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ABSTRACT 

 

The advent of Electric Vehicles (EV) in the private transportation sector is viewed as a means of 

reducing emissions and making significant efforts towards reducing climate change impacts. 

However, when it comes to adopting and/or promoting a new technology through subsidies, the 

consumers’ needs are seldom given significant attention. Moreover, most analyses informing 

policy making assess the potential of new and cleaner technologies like EVs based on an 

average consumer’s needs and behavior.  Given heterogeneity, these analyses miss 

subpopulations that benefit (or lose) more than an average consumer. In fact, private 

transportation greatly depends upon how the diversity of consumers choose to commute and 

what kind of vehicles they choose to possess. Especially in the United States of America (U.S.), 

each consumer faces different needs for their daily commute, which dictates their preferences for 

vehicles. This behavioral heterogeneity in addition to the geographic locations of consumers 

makes the U.S. private transportation sector an intricate system. The locations of the U.S. define 

fuel prices as well as emissions from electricity production. Therefore, these behavioral and 

geographic heterogeneities are highly crucial while calculating the benefits and potentials of 

EVs. The analyses conducted for this dissertation consider these heterogeneities to accommodate 

the nuances in consumers. This consideration of heterogeneities is the most critical aspect of this 

work. 

Chapter 2 of this dissertation builds a Marginal Abatement Cost Curve (MACC) for Electric 

Technology Vehicles (ETVs) which incorporates these heterogeneities, behavioral and 

geographical. With current gasoline and battery cell prices, result indicate that without federal 

tax credits, about 1.9% of the population would receive direct financial benefits from purchasing 

an ETV. This subpopulation drives over 4 times (over 48,000 miles annually) more than the 

average consumer (11,700 miles). The consideration of the heterogeneities has made it possible 

to recognize this subpopulation. The scenario analyses are conducted for different fuel and 

battery cell prices. These analyses shed light on how different subpopulations benefit financially 

and environmentally from ETVs. In this chapter, the impacts of federal tax credits with and 

without considering heterogeneities are estimated, suggesting why policy analyses need to 

incorporate consumer heterogeneities while assessing benefits of government subsidies.  

Given these results on economic and carbon benefits of ETVs, Chapter 3 builds an integrated 

model of adoption that includes endogenous technological progress—through learning rates—

where due to initial adopters the technology is made cheaper for the future ones. The feedback 

loop developed in this chapter takes into consideration the cumulative production of the 

technology and estimates price reductions using learning rates. Reduced capital costs then propel 

more consumers to adopt ETVs making the technology cheaper, again increasing the consumer 

base that benefits from them. The economic benefits of buying an ETV versus a conventional 

one costs depend on battery costs, non-battery EV costs, and the future of conventional vehicles. 

Results are that the future market penetration (share of consumers economically benefitting) is 

sensitive to two poorly understood quantities: non-battery EV costs and cost increases in 

conventional vehicles driven by future emission standards.  Federal tax credits are also studied in 

how they stimulate adoption and in turn technological progress of ETVs.  

Governments are not only investing in subsidies for consumer purchase of ETVs but also in 

installing public EV charging stations. These charging stations are expected to motivate 
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consumers to choose ETVs over conventional vehicles and help reduce range-anxiety. In Chapter 

4 an assessment is conducted to understand how these public resources are being used. Results 

reveal the behavior of consumers at the public EV charging stations using empirical data 

collected in the City of Rochester. A data distillation is first conducted for the raw data to 

construct the daily charging profiles of the EV users. A pattern analysis is then performed to 

identify 5 distinct and homogenous clusters of daily charging profiles of the consumers. This 

work defines the operational inefficiency of the public charging station as the time spent in 

parking without charging out of the total time a PEV user accessed the public charging station. 

This analysis uncovers a significant inefficient operation of these public EV charging stations, 

i.e. EVs remained parked at stations long after charging is finished. An estimation of the 

opportunity cost of reducing this observed inefficiency in terms of Greenhouse Gas emissions 

savings is also conducted in this chapter. 

The main policy takeaways of this dissertation are that identifying key subpopulations who 

benefit from the ETVs is highly significant and possible only by incorporating behavioral and 

geographical heterogeneities. This allows a more precise estimation of impacts of policies such 

as the federal tax credits. Secondly, the initial adopters make the technology cheaper for the 

latter adopters. However, the future market parity of ETVs with conventional vehicles depends 

on poorly understood factors such as current costs and learning rates of non-battery EV 

technologies and future cost increases in conventional vehicles driven by stricter emissions 

requirements. Lastly, the use of public resources, such as public charging stations needs to be 

studied. They are expensive to create, and inefficient use may deter possible EV adopters. 

Furthermore, the possible opportunity cost of reducing emissions by using the charging station 

more efficiently allows better use of a public resource. 
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1 CHAPTER 1: INTRODUCTION 

 

 Background and Motivation 

Transportation is a necessity of daily life but it also accounts for a large share of greenhouse gas 

(GHG) emissions in the United States and the world, as the current levels indicate 410 parts per 

million (ppm) of CO2e (CO2-earth 2018). For these reasons, decarbonization of transportation is 

a critical part of controlling atmospheric GHG concentrations as the current Intergovernmental 

Panel for Climate Change (IPCC) report recommends “rapid and far-reaching” efforts in the 

transport sector to limit global warming to 1.5 degrees C (IPCC 2018a, 2018b) as well as to 

achieve the 2 degrees C target set in the Paris Accords (PPMC TRANSPORT 2018). 

In the United States of America (U.S.), the transport sector emits 1,782 Million Metric Tons of 

CO2e (MMT CO2e) (28% of all U.S. emissions) with 69% of that due to light-duty vehicles (i.e., 

private transport) (U.S.-EPA 2018d, 2018c). Globally, transportation is accountable for 23% of 

the energy-related greenhouse gas emissions and 92% of total oil consumption (IEA 2018). The 

U.S. transport sector’s dependence on oil is beyond argument. Oil prices are extremely volatile, 

and they impact almost every American household because of heavy reliance on gasoline-

powered light-duty vehicles for private transportation. In such circumstances, it is imperative that 

the U.S. private transportation sector looks at alternative and cleaner modes of transportation 

such as Battery Electric Vehicles (BEVs) and Plug-in Electric Vehicles (PHEVs) instead of 

conventional fossil fuel vehicles. Compared to the incumbent technologies, these cleaner 

technologies have the potential to contribute to air quality and climate goals of the nation by 

tapping into cleaner sources of electricity. These modern technologies, therefore, hold great 

promise to make the transportation systems cleaner and more sustainable. 

As per the National Household Travel Survey 2009 (NHTS), 83% of the daily vehicle miles 

traveled (VMT) per driver were under 60 miles, and 95% were under 120 miles. Moreover, the 

results from NHTS 2017 have also confirmed similar travel trends (Methipara, Reuscher, and 

Santos 2016). Most of the current E.V.s, moreover, have a range of 60-120 miles on a single 

charge (Kane 2017). Therefore, 99% of the vehicle trips in the U.S. can, theoretically, be 

completed by Plug-in Electric Vehicles (PEV include BEVs and PHEVs). In 2017, the U.S. stock 

of PEVs was 762,000. This, although, amounts to only 1.2% of the total private transportation 

market share, the PEV stock has risen by over 35% compared to the previous year (International 

Energy Agency 2018). It will be, thus, safe to assume that the PEV market share will keep on 

increasing rapidly in the near future. PEVs, therefore, hold the key to mitigate the impacts of 

transportation. As sustainability must compete with other needs for the finite resources all the 

time, it is essential to know the cost of adopting PEVs to mitigate the impacts of transportation 

on the environment. 

Electric technology vehicles (ETVs) are a leading solution for decarbonizing transportation 

(Sustainable Mobility for all 2017; Bloomberg New Energy Finance 2017; International Energy 

Agency 2018). In this dissertation, the term Electric Technology Vehicle (ETVs) is used to 

include Hybrid Engine Vehicle (HEV), Battery Electric Vehicle (EV) and Plug-in Hybrid 

Vehicles (PHEV). An electric drivetrain, common to all three types, improves efficiency. It is 

essential to understand that there is significant variability in the U.S. consumers’ use of private 

transportation. Therefore, this dissertation takes a deeper dive into understanding the outlook of 

Electric Technology Vehicles by incorporating behavioral and geographic heterogeneity of 

consumer usage, technological progress (through the learning rate), and operational efficiency of 

the public charging stations—installed to increase the market share of PEVs. 
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 Marginal Abatement Cost Curve (MACC) 

To understand the effects of heterogeneity, a Marginal Abatement Cost Curve (MACC) is 

developed incorporating the inherent heterogeneities in the system. The Marginal Abatement 

Cost Curve (MACC) is a framework used to characterize information of potential mitigation 

efforts and identify least and/or most cost-effective Greenhouse Gas (GHG) mitigation measures. 

A composite MACC is constructed by ordering technological interventions to mitigate a unit of 

emissions from lowest to highest cost, indicating the cumulative mitigation possible for each 

intervention. The earliest example of MACC goes back to 1980s when Meier A. K. in 1982 

produced a cost curve for energy conservation. The MACC has become a popular and a handy 

tool for policy-makers, especially Marginal Abatement Cost Curve (MACC) developed by 

McKinsey for analyzing carbon mitigation costs for different sectors (McKinsey&Company 

2007). Figure 1-1 shows a MACC developed by McKinsey (McKinsey&Company 2009) for the 

U.S. The figure shows the cost-effective and maximum emissions savings potential measures 

from left to right. The policymakers use the MACC to demonstrate which of these measures an 

economy can afford, and prioritize, in order to set and achieve GHG emissions reduction targets 

for the country. 

1.2.1 Issues with Marginal Abatement Cost Curves 

MACC, though, can provide a simplistic overview of available climate mitigation measures, it is 

an oversimplification of a complex techno-economic system. The MACC method has been 

criticized for neglecting various factors such as dynamics, consumer behavior, and interactions 

between the technologies as well as the hidden transaction and monitoring costs, and does not 

account for some of the mitigation costs which cannot be monetized (Kesicki and Ekins 2012) 

(Senatla et al. 2013). Further, it neither captures non-market barriers to the technology adoption 

Figure 1-1: U.S. Carbon Marginal Abatement Cost Curve (McKinsey&Company 2009) 
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nor treatment to underlying uncertainties related to assumptions and analyses (e.g. learning and 

discount rates, life spans of technologies and economics associated with technology) (Tilburg, 

Würtenberger, and Rivera Tinoco 2010)(Kesicki and Ekins 2012) (Senatla et al. 2013). However, 

as long as the limitations of the information provided by a MACC are understood, it does 

provide valuable and easily comparable information on costs and mitigation potential. 

 Importance of Heterogeneity 

For this work, the MACC for Electric Technology Vehicles in the U.S. is developed with a new 

approach which accounts for heterogeneity. Figure 1-2 illustrates the new approach. When 

heterogeneity is not considered while analyzing a system, all the vehicles (or their owners) are 

considered to have the same characteristics. Once heterogeneity is introduced, for vehicle 2 and 3 

the preferred technology changes as well as the abatement cost. Lastly, when technological 

progress is considered, the abatement costs for later adopters are less than the early adopters. In 

private transportation, the technological progress is for the learning rate of battery cell prices and 

non-battery EV technologies. The result, thus, is a disaggregated MACC that describes how 

carbon mitigation costs are affected by heterogeneity and technological progress. The final 

outcome indicates a path for dramatically lower carbon mitigation costs compared to the 

traditional approach. This MACC approach, while accounting for new factors such as learning 

rate, is still a partial view of a complex system combining economics, technology, behavior, and 

policy. Ultimately, it is important to understand factors such as interactions between technologies 

and decision-making processes of adopters. 

 

Figure 1-2: The core concept of this proposal - Marginal Abatement Cost Curve accounting for heterogeneity and technological 

progress, illustrated with hypothetical results for three vehicles in the U.S. 

 Research Objectives 

This dissertation aims to mainly answer three key questions: 

1. How heterogeneity affects the economic and carbon benefits of Electric Technology 

Vehicles in the U.S.? 

2. How will EV Costs decrease in Future? 

3. How are the public charging stations used?  

 Dissertation Outline 

This dissertation is divided into five chapters in total. The introduction chapter explains the 

background and motivation of this study. Chapter 2 looks at developing a Marginal Abatement 

Cost Curve (MACC) for private transportation in the U.S. which accounts for geographical, 

behavioral, and stock heterogeneity. The MACC curve is used to understand how the 

heterogeneity in the consumer usage affects the economic and carbon benefits of Electric 

Technology Vehicle (ETVs). The chapter also attempts to understand the effects of including 
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different heterogeneities on the share of population benefiting from the adoption of ETVs. The 

third chapter looks at the future costs of EVs through technological progress when demand-side 

heterogeneity is considered. The demand-side heterogeneity accounts for different driving and 

usage behavior of consumers which drives their choice of vehicle as well as the geographic 

variability in fuel prices which dictate the savings from the usage. The fourth chapter analyzes 

how the public charging stations are used and deals with the operational inefficiency—defined as 

the ratio of time spent in parking without charging to the total time the vehicle was parked at the 

public charging station using pattern analysis framework. The final chapter is a conclusion 

chapter, where major learnings and conclusions are enlisted along with future work.  
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2 CHAPTER 2 

Heterogeneity in Economic and Carbon Benefits of Electric 
Technology Vehicles in the U.S. 

Chapter Summary 

To broadly contribute to sustainable mobility, electric technology vehicles (hybrid, electric and 

plug-in-hybrid) should become more price competitive with internal combustion vehicles. This 

study assesses the economic and carbon benefits of electric technology vehicles (electric, plug-in 

hybrid, and hybrid) in the U.S., accounting for household-by-household behavioral variability 

and geographical differences in fuel and electricity prices. This finer resolution provides insight 

into subsets of the population for whom adoption is economically or environmentally favorable, 

allowing us to construct Marginal Abatement Cost Curves for CO2 that account for geographic, 

behavioral and stock heterogeneities. Currently, low gasoline prices and high initial expense 

means that, without subsidies, few consumers benefit financially from electric technology 

vehicles (1.9% of drivers). However, improved technology dramatically and non-linearly 

increases both the number of consumers that benefit and corresponding carbon emissions that 

could be abated without government subsidy. Our results clarify cost targets that electric vehicle 

technology must achieve in order to deliver net financial and subsidy-free environmental 

benefits. 
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 Background and Introduction 

Electric technology vehicles (ETV) are a leading solution for decarbonizing 

transportation(Sustainable Mobility for all 2017; Bloomberg New Energy Finance 2017; 

International Energy Agency 2018). In this paper, the term Electric Technology Vehicle (ETV) 

is used to include Hybrid Engine Vehicle (HEV), Battery Electric Vehicle (EV) and Plug-in 

Hybrid Vehicles (PHEV). An electric drivetrain, common to all three types, improves efficiency. 

Batteries provide flexibility to run vehicles on electricity derived from different fuel mixes, 

ideally low carbon ones. Governments around the world have been investing significantly to 

encourage consumers to adopt electric vehicles. In the U.S., for example, the federal government 

provides tax credits up to $7,500 for the purchase of BEVs and PHEVs(U.S.-EPA 2018b). 

Despite considerable government investment and societal attention given to electric vehicles, 

there are critical unanswered questions. An important one is: what economic benefits do electric 

technology vehicles deliver to consumers? While this may seem a trivial question, there is as yet 

no analysis accounting for both the behavioral and spatial heterogeneity in the answer. There is 

substantial variability in driving patterns, preferred vehicle type, and gasoline and electricity 

prices. In the U.S., the average annual distance driven is 11,700 miles with a large standard 

deviation of 10,040 miles. Moreover, consumers own vehicle of different make, model and type 

of the vehicle from other consumers, e.g. 52% drive compact vehicles and 21% drive Sports 

Utility Vehicles (SUVs). Gasoline and electricity prices vary by location. In 2017, the average 

gasoline price in the U.S. was $2.53 per gallon with a standard deviation of $0.12 per 

gallon(U.S.-EIA 2018c). Texas had the lowest gasoline price of $2.29 per gallon, whereas 

California had the costliest gasoline at $3.08 per gallon. Similar variations can be seen in 

electricity prices. The average electricity price in the U.S. was 10.3 cents per kWh with a 

standard deviation of 3.3 cents. Residents of Louisiana paid 7.5 cents per kWh compared to those 

in Hawaii who paid 24 cents per kWh(U.S.-EIA 2018a). The above heterogeneities are expected 

to give rise to substantial variability in fuel savings from purchasing an electric technology 

vehicle. 

 Literature Review 

Currently, the most resolved analysis of the economic benefits of electric vehicles is at the city 

level (Breetz and Salon 2018; Peterson, Whitacre, and Apt 2011; Hao et al. 2015). Results 

indicate that, in 3 of 14 U.S. cities with the highest subsidies, an average driver in these cities 

gets economic benefits from current electric vehicles (EV) (Breetz and Salon 2018). Other prior 

economic studies of benefits are at the state level(Parks, Denholm, and Markel 2007; Palmer et 

al. 2018). However, individual variations in driving patterns within cities and states must be 

accounted for. Also, as electric technology vehicles are part of national energy strategies, a 

national-level analysis of economic benefits to consumers is overdue. This work addresses this 

gap with a case study of the U.S. using individual responses regarding vehicle ownership and 

usage from the National Household Travel Survey (NHTS)(U.S.-DOT 2017). The NHTS 

includes annual miles driven on a particular vehicle which is calculated using one-day travel 

activity, odometer reading of the vehicle, user-reported annual miles driven and demographic 

information of the primary user of the vehicle(FHWA n.d.). 

While a national analysis of the economic benefits of current electric technologies vehicles (with 

and without subsidy) is certainly useful, it is also important to consider technological progress. 

Motivations behind the U.S. EV subsidy include an expectation that the subsidy will support 

future cost reductions of the emerging technology. Recent price reductions in vehicle batteries 

support optimism that EV technology will continue to improve (U.S.-DOE 2017; UCS 2017; 

Chediak 2017). This work thus also analyzes how the population of U.S. consumers that benefit 



 7 

from electric technology vehicles grows as technology costs fall. In addition, the economic 

benefits from electric technology vehicles are sensitive to gasoline and electricity prices. 

Temporal variability in gasoline prices is particularly high due to volatility in the global market 

for crude oil. 

The carbon benefits of Electric Technology Vehicles depend on the electrical grid they use to 

charge. Running an EV from coal-generated electricity can actually increase emissions(Graff-

Zivin, Kotchen, and Mansur 2014; Nuri Cihat Onat, Kucukvar, and Tatari 2015). There is 

considerable geographical variability in grid mixes and ensuing carbon benefits in switching 

from gasoline to EVs. This dependence of EV carbon reductions on location has been studied in 

detail. Prior results for the U.S. have shown that the regional variation in grid mixes and average 

miles driven significantly affects the emissions from EV usage(Nuri Cihat Onat, Kucukvar, and 

Tatari 2015; Nuri C. Onat et al. 2017; Archsmith, Kendall, and Rapson 2015; Tamayao et al. 

2015; Yuksel et al. 2016). For example, Graff-Zivin et al found substantial variation in the 

marginal emissions of electricity varying with respect to location and time-of-use(Graff-Zivin, 

Kotchen, and Mansur 2014), e.g. the upper Midwest region showing three times higher marginal 

emission rates compared to the western U.S. There are also studies investigating the life cycle 

impacts of electric vehicles(Hawkins et al. 2013; Manjunath and Gross 2017; Ma et al. 2012; 

Kim et al. 2016; Keshavarzmohammadian, Cook, and Milford 2018). These studies emphasize 

that if the EVs are compared to conventional vehicles in terms of GHG emissions then the 

context is very important. While most studies indicate that in the use phase in a relatively cleaner 

electricity grid mix, EVs prove to be a less polluting option. However, if the vehicle supply chain 

is considered, especially battery production from the production phase, the EVs can be 

significantly harmful in different ways such as human toxicity. Further, these life cycle impacts 

significantly depend upon what boundary of the system is considered, and hence the literature 

estimates vary significantly. Therefore, this study considers only the use phase of the vehicles 

where emissions are solely from the fuel used (gasoline for conventional vehicles and electricity 

for BEVs). 

Using the usual aggregated approach, marginal abatement costs for carbon have been assessed in 

the transportation sector(City of New York 2013; Morisugi, Atsushi, and Atit 2011; Schroten, 

Warringa, and Bles 2012). For example, New York City projected marginal abatement costs for 

battery electric vehicles at $80 per MTCO2e in 2020 and -$10 per MTCO2e in 2030, and for 

PHEVs $90 per MTCO2e in 2020 and -$10 per MT CO2e in 2030(City of New York 2013). The 

transition from positive to negative cost between 2020 and 2030 is due to assumptions about the 

cost reduction of electric technology vehicles. Morisugi et al. calculated the abatement costs in 

the U.S. for different CO2 emission tax levels andto be $234-399 per MTCO2e with a CO2 

emission tax of $100 per MTCO2e for the transportation sector(Morisugi, Atsushi, and Atit 

2011). The previous studies have not included behavioral heterogeneity in estimating carbon 

abatement costs. 

 Contribution 

Our work also addresses another important question: What is the cost-effectiveness of electric 

technology vehicles as a carbon mitigation option considering that economic and grid emission 

benefits vary by behavior and location? This work addresses this question by modifying the 

usual Carbon Marginal Abatement Cost Curve (MACC) ($/tCO2e) to account for heterogeneity. 

The Marginal Abatement Cost Curve (MACC) is often used by policy analysts 

(McKinsey&Company 2007, 2009), and typically shows abatement cost (e.g. $/tCO2e) and total 

abatement potential (tCO2e) for a given set of interventions. Interventions are ordered from least 

to highest cost of mitigation. Prior MACC analyses represent technology in terms of an average 

user, neglecting heterogeneity. This is reasonable when assessing 100% adoption of a 
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technology. However, given observed behavioral heterogeneity (e.g. Sekar et al., 2016), it is 

important to consider mitigation paths in which technologies are adopted by subgroups that 

benefit most. Consider an example of a technology intervention with a net economic cost to the 

average consumer. It may be that the population divides into one group that saves money with 

the technology and another that does not. Considerable carbon savings with negative cost may be 

possible considering adoption by the first group. Segmenting the population according to relative 

benefits can thus upend the understanding of the carbon mitigation costs of a technology. This 

work will show that this is the case for electric technology vehicles in the U.S. 

The model presented in this paper characterizes the economic and carbon implications of an 

electric technology vehicle purchase. While fuel and carbon savings motivate consumer choice, 

vehicles purchase decisions depend on many factors beyond net economic benefits. Personal 

vehicle choice is much studied, often using discrete choice models40-50. While understanding the 

conditions under which and the rate at which consumers would actually purchase electric 

technology vehicles is critical, this work considers a narrower question for a number of reasons. 

First, economic and carbon savings are important decision variables and, as described above, 

have not yet properly assessed. Second, public policies such as the federal tax subsidy for 

electric vehicles should be assessed for potential to deliver direct public and private benefits 

aside from the decision calculus of consumers (Zhou, Levin, and Plotkin 2016; Slowik et al. 

2017; Cattaneo 2018). This is particularly true for electric vehicles as consumer decisions will 

depend on what fleet of electric technology vehicles is brought the market, the outcome of which 

is difficult to predict and depends partly on policy decisions. While decision science should be 

brought to bear to understand electric vehicle technology adoption, there is a complimentary role 

from a purely accounting economic perspective. Third, it is important to understand how 

technological progress and variations in fuel prices affect tradeoffs between conventional 

gasoline and electric technology vehicles. The marginal abatement curve framework explored 

here can deliver useful, if bounded, answers to this question. 

To summarize the work, this research first develops a model accounting for individual-level 

differences in miles driven, type of vehicle owned (sedan, SUV, minivan and truck), and lifetime 

ownership preferences to estimate the economic benefits of electric technology vehicles (hybrid, 

plug-in hybrid, electric) in the U.S. The model also considers the state-level differences in 

gasoline and electricity prices. The National Household Travel Survey (NHTS) is used as the 

primary data source, which includes vehicle holdings characteristics for each surveyed household 

(a total of 309,000 households and 143,000 vehicles). Finally, the net economic benefits (or 

costs) are calculated to replace each existing internal combustion vehicle with a comparable 

electric technology vehicle. Consumers are assumed to choose a HEV, PHEV, or BEV 

depending on which provides the greatest private economic benefit. The economic analysis is 

combined with a state-by-state marginal emissions model to obtain a carbon abatement cost 

curve resolved consumer-by-consumer. This distinguishes subpopulations into groups that 

benefit economically from electric technology (and hence negative abatement costs) and those 

who do not. This work then considers how the economic benefits and MACC evolve with lower 

battery and related technology prices as well as higher gasoline prices. This is analyzed both with 

and without the current federal tax credit for electric and plug-in hybrid vehicles. 
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 Methodology 

 

Figure 2-1: Methodological Framework. The diagram shows the flow of data and calculations and indicates data sources used, 

such as the National Household Travel Survey(U.S.-DOT 2017) and others(U.S.-EPA 2018c, 2018a; www.AAA.com 2018; 

CNG-Now 2018; GasBuddy.com 2017). Blue backgrounds refer to model calculations, Yellow backgrounds show types of 

heterogeneity analyzed. 

Figure 2-1 shows the overall methodological framework. The National Household Travel Survey 

(NHTS) sample vehicle fleet is used as the main input for the vehicle-level analysis. NHTS 

includes the households’ State of residence. This is used in modeling geographical heterogeneity 

to find state-specific electricity emissions, fuel and electricity prices. The NHTS dataset also 

reports make, model and type of the vehicle (used to estimate the initial capital cost and 

mileage), number of months the vehicle is currently owned (used to estimate the expected 

duration of ownership of the vehicle), and number of miles driven annually (behavioral 

heterogeneity) for each household vehicle. In evaluating purchase of an electric technology 

vehicle, this work assumes consumers keep the same make, model and type as their previous 

vehicle. Four technology options are considered: 1. Updated Conventional Vehicle, 2. Hybrid 

Engine Vehicle, 3. Battery Electric Vehicle and 4. Plug-in Hybrid Electric Vehicle. The meaning 

of updated conventional vehicle is the 2018 version of the model the consumers currently own. 

The economic and carbon implications of purchasing an ETV by comparing the ETV with the 

updated conventional vehicle are then assessed. 

The NHTS collects vehicle attributes and use characteristics for households in the national 

sample. To calculate marginal abatement cost of each electric technology vehicle (HEV or BEV 

or PHEV), we need total cost of ownership (indicated by Equation 2-1 in the main text) of an 

ETV and the amount of emissions saved by a particular ETV. To determine the total cost of 

ownership we need initial capital cost. The calculations for initial capital costs are dependent on 

the vehicle’s type of propulsion technology (electric vs. plug-in hybrid), class (Sedan vs SUV), 
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make and model (Honda vs Toyota and Civic vs Camry). The dataset includes households’ state 

of residence, used in indicating the resolution of geographical heterogeneity, i.e. determine state-

specific electricity emissions, and fuel and electricity prices. The information about the intensity 

of vehicle use and the lifetime of a particular vehicle is a source of behavioral heterogeneity. The 

vehicles differ from each other in terms of make, model, and type of a vehicle (source of stock 

heterogeneity), which we have considered in our model. The following section explains how we 

generate the technology variants for each vehicle class. 

2.5.1 Defining Consumer Vehicle Options for Internal Combustion Engine and Electric 
Technology Vehicles 

The current vehicle market does not offer ETV analogues for every available model. With this 

said, the suite of available ETV models is expanding rapidly. For example, there were 11 new 

ETV models offered in 2018 compared to 2017(U.S.-EPA 2018c). This evolving market presents 

a challenge for modeling ETV adoption. Considering only currently available ETVs would 

properly reflect today’s options but would misrepresent choices even a few years later.  Thus, 

this work assumes a developed ETV market in which there is a reasonable analogue ETV option 

for any current vehicle model. Therefore, ETV choice is modeled as a differential technology 

“upgrade” to currently sold conventional vehicles. This leads to modeling incremental cost 

additions of each technology type (HEV or BEV or PHEV) for each vehicle class (compact, 

sedan, SUV, van and truck). Using prior models of ETV characteristics and costs(U.S.-EPA 

2018a; www.AAA.com 2018; CNG-Now 2018; GasBuddy.com 2017), technical and 

performance specifications are designed and additional costs for ETVs are estimated based on a 

model conventional vehicle for each vehicle class.  

The NHTS dataset contains information on the make, model and type of each vehicle in the 

sampled vehicle fleet. We use this information to estimate the initial capital cost and mileage. If 

consumers decide to switch and adopt a more energy efficient vehicle, assuming the consumers 

stay consistent, meaning the consumers stick to their current class type, make and model, they 

face four options: 1. Latest Conventional Vehicle, 2. Hybrid Engine Vehicle, 3. Battery Electric 

Vehicle and 4. Plug-in Hybrid Electric Vehicle. Currently, in the market, we do not have hybrid, 

battery electric and plug-in hybrid technology variants for every vehicle type, make and model in 

the NHTS vehicle fleet. For example, we do not have a battery electric truck or a battery electric 

Dodge Charger available in the real-world market. Therefore, we calculate the cost of the 

technology in addition to the price of its conventional variant. For example, in case of Dodge 

Charger, we calculate how much additional amount a particular consumer has to pay in get a 

HEV or BEV or PHEV variant which will have a comparable performance as that of a sedan (as 

Dodge Charger is a sedan). 

We first identify make, model and fuel type of each vehicle in the dataset. For miles per gallon 

(or fuel efficiency), we have compiled a list of highest selling vehicles in the U.S. (added in the 

supplementary Excel sheet) with respect to vehicle types (Car, Van/Minivan, SUV, Truck) 

(GoodCarBadCar.net 2018). This list has the number of units sold for a particular vehicle make 

and model for 2017. The detailed vehicle list is attached in the supplementary information Excel 

sheet. The recent fuel efficiencies (miles per gallon) for each of these vehicles are taken from the 

U.S. Environmental Protection Agency (EPA) (U.S.-EPA 2018c). These mileages are for new 

Internal Combustion Engine (ICE) vehicles. We match each NHTS observation (i.e. make and 

model) with its corresponding U.S. EPA rated mileage. So that we can compare the electric 

technology vehicles with the latest conventional vehicles. For models which are not on this EPA 

list of highest-selling vehicles (for example, Jaguar XF), we have assigned a generic mileage for 

each vehicle type which is calculated as a weighted average of the number of units sold and 

mileage of highest sold vehicles. 
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For technical specifications and performance characteristics by vehicle type—sedan, SUV, 

van/minivan/station wagon, pickup truck, we have also generated non-existing technology 

variants. The power and performance characteristics of base conventional vehicles are assumed 

to be similar to vehicles with high market shares—for example, Toyota Camry (Toyota 2018a), 

Honda CRV (Honda 2018a), Toyota RAV4 (Toyota 2018b), Honda Odyssey (Honda 2018b), 

Ford 150 (Ford 2018). Error! Reference source not found. shows the technical specifications 

(power and battery capacity) and performance characteristics (miles per gallon or miles per 

charge) of the technology variants. The gasoline mileage (mpg) for hybrid and plug-in hybrid are 

assumed to be 27.5% more efficient than the conventional versions (Kromer and Heywood 

2007b, 2007a). The electric mileages (miles per charge) are assumed and calculated as the 

average mileage for available electric (3.71 miles per kWh) and plug-in electric vehicles (3.14 

miles per kWh) in the market (the calculations are shown in supplementary Excel sheet). For 

each vehicle class, we assume the battery efficiency drops as much as their conventional 

counterparts’ fuel efficiency drops. For example, if the gasoline mileage drops by 21% from a 

sedan (32 miles per gallon i.e. mileage of a generic sedan) to an SUV (25.4 miles per gallon i.e. 

mileage of a generic SUV), then for electric variants the electric efficiency also drops by 21% 

from sedan (3.71 miles per kWh) to a SUV (2.95 miles per kWh). As the BEVs in the market 

have wide ranges (miles per charge or full battery capacity), we have modeled two BEV versions 

for each vehicle type with 100- and 150-mile ranges. The consumers who drive more than 150 

miles daily—assumed maximum range of BEV—would have only HEV and PHEV technologies 

available to feasibly choose from. 
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Table 2-1 Technical Specifications and Performance Characteristics of Non-existing Technology Variants (Kromer and 

Heywood 2007b, 2007a; N.R.C. 2013b, 2013a).  

  

Technical Specifications Performance 

Vehicle Type Technology 

Battery 

Capacity 

(kWh) 

ICE 

Power 

(kW) 

Electric 

Motor 

(kW) 

Total 

Power 

(kW) 

Mileage 

(miles 

per 

gallon) 

Range 

(miles per 

charge or 

full 

battery 

capacity) 

Sedan CONVENTIONAL  131  131 34  

Sedan HEV 1 102 29 131 43  

Sedan (Short Range) BEV-100 27  131 131  100 

Sedan (Long Range) BEV-150 40  131 131  150 

Sedan PHEV-40 13 85 46 131 43 40 

SUV CONVENTIONAL  142  142 30  

SUV HEV 1.5 111 31 142 38  

SUV (Short Range) BEV-100 34  142 142  100 

SUV (Long Range) BEV-150 51  142 142  150 

SUV PHEV-40 16 92 50 142 38 40 

Van/Minivan/ 

Station Wagon 

CONVENTIONAL 
 209  209 22  

Van/Minivan/ 

Station Wagon 

HEV 
1.5 163 46 209 28  

Van/Minivan/ 

Station Wagon 

(Short Range) 

BEV-100 

40  209 209  100 

Van/Minivan/ 

Station Wagon (Long 

Range) 

BEV-150 

60  209 209  150 

Van/Minivan/ 

Station Wagon 

PHEV-40 
19 136 73 209 28 40 

Truck CONVENTIONAL  243  243 18  

Truck HEV 1.5 190 53 243 23  

Truck (Short Range) BEV-100 42  243 243  100 

Truck (Long Range) BEV-150 62  243 243  150 

Truck PHEV-40 20 158 85 243 23 40 
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2.5.2 Total Cost of Ownership 

The current vehicle market does not offer ETV analogues for every available model. With this 

said, the suite of available ETV models is expanding rapidly. For example, there were 11 new 

ETV models offered in 2018 compared to 2017(U.S.-EPA 2018c). This evolving market presents 

a challenge for modeling ETV adoption. Considering only currently available ETVs would 

properly reflect today’s options but would misrepresent choices even a few years later. Thus, this 

work assumes a developed ETV market in which there is a reasonable analogue ETV option for 

any current vehicle model. Therefore, ETV choice is modeled as a differential technology 

“upgrade” to currently sold conventional vehicles. This leads to modeling incremental cost 

additions of each technology type (HEV or BEV or PHEV) for each vehicle class (compact, 

sedan, SUV, van and truck). Using prior models of ETV characteristics and costs(U.S.-EPA 

2018a; www.AAA.com 2018; CNG-Now 2018; GasBuddy.com 2017), technical and 

performance specifications are designed and additional costs for ETVs are estimated based on a 

model conventional vehicle for each vehicle class. The cost model accounts for batteries, other 

electric vehicle (EV) systems such as electric motor, transmission and integration, control unit, 

onboard charging unit, regenerative breaking, and wiring as well as credits for removing 

mechanical components of internal combustion engines for EVs. The battery cost and electric 

motor costs are scaled with respect to the battery size and power requirements for each vehicle 

type, and are based on the International Council on Clean Transportation (ICCT) report(Wolfram 

and Lutsey 2016). In addition to capital costs, an industry markup factor of 1.46 is assumed for 

all vehicle components (Rogozhin et al. 2010). BEV range is limited and must be accounted for 

in designing vehicles and their use by consumers. Given the wide ranges in miles per charge, two 

BEV versions are considered for each vehicle type, with 100 and 150 miles of range. Consumers 

who drive more than 150 miles daily may only choose HEV and PHEV technologies. For 

PHEVs, it is assumed that a consumer will first operate on electricity until the battery is drained 

and then switch to gasoline. 

The TCO contains initial capital cost, discounted fuel savings, discounted battery replacement 

cost (for BEV and PHEV), and discounted salvage value (shown in Equation 2-1). A discount 

rate of 7% is assumed for this work. It is common to use 7% as the discount rate in total cost of 

ownership calculations (Miotti et al. 2016; Gilmore and Lave 2013; Al-Alawi and Bradley 2013; 

O’Keefe, M; Brooker, A; Johnson, C; Mendelsohn, M; Neubauer, J; Pesaran 2010; Lipman and 

Delucchi 2006; Breetz and Salon 2018). Moreover, the discount rate of 7% is also suggested by 

the Office of Management and Budget (Weis, Jaramillo, and Michalek 2014; US-OMB (The 

Office of Managment and Budget) 2017). The duration of car ownership for each consumer is 

calculated. Note that the duration of car ownership varies (also shows the behavioral 

heterogeneity) by consumer (7 years average with standard deviation of 3.6 years). Duration 

determines the vehicle lifetimes used in calculating total cost of ownership and the salvage value. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 
=  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 − 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐹𝑢𝑒𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠
+ 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡
− 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 

Equation 2-1 

 

Once the total cost of ownership is calculated for each ETV in comparison with a conventional 

vehicle, a least total cost to the consumer (i.e. the highest Net Present Value) option (preferred 

technology) is selected for a particular consumer.  

2.5.2.1 Capital Cost 

For BEVs and PHEVs, the initial capital cost includes battery price as well as other electric 

vehicle (EV) systems such as electric motor, transmission and integration, control unit, onboard 
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charging unit, regenerative breaking, and wiring as well as credits for removing mechanical 

components of internal combustion engines. The battery cost and electric motor costs are scaled 

with respect to the battery size and power requirements for each vehicle type. The battery cell 

cost is calculated using the International Council on Clean Transportation (ICCT) report 

(Wolfram and Lutsey 2016), and is used to calculate the total battery cost (as shown in Equation 

2-2).  

𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑜𝑠𝑡 ($)
= $ 2014 + 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑊ℎ) × $ 233 𝑝𝑒𝑟 𝑘𝑊ℎ 

 

Equation 2-2 

 

HEVs have similar components as that of PHEVs except for the onboard charging unit and the 

costs of battery and electric motor are lower. The initial capital costs are, thus, calculated as 

additional costs of the technology over a similar conventional internal combustion engine 

vehicle. The cost model is build using a Massachusetts Institute of Technology report (Kromer 

and Heywood 2007b, 2007a) and a National Research Council report (N.R.C. 2013b, 2013a). In 

addition to the costs of components, the industry markup factor of 1.46 is assumed for all 

vehicles (Rogozhin et al. 2010). 
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Table 2-2 Total Incremental Cost for the Non-existing Technology Variants with Technical Specifications as shown in Table 2-1 

  

Total Incremental Capital Cost ($) 

Vehicle Type Technology 

Total 

Battery 

Cost ($) 

Battery 
Cell 

Costs 

($) 

Total 
Motor 

System 

Cost ($) 

Other 
EV 

Systems 

($) 

Hybrid 

transmission 

and 

Integration 

($) 

Wiring 

($) 

EV 

Transmission 

($) 

ICE engine 

credit ($) for 

conventional 

starter and 

alternator 

ICE Credit 

($) for 

downsizing 

ICE 

Credit 

($) 

Total 

Cost 

($) 

With 
Markup 

Factor 

($) 

Sedan CONVENTIONAL             

Sedan HEV 2248 233 1065 495 364 243  -121 -139  4155 6066 

Sedan (Short Range) BEV-100 8302 6287 3521 940  243 344   -3887 9462 13815 

Sedan (Long Range) BEV-150 11445 9431 3521 940  243 344   -3887 12606 18405 

Sedan PHEV-40 4989 2974 1319 940 364 243  -121 -277  7455 10885 

SUV CONVENTIONAL             

SUV HEV 2364 350 1121 495 364 243  -121 -150  4316 6302 

SUV (Short Range) BEV-100 9930 7916 3790 940  243 344   -3887 11360 16586 

SUV (Long Range) BEV-150 13888 11874 3790 940  243 344   -3887 15318 22365 

SUV PHEV-40 5759 3745 1413 940 364 243  -121 -299  8298 12115 

Van/Minivan/ Station 

Wagon 
CONVENTIONAL             

Van/Minivan/ Station 

Wagon HEV 2364 350 1479 495 364 243  -121 -220  4604 6722 

Van/Minivan/ Station 

Wagon (Short Range) 
BEV-100 11398 9383 5522 940  243 344   -3887 14560 21258 

Van/Minivan/ Station 

Wagon (Long Range) 
BEV-150 16090 14075 5522 940  243 344   -3887 19252 28108 

Van/Minivan/ Station 

Wagon 
PHEV-40 6453 4439 2019 940 364 243  -121 -441  9457 13807 

Truck CONVENTIONAL             

Truck HEV 2364 350 1662 495 364 243  -121 -256  4750 6936 

Truck (Short Range) BEV-100 11700 9686 6405 940  243 344   -3887 15745 22988 

Truck (Long Range) BEV-150 16543 14529 6405 940  243 344   -3887 20588 30059 

Truck PHEV-40 6596 4582 2328 940 364 243  -121 -513  9837 14362 
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2.5.2.2 Calculation of Expected Duration of Ownership 

After the initial capital cost, we calculate the expected duration of ownership. A lifetime of a 

vehicle differs from the expected duration of ownership because different consumers use their 

vehicles for a different number of years before switching and/or selling vehicles. The NHTS 

provides the number of months a vehicle owned. We use these observed durations to generate a 

distribution for how long owners have currently owned their vehicle. This duration differs from 

the actual duration of ownership before vehicle disposal or retirement.  

The survival rate is calculated for each year i.e. the percentage of vehicles using their vehicle 

past the respective year, conditional upon the consumers have used their vehicles until that year 

(i.e. how long they have currently owned their vehicle).  

The survivor function is shown in Equation 2-3, 𝑛𝑗 is the number of consumers using their 

vehicles past duration 𝑡𝑗, and ℎ𝑗is the number of consumers who sold their vehicles in the 

duration 𝑡𝑗. It is estimated by setting the estimated conditional probability of using the vehicle 

past 𝑡𝑗 equal to the observed relative frequency of completion at 𝑡𝑗 . The distribution is shown in 

Error! Reference source not found. and it depicts how frequently the consumers replace their 

vehicles.  

�̂�(𝑡𝑗) = ∏ (𝑛𝑗 − ℎ𝑗) 𝑛𝑗⁄

𝑗

𝑗=1

 

 

Equation 2-3 

 

Figure 2-2: Distribution of Population Replacing their Vehicles after a given number of years 

To calculate the expected duration of ownership (𝑛), given a consumer has used their vehicle for 

‘𝑥’ number of years, we build the new distribution with the remaining probabilities by 

determining the conditional survival probability given that the vehicle own year (currently 

owned duration) is not complete, assuming the maximum lifetime is assumed to be fifteen years.  
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2.5.2.3 Salvage Value 

The Salvage Value is a value of a vehicle in a used car market at the end of the expected duration 

of ownership. It is estimated as a function of years of ownership. Raustad has generated an 

equation to estimate depreciation percentage (is shown in Figure 2-3) as a function (With 

R2=0.9997) of years of ownership of the vehicles (Raustad 2017). The author has collected data 

from Edmunds.com for several makes and models. The equation to calculate the depreciation 

percentage is as shown in Equation 2-4. The consumer receives the salvage value at the end of 

expected duration of ownership (𝑛), therefore, we have accounted it as the present value of future 

money, as shown in Equation 2-6. 

 

Figure 2-3: Depreciation Percentage at a function of Expected Duration of Ownership (Years) 

 

𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
= (6 × 10−5) 𝑛3 − (0.0038 )𝑛2 + (0.093) 𝑛 +  0.1384 

Equation 2-4 

 

𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ($)
=  𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ×  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡($) 

Equation 2-5 

 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝
=  𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ×  (1 + 𝑟)−𝑛 

Equation 2-6 

2.5.2.4 Battery Replacement Cost 

For BEVs and PHEVs, a battery replacement cost at the end of life, and life of the battery is 

estimated as a function of number of charging-discharging cycles and depth of discharge (Wood, 

Alexander, and Bradley 2011; Raustad 2017). The battery lifetime is calculated as shown in 

Equation 2-7 and Equation 2-8Error! Reference source not found.. E. Wood et al. calculated 

the power level of 70% of the peak power can be achieved with the depth of discharge of 80% 
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and charging-discharging cycles of 3,500 (Wood, Alexander, and Bradley 2011). Therefore, to 

calculate battery lifetime, we assume the depth of discharge 80%, and 3,500 charging-

discharging cycles. Thus, for example, the battery of 27 kWh with efficiency 3.71 miles per 

kWh, depth of discharge 80%, and 3,500 charging-discharging cycles can provide 280,476 miles 

in its lifetime, and with 18,000 annual miles, the battery life would be 15.6 years. Using this 

battery lifetime, the discounted battery replacement cost is calculated. For the consumers who 

have battery lifetime more than the expected duration of ownership, and when these consumers 

sell their vehicles and the buyer of this used vehicle would need to replace the degraded battery 

shortly after. Therefore, to compensate for this battery use, we consider that the previous owner 

still pays for the battery replacement. To account for this cost, we reduce the discounted salvage 

value by the amount the consumer would have paid to replace the battery by saving annually 

until the end of the expected duration of ownership. 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑖𝑙𝑒𝑠 𝑖𝑛 𝑏𝑎𝑡𝑡𝑒𝑟𝑦′𝑠 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑚𝑖𝑙𝑒𝑠)
= 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑊ℎ)
× 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑘𝑊ℎ)
×  𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (80%)
× 𝑁𝑜. 𝑜𝑓 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐶𝑦𝑐𝑙𝑒𝑠 (3500) 

Equation 2-7 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 ( 𝑦𝑒𝑎𝑟𝑠) =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑖𝑙𝑒𝑠 𝑖𝑛 𝑏𝑎𝑡𝑡𝑒𝑟𝑦′𝑠 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠
 Equation 2-8 

 

Finally, we calculate the discounted fuel savings. The first step of calculating the fuel savings is 

to identify the fuel and electricity costs for each consumer. Using the household’s State of 

residency, each observation is assigned electricity emissions per kWh (of generation) from the 

U.S. Energy Information Agency (U.S.-EIA 2018b) as well as the conventional fuel prices 

(www.AAA.com 2018; CNG-Now 2018; GasBuddy.com 2017). As all the calculations are done 

in comparison with the conventional vehicle, first annual fuel costs of conventional vehicles are 

calculated (Equation 2-9). Then the fuel costs of each of the technology variant are calculated for 

each vehicle type. The fuel costs for HEVs are calculated like that of a conventional vehicle 

(Equation 2-10). For BEVs, first the annual electricity consumption is calculated using the 

maximum range of the vehicle and then the cost of electricity consumption (i.e. the fuel cost) is 

calculated (Equation 2-11). For PHEVs, the fuel costs are calculated similar to that of BEVs, and 

it is assumed that the consumer first uses the electric energy and once the battery runs out (i.e. 

maximum range of PHEV) the vehicle is run on gasoline (Equation 2-12). The annual fuel 

savings are calculated for each of the technology variants (Equation 2-13) and then converted to 

discounted fuel savings (present value of annuity) for the total expected duration of ownership 

(Equation 2-14). All these cost components are discounted at an assumed discount rate (𝑟) of 7%. 

For each consumer, we select the least total cost to the consumers (i.e. the highest Net Present 

Value) electric technology vehicle. The annualized Costs are shown in Figure 2-5 as negative 

annualized Net Present Value.  

𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ($)

=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠

𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛)
× 𝐹𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒 ($ 𝑔𝑎𝑙𝑙𝑜𝑛)⁄  

Equation 2-9 
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𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝐻𝐸𝑉𝑠 ($)

=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠

𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛)
× 𝐹𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒 ($ 𝑔𝑎𝑙𝑙𝑜𝑛)⁄  

 

Equation 2-10 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝐵𝐸𝑉𝑠 ($)

=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑘𝑊ℎ)
× 𝐹𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒 ($ 𝑘𝑊ℎ)⁄  

 

Equation 2-11 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑃𝐻𝐸𝑉𝑠 ($)

=

[
 
 
 
 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑃𝐻𝐸𝑉 (𝑚𝑖𝑙𝑒𝑠)

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑘𝑊ℎ)
× 𝐹𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒 ($ 𝑘𝑊ℎ)⁄

+ 
(𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠 365 −  𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑃𝐻𝐸𝑉)⁄  

𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛)
× 𝐹𝑢𝑒𝑙 𝑃𝑟𝑖𝑐𝑒 ($ 𝑔𝑎𝑙𝑙𝑜𝑛)⁄

]
 
 
 
 

× 365 

Equation 2-12 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 ($)
= 𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠($)
− 𝐹𝑢𝑒𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒($) 

Equation 2-13 

 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐹𝑢𝑒𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 ($) = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 ×  [
1 − (1 + 𝑟)−𝑛

𝑟
] 

 

Equation 2-14 

2.5.3 Emissions Savings 

After selecting the least total cost to the consumer technology (or a preferred technology), we 

calculate the annual emissions saved by the respective electric technology vehicle. For 

conventional vehicles and HEVs, the emissions saved are calculated using the amount of fuel 

consumed (Equation 2-15-Equation 2-16).  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑘𝑔𝐶𝑂2𝑒)

=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠

𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟𝑔𝑎𝑙𝑙𝑜𝑛)
× 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛 (𝑘𝑔𝐶𝑂2𝑒 𝑔𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝑓𝑢𝑒𝑙)⁄  

 

Equation 2-15 

 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐻𝐸𝑉 (𝑘𝑔𝐶𝑂2𝑒)

=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠

𝑀𝑖𝑙𝑒𝑎𝑔𝑒𝐻𝐸𝑉 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟𝑔𝑎𝑙𝑙𝑜𝑛)
× 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛 (𝑘𝑔𝐶𝑂2𝑒 𝑔𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝑓𝑢𝑒𝑙)⁄  

 

Equation 2-16 
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To calculate emissions savings from BEVs and PHEVs, we first assign emissions for generating 

1 kWh of electricity to each observation as per the household state. The electricity emissions are 

sourced from the Emissions & Generation Resource Integrated Database (eGRID) (U.S.-EPA 

2018a). These emissions are average emission rates as specified by eGRID in the year 2014. For 

BEVs, the electric efficiency (miles per kWh) and annual miles driven are used to calculate the 

annual electricity consumption. Then using the electricity emissions (kgCO2e per kWh) for 

generating 1 kWh in the respective state—assuming the consumers charge their vehicle in the 

state of their residence—are used to calculate the total annual emissions (Equation 2-17).   

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐵𝐸𝑉 (𝑘𝑔𝐶𝑂2𝑒)

=
𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑘𝑊ℎ)
× 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑘𝑊ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑒 (𝑘𝑔𝐶𝑂2𝑒 𝑘𝑊ℎ)⁄  

 

Equation 2-17 

For PHEVs, the emissions from electricity consumption are calculated in a similar fashion as that 

of BEVs. The emissions from gasoline consumption are calculated similar to that of HEVs, as 

shown in Equation 2-18. First using the battery range (as we assume consumers will use PHEVs 

on electricity first), we calculate the electricity consumption, followed by the emissions from 

electricity consumption. As the remaining daily miles are expected to be driven using gasoline, 

the rest of the emissions are calculated for consuming gasoline.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑃𝐻𝐸𝑉 (𝑘𝑔𝐶𝑂2𝑒)

=

[
 
 
 
 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑃𝐻𝐸𝑉 (𝑚𝑖𝑙𝑒𝑠)

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑘𝑊ℎ)
× (

𝑘𝑔𝐶𝑂2𝑒

𝑘𝑊ℎ
)
𝑓𝑜𝑟 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑒

+ 
(𝐴𝑛𝑛𝑢𝑎𝑙 𝑀𝑖𝑙𝑒𝑠 365 −  𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑃𝐻𝐸𝑉)⁄  

𝑀𝑖𝑙𝑒𝑎𝑔𝑒𝑃𝐻𝐸𝑉 (𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛)
× (𝑘𝑔𝐶𝑂2𝑒 𝑔𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝑓𝑢𝑒𝑙)⁄

]
 
 
 
 

× 365 

 

Equation 2-18 

 

The annual fuel savings are calculated using the emissions of conventional vehicle and emissions 

from an Electric Technology Vehicle. For the preferred technology then we calculate the total 

emissions saved over the expected duration of ownership.  

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 (𝑘𝑔𝐶𝑂2𝑒)
= 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑒ℎ𝑖𝑐𝑙𝑒
− 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 

 

Equation 2-19 

To calculate carbon marginal abatement costs, we use the Total Cost of Ownership and the Total 

Emissions Saved over the expected duration of ownership.  

The carbon marginal abatement costs (US$ per MTCO2e, shown in Equation 2-20) are calculated 

for the preferred technology options.  

𝐶𝑎𝑟𝑏𝑜𝑛 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐴𝑏𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 (𝑈𝑆$ 𝑀𝑇 𝐶𝑂2𝑒⁄ )  

=
𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 (𝑈𝑆$) 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 (𝑀𝑇 𝐶𝑂2𝑒) 
 

 

Equation 2-20 
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 Results and Discussion 

The first set of outputs produces distributions of economic and carbon implications of electric 

technology vehicle adoption. Summary results of this analysis are shown in Figure 2-4. 

Annualized cost includes amortized purchase cost, fuel expenses (gasoline and electricity), 

battery replacement and resale value when the vehicle is replaced. Annual emissions savings are 

calculated by assuming the vehicle is driven in the state of purchase, subtracting the emissions 

from gasoline used in a conventional vehicle from emissions due to electricity consumed by the 

electric technology vehicle (and gasoline for hybrid and PHEV models). The model assumes the 

consumer chooses between hybrid, electric or plug-in hybrid depending on which has the lowest 

annualized costs. 

 

Figure 2-4: Unsubsidized Annualized Cost (US$/year) and Annual Emissions Saved (MT CO2e) from switching from 

conventional to an electric technology vehicle, per vehicle owned by U.S. consumers, ordered from lowest to highest cost (highest 

to lowest emissions savings). The left figure shows that 1.9% of the population, having negative annualized costs, directly 

benefits financially. The right image shows how annual emissions savings vary by person, driven primarily by heterogeneity in 

annual mileage. 

Following these results, this work calculates the Carbon Marginal Abatement Cost Curve, as 

shown in Figure 2-5. It shows the total amount of carbon mitigated (x-axis) if every consumer in 

the U.S. replaces their current vehicle with the electric technology vehicle (HEV, BEV, PHEV) 

that has the lowest discounted total cost to the consumer. It can be seen that most consumers 

currently prefer hybrids over BEV and PHEV if forced to switch from a conventional internal 

combustion vehicle. This work refers to the amount of carbon mitigated by the consumers with 

the negative carbon mitigation costs (and hence net emissions savings from the adoption of the 

preferred electric technology vehicle) as “Free Carbon”. 
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Figure 2-5: Carbon Marginal Abatement Cost Curve (MACC) for electric technology vehicles (ETV) with current prices and no 

subsidy (base case scenario). The figure shows a series of narrow rectangles, ordered from lowest to highest height, with log 

scale. Each rectangle height is the cost of abatement of one metric tonne (MT) of CO2e for a response from the National 

Household Travel Survey (depends on household weight, typically 680). Negative marginal cost represents consumers who 

financially benefit (save money) from buying an electric technology vehicle. The width of each rectangle is the amount of carbon 

emissions saved in a year from this household class switching to its least cost electric technology vehicle, the total width reflects 

every personal vehicle in the U.S. being replaced by an ETV. Note that this base case scenario does not account for current 

federal tax credits for PHEV and EV of up to US$ 7,500 or state/local subsidies. (BEV: Battery Electric Vehicle, HEV: Hybrid 

Engine Vehicle, PHEV: Plug-in Hybrid Electric Vehicle). 

A relatively small population, 1.9% of all drivers with very high annual mileage, benefits 

economically from electric technology vehicles, mainly hybrids. The estimated ‘free carbon’ in 

the base case scenario is 17 Million Metric Tonnes (MMT) CO2e or 1.5% of the total light-duty 

transportation emissions in the U.S. To provide context for this figure, this work estimates that 

switching the entire U.S. vehicle fleet to BEVs and PHEVs would decrease light-duty vehicle 

emissions in the U.S. by 30%, assuming current electricity generation mixes around the country. 

Figure 2-5 shows the carbon abatement costs and corresponding annual emissions if the current 

fleet were replaced with a preferred electric technology vehicle with the least total cost of 

ownership. Only 1.9% of the population receives direct financial benefits and the 10% of the 

population in terms of emissions savings can potentially save over 49 MMT (i.e. 4.3% of the 

total light-duty transportation emissions) by moving to the cost-effective electric technology 

vehicle. As shown on x-axis Figure 2-5, if the entire U.S. fleet were replaced with the cost-

effective electric technology vehicle, 159 MMT emissions can be saved (1.5% of total 

emissions). 

The consumers who directly benefit financially have an average carbon abatement cost of -$49 

per MTCO2e with an average annual mileage of 48,750 miles, compared to the consumers who 

do not save money, who have an average abatement cost of $5,130 per MTCO2e and drive an 

average of 10,856 miles annually. Large savings on fuel consumption by the first group enables 

these consumers to recover their high initial capital costs. Note that the average U.S. consumer 
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drives 11,700 miles annually, thus consumers getting financial benefits from an ETV drive over 

four times the national average. 

The MACC in Figure 2-5 is constructed with 2017 fuel and technology prices. However, these 

prices are expected to change with time. Therefore, two alternative scenarios are examined: (i) 

First, a doubled fuel price scenario, and (ii) a second scenario with 75% decrease in battery cell 

prices (i.e. $58 per kWh, down from $233 per kWh). Figure 2-6 shows the MACC with current 

technology prices, but fuel prices are doubled (average fuel price $5.20 per gallon) compared to 

the base case scenario (average fuel price $2.60 per gallon). As the fuel prices increase, the 

consumers are better off buying more expensive BEV or PHEV choices, as they recover these 

initial high capital costs through savings in fuel consumption. It can be seen that the technology 

of choice switches to BEV or PHEV instead of HEV (relative to base case scenario) due to 

electricity being a cheaper fuel. HEVs are still the best ETV choice for drivers with low mileage 

(lowest capital costs), who are generally on the right side of the figure. Abatement costs are as 

low as -$10,000 per MTCO2e. Note that abatement cost is a ratio, so large magnitudes can come 

from a large numerator, a small denominator, or both. For example, a consumer who saves 

$2,870 annually by purchasing a BEV with a carbon reduction of only 0.28 MTCO2e has an 

abatement cost of -$10,200 per MTCO2e. 

 

Figure 2-6: Carbon Marginal Abatement Cost Curve (MACC) for electric technology vehicles with doubled gasoline price ($5.20 

per gallon) and current electric technology vehicle prices. Adoption by the 39% of the population that saves money (negative 

abatement cost) yields 75% of achievable carbon savings from electric technology vehicles. Note that both axes have different 

ranges from Figure 2-5. With doubled fuel prices, some consumers save much more, resulting in a wider range on the negative y-

axis. BEV and PHEV emerge as more often preferred compared to the base case (current fuel and technology prices, no subsidy), 

their adoption resulting in larger carbon savings (x-axis scale increase) compared to HEV dominated adoption in Figure 2-5. 

(BEV: Battery Electric Vehicle, HEV: Hybrid Engine Vehicle, PHEV: Plug-in Hybrid Electric Vehicle) 

In the doubled fuel price scenario (average fuel price $5.20 per gallon), the number of consumers 

benefitting from electric technology vehicles grows to a 39% share. The “free carbon” is 211 

Million MTCO2e or 18.5 % of total light-duty transportation emissions. The consumers who 

benefit financially drive an average of 19,008 miles annually, and the consumers who do not 
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benefit financially drive about 63% less (6,898 miles annually). The average mileage of 

consumers who benefit financially from ETVs (19,008 miles) is now much closer to the national 

annual average mileage of 11,700. This indicates that the pool of consumers that can benefit 

from these electric technology vehicles is broadened, from only extremely highly-used vehicles 

to those with slightly higher than average annual usage. The average carbon abatement costs also 

change to -$89 per MTCO2e (relative to -$49 in the base case) for financially benefitting 

consumers and for the rest of the population respectively. 

Figure 2-7 shows the MACC for electric technology vehicles with current fuel price but lower 

costs for battery cells: $58 per kWh instead of the current $233 per kWh, which represent 

significant technological progress in battery production. Several estimates project rapidly 

declining battery cell prices, such as of $125 per kWh by 2022 as per U.S. Department of Energy 

(DOE)(U.S.-DOE 2017), $125 to $150 per kWh by 2030 as per Union of Concerned Scientists 

(UCS)(UCS 2017), and $100 per kWh by 2025 as per Bloomberg (Chediak 2017). The modeling 

here does not account for when these price targets will be achieved instead describes economic 

and carbon benefits given a future battery cell price. Similar to the fuel price change scenario, 

consumers move away from hybrid vehicles, but now with a stronger preference for battery 

electric vehicles (since batteries are cheaper) (Figure 2-6). With decreasing battery cell prices, 

consumers now save money with both initial capital investment of a pure electric vehicle as well 

as on fuel. 

  

Figure 2-7: Carbon Marginal Abatement Cost Curve (MACC) for electric technology vehicles with current gasoline price and 

battery cell cost of $58 per kWh (75% of the current battery cell prices of $233 per kWh). Adoption by the 18% of population that 

benefits financially (negative abatement cost) yields 46% of achievable carbon savings from electric technology vehicles. Note 

that both axes have different ranges from the base in Figure 2-5 (current fuel and technology prices, no subsidy). Some 

consumers save much more with lower battery prices, resulting in a wider range on the negative y-axis. BEV and PHEV emerge 

as more often preferred compared to the base case, their adoption resulting in larger carbon savings (x-axis scale increase) 

compared to HEV dominated adoption in Figure 2-5. (BEV: Battery Electric Vehicle, HEV: Hybrid Engine Vehicle, PHEV: Plug-

in Hybrid Electric Vehicle) 
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In the decreased battery cell price scenario, about 18% of the population benefits financially 

from ETVs, compared to 1.9% in the base case. The free carbon is 137 Million MTCO2e or 12% 

of total light-duty transportation emissions. The consumers who benefit financially drive 24,248 

miles annually compared to the rest who do not benefit financially and drive 8,668 miles. The 

lower battery prices also affect the carbon abatement costs for financially benefitting consumers. 

In this case, the average carbon abatement costs are -$55 per MTCO2e (relative to -$49 in the 

base case) for financially benefitting consumers and $6,800 per MTCO2e (relative to $5,130 in 

the base case) for the rest of the population. 

Figure 2-8 shows summary results for Free Carbon for scenarios with different gasoline prices 

(left side) and lower costs of batteries and other ETV systems (right side). EV systems refers to 

the electric motor, transmission and integration, control unit, onboard charging unit, regenerative 

breaking, and wiring. Notably, free carbon accelerates non-linearly with increasing gasoline 

price and decreasing gasoline price. This is due to an accelerating share of the population that 

benefits from ETVs with improved economics. To put the battery price scenarios in context, note 

that DOE reports a battery cell price target of battery cell price target for 2022 of $125/kWh20 

and the Bloomberg forecasts a cost of $100/kWh for 202522. Achieving these targets results in 

substantial increases in free carbon, 55-80 MMT versus 17 MMT today, 3-4 times more carbon 

benefits compared to today. Note that full adoption of ETVs has potential to save 342 MMT of 

carbon, considering higher than savings shown in Figure 2-8. This is because the average 

consumer has yet to benefit economically from ETVs at these technology and gasoline prices. 

 

Figure 2-8: Impact of changes in price of gasoline, battery cells and other EV system on annual“free carbon”. Free carbon is 

carbon reduction achieved if all consumers that benefit economically from electric technology vehicles adopt them. As the fuel 

prices increase, the amount of free carbon saved increases non-linearly. At lower gasoline prices, an increase of 50 cents per 

gallon saves 13 Million MTCO2e but the same increase at higher fuel prices saves 38 Million MTCO2e of emissions. Decreasing 

battery cell prices have a similar accelerating impact on free carbon. Moreover, if the prices of other EV systems (e.g. electric 

motors) decrease in step with battery cell prices (but at reduced rate), the amount of free carbon increases significantly and non-

linearly. For example, with battery cell price at $58 per kWh, the free carbon is 137 Million MTCO2e, then combined with an EV 

systems price decrease of 29%, the free carbon amount increases to 245 Million MTCO2e. 

One conclusion to draw from this work is that behavioral and geographic heterogeneity must be 

included in a proper assessment of the potential of electric technology vehicles to deliver 

economic and carbon benefits. This work clarifies how accounting for heterogeneity affects 

results in Table 2-3, which shows the percentage of the population who get direct financial 

benefits from ETVs and the corresponding amount of free carbon saved if these consumers 

adopt. If consumer behavior is treated as average (11,700 miles driven year per year) and 

subsidies are removed, no consumer benefits from ETV purchase. If heterogeneous consumer 

behavior is considered but geographical heterogeneity is ignored, only 1.6% of the population 

benefits financially, saving 14 MMT (second row). If all heterogeneities are considered, the base 

case result returns to 1.9% of the population financially benefiting from ETVs and 17 MMT of 
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free carbon. If current tax credits are included (up to $7,500 for PHEV and EVs) and, only 

geographical heterogeneity is considered, the percentage of population benefiting increases from 

0% to 6%, with a free carbon potential of 33 MMT. Including the federal tax credit and both 

types of heterogeneity, the percentage of the population who benefits economically more than 

doubles to 13%, with the potential free carbon savings of 92 MMT. Note these 13% consumers 

save significantly high emissions compared to 10% population shown in Figure 2-4 as the 

subsidy provokes the shift in preferred electric technology vehicle (e.g. HEV to BEV or PHEV), 

and hence corresponding emissions savings are higher, even if considering the same consumer. 

Table 2-3: Effect of including different heterogeneities on share of population benefiting from eletric technology vehicle adoption 

and free carbon. The first and second columns indicate what types of heterogeneity are considered, the third column indicates if 

federal tax credits are included. The fourth column shows the percent of the population which directly receives financial benefits 

and fifth column shows corresponding free carbon gains. The first row shows the case if every vehicle is driven the 11,700 

annual miles of an average U.S. consumer, resulting in no consumers benefiting. The second includes individual variability in 

miles driven and vehicle types, but neglects geographic heterogeneiyt, i.e. all consumers pay national average gasoline and 

electricity prices.. The third row shows accounts for behavioal and geographic heterogentiy ( the base case scenario), The fourth 

and fifth rows include federal tax subsidies. 

Behavioral 

Heterogeneity 

Geographic 

Heterogeneity 

Federal Tax 

Credits  

Share of Population 

Receiving Direct Financial 

Benefits from Cost-Effective 

Adoption of Electric 

Technology Vehicles 

Free Carbon 

(Million 

MTCO2e) 

No Yes No  0% 0 

Yes No  No 1.6% 14 

Yes Yes No 1.9% 17 

No Yes Yes 6% 33 

Yes Yes Yes 13% 92 

 

Heterogeneity affects benefit-cost analyses of government policies to promote ETVs. For 

example, consider 10% of the population adopting ETVs. If this 10% comes from average 

consumers, carbon reductions would be 0.90 tonnes CO2/vehicle (159 MMT are saved with 175 

million ETVs). In contrast, if this 10% were individuals that benefit most economically from 

ETVs, annual carbon savings would 3.2 times higher, 2.84 tonnes/vehicle. Valuing the carbon 

benefit of emissions reduction at $40/ton (neglecting other societal benefits), emissions savings 

deliver $739 benefit per vehicle assuming average consumers benefit and $234 benefit per 

vehicle assuming most benefiting consumers adopt. Both assumptions (benefiting consumers and 

average consumers) are idealizations that do not capture the complexity of vehicle purchase 

decisions. Using highest benefiting consumers assumes sufficiently equivalent conventional and 

ETV models are available and that consumers view them so. Average consumers adoption 

assumes consumers ignore their individual use of a vehicle (i.e. driving a lot versus a little). The 

truth lies at an undiscovered point between adoption by those whose benefit and adoption by the 

average consumer. The critical policy point is this: the public benefits of promoting a technology 

depend on the heterogeneity of consumers’ responses. 

Note that neither beneficial adoption nor average adoption of ETVs leads to public benefits close 

to the $7,500 per vehicle currently spent on ETV subsidies. Viewed through the lens of current 

technology, the public cost of the ETV subsidy far exceeds its benefits (Michalek et al. 2011). 

However, much of the motivation for the subsidy presumably derives from expectations of it 

contributing to future cost reductions. Our results indicate the trajectory for growth in public 

benefits from lower technology costs. While this work does not undertake a longer-term benefit 



 27 

cost analysis of ETV subsidies, this work notes that it is conceivable to achieve benefits 

exceeding costs, depending how on much expenditure is needed to promote cost reductions. If 

the elasticity of cost reductions as a function of technology investment is sufficiently high (e.g. 

high learning rate in an experience/learning curve), there is potential for “cascading diffusion”, 

in which adoption by high-use subgroups enables cost reductions making the technology 

attractive to other consumer tiers (Herron and Williams 2013; Tsuchiya 1989). However, such an 

analysis would play out, accounting for behavioral and geographic heterogeneity is needed for a 

plausible estimate. 
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3 CHAPTER 3  

Future Costs of Electric Vehicles: Effects of Technological 
Progress and Consumer Heterogeneity  

 

 Chapter Summary 

Electric Technology Vehicles (ETV) can potentially transform the fuel and energy paradigm for 

transportation. Currently, ETVs are more expensive, primarily due to the high cost of the battery 

and electric drivetrain. This said, battery costs have been falling rapidly in recent years. This 

study explores the interaction between future cost reductions and adoption of ETVs using an 

experience curve. The least cost technology purchasing model developed for this study accounts 

for behavioral and geographical heterogeneities. Results show that the future market parity of 

ETVs depends on poorly understood factors: current costs and learning rates of non-battery EV 

technologies and future cost increases in conventional vehicles driven by stricter emissions 

requirements. Depending on which estimates are used, ETVs either become economically 

attractive for nearly 100% of the U.S. population or only for a relatively small share (18%) of 

high mileage drivers. These results suggest that a clearer resolution of cost trends in ETVs and 

conventional vehicles would dramatically increase confidence in the potential for ETVs to reach 

cost parity. Unsurprisingly, higher gasoline prices expand the parameter space in which ETVs 

bring economic benefits to consumers. 
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 Background and Introduction 

Decarbonization of transportation is critical to limit global warming to 1.5 degrees C (IPCC 

2018a, 2018b) as well as to meet the 2 degrees C targets set in the Paris Accords (PPMC 

TRANSPORT 2018). From this point of view, the transport sector in the United States of 

America (U.S.) demands severe and immediate attention. The U.S. transport sector accounts for 

28% of national emissions (i.e. 1,782 Million Metric Tons of CO2e) 60% of which is from 

private transportation (U.S.-EPA 2018d, 2018c). Electric Technology Vehicles (ETV) can, 

therefore, play an important role in reducing these emissions. However, they are an emerging 

technology and have yet to attain cost parity with the incumbent and hence are not yet a 

significant market share. In this regard, it is important to understand how and when ETVs will be 

market competitive. This work uses the term Electric Technology Vehicle (ETV) to define 

Hybrid Engine Vehicle without plug (HEV), Battery Electric Vehicle (BEV) and Plug-in Hybrid 

Electric Vehicle (PHEV). 

The higher cost is often a critical hurdle for an emerging technology to acquire market share. 

New technologies often evolve more rapidly than older incumbents, potentially reaching cost 

parity over time and overcoming the cost hurdle. For ETVs, the battery and the electric drivetrain 

are the two most significant components which make them more expensive to purchase than 

incumbent internal combustion vehicles. For some consumers, arguably, the lower operating 

costs of ETVs could be enticing enough to prefer ETV over a conventional vehicle. However, 

currently, the savings from operating a vehicle on electricity instead of gasoline over the duration 

of ownership may not be sufficient to overcome the additional initial capital costs of BEVs and 

PHEVs. Although it may be true in some cases because heterogeneity in consumers’ behavior 

and their locations significantly dictate how much fuel savings a consumer is going to realize. 

Therefore, for the ETVs to be financially attractive to most consumers the initial capital costs 

need to reduce. One of the ways, these costs may decrease, is by reducing the manufacturing 

costs. When early adopters purchase a new technology the cumulative production of the said 

technology increases, and over a period of time the new technology becomes cheaper (or 

financially attractive). Therefore, it is important to understand how the initial adopters make the 

technology more affordable to the latter adopters.  

In the U.S., currently, the total stock of the Battery Electric Vehicles (BEV) and Plug-in Hybrid 

Electric Vehicles (PHEV) is close to 4%; they accounted for 3.1 million vehicles globally by the 

end of 2017 (International and Agency 2018). This shows the significant market space the ETVs 

can capture if they are cheaper to adopt. However, a typical conventional vehicle still being 

cheaper than a comparable ETV option is a hurdle. The government, however, can play a key 

role by propelling the initial adoption through subsidies. These subsidies allow faster adoption 

and make the technologies cheaper for the latter adopters. Nonetheless, the current market share 

of ETVs and higher capital costs imply the potential for ETVs to reduce price and increase the 

market share. Although many economists have argued that the technology-specific subsidies may 

not be the most efficient method for more beneficial outcomes (Ballard and Medema 1993). 

Governments across the globe have indulged in heavy subsidies, at least with the one objective 

of making the technology lucrative to consumers and are likely to continue to do so. For 

example, the U.S. government has spent over $100 billion between 2006 and 2012 on various 

energy diffusion subsidies (Dinan and Webre 2012). Currently, a consumer in the U.S. can get 

$7,500 of federal tax credits for a purchase of a BEV and/or PHEV (U.S.-EPA 2018b). However, 

the BEVs and PHEVs have not reached cost parity and remain out of reach for most consumers. 
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Therefore, in this study, this work looks at how early adopters make the ETVs cheaper for the 

latter adopters using learning rates and the experience curve. The model—developed for this 

study—incorporates the inherent behavioral (individual differences in miles driven and vehicle 

type preferences) as well as the geographic heterogeneities (in fuel prices) of the U.S. consumers 

to calculate the financial benefits of ETVs. An important distinction to note is this model is a 

replacement of incumbent technology (i.e. the conventional vehicles) by an emerging technology 

(i.e. ETV) model, and not a diffusion or an adoption model. 

This model shows how the adoption of ETVs (i.e. replacement of an incumbent conventional 

vehicle), now and in future, depends on the battery cell cost, the non-battery EV components 

cost, cost of evolving incumbent technology to accommodate the stricter emissions requirements 

(i.e. an Internal Combustion Engine Vehicle (ICEV) Cost Premium), and gasoline prices. This 

work further investigates if and how the federal tax credits (or subsidy) play a role for the 

consumers to move to the ETVs. 

 Literature Review 

In previous studies, the learning rate and future cost have been analyzed in energy technologies 

(Azevedo et al. 2013; McNerney et al. 2010; Tsuchiya 1989). Wiesenthal et al. concluded that 

the learning rate can be used to explain the observed phenomena of adoption and cost reduction 

of technology as well as for better replication of historic cost data (Wiesenthal et al. 2012). 

Kahouli-Brahmi S. provided a critical analysis of the learning rate and energy-economics 

modeling. The survey conducted by the author of large-scale models showed that the 

incorporation of the learning rate with energy-economics models gives several new insights in 

understanding the cost reduction potential for a specific technology in bottom-up cost models 

(Kahouli-Brahmi 2008). Tran et al. analyzed the BEV adoption using an integrated approach and 

showed that it depends on the key interactions between the technology and consumer behavior 

(Tran et al. 2012). Edelenbosch et al. analyzed the interactions between social learning and 

technological learning for EVs. The authors have modeled both technological learning and social 

learning mutually and concluded that social learning stimulates diffusion for early adopters and 

this increased market share induced the technological learning (Edelenbosch et al. 2018). Thus, it 

is safe to say that the learning rate in energy-demand technology like ETVs is an acceptable 

modeling approach which incorporates the demand-side heterogeneity to understand and gain 

important insights into the auto market and its evolution in future.  

 Contribution 

This study, however, does not look at technology diffusion; our model is a functional equivalent 

to the auto-market from the consumers’ point of view. The main difference is in a typical 

diffusion model factors such as contagion diffusion, social influence, and social learning are 

included to study the penetration of a technology (Young 2009; Rao and Kishore 2010; Hall and 

Khan 2003; Rogers, n.d.; Huétink, der Vooren, and Alkemade 2010; Adner and Levinthal 2001). 

As we are looking at only the replacement of an incumbent technology, this work assumes an 

idealized future market in which consumers can choose from otherwise equivalent ETV and 

conventional models solely based on the least Total Cost of Ownership (TCO). While fuel 

savings motivate consumers to move to ETVs as modeled in this study, vehicles purchase 

decisions depend on many factors beyond net economic benefits. If the ETVs become cheaper in 

the future, the fuel savings from the ETVs become more important for a consumer. Although 

consumers choice of a technology does not always depend on cost such as driving experience, 
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convenience of fueling (e.g., the locations where vehicles can be charged, the time that it takes to 

charge, and the frequency with which a vehicle must be charged), and the availability/familiarity 

of make/models. There are several studies which have studied the personal vehicle choice often 

using discrete choice models (Bunch et al. 1993; Brownstone, Bunch, and Train 2000; Ewing 

and Sarigöllü 2000; Jan Wassenaar et al. 2005; Potoglou and Kanaroglou 2007; Ahn, Jeong, and 

Kim 2008; Ziegler 2010; Hidrue et al. 2011; Andre Hackbarth and Reinhard 2013; Cirillo, Xu, 

and Bastin 2016; Liu and Cirillo 2017).  

To address these questions, this work has an integrated model using demand-side heterogeneity 

which accounts for the individual-level differences in miles driven, type of vehicle owned (sedan, 

SUV, minivan and truck), and lifetime ownership preferences to estimate the economic benefits 

of electric technology vehicles (hybrid, plug-in hybrid, electric) in the U.S. The model also 

considers the state-level differences (i.e. the geographic heterogeneity) in gasoline and electricity 

prices. The National Household Travel Survey (NHTS) is used as the primary data source, which 

includes vehicle holdings characteristics for each surveyed household (a total of 309,000 

households and 143,000 vehicles) (U.S.-DOT 2017). For every year, for the market going 

population to purchase a more efficient vehicle than their currently owned vehicle, the net 

economic benefits (or costs) are calculated to replace each existing internal combustion vehicle 

with a comparable Electric Technology Vehicle. Consumers are assumed to choose a HEV, 

PHEV, or BEV depending on which one of these provides the greatest private economic benefit. 

The addition of every ETV to the stock is used to calculate the reduction in technology cost 

using the learning rate. The learning rates are used for the battery as well as non-battery EV 

technologies such as an electric motor. The initial capital costs of ETVs are calculated using two 

different models—which account for two differing perspectives on bottom-up costs for non-

battery EV technologies—to acknowledge the uncertainty about the additional costs of ETV 

technologies. This work has also undertaken additional analysis where the net economic benefits 

are calculated for different fuel prices and varying ICEV Cost Premium—which considers the 

conventional vehicles getting more expensive because of implementation of fuel efficiency rules 

such as CAFE standards (EPA and NHTSA 2012). This study also analyzed the effect of current 

federal tax credits for BEVs and PHEVs in inducing the ETV penetration. As explained earlier, 

this work does not look at the diffusion of ETVs but the replacement of incumbent technology by 

the more efficient and advanced technology because when the technology becomes cheaper the 

fuel savings from technology would motivate the consumers to move to ETVs. 
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 Methodology 

 

Figure 3-1 Methodological Framework of Integrated Incumbent Technology Replacement Model. The diagram shows the data 

sources such as the National Household Travel Survey (U.S.-DOT 2017) and others (U.S.-EPA 2018c, 2018a; www.AAA.com 

2018; CNG-Now 2018; GasBuddy.com 2017) as well as the flows of data. Blue background refers to calculations while yellow 

refers to additional information such as type of heterogeneity analyzed. 

Figure 3-1 shows the overall methodological framework. A detailed explanation appears in the 

annexure, here this work summarizes only main points. This work uses the National Household 

Travel Survey (NHTS) sample vehicle fleet as the main input for the vehicle-level analysis. 

NHTS includes the households’ State of residence. This work uses this in modeling geographical 

heterogeneity to find state-specific fuel and electricity prices. The NHTS dataset also reports 

make, model, and type of the vehicle (used to estimate the initial capital cost and mileage in 

miles per gallon), number of months the vehicle is currently owned (used to estimate the 

expected duration of ownership of the vehicle), and number of miles driven annually (behavioral 

heterogeneity) for each household vehicle. 

The integrated incumbent technology replacement model is divided into three parts: Market 

Allocation Model, Financial Model, and Technology Progress Model. All the calculations are 

repeated for each year from 2018 to 2040. In the Market Allocation Model, the consumer 

purchasing patterns are taken into account to recognize market going population every year to 

purchase (i.e. to replace) their current incumbent Internal Combustion Engine Vehicles (ICEVs), 

using the number of months the current vehicle is owned data from NHTS. After calculating the 

Total Costs of Ownership (explained in the Financial Model) for each technology option, the 

ETV technologies are allocated to the consumers based on the least TCOs (i.e. the highest 

savings). In the Financial Model, different components of TCOs are calculated. The TCO 

includes components such as initial capital cost, amortized fuel savings, battery replacement 

cost, and salvage value. The behavioral characteristics such as annual miles driven, type of 

vehicle, etc. from the NHTS are used in these calculations. The geographical variability in 
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gasoline and electricity are also used in this model to estimate the fuel savings. The initial capital 

costs are calculated as additional costs of the technology (which includes battery and non-battery 

EV technologies such as electric motor, on-board charger, etc.) for each ETV variant compared 

to the latest ICEV. These additional costs reduce with time because of the experience curve. The 

reduction in the costs depends upon the cumulative production of the technology (for example, 

battery cells). The Technology Progress Model uses the number of BEVs, PHEVs, and HEVs 

allocated from the Market Allocation Model to estimate the cumulative production quantities for 

battery cells and non-battery EV technologies. Using the experience curve (i.e. the Learning 

Rate) and the cumulative production, the reduction in costs per unit is calculated to be used in the 

estimation of initial capital costs. This reduced capital costs because of experience curve make 

the ETVs financially attractive to the consumers for whom the ETVs could have been more 

expensive previously. The feedback loop of consumers adopting the ETVs and helping to reduce 

the costs of ETVs make the initial capital costs to reduce and hence the ETVs become cheaper in 

the subsequent years. 

Nevertheless, the number of BEVs and PHEVs sold each year are constrained. In 2017, only 3% 

of cars sold in the U.S. were BEVs and PHEVs combined. Therefore, we think that it will be 

particularly difficult to significantly ramp up the production of these vehicles and hence assume 

that the total number of BEVs and PHEVs sold each year increase by 50% from the previous 

year as the production constraint. A recently published report by UBS Consulting also estimates 

the growth rate as 47% in their most optimistic penetration scenario, which is close to our 

assumption (Hummel et al. 2017). There is no production constraint for HEVs since they are 

very similar to ICEVs, except more fuel-efficient.  

3.5.1 Market Allocation Model 

Identifying Purchasing Consumers for Each Year: The first step of the model is to identify the 

consumers going to the market for the respective year. This work uses the observations of the 

number of months the vehicle is currently owned. The NHTS does not report the expected 

duration of ownership for a vehicle; this work derives it through random generation conditional 

upon the probability distribution of lifetime and survivor function given how long consumers 

have owned their current car, see Figure 2-2. The expected duration of ownership is the time 

period for which a particular consumer uses their vehicle. Duration determines the vehicle 

lifetimes used in calculating the total cost of ownership and the salvage value. Note that the 

duration of car ownership—explained in the annexure—varies by a consumer (7 years average 

with a standard deviation of 3.6 years).  

For each consumer, this work finds out the purchase year and subsequent purchase year using the 

expected duration of ownership. For example, if a consumer has an expected duration of 

ownership of 7 years, and currently they have owned their vehicle for 3 years, then such a 

consumer will be in the market after 4 years (7 years – 3 years) i.e. in the year 2021 as the 

starting year is assumed to be 2018. The same consumer will be in the market to replace the 

vehicle in 2028, after 7 years (i.e. the expected duration of ownership) from 2021. This work 

follows the similar process for each consumer to find out their first purchase year and then 

subsequent purchase year. In short, this work finds out the population going to the market each 

year to purchase a vehicle. Once these market going consumers are recognized, the Financial 

Model is used to calculate the Total Cost of Ownership for each consumer.  



 

 34 

For each year, the first step is to calculate the Total Cost of Ownerships (TCOs) for the total 

population going to the market for each ETV variant in comparison with an ICEV. The Financial 

Model explains the calculations for the TCO. Once the TCOs are calculated, all the consumers 

are arranged with respect to the least total cost to the consumer (i.e. the highest Net Present 

Value) for BEVs. This work assumes that the consumers who have the least TCO (i.e. saving 

maximum money) for the BEVs will move to the BEVs first. Once the consumers are allocated 

BEVs, the remaining consumers are again arranged with respect to the least total cost to the 

consumer for PHEV technology. The consumers saving the most (i.e. the least total cost) are then 

allocated PHEVs. Note that the number of BEVs and PHEVs possibly can be sold each year are 

constrained at 50% from the previous year. The allocation of BEVs and PHEVs have an impact 

on reducing technology prices for the consumers in the following year, which this work captures 

through the experience curve (or the learning rate). This work reports the estimated battery cell 

prices and number of ETVs added to the market for each year to be used as the starting point of 

the next year. The experience curve is applied to reduce the costs of both batteries as well as the 

non-battery EV components. 

3.5.2 Financial Model 

This work has assumed that the consumer’s decision to purchase the vehicle solely depends upon 

the personal economics. The Total Cost of Ownership (TCO) is a useful method of calculating 

the direct and indirect costs associated with a purchase (Ellram 1995) (Hagman et al. 2016). In 

this case, the TCO constitutes initial capital costs, fuel savings in the duration of ownership, 

battery replacement costs, and the salvage value at the end of the duration of ownership as shown 

in Equation 3-1, is calculated to decide consumer’s preference for an Electric Technology 

Vehicle (ETV).  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 (𝑇𝐶𝑂)  
=  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 − 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐹𝑢𝑒𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠
+ 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡
− 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 

Equation 3-1 

 

In evaluating the purchase of an ETV, this work assumes consumers keep the same make, model, 

and type as their previous vehicle. This work models four technology options: 1. Updated 

Conventional Vehicle (Internal Combustion Engine Vehicle-ICEV), 2. Hybrid Engine Vehicle 

(HEV), 3. Battery Electric Vehicle (BEV) and 4. Plug-in Hybrid Electric Vehicle (PHEV). This 

work defines ‘updated conventional vehicle’, as the 2018 version i.e. the latest of the model the 

consumers currently own. This work assesses the economic implications of purchasing an ETV 

by comparing the ETV with the updated conventional vehicle. A discount rate of 7% is assumed 

for this work as it is common to use 7% as the discount rate in TCO calculations (Miotti et al. 

2016; Gilmore and Lave 2013; Al-Alawi and Bradley 2013; O’Keefe, M; Brooker, A; Johnson, 

C; Mendelsohn, M; Neubauer, J; Pesaran 2010; Lipman and Delucchi 2006; Breetz and Salon 

2018). Moreover, the discount rate of 7% is also suggested by the Office of Management and 

Budget (Weis, Jaramillo, and Michalek 2014; US-OMB (The Office of Management and 

Budget) 2017). The salvage value is estimated as a function of years of ownership (Equation 2-4 

to Equation 2-6) (Raustad 2017). 

The current vehicle market does not offer ETV analogues for every available ICEV model. With 

this said, the suite of available ETV models is expanding rapidly. For example, there were 11 

new ETV models offered in 2018 compared to 2017 (U.S.-EPA 2018c). This evolving market 
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presents a challenge for modeling ETV adoption. Considering only currently available ETVs 

would properly reflect today’s options but would misrepresent choices even a few years later. 

Thus, this work assumes a developed ETV market in which there is a reasonable analogous ETV 

option for any current vehicle model. Therefore, this work models ETV choice as a differential 

technology “upgrade” to currently sold conventional vehicles. This leads to modeling 

incremental cost additions of each technology type (HEV or BEV or PHEV) for each vehicle 

class (sedan, SUV, van, and truck). Using prior models (Kromer and Heywood 2007b, 2007a; 

N.R.C. 2013b, 2013a) of ETV characteristics and costs, this work has designed technical and 

performance specifications and cost estimates for ETVs based on a model conventional vehicle 

for each vehicle class. The technical and performance specifications of the designed vehicles are 

described in the annexure.  

3.5.2.1 Initial Capital Costs 

Prior to calculating the initial capital costs, this work defines the consumer vehicle options 

because the consumers do not have ETV analogues to their current conventional vehicle. This 

work defines the technical specifications such as power and performance characteristics, mileage 

(miles per kWh for BEVs and miles per gallon for HEVs and PHEVs) for each vehicle type 

(sedan, SUV, van/minivan/station wagon, pickup truck). These specifications are shown in Table 

2-1.  

The BEV range (total miles can be traveled using one completely charged battery) is limited and 

must be accounted for in designing vehicles and their use by consumers. Given the wide ranges 

in miles per charge, this work has modeled two BEV versions for each vehicle type with 100 and 

150 miles of range. Consumers who drive more than 150 miles daily may only choose HEV and 

PHEV technologies. For PHEVs, this work assumes that a consumer will first operate on 

electricity until the battery is drained and then switch to gasoline.  

Additional Cost of the Technology: The additional cost of an ETV includes the battery cell 

costs and the non-battery electric vehicle (EV) components costs. These non-battery components 

include systems such as electric motor, transmission and integration, control unit, onboard 

charging unit, regenerative breaking, and wiring as well as credits for removing mechanical 

components of internal combustion engines for EVs. 

The cost of an ETV is calculated for each vehicle type based on the technical specifications (for 

example, battery size and power of the electric motor) which are designed using the 

characteristics of the conventional vehicles. The cost of the battery depends on the size of the 

battery and the type and size of the vehicle. The battery cost and electric motor costs are scaled 

with respect to the battery size and power requirements for each vehicle type. For example, a 

sedan with 100-mile range has a battery of 27 kWh and an electric motor of 131 kW power. This 

work uses the per kWh price of battery and per kW price of the electric motor along with other 

components such as onboard charger to estimate the additional cost of the technology. In 

addition to capital costs, an industry markup factor of 1.46 is assumed for all vehicle components 

(Rogozhin et al. 2010). The initial capital cost is one of the most important components to be 

accounted for while calculating the Total Cost of Ownership (TCO). 

Battery Cell Price: Currently, there is a significant amount of literature present with a wide 

range of battery pack prices. Some of the literature estimates battery cell price and battery pack 

price separately. Along with lithium-ion (Li-ion) battery cells, there are components like battery 

management system (observes the output of each battery cell group), battery thermal 
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management system (maintains operating temperature of the battery within desired range), and 

other pack assembly (such as module frames, steel pack case, covers, inside wiring and 

electronics etc.) which constitute a battery pack (Hummel et al. 2017; Curry 2017; Berckmans et 

al. 2017a). For this study, this work has assumed battery cell price per kilowatt-hour ($ per 

kWh). This work has considered $230 per kWh as the initial battery cell price. This price is in 

line with various estimates for the year 2018 from previous studies (Nykvist and Nilsson 2015a; 

Safari 2018; Nykvist, Sprei, and Nilsson 2019) and reports such as Bloomberg New Energy 

Finance (BNEF) (Curry 2017) and the Joint Technical Support Document from the U.S. 

Environmental Protection Agency (US-EPA) (EPA and NHTSA 2012). However, it is also 

important to note that there are other studies which have predicted the current battery cell prices 

to be much less, for example, $145 per kWh - $159 per kWh (BCG 2017; Kuhlmann et al. 2018; 

The Boston Consulting Group 2010). 

3.5.2.2 Non-Battery EV Technology Costs 

Although most published literature claims that the cost of the battery is the most significant 

additional cost component, this work believes that the non-battery components are also equally, 

if not more, important—and depending on the assumed cost model sometimes costlier than the 

battery in a vehicle. Importantly, the financial gains from BEVs considerably depend upon the 

cost model used to estimate the additional cost. However, there is a dearth of recent, updated and 

detailed bottom-up cost breakdowns for BEVs and PHEVs. Having said that, there are a few 

studies with bottom-up cost estimates for the cost of ETVs and/or the additional cost of the 

technology variants. 

This work did not choose to follow the older and European market based studies like the 

National Renewable Energy Laboratory (NREL) model (Brooker, Thornton, and Rugh 2010) and 

the Geng Wu model (Wu, Inderbitzin, and Bening 2015), for our cost models. The National 

Research Council (NRC) has published comprehensive bottom-up cost models for BEVs and 

PHEVs (N.R.C. 2013b, 2013a). Nevertheless, these cost models are based on older consulting 

reports (Kromer and Heywood 2007a; Kolwich 2013). Although the recently published report 

from UBS Consulting produces a detailed teardown cost model of Chevrolet Bolt (Hummel et al. 

2017), the report did not contain a similar analysis of PHEVs and HEVs. 

Because of this uncertainty and lack of credible data sources, this work used two cost models 

which are at the two extremes of non-battery EV technologies costs. The High Non-Battery Cost 

Model is based on the International Council on the Clean Transportation (ICCT) report 

(Wolfram and Lutsey 2016) as the main source. The model has comparative cost models for 

BEVs, and PHEVs based on the bottom-up cost approach and contains component-wise costs. 

Secondly, the Low Non-Battery Cost Model is based on the BNEF (Soulopoulos 2017) model. 

The Low Non-Battery Cost Model does not contain a component-wise breakdown of the costs 

but is a highly referred model in the EV research community. These two models differ with 

respect to the method and cost of the components other than the battery, such as an electric 

motor. 

High Non-Battery Cost Model: This model is a bottom-up cost estimation based on the ICCT 

report (Wolfram and Lutsey 2016) as well as the NRC report (N.R.C. 2013b, 2013a). The non-

battery EV components considered in this model are an electric motor, EV transmission, power 

electronics wiring, regenerative breaking, control unit, and onboard charging unit as well as 

ICEV credits, which account for engine downsizing and replacing mechanical components in an 
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ICEV by an electric drivetrain. The size and cost of the electric motor are estimated with respect 

to the type of the vehicle (for example, a sedan Vs an SUV). For example, a sedan has a power 

rating of 131 kW versus an SUV has a power rating of 142 kW. The ICEV credits are also 

estimated based on the engine size. The additional cost calculated for a BEV sedan with a 100-

mile range as per the High Non-Battery Cost Model is $10,745, including the battery, non-

battery EV technologies, ICEV credits and markup factor. Similarly, a PHEV sedan with a 40-

mile range would cost $7,883 extra than a comparable ICEV. Table 3-1 contains the 

specifications and the cost calculations for other vehicle types. 

Low Non-Battery Cost Model: This model, as mentioned above, is based on the BNEF model 

(Soulopoulos 2017). The BNEF has developed the manufacturing cost of the BEV with three 

main components 1. Battery Pack, 2. Powertrain (includes electric motor, inverter, electronics, 

etc.) and 3. Vehicle chassis and assembly. As this work is considering only the additional costs, 

this work has excluded the vehicle chassis and assembly costs, although the BNEF has assumed 

them to be constant in the model. The powertrain costs and corresponding power ratings are 

extracted from the BNEF report and a straight-line equation is generated for powertrain costs ($) 

as a function of power ratings (kW) of EV technology variants. For PHEV variants, the 

powertrain costs are calculated using the ratio of power ratings of respective PHEV and ICEV 

engines.  

For example, a 100-mile range sedan BEV would have additional costs of $7,437. This 

additional technology cost includes 27 kWh of battery, and the powertrain costs for 131 kW of 

power ratings (with $14.1 per kW and 935.1 constant costs) as well as markup factor and ICEV 

credits. Similarly, a PHEV sedan with a 40-mile range has an additional cost of $3,239. Both 

these costs are significantly lower than the High Non-Battery Cost Model estimates. Table 3-2 

contains the additional cost estimations for other vehicle types. 

The initial capital cost is a part of the Financial Model as well as the Technology Progress 

Model. In the Financial Model, it is a part of the Total Cost of Ownership. However, it is in the 

Technology Progress Model the per-unit price of the battery cell and the non-battery EV 

technology costs are decided. Therefore, the initial capital costs are dictated by the Technology 

Progress Model. 



 

 38 

Table 3-1 Additional Cost of Vehicles with High Non-Battery Cost Model 

Vehicle Type Technology Total 
Battery 
Cost ($) 

Battery 
Cell 

Costs 
($) 

Total 
Motor 
System 
Cost ($) 

Other 
EV 

Systems 
($) 

Hybrid 
transmission 

and 
Integration 

($) 

Wiring 
($) 

EV 
Transmission 

($) 

ICE engine 
credit ($) for 
conventional 
starter and 
alternator 

ICE Credit 
($) for 

downsizing  

ICE 
Credit 

($) 

Total 
Incremental 

Cost ($) 

With 
Markup 
Factor 

($) 

Sedan HEV 230 230 1065 495 364 243 
 

-121 -139   2137 3120 

Sedan (Short Range) BEV-100 6199 6199 3521 940 
 

243 344 
  

-3887 7360 10745 

Sedan (Long Range) BEV-150 9299 9299 3521 940 
 

243 344 
  

-3887 10460 15271 

Sedan PHEV-40 2933 2933 1319 940 364 243   -121 -277   5399 7883 

SUV HEV 345 345 1121 495 364 243 
 

-121 -150   2297 3354 

SUV (Short Range) BEV-100 7805 7805 3790 940 
 

243 344 
  

-4065 9057 13223 

SUV (Long Range) BEV-150 11708 11708 3790 940 
 

243 344 
  

-4065 12959 18920 

SUV PHEV-40 3692 3692 1413 940 364 243   -121 -299   6231 9098 

Van/Minivan/ 
Station Wagon 

HEV 345 345 1479 495 364 243 
 

-121 -220   2585 3774 

Van/Minivan/ 
Station Wagon (Short 
Range) 

BEV-100 9252 9252 5522 940 
 

243 344 
  

-4937 11364 16592 

Van/Minivan/ 
Station Wagon (Long 
Range) 

BEV-150 13878 13878 5522 940 
 

243 344 
  

-4937 15990 23346 

Van/Minivan/ 
Station Wagon 

PHEV-40 4377 4377 2019 940 364 243   -121 -441   7380 10775 

Truck HEV 345 345 1662 495 364 243 
 

-121 -256   2731 3988 

Truck (Short Range) BEV-100 9550 9550 6405 940 
 

243 344 
  

-6031 11451 16719 

Truck (Long Range) BEV-150 14325 14325 6405 940 
 

243 344 
  

-6031 16226 23690 

Truck PHEV-40 4518 4518 2328 940 364 243   -121 -513   7758 11327 
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Table 3-2 Additional Cost of Vehicles with Low Non-Battery Cost Model 

Vehicle Type Technology 
Total Battery 

Cost ($) 

Total 
Powertrain 

Cost ($) 

ICE engine credit ($) for 
conventional starter and 

alternator 

ICE Credit ($) for 
downsizing  

ICE 
Credit 

($) 

Total 
Incremental 

Cost ($) 

With 
Markup 

Factor ($) 

Sedan HEV 230 2167 -121 -139   2137 3120 

Sedan (Short Range) BEV-100 6199 2782   -3887 5094 7437 

Sedan (Long Range) BEV-150 9299 2782   -3887 8194 11963 

Sedan PHEV-40 2933 1808   
 

-2522 2219 3239 

SUV HEV 345 2223 -121 -150   2297 3354 

SUV (Short Range) BEV-100 7805 2937   -4065 6676 9748 

SUV (Long Range) BEV-150 11708 2937   -4065 10579 15445 

SUV PHEV-40 3692 1909   
 

-2638 2963 4326 

Van/Minivan/ Station 
Wagon 

HEV 345 2581 -121 -220   2585 3774 

Van/Minivan/ Station 
Wagon (Short Range) 

BEV-100 9252 3881   -4937 8197 11967 

Van/Minivan/ Station 
Wagon (Long Range) 

BEV-150 13878 3881   -4937 12823 18721 

Van/Minivan/ Station 
Wagon 

PHEV-40 4377 2523   
  

-3203 3696 5397 

Truck HEV 345 2764 -121 -256   2731 3988 

Truck (Short Range) BEV-100 9550 4360   -6031 7880 11504 

Truck (Long Range) BEV-150 14325 4360   -6031 12655 18476 

Truck PHEV-40 4518 2834     -3913 3439 5020 
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3.5.2.3 Battery Replacement Costs 

For HEVs, the battery replacement costs are not considered, as the battery typically lasts for the 

lifetime of the vehicle. For BEVs and PHEVs, the battery replacement costs are considered only 

if the expected battery life is less than 15 years—the assumed maximum duration of ownership 

of the vehicle. The life of the battery is estimated as a function of the number of charging-

discharging cycles and depth of discharge (Wood, Alexander, and Bradley 2011; Raustad 2017) 

(Equation 2-7 and Equation 2-8).  

3.5.2.4 Fuel Savings  

Based on the state of residence, each vehicle is assigned average state electricity prices from the 

U.S. Energy Information Agency (U.S.-EIA 2018b). The fuel prices are also assigned with 

respect to the corresponding fuel type and U.S. State (www.AAA.com 2018; CNG-Now 2018; 

GasBuddy.com 2017). The fuel savings for each ETV is calculated and discounted for the 

expected duration of ownership as shown in Equation 2-9 and Equation 2-14.  

3.5.3 Technology Progress Model 

The experience curve was first used to describe the cost reductions in aircraft manufacturing 

(Wright 1936). It has been used in several energy technology studies (Harmon 2000; Weiss et al. 

2010; Matteson and Williams 2015; Tsuchiya 1989; Neij et al. 2003). The experience curve says 

that every time the cumulative production capacity doubles, the cost per unit decreases by the 

learning rate (Matteson and Williams 2015; Tsuchiya 1989). The experience curve is shown in 

Equation 3-2. 

𝐶(𝑃) = 𝐶𝑜(𝑃 𝑃0⁄ )−𝛼 Equation 3-2 

‘𝑃’ represents the cumulative adoption of the said technology. For our study, ‘𝑃’ denotes the 

total kilowatt-hour (kWh) capacity installed and/or adopted of the Li-ion battery cells. ‘𝐶’ is the 

price per unit ($ 𝑘𝑊ℎ⁄ ), ‘𝐶𝑜’ and ‘𝑃0’ are initial cost and production capacity, respectively. 

Finally, ‘𝛼’ is known as the learning coefficient and is a positive empirical constant. The initial 

capacity of battery cells and the number of BEVs and PHEVs—used for the experience curve of 

non-battery EV component—are calculated and are shown in Table 3-3. 

𝐿𝑅 = 1 − 2𝛼 Equation 3-3 

‘𝐿𝑅’ represents Learning Rate, and denotes the fractional reduction in the cost for every doubling 

of production as shown in Equation 3-3.  

For this work, the experience curve has been implemented for two technologies 1. Battery Cells 

and 2. Non-battery EV Technologies. The ETVs encompass both Li-ion battery technology as 

well as non-battery EV components like the electric motor. With the increase in the number of 

ETVs allocated, these technologies go through the experience curve and collectively decrease the 

capital cost of the ETVs. The battery cell prices decrease with each installed battery cell and the 

non-battery EV technology prices decrease with each unit purchased of BEV or PHEV. 

However, the decrease in the prices is calculated using two different learning rates: Learning 

Rate for Battery (LRB) and Learning Rate for Non-Battery EV components (LRNB).
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Table 3-3 Total Capacity Calculations (International and Agency 2018) 

Model Type 2012 2013 2014 2015 2016 TOTAL 

 

 
U.S. Stock Data (Units) 

Calculated Average Battery Capacity 
(kWh) 

Nissan LEAF EV 9,819 22,610 30,200 17,269 14,006 103,578 
  

  BEV PHEV 

Tesla Model S EV 2,171 19,000 16,750 26,200 29,156 93,277 
 

2005 1,120    

BMW i3 EV 0 0 6,092 11,004 7,625 24,721 
 

2006 1,120    

Ford Focus EV EV 683 1,738 1,964 1,582 872 6,839 
 

2007 1,120    

Fiat 500E EV 0 260 1,503 4,569 3,897 10,229 
 

2008 2,580    

Smart forTwo EV EV 137 923 2,594 1,387 657 5,698 
 

2009 2,580    

VW e-Golf EV 0 0 357 4,232 0 4,589 
 

2010 3,770    

Chevrolet Spark EV 0 560 1,145 2,629 3,035 7,369 
 

2011 13,520 7,980   

Mercedes B-Class Electric EV 0 0 774 1,906 632 3,312 
 

2012 28,170 46,570 37 13 

Toyota RAV4 EV EV 192 1,005 1,184 18 NA 2,399 
 

2013 75,860 95,580 50 12 

Mitsubishi i-MiEV EV 588 1,029 196 115 94 2,098 
 

2014 139,280 150,940 43 10 

Kia Soul EV EV 0 0 250 1,015 1,728 2,993 
 

2015 210,330 193,770 48 11 

Honda Fit EV EV 93 569 407 2 NA 1,071 
 

2016 297,060 266,650 64 12 

BMW Active E EV 965 0 0 0 0 965 
 

2017 401,550 360,510 74 12 

Tesla Model X EV 0 0 0 208 18,028 18,236 
  

 

Average Battery Size (kWh)   38 44 50 51 54 
  

Total Vehicles (Units)           762,060  
 

Average Battery Size (kWh)   37 50 43 48 64   
 
Total Capacity (kWh)    29,714,700  4,214,632 

Chevrolet Volt PHEV PHEV 23,461 23,094 18,805 15,393 24,739 113,163 
 
Total Capacity (kWh) 33,929,332 

Toyota Prius Prime Plug-in PHEV 12,749 12,088 13,264 4,191 2,474 44,766 
 
 

 

Ford Fusion Energi PHEV 0 6,089 11,550 9,750 15,938 43,327 
 
 

Ford C-MAX Energi PHEV PHEV 2,374 7,154 8,433 7,591 7,957 33,509 
 
 

BMW i8 PHEV 0 0 555 2,265 1,594 4,414 
 
 

Cadillac ELR PHEV 0 6 1,310 1,024 534 2,874 
 
 

Porsche Panamera S E-Hybrid PHEV 0 51 879 407 393 1,730 
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Porsche Cayenne S E-Hybrid PHEV 0 0 112 1,163 2,111 3,386 
 
 

Honda Accord PHEV 0 526 449 63 NA 1,038 
 
 

BMW X5 PHEV 0 0 0 892 5,995 6,887 
 
 

Smart ED PHEV 2 0 0 0 NA 312 
 
 

Mercedes S550 Plug in PHEV 0 0 0 118 550 668 
 
 

Volvo XC90 PHEV 0 0 0 86 2,020 2,106 
 
 

Total   48,200 96,702 118,773 113,869 144,035 539,310 
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3.5.3.1 Learning Rates  

There are two main learning rates (𝐿𝑅) used in this work 1. For Li-ion Battery (LRB) and 2. For 

Non-Battery EV components (LRNB).  

Learning Rate for Battery (LRB): Nykvist et al. estimated the LRB for Li-ion battery cell cost 

as 6-8% in 2015 using multiple sources of battery cell prices, but this work includes a significant 

amount of grey literature (Nykvist and Nilsson 2015b). However, Nykvist et al. have re-

estimated the learning rate to be 17% (Nykvist, Sprei, and Nilsson 2019) in their latest work. The 

BNEF has reported the LRB to be 19% and has used it in their reports, but the report does not 

provide a source of the LRB (Curry 2017; Morsy 2017). Apart from these studies, a recently 

published estimate based on economies of scales by Kittner et al. shows the LRB to be 17.31% 

(Kittner, Lill, and Kammen 2017). Moreover, another recently published study by Schmidt et al. 

have reported the LRB to be 16% (Schmidt et al. 2017). Due to this wide variation and 

uncertainty about the LRB, this work has assumed the LRB as 17% for our model which is in line 

with these studies.  

Learning Rate for Non-Battery EV Components (LRNB): Similar to batteries, the literature 

has a wide variation for learning rate (LRNB) for non-battery EV components for ETVs. Weiss et 

al. have shown that the experience curve and/or learning rate studies are still not conducted for 

several energy-related technologies including, but not limited to, electric motors and entire motor 

systems (Weiss et al. 2010; Gielen 2010). Therefore, this work looked at several studies about 

the LRNB for the non-battery EV components. Most of these learning rates are for a particular 

component in the EV drivetrain and/or referenced from other studies as well as, in some cases, to 

personal communications. Most of these studies lack the data from the manufacturers. In 

addition, there is considerable variation in the LRNB estimated and/or assumed by different 

studies. For example, Pasaoglu et al. have used 10% of LRNB for EV components based on the 

experience curve for energy technologies, because the authors assume that the drivetrain 

technology is a matured technology (Pasaoglu, Honselaar, and Thiel 2012; Pasaoglu et al. 2016; 

McDonald and Schrattenholzer 2001). OPR van Vliet et al. and Contestabile et al. have assumed 

5% LR for powertrains but this LR is calculated for the electric motors in the ICEVs (van Vliet et 

al. 2010; Contestabile et al. 2011). Weiss et al. have considered that the powertrain components 

have the same LR as that of the batteries and hence assumed that the LRNB for the non-battery 

components to be 17% (Weiss et al. 2012). In a recent publication, Safari et al. estimated that the 

cost of electrification for mid-size BEVs has LR as 15+/-1% (Safari 2018). As can be seen, the 

LRNB varies significantly in these studies and has uncertainty about the source. Therefore, for our 

study, this work has assumed 5% as the LRNB for BEVs and PHEVs for non-battery EV 

components. It is based on the Ricardo-AEA report which was prepared by using a survey of 

manufacturers conducted by Delphi (Hill et al. 2016). 

3.5.4 Efficiencies for Batteries and ICEVs 

With the increasing demand for EVs and increase in EV penetration, the battery chemistry is 

improving which positively impacts the battery efficiency. The battery cells are getting dense 

and will be able to hold more charge in the future. This will enable the EV manufacturers to 

produce longer-range EVs as well as smaller batteries for shorter range EVs (Soulopoulos 2017; 

The Boston Consulting Group 2017; Kuhlmann et al. 2018; Berckmans et al. 2017b). In our 

model, this work has accounted for this EV technology development as a yearly 2% decrease in 
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battery cell capacity for the new vehicles to achieve the assumed 100-mile and 150-mile ranges, 

irrespective of the type of the vehicle (Wolfram and Lutsey 2016).  

This work also assumes that the fuel efficiency of the ICEVs is going to improve mainly due to 

the implementation of Corporate Average Fuel Economy (CAFE) standards as well as the 

introduction of new technologies. The University of Michigan Transportation Research Institute 

(UMTRI) has consolidated sales-weighted data about the fuel-economy rating (window sticker) 

of purchased new vehicles for October 2007 through December 2017 (UMTRI-(University of 

Michigan Transportation Research Institute) 2018). The dataset is added in the SI Excel sheet. 

This work has used this dataset to estimate the annual increase in the ICEV fuel efficiency in the 

future. This work has assumed that the battery efficiency (miles per kWh) also increases similar 

to that of the ICEVs’ fuel efficiency (miles per gallon) because some technologies such as rolling 

resistance will be benefitting the ETVs as well. 

ICEV Cost Premium: In the final rulemaking for the CAFE standards, the U.S. Environmental 

Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) 

analyzed the possible technologies which would benefit the ICEVs to increase the fuel efficiency 

(miles per gallon) and to achieve the CAFE standards for the manufacturers. These technologies 

include but are not limited to Engine Friction Reduction, Variable Valve Timing (VVT)-Intake 

Cam Phasing, VVT-Dual Cam Phasing, Discrete Variable Valve Lift (DVVL), Continuous 

Variable Valve Lift (CVVL), Electrical/Electro-hydraulic Power Steering, and Lower Rolling 

Resistance Tires Levels. Some of these technologies cannot be used simultaneously and some 

would have higher impacts depending on the size of the ICEVs. These technologies would 

impact the fuel efficiencies positively the manufacturing costs of the ICEVs are expected to 

increase (EPA and NHTSA 2012). However, there is significant uncertainty related to when 

these technologies will be part of the ICEVs as well as which of these technologies will be part 

of a particular vehicle, as it depends upon 1. Auto-manufacturers’ choice 2. Size 3. Type and 4. 

Ignition system of the vehicle. Several analyses (for example, the ICCT (Wolfram and Lutsey 

2016) and BNEF (Soulopoulos 2017)) looking at the future EV adoption outlooks have assumed 

cost increments for ICEVs with time. This work has used these published reports to estimate how 

expensive an ICEV will be in the future as a function of time (Brennan and Barder 2016; 

Kolwich 2013; Soulopoulos 2017; Wolfram and Lutsey 2016; EPA and NHTSA 2012). Our 

estimation is included in the SI Excel sheet. Henceforth, this work refers to it as ‘ICEV Cost 

Premium’. The BNEF report estimates the cumulative average growth rate (CAGR) for ICEV 

price increase to be 0.70% for sedans. As per Brennan JW et al. (Arthur D. Little report), the 

CAGR for ICEV price increase is 0.46% [92]. For this work, therefore, has averaged these two 

CAGRs and assumed that the price of ICEVs increase by 0.6% each year. For sedans, as this 

work has assumed the current price of a comparable ICEV to be $24,380, the annual price rise is 

$142. This price rise is in line with the other estimates published in various reports such as the 

ICCT and NRC (Brennan and Barder 2016; Kolwich 2013; Soulopoulos 2017; Wolfram and 

Lutsey 2016; EPA and NHTSA 2012). For other vehicle types, this annual price rise is scaled 

with respect to the ratio of power ratings. For example, for an SUV, the designed power rating 

(described in technical specifications) is 142 kW, and it is 1.08 times that of a sedan (131 kW). 

Therefore, the annual price increase for an SUV is $154. The estimates are shown in Error! 

Reference source not found. in the annexure.  

In summary, this integrated model considers behavioral and geographic heterogeneity in the U.S. 

private transportation sector. The two different cost models are included to calculate the two 
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extremes of the additional cost of the technology. The improvements in conventional technology 

considered as ‘ICEV Cost Premium’, making the ICEVs more expensive with time. every added 

ETV in the fleet helps to reduce the battery and non-battery EV components’ costs because of 

the experience curve. The reduced capital costs then make the ETVs more affordable for the 

latter adopters and increase ETV purchases. This analysis looks at how varying gasoline prices 

affect the finances of the ETVs. In addition, because of the uncertainty about the ‘ICEV Cost 

Premium’, this work also considers different percentages of annual price rise for ICEVs. The 

results highlight the impacts for these variations as well. Lastly, this work looks at how the 

federal tax credits affect the financial outlook of ETVs and how they induce the purchase of 

ETVs. 

 Results and Discussions 

For the first set of results, this work conducted a scenario analysis where we considered both 1. 

High Non-Battery Cost Model and 2. Low Non-Battery Cost Model to estimate the additional 

technology costs. The results are shown in Figure 3-2. The figure shows the reducing battery cell 

price (in $ per kWh) for two cost models as well as for varying gasoline prices. For the High 

Non-Battery Cost Model with the gasoline price $1.95 per gallon, the ICEV Cost Premium 

makes a significant impact on battery cell price reductions. If the gasoline price stays low and the 

ICEVs do not get more expensive, the ETVs will not be financially attractive to most consumers. 

In this case, the replacement of incumbents with ETVs is not significant, and the battery cell 

price reduces only slightly from $230 per kWh to $213 per kWh. On the other hand, if it is 

assumed that the conventional vehicles get more expensive with time, and the battery cell price 

reduces from $230 per kWh to $96 per kWh even at the gasoline price of $1.95 per gallon. This 

signifies the impact of assuming the ICEVs get more expensive with time to accommodate more 

efficient technologies required to meet the stricter environmental regulations such as CAFE 

standards. Strictly from the consumers’ private financial benefits, if the gasoline prices are low, 

then the major drive towards ETVs will happen only if the conventional vehicles get more 

expensive and not otherwise. 

For the High Non-Battery Cost Model with higher gasoline prices ($2.60 per gallon and $5.20 

per gallon), the reduction in battery cell price is faster and substantial. The maximum reduction 

happens in the case of the High Non-Battery Cost Model and gasoline price $5.20 per gallon 

where the battery cell price reduces to $49 per kWh (reduction of 79%). This suggests that if the 

gasoline becomes more expensive, the majority of consumers will have more financial benefits 

from ETVs compared to the conventional vehicles and will lead to substantial replacement of the 

incumbent ICEVs by ETVs. In the Low Non-Battery Cost Model, the battery cell prices in 2040 

are the same with or without ICEV Cost Premium scenarios, except when the gasoline price is at 

$1.95 per gallon. The Low Non-Battery Cost Model makes the ETVs more attractive financially 

compared to ICEVs at higher gasoline prices and even when the battery cell prices are high. 

Even in such a scenario, significant number of ETVs are adopted, and it leads to rapid reduction 

in battery cell prices as well as non-battery EV technology costs. When the gasoline price is 

$1.95 per gallon, the ICEV Cost Premium affects the consumers’ finances. It can be seen that, 

when the ICEV Cost Premium is not present the battery cell price decreases slower initially 

because of slower adoption versus when the ICEV Cost Premium is present. This trend 

highlights the impacts of assuming conventional vehicles get more expensive with time. 

However, it is important to note that there is significant uncertainty about these costs increments 

in conventional technology. 
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Figure 3-2 Reduction in battery cell price ($ per kWh) over time in different scenarios. The figure shows how the battery cell 

price reduces over time for High and Low Non-Battery Cost Models in presence and absence of ICEV Cost Premium with 

varying gasoline prices ($ per gallon). For the lower gasoline price, the battery cell price reduces slower initially and with the 

increased adoption the battery cell price reduces faster, except for the High Non-Battery Cost Model without ICEV Cost 

Premium. This shows the impact of ICEV Cost Premium on battery cell price reduction. At higher gasoline prices, for the High 

Non-Battery Cost Model the battery cell price reduces faster and significantly which is a result of higher and faster ETV 

adoption. For the Low Non-Battery Cost Model irrespective of the gasoline price and availability of ICEV Cost Premium the 

battery cell prices reduce significantly because of higher and faster ETV adoption. 

Figure 3-3 shows how the additional cost of BEV-100 over the latest ICEV reduces with the 

High and Low Non-Battery Cost Models when ICEV Cost Premium is present or not. The figure 

highlights the gap between additional costs with different cost models and at a gasoline price 

$2.60 per gallon. In the Low Non-Battery Cost Model, the additional costs become zero 

significantly faster compared to the High Non-Battery Cost Model. However, the ICEV Cost 

Premium adds to the advantage of the Low Non-Battery Cost Model and bring the initial capital 

costs to parity with the conventional vehicles even faster. In the High Non-Battery Cost Model, 

the BEV-100 reach the cost parity faster when ICEV Cost Premium is considered. Nevertheless, 

it is important to note that if the ICEV Cost Premium is not available, the BEV-100 sedan does 

not reach cost parity until 2040 and stays more expensive than the conventional counterparts. 

The BEV-100 sedan reaching cost parity faster infers to the quicker adoption of ETVs, and as 

more ETVs are added to the fleet, the battery cell prices reduce faster and significantly (refer to 

Figure 3-2). 
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Figure 3-3 Reduction of the additional cost of BEV-100 sedan over the latest ICEV with time in different scenarios. The figure 

shows the initial difference between the High and Low Non-Battery Cost Models. The Low Non-Battery Cost Model of non-

battery EV technologies make the BEV-100 significantly cheaper compared to the High Non-Battery Cost Model. Further, the 

impact of the ICEV Cost Premium can be seen in the trends of reducing additional costs of BEV-100. The Low Non-Battery Cost 

Model with ICEV Cost Premium is the fastest scenario to reduce the additional cost of BEV-100 technology to zero. The High 

Non-Battery Cost Model without ICEV Cost Premium is the slowest and it shows this additional cost will be a hindrance in 

higher ETV adoption by consumers.  

To understand the impacts of the uncertainty about ICEV Cost Premium on the market share of 

BEVs and PHEVs in 2040, this model varies the percentage of annual price increase in ICEVs. 

We also study the impacts of different gasoline prices in conjunction with the varying ICEV Cost 

Premium. Figure 3-4 shows the collective market share of BEVs and PHEVs in 2040 in different 

criteria for the High Non-Battery Cost Model. An annual increase of 0.60% in the ICEV prices 

indicate the present situation (or the base-case scenario). At low gasoline prices and without an 

annual increase in ICEV prices, the market is conducive for ICEVs to be the dominant choice for 

the consumers, if solely their private financial benefits are considered. The consumers will 

replace their incumbent ICEVs by ETVs if they have favorable financial outlook. The favorable 

finances are possible if gasoline prices increase in the future. The fuel savings (electricity versus 

gasoline) from using BEVs and/or PHEVs help the consumers to save as much as the additional 

costs of ETVs over ICEVs, if not more. It can be seen from Figure 3-4 that as the gasoline price 

increases the share of BEVs and PHEVs increases substantially in the 2040 market, without any 

increase in ICEV Costs.  
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Figure 3-4 Market share of BEVs and PHEVs in 2040 for High Non-Battery Cost Model with varying gasoline price and varying 

annual increase in the conventional vehicles’ price (i.e. ICEV Cost Premium). At lower gasoline prices and without ICEV Cost 

Premium, the BEVs and PHEVs stay more expensive compared to the conventional vehicles. On the other hand, expensive 

gasoline and ICEV Cost Premium act as agents to aid in getting a greater market share of BEVs and PHEVs in 2040. An annual 

increase of 0.60% in ICEV prices indicate the base case of this study. With this increase, if the gasoline price is $2.60 per gallon 

the BEVs and PHEVs achieve market share over 80% in 2040, and the battery cell prices reach $53 per kWh as shown in Figure 

3-2. 

Another mode of getting better financial prospects with ETVs is the ICEVs getting more 

expensive in the future to accommodate more efficient technologies. Even a small annual 

increase in ICEV prices makes a significant difference to the BEV and PHEV market share. If 

the gasoline price stays low ($1.95 per gallon), the ICEVs need to get more expensive by at least 

0.50% annually for the BEVs and PHEVs to account for more than 20% of the market in 2040. It 

certainly corroborates that lower gasoline prices make the BEVs and PHEVs more financially 

attractive only to a few consumers who drive considerably more than the rest of the population. 

Once the gasoline prices are increased the effect of ICEV price rise on BEV and PHEV market 

share becomes more significant. The higher gasoline prices make it cheaper to use BEVs and 

PHEVs to drive. In addition to this, if the ICEV prices are increased annually, the gap between 

the initial capital costs of conventional and ETVs becomes smaller over a period of time. This 

reduced gap and better fuel savings make the BEVs and PHEVs financially more attractive to a 

greater number of consumers initially, leading to increased adoption of ETVs. With the higher 

initial adoption, the cumulative production of ETVs increases rapidly which reduces the battery 

cell prices and non-battery EV costs, compared to when gasoline prices are low and ICEVs do 

not get more expensive. Thus, the increased gasoline prices and an annual increase in ICEV 

prices act in conjunction to make the finances of BEVs and PHEVs better by allowing more 

savings on fuel and the reduced gap in initial capital costs. With the Low Non-Battery Cost 



 

 49 

Model even with the lowest gasoline price of $1.95 per gallon and without ICEV Cost Premium, 

the BEVs and PHEVs achieve the market share over 95% in 2040, which is certainly a result of a 

smaller gap between initial capital costs of ETVs and ICEVs. Therefore, for the Low Non-

Battery Cost Model with expensive gasoline and expensive ICEVs, it is a certainty that the BEVs 

and PHEVs achieve 100% market penetration. 

Table 3-4 Impact of federal subsidies in inducing the sales of ETVs. The first column shows the cost model used to estimate the 

non-battery EV technology costs. The second column indicates how many years the federal subsidy was allowed for the market 

going population. The third and fourth columns show the total sales of BEVs and PHEVs, induced sales because of federal 

subsidies, and cost to the government per induced sale, when ICEV Cost Premium is present or otherwise. Note ‘M’ marks 

‘millions’ in the table. 

Cost 

Model 

Federal 

Subsidy 

Time 

Limit 

With ICEV Cost Premium Without ICEV Cost Premium 

Market 

Share of 

BEV and 

PHEV in 

2040 (%) 

Total 

Sales 

Until 

2040 

Induced 

Sales 

Cost/Sales 

($/Vehicle) 

Market 

Share of 

BEV and 

PHEV in 

2040 (%) 

Total 

Sales 

Until 

2040 

Induced 

Sales 

Cost/Sales 

($/Vehicle) 

High 

Cost 

Model 

No 

Subsidy 
100 359M   18 74M   

3 Year 100 383M 24M 1,100 21 107M 33M 800 

5 Year 100 386M 27M 2,700 22 117M 43M 1,700 

10 Year 100 433M 74M 8,600 25 191M 117M 5,500 

Low 

Cost 

Model 

No 

Subsidy 
100 524M   100 511M   

3 Year 100 526M 2M 21,000 100 513M 2M 19,400 

5 Year 100 530M 6M 19,000 100 517M 6M 18,200 

10 Year 100 574M 50M 18,000 100 563M 52M 17,300 

 

Table 3-4 shows how the federal subsidies (U.S.-EPA 2018b) in the form of tax credits induce 

the additional sales of BEVs and PHEVs if the federal subsidy is allowed for a specific time with 

different cost models. In the U.S., the federal government provides tax credits up to $7,500 for 

the purchase of BEVs and PHEVs (U.S.-EPA 2018b). The first evident results from the table are 

the number of vehicles sold for the Low Non-Battery Cost Model are higher than those in the 

High Non-Battery Cost Model. These high sales are the result of available tax credits making 

BEVs and PHEVs more financially attractive for a greater number of consumers. If the two 

scenarios (i.e. presence and absence of ICEV Cost Premium) of the Low Non-Battery Cost 

Model are considered, the cumulative sales in the absence of ICEV Cost Premium are less 

compared to the High Non-Battery Cost Model, as expected. The costs incurred by the 

government to induce a sale of a BEV and/or PHEV if the ICEV Cost Premium is present are 

higher than otherwise. Importantly, these costs per induced sale in the Low Non-Battery Cost 
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Model are significantly higher than those of the High Non-Battery Cost Model. More 

importantly, if we look at the cumulative sales when the tax credits are not available, the sales in 

the Low Non-Battery Cost Model are significantly higher. This suggests that the federal tax 

credits are not required if the Low Non-Battery Cost Model is used to estimate the additional 

cost of the technology.  

In the High Non-Battery Cost Model, the total sales until 2040 with the ICEV Cost Premium are 

almost 5 times higher than otherwise. These high sales reiterate the impact of assuming more 

expensive ICEVs in the future. However, it also corroborates that the stricter environmental 

regulations are required for the conventional technologies to keep on improving, otherwise, the 

ETVs will have better fuel savings. The cumulative sales if the ICEV Cost Premium is available 

are always higher than when it is not, irrespective of the availability of the tax credits. Moreover, 

with ICEV Cost Premium when the tax credits are available, the sales are 2-3 times higher than 

otherwise. However, if only the induced sales are considered, they are higher when the ICEV 

Cost Premium is not present. This suggests that the federal tax credits had a greater impact on 

making BEVs and PHEVs financially more attractive when ICEV Cost Premium is absent. Note, 

the costs per induced sale are significantly lower than the actual tax credits of $7,500. However, 

these costs incurred to induce the sales of ETVs by the government do not make a substantial 

impact on long term sales. the induced sales, at least in the short term, allow the cumulative 

production to increase considerably. This reduces the battery cell price as well as the costs of 

non-battery EV technologies faster and rapidly closes the gap between initial capital costs of 

ETVs and ICEVs. This lower capital cost, however, can provide the necessary stimulus in 

making the ETVs financially more attractive to the latter adopters. 
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4 CHAPTER 4  1 

A Pattern Analysis of Daily Electric Vehicle Charging Profiles: 2 

Operational Efficiency and Environmental Impacts1 3 

 4 

 Chapter Summary 5 

Plug-in Electric Vehicles (PEVs) are considered one solution to reducing GHG emissions from 6 

private transport. Additionally, PEV adopters often have free access to public charging facilities. 7 

Through a pattern analysis, this study identifies five distinct clusters of daily PEV charging 8 

profiles observed at the public charging stations. Empirically observed patterns indicate a 9 

significant amount of operational inefficiency, where 54% of the total parking duration PEVs do 10 

not consume electricity, preventing other users from charging. This study identifies the 11 

opportunity cost in terms of GHG emissions savings if gasoline vehicles are replaced with 12 

potential PEV adopters. The time spent in parking without charging by current PEV users can be 13 

used by these potential PEV users to charge their PEVs, and replace the use of gasoline. The 14 

results suggest that reducing inefficient station use leads to significant reductions in emissions. 15 

Overall, there is significant variability in outcomes depending on the specific cluster 16 

membership. 17 

  18 

                                                 

1 This chapter has been adapted from a manuscript published in the Advanced Journal of Transportation. To avoid a 

distracting degree of repetitive self-citation throughout the chapter, a blanket reference to the original 

publication is provided here: Desai, Ranjit R., Roger B. Chen, and William Armington. 2018. “A Pattern 

Analysis of Daily Electric Vehicle Charging Profiles: Operational Efficiency and Environmental Impacts.” 

Journal of Advanced Transportation 18; Article (January): 1–15. https://doi.org/10.1155/2018/6930932.  
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 Background and Introduction 1 

In the United States, the newly registered number of Battery Electric Vehicles (BEVs) and Plug-2 

in Electric Vehicles (PEVs) increased by 159,616 in the year 2016 alone (Philip and Wiederer 3 

2010). Though this is not a significant market share, the PEV penetration rate, BEVs and PEVs 4 

are considered together, is considerably high in the private transportation market. This has led 5 

policymakers to reconsider infrastructure planning to accommodate increasing PEVs, and assess 6 

sustainability implications of infrastructural development. Recently, a report prepared for the 7 

Clinton Climate Initiative (Philip and Wiederer 2010) outlined the incumbent and future issues 8 

of increasing penetration of PEVs. At the forefront is the adequacy and level-of-service (LOS) of 9 

charging stations; these issues are further underscored by the increasing need for out-of-home 10 

PEV charging opportunities. A critical component for management and decision-making 11 

regarding out-of-home charging decisions is the demand for these services, governed by drivers’ 12 

charging behaviors. Understanding the timing and duration of PEV charging decisions supports 13 

making infrastructure and operational policies that meet economic, operational efficiency and 14 

environmental objectives. 15 

The literature on assessing PEV charging has grown significantly in the past decade, generating 16 

studies that investigate both quantitative and qualitative issues. The literature can be roughly 17 

segmented into three areas: (i) consumer adoption and use; (ii) infrastructure performance and 18 

evaluation; and (iii) operational issues of stations. 19 

 Literature Review 20 

4.3.1 Consumer PEV Adoption 21 

The literature on consumer adoption and use has focused on identifying groups of PEV drivers 22 

with respect to their technology ownership and interaction with the infrastructure. One study 23 

(Woetzel, Sha, and Zhang 2010) (International Energy Agency 2014) identifies three groups 24 

based on adopters and potential PEV owners in China: (a) early adopters, (b) shapeable groups, 25 

and (c) late adopters, each consisting of two motivations that have their own set unique 26 

behaviors. For example, early adopters have behaviors labeled as trendy greens and running cost-27 

sensitive. Another study (Franke and Krems 2013) assesses PEV charging behavior by applying 28 

a “user-battery interaction style” metric developed originally for small electronic devices to find 29 

out similarities in device use. In another study (Bunce, Harris, and Burgess 2014) PEV drivers 30 

were interviewed and found to generally manage without public infrastructure, with the battery 31 

still containing plenty of range when station recharging was initiated. 32 

Although PEV range is typically adequate for completing most daily home-based tours without 33 

intermediate charging (Pearre et al. 2011), continued PEV adoption, as technological forecasts 34 

indicate, can benefit from continued installation and planning of out-of-home charging (Bailey, 35 

Miele, and Axsen 2015), in addition to further considering PEV driver’s perceptions and 36 

experiences at stations. Although consumer interviews and analogous insights from the literature 37 

are helpful for describing charging behaviors, a study defining user groups or “market segments” 38 

based on a pattern analysis of empirical time-dependent charging data from out-of-home 39 

charging stations is absent in the literature. Such a study could contribute greatly to help 40 

effective policy implementation from both an operational and sustainability impact perspective. 41 
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4.3.2 Infrastructure Performance and Evaluation 1 

PEV adoption will also impact the electric grid and shift environmental impact from point-source 2 

vehicle to electricity generator emissions due to increasing electricity demand. The literature has 3 

produced work on network optimization models that quantify and assess infrastructure and 4 

environmental impacts at the network level. These studies consider developing public charging 5 

infrastructure (He et al. 2013; He, Yin, and Zhou 2015) by optimizing social welfare relative to 6 

impacts on the electrical grid. Other studies assess the electric grid impacts from widespread 7 

charging through conventional travel surveys, where travel logs of PEV drivers (Kelly, 8 

MacDonald, and Keoleian 2012) from the NHTS are used to predict electricity consumption and 9 

load profiles. Other studies further expand on these by applying network charging scheduling 10 

(Gan and Low 2007) and time-of-use rates (Davis and Bradley 2012) to optimize and assess 11 

electrical loads on the infrastructure. In another study, large-scale vehicle survey data (Shahraki 12 

et al. 2015) are used to model charging location decisions by maximizing PEV driving miles to 13 

jointly maximum environmental benefit. An activity-based modeling approach (Kang and 14 

Recker 2009) was used in another study to assess PEV environmental impacts, suggesting that 15 

public charging facilities allow charging during the daytime and can potentially reduce 16 

emissions. Although observed travel data is used in these studies, the effects of individual 17 

charging behaviors at the stations themselves have not been examined and operational 18 

inefficiencies in station turnaround are not considered.  19 

4.3.3 Operational Issues at Charging Stations 20 

Operational issues have also been considered in the literature. Interviews (Caperello, Kurani, and 21 

TyreeHageman 2013) of PEV owners conducted assessed perceptions of charging etiquette at 22 

public and workplace charging locations, concluding that no common charging guidelines 23 

evolved unless a pathway of communication between users exists, which ultimately leads to 24 

inefficiency in infrastructure use. Another study (Faria, Baptista, and Farias 2014) addresses 25 

these inefficiencies by considering occupancy rates, infrastructure costs, and parking premiums 26 

to assess the economic feasibility of deploying charging stations using an economic model. This 27 

study also finds that policies that promote more infrastructure development and increased station 28 

usage are beneficial to decrease range-anxiety issues and charging premiums from the user 29 

perspective (Faria, Baptista, and Farias 2014), however, no empirical data was used. It is 30 

important to note that the PEV charging behavior at the public charging stations is not studied 31 

before, and therefore the uniqueness of this analysis is, this study brings into light the insights to 32 

charging behavior characteristics using pattern analysis of daily charging profiles observed at 33 

public charging stations and are supported by the dataset. 34 

 Contribution 35 

The overarching goal of this study is to characterize the observed PEV daily charging patterns 36 

and assess the environmental impacts. One main task is to identify potential market segments 37 

based on the observed patterns of actual PEV adopters at existing charging stations. The focus of 38 

this study is to analyze the charging behavior of PEV users at the public charging stations. 39 

However, the fundamental unit of this analysis is not a PEV user but a charging profile observed 40 

in a single day (as shown later in Figure 4-2). A second task is to calculate the opportunity cost 41 

for improving operational efficiency and environmental impacts. The identified segments are 42 

used as a basis to accomplish this scenario analysis. The efficient operations scenario calculates 43 

the GHG emissions savings from reducing the duration of parking without charging, allowing 44 
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other potential PEV drivers and adopters to charge. This displaces gasoline miles these potential 1 

PEV drivers might have incurred since they could not use their PEVs. The dataset lacks 2 

information about the PEV users who could not get the access to charging stations if they were 3 

occupied (denoting latent demand); the smart charging stations do not have a mechanism to keep 4 

track of this parameter. Furthermore, determining latent demand for public infrastructure, such as 5 

roads, is in its own right a difficult problem (Faria, Baptista, and Farias 2014). Similarly, the 6 

demand for public charging stations is difficult to determine. In case of the City of Rochester 7 

Authorities have confirmed in the personal discussion that there have been instances when PEV 8 

users could not get access to public charging stations because all the charging stations at the 9 

particular location were occupied. Furthermore, the authors have noted that for extended periods 10 

the data shows stations occupied continuously, where a following PEV occupies the station just a 11 

previous PEV departs. Further investigations into this queueing phenomena is underway by the 12 

authors. 13 

In the City of Rochester, for a population of 208,880 (City of Rochester 2016)—as of 14 

July1,2016—has 28 level-2 (City of Rochester 2016) (with J1772 connector) public charging 15 

stations installed and operating through ChargePoint network (City of Rochester 2016)[22]. Each 16 

level-2 charging station can accommodate two PEVs at a time. Therefore, if all the charging 17 

stations in the City of Rochester are occupied at a time, there should be 56 PEVs plugged-in to 18 

charging stations. In the upstate New York region, Buffalo, NY (population 256,902 (City of 19 

Rochester 2016)) has 29 (City of Rochester 2016) level-2, and Syracuse, NY (population 20 

143,378 (City of Rochester 2016)) has 27 public charging stations through ChargePoint network. 21 

The data used for this analysis is collected from charging event logs collected at these 28 (City of 22 

Rochester 2016) level-2 smart public charging stations installed in the City of Rochester. The 23 

charging stations were installed as part of a New York State Energy Research and Development 24 

Authority (NYSERDA) grant to the City of Rochester and are managed by ChargePoint Inc. 25 

(City of Rochester 2016). For this work, these charging stations are heuristically grouped—26 

explained in the next section—into three main locations (Figure 4-1). 27 

 Dataset 28 

The City of Rochester currently owns and maintains seven public smart charging stations that log 29 

the charging activities of vehicles using the stations. Types of data collected through these 30 

stations include (i) timestamps of charging events, such as the time PEVs plug-in at the stations; 31 

(ii) computed performance metrics, such as energy consumed (kWh); and (iii) other station 32 

information. The data used in the analysis were collected over a period of more than two years 33 

between March 2014 and May 2016. Charging station location coordinates were extracted and 34 

charging stations were grouped heuristically into three distinct areas: (i) Rochester Downtown 35 

(RDT), (ii) Marketview Heights (MVH), and iii) Ontario Beach Park (OBP). The RDT extent is 36 

defined by the area outlined by the Rochester Downtown Development Corporation (Rochester 37 

Downtown Development Corporation 2016), and can be considered as a business district with 38 

58% (Table 4-1) of the land use around the charging stations is occupied for commercial use. 39 

The MVH is defined by the area defined in the Rochester Public Market Master Plan Report 40 

prepared by Market Ventures Inc. for the City of Rochester in February 2012 (Market Ventures 41 

Inc. 2012). The MVH area has 31% occupancy for commercial use and 38% for residential use. 42 

Further, the OBP encompasses the areas as defined by Monroe County Parks Department 43 

(Monroe County New York 2015), and 34% of properties around the area is occupied for 44 

residential use. Given these guidelines, five stations are located within the RDT area, and one 45 
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station is located at each of the MVH and OBP extents. The following Figure 4-1 shows the 1 

locations of charging stations and Table 4-1 shows the land use of the neighborhood around 2 

these public charging stations. The figure marks the locations of charging stations, and not actual 3 

number of charging stations. For example, a map of parking lots marks locations parking lots, 4 

and not the capacity of total number of vehicles the lots can accommodate. Similarly, the Figure 5 

4-1 depicts the seven locations of charging stations. Therefore, each location may contain more 6 

than one charging station and can accommodate at least two vehicles at a time. Further, the Table 7 

4-2 summarizes data from the charging stations at these locations. 8 

 9 

Figure 4-1: Location of charging Stations in the City of Rochester (with ¼ mile radius) 10 

Table 4-1 Land Use Around Public Charging Stations (Monroe County New York 2015) (Monroe County New York 2015) (for 11 
¼ mile radius) 12 

 
Rochester 

Downtown 

(RDT) 

Marketview 

Heights 

(MVH) 

Ontario Beach 

Park (OBP) 

Population Density 6200  7700  3500 
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(per sq. mile)  

Unemployment Rate 11% 26% 7% 

Residential Land Use 4% 38% 34% 

Commercial Land Use 58% 31% 7% 

4.5.1 Data Processing 1 

The unit for this pattern analysis was one daily PEV charging pattern for a single vehicle 2 

observed at public charging stations. Consequently, drivers who used the stations on multiple 3 

days had multiple daily patterns in the sample considered for analysis. PEVs reside in one of 4 

three states: (i) not parked (no activity); (ii) parked with charging; and (iii) parked without 5 

charging, each assigned a numerical value of 0, 1, or 2 respectively. Since only a nominal scale 6 

for activities is required for pattern analysis and classification, the actual values of each state are 7 

inconsequential. Examples of observed charging patterns are shown below in Figure 4-2. The 8 

resulting daily pattern was further discretized into 256 data points taken at 5.625-minute 9 

intervals. The final resolution (number of points) is bounded by the requirements of the Walsh-10 

Hadamard Transform (Theodoridis and Koutroumbas 2008a) used in the pattern analysis, which 11 

requires the number of data points (𝑛) to be of the order of 2𝑛. 12 

Errors in the logged data led to incomplete observations which were omitted from analysis. 13 

Charging events that contained total parking durations of two minutes or less were also omitted 14 

as these events are from the user (a) opening a charging session without inserting the plug into 15 

their car, then the system automatically closes the session to allow other users to use the station, 16 

or (b) the original user opens a session and decides to switch charging to an alternate port at the 17 

station (These causes were confirmed by the ChargePoint help desk staff). Events with missing 18 

or zero station user ID's were also omitted. The original dataset contained a total of 9,680 unique 19 

charging events between March 2014 and May 2016. After omitting these events based on 20 

previously stated criteria, 8,929 unique charging events were used for subsequent analysis. Using 21 

these 8,929 unique charging events, 7,554 unique daily charging patterns were generated by 22 

“stitching them together” for a particular vehicle and day for the pattern analysis. 23 

 Methodology 24 

In order to characterize the daily PEV charging patterns of drivers, a pattern analysis is applied 25 

to identify homogenous segments or clusters of patterns. Charging patterns are quite complex, 26 

varying over time and geography. Example patterns observed in the sample are given in Figure 27 

4-2. Each of these patterns represents a daily profile that starts at 12:00 AM and ends at 11:59 28 

PM (24-hour period) for a particular PEV driver. For example, the first pattern (A) (User-ID: 29 

137113) shows, the driver started his/her activity around 7:30 AM and used the facility for 30 

charging until 10 AM, and continued to park without charging until 3:30 PM. This PEV driver, 31 

thus, used the facility for 8 hours, but charged the PEV for only 2.5 hours. Daily patterns can 32 

also consist of multiple charging events. Pattern D shows a PEV driver using the station twice 33 

(two plug-in events) in a single day. In the case of multiple plug-in events within a single day (24 34 

hours) for the same PEV driver, events were stitched together into a single daily charging 35 

pattern. In pattern D, the driver used the station for charging for a total 5.5 hours out of 7.25 36 

hours of parking. 37 

 38 
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Table 4-2  Dataset Characteristics based on observed Plug-in Events. 1 

 
Sample Size: 8929 Plug-in events (Different from Daily patterns) 

 
Total Parking Duration (hours) Parking With Charging (hours) 

Parking Without Charging 

(hours) 

 
Mean 

Std. 

Dev.  Min Max Mean 

Std. 

Dev.  Min Max Mean 

Std. 

Dev.  Min Max 

Whole Network 3.9 3.1 0.0 64.1 1.8 1.1 0.0 12.1 2.1 2.8 0.0 61.7 

RDT (n = 7051) 4.5 3.2 0.0 64.1 1.9 1.2 0.0 12.1 2.6 2.9 0.0 61.7 

OBP (n = 1316) 2.3 1.8 0.0 17.4 1.5 0.9 0.0 4.7 0.7 1.4 0.0 14.4 

MVH (n = 562) 1.5 1.3 0.0 9.1 1.3 1.1 0.0 5.4 0.2 0.6 0.0 7.2 

Seasons 
            

Winter (Dec, Jan, Feb) 

(n = 2250) 4.3 3.1 0.0 26.8 2.0 1.2 0.0 10.6 2.3 2.7 0.0 17.8 

Spring (Mar, Apr, May) 

(n = 2410) 3.9 2.9 0.0 23.3 1.8 1.1 0.0 10.5 2.1 2.6 0.0 22.2 

Summer (Jun, Jul, Aug) 

(n = 2086) 3.8 3.1 0.0 33.5 1.6 1.0 0.0 12.1 2.2 2.9 0.0 33.0 

Autumn (Sep, Oct, Nov) 

(n = 2183) 3.7 3.2 0.0 64.1 1.7 1.1 0.0 11.4 2.0 2.9 0.0 61.7 

2 
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Figure 4-2: Observed charging patterns of PEV drivers in the sample (‘0’ – No Activity, ‘1’ – Charging, ‘2’ – Parking Without 

Charging) 

Given the complexity and time-varying nature of PEV charging patterns, a pattern analysis helps 

identify clusters of similar patterns to facilitate discussion and subsequent analysis. Apart from 

uncovering similarities across patterns, this approach can also simplify and summarize a large 

sample of pattern data. Past studies use pattern analysis to classify travel patterns (Recker, 

McNally, and Root 1985) and characterize vehicle travel patterns and to examine the feasibility 

of PEV operation (Chen, Clifton, and MacArthur 2014). This study adopts a similar approach 

towards classifying daily charging patterns of PEV drivers into homogenous segments with 

respect to their daily patterns. 

Pattern analysis has been applied to a wide range fields from voice recognition to image analysis, 

all of which aim to classify patterns into sensible segments. The clusters do not group the PEV 

users but the daily charging profiles of the PEV users observed at the public charging stations. 

The same PEV user can have multiple patterns of usage as well as can be observed to use the 

charging stations at different locations. Importantly, pattern analysis can provide different and a 

few in number clusters of homogeneous daily charging profiles, and the identified clusters can be 

used for policy making where a particular charging behavior can be targeted. Furthermore, the 

observed operational inefficiency depends upon the patterns of charging behavior, and along 

with the total parking without charging time, it is important to understand how this inefficiency 

is distributed. The pattern analysis provides the specific number of clusters of daily profiles 

which can be further understand the causes of the operational inefficiency. 

The overall methodological framework is shown below in Figure 4-3. Conventionally, a 

sequential three stage process of pattern analysis consists of (i) pattern specification; (ii) feature 

extraction and (iii) clustering. First, plug-in event data is taken from the sample and stitched 

together to form daily patterns. The process for this was described previously in section 4.5. 

Given the resulting sample of daily charging patterns, features are extracted from these daily 

patterns for the subsequent clustering stage. The output of clustering and consequently the entire 

pattern analysis process is a set of homogenous segments of patterns, with patterns within the 

same segment are similar to each other, while patterns in different segments are dissimilar to 

patterns in other segments. These identified segments serve as the basis for subsequent scenario 
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analysis to investigate the potential of policy interventions and technology options. The next 

section describes the pattern analysis process and discusses the clusters that are an outcome of 

this process. 

 

Figure 4-3: Methodological Framework 

 Pattern Analysis Process 

Conventionally, pattern analysis consists of a sequential three stage process: (i) pattern 

specification; (ii) feature extraction and (iii) clustering. These stages and the overall 

methodological framework are described further in the next section. Pattern Specification  

First, plug-in event data are taken from the sample and stitched together to form daily patterns. In 

this stage, all the plug-in events are converted into a “signal” consisting of three possible states 

that refer to three activities, ‘0’ for no activity, ‘1’ for charging activity and ‘2’ for parking 

without charging activity, as explained in the previous section. Daily time-varying EV charging 

patterns are generated or “stitched” together in chronological order based on the timestamp of 

charging events logged by the smart charging stations. Examples of patterns specified and 

outputted in this stage were shown in Figure 4-2. 

4.7.2 Feature Extraction  

In this stage, features are extracted from the specified patterns for subsequent clustering. 

Observed events such as charging (state=1) and parking without charging (state=2) are time 

dependent. The main goal of feature extraction is to extract statistically independent “features” 

from the observed patterns that are best suited for subsequent cluster analysis in the classification 

stage. These features serve to summarize the patterns and capture the most important pattern 

characteristics. The feature extractor used is the Walsh-Hadamard Transformation (WHT), 

though others such as the Karhunen-Loeve or Haar could also have been used (Theodoridis and 

Koutroumbas 2008b). The WHT extracts features referred to as Walsh coefficients (Walsh 

2016), that are used in the cluster analysis. These extracted features can conceptually be 

considered as “building blocks” of the observed patterns. An analogous process would be a 

principle components analysis on a digital image. In pattern analysis, a feature extraction allows 

identifying separate orthogonal features from the image, or in this case time-dependent pattern. 

These features, in this case Walsh coefficients, are used in subsequent clustering of patterns as 

“attributes” of this observed pattern. 
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4.7.3 Pattern Classification  

The extracted features from the previous stage are used in a clustering algorithm to identify 

homogenous segments of patterns. The output of clustering and consequently the entire pattern 

analysis process is a set pattern segments, with patterns within the same segment being similar or 

homogenous to each other, while patterns in different clusters are dissimilar each other. 

Conceptually, each cluster contains patterns (which are time dependent) that have similar 

“features.” In the literature, several clustering algorithms exist; this study uses the k-means 

clustering algorithm.  

The K-means algorithm is a cost-based algorithm (MacQueen 1967), in which the cost function 

𝐽(𝜃) given by:  

𝐽(𝜃) = ∑∑𝑢𝑖𝑗‖𝑥𝑖 − 𝜃𝑗‖
2

𝑘

𝑗=1

𝑁

𝑖=1

 Equation 4-1 

where  𝜃𝑗 is the centroid of cluster j, 𝑢𝑖𝑗 is a binary indicator that equals 1 if point xi is nearest 

to 𝜃𝑗 , N is the total number of points and k is the number of clusters.  For the k-means algorithm, 

the number of clusters is specified a-priori. As the number of clusters increases the marginal 

reduction in the cost function decreases until a negligible value, indicating the correct number of 

clusters is specified. A plot of the cost function (𝐽(𝜃)) as a function of number of clusters (𝑘) is 

given below in Figure 4-4. It shows the variation of cost function with respect to increasing 

number of clusters. The final number of clusters for a particular sample of patterns is determined 

based on identifying the point of marginal return on the cost function.  

 

Figure 4-4: Cost Function value vs. Number of Clusters assumed a priori 

 Identified Clusters of daily Charging profIles  

The pattern analysis approach described in the previous section identified 5 distinct clusters of 

daily charging profiles from the sample. This section examines the clusters and their members 

1219.62

1156.25

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

C
o

st
 F

u
n

ct
io

n
 𝐽

(𝜃
)

Number of Clusters



 

 61 

with respect to (i) charging; (ii) parking without charging and (iii) parking durations. 

Additionally, inverse Walsh-Hadamard Transform on the feature centroids of each cluster is used 

to reconstruct a composite image for each cluster and to facilitate interpretation. These images 

are shown below in Figure 4-5. 

 Characterization of Identified Clusters 

Each identified cluster is characterized with respect to charging and parking activities. Figure 4-5 

shows the reconstructed profiles from the inverse Walsh-Hadamard for each cluster. Note that 

the profile represents a composite of all activities at a specific time. For example, only if all 

events at a specific time were charging (state = 1) would the profile distinctly indicate 

“charging”. For this reason, the distribution of patterns within each cluster residing in the three 

different states considered are also plotted over the one-day period. 

Cluster 1 (CL-1, 772 patterns; 10 % of the sample of patterns): The reconstructed composite 

profile of CL-1 indicates that most charging activities start at 6:30 AM and peak (60% of 

patterns) at 8:45 AM. The daily profiles in this cluster are observed to have a peak (90% 

patterns) of parking without charging activity at about 1:45 PM. The patterns from CL-1 are 

mostly (85%) observed at RDT on weekdays (95%).  

Cluster 2 (CL-2, 3,438 patterns; 46% of the sample of patterns): The composite profile of CL-2 

has a distribution characterized by a low peak (20% of events) at 2:15 PM. Note again that the 

profile represents a composite of all activities at a specific time, making it difficult to tease out 

specific activities. The peak of parking without charging activity is observed at 3:30 PM with 

only 12% of patterns. Unlike CL-1, the patterns from CL-2 are observed at all the locations and 

has highest (30%) contribution of patterns observed on weekends. The patterns observed at 

MVH have highest contribution of 14% in CL-2 compared to the rest of the clusters. As CL-2 is 

largely comprised of shorter plug-in events, and MVH being the location near a public market, it 

can be inferred that the PEV drivers who access the public charging stations at the MVH and 

have charging profiles belonging to the CL-2 tend to use the charging stations for shorter 

durations. 

Cluster 3 (CL-3, 1,355 daily patterns; 18% of the sample of patterns): These patterns show a 

peak (68%) of charging activity at 8:45 AM and a very level of parking without charging activity 

with a peak (98.45% of patterns) at 4:15 PM. The patterns in this cluster indicate more parking 

without charging than parking with charging. CL-3 is constituted of 98% patterns observed at 

RDT, and 97% patterns observed on weekdays. Similar to CL-1, the charging activity of such 

patterns coincides with a typical working day schedule around the business district of Rochester. 

Cluster 4 (CL-4, 1,500 patterns; 20% of the sample of patterns): The parking with charging 

activity for these patterns peak (70% of patterns) at 9:00 AM. The parking without charging 

activities peak (60 % of patterns) at 11:30 AM. CL-4 does not have higher peak of parking 

without charging activity than parking with charging activity. Further, the patterns observed at 

RDT are 84% and 92% are observed on weekdays. 

Cluster 5 (CL-5, 489 patterns; 6% of the sample of patterns): The parking with charging of 

these patterns peak (55% of patterns) at 9:00 AM. The parking without charging peaks (90% of 

patterns) at 5:30 PM. The patterns observed at OBP have highest contribution of 27% in CL-5 

compared to rest of the clusters. As OBP can be considered as a leisure place, a typical PEV 



 

 62 

driver may stay at OBP for the entire day, which can be inferred with the charging activity 

ranging from 7:30AM to 6:20PM. 

Importantly, the charging profiles observed in CL-3, CL-1 and CL-5 show charging behavior 

characteristics which are likely to be observed on a working day at a public charging station 

located in business district, in this case RDT. 

 

(a) Cluster 1 

 

(b) Cluster 2 
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(c) Cluster 3 

 

(d) Cluster 4 
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(e) Cluster 5 

Figure 4-5: Cluster Profiles and Distribution of Patterns in Activities ‘0’-No Activity, ‘1’-Parking with Charging, ‘2’-Parking 

without Charging along with distribution of patterns with respect to location and type of day the pattern was observed (for 

example, weekday of weekend) (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4, and (e) Cluster 5 

 Comparison of Identified Clusters 

Figure 4-6 shows distribution of three dimensions, across patterns within each identified cluster: 

(a) parking duration (PD), (b) parking duration with charging (PDWC), (c) parking duration 

without charging (PDWOC) and (d) total sum of parking without charging durations of all 

patterns across different clusters. For PD, CL-5 while being the smallest cluster with only 489 

daily patterns, had the highest median PD (more than 10 hours). However, CL-2, the largest 

cluster with 3,438 daily patterns, has the lowest median PD (2 hours). Irrespective of the cluster 

sizes, the median for PD varies from 2 hours to 10 hours. In contrast, the PDWC does not vary 

significantly across clusters. The median for PDWC varies from 1.5 hours to 2.5 hours across 

clusters. Figure 4-6c also shows the distribution of PDWOC for all clusters. CL-5 has the highest 

median around 7.5 hours and CL-2 has the lowest (almost negligible) median. This characteristic 

of a charging behavior indicates efficient (or inefficient) operation of charging stations. 

Furthermore, Figure 4-6d shows that CL-3 has the highest total sum duration of hours spent 

parking without charging, followed by CL-1 and CL-5. These total hours spent parking without 

charging activity indicates the inefficiency of user turnaround at stations, likely due to the 

currently cost-free situation. Figure 4-6 also shows that, except for CL-2 and CL-4, the 

remaining clusters exhibit a higher median for PDWOC, relative to PDWC. However, due to 

their membership sizes, CL-2 and CL-4 still show a significant total sum duration of parking 

without charging. 



 

 65 

 

 

Figure 4-6: Variation of activities across clusters (a) Parking Duration (hours), (b) Parking Duration with Charging (hours), (c) Parking Duration Without Charging (hours) and 

(d) Total (i.e. sum of all the daily patterns in the respective cluster) Hours of Parking Without Charging across clusters
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 GHG Emissions Analysis 

The pattern analysis in the previous section uncovered five distinct clusters of daily charging 

profiles, each with a large frequency and total sum duration of parking without charging across 

daily profiles of PEV drivers. User operational inefficiency at charging stations is an issue that 

needs to be addressed to efficiently allocate institutional resources. Additionally, this 

inefficiency may demotivate potential PEV adopters who see out-of-home charging locations 

constantly occupied. The efficient user operations scenario is explained in detail in the following 

section. 

This scenario examines the impact of reducing inefficient station use through reducing the 

parking without charging duration. By allowing more efficient use and turnaround of charging 

stations, more PEV drivers can use the stations, thus potentially displacing gasoline miles 

incurred otherwise with electricity. These drivers could be potential PEV adopters or current 

PEV drivers who see the occupied station and turn away discouraged. The main assumption is 

that 100% time spent in parking without charging can be replaced with PEV drivers who need to 

charge. The GHG emissions savings from this displacement of inefficient station sue is 

determined as follows: 

𝐺𝐻𝐺 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

= {
{𝐴𝑣𝑔.𝑃𝑊𝑂𝐶 × 𝑃𝑎𝑣𝑔.  × 𝜂𝑒 }

𝜂𝑔𝑎𝑠 
× (

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 
(𝑀𝑇 𝐶𝑂2 𝑒𝑞./𝑔𝑎𝑙𝑙𝑜𝑛)

)}

− {𝐸 × (
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 1 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑁𝑌𝑈𝑃 

(𝑀𝑇 𝐶𝑂2 𝑒𝑞./𝑘𝑊ℎ)
)} 

Equation 4-2 

where 𝐴𝑣𝑔.𝑃𝑊𝑂𝐶 is the average time spent in parking without charging in hours per daily profile 

in respective cluster, 𝑃𝑎𝑣𝑔. is the assumed average charging rate of 3 kW, which is averaged rate 

across all the individual plug-in events in the observed sample in (𝑘𝑊), 𝜂𝑒  is the electrical 

efficiency of PEVs in  (𝑚𝑖𝑙𝑒𝑠 𝑘𝑊ℎ⁄ ) and is assumed based on the literature: 3 miles/kWh (Idaho 

National Laboratory 2010)—for increase and decrease in electrical efficiency the GHG 

emissions savings vary in proportion, 𝐸 is electricity consumed per average profile of respective 

cluster in (𝑘𝑊ℎ). Given that consumption of 1 gallon of gasoline emits 8.887×10-3 metric tons 

(MT) of CO2 eq. (US-EPA 2016)—for gasoline, CO2 and CO2 equivalent are same because 

gasoline combustion results in only CO2 and H2O, the total GHG emissions displaced by 

allowing more station charging can be calculated. The analysis was carried out for each 

individual cluster identified. 
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Figure 4-7: Global Warming Potential (GWP) in terms of kg of CO2 eq. for electricity consumed by an average daily profile of respective cluster at each hour and emissions from 

grid for generation of 1 kWh at each hour 
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To determine the GHG emissions from the electricity consumed, hourly electricity consumption 

is assumed to correspond to the number of PEV drivers using the facility for charging at that 

particular hour. Additionally, for upstate New York, the electricity production mix changes at 

each hour depending upon the demand for electricity (www.NYISO.com 2016), resulting in 

varying environmental impact each hour per kW-hr of charge. Figure 4-7 depicts the global 

warming potential (GWP) in terms of kg of CO2 equivalent for one unit (1 kWh) of electricity 

production for a varying grid mix of upstate New York (www.NYISO.com 2016) for a typical 

day. 

The Figure 4-7 shows that every 1 kWh of electricity produced from 12:00 AM until 8:00 AM is 

cleaner compared to the rest of the day and the GWP stays below 0.5 kg of CO2 equivalent. 

However, after 8:00 AM, the GWP of electricity production starts increasing and around 6:00 

PM it has the highest GWP of 0.56 kg of CO2 eq. because at this hour the electricity grid mix has 

most of the supply from fossil fuel power plants to meet the additional peak demand. Therefore, 

every 1 kWh of electricity consumed by the PEV drivers during a day has GWP directly 

proportional to the GWP shown in Figure 4-7 at that hour. Figure 4-7 further shows the GHG 

emissions for an average profile belonging to each cluster. CL-4 at 9:00 AM shows the highest 

GHG emissions, followed by CL-3 and CL-5 respectively. Note this peak occurs at a specific 

time 

Looking at average daily profiles for each cluster and their GHG emissions savings indicate 

opportunities for significant emissions savings. Overall, if efficiency in PEV user operations is 

improved i.e. the PDWOC is reduced, significant GHG emissions savings can be realized. For an 

average daily profile, CL-5 has the maximum total GHG emissions savings potential across the 

day, largely because profiles in this cluster have highest average parking without charging time 

over the day. CL-3 and CL-1, have the second and the third largest GHG emissions savings 

potential for similar reasons based on the entire daily GHG savings. Finally, CL-2 has the least 

GHG emission savings, due to low PDWOC, over the day, relative to the other clusters (Figure 

4-6c). Overall, the results suggest that displacing inefficient parking at charging stations with 

PEV charging from additional PEVs can lead to significant GHG emission savings, even in the 

case of CL-2 which has a lower median of PDWOC relative to the other clusters.  

As stated earlier, in section 4.2, the CL-3 has the highest PDWOC (Figure 4-6d), with respect to 

the sum of all the daily charging profile in the cluster; proportionately this cluster has 7880 hours 

of total parking without charging duration, which is the highest among all five clusters. 

However, a daily charging profile belonging to CL-5 exhibits longest PWOC activity (starting at 

9:00 AM until 12:00 AM, shown in Figure 4-5e). This can also be referred to Figure 4-5c, CL-5 

has highest median of PDWOC per daily profile, followed by CL-1 and CL-3 respectively. If all 

the clusters were of the same membership size, the CL-5 would have had largest total parking 

duration without charging, and hence the maximum GHG emissions savings potential. If the 

hour-specific electricity consumption is considered as a criterion, a CL-4 profile has the highest 

GHG emissions at 9:00 AM (Figure 4-7), followed by CL-3 and CL-5 respectively, which 

corresponds to the charging activity of an average profile belonging to a particular cluster at 9:00 

AM. 

As this dataset sample may not represent the actual population of charging events, we cannot 

draw inferences at the population level. However, based on this sample, for realizing GHG 

emissions savings, we can target the daily profile represented in CL-5, as they exhibit highest 

PDWOC on a typical day, or we can target the daily profile represented in CL-3, as the CL-3 has 

the highest total parking without charging duration (in total hours). If the calculations of GHG 

savings are performed considering efficiency of gasoline vehicles, with respect to the projections 

of expected improvements in miles per gallon (mpg) as per CAFE standards (U.S.-EPA 2011), 
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the amount of GHG emissions displaced varies in proportion to the gasoline vehicle efficiencies. 

For higher gasoline engine efficiency, the emission savings are less and vice versa.  

 Conclusion 

Our results indicate that the daily charging profiles of PEV drivers observed at the public 

charging stations can be clustered into five different groups based on their charging behavior. 

The five identified patterns display distinct PEV charging behaviors with respect to parking with 

charging activity, and parking without charging activity. These five clusters indicate that though 

the PEV drivers have variability in their charging profiles, the median for charging durations are 

similar (1.5 hours to 2.5 hours). However, they have significant durations of parking without 

charging, which can be conceptualized as ‘inefficient operation of charging stations’. This 

inefficiency is about 54% of the total usage time of the charging stations. The GHG emissions 

analysis suggests this inefficiency if reduced, can have a positive environmental impact (in terms 

of GHG emissions savings) resulting from an assumed displacement of gasoline vehicles. 

Several extensions to this work are envisioned. First, the analysis precluded consideration of 

behavioral changes. To address this, a queueing simulation model of station operations could be 

implemented based on this data, providing insights into shifts in station turnaround under 

different policies. The queueing simulation can further be used to analyze a policy of maximum 

allowed time to use public charging stations to reduce this inefficiency. Second, empirical data 

on charging prior to reaching the stations could be collected providing a clearer picture of 

charging needs at the station and subsequently could be used to reduce the duration of parking 

without charging. 
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5 CHAPTER 5: CONCLUSION  

 
  Systemic Modeling Uncertainties 

The models in this study are developed around the core idea of variability in consumers’ vehicle 

use. Implicit in this modeling is the assumption that consumers are purchasing a new vehicle to 

replace their current ones. However, ride-hailing services are fundamentally changing how 

consumers ownership and vehicle use in the future, bringing in potential systematic shifts. This 

can potentially propel consumers to move away from using their own private vehicles and public 

transportation in favor of shared mobility. In 2018, 36% of the U.S. population used ride-hailing 

services such as Uber or Lyft, increasing from just 15% in 2015 (JIANG 2019). Vehicles used 

for ride-hailing are expected to accumulate more travel miles than private vehicles, and 

consumers with vehicles that travel more miles have been found to receive larger direct financial 

gains from switching to ETVs. Therefore, if a consumer wants to use their vehicle for ride-

hailing services, then they should switch to an ETV, which would also result in GHG emissions 

reductions for society. Since early adopters propel reductions in prices for latter adopters, if 

ETV-based shared mobility increases, ETV prices will drop. Reduced ETV prices would make 

them cheaper to adopt for consumers who would not financially benefit from ETV adoption 

initially. More consumers moving towards ETVs would significantly gain market share for ETVs 

and replace incumbent conventional vehicles. Thus, a fundamental change in consumer behavior 

may potentially push the market towards electrified private transport. 

Along with modeling uncertainties, the results of the analyses depend on critical assumptions of 

key parameters like learning rate. Along with learning rate, there are other parameters such as 

battery cell price and cost of non-battery EV technologies, which affect the results. In this 

section the effect of uncertainty in learning rates is explained. A learning rate defines the actual 

cost reduction as a result of doubling of cumulative production. This assumption brings in the 

parameter uncertainty in this work. Learning rates affect the outlook of future costs of 

technology. This work used 17% and 5% as the learning rates for the battery cells and non-

battery EV technology. Learning rates are estimated by using reported prices, however, there is a 

significant lack of reliable battery cell prices as well as non-battery EV technologies. In the 

future, as new literature with dependable data sources becomes available, these estimates would 

need to be updated. The learning rates for battery cells are also contingent on developments in 

other sectors such as energy storage. In future estimations of learning rates, battery technologies 

should be considered as a whole and developments in battery technologies across different 

sectors should be used to estimate learning rates. Thus, if the uncertainty in learning rates is 

properly addressed and new learning rates are estimated, then price reductions due to adoption 

would differ from the projections presented in this dissertation. Higher learning rates would 

project faster reductions in per-unit prices and faster adoption of ETVs, and vice versa. A faster 

adoption would mean the ETVs will become financially more attractive for most consumers. No 

public data is available to better resolve learning rates, future research can address this situation.  
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 Implications for Decision Making 

This work deals with the adoption of ETVs and estimating their carbon and financial benefits. 

ETVs and charging infrastructure are already subsidized and thus a target of government 

interventions, this study can support policy decision making. With the increase in ETV-based 

shared mobility as well as the market-share of PEVs, the demand for public charging stations 

will rise. Therefore, governments will need to install additional charging stations to meet 

demand. However, installing additional charging stations could be costly as it entails purchase of 

installation of electric vehicle supply equipment, extending electricity lines, and real-estate costs. 

Moreover, with the improving battery technology, battery cells are expected to become more 

energy dense and facilitate longer range of driving with a fully charged vehicles. As greater 

number of automakers are likely to follow the suit and manufacture longer range vehicles, the 

consumers who are concerned about the ‘range anxiety’ could become the prospective electric 

vehicle owners and add to the market share of PEVs. This added fleet will also increase the 

demand to use the public charging stations. Additionally, in the areas with multi-dwelling unit 

(MDU) households, consumers would be faced with a challenge of unable to install private 

changing units. And if the consumers residing in these MDU facilities switch to the plug-in 

electric vehicles, there will be additional demand to use the public charging stations. Therefore, 

prior to an installation decision, decision-makers should consider analyzing consumers’ behavior 

at public charging stations. The City of Rochester case study revealed that public charging 

stations are used for parking instead of charging more than 50% of the time (Desai, Chen, and 

Armington 2017). The PEV users using the charging stations mostly for parking instead of 

charging could hinder the other PEV users from using the charging stations. As the governments, 

mainly, install the public charging stations to attract more consumers to adopt a plug-in electric 

vehicle, for a such a potential PEV adopter it could be demotivating to witness public charging 

stations occupied and not available to use for other PEV user. As such, governments should 

consider implementing policies to disincentivize the use of public charging stations as long-term 

parking. Therefore, the use of public resources like the public charging stations should be 

monitored and analyzed. So, that the inefficiencies in the operation could be recognized and 

addressed by implementing efficient use-oriented policies. 

This work takes into account demand-side heterogeneity of vehicle use to recognize the potential 

economic and carbon benefits of ETVs. However, the purchase decision of these vehicles is 

affected by the federal subsidies, therefore, the implications of the results of this study on 

technology subsidy policies are critical to understand. Current federal tax credits are available to 

all the consumer alike to purchase a BEV/PHEV. This work highlighted that the consumers who 

would financially benefit the most drive significantly higher than the national average in the U.S. 

Therefore, offering federal subsidies to all the consumers is not an ideal situation. However, this 

dissertation can help in recognizing the subpopulation who does not financially benefit from 

ETVs now, but if the federal subsidy is offered to this subpopulation, it can make the ETVs 

financially attractive. The consumers who have net cost (meaning ‘consumers pay from their 

pocket’) positive but lower than the current federal subsidy (i.e. $7,500). In Figure 2-5, this 

subpopulation would have positive abatement cost. These consumers should be recognized and 

should be offered the federal tax credits. For this key subpopulation, the net cost of adopting to 

an ETV can this be changes to net financial gains.  

If this subpopulation, therefore, is offered federal subsidies, can become the part of early 

adopters along with the consumers who receive direct financial benefits because of their heavy 
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use and add to the cumulative production of ETVs inducing greater price reductions. Table 3-4 

shows the money spent by the government per induced adoption. Although, the cost incurred by 

the government to induce an adoption are high, the federal tax credits can make the ETVs look 

financially more attractive. Therefore, these subsidies can be used as a tool to induce higher early 

ETV adoption. This early ETV adoption can then result in future price reductions and making 

ETVs financially more attractive to consumers who currently face high technology prices. Along 

with subsidies, this work also looked at sensitivity of results for different oil prices. Although it 

effects of varying oil prices are dealt in previous chapters specifically, it is important to reiterate 

the emphasis of future oil prices on the ETV outlook. At high oil prices, the financial gains turn 

substantially in favor of ETVs compared to the incumbent internal combustion vehicles. The oil 

prices are—and may always stay—highly volatile, however, if the government decides to 

provide an aggressive support to the electric vehicles, new laws and additional tax imposition 

(for example carbon tax)  can be used as viable policies options to make the ETV financial look 

more attractive. Private transportation in the U.S. presents significant variability from consumer-

to-consumer preferences as well as vehicle-to-vehicle performances. Therefore, while 

conducting analyses or estimations of potential sustainability gains of new technology, attention 

should be paid to the inherent variability in the system.  
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