguous nature of the spectral data. Furthermore, in the current study, we had to contend with 

the additional challenge of having far more predictor variables than samples. Thus, there is the 

requirement to reduce dimensionality of hyperspectral data, while at the same time enabling 

examination of inevitably collinear and noisy data (Wold, Sjöström, and Eriksson 2001). In this 

work, we implemented two multivariate techniques with our data using Minitab® 19 – multiple 

linear regression (MLR) and partial least squares regression (PLSR) (Kokaly and Clark 1999; 

Wold, Sjöström, and Eriksson 2001). 

In the case of MLR, a response variable is fit to a set of predictor variables by means of a 

simple linear equation. The response variable was ψstem in our case, while the predictor variables 

were selected wavelengths captured by the sUAS sensors. The stepwise case, on the other hand, 

is predicated on reduced predictor variables being iteratively chosen for addition or subtraction 

from a model, given some threshold or criterion which relates to explanatory power. We selected 

alpha significance levels to dictate the addition or subtraction of a given predictor. Data were 

also mean-centered by subtracting the mean and dividing by the standard deviation (Geladi and 

Kowalski 1986). 

The MLR equation for a particular data sample can be written as 

𝑌 =  𝛼1𝑋1 +  𝛼2𝑋2 + ⋯ +  𝛼𝑝𝑋𝑝 +  𝛽 + 𝑒 

where α terms represent the coefficient values, X terms represent the predictors, β is an 

intercept value, and e is an error term (Kokaly and Clark 1999). 

We also explored the application of PLSR (Wold, Sjöström, and Eriksson 2001), since 

the MLR method can often face difficulty when presented with a data set of significant 

multicollinearity or one with many more predictors than samples. PLSR is a statistical method, 

similar to principal components regression (PCR), in that both methods seek to minimize 
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covariance between predictors, but PLSR extends the concept further to also consider the 

responses by maximizing covariance between predictors and response (Geladi and Kowalski 

1986). PLSR is implemented via matrix transformations applied on the response and predictor 

data sets. The predictor variables are transformed as 

𝑋 = 𝑇𝑃′ + 𝐸 =  ∑ 𝑡ℎ𝑝′ℎ + 𝐸 

where X represents the original predictor variables, T is the transformed latent variables, 

P contains the factor loadings, and E houses error terms (Geladi and Kowalski 1986). 

The response data are correspondingly transformed as 

𝑌 = 𝑈𝑄′ + 𝐹 =  ∑ 𝑢ℎ𝑞′ℎ + 𝐹 

where the terms are analogous to those in the predictor data transformation. 

In parameterizing our MLR data modeling, we selected alpha significance levels less than 

or equal to 0.10; our goal was to develop models that would contain fewer than 10 explanatory 

predictor variables (van Aardt et al. 2006). Parameterization of our PLSR models involved 

selection of latent variables with the lowest associated PRESS statistic (Geladi and Kowalski 

1986). 

4.4.4   Statistical analysis 

We assessed the predictive capability of models using the coefficient of determination for 

calibration (R2) and adjusted R2. The adjusted R2 metric allowed us to compare the performance 

of models with different numbers of predictors, thereby accounting for potential model over-

fitting, or stated differently, being penalized for too many predictor variables. For this work, the 

proof of statistically significant trends proved more meaningful than predictive power, and were 

confirmed by comparing the alpha significance level and p-values; a model was taken to be 

statistically significant when the p-values were less than or equal to the alpha significance level. 

For all models, homoscedastic effects and normality of residuals were confirmed as acceptable 

(Bartlett 1937; Shapiro and Wilk 1965). 

Multicollinearity effects were measured via the variance inflation factor (VIF) in the case 

of the MLR modeling efforts and given the potential adversarial effects of multicollinearity in 
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MLR. If the VIFs for any of the predictors in an MLR model exceeds 5, then it may be presumed 

that a significant level of collinearity exists and the use of PLSR to transform to uncorrelated 

components is further motivated (O’brien 2007). Finally, in the case of PLSR analyses, even 

though all of the predictors are used in the transformation to uncorrelated components, review of 

the standardized regression coefficients grants insight into the relative importance of a given 

predictor (Mehmood et al. 2012). 

 

4.5   RESULTS 

4.5.1   Stepwise multiple linear regression 

MLR analyses were completed in Minitab® 19 for the VNIR, SWIR, and concatenated 

VNIR and SWIR data sets. Results are presented in Table 4.1. In order to discern statistical 

significance, the p-values for all terms in a model were verified as less than the selected alpha 

significance level for that given model. Moreover, normality of the residuals in each model were 

confirmed, as well as data homoscedastic or other similarly concerning effects (Figure 4.8). 

There was a weak to moderate, but statistically significant, correlation in all cases tested. 

The VNIR data set exhibited the highest correlation, with an adjusted R2 value of approximately 

0.49. The concatenated VNIR-SWIR data did not translate into a distinct increased model 

performance. In fact, the selected wavelengths in the concatenated case were the same as those in 

the SWIR case and, as such, the performance metrics were the same. 

Examination of the VIFs in the three MLR models presented showed that the VIF values 

exceeded 5 only in the case of VNIR data analysis, suggesting a level of collinearity between 

selected terms. This was not surprising, since the selected wavelength terms are close neighbors 

to each other on the spectral scale. The collinearity effects motivated the use of and are remedied 

by the PLSR analyses that followed. 
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Table 4.1. Summary of MLR analyses 

Spectral dataset R2 R2 

(adjusted) 

Alpha (α) 

level 

Selected wavelengths 

[nm] 

VNIR 0.55 0.49 0.075 474, 479, 499, 675, 

690, 695 

SWIR 0.34 0.31 0.10 1494, 2144 

VNIR and SWIR 0.34 0.31 0.10 1494, 2144 
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Figure 4.8. We confirmed the random distribution of residuals in our MLR models and noted the absence of 

homoscedastic effects in the plots for all analysis cases. 
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4.5.2   Partial least squares regression analysis 

Analogous to MLR regression analyses, PLSR analyses also were completed in Minitab® 

19 for the VNIR, SWIR, and concatenated VNIR and SWIR data sets. Results are presented in 

Table 4.2. The number of latent variables (LV), or uncorrelated components, for a given model 

were selected by retaining the number with the lowest associated PRESS statistic; the number of 

LVs retained was less than or equal to five in all cases. Again, there was a weak to moderate, but 

statistically significant, correlation in all cases tested. The standardized regression coefficients 

granted insight into the relative importance of terms in a given model (Figure 4.9). Terms, or 

wavelength bands, with higher standardized regression coefficient values may be taken as 

exhibiting greater importance in relating the response variable, or ψstem in our case. 

Table 4.2. Summary of PLSR analyses 

Spectral dataset R2 R2 

(adjusted) 

Number of LVs 

VNIR 0.39 0.34 4 

SWIR 0.36 0.31 4 

VNIR and SWIR 0.37 0.31 5 
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Figure 4.9. The standardized regression coefficients in PLSR granted insight into the relative importance of 

wavelength bands regarding the response variable. The x-axis represents wavelength in units of nanometers, and the 

y-axis represents a dimensionless regression coefficient. Relative peaks indicate wavelength bands which could be 

presumed to exhibit greater importance in the given model. The general trends in the coefficients seem to agree with 

the selected wavelengths in MLR models. 
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4.6   DISCUSSION 

The MLR and PLSR outputs corroborated one another; in other words, the selected 

wavelengths in MLR models largely agreed with relative peaks in the standardized coefficient 

plots resulting from our PLSR efforts. This adds confidence in our data analysis via demonstrated 

stability across two separate multivariate regression techniques, i.e., we were able to discern select 

suggestive spectral trends and compare our findings to other studies. In fact, this between-method 

correspondence adds credence to the importance of selected wavelength regions, even though 

modeling performance arguably was not exceptional (high R2 or adjusted-R2 values). This is 

especially telling, given our observed narrow-range ψstem values. Next we will discuss the 

implications related to spectral-physiological linkages. 

4.6.1   Carotenoid and chlorophyll concentration 

It has been widely suggested that the ratio between carotenoid and chlorophyll a 

concentration is symptomatic of overall physiological sense of a plant (Penuelas, Baret, and Filella. 

1995). Carotenoids absorb light (electro-magnetic radiation; EMR) in the blue region of the 

spectrum, while chlorophyll absorbs in the blue and red regions. In stressed or senescing leaves, 

the ratio of carotenoids to chlorophyll has been recognized to increase. For example, the 

normalized difference pigment index (NDPI) takes the normalized ratio between the reflectance 

values at the wavelengths 430 nm and 680 nm such that 

𝑁𝐷𝑃𝐼 =  
𝑅680 −  𝑅430

𝑅680 +  𝑅430

 

The NDPI indicator was later revised to a structure-independent pigment index (SIPI; 

(Josep Peñuelas and Filella 1998)) to minimize surface and structural effects, by using a reference 

NIR wavelength, such that 

𝑆𝐼𝑃𝐼 =  
𝑅800 − 𝑅445

𝑅800 − 𝑅680

 

Our results indicated importance of the wavelength bands in the regions of 470-500 nm 

and 670-700 nm, where chlorophyll and carotenoid absorption approximately occur, suggesting 

that the relative concentrations of chlorophyll and carotenoids could be deterministic with regard 

to grapevine moisture status, or the interactions between moisture stress and photosynthesis. 

Chlorophyll and carotenoid concentration have been shown as notable indicators of grapevine 
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moisture status in a number of studies (Zarco-Tejada et al. 2005; Rodríguez-Pérez et al. 2007; 

Zovko et al. 2019). Since the chlorophyll and carotenoid pigments are generally based on 

photosynthetic activity, rather than on any particular plant species, related implementations should 

be applicable across species. However, impactful spectral regions were not constrained to the 

photosynthetically active region (PAR) of EMR. 

4.6.2   NIR and SWIR wavelengths 

Our results pointed to the importance of a number of wavelength bands in the NIR and 

SWIR spectral regimes, known to be strongly related to plant moisture status – around 935 nm, 

1494 nm, and 2144 nm. Wavelength bands situated in the NIR and SWIR regimes have been 

extensively used in the field for reliable indication of plant water (Behmann, Steinrücken, and 

Plümer 2014). One example is the Water Index (WI), defined as (J. Peñuelas et al. 1997) 

𝑊𝐼 =  
𝑅900

𝑅970

 

WI is widely used in the community for measurement of plant water concentration (PWC), 

and is predicated upon the minor, or weaker, water absorption feature located at around 970-980 

nm. Further work addresses the sensitivity of the minor water absorption feature, and that it may 

shift to lower wavelengths between 930-950 nm under some conditions (J. Peñuelas et al. 1997). 

While it is possible that spectral characteristic at these lower wavelengths could be related to a 

water vapour absorption band in the same region, we contend that we applied sound atmospheric 

compensation techniques that would remove such interference in spectra (Gao and Goetz 1990). 

As such, our identified spectral feature at 935 nm is likely related to the second overtone in free 

O-H (Jin et al. 2017). 

Reflectance deviations near 1500 nm also have been shown to be significantly correlated 

with change in leaf water content. The maximum difference water index (MDWI) compares 

maximum and minimum reflectance values at 1500 and 1750 nm to successfully relate leaf water 

content, and the region at 1500 nm has been used in novel spectral indices particularly for 

grapevine water stress assessment (Rapaport et al. 2015). It remained unclear precisely why the 

region near 2144 nm exhibited importance in our modeling efforts, however, the SWIR regime in 

general has been shown to be correlated with underlying plant moisture status (Josep Peñuelas and 

Filella 1998). 
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4.6.3   A comparison to previous studies 

Baluja et al. (2012) reported that TCARI/OSAVI (a ratio between chlorophyll absorption 

and a soil-adjusted index) has a strong correlation with ψstem (R2 = 0.84) in grapevine. Additionally, 

both Rodríguez-Pérez et al. (2007) and Zovko et al. (2019)  found strong fits related to ψstem when 

leveraging the chlorophyll absorption in the PAR region. Our results corroborate the idea that the 

PAR region, and specifically the chlorophyll-a and chlorophyll-b absorption regions, are of critical 

importance for understanding grapevine moisture stress. Furthermore, in their continuum removal 

analysis efforts related to grapevine water, Rodríguez-Pérez et al. (2007) highlighted the utility of 

the maximum band depth associated with the water absorption feature at 970 nm (R2 = 0.509) for 

vineyard moisture assessment. Zovko et al. (2019)  also identified a number of applicable 

wavelengths in the SWIR regime, related to the intricate interactions of water, while particularly 

noting the O-H stretch in water and the longer wavelengths related to leaf water content. Again, 

our results corroborate this prior work, e.g., our indication that the minor water absorption feature 

at around 970 nm is critical to moisture assessment, while the longer wavelengths selected in our 

analyses overlap with those selected in the PLSR work of Zovko et al. (2019). 

However, while we proved statistical significance in our modeling outcomes, the models’ 

performance metrics were somewhat lower than those reported in previous studies. This is not 

surprising, given the very limited range of field-measured ψstem in our study. Our observed 

maximum of -7.0 bars for ψstem, arguably represents a very low level of moisture stress in 

grapevines. Baluja et al. (2012), in comparison, measured ψstem up to -14.0 bars and Zovko et al. 

(2019) applied controlled water treatments to experimental plots. We therefore contend that this 

study makes a contribution in i) corroborating that still significant modeling results can be 

achieved for a narrow moisture stress range, ii) full-range (400-2500 nm) sUAS imagery, collected 

at high spatial resolution (2.5 cm) contains enough signal to yield such significant models, and iii) 

that the relevant wavelengths regions/features remain consistent across analysis approaches and 

even studies/regions. 

4.6.3   Future work recommended improvements 

Access to experimental vineyard plots, which can be irrigation-controlled in future 

extension of this work or similar work, would be a distinct benefit. The application of controlled 

water treatments, such as those used by Zovko et al. (2019) would alleviate the problematic nature 



62  CHAPTER 4.   Combining hyperspectral imaging and small unmanned aerial systems for 

grapevine moisture stress assessment 

 

 

 

of attempting to model a dependent variable with a limited response range. The coupling of the 

experimental design used in this study, with a full range of moisture stress values in grapevines, 

arguably would yield much stronger performance metrics than the ones presented here. The 

experimental outcomes also would stand to benefit from data collection under a single sUAS 

platform. Recall that we operated two contiguous flights during each of our flight days, collecting 

VNIR and SWIR spectral data separately, due to sUAS payload limitations. The use of a single 

platform, equipped to measure the full VNIR and SWIR spectral range, would eliminate the need 

to conduct separate flights for the VNIR and SWIR data acquisition, thereby ensuring image 

acquisition that is more coincident with field-measured ψstem values. Finally, as stated by Zovko et 

al. (2019), the precise separation between stress and senescence effects in plants requires a dataset 

that extends to the temporal dimension. The experimental design presented in this work arguably 

will perform successfully along the temporal dimension as well, due to its robust design, 

physiologically meaningful results, and consistent selection of specific spectral ranges. 

 

4.7   CONCLUSIONS 

The goal of this study was to fuse hyperspectral remote sensing, sUAS, and sound 

multivariate analysis techniques for the purposes of assessing grapevine moisture status. The 

specific objectives for this work included (1) an assessment of the overall potential of sUAS-based 

hyperspectral remote sensing for managing grapevine moisture status; (2) identifying the most 

pertinent spectral regions for discerning grapevine moisture status; and (3) interpreting findings 

for links to known plant physiological phenomena. We demonstrated statistically significant trends 

in our experiment, further qualifying the potential of utilizing downsampled hyperspectral data, 

collected via sUAS platforms, for the purposes of mapping, monitoring, and managing grapevine 

water status. There was indication that the chlorophyll and carotenoid absorption regions in the 

VIS could be useful in discerning grapevine water status. Furthermore, a number of wavelength 

regions in the NIR and SWIR - approximately located at 935 nm, 1494 nm, and 2144 nm - also 

were shown to be important in mapping vine moisture levels, and are worth further exploration. 

We showed that a consistent set of wavelength regions can be used to assess vineyard moisture 

status, even though our modeling results (R2 and adjusted R2 values) were less than stellar, but still 

significant. For example, our multiple linear regression efforts yielded R2 values between 0.34 and 
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0.55 and our partial least squares regression yielded R2 values between 0.36 and 0.39. This 

somewhat poorer model performance was attributed to the narrow range of field-measured ψstem 

values, i.e., the higher-than-typical seasonal rainfall resulted in less variability in ψstem than we had 

hoped for. As such this work was limited in the fact that we did not have access to vineyard plots 

which could be experimentally controlled for conditions under test, and we therefore recommend 

that future work ensure experimental control for a full, larger range of moisture stress in the vines.  

Nonetheless, the application of hyperspectral imaging and sUAS platforms in grapevine water 

management remains lucrative and additional work to further operationalize these systems for 

precision viticulture would be valuable to the larger vineyard agricultural community. 
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Chapter 5  

 

Summary 
 

 

5.1   SUMMARY 

Chapter 1 of this thesis provides the context for studying grapevine moisture by means of 

remote sensing technologies. Current methods of grapevine moisture management are explained, 

and the benefits associated with operationalizing remote sensing technologies are presented and 

justified. Our overarching objective was to assess the utility of sUAS-based (hyper-) spectral 

indicators for assessing limited variation in vineyard moisture status, toward establishing potential 

operational solutions. The specific objectives of the thesis were also presented, namely to 1) 

Evaluate a sound data processing chain to relate hyperspectral data and field (moisture) 

physiological indicators for a commercial rainfed vineyard, 2) Assess the overall potential of 

sUAS-based hyperspectral remote sensing for managing grapevine moisture status, 3) Identify 

pertinent spectral indicators in the VNIR spectral regime for discerning grapevine moisture status, 

4) Identify pertinent spectral indicators in the SWIR spectral regime for discerning grapevine 

moisture status, and 5) Publish research findings as a comprehensive technical manuscript in an 

applicable precision agriculture journal for targeted outreach. Furthermore, the scientific 

contributions of the work are clearly stated. 
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Chapter 2 provides a review of some of the seminal work done in relation to remote sensing 

for grapevine moisture to provide a brief background to set up and further motivate Chapters 3 and 

4. Since Chapters 3 and 4 were written as research papers, the background provided in those 

chapters was written in a targeted and specific format. Thus, Chapter 2 provides deeper insights 

into the literature review that was not directly stated in the primary Chapters 3 and 4.  

Chapter 3 represented a paper that was presented and published in the Autonomous Air 

and Ground Sensing Systems for Agricultural Optimization and Phenotyping session of the SPIE 

Defense and Commercial Sensing Conference proceedings, April 2019 (Izzo et al. 2019). It details 

initial modeling and data analysis efforts for the VNIR data that we had collected. These initial 

efforts aided in developing a sound experimental design to motivate a more comprehensive and 

exhaustive analysis and provided some initial confidence in the overall potential of sUAS-based 

hyperspectral remote sensing for managing grapevine moisture status. 

Chapter 4 provided a more exhaustive and robust analysis and acts as an extension to the 

work presented in Chapter 3. The analysis includes the SWIR data collected in the field, for a full 

range (400-2500 nm) study, and aims to establish links to plant physiological phenomena. By 

correlating traditional field measurements of stem water potential (ψstem) and sUAS-based 

hyperspectral data, it was demonstrated that statistically significant trends can be shown even 

given a narrow range of moisture stress in grapevine. The work suggested that the chlorophyll and 

carotenoid absorption regions in the VNIR, as well as several SWIR water band regions should be 

further explored in related works. The chapter is written with the intent to publish in an applicable 

peer-reviewed journal in the 2019 timeframe.  

 

5.2   CONCLUSIONS 

Since grapes are one of the most economically-important agricultural crops in the world, 

there is a significant interest in maintaining and increasing the associated quality of grapes and 

resulting wine product for economic and cultural reasons. The presence of a mild moisture deficit 

in grapevines prompts a reduction in shoot growth, berry weight, and yield, all of which are factors 

that collectively serve to inflate berry anthocyanin and tannin levels and, as such, perceived quality 

(Cornelis Van Leeuwen et al. 2009). Controlled deficit irrigation emerged as one method to induce 

mild moisture deficit stress in grapevines, and has been demonstrated to yield improved berry 
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quality, while maintaining operationally acceptable yields (Chaves et al. 2007). Deficit irrigation, 

or partial irrigation, reduces vine vigour and shoot growth in a controlled manner that shifts plant 

metabolic processes to induce improved fruit quality (Matthews and Anderson 1989). Similarly, 

in vineyards where deficit irrigation techniques cannot be realized, the knowledge of vine water 

status may dictate selective harvesting practices, giving way to optimized quality and yield. 

Selective harvesting can be successfully implemented in both small quantity producing wineries, 

as well as those with large volume and flexible infrastructure (Bramley et al. 2005). 

Traditionally, management of vine moisture status has been facilitated by direct in-field 

measurement of sensitive physiological indicators. The in-field direct measurement of ψstem with 

a manual pressure chamber, while proven valid for grapevine water status measurement (Chone et 

al. 2001), is challenging for large, commercial vineyards. While strides have been made in 

numerous vineyard settings to operationally respond to in-field measures of vine moisture status,  

accurate measurements often require an inordinate amount of time and labor, and progress in 

operational application remains gradual (Rodríguez-Pérez et al. 2007). It is in this context that 

remote sensing technology has become an increasingly common tool to remotely probe for plant 

physiological indicators, like plant moisture status, via observations of the unique electromagnetic 

spectral response related to plant moisture regimes. The potential superiority of non-destructive 

remote sensing techniques, for these purposes, lies in the cost-effective, exhaustive (“wall-to-

wall”), and objective nature of application (Govender et al. 2009). 

Our research fused hyperspectral remote sensing, sUAS, and sound multivariate analysis 

techniques for the purposes of assessing grapevine water status. We conducted full airborne 

(sUAS) and ground (field truth) campaigns and analyzed our data using sound modeling 

techniques, all in order to present trends and conclusions to inform future efforts. There still is a 

need to further evaluate sUAS-based, high spatial resolution, and especially hyperspectral imagery 

for different geographic regions, thereby validating past efforts for different regions and grape 

varieties. Most of the prior work utilizes data that were collected in situ via spectroradiometers. 

For those studies that did include a sUAS platform, many did not evaluate the optical domain, and 

some did not correlate with reliable physiological indicators. We therefore attempted to bridge that 

gap to some extent in this work, fusing hyperspectral remote sensing, sUAS, and sound 

multivariate analysis techniques for the purposes of assessing grapevine water status. 
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Our first cursory analysis focused only on VNIR data that we had collected during our field 

campaign efforts. We collected high-spatial resolution imagery (2.5 cm GSD) over 3 flight days 

via an sUAS platform, and ψstem ground measurements in which to correlate with via a pressure 

chamber, captured coincident to the flights. Our first analysis (Chapter 3) was most significant in 

developing and evaluating a sound data processing chain for our study. We used a Spectral Angle 

Mapping classifier to enable the targeting of pure (sunlit) vine canopy with vertically trained 

shoots and significant shadowing. We decided to use the partial least squares-regression (PLS-R) 

modeling method to correlate our hyperspectral imagery with measured field water status and 

applied a wavelength band selection scheme to detect important wavelengths. We evaluated 

spectral smoothing and band reduction approaches, given signal-to-noise ratio (SNR) concerns. 

Our regression results indicated that unsmoothed curves, with the range of wavelength bands from 

450-1000 nm, provided the highest model performance with R2 = 0.68 for cross-validation. There 

may have been some issues of overfitting during this first cursory analysis, which were remedied 

by removing the wavelength band selection scheme in the more comprehensive manuscript 

presented in Chapter 4. 

Chapter 4 further expands upon the results of Chapter 3 by including the SWIR data 

collected in the field and discerning links to plant physiological phenomena. We correlated our 

hyperspectral data with a limited stress range (wet growing season) of traditional measurements 

for ψstem using multiple linear regression (R2 between 0.34 and 0.55) and partial least squares 

regression (R2 between 0.36 and 0.39). We demonstrated statistically significant trends in our 

experiment, further qualifying the potential of hyperspectral data, collected via sUAS, for the 

purposes of grapevine water management. There was indication that the chlorophyll and 

carotenoid absorption regions in the VNIR, while several SWIR water band regions warrant further 

exploration. 

This work had several significant contributions relative to the perceived research gap in the 

current body of work. We provided evidence that correlation can be established between field ψstem 

and hyperspectral data of grapevine, even given a relatively narrow-range of ψstem response. As 

more studies utilize sUAS platforms to collect data for similar studies, we demonstrated sound 

data processing techniques that might be considered in future works. Furthermore, we showed 

statistically-significant trends when relating grapevine ψstem to downsampled hyperspectral data 

collected across the VNIR and SWIR spectral regimes (400-2500 nm), that future work may 
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evaluate or validate. Specifically, we suggested the importance of understanding the chlorophyll 

and carotenoid absorption regions for grapevine, we confirmed the NIR minor water absorption 

feature (970 nm) as being a useful indicator for understanding grapevine moisture, as already 

indicated by a number of established spectral indices in the literature, and highlighted select longer 

wavelength regions in the SWIR that might be considered in grapevine moisture studies. 

 

5.3   FUTURE WORK AND IMPROVEMENTS 

As we progressed through the research presented in this thesis, we learned and noted 

improvements or changes in experimental design that could benefit future, related work. These 

changes/improvements include the following: 

• Stem water potential (ψstem) is a sensitive physiological indicator that is known to 

change throughout the day, given atmospheric/environmental conditions present at the 

study site. In our work, we were required to fly two separate flights during data 

collection days (one VNIR and one SWIR) due to sUAS payload limitations. In other 

words, it may be that our VNIR and SWIR data were collected under slightly different 

conditions, even though the flights were contiguous in time and ψstem field 

measurements were coincident to image acquisition. As such, it would be 

recommended that future work aim to use a single platform, equipped to measure the 

full VNIR and SWIR spectral range, thereby ensuring image acquisition that is even 

more coincident with field-measured ψstem values. 

• It has been shown in many previous studies that predictive models tend to be more 

robust if backed up by many data samples, i.e., much greater than the 56 field data 

samples we had at our disposal for this research effort. Our small number of field 

samples was primarily due to the time and expertise involved in accurately measuring 

ψstem with a pressure chamber; specifically, we had one subject matter expert to capture 

these measurements. Future related work might consider planning to have multiple 

pressure chambers and subject matter experts available for field measurements, to 

ensure a greater number of data samples to model. 

• We had the unfortunate incidence, for research purposes, of significant rainfall during 
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a growing season in which we were hoping to capture a significant range/variability for 

moisture stress in grapevine. We therefore had no option but to accept a limited range 

of moisture stress with which to model field-measured ψstem. We were still able to show 

statistically significant trends, but it would be recommended that future efforts 

implement water treatments in experimental plots to ensure a wider range of stress. 

This may require finding an experimental vineyard or a commercial vineyard willing 

to facilitate an experimental area for such a study. 

• We built our models in this research given a single field parameter to correlate with, 

namely stem water potential (ψstem). Other studies related to additional field parameters, 

which may be helpful for understanding moisture stress in grapevines; one such a 

parameter example is stomatal conductance (g). 

• While we had AeroPointsTM placed in the field in order to increase accuracy during 

mosaicking efforts, in addition to the onboard GPS, they were not used as part of the 

data processing chain in this work. The AeroPointsTM would help with any mosaicking 

error, e.g., you could identify an AeroPointTM in a mosaic and use that center point to 

improve registration accuracy. 

o In order to review how the lack of AeroPoints affected image registration, we 

used ENVI to evaluate image registration between the two spectrometers, for one 

block during one of the collect days; RMS error in ENVI was reported as ~15 

pixels (about what we would expect with the onboard GPS). This did not impact 

our work, since we manually located the field plots in the image data, based on 

the orange plate markers that we had placed out in the field. However, if a study 

required automatic location of field plots via image registration efforts, they 

should expect an error ~15 pixels and therefore should consider the integration of 

precise GPS data from the AeroPointsTM. 

• The process of conjoining VNIR and SWIR spectral data, collected on two separate 

sUAS platforms, could have been more rigorous. In our work, we conjoined or stacked 

the VNIR and SWIR spectral curves from two independent sources. There are more 

complex methods that may be used to address the potential error introduced by 

differences in time between flights. Future studies should aim to develop a more robust 
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method of conjoining independent spectral curves, given the potential separation in 

time between sUAS flights, and with recognition that plant physiological 

measurements can change rather rapidly. 
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Appendix A 

 

A.1 Fox Run Vineyards Map 
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Figure A.1.1. Fox Run offers a complex terroir that made it an attractive choice for our study. The terrain has a 

significant gradient in elevation, from 470 to 700 feet, in relation to distance from lake edge. Furthermore, the soils 

host a complex combination of sandy loam and gravelly clay across the extent of the vineyard.
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Appendix B 

 

A.2 Data Analysis Raw Outputs 
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Figure A.2.1. VNIR stepwise results from Minitab, R2 = 0.55 
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Figure A.2.2 (continued) VNIR stepwise plots from Minitab; the residual plots confirm random distribution; the 

detailed stepwise procedure shows the process of adding variables into the model and associated R2 performance 
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 Step 1 Step 2 Step 3 Step 4 

 Coef P-value Coef P-value Coef P-value Coef P-value 

Constant 4.8196  4.8196  4.8196  4.8196  

675 nm -0.1539 0.053 -1.238 0.000 -1.327 0.000 -1.301 0.000 

690 nm   1.108 0.000 0.849 0.004 0.739 0.008 

497 nm     0.381 0.067 1.350 0.001 

474 nm       -0.908 0.004 

478 nm         

499 nm         

695 nm         

R2 (adj) 0.05 0.29 0.32 0.41 

 Step 5 Step 6 Step 7 Step 8 

 Coef P-value Coef P-value Coef P-value Coef P-value 

Constant 4.8196  4.8196  4.8196  4.8196  

675 nm -1.271 0.000 -1.238 0.000 -1.042 0.000 -1.169 0.000 

690 nm 0.907 0.002 1.080 0.000 0.734 0.016 1.517 0.004 

497 nm 0.677 0.181       

474 nm -1.484 0.001 -1.512 0.001 -2.359 0.000 -2.354 0.000 

478 nm 1.066 0.056 1.574 0.000 1.496 0.000 1.460 0.000 

499 nm     1.073 0.053 1.101 0.043 

695 nm       -0.668 0.068 

R2 (adj) 0.44 0.44 0.46 0.49 

 

Figure A.2.2 (continued) VNIR stepwise plots from Minitab; the residual plots confirm random distribution; the 

detailed stepwise procedure shows the process of adding variables into the model and associated R2 performance 
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Figure A.2.3. VNIR PLS results from Minitab, R2 = 0.39 
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Figure A.2.4. SWIR stepwise results from Minitab, R2 = 0.34 
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 Step 1 Step 2 

 Coef P-value Coef P-value 

Constant 4.8196  4.8196  

1494 nm 0.2800 0.000 0.546 0.000 

2144 nm   -0.332 0.004 

R2 (adj) 0.21 0.31 

 

Figure A.2.5. SWIR stepwise plots from Minitab; the residual plots confirm random distribution; the detailed stepwise 

procedure shows the process of adding variables into the model and associated R2 performance 

  



80   

 

 

 

 

 

Figure A.2.6. SWIR PLS results from Minitab, R2 = 0.36 
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Figure A.2.7. VNIR-SWIR stepwise results from Minitab, R2 = 0.34 
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 Step 1 Step 2 

 Coef P-value Coef P-value 

Constant 4.8196  4.8196  

1494 nm 0.2800 0.000 0.546 0.000 

2144 nm   -0.332 0.004 

R2 (adj) 0.21 0.31 

 

Figure A.2.8. VNIR-SWIR stepwise plots from Minitab; the residual plots confirm random distribution the detailed 

stepwise procedure shows the process of adding variables into the model and associated R2 performance 
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Figure A.2.9. VNIR-SWIR PLS results from Minitab, R2 = 0.37
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