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Abstract 

 
The electricity sector contributes to a quarter of global greenhouse emissions, and 

managing its evolution is a critical sustainability challenge. The context for the development and 

operation of electricity grids has dramatically changed in recent years. Wind and solar power have 

become much less expensive. Lower costs combined with increased policy action to address 

carbon emissions is leading to substantial shares of electricity generated by intermittent renewables. 

Maintaining a stable electricity supply with intermittency is a critical challenge; storage and natural 

gas are possible solutions. While policymakers promote storage as green grid technology, low-

cost natural gas from hydrofracturing extraction raises the economic hurdle for storage. 

 

Researchers have developed complicated energy system models to help plan grids in the 

face of the above trends. The research in this dissertation introduces new modeling features that 

affect the economic and environmental outcomes of the adoption of renewable and storage 

technologies. First, prior models that explore the future build-out of electricity grids are nearly 

always deterministic, i.e., they assume that decision-makers have perfect information. Here a 

stochastic optimization grid expansion model is developed that presumes that expected future 

fluctuations, e.g. in fuel prices, influence build-out decisions.  This stochastic model thus 

includes uncertainty and risk as core elements: Grid build-out depends on the distribution of 

system costs. A genetic algorithm with Monte-Carlo simulation is used for co-optimization using 

two objective functions: “risk-neutral,” which optimizes to minimize average system cost and 

“risk-averse,” which optimizes to minimize average of the top 5% of costs (also called 95% 

Conditional Value at Risk (CVaR)). This model is tested for the US Midwest regional grid. The 

results show that the risk-averse scenario does not increase mean system costs but adds 

significantly more wind. These results corroborate prior work showing that electricity system 

costs can be surprisingly inelastic to renewable adoption and further introduces quantification of 

how increased renewables lowers cost risk. 

 

Second, the economic and environmental performance of storage is complicated by how 

its introduction affects the operation of both renewable and fossil plants. In this dissertation, a 
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model is developed that accounts for how storage operation would affect prices on the grid and in 

turn, the operational schedule that yields optimal revenue. Results from modeling the US Midwest 

region shows that this treatment of storage as a “price maker” affects results. The model indicates 

that storage increases carbon emissions when it enables a high emissions generator, such as a coal 

plant, to substitute for a cleaner plant, such as natural gas. In this case, low cost; efficient natural 

gas generation is relatively better than coal to realize emissions reductions with storage under 

economic arbitrage until renewables dominate the grid mix.  

 

Third, the operational strategies of energy storage alter the generation and profits of the 

other electricity generation systems. The operational effects of storage on the change in generation 

is investigated for all the eGRID subregions across the US based on actual historical electricity 

prices and the generation mix for the year 2016. Results show that storage increases the coal 

generation and affects the natural gas generation in the west – except in California and the Midwest 

regions of the US; and increases the generation of the natural gas in the eastern US regions. 

California, upstate New York and New England regions show an exception with an increase in 

natural gas generation and decrease in coal generation. The model also investigates the operational 

effects of storage on the profits of other generating units in California, Midwest and New York 

regions. Profits of other generating units are significantly affected when large capacities of storage 

operate as price-makers. Coal has a small increase in profits by 2% and all the other fuels continue 

to see a decline in profits in New York and the Midwest regions. The decrease in profits of the 

other generating units is because of the offset/retirements of the peaker natural gas plants that set 

the electricity prices. On the other hand, in California, the profits for renewables increase from the 

increase in electricity clearing prices set by the natural gas combined cycle plants to meet the 

additional demand from the storage charging.  
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GLOSSARY OF TERMS 
 
Deregulation  Wholesale markets for trading electricity generation. 
Discharge  Releasing energy/electricity into the system from storage. 
eGRID  The Emissions & Generation Resource Integrated Database by EPA. 
ISO  Independent System Operators, coordinates and monitors the electricity 

grid such that supply meets the demand. 
Marginal generator  Plant used to meet the last unit of demand. 
MW  Unit of power output, e.g. nameplate capacities of the power plants. 
MWh  Unit of energy output. 
NGCC  Natural Gas Combined Cycle. 
NGCT  Natural Gas Combustion Turbine. 
Peaker plant  Plants used during the peak demand periods. 
Plant Retirement  Plants not in active operation. 
Price Maker  System’s operation affects the market prices. 
Price Taker  System exogenous to the market prices and its operation does not affect 

the prices. 
Ramping  Rate at which the power plant’s output changes. 
Storage Charge  State of using energy for storing. 
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Chapter 1: Introduction 

1.1 Background 

Managing the evolution of the electricity grid is a critical sustainability challenge. As of 2017, 

electricity contributed to the 28% of total greenhouse gas emissions in the U.S. [1] and to a 

quarter of global GHG emissions [2]. Electricity production is also economically significant, 

generating $380 billion in revenue in 2016 in the U.S. [3] and is a backbone of many other 

industries. Not only is electricity a major carrier of energy, its role in the energy system 

continues to expand. Electric vehicles (EV) could be on a trajectory to enable electricity to 

replace much of the demand for liquid fuels, prompting expansion and transformation of the 

electrical grid. 

 

Like any other infrastructure, the electric grid is long-lived. An average age of the coal power 

plant, accounting for 30% of annual generation in the U.S. is 40 years [4]. Long life exacerbates 

lock-in effects: Capital investments, once made, last for decades. Sunk investments crowd out 

the potential to adopt new technology and indeed, some elements of the grid, such as 

photovoltaic panels, batteries and wind energy, are undergoing rapid technological improvement.  

 

Deregulated electricity markets 

In addition to the long-life of the electricity infrastructure, the deregulation of the electricity 

industry has shifted the capital availability and risk preferences of generation companies. As of 

2018, eighteen states in the U.S. participate in the deregulated electricity markets [5]. 

Traditionally, in a vertical integrated structure/regulated markets, utilities controlled the 

transmission, distribution, and generation of the electricity to the consumers. The utilities 

conformed to the regulations set by the governments and were assured a guaranteed return on the 

investments. This enabled them to participate in an almost risk-free environment and procure 

finance for capital-intensive power plants [6]. Whereas, in the de-regulated markets, electricity is 

a tradeable commodity, creating competition. Competition lowers the prices and generators 

should be able to produce cheaper electricity while changing the output to meet the real-time 

demand. For example, in a wholesale electricity market, generators bid a price at which they can 
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supply a specific number of megawatt-hours of electricity. Independent System Operators (ISO) 

like Midcontinent ISO in the Midwest region, or New York ISO in the NYISO, clear the market 

by selecting the generators with lowest bid till the supply meets the demand. The price of the last 

resource to offer such that the demand meets the supply decides the wholesale price of the 

power. In such a market with volatile electricity prices, often coal power plants cannot match 

with the almost zero marginal prices of the renewables and cannot change output like gas power 

plants in response to demand.  

 

In recent years, a combination of shale revolution and reduction in the wind/solar costs changed 

the dynamics of electricity markets, pushing flexible natural gas generation and renewables to 

the forefront over the usage of coal- with higher emission rates. As of 2015, natural gas 

generation surpassed coal and contributed to 33% of the total generation, followed by coal at 

32%, nuclear at 19%, non-hydro renewables at 8%, and hydro at 6% [7]. Also, realizing the 

economic and environmental benefits of the renewables, states are revising and introducing 

Renewable Portfolio Standards (RPS) to achieve a certain percentage of the renewable mix in the 

overall electricity generation. As of today, twenty-nine states in the U.S. have RPS, and eight 

states have set some form of renewable energy goals [8].  

 

One of the significant limitations of the wind and solar is that they are variable and do not have a 

firm (constant) output generation. Natural gas complements the variable generation from the 

renewables and is easy to turn on and off (ramping), based on the availability of renewable 

energy. Thus, as the renewables grow in the system, natural gas could become even more reliable 

as a cheap source of energy during the intermittent hours when the renewable resources are 

unavailable. Also, the clearing prices set by the gas in the current de-regulated markets drives the 

revenues of the renewables, further bolstering a stable symbiotic relationship between the gas 

and the renewables  [9].  

 

Energy Information Administration (EIA) projects that the gas will be the leading source of 

electricity supply and the CO2 emissions will remain unchanged until at least 2050 [10]. The 

current average age of natural gas power plants is 25 years, and further investments in natural 

gas will lock-in the infrastructure for a substantial period of time into the future.  



 3 

 

Energy storage for renewables 

On the other hand, energy storage is gaining traction, too, notably amongst policymakers to 

support the variable renewable generation. It stores energy when the wind blows and the sun 

shines and discharges into the grid when there is a demand. Storage can be a chemical battery, 

flywheel, or pumped hydro systems [11]. While the cost of energy storage, especially Lithium 

Ion batteries are expensive than a traditional gas plant, there has been a steep drop in the recent 

years from $800/MWh in 2013 to $200/MWh in 2018 [12]. It is a 75% drop in the costs and can 

soon compete with the natural gas whose Levelized Cost of Energy (LCoE) is between $30-

60/MWh as of 2018 [10]. Since the storage overcomes the limitation of producing and 

consuming electricity in the real-time, policymakers are increasingly keen on promoting utility-

scale and distributed storage systems enabling the integration of the renewables. As of 2018, 

some of the major states that passed energy storage target mandates are California [13], 

Massachusetts [14], Maryland [15], New York [16], and New Jersey [17].  

 

Current challenges 

Both natural gas and storage are catalysts for increasing renewable penetration, or are they? 

Annual Energy Outlook by EIA shows that gas prices are historically low as of 2019 and could 

continue to remain the same at $3/MMBtu till 2050, in a high oil and gas resources scenario. The 

same publication also shows that the gas will continue to rule the electricity generation mix by 

contributing to 40% of the generation supply by 2050 [10]. The big challenge is once these 

capital investments are made based on the signal of low gas prices, the plant could keep running 

for a very long time, even with cheaper renewables in the system. Most of the utilities [18] and 

even government agencies like EIA [19] run financial models, or forecast models for certain 

future scenarios. These methods undermine the risks of higher costs and future uncertainties, and 

the capital investments once made are sunk. In a world of volatile fuel prices, changing demand, 

cheaper renewables and deregulated markets: shifting the capital availability and risks, it is 

imperative to understand the uncertainties before modeling future grid infrastructure on certain 

sets of inputs. Especially if the results from these models include carbon-intensive technologies 

like natural gas, the bridge to renewables cannot be crossed for any time soon. 
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The challenge with the storage systems is that it is promoted by policy makers to solve the 

intermittency issues of renewable energy. But, storage in the US is rarely used to prevent 

curtailment of renewable energy. 88% of the total storage capacity in the US operates for profit 

maximization in an arbitrage scenario [11]. Deregulated grids feature generators (and 

consequently storage) as profit-maximizing agents. A profit-maximizing bulk energy storage 

system charges during low price/low demand periods and discharges during high price/high 

demand periods, regardless of the type of generation being used. The effect that this economic 

dispatch of storage has on grid emissions depends upon generation mix, dispatch order, demand, 

and storage round-trip efficiency [20]. Thus, the storage may or may not benefit the renewables, 

depending on the grids it operates, and a comprehensive analysis must be performed for different 

grid types before incentivizing them. 

 

1.2 Problem Statement, research questions and novel contributions  

Current energy models do not consider the future weather and fuel price uncertainties, risk 

preferences in the deregulated energy markets, and the current economic operation of the storage 

systems. The results from these models could lead to lock-in investments in natural gas for years 

to come or significant investments in bulk storage. While both the technologies complement the 

variable nature of the renewables, does the assumption of promoting storage, or results from 

deterministic grid expansion models help in the growth of the renewables?  The research 

questions develop to answer these challenges are: 

 

(1) Does stochastic forecasting of the future grid for different risk preferences of the 

market enable more renewables over cheaper natural gas? 

In chapter 2, this dissertation introduces a novel model for the future build-out of grid 

infrastructure, accounting for future uncertainties, risk preferences in the de-regulated 

markets, and evolving technologies. The build-out decisions are made by minimizing 

total cost of service constrained by the need to meet current and future load. Uncertainty 

in fuel prices and load demand is treated through Monte Carlo analysis and the grid 

build-outs are analyzed for different risk preferences of the market. This analysis is 

performed in the Midwest Region of the US, which has the largest concentration of coal 
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in the generation mix [4]. Application of the model on a grid heavily dependent on the 

fossil fuels yields insights into trends towards a more sustainable electrical grid.  

 

(2) Can bulk energy storage compliment renewables and enable environmental benefits 

to the grid? 

In chapter 3, storage model is built to evaluate the carbon implications of storage on the 

current electric grid and grids, and with expanded wind and solar energy. In the next few 

years, many states around US are keen to implement policy incentives/mandates for 

encouraging large storage systems on the electricity grids, hoping that it will support 

renewable growth and decrease emissions. Thus, chapter 3 explores how does storage 

affect grid emissions with differing amounts of added renewables, and differing natural 

gas prices? For this case, the New York ISO (NYISO) and Midcontinent ISO (MISO) 

regions are modeled. The choice of these two case studies allows us to contrast between 

grids not dependent and dependent on coal. The two grids studied here are representative 

of many systems in the US and around the world.  

 

(3) Can bulk energy storage enable profit benefits to the renewables? 

In Chapter 4, the model examines if adding storage benefits the profits and generation of 

the renewable energy power plant operators, especially as compared to cheaper natural 

gas in the system. This study is conducted in two parts. In the first part, the study 

investigates how storage affects the likely generation from other fuels based on the actual 

electricity prices and the fuel mix across 22 eGRID regions of the U.S. In this, case the 

storage does not affect the market prices. Though it captures the dynamics of the actual 

operation, it does not show the change in profit for other generators as it is a marginally 

small capacity. To answer the change in price/profit of other generators, a simulated 

dispatch model with larger storage capacities from 3GW-10GW is used in the second part 

of the chapter. In this case, storage distorts the prevailing prices. Therefore, in the first 

part the model captures the dynamics of the actual operation, and in the second part, it 

captures the changes in the profit when storage is no more a marginal operator. For this 

case, the New York ISO, Midcontinent ISO (MISO) and California ISO (CAISO) regions 
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are modeled. These choices allow us to compare across a spectrum of low, medium, and 

high renewable energy penetration into the grid. 

 
Table 1. Overview of knowledge gaps and the contribution of the dissertation 

Knowledge Gaps  Contribution 

Impacts of future uncertainty and risk 

preferences in the deregulated markets on the 

integration of renewables, 

Effects of adding storage on the integration of 

renewables 

 Analytical models to the decision makers on the 

environmental, and economical implications of 

including assessment of storage operation and 

future uncertainties.  
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2  

Chapter 2: An alternative structure for integration of uncertainty and risk 

aversion into capacity expansion models 

 

Abstract 
Current capacity expansion models forecast the grid by deterministic optimization to minimize 

total system cost. Uncertainty analysis is ex-post, via running scenarios varying input parameters. 

A capacity expansion model with a built-in uncertainty would enable Monte Carlo analysis and 

consideration of alternative objective functions, e.g. accounting for cost risk. This paper introduces 

a proof-of-concept stochastic model that includes uncertainty and risk as core elements. Grid build-

out now depends on a distribution of system costs; a genetic algorithm is used for co-optimization. 

Two objective functions are considered: “risk-neutral”, which optimizes to minimize average 

system cost and “risk-averse”, which optimizes to minimize average of the top 5% of costs (also 

called 95% Conditional Value at Risk (CVaR)). This study implements the model for the U.S. 

Midwest region, accounting for distributions in future electricity demand and fuel prices. 

Curiously, the risk-averse scenario does not increase mean system cost but adds significantly more 

wind (~ 20GW) and solar capacity (~15 GW) by 2050 compared to the risk-neutral objective. 

These results corroborate prior work showing that electricity system costs can be surprisingly 

inelastic to renewable adoption and adds quantification of how increased renewables lowers cost 

risk.  

 

2.1 Introduction and Literature Review 

Electricity generation is a major contributor to climate change, accounting for 25% of global 

carbon emissions [2]. Electricity is also economically significant, e.g. generating $380 billion in 

revenue in 2016 in the U.S. and affecting the profitability of many industrial sectors [3]. Efforts are 

underway around the globe to decarbonize the grid. Federal, state and provincial governments 

grant tax credits to select technologies, set targets for renewable energy adoption (Renewable 

Portfolio Standards (RPS)[21]) and implement carbon taxes [22].  

The development of decarbonization policies and future energy trends is informed by a variety of 

energy system models with differing scope and spatial scales. One example at the global scale is 
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the World Energy Model (WEM) by International Energy Agency [23].  It provides medium-

long term energy projections on energy consumption, energy transformation, and energy supply 

levels across the globe, published annually in the World Energy Outlook. Future uncertainties 

are treated through three different scenario analyses- new policies scenario, current policies 

scenario and the sustainable development scenario. Another energy system model at the global 

scale is the World Energy Projection System (WEPS) Model by Energy Information 

Administration (EIA)[24]. Similar to WEM, they also model the demand, transformation, and 

supply at the region scale across sixteen different regions globally. The future scenarios in this 

model are developed based on the economic growth trajectories in the different regions.  

Modeling efforts in the U.S. are mostly centered at government agencies and national 

laboratories. The National Energy Modelling System (NEMS), coordinated by EIA, is a complex 

multi-module model that simulates the entire U.S. energy system, including electricity infrastructure, 

used as the basis for the Annual Energy Outlook published annually. The NEMS is an economy-

wide model that also includes the future supply of natural gas, coal, and oil whose data is used by 

the other popular models for the future price and load trajectories. Another model is The 

Regional Energy Deployment System Model (ReEDS) by National Renewable Energy 

Laboratory (NREL), which is a capacity expansion model extensively focusing on the future 

scenarios of the U.S. power system, taking into account the technology innovation impacts, and 

policy scenarios [25]. The capacity expansion of the power system in the above models is 

optimized such that the generators and infrastructure are built to minimize the total system cost 

to meet future demand.  The usual capacity expansion model is deterministic: The output is a 

single set of generators and infrastructure that minimizes discounted system costs when faced 

with a set of deterministic inputs [23, 24, 26].  

What is the purpose of grid capacity expansion models? One might first think these 

models are intended to give reasonable forecasts of the future grid. A capacity expansion model 

may turn out to be good forecast, but I argue this is not the main purpose for which they are 

constructed. If energy system models were intended to good forecasts, this would imply that, as 

with other forecasts such as weather, model construction would involve retrospective analysis to 

determine what model and data most accurately “forecast” the past. This is not done in any 

systematic way in building energy models. There is a small literature that notes dramatic 

differences between retrospective forecasts and actual evolution of energy systems [27], but this 
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is not part of a larger modeling effort to incorporate model structure into retrospective evaluation 

of forecasting.  

 The real purpose of a capacity expansion model is to construct a future in which society 

sensibly builds out the future grid. “Sensibly build” usually is defined as minimal total system 

cost, though often with constraints built in for other societal objectives such as renewable energy 

adoption targets or a carbon tax. It may be that the actors involved, and their decision-making 

processes result in a grid reasonably reflecting minimum total cost to society. In spite of this, 

energy system modelers can argue that there is value in knowing what choices are good for 

society aside from issues such as market failures.  

  

Uncertainty, however, significantly complicates what it means for society to sensibly build an 

electricity grid. The usual deterministic optimization used in capacity expansion assumes 

decisions are made assuming perfect information, i.e. parameter values are fixed and there is one 

grid-build out that minimizes system costs. Many parameters driving electricity system 

profitability are, however, highly uncertain, including future fuel prices, technology prices, and 

policies. A choice that minimizes system costs for baseline values of input parameters may in 

fact, incur high risk of cost increases. Society knows that drivers of energy systems are uncertain 

and rightly ought to be concerned about lowering risk. To give an example from the sphere of 

personal decision making, many consumers prefer new cars over used ones because they are 

sensibly concerned with the costs if something goes wrong, i.e. the car breaking down.  

 

Decision-making that accounts for uncertainty is mathematically formulated as stochastic 

optimization. Stochastic optimization treats decision makers as possessing knowledge of 

uncertainty. The goal is to find a grid build-out that which optimizes an expected (but not 

certain) outcome. Following the idea that sensibly building the energy system should account for 

risk, capacity expansion models should thus use stochastic optimization.  

 

The need for stochastic capacity expansion models has been recognized by prior analysts.  

The Switch energy system model developed by Fripp [28] uses stochastic linear optimization to 

minimize the total system cost. Stochastic linear optimization recasts a fundamentally non-linear 
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problem (a decision as a function of a distribution) as a linear problem by using discrete values 

for alternative parameter values and creating new optimization variables according to the 

probabilities of alternate parameter values.  Switch takes into account the uncertainty in the 

renewable power supply and future demand. The model co-optimizes the investment and 

operational decisions under different scenarios of weather conditions. These weather conditions 

are generated through sample demand patterns, wind, solar and hydro availability chosen from a 

sample historical date.  

 

The Tools for Energy Model Optimization and Analysis (TEMOA) model [29] also uses 

similar stochastic linear programming [30–33] for optimization with uncertainty. In this method, 

uncertain future outcomes are encoded as possible scenarios in an event tree with an assigned 

likelihood of occurrence. For example: in the sample region of their study using TEMOA, each 

combination of high, medium, and low growth rates of coal, oil, and gas were divided into 9 

branches in an event tree and were assigned an equal probability of 1/9 to each branch. These 

branches with their assigned probabilities were solved through linear optimization [29, 32] 

 

Stochastic linear optimization has two major limitations in its application to capacity 

expansion models.  The first is the ‘curse of dimensionality’ [34], i.e. the need to define 

additional optimization variables for each new uncertain variable leads to an event tree 

increasing exponentially with the number of uncertain parameters. As a result, the current 

models limit the number of scenario branches/uncertainties from a tree to eight or have to use 

high-performance computers [35]. The second limitation is lack of flexibility in exploring 

different ways society might account for risk. For example, society might choose to aim for 

minimal mean system cost (from a distribution) or show aversion to high cost scenarios. While 

these different optimization objectives can in principle be treated with stochastic optimization, it 

is not a natural framework to do so.  

 

This study develops a stochastic capacity expansion model that does not suffer from the curse of 

dimensionality (i.e. more uncertain parameters can be treated) and is flexible in allowing 

different optimization objectives that manage risk. To achieve this, this study pursues a 

stochastic non-linear approach, note this is distinct from prior efforts using stochastic linear 
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optimization. Given that there is no general analytic solution to non-linear optimization, its use 

implies numerical approach as opposed to true optimization. There are many possible numerical 

techniques for nonlinear optimization, this model uses a genetic algorithm because it is suitable 

for global optimization problems with complex fitness landscapes [36, 37].To summarize our 

approach, given an initial test build-out model computes a distribution of system costs based on 

uncertain input parameters. I select an optimization objective, here the two explored are 

distribution mean and Conditional Value at Risk’ (CVaR) 95%, i.e. the average of top 5% of the 

distribution of system costs. From the initial trial, the genetic algorithm generates a sequence of 

build-outs designed to converge towards the optimization objective. The final result of a run is 

the build-out with smallest value of the optimization objective. Given the expected variability in 

numerical approaches, I follow the common practice of running the algorithm 10 times. The 

resulting distribution of grid outcomes reflects the uncertainty in numerical optimization.  

 

For this case study, this model covers the Midwest region of the U.S., accounting for 

distributions in two uncertain variables: electricity demand and natural gas prices. Uncertainty in 

electricity demand is treated by using historical hourly fluctuations in daily to model future 

variability. The uncertainty in natural gas prices is treated with a mean reversion model, with 

historical data informing the mean and fluctuations. Other driving variables such as technology 

cost are deterministic. Build-out decisions are made by minimizing the total cost of service over 

a 20-year horizon, constrained by the need to meet current and future load.  

 

While there are uncertain variables other than demand and natural gas prices, I treat only 

these two with the intent of demonstrating the plausibility of stochastic nonlinear optimization in 

capacity expansion models. Note that using these two distributions is already beyond the 

computational capacity of stochastic linear optimization to handle. The weak scaling of Monte 

Carlo based numerical optimization makes it computational feasible to treat additional variables. 

In our understanding, this is the first model to do stochastic non-linear optimization of grid 

expansion.  

 

The three critical advantages of the approaches used in our model are: 1) the genetic algorithm 

allows co-optimization over several criteria, such as minimizing cost and meeting RPS or 
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emissions requirements, 2) it permits examination of the dynamics of the decision-making 

process rather than simply choosing an optimal grid mix at a fixed point in the future, and 3) 

uncertainty is integrated into the core of the model, allowing exploration of issues such as the 

effect that uncertainty over fuel prices and load has on choice of new generation. These 

advantages are possible due to the use of a general search algorithm, and a model design that 

accounts for both uncertainty in many elements and the non-myopic nature of the model enables 

to see effects of decisions in earlier periods have on decisions in later periods. Also, this 

approach does not suffer from the curse of dimensionality for the input distributions, and any 

number of uncertainties can be considered over the input parameters. In the case study presented 

in this paper, this study limits the input uncertainties to fuel prices and load, but our model is 

capable of including other uncertainties such as capital costs, policy constraints, learning rates, 

emission rates, RPS, etc. 

 

2.2 Method 

I use a simplified electricity dispatch model to estimate the total costs of electricity service over a 

30-year time horizon (2020-2050), given decisions regarding the construction of new electricity 

generation in each period. A genetic algorithm optimization is used to search for the generation 

build-out plans that minimize discounted expected total costs of meeting electricity load [37]. 

Monte Carlo simulation in the core of the model integrates uncertainty in inputs, such as fuel 

price, and load.  

 

To further explore the risk aversion as a scenario by itself, the model optimizes for not only 

minimizing the total cost, but also by minimizing the Conditional Value at Risk (CVaR) in a risk 

averse scenario. CVAR measures the worst-case costs/tail risk in distribution by taking an 

average of the extreme tail costs after a chosen cut-off. This technique is commonly used in 

portfolio optimization of stocks. The cut-off used in this study is 95% which means an average 

of the worst 5% of the costs gives the CVAR value of the distribution at 95%.   

 

I consider the coal-heavy grid mix of the Midcontinent Independent System Operator (MISO) of 

the Midwest region in the United States over a 30-year horizon from 2020-2050.  
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2.3 Modelling Framework  

The model has several levels, which interact, as shown in Fig. 1. At the core is a simplified 

dispatch model that determines whether a set of generation technologies can meet the load and 

estimates the variable cost of doing so. The long-term assessment model calculates the 

discounted expected electricity system costs over a 30-year planning horizon from the fixed 

costs, capital costs of the new power plants, and the variable costs from the dispatch model. 

Monte Carlo simulations are performed over the long-term assessment model for a distribution 

of fuel prices and demand inputs. Given the computational limitations, it is unreasonable to run 

30 years of hourly electricity simulation from 2020-2050, considering that the Monte Carlo 

simulation will perform simulations over the distribution of the inputs. Therefore,  

the model operates at 5-year intervals over the 30- year horizon. The output from the Monte-

Carlo is a distribution of costs. The distributions are aggregated (like mean) to a single value, 

based on the risk preference of the markets and given to the decision model. At the highest level, 

the decision model -genetic algorithm determines the best set of generation technologies to build 

from 2020-2050. Using this approach allows modification of variables between periods, 

integrating changes such as experience curves through learning rates and their effect on prices 

for generating technologies.  
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Fig. 1 Framework of methodology for determining the optimized grid build out plan under uncertainty of inputs 

from 2020-2050 across the Midcontinent Independent System Operation (MISO) region.  
The core of the system is the Monte-Carlo simulations of the Long-Term Assessment (LTA) Model, which 

calculates the distribution of the expected total cost of electricity for different stochastic inputs. Based on a risk 
preference scenario, Conditional Value at Risk estimates the single point output from the distribution of outputs 

from the LTA model. Genetic algorithm search is used to identify generation build-out plans that minimize the total 
system costs while meeting the future uncertain demand. 

 

2.3.1 Inputs 

The inputs to the model can be broadly categorized into stochastic and deterministic inputs. The 

stochastic inputs to the model are distribution of expected natural gas prices, and distribution of 

expected electricity demand as a function of season and hour-of-day. The deterministic inputs are  

expected capital costs, discount rate, technology learning rates, and hourly variations of 

wind/solar as summarized in Table 2.  

 

The model is capable of incorporating other uncertainties such as expected future subsidies, 

distribution of capital costs, RPS constraints, etc. but is not considered in the current study for 

MISO. 

 

 

Monte Carlo Simulation: Repeatedly runs long-
term assessment model with different 

combinations of inputs

Long Term Assessment Model: Determines 
discounted expected total cost of the generation 
mix

Discounted total 
capital cost, fixed 
cost

Dispatch Model for 
estimating variable 
cost

Conditional Value at Risk 
(CVaR)

Genetic Algorithm Search:
Searches for generation build-
out plans that meet demand at

the lowest cost Build-out plans for  
each 5-year period to 
evaluate the least cost 
option

Distribution of costs

CVaR values of the 
build-out plans 

based on the risk-
preference scenario
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Table 2. Summary of the inputs, and data sources used in the stochastic model. 

Deterministic Inputs Source Note 

Capital Cost of new power plants EIA [38] Shown in Table 3 

Discount Rate EIA [38], NREL [39] 5% 

Fixed and operating cost of new power plants EIA [38] Shown in Table 3 

Fixed and operating cost of existing plants eGRID [40] Appendix A 

Heat Rate of new technologies EIA [38] Shown in Table 3 

Heat Rate of existing plants eGRID [40] Appendix A 

Learning Rates (single factor) IEA [23], EIA [24],Rubin 

et. al [41] 

Shown in Table 3 

Existing Power Plant Fleet eGRID [40] Appendix A 

Fuel Prices EIA [7] Shown in Fig. 2 

Carbon Emissions of existing plants eGRID [40] Appendix A 

Wind and Solar variability (hourly capacity factors) NREL [42, 43] Appendix A 

Stochastic Inputs Source  

Natural Gas Prices Simulated Shown in Fig. 5 

Demand Simulated Shown in Fig. 4 

 

2.3.1.1 Deterministic Inputs 

This section covers about the deterministic inputs used in the model and summarized in Table 2. 

The model uses the existing portfolio of generation in the studied area, including the age, 

efficiencies, emissions, capacities of each plant, to define the starting point for future portfolios 

from eGRID database [40]. Sample data from the eGRID database is shown in Appendix A.   

 

New Power Plant’s characteristics 

 New generation technologies and their corresponding capital cost, fixed cost, and efficiencies 

are considered based on the EIA’s estimates used for modeling the NEMS’ electricity market 

module [44], shown in Table 3. Overnight capital costs are considered, excluding the 

financing/interests during the construction and development of the power plants. The discount 

rate in the model is assumed to be 5% [19, 39].   
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Table 3. Cost and efficiency characteristics of new generation technologies considered in the study based on EIA’s 
estimates [13].  
All the costs are expressed in 2016$. *The capital costs are the overnight costs that exclude interest during the 
construction and development. ** The capital costs are for the year 2015 and the future capital costs are estimated 
accounting for the technological progress through learning rates. 

Technology Capital 

Cost*, ** 

(2016$/kW) 

Fixed Cost 

(2016$/kW) 

Operating Cost 

(2016$/MWh) 

Heat rate 

(Btu/kWh) 

Fuel Learning 

Rate (%) 

Coal with Carbon 

Sequestration (CCS) 

4983 69.23 7.02 1070 Coal 8.3 

Combined Cycle 

(CC) Natural Gas 

962 10.80 3.47 6450 Gas 14 

Combustion Turbine 875 17.3 3.47 9900 Gas 15 

Biomass 3757 110.00 5.46 13500 Biomass 11 

Wind  1622 47 0 0 Wind 12 

Solar 1812 22 0 0 Solar 23 

Nuclear 5822 99.17 2.27 232930 Uranium 2 

 

Capital costs (accounting for technological progress) 

Rapid growth, competition, and technology improvements lead to a significant cost reduction 

over the time. These cost reductions are generally determined through learning rates. The 

learning rates (‘LR’) assumed in this study are based on the mean learning rates observed from 

the literature review by Rubin et.al. in their study [41], given in Table 3.   

 

Learning coefficient a determines the capital cost of the technologies (‘CC’) based on the initial 

cost (‘CCo’), initial capacity of the technology (‘Po’), and the current cumulative capacity after 

the new additions (‘P’) (Eq. 6). Coefficient a is determined from the learning rate of the 

technologies, which specifies the cost reduction rate, as the technology capacity is doubled 

(‘LR’) [45] (Error! Reference source not found.). The total installed capacity of the technology 

are determined based on the global level projections from the EIA data [24] and the future 

capacities in MISO determined by the model. 
 

 !" = (1 − 2)) Eq. 1 

 
* =

ln(1 − !")

ln(2)
 

Eq. 2 
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Eq. 3 

Where, Subscript t – given year t 

LR- Learning Rate 

a - Learning Rate coefficient 

P – Cumulative capacity (Initial capacity + new capacity additions) 

P0- Initial Capacity 

CC – Capital cost 

 

 

Fuel Prices: Fuel prices of coal, uranium for nuclear power, and oil prices are taken from EIA 

database [7], shown in Fig. 2, all the units expressed in $/MMBtu for an easy comparison.  

 

 
Fig. 2 Fuel prices of coal, natural gas, uranium, and oil considered for the deterministic scenario. 

The blue dotted line indicates the EIA projection of the natural gas prices. For this study, natural gas prices for the 
deterministic scenario are estimated from the mean of the stochastic scenario. 

 
Wind/Solar Variability 

The hourly generation profiles of solar and wind energy across various locations in MISO are 

estimated according to the Wind Integration National Database (WIND) toolkit [42] and Eastern 

Solar Integration Data [43].  
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The WIND Toolkit provides data related to wind energy production for over 126,000 current and 

potential locations across the United States for 7 years from 2007–2013 [42]. This dataset 

consists of meteorological data, 5-min resolution of wind power production, and capacity factors. 

I consider thirty potential locations in the Midwest region and the corresponding hourly wind 

output/MW. The average wind energy output (kWh/hour) for a 1kW system across these 

locations is used to generate the hourly variations of incremental wind capacities considered in 

the study. Similarly, the Eastern Solar Integration dataset by NREL consist of 5-minute solar 

power and hourly day-ahead forecasts for approximately 6,000 simulated PV plants. 30 potential 

sites from 15 states in the Midwest region are considered and a similar procedure to wind energy 

output is used to generate solar energy output/hour. Annual capacity factors of most of the 

potential wind power sites in MISO are greater than 40% and most of the solar power sites are 

greater than 16%. More details on the hourly variation of solar/wind energy output/hour and 

potential locations considered are provided in the Appendix B section. 

 

2.3.1.2 Stochastic Inputs 

In order to model uncertainty, the model will require distributions of possible future values for 

each input whose uncertainty is considered. In our case, distributions of fuel prices, and load are 

inputs to the model along with the other deterministic inputs.  

 

Distribution of Natural gas prices:   

Volatility in natural gas prices generally exhibit mean reversion and seasonality  [46]. Mean 

reversion is the tendency of natural gas prices to revert to a long-term equilibrium value after 

fluctuations due to extreme weather, supply, or demand surges. Seasonality is the cyclic 

variations over the seasons because of the cyclic changes in demand [46]. In the current model, 

seasonality of the fuel prices is not considered but only the annual variations using Ornstein-

Uhlenbeck (OU) mean-reversion process [47]. Historical variations of the Henry Hub natural gas 

spot prices since 1986 are used to estimate the future uncertainties. 

OU process is a variation of the Markov process, i.e. the future value is independent of the past 

but depends upon the present value [9]. OU process using the stochastic differential equation 

given in the Eq. 4 [47] is used to determine the discrete natural gas prices for a given period. 
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Natural logarithm of natural gas prices pt is used in the equation to avoid negative stochastic 

prices. Mean reversion rate (a) determines the attraction or repulsive speed from a long-term 

mean value (µ) of the historical natural gas prices. The volatility (s) is the ‘noise’ in the system 

based on historical standard deviations of monthly natural gas prices from 1986-2017, obtained 

from EIA [48]. The annual prices input to the model are an average of monthly prices for a given 

year. All the historical prices are adjusted to 2016-dollar value.  

 

 ∆x6 = 	α(µ − x6)∆t;<<=<<>
?@AB6	

+ σdZ6G
H@IJKALK	MI6AIK

, where	dZ6	~NU0, W∆6X Eq. 4 

Where, xt – ln(pt), logarithm of price for a given time t 

a - Mean reversion rate 

µ- Mean of the log of historical natural gas prices  

s- Volatility  

 

 N – Random normal distribution  

Reversion rate (a), mean (µ) and, volatility (s) are calibrated by dividing the Eq. 5 with Dt and 

by determining the coefficients of  ∆YZ
∆6

  based on historical data. Calibration was performed using 

‘polyfit’ function in Matlab. The values obtained from the coefficients are a- 0.5022, µ- 1.5030, 

and s- 0.3963. The solution for the Stochastic Differential Equation in Eq. 4 is as given in the 

Eq. 5 which is used to generate random time-series of natural gas prices from 2020-2050. A 

sample of the simulated time series is as shown in Fig. 3. 

 

 
x6[0 = x6e

/∝� + µU1 − e/]^X + σ_
0/`ab∝�

c]
N(0,1)   

Eq. 5 

Where, d- time difference between t and t+1 which in our case is 1 year. 

N – Random generator between 0-1 from a normal distribution. 
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Fig. 3 Natural gas henry hub spot prices and simulated price scenarios from 2018-2050.  
Ornstein-Uhlenbeck (OU) mean-reversion process is used to create stochastic natural gas prices as an input to the 

Long-Term Assessment Model. 
 

Input Demand: Similar to natural gas, demand also exhibits two distinct characteristics –long-

term demand growth and the seasonality.  

 

Long term demand growth: 

The demand growth is estimated using a simple Brownian motion equation as shown in Eq. 6.  

The ‘a’ coefficient of the deterministic part in (Eq. 6) is calibrated for a growth rate of 1% every 

year based on MISO forecast [49]. The σ is the volatility calculated based on the standard 

deviation of the change in the historical data which is 415.6 MWh from 2007-2017. 

 

 

 L6[0 = 	 L6 + 	a∆t;<<=<<>
f`6`@MAKAg6Ah	

+ σdZ6G
fABBigAIK

, where	dZ6	~NU0,W∆6X     Eq. 6 

Where, Lt- Average load for a given year t 

a – Linear coefficient of first order linear equation 

σ- Volatility 

 

 

Seasonality and hourly variations: 

Seasonality and the hourly variation of the demand are based on the historical load patterns 

observed in MISO [49]. Percentage change in the load over 8760 hours in a year with respect to 
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the mean load for a given historical year is estimated. These percentage changes provide the 

information on how the hourly load historically varied with respect to the mean demand in a 

given year. From Eq. 6, a random mean demand value for a year is estimated. Then a historical 

sample year ‘s’ is chosen with 8760 hourly values of percentage change with respect to the mean 

demand in that sample year. The new hourly variations are estimated by multiplying the 

historical variation (‘V’) with the random mean demand (‘L’) (Eq. 7).   

 

 jk,.,l = 	 !. ∗
no,p
0qq

   Eq. 7 

Where, Lt- Average load for a given year t 

s- historical sample year 

h – hour 

V- percentage change with respect to mean demand for a sample year s 

l – hourly load value  

 

 

Stochastic distributions  

 Distribution of the annual load is constructed from an average load increase of 1%/year and the 

volatility/noise of the future load at 415.6 MWh (Fig. 4). The hourly load in each Monte Carlo 

run constructed from the historical variations and the random point of an average load in the 

distribution for a given year captures both the annual load growth and the seasonality of the load 

changes (section 2.3).  
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Fig. 4 Simulated hourly load patterns used for Monte Carlo runs in the model.  

Top-left figure shows the distribution of average annual load growth from 2015-2050. Each color indicates the 
stochastic load forecasts from 2020-2050. Top-right figure shows the samples of historical normalized hourly load 
patterns seen in MISO since 2013. Each color represents the sample of historically observed hourly load patterns in 

MISO. The bottom most figure shows two random samples of hourly load patterns in the year 2020. They are 
created from multiplying a random sample point in the distribution from the year 2020 in the top-left figure with a 
random normalized hourly load pattern for an year in the top-right figure. Similar patterns were created at 5-year 

steps from 2020-2050. 

This study estimates the distribution of the natural gas prices from the historical variations using 

OU mean-reversion process. Because the natural gas prices cannot go negative, they are skewed 

towards the positive side of the mean of the distribution (Fig. 5). 
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Fig. 5  Distribution of natural gas prices from 2020-2050 used for Monte Carlo runs in the model.  
Each color indicates the possible price forecast from 2020-2050.  

 

2.3.2 Dispatch Model for variable costs 

The lowest level of the proposed optimization model is a dispatch routine that uses simplified 

rules to determine the variable cost of electricity generation over a year  [25]. Due to the need to 

run many scenarios, both for the Monte Carlo simulation and the genetic algorithm search, there 

are limitations on computational time. Therefore, the dispatch model is limited to choosing the 

generation in each hour based on the marginal cost of operation for 8760 hours in a year.  

 

More sophisticated electricity system elements, such as transmission constraints, ramp limits, 

startup time and spinning reserves, are not included. However, with a high computational ability, 

modular nature of the model allows a replacement with sophisticated dispatch models, without 

major changes to the modeling framework. 

 

The principle of the model is to sequentially add plants to the generation mix in order of the 

marginal cost (‘MC’) until the demand is met. The output generation (‘e’) of each power plant in 

a given hour is the capacity of the power plants used to meet the demand. The total variable cost 

(‘VC’) of the electricity generation is the marginal cost (‘MC’) incurred by the power plants to 

produce electricity energy ‘e’ for every hour in a year, as shown in Eq. 9. 
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The current fleet of power plants for electricity generation are taken from EPA's eGRID database 

[40], and the new generation fleet is added based on the inputs from the decision model and the 

plant characteristics from EIA data (Table 2) [38]. The marginal cost (assumed as bid price) of 

operation for each power plant is calculated based on the heat rate [40], and the subsequent fuel 

costs as given in Eq. 8.  

 

 

 
MCt,.,u 	v

$

MWh
y = HR| ∗

PriceA,6,B
1000

+ O&M| 
Eq. 8 

 VCA,6 = É Ñ-t,.,u ∗ Öu,.,t,k			
u,k,.

 Eq. 9 

Where, Subscript t – hours in a given year  

Subscript i- ith Monte-Carlo run  

Subscript p – Power Plant 

e – Energy output in hour t (MWh/h) 

MC- marginal cost of operation of a power plant ($/MWh),  

HR- hear rate (Btu/kWh) 

Price- average spot price of fuel ($/MMBtu) 

O&M – Operations and maintenance cost of the power plant ($/MWh) 

VC – Total Variable cost 

 

 

This study does not model imports of electricity from regions outside of MISO and penalize the 

model with a high cost of $ 5,000/MWh, when the demand is not met.  

 

2.3.3 Long Term Assessment Model 

The long-term assessment model calculates a distribution of discounted expected total system 

costs (Eq. 10) for meeting load over a 30-year horizon. 

 

 

 Total	system	cost	($) 	= 	Capital	cost	 + 	Fixed	cost	 + 	Variable	cost 

TCA,6 = --. + é-. + è-t,. 

Eq. 10 
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Where, Subscript t – Given year   

Subscript i- ith Monte-Carlo run  

CC – Capital cost ($) 

FC – Fixed cost ($) 

VC – Total Variable cost ($) 

 

 

The model operates in 5-year intervals, reducing the model calculations over the 30- year 

horizon to seven periods. When combined with data on capital and operating costs, the 

discounted expected total cost of electricity service over the 30-year horizon is calculated. The 

start year is 2015 and the costs of other years are extrapolated based on the costs estimated at 5-

year intervals. 

 

Cashflow 

 I assume a discount rate (r) of 5% and calculate costs in the 2016-dollar value as shown in Eq. 

11 for a given future value (fv) in the year t. 

 

 

 CA = 	∑
ëíì,Z

(0[@)(Zaî)
cqïq
6ñcq0ó    Eq. 11 

Where, Subscript i- ith Monte-Carlo run  

C- Discounted present value of the cost 

TC – Total cost  

r-Discount rate, 5% 

t-for a given year 

Y- reference year, 2016 

 

 

2.3.4 Monte Carlo Simulation  

To include the effects of uncertainty in the Long-Term Assessment (LTA) Model, I use Monte-

Carlo simulations by running the Long-Term Assessment model iteratively for random 

combinations of natural gas prices and load, and the output is a distribution of discounted total 

system costs.  
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A total of 20 Monte-Carlo runs are performed for each iteration. Because the process is 

computationally intensive, the LTA model is not subjected to larger number of Monte Carlo 

runs. However, the genetic algorithm is an iterative process, it identifies an optimized build-out 

plan, each time subjected to a distribution of the inputs, and identifies a build-out plan that 

consistently has the lowest discounted cost of the electricity service. The number of iterations of 

the genetic algorithm are around 800 before the model converges to a solution.  

 

Deterministic scenario is run using the mean natural gas prices and demand growth and the 

number of Monte Carlo runs is set to 1 in the model. 

 

2.3.5 Conditional Value at Risk (CVaR)  

The output from Monte Carlo simulation is a distribution of output costs for various build-out 

plans. The cost for optimization to the genetic algorithm in the decision model is calculated 

based on the CVaR scenario. Risk preference of the model is set at this phase. For a risk neutral 

scenario, CVaR is 0% and thus, mean of the distribution is fed into the decision model, and for a 

risk-averse scenario, CVaR is 95% and thus, mean of the worst 5% values are fed into the 

decision model for optimization (Eq. 12). 
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Eq. 12 

Where, C- Total discounted present value of the cost  

Subscript i- ith Monte-Carlo run  

Subscript n – total Monte-Carlo runs 

 

  

2.3.6 Decision Model -Genetic algorithm for optimization 

The decision model uses the genetic algorithm optimization to minimize the cost output from the 

CvaR, based on the risk preference. 

 

Genetic Algorithm Search: Genetic algorithm is good at rapidly identifying a set of reasonably fit 

solutions using a heuristic optimization algorithm derived from natural selection process. The 

genetic algorithm iteratively modifies a population of individual solutions, in our case, 

generation build-out plans. After every step, random individuals/generation build out plans are 
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selected from the current population as parents to produce children/new build-out plans for the 

next step/generation. Fitter individuals/lower cost grid build-out plans have a higher probability 

of getting chosen as parents. The children are created using different crossover techniques, and 

over time, the population ‘evolves’ towards an optimal solution [50].  

The algorithm broadly works on four essential rules: 1) evaluation, 2) selections rule, 3) 

crossover rule, and 4) mutation. Evaluation rule applies to calculating the cost of the build-out 

plans after each iteration in the genetic algorithm. Selection rule applies to assigning 

probabilities and choosing individuals/generation build-out plans for creating children/new-grid 

build-out plans. Probability scores to each individual are assigned based on their fitness/expected 

total cost. Lower the cost (output from CVaR), higher the probability of becoming a parent for 

the next generation. Crossover rule applies to the process of creating children/new build-out 

plans from the chosen parents. These children replace weaker individuals with a high cost. In 

order to avoid local optimization, mutation rule is applied to create ‘genetic diversity’ in the 

pool. Based on a user-defined mutation probability, a random bit in the child chromosome/binary 

form of the new generation build-out is altered before re-converting the children to decimal 

forms. In our case, the probability of a mutation is set to 3%.  The model uses global 

optimization toolbox in MATLAB R2017b version for implementing the genetic algorithm. 

Further information on the genetic algorithm from this toolbox can be found on their website 

[51]. 
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Fig. 6 Brief illustration of flow of steps in the genetic algorithm. 

The four principles of genetic algorithm are 1) evaluation of discounted total cost of the build-out plans based on a 
risk-preference scenario, 2) selection of parents for creating next generation of build-out plans, 3) crossover of 
parents to create children, and 4) random mutation to avoid local optimization. These steps are repeated till the 

change in total cost of electricity service remains constant within the set tolerance levels. 

2.3.7 Objective function and summary of equations: 

The total cost (‘TC’) for a given year in a given Monte-Carlo run (‘i’) is estimated from the 

marginal cost of operation from the dispatch model, fixed cost, and capital cost of new power 

plants (Eq. 15). Maximum electricity generated by a power plant in an hour ‘T’ does not exceed 

the name plate capacity (‘P’) of the power plant, shown in equation (Eq. 18). Name plate 

capacity also includes an additional large capacity of 1000 GW at a high penalty cost of 

$5,000/MWh, in case the new power plants from the genetic algorithm fail to meet the total 

demand (‘L’). This is to ensure that the total generation always meets the demand which varies 

for each Monte-Carlo run (Eq. 16). All the total costs (‘TC’) for a given year ‘t’ are adjusted to 

the reference year 2016 dollar value to evaluate the total net present value of the cost (‘C’) (Eq. 

14). In the final step, Eq. 13 shows the objective function of minimizing total discounted 

electricity service cost (‘DC’) depending on the CVaR scenario. 

 

 

Objective function, minimize:  
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Eq. 13 

Selection: Higher Probability of 
selecting parents with lower 
cost 

Evaluation of the total cost of electricity 
service of all the build-out plans

Crossover to create new build-
out plans (children)

1% chance of going 
through mutation

Random build out plans are initialized at the 
start of the algorithm

Replace weaker high cost 
build-out plans with the 
new children
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Subject to:  

 
-t = 	 É
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Eq. 14 
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¥µ∂q
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 ÉeA,6,∑,|	
ë,|

≥ LA,6 Eq. 16 

 e6,ë,| > 0 Eq. 17 

 e6,ë| ≤ 2.		 Eq. 18 

 1 ≤ T ≤ 8760 Eq. 19 

Where, C- Discounted present value of the cost,  

DC – Discounted cost of electricity service for a given CVaR scenario 

TC – Total cost of electricity service 

i- ith Monte-Carlo run  

n – total Monte-Carlo runs 

r-Discount rate, 5% 

t-for a given year 

Y- reference year, 2016 

h- hours in a given year 

Subscript p - Power plant,  

pnew- new power plants (MW),  

MC - marginal cost of operation of power plant ($/MWh) 

e – electricity generated by power plant in a given hour (MWh) 

FC- Fixed cost ($/MW) 

CC- Capital cost ($/MW) 

P – name plate capacity of the power plants (MW) 

Lt - load (MWh). 

 

   

Retirement 

The retirement of the power plants is case-specific and depends on a number of factors such as 

wholesale electricity prices, inefficiency and high costs of operation, and environmental 
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regulations [52]. In 2017, most of the retirement decisions in MISO were from uneconomic 

power plant units [53].  

 

In the current study, economy of the power plants is based on their cost of operation for every 5-

year period. The model endogenously retires the power plants by allowing the optimization to 

randomly choose positive or negative capacity additions. Positive additions denote new 

generation technologies, and ‘negative’ additions denote retirement of the power plants for a 

specific fuel type. For the negative capacities, power plants with a high annual cost of operation 

per unit nameplate capacity for a given fuel type are assumed to be uneconomical to operate and 

are retired until the retired capacities equal the negative capacities by the genetic algorithm. The 

total cost of electricity service is then calculated for the resultant build-out.  

 

2.3.8 Reporting output distributions of cost and emissions 

The output cost and emissions distributions of the resultant build-outs for different risk 

preferences are presented in the section 2.4 below. These distributions are plotted to understand 

the probability distributions of NPV for deterministic, risk-averse, and risk neutral scenarios.  

 

These distributions are calculated by running the resultant build-outs for different risk 

preferences through LTA model and Monte Carlo model. A fixed sample distribution of natural 

gas prices and demand is assumed for all the build-outs and when run through 1000 Monte Carlo 

simulations provides a distribution of output costs and emissions. A fixed sample of 1000 

different natural gas prices and demand growth patterns is used to ensure a fair comparison 

between scenarios. 

 

The total annual CO2eq. emissions (in million metric tonnes) for each Monte Carlo run are 

calculated based on the hourly dispatch of plants as shown in equations (19-20). The plant-level 

emission rates are in metric tonnes/MWh, taken from the eGRID database [40] and the emission 

characteristics of the new power plants are based on the EIA data [38]. Total CO2eq. emissions 

are comprised of all greenhouse gas emissions measured on a common scale based on their 

Global Warming Potential (GWP) relative to CO2 [54]. 
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The total CO2eq emissions in a given hour for a given operation schedule of generator plants is 

given by Eq. 46: 

 

 Ö¿t = ∑ ¿u,t ∗ Öu,.,t 			u,. 		© = 1,2… ,8760  Eq. 20 

Where, Subscript t – hours in a given year  

Subscript i- ith Monte-Carlo run  

Subscript p – Power Plant 

e – Energy output in hour t (MWh/h) 

m – CO2 eq. emissions of plant p per MWh (in metric tonnes/MWh)  

em – total emissions (metric tonnes) 

 

 

2.4 Results  

I run an alternative structure for capacity expansion modeling in MISO with uncertainty 

considered for inputs load and natural gas prices to show comparisons between Deterministic 

scenario and stochastic scenario; and to compare between risk-neutral and risk-averse scenarios 

when the inputs are stochastic. The risk-neutral scenario optimizes for the mean of the 

distribution, i.e., CVaR at 0, and risk-averse scenario optimizes for CVaR at 95%.  

2.4.1 Risk-Neutral Scenario 

The base-case scenario is the risk-neutral scenario that optimizes for the mean of the distribution. 

Output results for MISO show a dominant mix of wind and natural gas in the total capacity by 

2050. Though natural gas and coal dominate more than 50% of the total capacity, wind 

constitutes a significant 36% of the rest of the capacity (Fig. 7). For a risk-neutral scenario, the 

capacity mix by 2050 is 41% natural gas (87 GW), 32% wind (70 GW), 25% coal (53 GW), 2% 

solar (3 GW), 2% hydro (3 GW), 1%  biomass (2 GW) and solar, 1% nuclear (2 GW) and less 

than 1% Oil (0.2 GW) (Fig. 7).  The energy mix differs depending upon the natural gas prices 

and demand, which are considered stochastic for this scenario. For the average natural gas prices 

in the distribution and average demand, coal dominates the output generation mix in 2050 at 
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41%, followed by wind (34%), natural gas (20%), nuclear (3%), biomass (2%), hydro (2%), solar 

(<1%), and oil (<1%) (Fig. 7).  

 

 

 
Fig. 7 Top-figure represents the Capacity mix from 2020-2050 in a risk-neutral scenario, bottom-figure represents 

the generation mix from 2020-2050 in a risk-neutral scenario, for mean natural gas prices and demand in the overall 
input distribution .  

X- axis represents the year and, in the top, y-axis represents the capacity in GW, and in the bottom-figure, y-axis 
represents the generation in TWh. Colors of the bars indicate the technology type. 
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2.4.2 Risk-Neutral Scenario and Deterministic Scenario Cost Distributions 

When a deterministic scenario is run without any uncertainties in the input parameters or Monte-

Carlo simulations, results show lower capacity additions as compared to the risk-neutral scenario 

(Fig. 9). The risk-neutral scenario adds ~5GW additional wind capacity, ~20 GW more Gas CC, 

but ~8GW lower solar capacity by 2050.  

 

Probability distributions of NPV/discounted total cost of electricity service from the resultant 

build-outs of risk-neutral scenario and deterministic scenario are shown in Fig. 8. Results from 

this comparison show that the mean NPV of the probability distributions of the deterministic 

scenario is slightly higher than the risk-neutral scenario by $5 billion. The mean NPV of the 

output distribution of the risk-neutral scenario is ~480 billion dollars, and the probability of 

extreme/tail cost are lower than the deterministic scenario (Fig. 8). The deterministic scenario 

optimizes for the average demand and natural gas prices but does not include the lower or higher 

price/demand shocks in the system. The probability of high total system cost for a risk-neutral 

scenario is lower than the deterministic scenario, as the stochasticity in the model optimizes for 

the expected distribution of load and, natural gas prices. Therefore, between both the scenarios, 

the stochasticity in the inputs for the risk-neutral scenario optimizes better for output probability 

distribution of total cost of electricity service than the deterministic scenario. 

 
Fig. 8 Probability distribution of the discounted total cost of electricity service for risk-neutral and deterministic 

scenarios from 2020-2050, generated when the resultant build-out plans are run through a sample of 1000 random 
natural gas prices and demand.  
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X-axis represents the total discounted system cost of electricity and the y-axis represents the probability. Colors 
represent the scenarios. Risk-neutral scenario is optimized for mean of the distribution and deterministic scenario is 

optimized without any uncertaintites in the inputs. 

 

2.4.3 Risk-Averse Scenario, Risk-Neutral Scenario and Deterministic Scenario 

Comparisons 

In the previous sections, results so far compare the deterministic and stochastic scenarios. In this 

section, within the stochastic scenario, results between risk-averse and risk-neutral scenarios are 

compared for different risk preferences. The risk-averse scenario optimizes for the CVaR at 95% 

cut-off and risk-neutral scenario optimizes for the CVaR at 0% (which is for the mean of the 

output distribution).  

 

Resultant build-out plans are plotted using boxplots as the inherent nature of the non-linear 

optimization does not provide a single unique value. Boxplots of risk-averse scenario indicate 

higher capacity additions of wind and solar, and lower capacities of natural gas by 2050 as 

compared to the risk-neutral scenario (Fig. 9). The risk-averse optimizes for the probability of 

high costs and the lower additions of natural gas capacity reduce the likelihood of high NPV 

from price uncertainties. The risk-averse scenario adds ~ 20GW of more wind capacity, and ~15 

GW of more solar capacity and ~5GW of lower Natural gas combined cycle capacity by 2050 as 

compared to the risk-neutral scenario (Fig. 9).  

 

When all the scenarios are compared, deterministic scenario has the lowest capacity additions as 

it does not optimize for the high/low demand and gas price scenarios. Risk-neutral scenario 

relatively adds more wind and combined cycle gas plants for meeting the likely high demand in 

the future. In the risk-averse scenario, more renewables are added into the system to meet the 

future uncertain high demands while avoiding the high gas prices. 
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Fig. 9 Boxplot of cumulative additions of different generation technologies by 2050, comparing the deterministic 

scenario and different risk preferences under the stochastic scenario. The risk preferences considered in the study are 
risk-averse scenario and risk-neutral scenario. Risk-averse scenario is optimized for CVaR at 95% and risk-neutral 

scenario is optimized for the mean of the output NPV distribution. 
 X-axis represents the generation technologies and y-axis represents the capacity additions in GW. Colors represent 

different scenarios. The bars represent the variations in build-out plans as a resultant of using genetic algorithm 
search. 

 

When we consider the output probability distributions of NPV of resultant build-plans for the 

different risk preferences in the stochastic scenario, the mean NPV of the risk-averse scenario is 

slightly higher than the risk neutral scenario by $1 billion. Mean NPV of the risk-neutral scenario 

is ~$480 billion. T sample test shows that the difference in means of output probability 

distributions of both the scenarios are statistically insignificant. However, the extreme/worst tail 

NPVs in both the distributions after a cut-off of 95% were statistically different and the risk-

averse scenario’s CVaR value of $514 billion is lower than risk-neutral scenario’s CVaR value 

of $518 billion (Fig. 10).  
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Fig. 10 Probability distribution (left) and cumulative distributions (right) of the discounted total cost of the 

electricity service from 2020-2050 for risk-neutral and risk-averse scenarios.  
X-axis represents the total discounted system cost and the y-axis represents the probability. Colors represent the 

scenarios. Risk neutral scenario is optimized for mean of the distribution and risk averse scenario is optimized for 
CVaR at 95%. 

 

2.4.4 Comparison of Emissions 

The distribution of output CO2 emissions are estimated from subjecting the results to a sample of 

1000 different natural gas prices and demand. The emissions are lowest for the risk averse-

scenario at an average of 23 Metric tons/MWh, second for the risk-neutral scenario at an average 

of 25 Metric tons/MWh, and highest for the deterministic scenario at 28 Metric tons/MWh (Fig. 

11). Higher additions of renewables in the risk averse scenario enables least emissions of all the 

scenarios.  
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Fig. 11 Cumulative distributions of the output emissions for deterministic, risk-neutral and risk-averse scenario.  
X-axis represents the total discounted system cost and the Y-axis represents the probability. Colors represent the 

scenarios. Risk-neutral scenario is optimized for mean of the distribution and risk-averse scenario is optimized for 
CVaR at 95%. 

2.4.5 Summary of Results 

Summary of the results comparing the deterministic, risk-neutral, and risk-averse scenarios is 

shown in Table 4.  

 
Table 4. Comparison of all the scenarios and summary of the results. The scenarios include deterministic scenario, 
risk-neutral scenario, and risk-averse scenario. 

Scenario Mean discounted 

total system cost 

(2016 billion$) 

Conditional 

Value at Risk at 

95%  

(2016 billion$) 

Mean of output 

distribution of 

emissions 

Metric Tons/MWh 

Mean % contribution 

of wind and solar to 

the total grid capacity 

by 2050 

Deterministic 485 530 28 30% 

Risk-neutral 480 518 25 34% 

Risk-averse 481 514 23 40% 

 

2.5 Contribution to the literature and discussion 

In conclusion, this study develops the first stochastic capacity expansion model that does 

not suffer from the curse of dimensionality (i.e., more uncertain parameters can be treated) and is 

flexible in allowing different optimization objectives that manage risk, which are the major 

limitations in the stochastic linear approach used in the current stochastic models [28, 29, 55]. 
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Rather than discretizing the non-linear problem into limited discrete scenarios, a stochastic non-

linear approach is used in this study to allow the flexibility of any number of uncertain 

parameters and different risk objectives, distinct from widely used stochastic linear optimization 

approach in the prior studies [28, 29, 55].  

 

Current energy system models construct a future grid for the society across a long-time 

horizon of two decades or more, often assuming a static social change, institutional change, 

technological change, and innovations [56]. However, longer the time frame, more uncertain are 

the static underlying assumptions, widely changing the outcomes.  A choice that minimizes 

system costs for static baseline values of input parameters may, in fact, incur a high risk of cost 

increases. Given the complexity of these models, the validation is difficult, but these models 

should be able to ‘sensibly’ provide an outcome for the current planners and avoid future lock-in 

effects of investments. Therefore, stochastic optimization is critical to optimize for an expected, 

but not a specific outcome. Following the idea that sensibly building the energy system should 

account for risk and uncertainty, capacity expansion models should thus use stochastic 

optimization. Not accounting for uncertainty could be one of the reasons why most of the 

deterministic models underpredict renewable adoption [27] or overpredict future demand [56]. 

 

A key finding from this study is that comparing the distribution of costs allows us to see that the 

risk-averse scenario has almost the same mean as the risk-neutral scenario but has more 

renewables. Also, minimizing for deterministic inputs does not necessarily produce optimized 

results when subjected to uncertainty Overall, risk-averse scenario has the least emissions of all 

the scenarios, while deterministic scenario results in the highest emissions.  

 

The results show that electricity system costs are inelastic to renewable adoption and  

the optimization space for the total cost of electricity service is like a ‘flat bowl,’ i.e., a small 

increase in net system costs packs more renewables, in our case shown through a small degree of 

risk aversion. Most of the current models do not adequately explore the optimization space but 

conclude fewer renewables at a fixed minimization point. Also, risk aversion attitude in the 

electricity markets could have led to more renewables than the predictions in the recent past.  
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Further research with a broader range of uncertainties in policies, other costs, deployment of 

energy storage, etc. could help policy makers frame and address the pertinent environmental 

issues from the electricity grid. Our model integrated with uncertainty can also be extended to 

optimize for a minimum cost of grid buildout meeting RPS standards and with several 

technology subsidies. While RPS specifies target years for minimum adoption levels for 

renewables, public subsidies and utility costs depend on the trajectory through which targets are 

met. Uncertainty integrated into the core of the model will allow exploration of issues such as the 

effect of subsidies/changing policies over the choice of new generations and address the 

probability of sustainability challenges that could be addressed.  
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3  

Chapter 3: How much wind and solar are needed to realize emissions benefits 

from storage? 
Abstract 

Environmental outcomes from energy storage depend on its usage patterns, the existing generation 

fleet, and fossil fuel prices. This work models the deployment of large, non-marginal quantities of 

energy storage and wind and solar power to determine their combined effects on grid system 

emissions. Two different grid environments are analyzed: a coal-heavy grid (Midcontinent ISO) 

and non-coal grid (New York ISO).  An iterative dispatch model is used that operates storage to 

maximize income, considering that this operation can influence wholesale energy prices. With 

current low natural gas prices ($2.6 per MMBtu), adding storage slightly reduces carbon emissions 

in New York, while increasing them in the Midcontinent ISO (MISO).  Storage increases carbon 

emissions when it enables a high emissions generator, such as a coal plant, to substitute for a 

cleaner plant, such as natural gas. The study estimates that adding storage operated to maximize 

revenue in the MISO region will not be carbon neutral until wind or solar power reach around 18% 

of the generation capacity. Different operation patterns for storage could realize higher carbon 

reductions.  For example, a carbon price on emissions from generators would shift operation to 

make energy storage carbon neutral even with current wind and solar capacities. Sensitivity 

analysis shows that a higher natural gas price ($5 per MMBtu) yields much higher storage-induced 

carbon emissions in both NYISO and MISO and storage in MISO will not be carbon neutral unless 

35% of total generation capacity is from wind/solar.  This illustrates that low cost; efficient natural 

gas generation is important to realize emissions reductions with storage under economic arbitrage.  

 

3.1 Introduction and Literature Review 

As of 2015, emissions from electricity generation in the United States contribute 27% of total US 

energy-related greenhouse gas emissions [57]. Renewable electricity technologies are a widely-

discussed solution to reduce electricity system emissions of all kinds. However, given the 

intermittent nature of renewable technologies (wind and solar), large-scale integration is 

challenging [58],[59]. Energy storage is a potential solution to the intermittency of renewables.  

However, the discourse on storage often presumes it to be inherently neutral or beneficial with 

regards to greenhouse gas emissions.  
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Policymakers in some jurisdictions have been promoting storage, e.g. through tax incentives or 

regulatory mandates, partly on the assumption that storage is an obvious or necessary 

complement to renewables. In 2017, Maryland passed a bill to provide tax credits for up to 30% 

of the cost of residential and commercial storage systems [15], becoming the first US state to 

provide exclusive tax credits for energy storage systems. In 2013, the California Public Utilities 

Commission required the state’s three largest utilities to add 1.3 GW of energy storage through 

2020 [13], arguing that storage “...stores [energy] when consumption is low and puts it back onto 

the grid when needed at peak demand times …it is beginning to revolutionize the electric system 

by enabling increased renewables integration, increasing grid optimization, and reducing 

greenhouse gas emissions” [60].  

 

Electricity grids are complex techno-economic systems, and it is important to explore whether 

the above assumptions about storage are correct. While storage systems certainly can solve the 

intermittency issues of renewable energy, storage in the US is rarely used to prevent curtailment 

of renewable energy. 88% of the total storage capacity in the US operates for profit 

maximization in an arbitrage scenario [11]. Deregulated grids feature generators (and 

consequently storage) as profit-maximizing agents. A profit-maximizing bulk energy storage 

system charges during low price/low demand periods and discharges during high price/high 

demand periods, regardless of the type of generation being used. The effect that this economic 

dispatch of storage has on grid emissions depends upon generation mix, dispatch order, demand, 

and storage round-trip efficiency [20].  

 

Comprehensive evaluation of the environmental outcomes from the deployment of energy 

storage is only recently being explored. Reviewing prior studies on the operation of 

economically arbitraged storage, Lin et al model emissions changes due to storage under 

different grid configurations in IEEE 9- and 30-bus systems using a dispatch model [61]. Their 

results indicate that net emissions from additional storage are likely to increase when non-

flexible, high-emission systems provide base load and flexible, low-emission systems meet peak 

load. Similarly, Hittinger and Azevedo calculated emissions from new storage using a Marginal 

Emission Factor approach. They conclude that, subject to the location and operation of storage, 
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net CO2 emissions consistently rise with addition of storage to the grid, varying between 100-400 

kg/MWh (of delivered electricity)[62]. That work was performed for 20 eGRID sub-regions of 

the United States and modeled small storage systems (20 MW) as price-takers. However, large 

storage systems will substantially alter demand patterns, prices, and dispatched generation; and 

marginal system emissions will change as more storage or renewable generation is added [63].  

Prior work has established that, depending on the grid mix and how it is operated, storage can 

have positive or negative effects on carbon emissions. But an important and unresolved question 

is how emissions due to storage change as intermittent renewables (wind and solar) are added to 

a grid and as natural gas prices vary.  More renewables increase the likelihood that storage is 

used to substitute fossil generation with excess wind or solar energy. But when natural gas is 

expensive relative to coal, storage tends to provide more peak power using energy from coal 

plants.  

 

This study models the economic dispatch of price-making energy storage on two electricity 

systems while adding increasing quantities of wind and solar generation. The hypothesis is that, 

while storage will initially increase CO2 emissions (or break even), emissions induced by storage 

will decrease as wind and solar are added and eventually become negative. Large storage 

systems often have a noticeable effect on electricity prices and should be modelled as price-

makers [64]. Not accounting for this dynamic can lead to incorrect assessment of operation, 

revenue, and emissions [65]. In this work, I consider storage as a price-maker, and build an 

iterative dispatch model to investigate the effect of bulk energy storage additions. I apply our 

model to two electricity systems - the New York and Midcontinent ISO regions - and investigate 

the system emissions as wind/solar capacity is added, with the goal of better understanding how 

large quantities of new renewables and storage will interact to affect emissions.  

 

The New York ISO (NYISO) and Midcontinent ISO (MISO) regions are modeled. There are 

plans in both to add large quantities of new wind or solar and, potentially, bulk energy storage 

[66],[67]. The mix of current generation resources is very different in the two regions. In NYISO, 

the power plants’ capacity mix is 47% natural gas, 18% oil, 13% nuclear, 11% hydro, 6% coal, 

4% solar & wind, and 2% biomass. In contrast, the MISO power plants’ capacity mix is 41% 

coal, 29% natural gas, 10% nuclear, 10% solar & wind, 3% oil, 2% biomass and 2% other 
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fuels1[40]. The choice of these two case studies thus allows us to contrast between grids 

dependent and not dependent on coal. The NYISO and MISO grids are first modeled with the 

current generator mix and fuel prices, then modified with increased capacities of wind and/or 

solar power, keeping the capacity of other generators constant.  This is not a forecast of an 

expected future grid mix, rather an exploration of relationship between new storage and 

renewables: How does storage affect grid emissions with differing amounts of added renewables, 

and differing natural gas prices? The result informs qualitative trends, in particular identification 

of a transition when storage decreases rather than increases emissions on a coal heavy grid. The 

two grids that I study are representative of many systems in the US and around the world. While 

there are no numerical results for other grids, the existence of an emissions transition with 

increased renewables for both suggests a general result: there is some level of renewable 

adoption for which storage is ensured to deliver emissions benefits, but this level can vary 

considerably based on the existing generation fleet and fuel prices. 

 

These results are contingent on operating storage under economic arbitrage, i.e. maximizing 

income. Different operational modes could lead to different emissions outcomes. I explore an 

economic mechanism to shift storage operation towards emission reductions: a carbon tax on 

emission from generators. Also, currently low natural gas prices may not hold in the long term - 

an increase would affect the dispatch order of generation and, in turn, the CO2eq. emissions from 

storage. To address this, I calculate results for both a low (current during 2015-2016) and high 

natural gas price scenario.  

 

3.2 Methods 

I model the emissions from storage operations in NYISO and MISO, treating storage as a price-

maker. I estimate the total grid emissions with and without storage. This allows us to estimate the 

change in emissions when storage is added to the system, which I refer to as the “storage-

induced emissions”, estimated as given in Eq. 21: 

 

 
1 other fuels include waste heat, unknown, or purchased according to e Grid database. 
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Eq. 21 

 
If the outcome is an increase in total grid emissions, I find the additional renewable generation 

(wind and solar) required to realize reductions, with and without a carbon tax. Finally, I perform 

sensitivity analysis under high and currently low (2015-2016) natural gas price scenarios. 

 

3.2.1 Modeling Framework 

To estimate the storage-induced emissions (equation (1)), I combine models of different 

elements of grid operation. An economic dispatch model determines the lowest-cost operation of 

generating facilities that can reliably meet a given demand within the generators’ ramping 

constraints [68] and simulates the market clearing prices for electricity. These electricity prices 

are used in an optimization model to determine the schedule for storage operation, considering 

the effects of large storage on electricity prices. A model accounting for the diversity of plant 

efficiencies in a region estimates carbon emissions with and without storage. These sub-models 

are sequentially implemented as illustrated in the flowchart in Fig. 12. Wind and solar are 

incrementally added to the grid mix and the dispatch/storage/emissions sub-modules are run 

again in-order to determine the joint effect of large-scale renewables and energy storage. All 

models are developed using the Matlab software package, version R2016a [69]. 
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Fig. 12 Flowchart of methodology for evaluating total grid emissions from adding storage and renewable generation. 
 The model produces a "no-storage" time series of prices, simulates storage operation, then calculates the system 
emissions with and without energy storage. Wind and solar generation are added between simulations until the 
addition of storage no longer increases system emissions. *For simulating storage operation, I use an iterative 

dispatch optimization which is shown separately in detail in Fig. 3. 

 

3.2.2 Economic dispatch model and electricity clearing prices:  

The economic dispatch model is the first block of our framework (Fig. 12) used to generate 

electricity clearing prices, which are used as an input to model the operation of the storage.  I 

assume an economic dispatch of generators, where generating facilities place bids based on their 

marginal costs. After placing bids, ISOs dispatch power plants sequentially from lowest to 

highest bid, within the ramp rate constraints of each generator, until electricity demand is fully 

met. This enables determination of market clearing prices. The clearing price is the bid price at 

which the last unit of electricity is supplied to meet the total demand.  
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I base the fleet of power plants on data for MISO and NYISO from the EPA eGRID database 

[40], and calculate each individual power plant’s marginal cost of operation based on their 

respective heat rate, fuel cost, and operations & maintenance (O&M) cost. The dispatch model 

includes ramping constraints but does not include transmission constraints, assuming new 

transmission lines will be built in the future to sufficiently accommodate supply expansion.  

The reference electricity demand is taken from market data available from NYISO and MISO for 

2015 [70, 71]. The fleet of power plants for electricity generation are taken from EPA's eGRID 

database [40] and the marginal cost (assumed as bid price) of operation for each power plant is 

calculated based on the power plant’s heat rate [40], subsequent fuel costs (Table 5), and variable 

O&M costs [72].  

 

The Marginal Cost (MC) given in $/MWh is the summation of the fuel cost incurred per MWh 

and the variable O&M costs per MWh as shown in Eq. 22. The Heat Rate (HR) for each power 

plant, expressed in Btu/kWh, is considered (from eGRID data [40]) to estimate the fuel cost 

incurred to generate one unit of energy in MWh. Variable O&M costs for each power plant are 

considered based on the generator type and the primary fuel used for the generation of electricity 

(Table 6). A summary of data sources used in the economic dispatch model are provided in 

Table 1 of the Supporting Information (SI).  

 

 

 Ñ-	($/Ñ»ℎ) = …" ∗
 ÀtÃÕ

0qqq
+ Œ&Ñ  Eq. 22 

Where, MC- marginal cost of operation of a power plant ($/MWh),  

HR - heat rate (in Btu/kWh),  

Price - average spot price of fuel (in $/MMBtu), and 

O&M- variable operations and maintenance cost of the power plant (in 

$/MWh).  

 

 

With an additional carbon tax, the marginal cost of power plants increases based on their 

emission rates as in equation Eq. 23. 
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Where, the carbon tax is expressed in $/metric tonne, and the emissions rate is 

expressed in kg/MWh. 

 

 

Table 5 and Table 6 show fuels costs and variable O&M costs, respectively, used in the 

modeling.  

 
Table 5. Average fuel costs used for electricity production during the years 2015-2016. Four major types of fuels 
used for electricity production are considered. The normalized average price of coal includes the different qualities 
of coal used for electricity production. The original value of crude oil as per the reference is given in $/barrel and 
converted to MMBtu with the conversion: 1barrel = 5.55MMBtu for crude oil. Constant 2015-$ are used. 

Fuel Type Cost Units 

Natural Gas 2.6 [73] $/MMBtu 

Coal 2 [73] $/MMBtu 

Uranium 1.4 [74] $/MWh 

Crude Oil 7.99 [75] $/MMBtu 

 
Table 6. Variable O&M costs of technologies considered in this study [72]. All values are expressed in constant 
2015-$. The variable O&M cost of wind and solar power plants is taken as zero. 

Technology Variable O&M Costs (2015 

$/MWh) 

Conventional Hydropower 2.62 

Coal power plants with steam turbines 6.96 

Combined Cycle power plants (Gas/Oil) 1.96 

Conventional Combustion Turbine (Gas/Oil) 3.43 

Gas Turbine 3.43 

Nuclear 2.26 

 

Using marginal cost as the bid price of power plants, the economic dispatch model is run with an 

objective of producing electricity at a minimum operating cost using a linear optimization 

method. Eq. 24Eq. 25 show the objective function without carbon tax scenario and with carbon 

tax scenario, respectively. Marginal cost of operation (MC) of power plants for these scenarios is 

calculated as shown in equations (Eq. 22-Eq. 23). The generators run with ramping constraints, 
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shown in Eq. 28Eq. 29 , and the total generation meets the total demand (Eq. 27) in each hour (t). 

The ramping constraints are expressed in percentage of rated power a generator can ramp up or 

down in a given hour (% of MW/h). The dispatch model is run for every hour in a year. Ramping 

constraints for current hour ‘t’ depend upon the electricity generated by the power plant in the 

previous hour ‘(t-1)’ as shown in equations (Eq. 28Eq. 29). Ramping rates of different types of 

turbines are shown in Table 7. Maximum electricity generated by a power plant in an hour ‘t’ 

does not exceed the name plate capacity of the power plant, shown in equation (Eq. 30).  

 

Objective function without carbon tax:  

¿≠´≠¿≠÷Ö	-. = ÉÑ-.u ∗ Ö.u		
u

= 	É(…" ∗
2™≠ØÖ

1000
+ Œ&Ñ).u ∗ Ö.u		

u

 Eq. 24 

Objective function with carbon tax:  

minimize	C6 =ÉMC6| ∗ e6|	
|

= 	É(HR ∗
Price

1000
+ O&Ñ +

Carbon	Tax

1000
∗ Emission	Rate)6|

|

∗ e6|	 

Eq. 25 

Subject to: Eq. 26 

ÉÖ.u	
u

≥ !.,			 Eq. 27 

Ö.u ≥ Ö(./0)u −
"Ÿu
100

∗ 2u,			 
Eq. 28 

Ö.u ≤ Ö(./0)u +
"⁄u
100

∗ 2u, 
Eq. 29 

Ö.u ≤ 2u, Eq. 30 

Ö.u > 0		 Eq. 31 

€	 ≤ ´ Eq. 32 

© ≤ 8760 Eq. 33 

Where, Subscript p - Power plant, 

Subscript t – Time (in hours), 

Ct - cost of electricity generation at hour t (in $),    
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MCtp - marginal cost of operation of power plant p at hour t ($/MWh) 

etp – electricity generated by power plant at hour t (MWh) 

Lt - load demand at tth hour (in MWh), and  

n - total number of power plants available for dispatch 

RDp – Ramp down rate of power plant p (% of MW/h) 

RUp – Ramp up rate of power plant p (% of MW/h) 

Pp – Nameplate capacity of power plant p (MW) 

HR - heat rate (in Btu/kWh),  

Price - average spot price of fuel (in $/MMBtu), and 

O&M- variable operations and maintenance cost of the power plant (in 

$/MWh).  

Carbon Tax – expressed in $/metric tonne,  

Emissions Rate - expressed in kg/MWh. 

 
Table 7. Ramping rates of the electricity generators used in the power plants [39, 76, 77]. The units are percentage 
change of rated capacity achievable in an hour.  

Generator Type Ramping Rate (% of rated 

capacity achieved/hour) 

Gas Turbine/Combustion Turbine (Natural Gas) 100% 

Combined Cycle (Primary Fuel- Natural Gas, Secondary 

Fuel-Coal) 

30% 

Steam Turbine (Coal) 15% 

 

Model does not consider the imports of electricity from regions outside of MISO and NYISO. 

Hourly variations and the resultant power output (etp) of wind and solar plants for a given 

location are taken from Eastern Wind Integration dataset [42], and Eastern Solar Integration 

Dataset [43] respectively.  

 

3.2.3 Energy Storage Model 

Using the dispatch model in an iterative storage optimization, I model storage as a revenue-

maximizing entity. In other words, I treat storage as an energy arbitrage device used to move 

bulk energy from low price/demand periods to high price/demand periods. Our treatment of 
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storage applies to operations at utility scale in power networks. Given that a significant 

percentage (88%) of storage operations in the US are arbitrage-based [11],  provision of other 

grid services from storage, e.g. frequency regulation, is outside of the current scope. Likewise, I 

do not include Combined Heat and Power (CHP) networks in the modelling effort, as they 

require more complex coordination between the power and heat portions of the system and are 

not expected to grow quickly in the US, especially given the competition from cheap natural gas 

power plants [78]. However, CHP would likely reduce system emissions through much improved 

efficiency [79]. Further details on the breakdown of all the services provided by storage is 

provided in the Appendix B section. 

 

Technically, the storage system is described by two parameters: round-trip efficiency and charge 

rate. Round trip efficiency, set to 80%, is the ratio of energy output from storage against the 

quantity of energy required to charge it. Charge rate, set at 4 hours in the base-case, reflects how 

rapidly the storage system can charge and discharge energy, measured here in terms of the 

minimum time needed for complete charge/discharge. I explore the sensitivity of net emissions 

on charge rate of storage by varying it from 4-24 hours. A range of charge rate of 4-24 hours is 

used since 90% of the storage in US is pumped hydro [11] that has charge rates in this range and 

many emerging bulk storage technologies would have similar charging rates [11]. It is assumed 

that storage has perfect information of the electricity clearing prices, justified by the fact that 

most electricity systems forecast electricity prices for the near future up to 48 hours[80]. I model 

storage operation for capacities ranging between 5% and 20% of the average demand in each of 

the two systems. 

 

The formulation of storage operation as a price-taker, given perfect information, is a simple 

maximization problem as shown in Eq. 34. 

 

Objective function:  

 "Ö‹Ö´√Ö = ¿ß›(−∑ -.’.
¥µ∂q
.ñ0 )	      Eq. 34 

Subject to:  

¬q =
fifl†‡

·
	     Eq. 35 
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∀©, ¬. = ¬./0 + ’. × W‰		, ≠®	’. > 0  Eq. 36 

∀©, ¬. = ¬./0 +
’.

W‰		
	 , ≠®	’. < 0 Eq. 37 

∀©, 0 ≤ ¬. ≤ ¬Êœ“ Eq. 38 

∀©, −" ≤
ÁË

k—ÈÀ
≤ +"      Eq. 39 

Where, Ct – price of electricity in hour t ($/MWh), 

Et –electricity bought (positive) or sold (negative) by the storage (in 

MWh), 

So –initial state of charge of storage (in MWh) 

St - state of charge in hour t (in MWh)  

Smax- maximum state of charge of storage (in MWh)  

η – Round-trip efficiency of storage   

R- Max Charge/discharge rate (in MW) 

t- hour in a year (1 to 8,760)  

 

 

Note that the revenue does not depend on capital cost, as this does not affect optimal operation. 

In the model, positive Et indicates energy bought (charging) by the storage, and negative Et 

indicates energy sold (discharging). The storage system is assumed to start with a 25% state of 

charge, given by So (in MWh) as shown in equation Eq. 35. St (in MWh), the state of charge in 

each hour, is always less than or equal to the maximum amount of charge attainable by the 

storage, given by Smax in Eq. 35. The round-trip efficiency, η , is equally divided between charge 

and discharge cycles in Eq. 36Eq. 37 [62].  In any hour, energy in/out (Et) ranges between the 

maximum charge/discharge rate, R (in MW) as shown in Eq. 39. 

 

Conventionally, given perfect information, formulation of storage operation as a price taker is a 

simple profit maximization linear programming problem [62],[80],[81],[82]. However, operation 

of large amounts of energy storage will influence the market clearing prices and requires a 

different treatment. I show this in Fig. 13, where I model one week of operation of a 12000 MW 

storage plant in MISO that takes 4 hours to completely charge without regard for the effect of 

storage operation on prices. Optimizing storage based on the clearing prices (top) yields an 

operation schedule (middle) that is subtracted from load and fed back into the dispatch model, 
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determining the actual clearing prices after storage operation (bottom). Due to storage's effect on 

prices are neglected when calculating storage operation, storage income is 45% lower than 

expected from the original prices. This illustrates that profit maximization for large storage 

systems is no longer a simple linear optimization problem and must consider the effect on 

marginal generation and clearing prices.  

 

  
Fig. 13  Simulated energy storage operation of 12GW capacity as a price-taker based on clearing prices from an 

economic dispatch model of Midcontinent ISO (MISO).  
The topmost figure shows the simulated clearing prices for a sample week in MISO. The middle figure shows hourly 
energy storage operation for a plant that ignores its own effect on prices, where positive values indicate charging of 

storage and negative value indicates discharge. The bottom figure shows clearing prices after the effect of storage on 
net load has been taken into account. In this scenario, the storage expects to make a revenue of $1.5 million based on 

the topmost prices but makes only $85,000, a 45% reduction resulting from the non-marginal effect of storage 
operation on prices. 

 
Modeling of large energy storage as a price-maker is achieved using a self-learning optimization 

technique. The flowchart of this method is provided in Fig. 14. This is done by considering the 

moving average of the hourly storage charge/discharge at the end of each iteration until the 

solution converges. The storage operation converges/remains consistent after about 20 iterations, 
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which I use as the number of iterations for estimating an optimized solution, maximizing revenue 

given the effect that storage has on prices. The convergence of this process is illustrated in Fig. 

15. 

 
 

Fig. 14 Flowchart of methodology for modeling energy storage as a price maker.  
Market clearing prices are estimated, and the storage operation is generated using linear optimization, maximizing 
revenue based on the clearing prices. The change in demand pattern due to storage is then taken into account and a 
new time-series of prices are produced, which are used to re-calculate storage operation. This process is iteratively 
performed 20 times and the moving average of storage values is taken after end of each iteration. At the end of the 

cycle, the resultant load from additional storage is taken as the storage operation. Note: I choose 20 as the maximum 
number of iterations, as the storage operation remains consistent (converges) after this point. 



 54 

 
Fig. 15 Output from iterative optimization of storage operation.  

Between iterations, the effect of storage operation on prices is considered and the storage adjusts accordingly to 
ensure that it is maximizing revenue while taking its own effect on prices into account. The storage operation 

remains consistent (converges) after approximately 20 iterations, which I use as the number of iterations. 
 
 

3.3 Emissions model 

The total annual CO2eq. emissions (in million metric tonnes) from the grid are calculated based 

on the hourly dispatch of plants as shown in equations (19-20). The plant-level emission rates are 

in metric tonnes/MWh, taken from the eGRID database [40]. Total CO2eq. emissions are 

comprised of all greenhouse gas emissions measured on a common scale based on their Global 

Warming Potential (GWP) relative to CO2 [54]. 

The total CO2eq emissions in a given hour for a given operation schedule of generator plants is 

given by Eq. 40: 

 

 Ö¿. = ∑ ¿u ∗ ’u ∗ Îu.,			u 		© = 1,2… ,8760  Eq. 40 
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Eq. 41 

Where, em6 – total emissions from all operating plants in hour t (metric tonnes) 

mp – emissions of plant p per unit of produced electricity (in metric 

tonnes/MWh)  
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Ep – electricity generated by plant p in one hour of operation (MWh) 

Npt = 1 when power plant p is operating in hour t, else the value is zero 

t- hour in a year (1 to 8,760), 

p – index number for power plant 

 

Summing em6 over 8,760 hours in a year gives the annual CO2eq emissions for the grid as shown 

in Eq. 41. 

 

To identify the point where adding storage becomes carbon neutral for the MISO grid (in 

NYISO, it is initially emission-reducing), wind and/or solar capacity is incrementally added. 

These additions are in compounded incremental additions of 10% until the difference between 

emissions with storage and without storage are zero. The hourly generation profiles of solar and 

wind energy across various locations in MISO was estimated according to the Wind Integration 

National Database (WIND) toolkit [42] and Eastern Solar Integration Data [43].  

The WIND Toolkit provides data related to wind energy production for over 126,000 current and 

potential locations across the United States for 7 years from 2007–2013 [42]. This dataset 

consists of meteorological data, 5-min resolution of wind power production, and capacity factors. 

I considered 30 potential locations in the Midwest region and the corresponding hourly wind 

output/MW. The average wind energy output (kWh/hour) for a 1kW system across these 

locations is used to generate the hourly variations of incremental wind capacities considered in 

the study. Similarly, the Eastern Solar Integration dataset by NREL consist of 5-minute solar 

power and hourly day-ahead forecasts for approximately 6,000 simulated PV plants. 30 potential 

sites from 15 states in the Midwest region are considered and a similar procedure to wind energy 

output is used to generate solar energy output/hour. Annual capacity factors of most of the 

potential wind power sites in MISO are greater than 40% and most of the solar power sites are 

greater than 16%. More details on the hourly variation of solar/wind energy output/hour and 

potential locations considered are provided in the Appendix B section. 

 

3.4 Results 

I first discuss differences between NYISO and MISO grids by showing the hourly mix of 

generation sources for a typical day for different seasons: winter, spring, and summer. Autumn is 
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not included in the seasons as the demand during this season is similar to that observed in the 

spring. For illustration, I identified the type of power plants supplying electricity each hour to 

meet the given load. As seen in Fig. 16, the marginal generators in MISO are a mix of coal and 

natural gas power plants, though most often coal. Daily coal-based generation is about 30-43% 

of the total depending upon the season, highest during the summer. Daily natural gas generation 

is about 25% of the total generation during all the seasons. Summer peaks in MISO are met by 

coal and natural gas-based plants. As the marginal cost of power from natural gas is close to that 

of coal in recent years, the dispatch of coal and natural gas power plants are intermixed in the 

dispatch stack.  

 

In MISO, energy storage tends to increase the emissions if it charges from coal, consequently 

offsetting cleaner natural gas plants while discharging, which can be seen on a sample summer 

day in Fig. 17. In the same figure, when there is an increased quantity of wind energy (2-

4GWh/75GW capacity), storage tends to charge using efficient combined cycle natural gas 

power plants, while displacing inefficient natural gas plants while discharging. In the second 

case, storage does not necessarily discharge only during peak periods because of the large 

difference in electricity prices when wind energy output is high versus low. However, lower 

natural gas prices mean that storage is also likely to charge from an efficient combined cycle 

natural gas plant, even without increased quantity of wind energy. 

 

The grid in NYISO has natural gas plants as the marginal supplier of electricity when the 

demand peaks during the summer and winter. During spring and autumn seasons, nuclear energy 

or natural gas is the marginal generator during the off-peak period, and natural gas is the 

marginal generator during peak period of the day. In Fig.5 below, during the off-peak period, a 

mix of biomass and natural gas power plants are on the margin on a sample day taken during the 

spring season. In NYISO, energy storage tends to increase the usage of more efficient natural gas 

power plants or nuclear power plants (by charging during off-peak periods), consequently 

offsetting less efficient natural gas plants while discharging. 
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Fig. 16 Grid mix based on hourly dispatch of generators in Midcontinent ISO (MISO, top) and New York ISO 

(NYISO, bottom) on a sample day in different seasons.   
Each color band indicates the typical type of fuel of the dispatched power plants. A generator is said to be “on the 

margin” if that type of generator is last to be dispatched (ie, at the top of the stack during a given hour). In the MISO 
region, coal/natural gas is normally on the margin during off-peak periods, and peak periods. In the NYISO region, 
natural gas/nuclear energy is on the margin during off-peak and natural gas is on the margin during peak periods. 

The effect of ramping constraints can be seen by the fact that some generators have non-horizontal bands, indicating 
a binding constraint in ramp-up or ramp-down. 
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Fig. 17 Grid mix based on hourly dispatch of generators in Midcontinent ISO (MISO) on a sample day during 

summer, with and without storage – with current generation fleet, and with additional wind energy (output from 
economic dispatch model).   

Each color band indicates the typical fuel of the dispatched power plants. The dotted outline represents the total load 
with storage operations, and the solid outline represents the total without storage operation. On the left, without 

additional wind energy, storage charges using additional coal energy at night and displaces natural gas plants during 
peak periods, thereby increasing emissions. On the same day on the right, with wind capacity of 75GW producing 2-
4GWh of wind energy on a hot summer day, storage charges from more efficient combined cycle natural gas plants 

and displaces natural gas peaker plants. 
 
 

3.4.1 Emissions from storage operation in NYISO and MISO 

I model generator and storage operation and resulting CO2eq. emissions for addition of storage 

between 5-20% of the average load, which is 3,000MW-12,000MW in MISO and 1,000MW-

4,000MW in NYISO regions. Fig. 18 shows storage-induced emissions for different storage 

charge rates between 4 and 24 hours. Total grid emissions induced by storage are sensitive to 

change in charge rates and round-trip efficiency of the storage. In the MISO region, storage-

induced emissions increase both with increases in storage capacities and with more rapid 

charging rates. The annual emissions due to storage additions vary between 11,000 and 65,000 

metric tonnes of CO2eq., depending upon the storage capacity and the charge rate.  

 

 

Wind Hydro Nuclear Biomass Coal Natural Gas Other Fuels 
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Fig. 18 Annual storage-induced emissions in New York ISO (NYISO) and Midcontinent ISO (MISO).  

The storage capacities are varied between 0%-20% of the average demand, which is 3,000MW-12,000MW in 
MISO, and 1,000MW-4,000MW in NYISO. The estimated storage-induced emissions are given in metric kilo 

tonnes of CO2eq. 
 
Fig. 19 illustrates why storage increases emissions in MISO, showing the emissions of each 

generator when in an economic dispatch order. Emissions increase when storage charges at night 

using coal plants and displaces natural gas power plants while discharging. The relatively high 

emissions of coal versus natural gas implies that storage operation, in this case, is increasing 

carbon emissions from the grid. In addition, because storage is a net consumer of electricity (due 

to losses), total electricity generation is increased in proportion to the quantity and operation of 

storage. 

 

In the NYISO region, system emissions decrease with increases in storage capacities, and are 

sensitive to change in charge rates of the storage (Fig. 18). The annual net emissions due to 

storage additions range between -91,000 to -235,000 metric tonnes of CO2eq. for charge rates 

between 4 and 24 hours. Prior results by Hittinger and Azevedo [62] using a Marginal Emissions 

Factor method suggested small increases in emissions in NYISO as a result of storage additions. 

Performing sensitivity analysis with natural gas prices show that positive emissions in NYISO 

would be expected with higher natural gas prices, shown in Fig. 22 in the later sections, which 

was the case during the 2010-2012 period over which the Hittinger and Azevedo model operated. 
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Fig. 19 Marginal emissions of Midcontinent ISO (MISO) generators, in order of economic dispatch.  

The graph shows a series of rectangles, with height equal to the plant's emissions rate and width equal to the 
capacity (GW) of the generator. The color gradient indicates the generators that are most often used to 

charge/discharge storage, over one year of operation (lighter color indicates more frequent use), shades of red refer 
to charging, shades of green refer to discharging.  In MISO, storage-induced emissions increase due to charging 

when the marginal emissions of the grid are high (coal) and displaces generators that have lower emissions (natural 
gas). 

 

3.4.2 Solar and wind capacity additions required to make storage carbon neutral 

As of 2016, MISO has 14 GW of installed wind capacity and 290 MW of solar capacity 

[40],[83]. Results in Fig. 20 show that 20.6 GW of wind power (without solar) or 22.6 GW of 

solar (without wind) is estimated to be required in MISO before deployment of large storage 

(3000 MW/12,000MWh) results in zero increase in emissions. Modelling energy storage as a 

price taker slightly over-estimates these results to 23.5 GW of wind power or 29 GW of solar 

power. A lower quantity of wind is required (than solar) because of the higher availability: a 

40% annual capacity factor compared to 16% annual capacity factor of solar in MISO.  

Could the playing field be changed so that storage delivers more carbon benefits to the grid? One 

approach would be to abandon the economic arbitrage approach altogether, i.e. operating the 

storage for environmental rather than economic benefits. I do not consider this option here. 

Instead, I look at another approach consistent with the current economic operation of energy 

markets: addition of a carbon tax. A carbon tax increases the marginal cost of dirtier coal-based 
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power plants, thus motivating cleaner power plants to operate more often (lower in the dispatch 

order), leading to decreasing storage-induced emissions.  I thus investigate how a carbon tax 

would affect the total amount of wind/solar energy required to make net-zero emissions with 

bulk energy storage. I analyze two carbon taxes - $20/metric tonne and $30/metric tonne of 

CO2eq. emissions - using values consistent with valuations of the social cost of carbon from the 

EPA [84].   

 

The amount of wind and solar capacities required in the grid reduces from around 18% of the 

grid generation capacity with no carbon tax to around 12% at $20/metric tonne of CO2eq. 

emissions, or to 10% (the current capacity of wind+solar in MISO) at $30/metric tonne of CO2eq. 

emissions.  

 
Fig. 20 Quantity of wind and solar required before storage-induced emissions are negative in MISO, at two different 

carbon taxes.  
The figure compares between no carbon tax, and carbon taxes of $20/metric tonne. Because of the effect on the 

dispatch order of generators, a carbon tax results in much lower quantities of required wind/solar to make storage 
emissions-reducing. 

 
3.4.3 Emission factors of storage with addition of solar and wind 

While the above results indicate that adding storage to the current MISO grid increases carbon 

emissions, it is not yet clear if these emissions are high or low compared to other generation 

sources. It is common to measure the carbon impacts of electricity generation technologies with 

emission factors, i.e. the carbon emitted per quantity of electricity produced, e.g. 400-500 



 62 

kg/MWh for combined cycle gas plants [85] and 980-1300 kg/MWh for coal plants [40, 85].  To 

compare the storage-induced emissions with those from other electricity sources, I calculate an 

emission factor equal to the additional emissions induced by storage (kg CO2eq.) divided by the 

total energy (MWh) delivered by storage to the grid. This storage-induced emissions factor is the 

normalized emissions associated with moving energy from off-peak to peak periods, and 

accounts for both storage losses and differences in peak and off-peak emissions rates. 

 

The emissions due to storage operation in MISO are approximately 450 kg/MWh for 4-8 hours’ 

charge rates and decrease as wind and solar are added. Storage –induced emissions factors for 

different wind and solar capacities is shown in the Appendix B section. 

 

3.4.4 Sensitivity analysis- price-taker modeling versus the price-maker modeling 

When the storage's effect on prices are neglected, arbitrage income is 45% lower than the 

expected from the original prices (Fig. 13). Therefore, profit maximization for large storage 

systems must consider the effect on marginal generation and clearing prices. When I ignore the 

effect on clearing prices and storage is optimized using a simple linear optimization, the model 

overestimates the total storage induced emissions by an average of 70% as compared to the 

price-maker model, depending upon the storage capacity.  Price-taker modeling uses and dumps 

large capacities of the storage all at once, depending on the price signals. Therefore, a high surge 

in demand while charging and a steep decline in demand while discharging increases the overall 

emissions. During the charge phase, a surge in demand is met by the additional power plants, 

creating an increase in emissions. During the discharge phase, the demand differential increases 

immediately after the storage discharges all at once leading to an increase in peaker plants’ 

generation to meet the steep gradient of change in demand, thereby increasing the emissions.  

Fig. 21 shows the difference in the estimation of emissions between the price-maker and price-

taker modeling of the storage operation for 4 hours charge duration of the storage and 80% 

roundtrip efficiency in MISO and NYISO regions. In this case, storage induced emissions are 

70% more than the price-maker modeling in MISO, and 35% more in NYISO region. 
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Fig. 21 Difference in annual storage induced emissions when large capacities of storage are considered a price-taker 

instead of price-maker in New York ISO (NYISO) and Midcontinent ISO (MISO). 
The storage capacity considered is 5% of the average demand, which is 12GW in MISO, and 4GW in NYISO. The 

estimated storage-induced emissions are given in metric kilo tonnes of CO2eq. The colors of the bars indicate the 
ISOs. Price-taker scenario over-estimates the annual storage induced emissions in MISO by 75% and in NYISO by 

35%. 
 

3.4.5 Sensitivity analysis- high natural gas prices 

I perform sensitivity analysis for natural gas price by re-calculating all results at a higher price as 

compared to the base case natural gas price. From 2000-2016, the price of natural gas has varied 

between $2.5 and $11 per MMBtu, with an average projected value of natural gas price to be at 

$5/MMBtu till 2040 [86].  The base-case natural gas price used for the results above is the 2015-

2016 natural gas price at $2.6/MMBtu and that is increased to $5/MMBtu in the high natural gas 

price scenario.  

 

As seen in Fig. 22, at a higher natural gas price, total grid emissions induced by storage increase 

both in NYISO and MISO region at different storage charge rates between 4 and 24 hours. In the 

MISO region, storage-induced emissions increase by 40-60 times as compared to the base-case 

scenario, both with increase in storage capacities and with slower charging rates. The annual 
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emissions due to storage additions vary between 800,000 and 4,000,000 metric tonnes of CO2eq., 

depending upon the storage capacity and charge rate.  

 
Fig. 22 Net change in annual emissions after adding storage in New York ISO (NYISO) and Midcontinent ISO 

(MISO) at a higher natural gas price of $5/MMBtu (compare with Fig. 6 showing base-case scenario of 
$2.6/MMBtu).  

The storage capacities are varied between 5%-20% of the average demand, which is 3,000-12,000MW in MISO, and 
1,000-4,000MW in NYISO. The estimated emissions are given in 1000 metric tonnes of CO2eq. 

 

Fig. 23 illustrates why MISO’s storage-induced emissions increase by about 50 times for the 

high natural gas price scenario as compared to the base-case. In the high natural gas price 

scenario, the coal and natural gas are ‘better sorted’, and charging is almost completely met with 

coal generation while discharging almost universally displaces natural gas generation. 

In the NYISO region, system emissions after adding storage increase between 150,000 and 

370,000 metric tonnes of CO2eq. depending upon the charge rate and the storage capacity in the 

high natural gas price scenario.  This contrasts with what is seen in the base-case scenario. 

Though NYISO has a very small percentage of coal based power plants (3%) [40], these plants 

are available on-margin when the storage charges during off-peak periods as compared to gas 

turbines during the peak period.  
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Fig. 23 Comparison of marginal emissions of Midcontinent ISO (MISO) generators, in the order of economic 

dispatch for the base case scenario and high natural gas price scenario.  
This is essentially a series of rectangles, with height equal to the plant's emissions rate and width equal to the 

capacity (GW) of the generator. The color gradient indicates the generators that are most often used to 
charge/discharge, over one year of operation (lighter color indicates more frequent use). With high natural gas 

prices, storage is seen to increase emissions by 40 times since the difference between marginal emissions during 
charge-discharge phase are much higher than the base-case scenario. 

 

The amount of wind and solar capacities required to de-carbonize the emissions induced by 

storage increase from 18% in the base-case scenario to about 35% of the grid mix at high natural 

gas prices (assuming no carbon tax), as shown in  

Fig. 24 . At a carbon tax of $20/metric tonne of CO2eq. emissions, the amount of wind and solar 

required is 31% and at $30/metric tonne of CO2eq. emissions, it is 25% of the grid mix.  
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Fig. 24 Quantity of wind and solar required before storage-induced emissions are negative in MISO in the base-case 

scenario (at $2.6/MMBtu) and high natural gas price scenario (at $5/MMBtu).  
The figure compares between no carbon tax, and carbon taxes of $30/metric tonne for both the scenarios. 

 
3.5 Contribution to the literature and discussion 

My contribution to the current chapter is developing a new modeling approach, considering the 

effects of large energy storage as a price-maker on the current electricity grids and estimating the 

change in emissions as intermittent renewables (wind and solar) are added to a grid and as 

natural gas prices vary. Also, this is the first study to examine how much wind and solar are 

needed to negate the emission affects from the arbitrage operation of the storage as a price-maker 

in a coal-heavy grid.  

 

Most of the studies on energy storage till date assume bulk storage as a price-taker and ignore the 

effect of market electricity prices on storage. Results show that price-taker modeling approach 

does not consider the substantial alterations in demand patterns, prices, and dispatched 

generation, resulting in over-estimation of emissions by 70% from the large changes in the 
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demand before and after storage operation. Also, the sub-optimal arbitrage operation results in 

45% lower revenues to the storage. Though, price-maker approach is considered in some of the 

models in prior research, they either model assuming the storage operator to perfectly anticipate 

the price-load relationship   or co-optimize the storage operation with the dispatch model [88]. 

The limitation of the first approach is that the representative functions between demand and price 

are challenging to construct and are not dynamic to the different market situations [88]. In the 

second case, co-optimizing the storage operation with the dispatch model is a robust approach 

but most of the planners and the storage operators have access to sophisticated dispatch models 

from the third-party vendors which are complicated to integrate any new storage additions into 

the model. This study integrates storage operation as a price-maker by using an iterative dispatch 

model in combination with the linear optimization of the storage. This method makes it easier to 

integrate the storage operation as a price-maker into the current or any sophisticated dispatch 

models. The approach developed in this work is the first method that allows faster and flexible 

integration of storage into any dispatch models and also attracted the storage operators after the 

publication of this model. 

 

Results show that at today’s low natural gas prices and grid mix, I find that energy storage 

operated under economic arbitrage reduces carbon emissions in NYISO and increases emissions 

in MISO. At higher gas prices, storage increases emissions in both NYISO and MISO by 

enabling coal power to substitute for natural gas. Emissions changes induced by storage are 

much larger in the higher natural gas scenario due to large-scale substitution of coal for natural 

gas. This implies that a rising natural gas price relative to 2015-2016 prices,  as per EIA 

projections [86], could mean that grids dominated by coal may not see carbon benefits from 

storage without significant restructuring of their generation mix. For example, though wind 

capacity in MISO is steadily growing and is projected to reach 20GW of installed capacity by 

2019 [89] ( a growth rate of ~1GW/year), it is likely to be at least a decade before wind and solar 

capacities in total achieve 35% of the generation and induce storage emissions benefits under a 

high natural gas price scenario. The effect of natural gas price leaves the economic and 

environmental effects of storage at odds: I have found that storage-induced emissions that are 

zero or negative depend on the currently-low natural gas prices.  However, storage providing 



 68 

energy arbitrage only makes financial sense if natural gas becomes more expensive, in which 

case energy storage will induce greater use of coal generation, increasing system emissions [90]. 

 

These results clarify the option space society faces with regards to storage. One choice is to 

accept increased carbon emissions in the short-term in some grids in order to achieve longer term 

benefits after more renewable energy is adopted. Arguments could be made justifying such a 

long-term perspective, but the current policy discourse does not frame the choice as a long-term 

one, instead asserting that storage delivers immediate benefits. Another option is to change the 

operation of storage to achieve environmental goals. For example, a storage system could be 

directly tied to a renewable generation plant to address intermittency. While technically possible, 

it is important to clarify the economic and environmental benefits delivered compared with 

alternative means of addressing intermittency, e.g. via flexible natural gas plants or improved 

transmission interconnection.  A third option is to shift the economic context in which storage 

(and the grid) operates, e.g. a carbon tax, to ensure carbon benefits. I do not explore the benefits 

and cost of these three options here but assert there is a need for a clearer framing of societal 

expectations from storage. 

 

Our study shows that levying a carbon tax could significantly reduce the solar/wind requirements 

before storage delivers carbon benefits. These requirements are largely dependent on the level of 

the tax. At current social cost of about $30/tonne, emission benefits from storage are plausible 

with the current installed wind capacity in MISO. On the other hand, if the natural gas prices 

start to increase, achieving wind capacities of 28 GW could take at least 10 years in MISO 

(though perhaps accelerated if such a carbon price is implemented), considering the current rate 

of projected growth in the absence of the Clean Power Plan [89]. Therefore, a reasonable carbon 

tax, set near the US EPA estimated social cost of carbon, without any support of other policies 

(such as the Clean Power Plan) would allow storage to deliver intended carbon benefits for 

MISO into the foreseeable future.  

 

There are some encouraging outcomes in these results for energy storage and emissions. First, 

our analysis for NYISO illustrates that storage can be neutral or beneficial for emissions when it 

is routinely charged, during off-peak periods, with efficient combined cycle natural gas 
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generation.  In New York and similar grids (such as California), while storage is not expected to 

directly reduce emissions, it may indirectly mitigate carbon through improved integration of 

intermittent renewables. Second, the analysis for MISO illustrated that emissions due to storage 

additions is less related to the quantity of renewable energy in a system than the curtailment of 

renewable energy in a system. But the results show that any grid that has wind/solar curtailment 

of sufficient scale to be the primary source of charging energy for storage would experience 

excellent emissions benefits from storage. However, unless storage is predominantly charged 

with otherwise-curtailed renewable energy, its emissions benefits are likely to be neutral or 

negative. 
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4  

Chapter 4: How Does Energy Storage Affect the Generation and Profit of 

Existing Generation Technologies? 

 

Abstract 

This work models the effects of economic operation of the energy storage on the generation 

and profits of the existing generation technologies. In this study, I first investigate how storage 

affects the likely generation of other fuels based on historical electricity prices and generation mix 

for the year 2016 in 22 eGRID subregions. In this case the storage is modeled as a price-taker, and 

its actions do not affect the market prices. To capture the change in profit, in the second part, I run 

a dispatch model with larger storage capacities up to 5GW in the New York ISO (NYISO), 

Midcontinent ISO (MISO), and California ISO (CAISO). In this case, storage distorts the current 

prices and is no longer a marginal operator in the system. First part captures the dynamics of the 

actual dispatch of current systems, and the second part captures the expected changes in the profit 

when storage to noticeably shift prices and dispatch.  In the west and the Midwest region, storage 

increases the coal generation and decreases gas generation; in the eastern US region- storage 

operation increases the gas generation. In California, upstate New York and New England regions, 

storage increases the gas generation and decreases the coal generation. Second, when large 

capacities of storage act as price-makers, natural gas peaker plants lose the most profit in all the 

regions by more than 10%. Profits of coal increase in the Midwest region and profits of solar 

increase in California by 5%. Profits of all the generating units decrease in New York as natural 

gas offset by the storage most of the time sets the electricity prices. 

 

4.1 Introduction and Literature Review 

 Energy storage comes with a plethora of benefits to electricity grids such as storing surplus 

electricity, providing reliability, stability, and emergency backup, enabling renewable 

integration, and demand-side management [91]. With its many advantages, policymakers are 

pushing for implementing energy storage as a comprehensive answer to not only improvise the 

quality of grid systems but also address the environmental challenges by enabling substantial 

renewable integration  [13, 92]. Renewables are critical towards the decarbonization of the 
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electricity sector, and it is essential to answer if operational strategies of energy storage 

effectively benefit renewables. Deployment of bulk energy storage system affects the system-

wide costs, flexibility, generator operations, and GHG emissions depending upon the grid mix 

[20, 62, 80]. Therefore, before implementing policies or regulations for storage to support 

renewables, I must assess if storage is a net benefit/cost to society [93]. There is prior literature 

that argues otherwise that the economic operation of the storage has an impact on the emissions  , 

depending upon the grid mix across the U.S.  But how the storage operation manifests the 

generation, and the profits of the other generating units, especially renewables across different 

regions in the U.S. have not been investigated. This chapter discerns the effects of storage on the 

profits and generation of renewables and other generating units from adding storage. 

 

Economical operation of the storage reduces the wholesale electricity prices and also the 

generation of the peaker plants. Because of this, it reduces the profitability of all the generators 

and increases the generation of base-load power plants [80, 88]. A prior study by Denholm et. al.  

[95] shows that adding bulk energy storage increases the generation of the base-load marginal 

power plants such as coal and combined cycle units by 0.6% while decreasing the generation 

from the combustion turbines by about 1.5%. The literature on quantifying these effects of 

storage on the generation units across different regions and different grid mixes is scarce. This 

study investigates the effects of economic operation of storage on the net change in generation 

across 22 eGRID regions of the U.S, and the change in profits in three distinct grid mixes. Since 

the capacities of storage should be significant to affect the profitability of the other generating 

units, storage is considered a price-maker for determining the net change in profits. 

 

This study is conducted in two parts to investigate the change in generation and the profits of the 

other generating units. 

In the first part of the chapter, this study investigates how storage affects the likely generation 

from other fuels based on the actual electricity prices obtained from Independent System 

Operators (ISOs) and the current fuel mix in the system. It captures the dynamics of the actual 

operation but does not show the change in price or profit of the other generators as it is a 

marginally small capacity. 
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To answer the change in price/profit of other generators, this study uses a simulated dispatch 

model with larger storage capacities until 5GW capacities in the second part of the chapter. In 

this case, storage distorts the prevailing prices and is no more a marginal operator in the system. 

Also, the profit impacts from the storage could result in retirement of some of the power plants 

losing the most profit [80, 88], which is captured in the current study to account for change in 

market conditions from the integration of large storage systems. 

Overall, the first part of the model captures the dynamics of the actual operation, and the second 

part captures the changes in the profit when storage is no more a marginal operator. 

For modeling the first part, the study uses the actual electricity prices and the probability of 

marginal generators operating (‘marginal generator technology factors’) at a given time from 22 

different eGRID regions. A linear programming model is used to optimize the storage operation 

from the clearing prices and the marginal generation factors provide information on the type of 

generators operating or displaced from storage operation. 

In the second part - I calculate the change in profits with and without storage until 5GW 

capacities for three different regions- Midcontinent Independent System Operator (MISO), New 

York Independent System Operator (NYISO), and California Independent System Operator 

(CAISO). The storage operation as a price-maker is simulated using an iterative optimization of 

a storage operation with the dispatch model as described in section 3.2.3. 

4.2 Method- Effect on the generation 

In the first part, to study the implications of the storage operation on other generators, I use the 

actual clearing prices and the marginal generator factors to estimate the fuel mix used and 

displaced from the storage operation. The data sources for the actual prices across the 22 eGRID 

regions is provided in the Appendix C. 

4.2.1 Marginal Generator Factor 

"Marginal Generator Technology Factors" (‘MF’) broken by eGRID sub-region, season, and 

hour of the day, is likelihood of a marginal generator type operating at a given hour.  For 

example, in MISO, during a typical summer day, a marginal increase in demand by 1MW during 

noon by storage could 85% likely come from coal, and 15% likely come from natural gas 

combined cycle power plant. The likelihood of a generator operating at a given time depends 
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upon the fuel mix at that given hour, and the electricity clearing prices, which are published 

online in real-time by most of the ISOs [70, 96] in different eGRID regions.  

 

To determine the marginal generator for the various subregions in any given hour, the study uses 

data from the EPA’s Continuous Emissions Monitoring System (CEMS) for 2016 [97]. CEMS 

provides hourly emissions and generation from all thermal generating units greater than 25 MW, 

as well as data on primary fuel input. From the CEMS data, I aggregate to the plant level and 

build a new dataset tracking the change in generation by plant between one hour and the next. I 

then select only plants with more than a 5 MW increase or decrease in generation between any 

given two hours—these plants are said to be “on the margin” for each hour. Using this subset of 

marginal plants, I then aggregate plants by fuel class to determine the net amount of generation 

increase/decrease as shown in Eq. 42. Since there is an equal likelihood that the storage could 

charge or displace generators that are coming online or going offline, MF of each fuel (f) in a 

given hour (t) is calculated from the absolute values of change in generation by fuel (Eq. 43). 
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Eq. 43 

Where: f- fuel type 

t- hour 

p- individual power plant 

net generation – net generation on margin (MWh) 

increase – Power plants increasing generation (MWh) 

decrease – Power plants decreasing generation (MWh) 

 

 

This aggregation provides us with the total change in generation in each hour (both increase and 

decrease) as well as the percentage of that change coming from coal, natural gas, biomass, and 

oil in each hour (MF). 
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There are some limitations with this data collection method. First, this data does not capture 

changes in generation from non-fossil generation, such as nuclear or renewable sources.  In order 

to account for changes from renewables, I assume they are on margin when the electricity prices 

are almost zero or negative. In general, renewables are less likely to be on the margin, for 

example- renewables were on margin in California for 2% of the total hours in 2016 [98]. In 

addition, by assuming that the marginal generation in a given hour is a mix of the plants 

changing generation in that hour, I neglect plant operating constraints or physical system 

limitations which might otherwise could enable a power plant constantly operating without 

change as the marginal generator.  

 

4.2.2 Net change in generation 

Arbitrage operation of the storage charges when the prices are low and discharges when the 

prices are high. A small 3MW storage capacity with a round trip efficiency of 85% is assumed 

for the arbitrage operation. Storage is a price-taker in this case and its operation will not impact 

the marginal clearing prices or the profits of the power plant operators. Storage arbitrage 

operation is determined by linear optimization as described in section 3.2.3.  

 

 Fuel type used/displaced when the storage charges and discharges is determined from the MFs 

of the fuel types at a given hour. Based on the MFs and the storage operation, I determine the 

fuel mix of the marginal generators used by the storage during charge and discharge phase per 

unit of energy delivered from the storage (‘F’) as shown in Eq. 45. Total energy delivered from 

the storage is the summation of total discharge from the storage (‘E’) (Eq. 44). Because of the 

roundtrip efficiency losses, energy used by the storage is greater than the energy delivered from 

the storage. For example, for a roundtrip efficiency of 85%, storage uses 1.17MWh of energy to 

deliver 1MWh of energy. Net energy used for each fuel type per unit of the energy delivered 

from the storage (‘NF’) is estimated from the difference of fraction of fuel used during the 

charge phase and the fraction of fuel used during the discharge phase per unit of energy delivered 

from the storage as shown in (Eq. 47). 
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Where: f- fuel type 

t- hour 

d- discharge 

c- charge 

P – Energy delivered by storage in a given hour t (MWh/h) 

p>1 – charge, p<1 – discharge 

E – Total energy delivered from storage (MWh) 

F – Fraction of fuel type used per MWh delivered energy  

NF – Net fraction of fuel type used per MWh delivered energy 

 

 

4.3 Method- Effect on profits 

Small capacities of storage are price takers and do not have a significant effect on the electricity 

prices, or profits on the other generators as price takers. Therefore, for estimating the change in 

profits, large capacities of storage are assumed as a price maker.  

 

I combine the economic dispatch model and arbitrage operation of the storage to estimate the 

profits before and after adding storage systems. Storage capacities up to 5 GW are considered to 

observe the effects on profits.  

 

4.3.1 Economic dispatch model and storage operation model 

An economic dispatch model determines the lowest-cost operation of generating facilities that 

can reliably meet a given demand within the generators’ ramping constraints [99] and simulates 

the market clearing prices for electricity. These electricity prices are used in an optimization 

model to determine the schedule for the storage operation, considering the effects of large 

storage on electricity prices as shown in section 3.1.1.  
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Fig. 25 Flowchart of methodology for evaluating percentage change in revenue of the power plants after adding 
storage.  

The model produces a "no-storage" time series of prices, simulates storage operation, then calculates the percentage 
change in profits of the power plants with and without energy storage. Power plants that lose the highest net 

profit/MW after adding storage are retired. Capacity of the power plants retired is equiv. to net storage addition in 
each iteration. *For simulating storage operation, I use an iterative dispatch optimization which is shown separately 

in detail in Fig. 3. 

The model accounting for the diversity of plant efficiencies in a region estimates total annual 

profits with and without storage for the power plants based on the plant’s fixed cost (‘FC’), 

marginal cost of operation  (‘MC’), and the clearing prices they receive (‘I’) for the power 

delivered in any given hour.  The Marginal Cost (‘MC’) given in $/MWh is the summation of the 

fuel cost incurred per MWh and the variable O&M costs per MWh as shown in Eq. 4. The 

clearing prices of the electricity are simulated using the dispatch model with an objective to meet 

the demand in an given hour at the lowest cost possible (Eq. 6, Eq. 17].  

 

The total generation (‘G’) of the power plants is estimated based on the hourly generation of 

each power plant (‘P’) over the year from the economic dispatch model.  The variability of the 

renewables is accounted into the model by considering the hourly generation profiles of solar and 
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wind energy across various locations from Wind Integration National Database (WIND) toolkit 

[42] and Eastern Solar Integration Data.  

 

The power plants are then categorized into the primary fuel type used in their generation and the 

total profit and generation for each fuel type is estimated (Eq. 48Error! Reference source not 

found.). This process is repeated before and after adding storage and the net change in profit and 

generation are calculated as shown in Eq. 49Error! Reference source not found..  
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 Eq. 48 

Where: f- fuel type 

t- hour 

p- power plant  

HR – heat rate (Btu/kWh) 

Price – average spot price of fuel ($/MMBtu) 

O&M- variable operations and maintenance cost ($/MWh) 

P – Energy delivered in a given hour t (MWh/h) 

I - Clearing price of the electricity ($/MWh) 

R- Profit ($) 

 

 

4.3.2 Net change in profits 

The model estimates the net change in profit before and after adding storage as show in Eq. 49. 

 

 ∆"Ï = "Ï,¶l −		"Ï,l Eq. 49 

Where: f- fuel type 

R- Profit ($) 

ns- no storage 

s- after adding storage 

 

  

For sensitivity analysis, a high wind capacity scenario of 70 GW is estimated for MISO, which is 

the most coal-heavy grid amongst MISO, NYISO, and CAISO.  
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4.3.3 Method for Retirement  

Large capacities of storage alter both the dispatch stack and the wholesale electricity prices in the 

market. A steep decline in profits because of the low electricity prices could force retirements of 

the existing generating plants, especially peaker plants that are displaced by the storage operation 

[80, 88]. This refers to a state of market equilibrium, seen in competitive/de-regulated markets 

[88]. The model takes into account of these retirements as the storage is incrementally added into 

the system in each iteration.  

 

After each iteration, the power plants losing the most profits from adding storage are retired and 

the total capacity of the power plants retired is equivalent to net storage added into the system (Fig. 

25). This is assuming that there is enough reserve capacity in the power plant fleet and the storage 

capacity replaces the equivalent capacity of the plants losing the most profit. In the real world, any 

retirement decisions from the power plants are accepted by the ISOs only after ensuring that there 

is adequate reserve capacity to replace the existing retiring power plants [53, 100]. In our case, I 

assume that the storage replaces the retired capacity of the power plants to maintain the supply 

demand balance. For sensitivity analysis, results without the retirements are presented. 

 

4.4 Results 

The results section is organized as follows. I first present the effects of storage on the generating 

units, second – on the effects of storage on the profits of the generating units, assuming no 

retirements occur, and third- on the effects of storage on the profits of the generating units, 

assuming there are retirements of the loss-making power plants from the new entry of the 

storage.  

 

4.4.1 Impact on generation from storage operation in 22 eGRID regions 

This section discusses the type of fuels used and displaced when a storage capacity of 3 MW is 

added across the 22 eGRID regions in the U.S. In all the cases, the energy used for charging is 

always greater than the energy displaced because of the round-trip efficiency losses of the 

storage. This study assumes the round-trip efficiency loss of the storage to be 85%.  
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For the reader’s understanding about the fuels used and displaced for delivering a MWh energy 

from energy storage, Fig. 26  illustrates the fuel types during the charge and discharge phase for 

a sample eGRID region CAMX (for California), and shows the net fuels used during the storage 

operation. Because of the efficiency losses in the storage operation, more energy is used to 

charge the storage than the energy displaced by the storage. 

 

 
Fig. 26 Type of fuels used per MWh of energy delivered from the storage for a sample eGRID region CAMX 

covering California.  
The leftmost figure indicates the energy consumed and displaced per MWh of energy from the storage. Negative x-

axis values indicate the discharged energy from the storage and the positive values indicate the charge by the 
storage. Colors of the bars indicate the fuel mix during charge and discharge. The rightmost figure indicates the type 

of fuel used in net to deliver a MWh from the storage. The negative x-axis indicates the energy of the fuel type 
displaced and the positive x-axis indicates the energy of the fuel types used. Overall, storage in CAMX region in net 

uses 0.28MWh of natural gas and displaces 0.04 MWh of coal energy to deliver a MWh of energy. 

 

For the results across the eGRID regions, all the regions can be broadly divided into the west- 

covering California, Arizona and the other western states, the Midwest and the east- covering 

most of the eastern coast of the U.S. (Fig. 27).  Results show that the storage operation in most of 

the west - except in California, and in the Midwest consumes both coal-based energy and natural 

gas during the charge phase and displaces them both during the discharge phase. However, in net 

more coal-based energy is used to displace the natural-gas based energy. In most of the west and 

the Midwest, storage operation in net consumes an average of 0.3 MWh of coal-based energy 
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and displaces 0.1 MWh of natural-gas based energy per unit MWh of energy delivered from the 

storage. On the other hand, in the eastern coast, a mix of coal and natural gas-based energy is 

used during the charge phase and the storage displaces a mix of coal, natural gas and oil. In net, 

on an average, 0.2 MWh of natural gas, 0.1 MWh of coal is used to displace 0.1 MWh of oil per 

unit MWh of energy delivered from the storage. Amongst all the regions, California (CAMX 

region), Upstate New York (NYUP region), and New England (NEWE region) in net consume 

more natural gas and displace coal during the discharge phase of the storage. The high 

concentration of renewables, hydro and natural gas during the off-peak hours pushes the usage of 

coal and natural gas peaker plants during the evening time in the peak-hours when the storage is 

most likely to charge, thus displacing these plants. Further information on the actual electricity 

grid mix seen in California on a sample day, illustrating the usage of the coal during the evening 

hours is given in Appendix C.  
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Fig. 27 Fuel type of net energy used per MWh of energy delivered from the storage.  

The figures in the leftmost column indicate the energy consumed and displaced per MWh of energy from the 
storage. Y-axis represents the different eGRID regions. Colors of the bars indicate the fuel type. The negative x-axis 
indicates the energy of the fuel type displaced and the positive x-axis indicates the energy of the fuel types used. The 

right most column of figures indicates the highlighted eGRID regions for which the values are plotted. 
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4.4.2 Impact on profits from storage operation as a price-maker without retirements 

Percentage change in profit before and after adding storage is estimated with respect to profits 

and without any retirements in CAISO, MISO and NYISO regions (Fig. 28).  

 

In CAISO, as the storage from 0-5GW is added, profits of all the generating units decrease from 

the decrease in electricity clearing prices as the NGCT and oil are offset from the storage. Profits 

decrease for oil based power plants decrease by almost 100% as the capacity of storage is 

increase in the grid, followed by base-load power plants- coal, and biomass by 55%, followed by 

NGCT by 35%, NGCC by 20%, hydro and nuclear by 5%, and wind and solar by less than 0.5%. 

Because of the high operations and maintenance cost for the coal, the percentage decrease in 

profits is higher than the NGCT power plants.   

 

In NYISO, largest percentage decrease in profits is seen for the NGCT, dropping to 100% at 

5GW of storage in the system. The grid mix during the peak demand hours is supplied by a mix 

of NGCT, NGCC, and <1% of oil. Therefore, any offset demand by the storage operations 

displaces a large percentage of NGCT and some NGCC. The base-load power plants are NGCC, 

hydro, nuclear, and less than 5% of coal, whose generation increases from the storage operation. 

Yet, the decrease in profits from the offset of peaker plants is bigger than the increase in profits 

from generating for storage. Overall, the percentage decrease in profits for NGCC is 15%, coal is 

2%, and all other fuel is less than 1%. 

 

In MISO, the capacity of the current power plant fleet is 3 times higher than the other two ISO 

regions. Therefore, much larger capacities of storage till 12 GW (15% of the demand) is 

considered for the analysis of profits without retirements. As the storage from 0-12GW is added 

into the system; the largest percentage decrease is for coal from 0-2%. All the other generating 

units have decrease in profits by less than 1%. A large percentage of coal in the generation mix 

(>70%) cause the price differentials to be much flatter in the MISO region than in the CAISO, or 

NYISO. Therefore, charged energy from the storage is much lower in the MISO (0.25 TWh), 

than in the CAISO (4.25 TWh), or in the NYISO (0.85 TWh) regions (Table 8). 
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Fig. 28 Annual percentage change in profit before and after adding storage as a price-maker in Midcontinent 

Independent System Operator (MISO) and New York ISO (NYISO) without any retirements.  
X-axis represents the storage capacity in GW, Y-axis represents the percentage change in profit after adding storage, 

and the colors represent generation technologies.  

Table 8. Total annual energy charged and discharged by 5GW storage in CAISO, MISO, and NYISO. 

ISO Annual energy charged by 

5GW storage (TWh) 

Annual energy discharged by 

5GW storage (TWh) 

CAISO 5 4.25 

NYISO 1 0.85 

MISO 0.3 0.25 

 

4.4.3 Retirements 

After each iteration, the power plants losing the most profits after adding storage are retired and 

the total capacity of the power plants retired is equivalent to the net storage added into the 

system. As shown in Fig. 29, most of the retired capacities in CAISO and MISO are peaker plants 

-NGCT and coal power plants. This is because the storage operation offsets the peaker plants, 
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thereby decreasing the most profits to them as compared to any the other power plants operating 

in the system. A small percentage of baseload power plants such as coal, and biomass retire from 

the high operational costs and decrease in electricity clearing prices after adding the storage. In 

NYISO, the loss-making plants are a mix of NGCC, oil, NGCT, and biomass. The peaker plants 

in this region are a mix of >70% NGCT power plants and ~25% NGCC power plants and <1% 

oil power plants. Therefore, baseload power plants – NGCC retire in NYISO as the profits offset 

by storage operation during the peak periods are much higher than the profits for NGCC when 

the storage charges.  

  
Fig. 29 Fuel mix of the retired power plants from adding incremental storage capacities.   

X-axis represents the storage capacity in GW and Y-axis represents the total capacity of power plants retired after 
every incremental addition of storage capacity-200MW. Bar colors represent the fuel type. Each row of plots 

represents the ISO region. The ISO regions considered are California ISO (CAISO), Midcontinent ISO (MISO), and 
New York ISO (NYISO). 
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4.4.4 Impact on profits from storage operation as a price-maker with retirements 

Percentage change in profit before and after adding storage is estimated with respect to profits 

without storage in CAISO, MISO and NYISO regions (Fig. 28). Percentage change in profits is 

affected by the clearing prices set in the market and the economic retirement of power plants 

from adding storage. 

 

In CAISO, as the storage from 0-5GW is added, a positive increase in profits is observed for 

solar from 0-4%, NGCC, nuclear, biomass, and hydro from 0-2%, and wind from 0-1%. When 

the storage discharges at the high electricity prices, peaker plants using NGCT are displaced and 

consistently lose profit, with a decrease to 6% at 5GW storage capacity.  Profits of coal and oil 

drop to 10% and 6% respectively at 400MW of storage capacity.  Coal continues to see negative 

profits, as much of the coal-based energy in CAISO is used during the peak hours with NGCT, 

when the storage discharges energy into the grid. Economic retirements are mostly seen for the 

peaker plants using NGCT, followed by biomass and coal. Though the clearing prices of the 

market go down because of this, additional NGCC plants during the charge phase of the storage 

increase the clearing prices of the market, thereby increasing the overall profits for the other 

plants.   

In MISO, as the storage from 0-5GW is added into the system, the largest percentage decrease 

from 0-35% is observed for NGCT. Most of the NGCT plants in MISO are used during the peak 

demand for a faster ramping up, thereby attracting the discharge of the storage during these large 

price differentials in the system. Coal has the highest percentage increase in profit to 4%, 

followed by NGCC and biomass to 2% and other renewables at almost 0% because of the drop-

in clearing prices from displacing of the NGCT plants in the system. 

 

In NYISO, largest percentage decrease in profits is seen for the NGCT, dropping to 60% at 5GW 

of storage in the system. The grid mix during the peak demand hours is supplied by a mix of 

NGCT, NGCC, and 1% of oil. Therefore, depending on the resultant grid mix after the 

retirements, the average clearing prices of the market fluctuate depending upon the mix with 

cheaper NGCC on the margin versus NGCT on the margin. Therefore, profit change of the fuels 

is ‘noisier’ than the other regions. The percentage change in profits from the storage for the 

renewables is 0.5% and for the coal is 1.5%.  
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Fig. 30 Annual percentage change in profit before and after adding storage as a price-maker in Midcontinent 
Independent System Operator (MISO), New York ISO (NYISO), and California ISO (CAISO).  

X-axis represents the storage capacity in GW, Y-axis represents the percentage change in profit after adding storage, 
and the colors represent generation technologies.  

If the wind capacity in MISO is increased by 5 times the current capacity to 70GW, the 

percentage increase in profit for wind is 1% as compared to 0.25% at the current capacity of 

14GW. Yet the percentage change in profit is lower than the coal which at 4%, or biomass at 2%. 

This is because the clearing prices set by the coal are lower than the NGCC, whose generation on 

margin is offset by the larger percentage of wind in the mix.  
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Fig. 31 Percentage change in profit with and without storage in Midcontinent ISO (MISO) as wind capacity is 

increased from current 14GW to 70GW.  
X-axis represents the wind capacity in GW and Y-axis represents the percentage change in profit after adding 

storage w.r.t profit without storage and added wind capacity. Line colors represent generation technologies. The 
profits of NG CT decrease up to 40% in both the cases and is not shown to a complete scale in the figure to highlight 

the changes in profits of other technologies. 

4.5 Contribution to the literature review, and discussion 

Reviewing prior literature on the effects of storage arbitrage on the other generating units, 

Lueken et al. [80] shows that the market revenues and the generation of the power plants are 

affected by the storage operation, assuming storage as a price-taker and focusing on the PJM 

region. Similarly, Zamani et al. [88] calculated the effects of storage as a price-maker on the 

revenues and the generation of the units in the Alberta region. The study concludes that the 

generation from the base-load power plants- coal and combined cycle increases but the revenues 

of all the power plants decrease because of a steep decrease in the wholesale electricity prices. 

However, these results are sensitive to the grid mix and to the assumption that the electricity 

market does not adjust to the entry of the new players (in this case- storage) without any 

retirements of the loss-making power plants [88]. Also, the study is constrained to Alberta 

electricity market, not necessarily representing the spectrum of grid mixes seen in the U.S.  

 

Prior work has established that, depending on the grid mix and the operating strategy of the 

storage, in most cases, storage increases the generation of the base-load power plants and 

decreases the revenues of the generating units, especially peaker plants. However, the studies so 
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far do not quantify the sources of generation used and displaced by the storage or the effects of 

revenues on other generating units in different grid mix scenarios. The contribution of this work 

is to quantify the source of generation used and displaced by the storage operation across all the 

eGRID region in the U.S., based on the real electricity data. It is also the first analysis on the 

effects of storage operation as a price-maker on the profits of other generating units, covering the 

spectrum of possible grid mixes seen in the U.S.- from coal-heavy grid to renewables-heavy grid. 

The storage is considered a price-maker to quantify the profits of the other generating units, as 

the wholesale electricity prices and in turn profits are not widely affected by storage being a 

price-taker [88]. The second part of the analysis is carried out in three different grid mixes- solar-

heavy (CAISO), coal-heavy (MISO), and natural gas-heavy (NYISO) grid mix. The results from 

this study informs the planners and the storage operators on the effects of storage on the 

generation units all across the U.S., and also on the profits of renewables in different grid mixes. 

The results from this study could help the regulators to effectively strategize the storage 

operations in places where it is a net social benefit rather than a net social cost.  

 

The results show that the change in generation from the energy storage is largely dependent upon 

the grid mix when the capacities are small and marginal. Non-marginal, large capacities of 

storage alter the electricity prices, thus affecting not only the peaker plants, but also renewables 

that depend on these prices for the profit. Though, the generation of NGCC and coal power 

plants increase in these instances, the prices are not high enough to improve the profits of the 

renewables. This is observed for both current wind capacities and high wind capacities in the 

Midwest region. However, this trend is reversed in California, as it has renewables on par with 

the natural gas in the system. These results clarify that the profits of the renewables are largely 

dependent on the clearing prices set by the fossil fuels. Displacement of these fuels by storage 

impacts the profits of the renewables. One choice is to accept the decreased profits in the short-

term in some grids in order to achieve longer term benefits after more renewables are adopted. 

Another choice is to create other major profit streams for the renewables, apart from the current 

energy markets highly dependent on the fossil fuels.  
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5  

Chapter 5: Conclusions, Recommendations and Future Work 
 

The world needs renewables for addressing the sustainability challenges and must continue to 

transition towards cleaner energy in this age of de-regulated energy markets and declining 

renewable technology costs. Operationally, the major limitation of solar and wind technologies is 

the variability and the weather dependency. Currently, the two major technologies that 

complement this variability are storage and natural gas. Many traditional models are forecasting 

a large percentage of natural gas in the future, and the storage operation in the existing grids to 

support the growth of renewables. This dissertation studies the near-term implications of natural 

gas and storage on the wind and solar and provides valuable insights if these deductions and 

assumptions of the traditional models are relevant to the changing dynamics of the electricity 

sector, and the results show otherwise. 

 

The overarching research question of this study is: Does stochastic forecasting of the future 

grid for different risk preferences of the market enable more renewables additions over 

cheaper natural gas and does the assumption of promoting storage help in the growth of the 

renewables and in decarbonizing electricity grid?   

 

Chapter 2 introduces a proof-of-concept stochastic model that includes uncertainty and risk 

as core elements. Grid build-out now depends on a distribution of system costs; a genetic 

algorithm is used for co-optimization. Two objective functions are considered: “risk-neutral”, 

which optimizes to minimize average system cost and “risk-averse”, which optimizes to 

minimize average of the top 5% of costs (also called 95% Conditional Value at Risk (CVaR)). 

The results from this study show that risk-averse scenario does not increase mean system cost 

but adds significantly more wind (~ 20GW) and solar capacity (~15 GW) by 2050 compared to 

the risk-neutral objective. These results corroborate prior work showing that electricity system 

costs can be surprisingly inelastic to renewable adoption, which from the modeling perspective is 

like a ‘flat bowl’ of the cost-optimization space i.e., a small increase in net system costs packs 

more renewables, in our case shown through a small degree of risk aversion.  
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These results contrast the results from deterministic optimization used in capacity 

expansion, which assumes decisions are made assuming perfect information, i.e. parameter 

values are fixed and there is one grid-build out that minimizes system costs. Deterministic 

capacity expansion undermines the risks of higher costs and future uncertainties, and the capital 

investments once made are sunk. Most of the modeling efforts in the U.S. are centered at 

government agencies and national laboratories. The results from their future capacity expansion 

models are used by utilities, ISOs, and policymakers for planning future grid infrastructure. My 

results suggest that accounting for future input uncertainties and risk preferences show that the 

risk-averse scenario has almost the same mean NPV as the risk-neutral scenario but has more 

renewables. Also, minimizing for deterministic inputs does not necessarily produce optimized 

results when subjected to long-term input uncertainty. Also, risk-averse scenario has the least 

emissions of all the scenarios, while deterministic scenario results in the highest emissions.  

 

Chapter 3 and 4 study the effects of storage operation on the electricity grid and on the 

generation and profits of other generating units, especially renewables. Chapter 3 models the 

deployment of large, non-marginal quantities of energy storage and wind and solar power to 

determine their combined effects on grid system emissions. Two different grid environments are 

analyzed: a coal-heavy grid (Midcontinent ISO) and non-coal grid (New York ISO). In this 

chapter, a new modeling approach is introduced, considering the effects of large energy storage 

as a price-maker on the current electricity grids and estimating the change in emissions as 

intermittent renewables (wind and solar) are added to a grid and as natural gas prices vary. 

Results show that the emissions from economic operation of the storage are highly sensitive to 

the natural gas prices and the coal capacity in the grid. Therefore, low cost; efficient natural gas 

generation is important to realize emissions reductions with storage under economic arbitrage. 

Adding storage operated to maximize profit in the MISO region will not be carbon neutral until 

wind or solar power reach around 18% of the generation capacity. A major caveat in this study is 

that it only considers the economic arbitrage of the storage. Different operation patterns for 

storage could realize higher carbon reductions.  For example, a carbon price on emissions from 

generators would shift operation to make energy storage carbon neutral even with current wind 

and solar capacities.  
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 The modeling approach of considering storage as a price-maker in chapter 2 is easy to 

integrate into current simple or sophisticated dispatch models. This is the first method that allows 

faster and flexible integration of storage as a price-maker and can be used by the large storage 

operators, energy modelers, and policymakers to quantify the environmental implications of 

large storage capacities in different grid situations. 

 

In Chapter 4, I build a model that examines the effects of arbitrage operation of the storage on 

the profits and generation of the other generating units. In all the regions, the profits of the all the 

fuels decrease from adding storage, including the renewables. However, considering economic 

retirements from the entry of a new player into the market (storage), coal has a small increase in 

profits by 2% and all the other fuels continue to see a decline in profits in NYISO and MISO. 

The decrease in profits of the other generating units is because of the offset/retirements of the 

peaker NGCT plants that set the market clearing prices. On the other hand, in CAISO, the profits 

for renewables increase from the increase in electricity clearing prices set by the NGCC plants to 

meet the additional demand from the storage charging. Without this additional demand, the grid 

operates using clean energy sources at much lower electricity prices.  

 

In most of the Midwest regions, storage increases the generation of coal and displaces natural 

gas. But, in the east and the west, storage increases the generation of the natural gas and 

displaces coal/oil, except in California, New York Upstate, and New England. Here, storage 

increases the generation of natural gas and displaces coal-based energy. The results from this 

study on the impacts of storage on the generation across the U.S. could be a useful tool to the 

policymakers and the decision makers to analyze the effects of storage in any given region. This 

could help the regulators to effectively strategize the storage operations in places where it is a net 

social benefit rather than a net social cost.  
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Fig. 32 Overview and conclusion of the dissertation. 

The key takeaways from this dissertation are: 

• Electricity system costs are insensitive to renewable adoption and more wind and solar 

can be installed with a small increase in total system costs through addition of a small 

degree of risk aversion. 

• The emissions from economic operation of the storage are highly sensitive to natural gas 

prices and the coal capacity in the grid. Increase in natural gas prices from the current 

prices increases the storage induced emissions by 50 times in a coal-heavy grid (e.g. 

Midwest region).  

• Profits of renewables from adding storage on grid vary based on the grid mix. In a coal-

heavy or natural gas-heavy grid mix like in the Midwest or New York regions, the profits 

for renewables decrease. In a grid mix like in California with more than 40% energy from 

the clean energy fuels, profits for renewables increase from adding storage. 

• Storage operation by economic arbitrage increases the generation of electricity by coal in 

the Midwest region, and natural gas in the west and east.  
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5.1.1 Policy Implications 

Decision makers, utility planners and policy makers should consider uncertainty in inputs as core 

part of their analysis which could yield a lot more renewables in the future grid. Most of the 

current models do not adequately explore the optimization space but result in fewer renewables a 

fixed minimization point. Also, risk aversion attitude in the electricity markets could have led to 

more renewables than the predictions in the recent past, which should be considered as part of 

the future planning.  

 

Policymakers should be cognizant of the operational implications of storage on the system and 

accept the near-term increase in emissions and profit losses to the renewables for longer term 

benefits when more renewables are added into the system. Arguments could be made justifying 

such a long-term perspective, but the current policy discourse does not frame the choice as a 

long-term one, instead asserting that storage delivers immediate benefits. It is also important to 

clarify the economic and environmental benefits delivered compared with alternative means of 

addressing intermittency, e.g. via flexible natural gas plants or improved transmission 

interconnection.  Another option is to shift the economic context in which storage (and the grid) 

operates, e.g. a carbon tax, to ensure carbon benefits. I do not completely explore the benefits 

and cost of these three options in this study but assert there is a need for a clearer framing of 

societal expectations from storage. 

 

5.2 Limitations  

Sophisticated electricity system elements, such as transmission constraints, startup time, 

maintenance time and spinning reserves, are not included in the modeling done in this 

dissertation. However, adding in such detailed structures is unlikely to change the qualitative 

lessons learned here. Also, given more computational capacity, the modular nature of the model 

allows replacement with sophisticated dispatch models without major changes to the modeling 

framework. There are plans underway to make the Regional Energy Deployment System 

(REEDS) Model from National Renewable Energy Laboratory (NREL) [26] into an open-source 

model and this could be used in the future studies in place of the current dispatch model for a 

better representation of the transmission constraints.  
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The caveat with the storage operation model is that it does not include the other operations of the 

storage, except for the economic arbitrage. Though, 88% [11] of the current storage operation is 

economic arbitrage, energy storage offers other benefits such as a backup energy supply, 

frequency regulation, demand response, ramping, transmission quality support, etc., these 

benefits are not quantified in the model. Further research is required to analyze and quantify 

these benefits for the storage.  

 

5.2.1 Future Research  

Technology subsidies and Renewable Portfolio Standard (RPS) targets on emissions’ performance: 

The current study focuses on the uncertainties in demand and natural gas prices for the future 

capacity expansion. However, future work should expand on the uncertainties in meeting RPS 

standards and with several technology subsidies. While RPS specifies target years for minimum 

adoption levels for renewables, public subsidies and utility costs depend on the trajectory 

through which targets are met. The model should be improved to allow exploration of issues 

such as the effect of subsidies/changing policies over the choice of new generations and address 

the probability of sustainability challenges that could be addressed. 

 

Resilient Infrastructure as part of stochastic modeling: With the inevitable climate change, I see an 

increase in the number of natural disasters. Further research should be done to explore if the 

current technologies and policies on renewable energy can be modified with reasonable cost to 

deliver the benefits during the disasters and to understand if the benefits justify the cost under 

uncertainty.  

 

Impacts of other energy storage operations: Current research explores the storage implications on 

the renewables and the environment. Further analysis should be done on strategically leveraging 

the storage potential to tap renewables in the world of cheap natural gas and reduce the 

dependency on the fossil fuels. With the inevitable climate change, this is important to address 

resiliency too. Also, stochastic modeling of the electricity markets can be extended to provide 

better estimates on the value of storage in the de-regulated energy markets.  
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7 Appendix A 
 

A1. eGRID data 

Emissions & Generation Resource Integrated Database (eGRID) [1] from Environmental 

Protection Agency (EPA) provided information about the existing set of power plants which 

include their technology and cost specifications. The complete dataset can be downloaded from 

the url: https://www.epa.gov/energy/emissions-generation-resource-integrated-database-eGRID 

and Table S1 below illustrates the sample of the data used in the stochastic capacity expansion 

model in chapter 2.  The data used from the eGRID for the model are existing fleet of power 

plants in an ISO region, fixed costs, operating costs, heat rates, and plant level emissions data.
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Table S1. Sample eGRID data used in the dissertation. 
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8 Appendix B 
 

B1. Summary of Storage Services in the United States 

Global Energy Storage Database developed by Sandia National Laboratories, supported by 

Department of Energy, US is an open source, up-to date information on grid connected energy 

storage projects [2]. It has 22 detailed categories of storage services- energy arbitrage being one 

of the services. Apart from energy arbitrage, we categorized the other 21 types of storage 

services into 7 major types illustrated in the Fig. S1. Those are storage for residential purposes, 

reserve capacities, for integrating renewables to grid (given as renewable energy support), 

ramping, power quality, power backup, frequency regulation, and demand response. Overall, out 

of 24 GW of storage capacity in the US, 21 GW provide arbitrage services.  

 

 

 
Fig. S1 Total energy storage capacities of different services offered by storage facilities in the US. Y-axis represents 
the different services provided by the storage, and X-axis represents the total capacities of these services in MW. 
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B2. Summary of data sources used in economic dispatch model  
Table S2. Summary of data sources used in economic dispatch model. *-Detailed data sources of fuel costs are given 
in Table 1 in the main text. 

Parameters Database Sources 

Electricity load demand Real-time market data available from NYISO and 

MISO [3,4] 

Power plants data eGRID database [1] 

Variable O&M cost at plant level EIA [5] 

Carbon Tax EPA [6] 

Fuel costs EIA Electricity database* 

Hourly wind variation Eastern Wind Integration Dataset [7] 

Hourly solar variation Eastern Solar Integration Dataset [8] 

 

B3. Variations in Wind and Solar energy 

The average hourly variations of the wind and solar energy in MISO region across the 30 

potential sites chosen from Wind Integration National Database (WIND) Toolkit [7] and Eastern 

Solar Integration Database [8] by NREL respectively is as shown in the Fig. S2.  

 

The screenshot of the potential sites of wind energy on the map as seen on the NREL Wind 

Prospector interface based on the Eastern Wind Dataset [9] is shown in the Fig. S3. Out of all the 

points, 30 potential locations, 2 from each state under the Midcontinent ISO (MISO) are chosen. 

Most of the locations have capacity factor of wind greater than 0.4.  
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Fig. S2 Average Variability of the Wind and Solar Energy across 15 potential sites chosen in the MISO region. The 
variability is shown for a sample 1kW capacity system to understand the system output/kW/hour given in kWh/hour. 

 

 

Fig. S3 Screenshot of the potential sites of wind energy on the map as seen on the NREL Wind Prospector interface, 
based on the Eastern Wind Integration Dataset. The pink shaded region indicates the states under Midcontinent ISO 
(MISO). The color gradient of the dots indicates the capacity factor of the wind power plants- Green being the 
lowest (0.032) and red being the highest (0.472). The average capacity factor of most of the sites in MISO is 0.4. 
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B4. Emissions factors of storage with addition of solar and wind 

 
Fig. S4 Change in emissions per delivered electricity from storage with the addition of wind/solar energy on the grid 
in the Midcontinent ISO (MISO). CO2eq. emissions/MWh decrease as wind/solar are added to the grid and for slower 

charging rates. 
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9 Appendix C 
 

C1. Data sources for the clearing prices across all the eGRID regions 

Nodes evaluated for pricing information were based off geographical location. 

Representative nodes in mostly-central locations to the relevant eGRID sub-region had their 

annual data for the year of 2016. Regions where zones needed to be averaged were done so by 

using the demand in the zones for a weighted average in the region. Demand data for zones where 

taken from the same pricing information authority. Information on exact nodes used for data 

collection may be found in Table S2. Multiple node/zone names denote an average across the 

nodes/zones being used to calculate hourly price data. 

 
Table S2: Pricing Data resource guide. 

eGRID Sub-region Node/Zone Name(s) Source ISO 

NEWE .Z.MAINE, .Z.NEWHAMPSHIRE, .Z.VERMONT, .Z.CONNECTIC

UT, .Z.RHODEISLAND, .Z.SEMASS, .Z.WCMASS, .Z.NEMASSB

OST * 

NEISO 

NYUP CAPITL, CENTRL, DUNWOD, GENESE, HUD VL, MHK VL, 

MILLWD, NORTH, WEST 

NYISO 

NYLI LONGIL NYISO 

NYCW NYC NYISO 

RFCE AECO, PPL, PENELEC, BGE, JCPL, METED, PSEG, PEPCO PJM 

RFCW APS, AEP, ATSI, DUK PJM 

ERCT AEN, CPS, HOUSTON, LCRA, NORTH, RAYBN, SOUTH, WEST 

* 

ERCOT 

SPSO SPPSOUTH_H SPP 

SPNO SPPNORTH_H SPP 

SRVC Weighted average of selected. ** MISO 

SRTV Weighted average of selected. ** MISO 

SRMW ILLINOIS.HUB MISO 

SRMV ARKANSAS.HUB MISO 

MROW MINN.HUB MISO 

MROE WPS.WPSM Load Zone MISO 

RFCM MICHIGAN.HUB MISO 

NWPP Weighted average of selected. ** CAISO 

FRCC Weighted average of selected.  MISO 
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SRSO Weighted average of selected. ** MISO 

AZNM GENE_2_N001 CAISO 

CAMX Average of selected. *** CAISO 

RMPA SPRINGCR_LNODED1 CAISO 

*Used demand weighted average. 

**Used demand weighted average of interface prices within the given area (demand in interfaces 

obtained from EIA). 

***Average of prices in default load aggregate points (DLAP). 

Load data was obtained from: 

https://www.eia.gov/realtime_grid/?src=data#/data/graphs?end=20160725&start=20160625&fre

quency=Daily&regions=008 

 

C3. Real-time electricity coal generation in CAISO  

A sample real time coal generation in CAISO is showed to illustrate that the coal usage in this 

region peaks during the evening hours [10]. Therefore, storage operation in net displaces coal 

while discharging during evening hours in California.   

 

 
Fig. S5 Real time coal generation mix taken from CAISO website. 

 

C4. Impact on generation from storage operation as a price-maker 
 
In this section, Fig. S6 shows the change in generation resulting from the large storage system of 

capacity 5 GW in CAISO, MISO and NYISO regions. The change in generation is caused by two 
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parameters, first- storage operation and second- economic retirement of the power plants because 

of the profit loss from the addition of bulk energy storage systems.  

 

 
Fig. S6 Top two figures indicate an annual change in generation before and after adding storage per installed 

capacity of generation technology, expressed in MWh/MW-year.  
X-axis represents the generation technology, Y-axis represents the change in generation/MW-year, and colors of the 

bar indicate different storage capacities varied from 4GW – 8GW. The top left figure is for Midcontinent 
ISO(MISO) in the Midwest region and the top right figure is for New York ISO(NYISO) in the NY region. Note 

that the y-axis range is different for MISO and NYISO. The bottom center figure indicates the annual energy 
consumed/discharged by a 5GW storage capacity. X-axis represents the charge (>0)/discharge (<0) state, Y-axis 

represents the energy in GWh, and the colors indicate the region. 
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Fig. S7. Difference in dispatch stacks with and without storage, during the hours when storage charges and 

discharges.  
Two sample hours on a typical summer day is chosen when storage charges and discharges. X-axis represents 
charge and discharge state of a storage capacity, Y-axis represents the generation in MWh, colors represent the 
generation technologies dispatched in the order to meet the demand. Labels represent the clearing price of the 

electricity at that given hour. The topmost figure is for Midcontinent ISO (MISO) and the bottom most figure is for 
New York ISO (NYISO).  
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