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Abstract 

In June 2018, the New York State Energy and Research Development Authority 

(NYSERDA) released the Energy Storage Roadmap (ESR). The ESR detailed a plan to increase 

the capacity of Battery Energy Storage (BES) across the state by 2025 to reach goals for 

improving the electric grid. A model was created to find how the operation of a residential solar 

+ storage system could achieve the goals in the ESR. The model used linear optimization to 

maximize the residential homeowner’s profit under different rate structures. Further analysis of 

the resulting system operation provided information on metrics directly related to the ESR goals; 

the cost reductions for the prosumer and utility, the  CO2 emission reduction, limiting exported 

energy, decreasing energy peaks for the system, and increasing the self-consumption of 

renewable solar energy. Final comparisons showed that the rate structures could be grouped into 

two types based on their resulting battery operation; ‘Energy Arbitrage’ when the battery was 

used to buy and sell energy to/from the grid, and ‘Self-Consumption’ when the battery was used 

to store excess solar energy and discharge to meet household demand. Energy Arbitrage rates 

resulted in greater decreased costs, and better emission reduction is Costs of Carbon were 

considered. Self-Consumption rates resulted in increased self-consumption of renewable solar 

energy and decreased exporting of energy. Compared to a home with only solar under Net 

Energy Metering, neither Energy Arbitrage nor Self-Consumption rates reduced CO2 emissions 

for the region, or the peak demands of the residential system. Policy makers considering new 

rates structures will need to decide which ESR goals are more desirable for residential consumers 

before implementation. 
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Definitions 

Battery Energy Storage (BES(S)): Energy Storage that uses a large-scale Battery 

Day Ahead Pricing (DAP): An electricity rate based on the forecasted cost of energy 

Energy Arbitrage (EA): Buying/Selling power from/to the macrogrid 

Energy Storage Roadmap (ESR): A NYS governmental publication advocating the widespread  

adoption of energy storage 

Feed-in-Tariff (FiT): A crediting method for consumers that produced energy, based on a flat  

rate 

Macrogrid: The whole electric grid, including utilities, generators, consumers, etc. 

Microgrid: A system that usually operates within the macrogrid, but has the capability to  

become ‘islanded’, where the system can be fully functional without connection to the  

macrogrid thanks to energy generation and/or storage 

Net Energy Metering (NEM): A volumetric system of crediting the production of energy by  

Consumers 

Net Energy Pricing (NEP): A system of crediting the production of energy at an equal rate to 

the cost of energy 

New York State (NYS): The Government and/or population of the state of New York 

New York State Energy Research and Development Authority (NYSERDA): The 

governmental body of NYS responsible for researching and developing policies relating to the  

Energy industry 

NY-Sun: The governmental body of NY responsible for solar policy 

Prosumer: A consumer of energy that also produces energy 

Real Time Pricing (RTP): An electricity rate based on the real-time cost of energy 
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Reforming the Energy Vision (REV): A governmental publication advocating the reform of the  

electricity industry in NY 

Self-Consumption (SC): Storing energy produced on site for future consumption 

Smart Export (SE): An electricity rate in use by Hawaii, designed for BESS 

Stacked: Features or values that can be used or operated concurrently  

Time-of-Use (TOU): A electricity rate based on the time-of-day the electricity is used 

Value of Distributed Energy Resources (VDER): Alternative Rate Structure created by  

NYSERDA 
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1. Introduction 

In 2018, the New York State Energy Research and Development Authority (NYSERDA), 

and the New York State Department of Public Service (NYSDPS) released the Energy Storage 

Roadmap (ESR) (NYSERDA, & NYSDPS, 2018), with the goal of improving the electricity grid 

by deploying energy storage. However, if residential solar customers were to adopt battery 

energy storage technology, what effects would changing rate structures for these consumers have 

on the goals of the Energy Storage Roadmap? Adopting Battery Energy Storage (BES) has been 

concluded by most research that it is beneficial to the system (Agnew & Dargusch, 2015), but 

usually for specific criteria. However, the ESR lacks details about the deployment of the battery 

energy storage, particularly for residential solar prosumers (a consumer of energy that also 

produces energy). This research seeks a method to compare rate structures that could be used for 

such residential solar + storage projects to help meet the goals of the ESR. 

Overall, the ESR has a variety of goals for the deployment of energy storage. The ESR 

lists the following as general desired outcomes; reduced peak demand effects, reduced emissions, 

and reduced costs. The ESR also lists the following as customer-sited storage goals; residential 

solar + storage management, management of PV system output, providing cost savings via 

investment tax credits, limiting exported energy, managing an EV charging load, limiting 

impacts on demand bills, and potentially operating microgrids leading to other varied benefits 

(NYSERDA, & NYSDPS, 2018). Some of these goals can be ‘stacked’, having concurrent 

effects or value. For example, managing PV system output could also limit exported energy. 

Other goals may conflict with each other, such as using energy to manage EV charging as 

opposed to operating a microgrid. If such goals do conflict, NYS would have to determine which 

goal has priority, and find how to incentivize the consumer to act in ways that help the higher 
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priority goals. The ESR focuses on larger scale BES projects, for bulk systems, distribution 

systems, and larger customer cited storage such as businesses. However, as battery costs 

decrease, residential storage projects may also increase, and understanding how residential rate 

structures affect the homeowner’s interactions with the grid becomes necessary. Especially for 

policy makers that wish to encourage customers to operate their battery in ways that help meet 

the ESR goals. 

One such method of incentivizing consumers is based on the existing rate structure 

‘Capacity Alternative Option 2’ for the Value of Distributed Energy Resources (VDER), listed in 

the Value Stack Calculator Overview (NY-Sun, 2019). VDER, or Value of Distributed Energy 

Resources, uses value-stacking, assigns the energy generated different levels of value based on 

certain criteria. Specifically, the hourly Location Based Marginal Price (LBMP) of electricity, 

the Installed Capacity (ICAP) credit, the Environmental Benefits (E) or Renewable Energy 

Credits (REC), the Avoided Demand (D), the Locational System Relief Value (LSRV), and the 

Market Transition Credit (MTC). The ‘Capacity Alternative Option 2’ gives a higher value to 

energy later in the day, to encourage storing energy in batteries for later discharge. This 

alternative rate structure was created to be attractive to customers with storage but may not be 

the best option for residential customers based on the ESR goals and available technology. 

However, VDER is not yet the current standard rate structure for residential prosumers. 

The current standard residential rate structure involving solar energy injection is Net Energy 

Metering (NEM). This is a volumetric method of credit; the prosumer gets credit for the energy 

they produce for the same volume of energy they consume (Abdin & Noussan, 2018). This is a 

slightly different than Net Energy Pricing, or Monetary Metering (NYSERDA, 2017), where the 

monetary value of the energy produced is credited to the prosumer. VDER is a different crediting 
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system intended for larger-scale solar producers, which was adopted in 2017 (NY-Sun, 2019). 

While VDER is a good change for Utilities, as it credits the solar production of consumers at a 

more accurate value (due to the value-stacking), it does not yet consider BES specifically, and is 

currently optional for residential prosumers who wish to transfer. However, VDER is generally 

valued at a lower rate than NEM, so few customers would opt in. And until January 2020, 

residential consumers may apply for NEM under a 20-year contract. Policy makers may want to 

reconsider this length of contract as the BES market/technology improves. There is not currently 

rate structure in use in NYS that is designed to encourage residential BES operation that reflects 

NYS ESR goals for residential prosumers with energy storage. Nor is it likely that residential 

prosumers will install BES systems under NEM, as the efficiency losses from charging the 

batteries would lower the energy credited to the prosumer (Fisher & Apt, 2017). One goal of this 

research to find or create such a rate structures (hourly and/or seasonal) that incentivizes specific 

battery operation to meet ESR goals.  

There are a variety of rate structures currently in use across the world, and all provide a 

variety of benefits and costs. Even in NYS, VDER and NEM offer two different valuations based 

on the consumer and utility criteria. The goal of this research is to determine how different rate 

structures would affect the patterns of BES operation for a residential prosumer from Western 

NY, who uses storage to maximize their own profit under the different rate structures. Further 

analysis of the optimization help find which rate structure best matches the desired behaviors of 

the ESR goals. These goals may require similar or conflicting operation patterns (Appen & 

Braun, 2018). Additional analysis would identify which rate structures best meet which goals to 

what extent, however it does not consider which goal(s) has priority. Such a decision would need 

to be made by policy makers considering or implementing new rate structures.  
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2. Literature Review 

 In attempting to find how different rate structures for residential solar prosumers affect 

their battery energy storage operation, three key themes emerge from the research; the physical 

Solar + Storage system capabilities and costs, the Rate Structures utilized, and the Effects of both 

the storage and rate structure, usually economical. Using information found on these topics 

revealed the needed capabilities of the storage system, the types of rate structures to be analyzed, 

and common goals desired from battery energy storage. It also informed the development of the 

model, including the linear optimization function. 

2.1 Background 

In the initial stages of the search for relevant information, certain criteria needed to be 

met. The research from the past few years (since 2015) would be the most applicable due to the 

increases in performance, decreases in cost, and boosts to capacity for large-scale Lithium-Ion 

Batteries (Ahmadi, Young, Fowler, Fraser, & Achachlouei, 2015). This time period also follows 

the rise of new solar installations in the US from 2013-2016 (SEIA, 2019), which instilled a 

growing fear of the ‘Utility Death Spiral’. This would be a situation where solar prosumers 

would defect from the macrogrid, thus increasing prices on other customers and causing a desire 

to defect, a loop that would lead to the ‘death’ of conventional electric utilities ( Laws et al., 

2017)(Hledik, Zahniser-Word, & Cohen, 2018). While this has not happened, it did lead to 

increased research into alternative rate structures that would better disseminate the benefits of 

residential solar (and storage) across the macrogrid (Hledik et al., 2018).  

The rates structures used throughout the relevant literature are varied, with a few specific 

formats standing out. These include Net Energy Metering/Pricing, Time-of-Use Pricing, Real-

Time Pricing, and Day-Ahead Pricing (See Table 2.1.1). Demand rates were commonly studied 
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rate structures but not used in this model. Demand rates usually charge a certain price based on 

the highest amount of electricity delivered within a time frame. Due to the non-linear nature of 

the demand rate, it was unable to be solved with the linear optimization model used for this 

thesis. Demand rates are also frequently used by electricity consumers with much higher peak 

demands than the residential consumers studied here. Demand response programs, which are 

based on feeding energy in as requested by a 3rd party (usually a utility or demand response 

aggregator), were also not tested. Demand response programs involve larger scaled batteries, 

with more than one decision maker and/or energy contributor. It was the goal of this research to 

create a model where the only operator is the residential consumer, who seeks to maximize their 

own profit. Demand response may be a more feasible option as an increasing number of people 

adopt storage and the systems for operating smaller and more distributed storage improves.  

Table 2.1.1: These were the most common rate structures used in the relevant 

literature, apart from a demand rate/charge. A more in-depth explanation into the 

rates and the variations made to them for this model can be found in Section 3.5. 

Rate Structure Description 

Net Energy Metering (NEM) A Volumetric rate, where the total amount of energy 

produced (in kWh), is credited toward the total amount of 

energy used (in kWh). 

Net Energy Pricing (NEP) Like NEM, but where the total value of energy sent to the 

grid (in $) is credited toward the billing cycle. May be used 

in other rate structures. 

Time-of-Use Pricing (TOU) Electricity is credited based on the time it is sent to the grid, 

usually in a 24-hour structure. It also may be seasonal, and 

an increase or decrease from the standard cost of electricity. 
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Real-Time Pricing (RTP) Based on the Real-Time Price of electricity, usually hourly 

rates. Can be affected by real-time events. 

Day-Ahead Pricing (DAP) Forecasted electricity costs from utilities, like real-time 

price. Usually forecast the day before. 

 

Additionally, much research on BES and rate structures focused on countries outside the 

US, largely seeking relief from higher electricity prices or emissions (Khalilpour, Vassallo, & 

Chapman, 2017). While providing useful information on the models used or background 

information, these countries have different rate structures, electric grid structures, solar capacity, 

economics, etc.. Therefore, for results applicable to the economic situation, solar generation 

capabilities, and policy/rate structures, research from the US was prioritized.  

2.2 Prior Research Results 

The two resulting effects of battery energy storage that are discussed most in the current 

literature are the electricity cost reductions and emission reductions. Most cost reduction 

analyses focus on specific consumers or rates to determine the cost effectiveness of operating or 

purchasing BES. Generally, the larger consumers that operate under demand rates have the 

greatest cost savings for BES. For reducing emissions, the consensus among researchers seems 

to be that unless designed specifically to lower emissions, BES will lead to increases in 

emissions. Fisher & Apt (2017) specify that the increased emissions are caused by efficiency 

losses in the battery, and emission reduction by shifting times of charging/discharging only helps 

in certain regions. And in most cases, the cost to reduce emissions via battery energy storage, if 

possible, is simply prohibitively expensive compared to alternative means (Babacan et al., 2018).  
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Fisher & Apt (2017) and Griffiths (2019), modeled commercial and industrial customers 

that used BES across the country, to find the impacts on costs, emissions, and energy loads. The 

commercial and industrial customers did not have electricity generation on site for their energy 

profile, rather the model used for Griffiths (2019) used the battery solely for the building 

demand, while Fisher & Apt (2017) used energy arbitrage and demand reduction as the battery 

functions. Both models used a battery scaled to the power needs of the customers, which resulted 

in a much larger capacity than a residential sized battery. They found that in specific regions 

BES can mitigate emissions if a well-designed rate structure is implemented. Both recognize the 

rate structure needed involves a time-component based on the emissions of the region. They also 

recognize that a rate structure designed to reduce emissions is not necessarily the type of rate 

structure that provides the most revenue.  

Results often indicated that positive effects like emission reduction were likely 

diminished by higher costs. Emissions reductions were often found in rates that cost significantly 

more than the reduction would be worth (Babacan et al., 2018). However, much research openly 

acknowledges that the grid makeup is shifting, and other regions or the future grid may have 

different outcomes. Other research focused on the costs and effects of using a BES system to 

completely defect from the macrogrid, but these often are too cost prohibitive to be feasible 

options due to the cost of the larger system needed for grid defection (Hittinger & Siddiqui, 

2017) (Ren, Grozev, & Higgins, 2016). And due to intermittent renewable generation, defection 

may end up being ‘dirtier’ than staying on the grid, especially in areas with low grid generation 

emissions.  
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2.3 Models of Battery Operation  

Perhaps the most frequent problem with the research on battery energy storage, and 

microgrids in general, is that the battery operates in a very specific way for nearly all models. 

The battery either will not feed energy into the grid and only cover the local demand (such as in 

Griffith (2019)), or does not charge from local renewable energy, only from the grid (such as in 

Fisher & Apt (2017)). This poses a problem, as the goals of the Energy Storage Roadmap, time-

shifting the residential renewable energy and managing the PV system, may require feeding 

energy from the residential solar system into the grid at a later time.  

In Ren, Grozev, & Higgins (2016) model (Figure 2.3.1), the battery only discharges to 

provide power to the home and does not discharge energy back into the electrical grid. Their 

model studied the cost impact of different sized solar + storage systems on residential locations 

with varying demand and a few electricity rates. They found that the solar + storage systems 

were most attractive in conjunction with TOU rates. They also found that due to battery 

efficiency and the format of some TOU rate structures, the battery would charge from the grid 

during low cost periods. It would then discharge to cover the household demand while solar is 

being produced, feeding the solar directly into the grid and thus avoiding efficiency losses. This 

method of operation could negatively affect the emissions of the system, but Ren, Grozev, & 

Higgins do not study the effects on emissions. 
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Figure 2.3.1:  (Ren, Grozev, & Higgins, 2016). While the flowchart shows the 

battery charging from solar (and references charging from the grid in the text), it 

does not discharge the battery to sell energy to the grid, only discharges to cover 

household demand. 

  

Nojavan et al. (2017), had the ambitious goal of creating a multi-objective model to 

optimize microgrid operation for reductions of emissions and cost. They used a demand response 

program for their system containing a battery, fuel cell, and PV system. Nojavan et al. (2017) 

does find that the specific demand response program helps reduce both cost and emissions in 

their case study. However, the modeled system (shown in Figure 2.3.2) does not discharge 

energy back into the ‘Upstream Grid’, or even the macrogrid, it simply uses the battery storage, 

along with other mechanisms, to provide energy for the overall electrical load.  
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Figure 2.3.2: (Nojavan, Majidi, Najafi-Ghaleloum Ghahramani, & Zare, 2017). 

As seen in the grey circle, the battery storage only takes from the grid (or fuel 

cell/PV), and does not discharge back to the grid, only discharges to cover 

household demand. 

  

Babacan et al. (2018) has a similar situation in Figure 2.3.3, specifically the scenario b, 

where the solar PV, Battery Energy Storage, and macrogrid are used to meet the household 

demand, and the battery is generally used for self-consumption of the generated PV Energy. 

However, Babacan (2018) also shows that in Figure 2.3.3 scenario c, the battery buying and 

selling energy from/to the grid and calls the model ‘Energy Arbitrage’. This refers to the market 

interactions between the system and the macrogrid, and they later explain that emission reduction 

was possible with energy arbitrage but come at very high costs, between $180-$5160 per ton. To 

put that in perspective, New York State estimates the Social Cost of Carbon to be around $40 per 

ton (NYISO, 2018). 
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Fig. 2.3.3: (Babacan et al., 2018). Of the three models discussed in this research, 

the only one that uses solar PV (PV Self-Consumption) does not sell energy to the 

grid, however the model that does sell energy to the grid (Energy Arbitrage) uses 

standalone storage. 

 

Yet even the model used in Figure 2.3.3 only partially captures the capabilities of the 

battery energy storage + solar PV system, because Babacan et al. (2018) does not combine 

energy arbitrage and solar generation. In the model used here (Figure 2.3.4), the battery is 

capable of charging from the PV system and the grid, and can discharge to the grid and for the 

household demand. While features that are desired from a battery energy storage system can be 

realized without this function, the battery being able to feed energy into the grid is a key feature 

that is utilized by larger storage systems and should be considered for residential systems as well. 
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Figure 2.3.4: Model of the System Used. Upon investigation into the models of 

the systems used in much of the research, one of two areas were found missing 

compared to the model used here. For the most part, smaller sized (residential) 

PV + Storage systems did not allow the battery to feed into the grid, or larger 

sized (standalone storage, usually for commercial, industrial, or distribution) did 

not have PV systems, but operated based on their demand charges from the grid 

and battery. This figure represents the 4 hubs of electricity usage/production 

within a home, and the 6 actions available to the homeowner, which are further 

explained in Table 3.2. The key aspect which is better illustrated in this figure is 

how the flow of energy between certain hubs is limited in one direction, 

specifically, energy must flow from the PV or into the Demand, you cannot send 

energy into a PV system or take energy from the demand. However, you may take 

or send energy into the battery and macrogrid. 
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2.4 Research Question 

This thesis seeks to find the effects of new/different rate structures on the goals of New 

York State’s Energy Storage Roadmap when used with a residential solar system and battery 

energy storage system. This research was not provided in the ESR, despite referencing the 

potential for residential solar + storage. The goals of the ESR are reducing costs and emissions, 

managing solar production, limiting exported energy, time-shifting renewable energy, operating 

microgrids, and mitigating peak energy effects. Cost and emission reductions for battery energy 

storage have been researched but did not operate the battery in the same manner that this model 

does. By being able to charge and discharge from the macrogrid, charge from home’s solar, and 

discharge to cover household demand, this provides a different model than recent relevant 

literature (See Figure 2.3.4). The connections between the some goals of the ESR and changing 

rate structures are not well examined in current literature and are expanded upon here. In this 

model, the homeowner has a solar + storage system and will operate it to obtain the most profit 

for their monthly bills. A linear optimization model will determine the residential prosumer’s 

most profitable battery operation under a variety of rates. The annual results will be analyzed 

based on a series of metrics created from the goals of the ESR. 
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3. Methods 

The goal of this system is to provide the most profit to the Solar + Storage prosumer. The 

subject in this method has a PV Solar Array and a Battery Energy Storage System and wants to 

operate it in the ways that are most profitable. Trying various rate structures will yield different 

ways to operate their BES, and the results can be compared with other rate structures. These 

results include the factors related to the goals laid out in the Energy Storage Roadmap. The 

model represents a single residential solar system with battery energy storage and runs a linear 

optimization to determine the battery charge/discharge operation, and energy taken from/sent to 

the grid. Using a variety of rate structures, it can determine how the residential solar customer 

would operate a BESS within their home to maximize their own profit with the different rate 

structures. The output from that optimization was then used to see how well the customer’s 

behavior matched the goals of the Energy Storage Roadmap based on the metrics mentioned in 

Table 3.3.1. 

The process starts with optimizing for customer profit (Babacan et al., 2018) (Maleki, 

Rosen, & Pourfayaz, 2017). The monetary value to credit demand and production was based on 

different rate structures, run for each month, then summed over a year to simulate a customer’s 

annual electricity bill. Linear optimization was used to determine what actions the prosumer 

would make in order to maximize their profit with the battery. The outcomes or actions resulting 

from the optimization were then used to determine how well the new rate structures matched the 

goals of the Energy Storage Roadmap. This was determined by analyzing the use patterns and 

metrics based on ESR goals; the difference in CO2 emissions compared to a home with solar, 

change in utility electricity cost, change in consumer bills, and change in demand, demand 

profiles, and peak demand of the prosumer. 
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3.1 What actions the homeowner can take 

There are essentially four different bodies within the model; the macrogrid/meter, the PV 

system, the battery, and the household demand. The homeowner has two inflexible conditions, 

the amount of energy that is produced by their solar array aka the PV System, and the energy 

needed for their home, aka the Household Demand. For these two bodies however, the energy 

may be sent/received to/from various places. The PV System may send energy to cover the 

Household Demand, to charge the battery, or send excess energy to the grid. The Household 

Demand may be covered by the PV System, the Battery, or from the grid. The homeowner has 

control over the battery operation, and any demand not covered by the battery or PV system must 

be taken from the grid.  

It is important to note that the grid should not be receiving and delivering energy within 

the same hour. For example, when the PV system is producing energy the household demand 

must be met first, as the grid could not send energy and receive it. A single wire cannot allow 

flow in opposite directions at the same point in time. This is also true for the battery’s 

charging/discharging. To use Figure 2.3.4 to explain, arrows A/C cannot be used at the same 

time as arrows B/F. Nor can arrows A/E be used at the same time as arrows B/G. While 

performing linear optimization, this type of constraint is difficult to process, as it is seemingly 

non-linear. To account for this difficulty, the model uses the ‘Big M’ method, explained with 

equations 5-15. 

3.2 The Model 

The model created for the battery operation requires well defined variables and 

constraints for the battery operation, a method that allows for discharging/charging to/from the 
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macrogrid, a way to balance the energy flowing in/out of the system, and the linear optimization 

equation to get the prosumer the maximum profit.   

Variables 

Pv = Solar Energy 

Hd = Household Demand 

Bc = Battery Charging Energy 
Bd = Battery Discharging Energy 

Bt = Battery Total Charge 

Bcbin = Battery Charging Energy Binary 

Constraint 

Bdbin= Battery Discharging Energy Binary 

Constraint  
Fi  = Financial Charge for Grid Energy into 

House (Demand Cost) 

Fo  = Financial Credit for Energy Sent out to 

Grid (Injection Credit) 

 

Gi = Grid Energy into House 

Go = Energy Sent to Grid 

Gibin  = Grid Energy into House Binary 

Constraint 

Gobin = Energy Sent out to Grid Binary 

Constraint 

M = For Use in the ‘Big M’ method 

Me = Marginal Emission Factor 

Ei = Efficiency Lost Increase 

Ed = Efficiency Lost Decrease 

RTP = Real-Time Price of Energy 

h=hour 

hi=initial hour 

hf=final hour

 

Battery Physical Constraints 

The constraints for the battery were taken from the Tesla Powerwall functionality (Tesla, 

2019). A Tesla Powerwall was chosen for a variety of reasons; the popularity of Tesla, the 

comparable cost, and the use of Lithium-Ion rather than Lead-Acid. Batteries of similar 

capability are also used in much of the current research (Fridgen, Kahlen, Ketter, Rieger, & 

Thimmel, 2018) (Babacan et al., 2018). The Battery has a maximum charge/discharge (Bc/i) rate 

of 5 kW (Equations 1-2), and a maximum Capacity of 13.5 kWh (Equation 3). 

0 ≤ 𝐵𝑐 ≤ 5 [1] 

0 ≤ 𝐵𝑑 ≤ 5 [2] 

0 ≤ 𝐵𝑡 ≤ 13.5 [3] 

 

The Battery Total (Bt) for each hour (Equation 4) is calculated based on the amount the battery 

charges or discharges, with efficiency reducing the charge to the total and increasing the 

discharge from the total, as well as the battery total from the previous hour. 
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𝐵𝑡ℎ = 𝐵𝑡ℎ−1 + 𝐵𝑐ℎ ∗ 𝐸𝑑 − 𝐵𝑑ℎ ∗ 𝐸𝑖 [4] 

Big M Method 

The model uses the ‘Big M’ method for constraining the battery charging/discharging and 

grid energy flowing in/out of the house. The ‘Big M’ method is used in linear programming to 

create constraints on variables within the optimization that wouldn’t normally be viable for linear 

programming. Specifically, in this case some variables need to be 0 if a paired variable is greater 

than 0. To use the ‘Big M’ method, a new set of binary variables are created and paired with the 

original variables (Equations 6-9). These binary variables are summed, and the sum must be less 

than or equal to 1 (Equations 10-11). These paired binary variables are then multiplied with a 

number larger than they could theoretically be (Equation 5), to become the upper limit for the 

paired non-binary variables (Equations 12-15). This way, whichever variable is required to be 0 

cannot exceed the zero value of the binary variable. 

For this model, the ‘Big M’ method involves the Battery Charge (Bc)/Battery Discharge 

(Bd), and the Grid Energy Into House (Gi)/Energy Sent out to Grid (Go) for the two sets of 

paired binary variables (Xbin). This is to ensure the Battery cannot charge and discharge at the 

same time and the Grid cannot both send and receive energy 

𝑀 = 100 [5] 

 𝐵𝑐𝑏𝑖𝑛 = 𝑏𝑖𝑛 [6] 

𝐵𝑑𝑏𝑖𝑛 = 𝑏𝑖𝑛 [7] 

𝐺𝑖𝑏𝑖𝑛  = 𝑏𝑖𝑛 [8] 

 𝐺𝑜𝑏𝑖𝑛  = 𝑏𝑖𝑛 [9] 

 

0 ≤ 𝐵𝑐𝑏𝑖𝑛 + 𝐵𝑑𝑏𝑖𝑛 ≤ 1 [10] 

0 ≤ 𝐺𝑖𝑏𝑖𝑛  +  𝐺𝑜𝑏𝑖𝑛 ≤ 1 [11] 

0 ≤ 𝐵𝑐 ≤  𝐵𝑐𝑏𝑖𝑛 ∗ 𝑀 [12] 

0 ≤ 𝐵𝑑 ≤  𝐵𝑑𝑏𝑖𝑛 ∗ 𝑀 [13] 

0 ≤ 𝐺𝑖 ≤  𝐺𝑖𝑏𝑖𝑛 ∗ 𝑀 [14] 

0 ≤ 𝐺𝑜 ≤  𝐺𝑜𝑏𝑖𝑛 ∗ 𝑀 [15] 

Balanced Energy Equation 

The total energy flowing into and out of the house must be balanced. There shouldn’t be 

an excess of energy sent into the house that isn’t used, and there cannot be energy sent to the grid 

if the household needs aren’t met. To ensure this, the model uses the Energy Balance Equation 
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(Equation 16), where any energy flow needed for the system (Household Demand, Battery 

Charging, Energy into Grid) is taken from the energy flow into the system (PV solar, Battery 

Discharge, Grid into House). 

(𝑃𝑣 + 𝐵𝑑 ∗ 𝐸𝑑 + 𝐺𝑖) − (𝐻𝑑 + 𝐵𝑐 ∗ 𝐸𝑖 + 𝐺𝑜) = 0 [16] 

Unlike the Battery Total (Equation 4), the Battery Discharge (Bd) Efficiency is decreased (Ed), 

and the Battery Charge (Bc) Efficiency is increased (Ei). This is done to ensure the efficiency 

losses are correctly compensated for by the grid/solar/demand. 

Optimization Equation 

After all the constraints, the optimization equation is relatively simple. Maximize the sum 

of the consumer’s bill from the initial to the final hour (Equation 17). To get the consumer’s bill, 

multiply the Grid Into House Energy by the demand credit and subtracted from the Energy Sent 

To Grid multiplied by the injection credit.  

max ∑ (𝐹𝑜ℎ ∗ 𝐺𝑜ℎ − 𝐹𝑖ℎ ∗ 𝐺𝑖ℎ)
ℎ𝑓
ℎ𝑖  [17] 

3.3. Metrics: 

 After performing the linear optimization with Equation 17, the model now needs to 

determine the effects of the battery operation. This is done with various metrics, values based on 

the goals set forth in the Energy Storage Roadmap. These goals, seen in Table 3.3.1 below, are 

calculated from the data gathered after the optimization.   

Table 3.3.1: A basic description of the goals of storage from the Energy Storage 

Roadmap. ‘What the battery would do’ is a general description of the way the 

battery would need to function to match ESR Goals. Energy from discharging the 

battery could be used to cover the household demand or also to be sent into the 

grid.  

ESR Goals What it means What the Battery would do 

Cost Reduction Reduce Electricity delivery costs 

to the consumer and/or the utility 

Discharge while electricity costs are 

high, charge while costs are low 
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Emission 

Reduction 

Decrease the net CO2 Emissions 

created by energy use from the 

home/battery 

Charge while CO2 emissions are 

low, discharge while emissions are 

high 

Operate 

Microgrids 

Increase grid resiliency, operate 

with little grid energy 

Have increased battery Capacity, or 

decreased grid energy in. 

Solar + Storage 

Management 

Use BES to manage PV output Charge from the home solar system 

Limiting 

Exported Energy 

Reduce high demand and 

increase low demand 

Charge when demand is low and 

discharge when demand is high 

Peak Demand  Reduce peak demand from the 

grid  

Discharge the battery at high peak 

demands 

Time-Shift 

Renewable 

Energy 

Charge from renewables while 

they are producing and discharge 

when they are not 

Charge from PV systems or Grid 

renewables, and discharge when not 

producing 

 

Cost Reduction 

The cost to the prosumer (Equation 18) is important to consider for any rate structure 

design. The Consumer Cost metric is the cost of buying/selling electricity to the utility and is 

dependent on each rate structure. The cost is determined by taking the grid energy in/out result of 

the monthly optimizations for each hour, multiplying each by their respective financial credits, 

and summing the hourly totals for the year. Thus, the consumer cost is the cost of buying/selling 

electricity from/to the grid for the year ($/yr.). The battery is used to minimize that cost 

(maximize the profit). Thanks to the linear optimization, all that requires is the same 

optimization equation, but negative to account for the metric being a cost rather than a bill credit 

as it was defined as in the model. 

-∑ (𝐹𝑜ℎ ∗ 𝐺𝑜ℎ − 𝐹𝑖ℎ ∗ 𝐺𝑖ℎ)
ℎ𝑓
ℎ𝑖  [18] 

The Utility Cost (Equation 19) is more complicated than the consumer cost. The utility is 

both buying energy from the macrogrid generators (at the Real-Time Price of Energy) and the 

prosumer (at the injection credit cost), as well as selling energy to the prosumer (demand cost). 

This means that in order to find the net cost to the utility, the metric needs to calculate the 
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difference between the Real-Time Price of energy and the Financial charges the prosumer pays 

or gets credit for.  

∑ {(𝐺𝑖ℎ ∗ (𝑅𝑇𝑃ℎ − 𝐹𝑖ℎ) + 𝐺𝑜ℎ ∗ (𝐹𝑜ℎ − 𝑅𝑇𝑃ℎ)}
ℎ𝑓
ℎ𝑖  [19] 

As seen in Equation 19, the prosumer pays the utility for Grid Energy into the Home (Gi), so the 

difference in price between the Real-Time Price (RTP) and the Financial Charge (Fi) is profit, 

whereas the prosumer gets credit for Energy Sent to the Grid (Go), so the difference between the 

Financial Credit (Fo) and the Real-Time Price (RTP) costs the utility. This equation provides the 

cost per hour for providing/buying energy to/from the home, and the metric is summed for the 

year ($/yr.).  

 The consumer and utility costs used only considers the cost of buying/selling the energy 

delivered to/from the home, i.e. the ‘delivery charge’ for electricity. It does not take minimum or 

fixed costs that would be present on a typical consumer bill into account. One such cost, a 

demand change, in not used in the model optimization. Demand charges are based on the highest 

electricity demand for the consumer, and apply a charge based on the amount used for that peak 

demand. This is a non-linear cost that was not included in the linear optimization model. Other 

fixed costs, minimum costs, or subsidies/credits would be independent of the optimization and 

applied to a consumer bill per month. These types of additional costs could be used to equalize 

differences in costs between rate structures that may otherwise have preferable operation 

patterns. Such changes in fixed costs should be considered by policy makers that wish to 

implement rate structures while mitigating costs to different entities. 

CO2 Emission Changes 

CO2 emissions for the modeled system are based on the Marginal Emission Factors for 

Upstate New York. These factors provide an hourly emission rate (kg/kW) for 3 seasons, Winter 
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(November - March), Summer (May - September), and ‘Transient’ (April & October). These 

hourly emission factors (Me) are multiplied by the hourly difference between Grid Energy into 

the Home (Gi); which is ‘dirty’ energy taken from the grid, and Energy Sent to Grid (Go); which 

is ‘clean’ energy from the battery or solar, thus reducing overall emissions. Summing this 

annually gives a net value of marginal CO2 emissions (kg/yr.).  Subtracting the annual marginal 

emissions of a similar home with only a solar system shows the change in CO2 emissions 

generated from the battery operation, where a positive value is an increase in emissions over a 

solar-only home, and a negative value is a decrease in emissions from a solar-only home.  

∑ (𝑀𝑒ℎ ∗ {𝐺𝑖ℎ − 𝐺𝑜ℎ})
ℎ𝑓
ℎ𝑖 − 𝑆𝑜𝑙𝑎𝑟𝐶𝑂2 [20] 

While the energy sent to the grid from the battery may not have been ‘clean’ originally, if it was 

charged from the grid, that is compensated by the increase in emissions from when it did charge. 

Theoretically, the battery could be charged during periods of low emissions and discharged 

during high emissions in order to reduce overall emissions. This is explored later with the 

‘Marginal Emission’ rate structure and the ‘Real-Time Price/Day-Ahead Price + Cost of Carbon’ 

rate structure. 

Operate Microgrids (Increased Resiliency), Manage PV System, Limiting Exported Energy, Time 

Shift Renewable Energy (Grid Average Daily Use Patterns) 

 Operating Microgrids/Increasing Resiliency can be measured by taking the average 

battery capacity (Equation 21) and the total energy taken from the grid (Equation 22). The 

average amount of energy stored in the battery is a good indicator of how readily the household 

can ‘island’ itself from the grid in the event of an outage.  

∑ (𝐵𝑡ℎ)
ℎ𝑓
ℎ𝑖

ℎ𝑓 
 [21] 
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However, the battery average capacity is not the only factor when determining microgrid 

operation or increases in resiliency. When determining how effective the BES is at managing the 

PV output and how it limits exported energy, the model compares the amount of energy taken 

from/ sent into the grid across different rate structures (Equation 22). As the prosumer charges 

the battery from the solar and discharges to meet the demand, the amount of energy taken 

from/sent to the grid decreases (kWh/yr.). However, if the prosumer charges from the grid (when 

prices are low) or sends the energy to the grid (when prices are high), the Grid In/Out totals will 

increase.  

∑ 𝐺𝑖ℎ
ℎ𝑓
ℎ𝑖 ,  ∑ 𝐺𝑜ℎ

ℎ𝑓
ℎ𝑖  [22] 

 The average daily use patterns for the battery and grid also provide a clearer 

understanding of how the battery operates in conjunction with the grid. These patterns are found 

by taking the average battery use (Equation 23) or grid use (Equation 24) for a 24 hour day. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑓(ℎ𝑖 − ℎ𝑓, ℎ𝑥, 𝐵𝑐ℎ − 𝐵𝑑ℎ) [23] 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑓(ℎ𝑖 − ℎ𝑓, ℎ𝑥, 𝐺𝑖ℎ − 𝐺𝑜ℎ) [24] 

 

The average daily use patterns are important when considering other metrics. For example, the 

average battery state of charge may be low for some rate structures because it uses the energy 

stored to meet the household demand through the day. This could lead to lower average battery 

state of charge, but still relatively high resiliency since it operates mostly independently of the 

grid. This would also be reflected in the total Grid In Energy (Equation 22] 

Peak Demand/Injection  

 The peak demand for the average consumer usually occurs during the peak demand for 

the macrogrid, which can lead to negative effects. Increased peak demands for the macrogrid can 

lead to increases in electricity costs and use of high-emitting peaker plants. When comparing the 

peak demand/injection for different rate structures, the time and amount of energy taken from the 
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grid (or sent out to the grid if the rate incentivizes discharging during to the grid) at the highest 

points, provides valuable information on changes to the prosumer’s peak demand/injection. A 

lower peak demand/injection is more desirable, as it indicates more stable consumption. The 

time at which the demand/injection peaks is not a metric itself but provides insight to the 

underlying motivation/optimization that results in such battery behavior. Such information can 

also be seen by comparing the average daily use patterns. The peak demand/injection was found 

with Equation 25. 

𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑 = max(𝐺𝑖), 𝑃𝑒𝑎𝑘 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = max (𝐺𝑜) [25] 

3.4 Data Sources 

The model created was of a residential prosumer with an average demand profile and 

average solar production for the region of Rochester, NY. The demand and PV production 

profiles for the home were needed to create such a model, as well as the relative size for a base 

case home. In this case, the average residential solar system installation size in NY is about 7.5 

kW according to NYERDA NY-Sun Data and Trends residential data (NY-Sun, 2019). Inputting 

the average size and location (7.5 kW and Rochester, NY) into the PVWatts Calculator from 

NREL, gets the PV AC System Output (W) data column, as well as the hourly time and date for 

the year (NREL, 2016). At this point it is best to convert the AC system output to kW, as using 

kilowatts rather than watts will be beneficial in keeping a standard unit between the production, 

household demand, battery operation, and cost of electricity.  

The next set of data gathered was the household demand data. This was taken from 

OpenEI’s dataset of the “NREL Commercial and Residential Hourly Load Profiles for all TMY3 

Locations in the United States” using a base case load for a home in Rochester, New York 

(OpenEI, 2018). In this case, the column for the annual hour and date and the Electricity: Facility 
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[kW](Hourly) is needed. Combining the annual data of the solar PV production and household 

demand required too much memory for the model and solver used in the analysis (OpenSolver, 

2019) so the year was segmented into months. To create the annual rate structure, two columns 

for pricing were needed, one for the electricity consumed by the household from the grid and one 

for the electricity produced by the household sent to the grid. These changed with different 

modeled rate structures.  

The Real-Time Price of Electricity is needed to calculate the utility costs, as well as for 

the Real-Time Price rate structures. This was found with LCG Consulting (2019) and NYISO 

Industry Data, using the Genese region for 2016 to correspond with our PV production data. The 

real time price of electricity gives a good indicator of the cost to utilities in providing, selling, 

and buying the electricity going to and coming from the residence. To calculate the CO2 

emission reduction that the battery provides, the Marginal Emission Factors for Upstate NY were 

used. They have averaged hourly (0-23) CO2 emissions in kg/kW for 3 different seasons, Winter 

(November-March), Summer (May-September), and Transition Seasons (April & October). By 

making any energy the home provides to the grid have negative emission factors (PV & 

discharging the battery), and energy taken from the grid have positive emission factors (meeting 

demand & charging the battery), the model will then sum the annual results and determine the 

total emissions avoided by the residential system (See Equation 20).  

The PV data, Household Demand Data, Real Time Price, and CO2 Emissions give the 

data needed for the average homeowner’s hourly electricity profile for a year’s time. The data 

was then used to create the model of the homeowner’s optimal battery operation based on 

different rate structures for crediting the feed-in energy to the macrogrid and electricity demand 

rate structures.  
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3.5 Rate Structures 

There are a variety of rate structures chosen for use in the model with various purposes. 

For residential homeowners in NYS, the most common rate structure is Net Energy Metering 

(NEM). This is a volumetric rate, where the total amount of energy produced (in kWh), is 

credited toward the total amount of energy used (in kWh). NEM thus does not encourage the use 

of a BES, as the total amount of solar injected would be credited, and the efficiency losses of the 

battery would always result in less energy being credited. NEM is used frequently to encourage 

residential solar adoption, as an average home may greatly reduce their electricity bills with an 

average sized solar system. However, NEM may not fully capture the effects that the operation 

of residential solar has. Residential homes with solar often stop producing energy as demand for 

their homes and the macrogrid is spiking (later in the evening), leading to a drastic increase in 

demand from the grid. Despite this increase in overall demand from the macrogrid, there would 

not be an increase in pricing for NEM rate structures. As more and more homes install solar and 

are put on NEM rate structures, this may exacerbate the problem. 

New York State permits residential homeowners to use NEM for a 20-year period after a 

solar installation. This provision is in place until 2020, but any change afterwards has not yet 

been announced. One potential change is to simply reduce the value of NEM by reducing the 

injection credit. This changes the rate from a volumetric rate to a monetary rate. This was 

modeled by changing the injection credit to varying percentages of the demand cost. It was found 

that for changes between 82-100%, there was no change to consumer behavior. This was due to 

the efficiency losses incurred by the battery charge/discharge. Changing the injection value to 

81% or lower resulted in the consumer charging the battery during solar production and 

discharging to cover household demand. 
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A potential alternative to traditional NEM proposed by NYS is the Value of Distributed 

Energy Resources (VDER) rate structure. There are many different ‘stacked’ variables that 

VDER uses to more accurately value the distributed generation of electricity. VDER has a Time-

of-Use rate structure mentioned specifically in the Value Stack Calculator (VSC) to be used with 

BESS called the Capacity Alternative 2. This TOU rate would increase the value of energy 

between the hours of 2 PM – 7 PM during the months of June, July, and August. For use in the 

model, this rate was designed based on Net Energy Pricing (NEP), where the injection credit and 

demand costs are equal at any given point in time. Between the hours of 2 PM – 7 PM, this 

Capacity Alternative rate structure gave a 25% increase for both the injection credit and demand 

cost (Equations 26-28). This was done both for the originally defined summer months as well as 

annually. 

VDER Capacity Alternative 2 

0 ≤ ℎ𝑥 ≤ 13, 𝐹𝑜 = 𝐹𝑖 = $0.11 [26] 

14 ≤ ℎ𝑥 ≤ 19, 𝐹𝑜 = 𝐹𝑖 = $0.13 [27] 

19 < ℎ𝑥 ≤ 23, 𝐹𝑜 = 𝐹𝑖 = $0.11 [28] 

 

VDER was originally designed for use during the summer season, but an annual 

alternative could be created based on the marginal emission factors for the region, as well as the 

limits the battery would have. The rate structure created was called Marginal Emissions (ME), 

and used the 25% increase like VDER, but over different and shorter time periods for each 

season. These were 10 PM – 2 AM during the winter season (Equations 29-31), 12 PM – 4 PM 

during the summer season (Equations 32-34), and 11 AM – 3 PM during the transient months 

(Equations 35-37). These seasonal TOU rates can also be used with NEM during the off months, 

like the VDER Capacity Alternative operation in the summer. 

ME Winter 

0 ≤ ℎ𝑥 ≤ 1, 𝐹𝑜 = 𝐹𝑖 = $0.13 [29] 

2 ≤ ℎ𝑥 ≤ 21, 𝐹𝑜 = 𝐹𝑖 = $0.11 [30] 
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22 ≤ ℎ𝑥 ≤ 23, 𝐹𝑜 =  𝐹𝑖 = $0.13 [31] 

 

ME Summer 

0 ≤ ℎ𝑥 ≤ 11, 𝐹𝑜 = 𝐹𝑖 = $0.11 [32] 

12 ≤ ℎ𝑥 ≤ 15, 𝐹𝑜 =  𝐹𝑖 = $0.13 [33] 

16 < ℎ𝑥 ≤ 23, 𝐹𝑜 = 𝐹𝑖 = $0.11 [34] 

 

ME Transient 

0 ≤ ℎ𝑥 ≤ 10, 𝐹𝑜 = 𝐹𝑖 = $0.11 [35] 

11 ≤ ℎ𝑥 ≤ 14, 𝐹𝑜 =   𝐹𝑖 = $0.13 [36] 

15 < ℎ𝑥 ≤ 23, 𝐹𝑜 = 𝐹𝑖 = $0.11 [37] 

 

Another Time-of-Use rate designed for BESS is the Smart Export rate structure, currently 

in use in Hawaii. This rate does not credit any injection of energy into the grid between the hours 

of 9 AM - 3 PM and otherwise uses net pricing at the standard rate (Equations 38-40). This 

drastically increases consumer costs and reduces utility costs, and the battery chosen does not 

have the capacity to store all solar electricity produced during this time. However, based on the 

previous testing with the NEM percentage alternatives, the rate structure would have similar 

performance if the credit between 9 AM – 3 PM was simply reduced to 81% of the standard rate 

rather than no credit at all (Equations 41-43). This rate structure could also be changed by 

altering the hours or seasons that it would be in use, which was done with the Smart Export 81% 

11-1, June-August rate structure (Equations 44-46).  

Smart Export 

0 ≤ ℎ𝑥 ≤ 8, 𝐹𝑜 = 𝐹𝑖 = $0.11 [38] 

9 ≤ ℎ𝑥 ≤ 3, 𝐹𝑜 = 0, 𝐹𝑖 = $0.11 [39] 

4 ≤ ℎ𝑥 ≤ 23, 𝐹𝑜 =  𝐹𝑖 = $0.11 [40] 

 

Smart Export 81% 

0 ≤ ℎ𝑥 ≤ 8, 𝐹𝑜 = 𝐹𝑖 = $0.11 [41] 

9 ≤ ℎ𝑥 ≤ 3, 𝐹𝑜 = $0.08, 𝐹𝑖 = $0.11 [42] 

4 ≤ ℎ𝑥 ≤ 23, 𝐹𝑜 =  𝐹𝑖 = $0.11 [43] 

 

SE 81% 11-1 J-A 

0 ≤ ℎ𝑥 ≤ 8, 𝐹𝑜 = 𝐹𝑖 = $0.11 [44] 

11 ≤ ℎ𝑥 ≤ 1, 𝐹𝑜 = $0.08, 𝐹𝑖 = $0.11 [45] 

2 ≤ ℎ𝑥 ≤ 23, 𝐹𝑜 =  𝐹𝑖 = $0.11 [46] 
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Real-Time Pricing (RTP) is a rate structure created using the actual energy price from the 

NYISO data, which is the price that the utilities pay for the energy they deliver (Equation 47). 

Day-Ahead Pricing (DAP) operates in much the same way, but the price is forecasted ahead of 

time (Equation 48). This leads to real-time pricing having more instability due to events that are 

not forecasted. The original RTP/DAP rates used net pricing, where the injection credit and 

demand costs were equal. An alternative was also tested with the model, using RTP/DAP for the 

injection credit and a standard flat rate for the demand costs (Equations 49-50). RTP/DAP prices 

are generally lower than the consumer demand cost, and if the prices are higher it is because the 

grid demand is much higher than normal. The RTP/DAP rates did not reduce emissions well, so 

another rate structure was created using both the RTP/DAP prices while adding on a cost of 

carbon. Using the marginal emissions (kg/kW) multiplied by the cost of carbon ($/kg) and added 

to the RTP/DAP rates created the RTP/DAP + Cost of Carbon rate structures (Equations 51-52). 

Real-Time Price 

 𝐹𝑜 = 𝐹𝑖 = 𝑅𝑇𝑃 [47] 

 

Day-Ahead Price 

 𝐹𝑜 =  𝐹𝑖 = 𝐷𝐴𝑃 [48] 

 

RTP Flat Demand 

 𝐹𝑜 =  𝑅𝑇𝑃, 𝐹𝑖 = $0.11 [49] 

 

DAP Flat Demand 

𝐹𝑜 =  𝐷𝐴𝑃, 𝐹𝑖 = $0.11 [50] 

 

RTP + Cost of Carbon 

𝐹𝑜 = 𝐹𝑖 = 𝑅𝑇𝑃 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑟𝑏𝑜𝑛 ∗ 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 [51] 

 

DAP + Cost of Carbon 

𝐹𝑜 = 𝐹𝑖 = 𝐷𝐴𝑃 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑟𝑏𝑜𝑛 ∗ 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 [52] 

 

 At this point, every part of the model is in place. The demand profile for the household, 

the solar energy production, the battery capabilities, the constraints the prosumer must adhere to, 
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the linear optimization equation, the cost of electricity delivery for utilities, the marginal 

emission factors, and the different rate structures. The next step is to run the optimization and 

compare the metrics between the different rate structures. 
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4. Results  

4.1 Time-Shift & Annual Daily Averages 

 When analyzing the results of the optimization for each rate structure, the first metric to 

be observed is the average daily use patterns (Figure 4.1). These patterns help give a general idea 

of the effects the rate structures have on the interactions between the battery, grid, solar system, 

and household demand. Particularly, these daily use patterns (seen for each rate structure in 

Figure 4.1) are useful in identifying how well the optimization time-shifts the solar energy, PV 

management, and potential microgrid operation. As seen in the standard Net Energy Metering, 

the solar production would normally be sent to the grid between 8 AM and 4 PM. If the battery 

charges during this time period (as seen in Figures 4.1.2-3,5,8,10-12), then it successfully time-

shifts the renewable energy while managing PV output. Another goal that can be observed in the 

average daily use patterns is the peak demand/injection. The peak demand/injection can cause 

stress on the grid connections, especially if used frequently at high power . The sharper the 

difference between the peaks, the more problems that may arise. Generally, smoother and flatter 

curves are desired for demand/production profiles. Looking at Figure 4.1, VDER & the Marginal 

Emissions rates may not be desirable considering the goal of reducing peaks/peak shaving.  
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Figure 4.1: Shown here are the annual (except for Marginal Emissions, which 

varied by season) Average Daily Use Patterns for the rate structures analyzed, 

along with some of their adjusted/changed rates that provided interesting/useful 

results. For each graph, the green solid line represents the battery operation, 

positive being charged, negative being discharged, and the red dashed line 

represents energy from the grid, positive energy fed into the house, negative being 

sent out to the grid. The x-axis is the time of day (0-23), and the y axis is the kW 

being used by the battery/grid. 

 

Discussion of Rates based on Average Daily Use (Figure 4.1) 

For Net Energy Metering (NEM, Figure 4.1.1), the model found that if NEM credits the 

production of energy above 81% of what it charged, then the model did not operate the battery. 

Thus, as energy is produced by the solar it is sent to the grid. However, if the value of the credit 

for production fell to or below 81%, the desired behavior shifted, as we see in 81% Net Metering 

(Figure 4.1.2). The same concept was also applied to the VDER rate structure, to find at which 

point above 100% the changes in behavior take place, and it was found that an increase of 23% 

or more would change the optimization result. Thus, any rate structure proposed will need to take 

the efficiency of the battery, given that a 90 % efficiency means rate changes between 82-122% 

will not change behavior. As battery technology improves, this range should decrease. At the 

81% injection credit for NEM, the battery is used to charge during solar production as much as 

possible, with excess production being sent to the grid. The battery is then discharged later to 

cover some of the household demand. This is a great example of microgrid operation and 

managing the PV system output, which can also be seen later in Table 4.2.1. 

The next rate structure, VDER (Figure 4.1.3), increases the credit/charge for energy 

between 2 PM – 7 PM. A noteworthy consequence of this is that immediately at 2 PM there is a 

sharp spike in energy sent to the grid, a combination from both the battery and the PV system, as 

there is still solar production at that time. This also has the side effect of causing the battery to 
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drain and take energy from the grid immediately after 7 PM. These sharp peaks are not desired 

behavior, as discussed with the peak effects. 

The next set of rate structures in Figure 4.1 are the Real-Time Price (RTP) rates, which 

are more unstable than NEM. The first RTP (Figure 4.1.4) rate used a Net Energy Pricing (NEP) 

structure, where both the credit for production and cost for energy were the same. This led to a 

scenario where the battery didn’t charge from the solar as much, but rather from the grid when 

the energy was less expensive during the morning. The RTP Flat Demand rate changes the rate 

to only credit injected energy at the Real-Time Price and instead charge the normal price of 

energy for energy from the grid (Figure 4.1.5). RTP Flat Demand functions almost the same as 

81% NEM, charging during solar production then discharging later to cover some of the 

household demand, with a small difference around 11 AM. Given the battery charges less at this 

point on average, it can be assumed that the price of energy at 11 AM may be high enough 

occasionally to be worth inserting energy into the grid. Finally, the last of the Real-Time Price 

rates is the RTP + Cost of Carbon (Figure 4.1.6). This rate structure is created by combining the 

Real-Time Price of Energy with the Cost of Carbon (Zeng et al., 2018). This rate structure seems 

to follow the same general pattern as the normal RTP but is slightly more unstable. This 

increased instability may be due to the seasonal changes in the marginal emission factors 

affecting the cost of carbon. Because these are annual averages, the seasonal changes may affect 

the annual average stability.  

Day Ahead Pricing (DAP) (Figure 4.1.7), is like RTP, both in the structure and resulting 

patterns of behavior. DAP is forecasted by utilities to estimate electricity prices, generally 

leading to smoother transitions/curves, and less instability. These aren’t very apparent when 

comparing Figure 4.1.4 and 4.1.7, as the instability in RTP is smoothed by the annual average. 
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However, when comparing RTP to DAP, we notice some irregularities. One example is at 8 PM 

the RTP rate encourages battery discharge, indicating higher prices, while the DAP does not. 

While this could be chalked up to the instability inherent in RTP, these patterns are averaged 

over a year, which means it is more likely that the DAP forecast is missing a peak demand at 8 

PM, causing spikes in the RTP. A similar trend occurs at 5 AM. Like the normal DAP and RTP, 

the overall pattern for the flat demand rates (Figure 4.1.8) are similar, but again with slight 

differences. The slight peak at 11 AM from the RTP still there, but the battery has a smoother 

transition over that point. The differences between the DAP/RTP + Cost of Carbon (Figure 4.1.9) 

are hard to discern due to the more chaotic patterns but seem to be comparable to the differences 

between the regular RTP/DAP, with shifts at 5 AM and 8 PM. 

The rate structure is Smart Export (Figure 4.1.10), used in Hawaii and developed for 

battery energy storage. The structure credits the production of energy at $0 from 9 AM – 4 PM, 

and equal to the demand between 4 PM – 9 AM, while demand remains consistent through the 

day. For this rate, the model shows an increase in battery charging from the solar during the day, 

and overall decreases in energy taken from the grid. Like the NEM analysis (4.1.1), the Smart 

Export 81% (Figure 4.1.11) shows that changing the production value from 0% of the demand to 

81% does not change the pattern of behavior. Changing the time period (Figure 4.1.12) from 9 

AM- 4 PM to 11 AM – 2 PM has a very significant effect. While the beginning and end of the 

day have similar grid use, if slightly increased due to less BES charging, the sharp peaks between 

sending energy to the grid and charging the battery are very pronounced. 

The Marginal Emission (ME) rate structure was designed to be like the VDER rate, 

where for a period during the day, production and demand are 25% higher. The difference is 

VDER was originally designed for the summer, while the ME rate is designed for each season of 
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the marginal emission factors. In the winter (Figure 4.4.13), this is between 10 PM- 2 AM, the 

summer (Figure 4.1.14) 12 PM – 4 PM, and the transient season (Figure 4.1.15) 11 AM – 3 PM. 

With each season there are different battery and grid trends to accommodate this. In the winter, 

there is increased demand at night, as the battery charges during the day to discharge later. In 

summer, the battery charges in the morning, and later has very high discharge rates during the 

afternoon. The transient season is very similar to the summer due to the similar time frames. 

4.2 Rate Variations 

 The six main rate structures, Net Energy Metering (NEM), Value of Distributed Energy 

Resources (VDER), Marginal Emissions (ME), Smart Export (SE), Real-Time Price (RTP), and 

Day-Ahead Price (DAP), all had various variations used to either compare to another rate or 

achieve a better metric of an ESR goal. The tables and charts in this section explain the 

reasonings behind the variations to the base rate structures, and how they ended up comparing to 

the original. 

Net Energy Metering 

Table 4.2.1: Metrics for Net Energy Metering (NEM) rate structures. Rates 

highlighted in blue have injection credit above 81%, rates highlighted in orange 

have injection credit 81% or below. The blue rates do not operate the BES, while 

the orange rates all operate in the same manner. The Net Energy Metering rate, 

due to the battery efficiency losses, would not cause the battery to be used unless 

injection credit fell below 81% of the demand charge, and the battery starts at 0 

kWh for the model. Therefore, NEM rates above 81%, the battery capacity is 0 kWh. 

Once the price was low enough, the battery operated by charging from the solar 

and discharging later to cover the household demand (See also: Figure 4.1.2). 

Once the NEM credit was below 81%, the battery was operating in the most 

profitable way, as the credit did not change over time, hence the consistent values 

between rates aside from the Consumer/Utility Cost. This differs from the other 

rates, which are based on a Time-of-Use rate structure. 

Rates Consumer 

Cost ($/yr.) 

Actual 

Utility Cost 

($/yr.) 

CO2 Emission 

Changes (kg/yr.)  

Average Battery 

Capacity (kWh) 

NEM 14.59 -23.61 0.00 0.00 

NEM 95% 45.79 -54.82 0.00 0.00 
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NEM 90% 77.00 -86.02 0.00 0.00 

NEM 85% 108.20 -117.23 0.00 0.00 

NEM 81% 131.45 -117.22 330.88 5.77 

NEM 75% 144.92 -130.68 330.88 5.77 

NEM 50% 201.01 -186.77 330.88 5.77 

NEM 25% 257.09 -242.86 330.88 5.77  
Grid In 

(kWh/yr.) 

Grid Out 

(kWh/yr.) 

Peak 

Grid In 

(kW) 

Peak 

Grid In 

Time 

Peak 

Grid Out 

(kW) 

Peak 

Grid Out 

Time 

NEM 5969.05 5832.72 2.41 7:00 PM 5.20 12:00 PM 

NEM 95% 5969.05 5832.72 2.41 7:00 PM 5.20 12:00 PM 

NEM 90% 5969.05 5832.72 2.41 7:00 PM 5.20 12:00 PM 

NEM 85% 5969.05 5832.72 2.41 7:00 PM 5.20 12:00 PM 

NEM 81% 2926.96 2096.81 2.41 7:00 PM 5.14 12:00 PM 

NEM 75% 2926.96 2096.81 2.41 7:00 PM 5.14 12:00 PM 

NEM 50% 2926.96 2096.81 2.41 7:00 PM 5.14 12:00 PM 

NEM 25% 2926.96 2096.81 2.41 7:00 PM 5.14 12:00 PM 

 

Based on the Consumer and Utility Cost of the NEM rate structures, the battery operation 

can provide a significant consumer savings if the injection value decreases. Between 82-100%, 

every 1% decrease in injection value causes about a $6 increase in consumer cost, but when the 

battery operates below 81% injection credit, each 1% decrease only increases consumer cost by 

$2. These increases in Consumer Cost are the same decrease in Utility Costs, but once the 

injection credit is low enough that battery begins to operate, the Utility’s Costs increase slightly. 

The battery usage does not significantly change within the 25%-81% group, as between 25%-

81% the credit is low enough that the battery efficiency losses don’t matter, meaning the battery 

is already operating at maximum profit by increasing the homeowner’s self-consumption of 

electricity. Between 81%-100% credit, the battery is not used as the efficiency losses incurred 

would lower the profit compared to simply feeding in any excess solar. 

A significant change between the NEM and NEM 81% likely due to efficiency losses is 

the change in emissions. Because standard NEM sends nearly as much energy out to the grid 
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(from the solar) as it requires from the grid, the emissions are very low. This makes sense, as the 

marginal emission factors can be higher during the day when the solar is producing and lower at 

night when the house draws energy from the grid, thus reducing the systems net emissions. 

However, when the battery operates, the Grid In energy is decreased by 3,736 kWh/yr., while the 

Grid Out energy is decreased by only 3,042 kWh/yr., meaning a difference of 694 kWh/yr. 

energy is lost due to the battery efficiency. This energy lost leads to an increase in emissions 

roughly equal to the difference between the CO2 Emissions for the two rates. 

Despite the increased cost and emissions, the NEM 81% was a great example of the ESR 

goals of microgrid operation, PV management, and limiting exported energy. The Grid In/Out 

energy is greatly reduced from standard NEM, from charging the battery from the solar and 

using that energy to meet the household demand. The Average Battery Capacity is above zero, 

making it better for microgrid operation. And while the Peak Grid In/Out for the NEM rates do 

not change significantly, with only a minor reduction in the Peak Grid Out, they do not increase 

as seen in later rates.  

Table 4.2.2: Metrics for the Value of Distributed Energy Resources (VDER) rate 

structures. The Value of Distributed Energy Resources rates were based on the 

VDER Alternate Capacity Option Two, where between 2 PM – 7 PM energy for 

both injection and demand have increased value, for 25% above the standard 

rate, and 50% for VDER Annual (50%). This rate was proposed to occur between 

June-August, using NEM the rest of the year, but was also extended throughout 

the year for the VDER Annual rate structure. 

Rates Consumer 

Cost ($/yr.) 

Actual 

Utility Cost 

($/yr.) 

CO2 Emission 

Changes (kg/yr.)  

Average Battery 

Capacity (kWh) 

VDER J-A 4.43 -20.52 448.13 4.20* 

VDER 

Annual 

10.51 -26.64 124.14 4.86 

VDER 

Annual 

(50%) 

-89.14 73.01 124.14 4.86 



44 

 

 
Grid In 

(kWh/yr.) 

Grid Out 

(kWh/yr.) 

Peak 

Grid In 

(kW) 

Peak 

Grid In 

Time 

Peak 

Grid Out 

(kW) 

Peak 

Grid Out 

Time 

VDER J-A 

6106.25 5714.31 7.18 8:00 PM 8.74 2:00 PM 

VDER 

Annual 7176.69 6026.24 7.55 8:00 PM 9.08 2:00 PM 

*VDER J-A Average Battery Capacity is measured during June-August, the rest 

of the year it is ‘zero’. 

 

VDER June-August and VDER Annual had comparable Consumer and Utility Costs, 

where the $6.08 increase in Consumer Cost is the same decrease in Utility Cost. Testing was 

done on the increases of the percent change for the TOU rate (seen with VDER Annual (50%)), 

but a greater percentage had higher Utility Costs, making the rates less competitive with the 

standard NEM rate. The example shown above used a 50% rate instead of the 25%, which gave a 

$4 cost decrease to consumers and increase to utilities per 1% increase. Also, prices were only 

effective after a 23% increase due to battery efficiency, like the 81% decrease tested with NEM. 

The Peak Grid In/Out times shifted from NEM’s due to the time period of the rate structure; at 8 

PM when costs went down, the battery charged from the grid, and at 2 PM when injection credit 

was high, the battery and solar both injected into the grid. 

However, beyond the Consumer/Utility Costs and Peak Grid times, the differences for 

VDER June-August and VDER Annual are very significant. The Grid In/Out energy is increased 

for the annual rate, as is the Peak Grid In/Out energy. The CO2 emissions are greatly increased 

for the VDER annual rate, likely due to the increased Grid Energy In. This highlights an 

important factor for the battery that was not seen with NEM rates. If the rate structure values 

injection higher at some points than the demand cost at other points, it is possible the battery will 

charge from the grid when demand costs are lower. While this is a feature for some types of 

storage, it is a detriment to some of the goals of the ESR for residential solar + storage systems. 
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Increased charging from the grid as opposed to the solar system means increased emissions, 

increased peak demand, increased exported energy, poor microgrid operation (requiring energy 

from the grid), and poor PV management. This can be seen comparing the VDER rate structure 

effects with the NEM’s. There is an increase in VDER’s grid in/out energy, increases for the 

Peak Grid In/Out energy, and increases in emissions. In this regard, VDER June-August seems 

to be the better rate of the two, with better metric results for meeting the goals of the ESR.  

Marginal Emissions 

Table 4.2.3: Metrics for the Marginal Emissions (ME) rate structures. The 

Marginal Emissions rate structures were created for use in the model and based 

on the VDER rate. As reducing emissions is a key goal of the Energy Storage 

Roadmap, and the VDER rates used were originally intended to be used only in 

summer, the annual VDER rate structure did not do a great job reducing 

emissions. Therefore, using the same concept, a 25% increase over a set period of 

hours, a new TOU rate structure was created. This rate structure used the three 

seasons that were used for the marginal emission factors, Winter, Summer, and 

Transient. It was also used to create TOU rates for each season individually that 

used NEM for the rest of the year, again like VDER. 

Rates Consumer 

Cost ($/yr.) 

Actual 

Utility Cost 

($/yr.) 

CO2 Emission 

Changes (kg/yr.)  

Average Battery 

Capacity (kWh) 

ME -31.04 35.14 199.89 5.55 

ME Winter 

(N-Mr) 32.21 -28.59 67.80 6.58* 

ME 

Summer 

(M-S) -32.41 23.86 121.69 4.48* 

ME 

Summer 

(J-A) -14.72 -12.66 91.09 4.32* 

ME 

Transient -1.67 -7.35 10.40 5.66*  
Grid In 

(kWh/yr.) 

Grid Out 

(kWh/yr.) 

Peak 

Grid In 

(kW) 

Peak Grid 

In Time 

Peak 

Grid Out 

(kW) 

Peak 

Grid Out 

Time 

ME 7845.46 6698.08 7.56 7:00 PM 9.63 12:00 PM 

ME Winter 

(N-Mr) 6539.80 5987.00 7.56 7:00 PM 5.14 11:00 AM 
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ME 

Summer 

(M-S) 6732.28 6170.86 7.18 8:00 PM 9.47 12:00 PM 

ME 

Summer 

(J-A) 6394.88 6002.85 7.18 9:00 PM 9.44 1:00 PM 

ME 

Transient 6511.47 6205.66 7.11 8:00 PM 9.63 12:00 PM 

*ME Winter, Summer (M-S & J-A), and Transient Average Battery Capacity is 

measured seasonally, the rest of the year they are ‘zero’. 

 

 The Marginal Emissions rate structures are difficult to compare to one another. Unlike 

NEM or VDER, there does not seem to be one rate structure superior to the others. Like VDER, 

the ME rates suffer from charging the battery from the grid, with higher Grid In/Out and Peak 

Grid In/Out energy than NEM, as well as increased CO2 emissions. Looking at Figure 4.2.4 

below can help narrow down the better rates.  The ME Summer June-August and ME Transient 

rates seem to be the ‘best’ of the ME rates used, as both have negative Consumer and Utility 

Costs, as well as lower emissions. However, the much greater emissions of the ME Transient rate 

structure seem to give it the edge between the two. Going back to table 4.2.3 shows that the Grid 

In/Out energy is slightly higher for the ME Transient, which may make the ME Summer June-

August rate the more desirable. The close comparison between these two rates is a good example 

of one of the problems with the ESR; it doesn’t specify which goals have priority for residential 

prosumers with storage. However, for the purposes of future comparison, the ME transient is 

possibly the best of the Marginal Emissions rate structures, due largely to the lower CO2 

emissions. With a moderate social cost of Carbon, this change emissions may make the rate more 

desirable than others. 
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Figure 4.2.4: Costs and Emissions Metrics for the Marginal Emissions (ME) rate 

structures. Negative Costs and Emissions signify a better rate. Consumer/Utility 

Costs and CO2 Emission Changes are the displayed metrics. 

 

Smart Export 

Table 4.2.5: Metrics for the Smart Export (SE) rate structures. The Smart Export 

Rate Structure is used in Hawaii for consumers with Energy Storage, and values 

energy injected between 9 AM – 3 PM at $0. The SE 81% uses the principle from 

the NEM 81% and increases the injection value to 81% of the demand, which 

causes very little change to the consumer behavior, but gives a much fairer value 

to the consumer. The SE 81% (11-1) (J-A) shortens the length of time energy is 

credited to 11 AM – 1 PM and only applies the rate between June-August, using 

NEM the other months. 

Rates Consumer 

Cost ($/yr.) 

Actual 

Utility Cost 

($/yr.) 

CO2 Emission 

Changes (kg/yr.)  

Average Battery 

Capacity (kWh) 

Smart 

Export 229.03 -212.54 371.93 5.99 

SE 81% 116.37 -96.95 376.71 6.20 

SE 81% 

(11-1) (J-A) 31.78 -36.70 107.51 5.52*  
Grid In 

(kWh/yr.) 

Grid Out 

(kWh/yr.) 

Peak 

Grid In 

(kW) 

Peak Grid 

In Time 

Peak 

Grid Out 

(kW) 

Peak 

Grid Out 

Time 
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Smart 

Export 4232.11 3391.55 2.36 7:00 PM 7.33 8:00 AM 

SE 81% 4219.43 3378.87 2.41 7:00 PM 7.29 8:00 AM 

SE 81% 

(11-1) (J-A) 5649.29 5352.32 2.41 7:00 PM 9.08 2:00 PM 

*SE 81% (11-1) (J-A) Average Battery Capacity is measured during June-August, 

the rest of the year it is ‘zero’. 

 

 The Smart Export 81% rate is better than the Smart Export rate, but mostly due to the 

decreased consumer cost. And this benefit is negated if utility costs are of higher priority. This 

shouldn’t be surprising, as the pattern of behavior for the two is nearly identical, but the Smart 

Export essentially gives the utility free energy from excess solar produced. Smart Export 11 AM 

– 1 PM June-August was used to see how shortening the time period and months applied would 

affect the rate, like the VDER and ME rates. There are a few key differences between the metrics 

of the Smart Export rates that provide interesting insight into the optimization. For example, the 

peak grid out time is 8 AM for the Smart Export and SE 81%. This happens because 8 AM is the 

hour before injection credit is reduced, which means having the battery discharge at this point. 

The slight difference in Average Battery Capacity occurs because the Smart Export discharges 

some excess energy during the day, as that energy is valued at zero anyway, making the Average 

Battery Capacity slightly lower. It is also lower in the SE 81% (11-1) (J-A) because of the 

shorter period it would charge in. 

Real-Time Price 

Table 4.2.6: Metrics for the Real-Time Price (RTP) rate structures. The Real-

Time Pricing uses the Actual Energy Price for the injection and demand charges, 

while the RTP flat demand uses the Actual Energy Price for injection credit only. 

The RTP + Cost of Carbon rate adds a social cost of carbon ($40/kg) using the 

marginal emission factors to the Actual Energy Price for the injection and 

demand charges. 

Rates Consumer 

Cost ($/yr.) 

Actual 

Utility Cost 

($/yr.) 

CO2 Emission 

Changes (kg/yr.)  

Average Battery 

Capacity (kWh) 
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Real-Time 

Pricing -212.18 0.00 751.39 6.47 

RTP Flat 

Demand 207.53 -277.31 350.39 5.69 

RTP + Cost 

of Carbon -197.84 -8.55 363.43 6.47  
Grid In 

(kWh/yr.) 

Grid Out 

(kWh/yr.) 

Peak 

Grid In 

(kW) 

Peak Grid 

In Time 

Peak 

Grid Out 

(kW) 

Peak 

Grid Out 

Time 

Real-Time 

Pricing 14077.35 11934.20 7.67 7:00 PM 9.83 12:00 PM 

RTP Flat 

Demand 3178.82 2291.89 2.41 7:00 PM 9.73 12:00 PM 

RTP + Cost 

of Carbon 12277.03 10614.00 7.00 6:00 PM 9.44 11:00 AM 

 

 The Real-Time Pricing rate structure had a huge decrease in the Consumer Cost, due to 

the many opportunities the battery had to make a profit buying and selling energy solely from the 

grid. This can be seen not only in Figure 4.1.4, but also the Grid In/Out energy in Table 4.2.5. As 

with the VDER and Marginal Emissions rates, charging the battery from the grid lead to poor 

metrics compared to NEM. The significant difference between Real-Time Pricing and NEM led 

to the rate RTP Flat Demand, which would operate like NEM 81% but discharge the battery into 

the grid when electricity is valued significantly high enough. However, this did not occur often 

enough to be profitable for the consumer (although like Smart Export, the consumer’s loss is the 

utilities gain). While attempting to bring down the huge increase in CO2 emissions from the 

Real-Time Pricing rate, the rate was combined with a social cost of carbon based on the marginal 

emission factors. Interestingly, this drastically reduced CO2 emissions, while affecting the other 

metrics only slightly. 

Day-Ahead Price 

Table 4.2.7: Metrics for the Day-Ahead Price (DAP) rate structures. The Day-

Ahead Pricing uses the Day-Ahead Energy Price for the injection and demand 

charges, while the DAP flat demand uses the Day-Ahead Energy Price for 
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injection credit only. The DAP + Cost of Carbon rate adds a social cost of carbon 

($40/kg) using the marginal emission factors to the Day-Ahead Energy Price for 

the injection and demand charges. 

Rates Consumer 

Cost ($/yr.) 

Actual 

Utility Cost 

($/yr.) 

CO2 Emission 

Changes (kg/yr.)  

Average Battery 

Capacity (kWh) 

Day Ahead 

Pricing -58.38 37.25 338.12 6.71 

DAP Flat 

Demand 260.36 -247.97 337.78 5.92 

DAP + 

Cost of 

Carbon -57.06 31.53 88.35 7.26  
Grid In 

(kWh/yr.) 

Grid Out 

(kWh/yr.) 

Peak 

Grid In 

(kW) 

Peak Grid 

In Time 

Peak 

Grid Out 

(kW) 

Peak 

Grid Out 

Time 

Day Ahead 

Pricing 9842.80 8738.20 7.19 10:00PM 9.44 11:00 AM 

DAP Flat 

Demand 2926.96 2089.93 2.41 7:00 PM 7.18 10:00 AM 

DAP + 

Cost of 

Carbon 9609.28 8637.77 7.29 7:00 PM 9.60 11:00 AM 

 

 The Day-Ahead Price is more modest than the Real-Time Pricing rate, but with similar 

effects. Compared to NEM, it has lower Consumer Costs, higher Utility Costs, increased CO2 

emissions, and increased Grid/Peak Grid In/Out energy. It does shift the Peak Grid In Time but 

considering the Peak Grid In energy increase that is less significant. Both the Real-Time Pricing 

and Day-Ahead Pricing have high Average Battery Capacity, but that could be because of 

frequent charging, meaning the Average Battery Capacity for these is not a good metric to 

measure the goals of microgrid operation or PV management. Like the RTP + Flat Demand, the 

DAP + Flat Demand acts like the NEM 81%, however it does not seem to discharge to the grid 

as frequently as the RTP + Flat Demand did, likely due to the Real-Time Pricing having high 

cost events not forecasted in the Day-Ahead Pricing.  
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4.3 Comparing Different Rate Structures 

 In Section 4.2, the rate structure variations were elaborated and compared to the originals. 

In this section, some of the variations and originals are compared to other rate structures based 

on the metric results and goals of the ESR. When comparing the rates, Net Energy Metering was 

chosen as a baseline rate structure, as it is the current standard for residential prosumers in NYS. 

However, some of these rate structures use the battery to reach certain goals of the ESR, while 

standard NEM doesn’t use the battery. Not using the battery means there is no energy lost due to 

the battery efficiency, which affects the other metrics. It is also useful to also compare the rates 

to the NEM 81%, which uses the battery and meets many of the goals of the ESR. The other 

rates chosen to compare were based on how well they met the metrics/goals. The RTP Flat 

Demand, DAP Flat Demand, and Smart Export 81%  were able to manage PV output, operate 

microgrids, and limit exported energy (Smart Export 81% 11-1 J-A was included as the Smart 

Export rate with the lowest consumer cost and CO2 emissions). RTP + Cost of Carbon, DAP + 

Cost of Carbon, VDER J-A, VDER Annual, ME Summer (J-A), and ME Transient were able to 

lower consumer costs. 

In a similar manner to Babacan et al. (2018) different scenarios, the effect that the rates 

have on the battery operation seem to fall into one of two categories, either ‘Energy Arbitrage’ 

(RTP/DAP, VDER, ME), where the battery buys/sells energy from/to the macrogrid, or ‘Self-

Consumption’ (NEM 81%, RTP/DAP Flat Demand, SE), where the battery charges/discharges 

within the microgrid. These rates seem to function based on the way they are designed, with 

‘Energy Arbitrage’ taking advantage of injection credits higher than demand costs, and ‘Self-

Consumption’ charging from solar when injection costs are lower than demand. The ‘Energy 

Arbitrage’ group seems to have an advantage on the cost metrics, while the ‘Self-Consumption’ 
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group has advantages with energy management. However, neither perform better regarding CO2 

emissions than NEM.  

Consumer Costs 

 

Figure 4.3.1: These are the Consumer Costs for the rates chosen to compare. The 

RTP/DAP + Cost of Carbon are the best of the rates chosen in terms of Consumer 

Costs, while the NEM 81% and RTP/DAP Flat Demand are the worst.  

 

The Consumer Costs shown in Figure 4.3.1 reinforce the problem with many of these 

rates, where the rates that charge the battery from the solar, RTP/DAP Flat Demand and 

NEM/SE 81%, have higher consumer costs. This is largely due to the energy losses from the 

battery efficiency. Rates that allow for lower costs by increasing the value of injection credits 

end up charging from the grid during periods of low demand costs, as the energy lost from 

charging/discharging efficiency would be the same no matter the source. When comparing SE 

81% and NEM 81%, which both have similar functions, it is shown that SE 81% has a slight 

edge over NEM 81% for consumer costs, since during the time that the SE rate isn’t active, it 
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receives full value for any energy produced. However, as noted in Figure 4.3.1, the energy 

produced during higher injection value is not significant enough to show large changes in the 

annual values. It’s also seen on Figure 4.3.2 and Figure 4.3.5 that this decrease in consumer cost 

is nearly directly proportional to the increase in utility costs. 

Utility Costs 

 

Figure 4.3.2: These are the Utility Costs for the rates chosen to compare. The 

RTP/DAP Flat Demand and NEM 81% are the best, while the RTP/DAP + Cost 

of Carbon and ME Transient are the worst. 

 

 The Utility Costs changes for most of the rate structures chosen are proportional to the 

changes in the consumer costs. However, a few rate structures, RTP + Cost of Carbon and ME 

transient have decreased costs for both the Consumer and Utility. Interestingly, the DAP + Cost 

of Carbon has increased the cost to the utility, significantly more than the RTP + Cost of Carbon, 

despite the Consumer Cost being lower for the RTP + Cost of Carbon than the DAP + Cost of 

Carbon. Looking back on Table’s 4.2.6-7, this is also the case with the Standard RTP/DAP. This 
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is a good indicator that more accurate Real-Time Pricing/Day-Ahead Pricing could be key to 

ensuring the Utility and Consumer both get the full benefit of the battery energy storage systems. 

CO2 Emissions 

 

Figure 4.3.3: These are the CO2 Emission Changes for the rates chosen to 

compare. NEM (Solar) represents both the home with only solar, and not 

operating the battery. NEM (Solar) performs the best, in part due to the lack of 

battery operation leading to no energy efficiency lost, meaning it has more clean 

energy from the solar production. The rates that end up closest are usually those 

that use NEM for most of the year, except for DAP + Cost of Carbon. 

 

 The CO2 Emission Changes shown in Figure 4.3.3 help illustrate the problem inherent in 

using battery energy storage to try and reduce emissions, energy lost due to battery efficiency 

make it extremely difficult to reduce emissions beyond what can be done by simply providing 

the clean energy (NEM). This is especially noted by the VDER, SE, and ME rates, as comparing 

the annual vs season rates shows that the less time that those rates are active, the lower the 

annual emissions. The closest to the NEM reduced emissions is the ME Transient rate, which is 
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only active in April & October. However, it is of note that including a Cost of Carbon to the RTP 

and DAP rates significantly lowered emissions, without being detrimental to the other metrics of 

those rates. Adding carbon costs to rate structures seems to be an effective way to reduce 

emissions within those rates, without overly affecting the other benefits.  

 Part of the reason that lowering emissions beyond a solar-only home is difficult for these 

rates is that Upstate NY (the region used in the model), has very low emissions compared to 

other areas. To prove this, the model was recreated using data from Long Island, NY (NYLI), 

which has higher CO2 emissions. Using the lowest emitting annual rate structure (Day-Ahead 

Pricing plus Cost of Carbon), it was found that the new rate structure decreased emissions 

compared to the solar-only house by around 169 kg/yr., where in Upstate NY the emissions had 

been increased by 88.35 kg/yr. under the DAP+ Cost of Carbon rate structure. Two other rate 

structures, VDER J-A and RTP + Cost of Carbon, were also used in the NYLI location, and 

while they didn’t decrease emissions beyond the solar-only home, they did decrease emissions 

more effectively than the Upstate NY rates. 
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Figure 4.3.4: These are the CO2 Emission Changes for the rate structures in two 

different regions, Upstate NY and NYC (for selected rate structures). The changes 

in CO2 Emissions are based on the difference between the marginal emissions 

generated from these rates compared to a home with only solar. Thus, the Upstate 

DAP + Cost of Carbon rate emitted 88.35 kg/yr. more than a home using only 

solar, while the NYLI DAP + Cost of Carbon rate emitted 168.95 kg/yr. less than 

a home using only solar. 
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Figure 4.3.5: These are the Consumer Costs, Utility Costs, and CO2 Emission 

Changes for selected annual rate structures. The rates are sorted based on 

whether they encourage Self-Consumption (NEM 81%, RTP/DAP Flat Demand, 

SE 81%) or Energy Arbitrage (VDER Annual, RTP/DAP + Cost of Carbon, 

ME).It can be seen that the Self-Consumption rates decrease costs to the utility 

about as much as they increase the cost to the customer. Energy Arbitrage rates 

seem to be slightly more equitable, decreasing costs to the consumer slightly more 

than they increase costs to the utility. Energy Arbitrage rates also have the 

potential for lower CO2 emissions than Self-Consumption rates, as seen with DAP 

+ Cost of Carbon and ME. However, none of the rates succeed in getting below 

the emissions of a solar-only home for the region of Western NY.. 

 

Figure 4.3.5 shows the cost to the Consumer, costs to the Utility, and the Annual Carbon 

Emissions, and Figure 4.3.6 shows the combination of those three, using a social cost of carbon 

($40/Mg). This combination of costs in Figure 4.3.6 reduces to Equation 53, the Real-Time Cost 

of Electricity and the Carbon Cost of electricity times the energy sent from the grid to the house 

minus the energy sent from the house to the grid. This is the wholesale cost of electricity to/from 

the grid for each rate structure, plus the cost of carbon emissions. 

∑ [(𝑅𝑇𝑃ℎ + 𝑀𝑒 ∗ 𝐶𝑎𝑟𝑏𝑜𝑛𝐶𝑜𝑠𝑡ℎ) ∗ (𝐺𝑖ℎ − 𝐺𝑜ℎ)]
ℎ𝑓
ℎ𝑖  [53] 

Figure 4.3.5 shows that Self-Consumption rates generally have reduced utility costs, and Energy 

Arbitrage rates have lower consumer costs. Comparing to Figure 4.3.6, Energy Arbitrage rates 

also have lower wholesale + cost of carbon costs (except for the RTP Flat Demand rate). 
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Figure 4.3.6: The Combination of Utility Costs, Consumer Costs, and Carbon 

Costs, (aka the net cost of electricity to/from the grid for each rate structure, plus 

the cost of carbon emissions). This reduces to The Wholesale Cost of electricity  

plus the Carbon Cost of electricity (Using a social cost of carbon of $40 per ton), 

for energy taken from the grid minus energy sent to the grid, to determine the 

overall cost of the different rate structures.  

 

Limiting Exported Energy, Solar+ Storage Management, Microgrid Operation, & Peak Energy 

 

Figure 4.3.7: This is the Grid Out Energy for the rates chosen to compare. NEM 

81%, RTP/DAP Flat Demand, and SE 81% are all rate structures that have 

decreased energy sent to the grid compared to NEM, and this is due to the rates 

valuing injection credit less than demand costs. 

 

 The NEM 81%, RTP/DAP Flat Demand, and SE 81% all reduced the Grid Out energy, 

limiting the exported energy from the solar as seen in Figure 4.3.7. They also decreased the Grid 

In energy, as seen in Figure 4.3.8. These rates are focused on PV management and microgrid 

operation, also shown by Figure 4.3.9, where they generally have higher Average Battery 

Capacity. The RTP/DAP + Cost of Carbon rates have higher, but that is due in part to the much 
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larger Grid In/Out energy they use, as they frequently charge and discharge the battery. NEM 

81%, RTP/DAP Flat Demand, and SE 81% all slowly use the battery’s stored energy to cover the 

household demand after charging from the residential solar system. This is further illustrated 

with Figure 4.1’s Average Daily Use Patterns. The way NEM 81%, RTP/DAP Flat Demand, and 

SE 81% rates function also influences the Peak Grid In metric. Because the batteries do not 

charge from the grid, the peak demand stays as low as the standard NEM. However, the Peak 

Grid Out metric is changed for RTP/DAP Flat Demand and SE 81% because there are points 

where the value of injection is higher, making it worthwhile to discharge the battery before 

charging from the solar when injection credit is lower again. 

 

 

Figure 4.3.8: This is the Grid In Energy for the rates chosen to compare. It is 

very similar to the Grid Out Energy, as the rates that focus on self-consumption 

choose to charge the battery from the solar and use it to cover demand rather 

than send it to the grid. They do not charge the battery from the grid, unlike the 

rates that discharge the battery to the grid to decrease the consumer costs. 
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Figure 4.3.9: This Average Battery Capacity for the rates chosen to compare. 

Generally, the higher the average Capacity, the more capability the rate has too 

island itself in case of macrogrid connection problems, or to increase self-

consumption. However, this is not always the case, as for rates that RTP/DAP + 

Cost of Carbon, the battery may charge from the grid, which can increase the 

battery average Capacity more than charging from the solar. It should also be 

noted that while NEM has an average of ‘zero’, that is due to the optimization 

equation, and may not reflect actual behavior. 
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Figure 4.3.10: This is the Average Battery Capacity, and Electricity In from the 

Grid/Out to the Grid for selected annual rates.  The rates are sorted based on 

whether they encourage Self-Consumption (NEM 81%, RTP/DAP Flat Demand, 

SE 81%) or Energy Arbitrage (VDER Annual, RTP/DAP + Cost of Carbon, ME). 

The NEM (Solar) rate does not have a battery capacity because it represents a 

home with only solar, and if NEM is the rate use the profit maximization of the 

linear optimization model does not incentivize using the battery, as the efficiency 

loss would mean less profit. 

 

The Average Battery Capacity and Energy In from/ Out to the Grid all relate to the ESR 

goal of Operating Microgrids. A higher average battery capacity can generally mean that the 

battery would have a larger capacity available should access to the grid be cut off. However, 

while the increased average battery capacity of the RTP/DAP + Cost of Carbon rates may seem 

beneficial, these rates buy/sell energy to/from the grid at much higher frequency and quantity 

than other rates, meaning the capacity my be low when grid access is cut. This issue can be 

further examined when comparing rates daily use patterns on Figure 4.1.1. The RTP/DAP + Cost 

of Carbon rates discharge most of the battery energy in the evening and charge the battery during 

early morning from the grid. Should power be cut during this time, the battery would likely have 

very low capacity, making it incapable of islanding (operating a microgrid). Also seen when 

comparing Figure 4.1.1 and Figure 4.3.10, the Self-Consumption rate structures (NEM 81%, 

RTP/DAP Flat Demand, and SE 81%) require much less energy from the grid, both in their daily 

use patterns and the annual energy taken from the grid. This shows they are more capable of 

operating a microgrid should the need arise. 

 



65 

 

 

Figure 4.3.11: This is the Peak Grid Energy In/Out for the rates chosen to 

compare. The Peak Grid In is the same value for rates that have higher demand 

costs than injection credits. Rates with higher Peak Grid In will use the grid to 

charge the battery when costs are low. Most rates have an increased Peak Grid 

Out because the battery will discharge while credits are higher to charge when 

credits/costs are lower. The exception to this is the NEM 81%, which is because 

there is no point where the injection credit is higher than any other point. 

 

A compilation of the results for annual rate structures sorted between rates that are 

examples of Self-Consumption and Energy Arbitrage can be seen on Figure 4.3.12 below. Figure 

4.3.12 shows an interesting connection between the consumer and utility for Self-Consumption 

rates. When the consumer buying/selling much less energy from the utility under Self-

Consumption rates, the utilities cost is significantly reduced, and the consumer’s cost is much 

higher, despite buying significantly less energy from the grid. Because the Utility is buying much 

less energy from the consumer (which while under NEM is normally valued much higher than 

the RTP), the utility ends up saving money while having less interaction with the consumer. This 

highlights how Self-Consumption rates disproportionately benefit the utility. 
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Figure 4.3.12: These are the Costs, Emissions, Capacity, and Annual/Peak Grid 

Energy In/Out for the annual rates, sorted between Self-Consumption rates to 

Energy Arbitrage rates. This chart really displays how Self-Consumption rates 

have much less interactions with the grid, with lower Grid In/Out energy, but still 

reduce utility costs drastically and the Energy Arbitrage rates take more energy 

but reduce consumer costs. However, Energy Arbitrage does not cost the utility as 

much as Self-Consumption costs the Consumer, likely due to the higher demand 

when discharging. 

 

4.4 Sensitivity, Fixed Costs & Tax Credits 

The sensitivity analysis chosen was adjusting the rates to match the standard NEM utility 

costs. Initial testing directly resulted in some of the seen rates, specifically the ME seasonal rates 

and Smart Export’s 81% 11-1 June-August rates. These adjustments fundamentally changed the 

rate structure design, essentially creating new rate structures and not analyzing sensitivity to cost 

changes, but rather shifting times or months in operation. Another method could be changing the 

percent increase/decrease that rates like VDER, ME, and SE used for the injection/demand 

charges. However, as discussed with the NEM variations, limitations caused by battery 

efficiency meant rates between 82-122% of the demand cost did not operate the battery. And in 

cases above 122% or below 81%, changing the percentage did not result in behavior changes, as 

the most profitable patterns were already in place. However, by increasing or decreasing the 

whole rate (not just the TOU) by a certain percent, most models could show how matching utility 

costs would affect the consumer cost. Some rates (RTP Flat Demand, ME & ME 

Summer/Transient) were not able to come close to the utility cost no matter how drastic the 

change. The rates that were able to be changed are shown in Figure 4.4.1 where it can be seen 

that the Real-Time Price, RTP + Cost of Carbon, Day-Ahead Price, DAP + Cost of Carbon, 

VDER Annual and VDER June-August were the only rates that kept the utility cost the same, 

while decreasing the consumer cost.  
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Figure 4.4.1: Rates matching the Utility Cost of NEM, and their corresponding 

new Consumer Cost. The rates were made to match the Utility Cost (orange) of 

the standard NEM. The changes made in the rates caused changes in the 

Consumer Cost (blue). These rates had some of the lowest consumer costs before 

adjustment. 

 

Fixed Costs/Tax Credits 

 As discussed in Section 3.3, fixed costs can be applied to rate structures after their 

implementation or operation to determine a what is essentially a ‘cost of operation’. The State or 

Utility could determine that a rate structure leads to desired outcomes but would also lead to lost 

revenue or unequal distribution of benefits. They could then decide to increase the fixed costs of 

the electricity bills for consumer on that rate structure, thus solving the problem without 

affecting the use patterns. This would work with rates that cost the consumer less than NEM and 

can be seen below on Figure 4.4.2. 

 

Figure 4.4.2: Increases to the monthly ‘Fixed Costs’ that would keep the 

consumer bill equal to that of the standard NEM. For rates that have lower 

consumer costs than NEM but with desirable behavior. 

 

 A goal mentioned in the ESR was to provide savings via investment tax credits. These 

could function in the same vein as the fixed costs, but rather than artificially increase consumer 
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costs, the state could provide a subsidy or tax credit to consumers if their costs were higher than 

those of the NEM rate. This would be especially effective on rate structures that met the goals of 

limiting exported energy and managing the solar + storage, as those rates had higher costs due to 

losses from the battery efficiency. The tax credit amounts that would be needed can be seen 

below on Figure 4.4.3. 

 

Figure 4.4.3: Annual ‘Tax Credit’ that would keep the consumer bill equal to that 

of the standard NEM. For rates that have higher consumer costs than NEM, but 

with desirable behavior. 
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5. Discussion 
 

Findings 

 From the effects of the rate structures, there emerge two distinct modes of battery 

operation, ‘Energy Arbitrage’ (EA) and ‘Self-Consumption’ (SC). EA is where the battery finds 

it profitable to charge from the grid and discharge to the grid and/or household demand later. The 

rates that fall into this category (RTP, DAP, ME, VDER) are where the injection credit of one 

time period can be higher than the demand costs of other time periods. Energy Arbitrage can take 

advantage of the macrogrid electricity market with rate structures like Real-Time Pricing or Day-

Ahead Pricing, or they can be encouraged to inject energy at specific times such as VDER or 

ME. The SC mode charges the battery almost solely from the solar system and discharges the 

battery usually to cover the household demand. These rates (SE, NEM 81%, RTP/DAP Flat 

Demand) have decreased the value of the injection credit compared to the cost of electricity 

($/kW). Self-Consumption can help encourage time-shifting excess renewable solar generation 

to help cover future demand. This can also lower the peak demand of the prosumer. In general, 

EA rates have lower costs, both to the consumer and utility, but SC rates better fit the ESR goals 

of limiting exported energy and managing the PV system.  

Policy Implications for Goals of the ESR  

The Energy Arbitrage and Self-Consumption modes of operation can affect goals of the 

Energy Storage Roadmap, and their differences can illustrate the difficulty in stacking those 

goals. The reduction in emissions for the RTP/DAP + Cost of Carbon rates show that the Energy 

Arbitrage rates could stack emission reduction and cost reduction more effectively if a social cost 

of carbon is added. The Self-Consumption rates stack goals like solar + storage management, 



72 

 

limiting exported energy, reducing demand, and time-shifting the renewable energy. However, 

due to battery efficiency and capacity, SC rates are not as successful at reducing emissions 

beyond a solar-only home, nor are EA rates as successful at limiting exported energy or reducing 

peak demand. Policy makers will ultimately need to consider which goals have higher priority 

for residential storage. A likely choice would be the SC rates, as the EA method could be 

handled more effectively with large-scale BES operation. 

Cost Reduction 

Reducing Consumer costs was done most effectively with EA rates, while reduced utility 

costs were more effective with SC rates. This is because the consumer could get greater values 

for stored energy with the EA rates, while the Utility payed less for the energy provided with SC 

rates. While increasing costs are not desirable, additional costs to one party could be offset by 

subsidies or changed fixed costs. Such subsidies or fixed cost changes should be considered 

when considering/implementing rate structures that are more effective at reaching other goals. 

Also, reductions in Wholesale Cost + Cost of Carbon (Figure 4.3.6) were usually more effective 

with EA rates, apart from the RTP Flat Demand rate, which benefits from lower consumer and 

utility costs compared to the DAP Flat Demand rate. The benefits of Self-Consumption rates 

may be worth the additional cost and can be dependent on case-by-case based on the individual 

prosumer (different demand patterns, reliability, microgrid operation, utility subsidy, etc.). If 

policy makers wish to implement either EA or SC rates, they need to consider the increased costs 

they would have on the utility or consumer, and how likely they are to be adopted. 

Emission Reduction 
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While reducing emissions beyond a solar-only home was not done with most rate 

structures, including a Cost of Carbon on either the RTP or DAP rates cut CO2 emissions 

compared to the standard RTP/DAP. While this didn’t get the emissions below a solar-only 

home in the region chosen, it did help reduce emissions in Long Island, NY for the DAP + Cost 

of Carbon rate. Such a factor will need to be a consideration in the implementation of local rate 

structures with the different electric utilities across the state. The differences in emissions for 

different regions will have an impact on the effectiveness of the rate structures ability to lower 

emissions. The capabilities of batteries may also change as the market grows, and emission 

reductions may become more feasible as battery efficiency improves. However, frequent use of 

the battery may also degrade efficiency as time progresses. Policy makers should pay attention to 

improvements in the technology, and both policy makers and consumers should be aware of the 

effect time may have on installed battery capabilities.  

Solar + Storage Management,  Limiting Exported Energy, Time-Shift Renewable Energy, & 

Operating Microgrids  

It should be noted that Energy Arbitrage rates do not limit exported energy. EA rates 

involve selling energy to the grid when prices are higher, meaning this goal does not stack well 

within these rate structures. Self-Consumption rates on the other hand, store the solar energy 

produced and use it to cover future household demand. This is Solar + Storage management, 

Limiting Exported Energy, and Time-Shifting Renewable Energy. Like Emission Reduction, 

these goals could also benefit from improved battery technology. Unlike Emission Reduction, 

the most effective improvement in battery technology would be the capacity of the battery. By 

increasing the capacity of the battery, more of the solar energy could be stored and less would 

need to be exported to the grid. For future incentives, policy makers may want to consider having 
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a per kWh credit, or requiring a minimum capacity to be eligible, in order to better meet these 

goals. 

The battery used for this model was based on a Tesla Powerwall; a lithium-ion battery 

with a capacity of 13.5 kWh and charge/discharge rate of 5kW. As an alternative, lead-acid 

batteries could potentially provide more storage capacity for cheaper investment. However, lead-

acid battery systems also have less longevity and shorter lifespans, especially when frequently 

discharged. Their depth of discharge is also much lower than lithium-ion batteries. Lead-acid 

batteries could be more feasible for the goal of operating microgrids, as the battery would be 

mostly used when the connection to the grid is severed. However, not operating the battery 

frequently reduces the capability to meet ESR goals. Lead-acid batteries may be better for rate 

structures that require less battery use, such as NEM, where the battery is not used, or VDER J-A 

and SE 81% 11-1 J-A where the battery is used seasonally. If microgrid operation at lower costs 

is more desirable to the prosumer or policy makers than other ESR goals, higher capacity 

batteries should be incentivized.  

Peak Demand 

 The ESR goal of peak demand reduction was not effective with the rate structures 

chosen, particularly for Energy Arbitrage rates. Because EA rates incentivize buying/selling 

energy to/from the grid, the battery would often charge from the electrical grid when costs were 

low. This leads to peak demands 5 kW greater than Self-Consumption rates, which do not charge 

the battery from the grid. Rates that may encourage peak demand reduction, like demand charge 

rates, were not considered in this model due to the linear optimization limitations. Injection peak 

reduction, like peak demand reduction, doesn’t work well with most of the rate structures. Unlike 

peak demand reduction, this includes the SC rates. This is because many SC rates credit injection 
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higher than when solar is not being produced, and if a battery has excess capacity at those times 

it may be beneficial to discharge before charging later (when solar is being produced). Therefore, 

SC rates peak injections are higher than the NEM rate. NEM 81% is the exception, because its 

injection credit is consistently 81% the flat demand cost. If peak demand/injection is an 

important goal for policy maker, they will need to consider either adopting different rate 

structures than the ones studied here or prevent residential batteries from charging/discharging 

from/to the grid.  

Limitations of the Model 

 The model used was based on a home with a standard demand profile, average solar 

production profile, marginal emission factors, and electricity costs for Western New York. This 

was chosen because of New York State’s Energy Storage Roadmap, but within other regions of 

New York the results could be different. Western New York as an excess of low emission energy 

thanks in part due to Niagara Falls (which provides clean hydroelectricity). New York City or 

Upstate New York has different real-time prices, marginal emission factors, solar production, 

demand profiles that change the results of the model, as seen in Figure 4.3.4. The marginal 

emission factors could be improved upon with increased granularity analysis of the macrogrid, a 

goal mentioned in the ESR.  

Beyond these limitations, there are also aspects of the battery energy storage system that 

are not considered. For example, a common method in current research is a cost/benefit of the 

battery system, to determine how cost effective such a system would be for various purposes. 

This model did not take the initial cost of the battery into account, nor the lifespan of the battery. 

The model itself is only run over a single year, which may not be indicative of the full effect of 

the battery over its lifespan. For example, the Real-Time Price rate structure had the highest 
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consumer profit but used the battery nearly twice as much as any other rate structure. This could 

cause severe wear over a much shorter period compared to other rates. The battery chosen, a 

Tesla Powerwall, costs $6,500 for the battery itself, and an additional $3,600-$4,600 for 

installation. Assuming the maximum reduced costs from the rate structures analyzed ($200/yr., 

Real-Time Price), it would take 32.5 years to pay off the battery alone. Considering the expected 

lifespan of lithium-ion batteries is around 10 years, the monetary benefit-costs don’t encourage 

this battery adoption. To make up the cost of the battery within the expected 10-year lifespan, the  

battery would need to cost only $2,000, or have a cost reduction of $650/yr.. As the maximum 

reduced cost was an Energy Arbitrage rate, this also means that non-monetary benefits, such as 

limiting exported energy or increasing self-consumption, would not contribute positively, as they 

did not stack well within EA rates. Thus, for current battery capabilities and prices, it would not 

be cost effective to use residential BES storage.  

The Tesla Powerwall also has a capacity of 13.5 kWh and charge/discharge rates of 5 

kW. While this is not an insignificant capacity or flow rate, there were points in the rate 

structures where the technical aspects of the battery ended up being the limiting factor to the 

systems capabilities. Battery Efficiency was even more of a factor considering the emission 

increases and energy lost. The system didn’t even find the battery useful to run with injection 

credit between 81%-122% of the standard demand cost, due to the efficiency losses. Future 

improvements to the technology these factors may become less of an issue, but still worth 

consideration in rate design. 

 There is much potential for this model to be used to help develop rate structures, 

especially given the goals of the Energy Storage Roadmap. This model only considered 

residential homes, due to lack of consideration in the ESR, and the decreased red tape that comes 
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from a single decision-maker (the homeowner). However, if provided with additional data 

regarding the production/demand, there is no reason this model couldn’t be used for projects of 

larger size. When choosing a larger system that has demand charges within its rate structure, the 

model would encounter problems. Demand charges affect the highest level of demand a 

customer has during a set time period and charges an increased rate for that specific level of 

demand. This rate becomes non-linear and would require a different type of optimization to 

calculate. A similar comparison could be made for the fixed costs of electricity bills that this 

model does not consider (the model uses optimization for the electricity delivery rate). However, 

fixed costs can change with different rate structures (as explored in Section 4.4) and could be a 

method used to make the benefits of BES more equitable. 

The model used also does not consider consumer preferences, or other decisions made 

while using the battery. Consumers may desire keeping a minimum charge on the battery or 

different charging/discharging rates for emergency power consumption or improved battery life. 

The model uses only the profit maximization as it’s linear optimization. This is especially 

apparent in the NEM rate, where the battery is constantly at zero charge, as there is no profit 

benefit to keep a charge on the battery. In addition, there are logical and mathematical limitations 

to the model, or certain assumptions built into the optimization. The rates were run monthly, then 

collated for the year to get the annual results. This provides a certain foresight that allows for 

perfect predictions that would not be true to life. This is especially the case for Real-Time Prices, 

solar production, and household demand, all of which can be affected by real-time events. 

Another type of real-time event, power outages, did not occur in the model, and depending on 

the severity could drastically change the battery performance (although likely only for a short 
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time that wouldn’t drastically impact the annual values). Each month also started with a battery 

capacity of 0 kWh, which would likely not be true to life. 

Other Goals of Residential Storage 

 There are other reasons to consider alternative rate structures with storage aside from 

profit maximization, which depends on the consumer’s desires. Creating a microgrid system to 

be able to island the solar + storage system for household demand in case of macrogrid power 

outages can be very beneficial, and a feasible alternative to generators. This may be more 

applicable to customers with solar who are in areas with frequent grid outages or need 

continuous/stable power supplies. Customers who have electric vehicles would also be ideal 

candidates, in order to reduce the effects of charging a vehicle in the evening, when grid demand 

is at a peak. With the growing electric vehicle market, EV charging could have dramatic impacts 

on the macrogrid, impacts that could be limited by BES systems. Incentivizing the installation of 

a BES system with the purchase of an EV could be an interesting policy application, especially 

considering the EV tax credit is phasing out for some manufacturers leaving a policy gap in EV 

incentives. 

However, applications of the battery system like these are not based on profit 

maximization and would require separate modeling than the method used here. these goals also 

depend on individual desires and would require a different optimization system/model. For 

example, if a prosumer is aware of an increased chance of macrogrid power failure (such as 

incoming severe weather), they would likely desire to retain a full charge on their battery for 

later microgrid use, until the chance of failure had passed, something that was not accounted for 

here.  
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 The potential market that might value other goals above reduced costs should not be 

discounted. And while current trends indicate that NYS is focusing efforts on battery energy 

storage in New York City (NYC), this may result in a narrow residential consumer market. Other 

consumers across the state would need different considerations to encourage the adoption of 

BES. While this method focused on Western NY residential battery storage in relation to the 

goals of the ESR, it did not fully consider battery energy storage statewide. There are many 

factors that would need to be considered to increase the potential for battery energy storage 

adoption to a wider range of residential customers. Increasing the availability to more rural areas 

with worse quality grid connectivity would build up a wider market range and could also help 

provide more granularity of the macrogrid analysis. There are also many areas besides residential 

prosumers that could benefit from the adoption of BES systems, but may need policy makers to 

start incentivizing the adoption. Requiring a basic BES system for newly built homes could 

provide better cost effectiveness, since the installation of the BES system while the home is 

being built may be easier. A BES system would also benefit from more modern/efficient 

appliances, requiring less power for the household demand. Rural, remote areas could benefit 

from a stable, consistent, and clean power supply, like park police/ranger offices.  

Current Trend/Goals 

 The New York State Energy and Research Development Authority currently uses the 

Value of Distributed Energy Resources to determine the more accurate cost that should be 

applied to distributed renewable generators like solar. A problem with the VDER rates is the cost 

difference from NEM. For community scale distributed generation, VDER is projected to have 

injection values between 90-95% the demand costs (comparable to NEM 90/95%). The example 

run in the model with NEM injection credit reduced to 95% led to higher to consumer costs and 
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utility profit but no other effects, this percent difference may be hurting customers. It also would 

not encourage battery use, due to efficiency losses. However, until January 2020 residential solar 

customers will be able to sign up for a net metering contract for a period of 20 years. 

Considering the benefits that NEM has over most of the other rates (lower emissions, lower 

exported energy than EA rates, lower costs, etc.), it may be more beneficial to the goals of the 

ESR for policy makers to not encourage residential battery adoption/operation via new rate 

structures.  

Currently, residential battery operation in Western NY doesn’t seem to have significant 

value beyond limiting exported energy or microgrid operation. Yet NYSERDA wants to be have 

1.5 gigawatts of Battery Energy Storage by 2025. While most of this BES will be larger scale for 

bulk system and distribution system storage, some residential early adopters will likely take 

advantage of the improved large-scale battery market and install their own storage. The rates 

studied here show the different ways that a prosumer might operate their battery, and what 

effects those operation patterns may have. Given the increasing BES market, and the potential 

for residential installations, the contract period for NEM rates should probably be shorter than 20 

years. Battery technology and economics may make deployment more feasible for a broader 

population, leading to the need for new rates that encourage different operation for different 

locations. Increasing the storage across the state and macrogrid should also increase the 

information granularity about emissions, demand spikes, renewable generation, etc.. This 

information will be invaluable in optimizing future policy and rate structures to better fit specific 

regions. Effects like these can already be seen in the changes to the Real-Time Price and Day-

Ahead Price rate structures. After adding in a cost of carbon to the rates, the emissions dropped 

significantly with very little change otherwise.  
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6. Conclusion 

The New York State Energy Research and Development Authority (NYSERDA) desires the 

installation and operation of battery energy storage (BES) to reach the goals of reduced peak 

demand effects, reduced emissions, reduced costs, residential solar + storage management, 

manage PV system output, limiting exported energy, limit impacts on demand bills, and 

potentially operating microgrids. However, the Energy Storage Roadmap (ESR) that outlines 

those goals does not specify how they should be met by residential prosumers with BES. Most 

research states that in order to use BES to reduce emissions, and be economically optimal for a 

system, a rate structure specific to the region and consumer is needed. Without a well-designed 

rate, emissions are likely to increase. None of the rate structures in this model were able to 

improve net CO2 emissions for the system beyond the Net Energy Metering (NEM) rate for the 

Western NY region. This can be attributed partially to the energy lost from battery efficiency. 

However, other goals, such as reduced costs or limiting exported energy were improved from 

NEM with new rates. The effect that the rates have on the battery operation falls into one of two 

categories, either ‘Energy Arbitrage’, where the battery buys/sells energy from/to the macrogrid, 

or ‘Self-Consumption’, where the battery charges/discharges within the microgrid. These rates 

function based on the way they are designed, with ‘Energy Arbitrage’ taking advantage of 

injection credits higher than demand costs, and ‘Self-Consumption’ charging from solar when 

injection costs are lower than demand. When NYSERDA is considering future rate structures for 

residential solar + storage customers, they need to clearly define which goals have priority, and 

use that to inform their selection. Self-Consumption rates would be more effective for residential 

homeowners, while Energy Arbitrage effects would be better suited to large-scale 

bulk/distribution systems.  



82 

 

References 

 

Abdin, G. C., & Noussan, M. (2018). Electricity storage compared to net metering in residential PV 

applications. Journal of Cleaner Production,176, 175-186. doi:10.1016/j.jclepro.2017.12.132 

Agnew, S., & Dargusch, P. (2015). Effect of residential solar and storage on centralized electricity 

supply systems. Nature Climate Change,5(4), 315-318. doi:10.1038/nclimate2523 

Ahmadi, L., Young, S. B., Fowler, M., Fraser, R. A., & Achachlouei, M. A. (2015). A cascaded life 

cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. The 

International Journal of Life Cycle Assessment,22(1), 111-124. doi:10.1007/s11367-015-0959-7 

Appen, J. V., & Braun, M. (2018). Strategic decision making of distribution network operators and 

investors in residential photovoltaic battery storage systems. Applied Energy,230, 540-550. 

doi:10.1016/j.apenergy.2018.08.043 

Atia, R., & Yamada, N. (2016). Sizing and Analysis of Renewable Energy and Battery Systems in 

Residential Microgrids. IEEE Transactions on Smart Grid,7(3), 1204-1213. 

doi:10.1109/tsg.2016.2519541 

Babacan, O., Ratnam, E. L., Disfani, V. R., & Kleissl, J. (2017). Distributed energy storage system 

scheduling considering tariff structure, energy arbitrage and solar PV penetration. Applied 

Energy,205, 1384-1393. doi:10.1016/j.apenergy.2017.08.025 

Babacan, O., Abdulla, A., Hanna, R., Kleissl, J., & Victor, D. G. (2018). Unintended Effects of 

Residential Energy Storage on Emissions from the Electric Power System. Environmental 

Science & Technology,52(22), 13600-13608. doi:10.1021/acs.est.8b03834 

Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels 

Combined with Energy Storage in a Residential Building: An Economic 

Analysis. Sustainability,10(9), 3117. doi:10.3390/su10093117 

Diorio, N., Dobos, A., & Janzou, S. (2015). Economic Analysis Case Studies of Battery Energy 

Storage with SAM. doi:10.2172/1226239 

Fikru, M. G., Gelles, G., Ichim, A., Kimball, J. W., Smith, J. D., & Zawodniok, M. J. (2018). An 

economic model for residential energy consumption, generation, storage and reliance on cleaner 

energy. Renewable Energy,119, 429-438. doi:10.1016/j.renene.2017.11.083 

Fisher, M. J., & Apt, J. (2017). Emissions and Economics of Behind-the-Meter Electricity 

Storage. Environmental Science & Technology,51(3), 1094-1101. doi:10.1021/acs.est.6b03536 

Fridgen, G., Kahlen, M., Ketter, W., Rieger, A., & Thimmel, M. (2018). One rate does not fit all: An 

empirical analysis of electricity tariffs for residential microgrids. Applied Energy,210, 800-814. 

doi:10.1016/j.apenergy.2017.08.138 

Griffiths, B. W. (2019). Reducing emissions from consumer energy storage using retail rate 

design. Energy Policy,129, 481-490. doi:10.1016/j.enpol.2019.01.039 

Hawaiian Electric. (2019). Smart Export. Retrieved from  

Hittinger, E. (2017). Distributed generation: Residential storage comes at a cost. Nature 

Energy,2(2). doi:10.1038/nenergy.2017.6 

Hittinger, E., & Siddiqui, J. (2017). The challenging economics of US residential grid 

defection. Utilities Policy,45, 27-35. doi:10.1016/j.jup.2016.11.003 

Hledik, R., & Greenstein, G. (2016). The distributional impacts of residential demand charges. The 

Electricity Journal,29(6), 33-41. doi:10.1016/j.tej.2016.07.002 

Hledik, R., Zahniser-Word, J., & Cohen, J. (2018). Storage-oriented rate design: Stacked benefits or 

the next death spiral? The Electricity Journal,31(8), 23-27. doi:10.1016/j.tej.2018.09.012 



83 

 

Khalilpour, K. R., Vassallo, A. M., & Chapman, A. C. (2017). Does battery storage lead to lower 

GHG emissions? The Electricity Journal,30(10), 1-7. doi:10.1016/j.tej.2017.11.004 

Laws, N. D., Epps, B. P., Peterson, S. O., Laser, M. S., & Wanjiru, G. K. (2017). On the utility 

death spiral and the impact of utility rate structures on the adoption of residential solar 

photovoltaics and energy storage. Applied Energy,185, 627-641. 

doi:10.1016/j.apenergy.2016.10.123 

LCG Consulting, & NYISO. (2019). Actual Energy Price. Retrieved from 

http://www.energyonline.com/Data/GenericData.aspx?DataId=12&NYISO___Actual_Energy_P

rice 

LCG Consulting, & NYISO. (2019). Day Ahead Energy Price. Retrieved from 

http://www.energyonline.com/Data/GenericData.aspx?DataId=11&NYISO___Day-

Ahead_Energy_Price  

Maleki, A., Rosen, M., & Pourfayaz, F. (2017). Optimal Operation of a Grid-Connected Hybrid 

Renewable Energy System for Residential Applications. Sustainability,9(8), 1314. 

doi:10.3390/su9081314 

Mason, A.J., “OpenSolver – An Open Source Add-in to Solve Linear and Integer Progammes in 

Excel”, Operations Research Proceedings 2011, eds. Klatte, Diethard, Lüthi, Hans-Jakob, 

Schmedders, Karl, Springer Berlin Heidelberg 

pp 401-406, 2012, http://dx.doi.org/10.1007/978-3-642-29210-1_64, http://opensolver.org 

Nojavan, S., Majidi, M., Najafi-Ghalelou, A., Ghahramani, M., & Zare, K. (2017). A cost-emission 

model for fuel cell/PV/battery hybrid energy system in the presence of demand response 

program: ε-constraint method and fuzzy satisfying approach. Energy Conversion and 

Management,138, 383-392. doi:10.1016/j.enconman.2017.02.003 

NREL. (2016, October). PVWatts. Retrieved from https://pvwatts.nrel.gov/ 

NYISO. (2018, December 7). IPPTF Carbon Pricing Proposal (United States, New York 

Independent System Operators). Retrieved from 

https://www.nyiso.com/documents/20142/2244202/IPPTF-Carbon-Pricing-

Proposal.pdf/60889852-2eaf-6157-796f-0b73333847e8 

NY-Sun. (2019). The Value Stack. Retrieved from https://www.nyserda.ny.gov/All 

Programs/Programs/NY Sun/Contractors/Value of Distributed Energy Resources  

NY-Sun. (2019). Data & Trends. Retrieved from https://www.nyserda.ny.gov/All-

Programs/Programs/NY-Sun/Data-and-Trends 

NYSERDA, & NYSDPS. (2018, June). New York State Energy Storage Roadmap (United States, 

New York Energy Research and Development Authority). Retrieved from 

https://www.nyserda.ny.gov/All-Programs/Programs/Energy-Storage/Energy-Storage-in-NYS 

OpenEI. (2018). NREL Commercial and Residential Hourly Load Profiles for all TMY3 Locations 

in the United States. Retrieved from https://openei.org/datasets/files/961/pub/ 

OpenSolver. (2019). OpenSolver for Excel. Retrieved from https://opensolver.org/  

Ren, H., Wu, Q., Gao, W., & Zhou, W. (2016). Optimal operation of a grid-connected hybrid 

PV/fuel cell/battery energy system for residential applications. Energy,113, 702-712. 

doi:10.1016/j.energy.2016.07.091 

Ren, Z., Grozev, G., & Higgins, A. (2016). Modelling impact of PV battery systems on energy 

consumption and bill savings of Australian houses under alternative tariff structures. Renewable 

Energy,89, 317-330. doi:10.1016/j.renene.2015.12.021 

Sedighizadeh, M., Esmaili, M., & Mohammadkhani, N. (2018). Stochastic multi-objective energy 

management in residential microgrids with combined cooling, heating, and power units 

http://www.energyonline.com/Data/GenericData.aspx?DataId=12&NYISO___Actual_Energy_Price
http://www.energyonline.com/Data/GenericData.aspx?DataId=12&NYISO___Actual_Energy_Price
http://www.energyonline.com/Data/GenericData.aspx?DataId=11&NYISO___Day-Ahead_Energy_Price
http://www.energyonline.com/Data/GenericData.aspx?DataId=11&NYISO___Day-Ahead_Energy_Price
http://opensolver.org/
https://pvwatts.nrel.gov/
https://www.nyserda.ny.gov/All-Programs/Programs/NY-Sun/Data-and-Trends
https://www.nyserda.ny.gov/All-Programs/Programs/NY-Sun/Data-and-Trends
https://www.nyserda.ny.gov/All-Programs/Programs/Energy-Storage/Energy-Storage-in-NYS
https://openei.org/datasets/files/961/pub/
https://opensolver.org/


84 

 

considering battery energy storage systems and plug-in hybrid electric vehicles. Journal of 

Cleaner Production,195, 301-317. doi:10.1016/j.jclepro.2018.05.103 

SEIA. (2019). Solar Industry Research Data. Retrieved from https://www.seia.org/solar-industry-

research-data  

Sun, M., Chang, C., Zhang, J., Mehmani, A., & Culligan, P. (2018). Break-Even Analysis of Battery 

Energy Storage in Buildings Considering Time-of-Use Rates. 2018 IEEE Green Technologies 

Conference (GreenTech). doi:10.1109/greentech.2018.00026 

Tervo, E., Agbim, K., Deangelis, F., Hernandez, J., Kim, H. K., & Odukomaiya, A. (2018). An 

economic analysis of residential photovoltaic systems with lithium ion battery storage in the 

United States. Renewable and Sustainable Energy Reviews,94, 1057-1066. 

doi:10.1016/j.rser.2018.06.055 

Tesla. (2019). Tesla Powerwall. Retrieved from https://www.tesla.com/powerwall 

Zeng, W., Appen, J. V., Selzam, P., Sun, M., Chen, B., He, W., & Xu, N. (2018). Active Residential 

Load Management Based on Dynamic Real Time Electricity Price of Carbon Emission. Energy 

Procedia,152, 1027-1032. doi:10.1016/j.egypro.2018.09.114 

Zheng, M., Meinrenken, C. J., & Lackner, K. S. (2015). Smart households: Dispatch strategies and 

economic analysis of distributed energy storage for residential peak shaving. Applied 

Energy,147, 246-257. doi:10.1016/j.apenergy.2015.02.039 

Zurfi, A., Albayati, G., & Zhang, J. (2017). Economic feasibility of residential behind-the-meter 

battery energy storage under energy time-of-use and demand charge rates. 2017 IEEE 6th 

International Conference on Renewable Energy Research and Applications (ICRERA). 

doi:10.1109/icrera.2017.8191179 

 

https://www.seia.org/solar-industry-research-data
https://www.seia.org/solar-industry-research-data

	The Effects of Changing Local Electricity Rate Structures to Accommodate Residential Battery Energy Storage, Based on New York's Energy Storage Roadmap Goals
	Recommended Citation

	tmp.1566391793.pdf.BTv3x

