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Abstract

The standard time-frequency representations calculated to serve as features for musi-

cal audio may have reached the extent of their effectiveness. General-purpose features

such as Mel-Frequency Spectral Coefficients or the Constant-Q Transform, while be-

ing pyschoacoustically and musically motivated, may not be optimal for all tasks.

As large, comprehensive, and well-annotated musical datasets become increasingly

available, the viability of learning from the raw waveform of recordings widens. Deep

neural networks have been shown to perform feature extraction and classification

jointly. With sufficient data, optimal filters which operate in the time-domain may

be learned in place of conventional time-frequency calculations. Since the spectrum

of problems studied by the Music Information Retrieval community are vastly dif-

ferent, rather than relying on the fixed frequency support of each bandpass filter

within standard transforms, learned time-domain filters may prioritize certain har-

monic frequencies and model note behavior differently based on a specific music task.

In this work, the time-frequency calculation step of a baseline transcription architec-

ture is replaced with a learned equivalent, initialized with the frequency response of

a Variable-Q Transform. The learned replacement is fine-tuned jointly with a base-

line architecture for the task of piano transcription, and the resulting filterbanks are

visualized and evaluated against the standard transform.
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Chapter 1

Introduction

Over the years, the Music Information Retrieval (MIR) community has grown and

evolved significantly. In particular, the increasing availability of quality music data

has fueled the embrace of more data-driven approaches to MIR tasks. As a result,

learning-based architectures have exceeded the performance of classical signal process-

ing approaches [3]. This is especially evident for the more challenging MIR tasks such

as Automatic Music Transcription (AMT), where Deep Learning (DL) has seemingly

become the default approach [4].

While DL is undoubtedly a promising source of innovation for AMT, the state-of-

the-art systems still cannot rival human ability and understanding. The gap widens

even further within highly unconstrained environments, where there is no limit on

instrumentation, noise, or polyphony within a signal [5]. These limitations are faced

by the whole of the MIR community, largely irrespective of the task at hand. This

is because they are, at least partly, wrought by the harmonic structure of Western

music [6], as well as the variability of music data in general.

The input features to any DL model are of great importance. A model’s perfor-

mance generally depends on the amount of information available at this first stage [3],

rather than the degree of its complexity. The MIR community typically employs some

Time-Frequency Representation (TFR) of an audio signal as input to classification

or estimation systems. This is motivated by the rich musical information that can be

1



CHAPTER 1. INTRODUCTION

inferred from the frequency content of music signals. For instance, the fundamental

frequency, denoted f0, of a harmonic complex tone can be mapped directly to the

musical idea of pitch, a perceptual property which enables humans to differentiate

between musical notes.

Pitched musical sounds are harmonic, meaning that energy is also concentrated at

frequencies which are positive integer multiples of the fundamental. The distribution

of this energy is unique and maps to an additional perceptual property known as

timbre. Further, in the Western music scale notes are spaced in a geometric fashion,

such that the frequency of consecutive notes follows a logarithmic pattern. Given

these compounding factors, standard feature sets are highly correlated, and retrieving

musical meaning from them is akin to untangling a knot. This is precisely why

it becomes difficult to analyze unconstrained polyphonic sound mixtures, and why

standard TFRs can be limited as input features for certain tasks.

As the MIR community continues to use DL to optimize the parameters of models

for music tasks, it will become necessary to push the envelope of feature learning.

Although the commonly deployed TFRs, such as Mel-Frequency Spectral Coefficients

(MFSC) or the Constant-Q Transform (CQT), are essentially hand-crafted to better

model human hearing or the structure of Western music, it is reasonable to suspect

that the features they generate may not be optimal for all music-related tasks. For

instance, the instrumentation of a music signal may influence the harmonic frequencies

which are more or less descriptive for a task or environment. Additionally, the stock

filters used to generate TFRs may be less suitable for capturing different types of

musical events, such as the onsets of notes for a specific instrument.

In this work, we expand upon the music analysis pipeline by fine-tuning the time-

domain filter weights of a Variable-Q Transform (VQT). The learned transform is

evaluated against its standard counterpart for the task of piano transcription. Addi-

tional experiments explore the efficacy of learning an audio filterbank from randomly-

2



CHAPTER 1. INTRODUCTION

initialized weights. Visualization of the learned filters and their frequency-domain

responses are offered along with a discussion focused on interpretation of the learned

filters. The contributions of this thesis are as follows:

1. An investigation into the efficacy of learning filterbanks directly from the raw

waveform for the task of piano transcription using a large dataset [1]. The

filterbanks are initialized randomly and with the frequency response of a VQT.

2. An open-source filterbank module configurable to mimic the CQT, the VQT,

or a 3D harmonic version of either. It can replace the calculation of a TFR

and is suitable as front-end to standard DL architectures for audio processing.

The weights can be fine-tuned jointly or disjointly with the rest of the model,

or they can be left alone to compute the unmodified transforms.

3. An example of the filterbank learning process using a strong baseline model for

piano transcription [1, 7]. This example illustrates how one may replace the

TFR fed into an acoustic model with a filterbank learned for the task at hand.

3



Chapter 2

Background and Related Work

Sound is a type of signal transmitted through air pressure oscillations which are

generated spatially from vibrations [8]. Music1 is less precisely defined, but can be

thought of as an arrangement of sensation-inducing sounds, each of which varies across

dimensions like timbre, pitch, duration, and loudness [9]. The main research problems

of the MIR community revolve around the estimation, detection, classification, and

understanding of the musical attributes and events within sound. The hope is that

solutions to MIR problems will enable music search, indexing, and analysis to reach

a level of ease and intuition similar to that of text. The primary focus of this work is

to improve contemporary approaches to the task of AMT, which seeks to recover the

musical information sufficient to generate a visual representation of the underlying

music within a sampled audio signal [10].

2.1 Music Theory

Musical instruments create periodic vibrations when notes are played e.g. by plucking

a string. The resulting air pressure oscillations are called harmonic complex tones.

The energy of these tones is concentrated at harmonic frequencies, positive integer

1This work deals exclusively with the Western music framework.

4



CHAPTER 2. BACKGROUND AND RELATED WORK

multiples h ∈ Z+ of a fundamental frequency f0:

fh = hf0 (2.1)

In (2.1), h = 1 would be used to index the first harmonic frequency, also known as the

fundamental f0, of a complex tone. When a note is played, the unique distribution

of energy among harmonic frequencies influences a property known as timbre, which

determines how the note sounds. Timbre enables a listener to hear and distinguish

between multiple instruments in a mixture. The f0 of a harmonic complex tone is

what characterizes it as having a certain pitch, the perceptual property by which

humans can rank notes in ascending or descending order based on frequency. Even

though different instruments have a unique sound, the f0 of identical notes is common

across them all.

It is important to stress that although the terms note and pitch are often used

interchangeably, it is better to think of a note as having a pitch. In western music,

there are 12 pitch classes, denoted by the first seven letters of the alphabet and five

sharp (]), or flat ([), variations. These pitch classes are ordered, beginning with C,

and map to notes cyclically, repeating after an interval known as an octave. The

mapping between pitch and note is one-to-one, whereas the mapping between pitch

class and note is one-to-several. Figure 2.1 illustrates how the pitch classes correspond

to the standard piano key arrangement.

Each note in the Western scale is associated with a pitch class and an octave. The

interval between adjacent pitch classes is referred to as a semitone. This means that

there are 12 semitone intervals per octave. The term semitone may also be used to

abstract the concept of a note. As stated above, the pitch classes are cyclical, i.e. an

interval of one semitone starting from B3 would lead to C4. The f0 in Hz2 of any

2Hertz enumerate the amount of cycles that occur per second, and are the standard unit of
measurement for frequency. Alternatively, there exists an integer measurement scheme for frequency,
Musical Instrument Digital Interface (MIDI). This system establishes the MIDI frequency 12 as the

5



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Pitch classes as arranged on a keyboard. The white keys map to the first
seven letters of the alphabet, whereas the black keys map to the sharp and flat variations.
The numbers succeeding each pitch class correspond to the octave containing the notes. A
full sized keyboard typically supports the notes A0 through C8.

semitone n is determined by a geometric relationship which relies on the f0 of the

previous semitone:

f0(n) = 21/12f0(n− 1) (2.2)

In order to establish the relationship in (2.2), the f0 of the note A4 is typically fixed.

Notice that the difference in frequency of adjacent semitones over the full set is linear

on a log scale scale. One result of (2.2) is the fact that the f0 of any note is double

the f0 of the note with the same pitch class in the previous octave. For example, if

the f0 of the note A4 is fixed at 440 Hz, this makes the f0 of the note A5 880 Hz,

and the f0 of the note A3 220 Hz. Additionally, setting the f0 of A4 at 440 Hz would

make the f0 of A]4 466.16 Hz, the f0 of A[4 415.30 Hz, and so on.

One challenge with analysis in this musical framework is the amount of harmonic

overlap that is possible within mixtures of even low polyphony [6]. When notes sound

simultaneously, their individual harmonic energy can mix, and the note sources of the

energy can become indiscernible. This is to say nothing of e.g. duplicate notes and

duplicate pitch classes, which may not even be detectable in certain situations, since

the set of harmonics for one source may completely contain the contents of the set of

harmonics of the other.

f0 of the note C0 and the MIDI frequency 127 as the f0 of the note G9.

6
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2.2 Audio Signals

In order to analyze audio efficiently with computers, it must be recorded and stored

digitally. Recording devices take discrete measurements of the air pressure displace-

ment with respect to a steady state, at a fixed periodicity Ts known as the sampling

period. During this process, a signal g(t) which is continuous in time is converted

into a digital representation g[k] which has discrete time and is indexed by sample

number k:

g[k] = g(kTs) (2.3)

In (2.3), the sampling period Ts can be represented equivalently by the sampling rate

fs, which is the inverse of Ts, i.e. the number of samples taken per second. Harmonic

complex tones are of the most interest when analyzing music signals, especially for

problems like AMT. Their presence is typically what we would like to infer when

analyzing sampled signals. As stated above, harmonic complex tones are air pressure

oscillations with frequency components that are positive integer multiples of an f0:

g(t) =
∑
h

Ah sin (2πfht+ φh) (2.4)

Each frequency component is approximately sinusoidal, meaning that it can be de-

scribed with an amplitude Ah, a frequency fh, and a phase φh. Figure 2.2 illustrates

an example of the relationship between a pure tone in continuous time and discrete

time. (2.3) is a lossy conversion, and as a result, frequency information will be erased

if the continuous signal contains frequency components greater than fs
2

, also known

as the Nyquist frequency. In Figure 2.2, the pure tone oscillates at a rate equal to the

Nyquist, and is therefore detectable. The insufficient sampling in Figure 2.3 leads to

an undesirable affect called aliasing. Here, the pure tone completes more than half

an oscillation in between samples. As a result, there is not enough information in the

7



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Sinusoid oscillating at 3 Hz with a phase of π
2 and unit amplitude. The signal

is being sampled at a rate of fs = 6 Hz.

Figure 2.3: Sinusoid oscillating at 3 Hz with a phase of π
2 and unit amplitude. The signal

is being sampled at a rate of fs = 4 Hz, which is not enough for accurate reconstruction.
The dotted line illustrates a continuous approximation for the sampled signal.

8
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Figure 2.4: Waveform of an acoustic guitar playing the note G3, along with a 25 ms
closeup of the signal starting at 1 second.

discrete signal to guarantee that there are any frequencies present which are higher

than the Nyquist.

The examples in Figures 2.2 and 2.3 are far removed from the complexity of

natural music signals. Typically, the complex harmonic tones produced by acoustic

instruments are transient and stage-dependent, e.g. as detailed by an Attack-Decay-

Sustain-Release (ADSR) envelope model [8]. Additionally, the timbre associated with

musical instruments necessitates more than just a pure tone oscillating at the f0.

The waveforms associated with two short recordings of an acoustic guitar and an

electronic keyboard playing the note G3 in Figures 2.4 and 2.5 reveal a more realistic

expectation. In both examples, the presence of harmonic complex tones is evidenced

by the periodic appearance of the waveform. The lowest periodicity within each

occurs roughly every T1 ≈ 5 milliseconds. From this, an assertion can be made that

f0 = 1
T1
≈ 200 Hz. This would be very close to the nominal f0 for G3 under the

9
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Figure 2.5: Waveform of an electronic keyboard playing the note G3, along with a 25 ms
closeup of the signal starting at 1 second.

A4 = 440 Hz tuning, which would be 196 Hz.

As more challenging tasks like AMT are undertaken, the complexity of the problem

only grows. In both Figures 2.4 and 2.5, only one note was being played by one

instrument in an environment with little noise. A more characteristic MIR task would

be to estimate or analyze the notes present in a recording of a song with multiple

instruments, where each is playing multi-note chord arrangements.

2.3 Audio Signal Features

An audio signal is two-dimensional. It merely represents the measured pressure dis-

placement over time [8]. For this reason, the raw signal is not very informative with

respect to inferring musical qualities or generating estimates of semantic musical con-

tent. This is especially true when the signal being analyzed consists of many harmonic

complex tones in addition to stochastic noise. A sampled signal recorded in this en-

10
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vironment may appear extremely unintelligible. As mentioned previously, frequency

content is of particular interest for AMT and many other music estimation problems.

This is because of the close relationship between frequency and pitch, as well as the

role of pitch as a fundamental building block of music.

2.3.1 Discrete Fourier Transform

One such set of features from which musical information can be directly inferred is

a measure of the degree to which a range of frequencies are present in the signal.

This information can be extracted from a discrete signal using the Discrete Fourier

Transform (DFT). The DFT transforms a discrete signal into a linear combination of

sinusoidal basis functions. The basis functions can be specified entirely by magnitude

Aµ, frequency fµ, and phase φµ. They are represented as a set of complex coefficients

[9]:

F (µ) =
M−1∑
k=0

g[k]e−j
2πµk
M , µ = 0, . . . ,M − 1 (2.5)

(2.5) essentially decomposes the input signal g[k] into a set of frequency components

using the complex sinusoids e−j
2πµk
M = cos (2πµk

M
)−j sin (2πµk

M
). It generates the Fourier

coefficients, complex coefficients F (µ) = aµ + jbµ for the frequencies within the set

fµ = 2πµ
M

, where aµ = real(F (µ)) and bµ = imag(F (µ)). It is important to note the

size M of the DFT can be artificially expanded by zero-padding the input signal g[k]

for more granular frequency support, but is otherwise typically set to the size of g[k].

The absolute value of the complex coefficients Aµ = |F (µ)| =
√
a2
µ + b2

µ represents

the magnitude of the bases, whereas the angles φµ = arctan bµ
aµ

represents the phase.

For many music estimation tasks, the magnitude of the DFT is more informative

than the phase. The DFT magnitude can be raised to the second power to generate

what is known as the power spectrum. Figures 2.6 and 2.7 represent the magnitude

spectrum of the recordings from Figures 2.4 and 2.5, respectively. There are sev-

eral important attributes of these DFTs to notice. First, in the frequency domain,
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Figure 2.6: Magnitude spectrum of an acoustic guitar playing the note G3. There is
strong energy at h = 1, which corresponds to ≈ 196 Hz, less at h = 2, even less at h = 3,
and small but noticeable energy among the other harmonics.

Figure 2.7: Magnitude spectrum of an electronic keyboard playing the note G3. There is
significant but varying energy at almost every harmonic within what is shown of the DFT,
which contains the first ten harmonics.

12
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it is much more obvious where energy is distributed across frequency. Second, it is

clear that the complex tones being analyzed are harmonic, i.e. all of the frequency

components are integer multiples of f0 ≈ 196 Hz. Third, the spectral fingerprint or

timbre for each instrument is undoubtedly unique. The harmonic energy of the acous-

tic guitar is not spread out very evenly. Instead, the first harmonic is exceptionally

strong, and there is some energy at the second and third harmonic. In contrast, the

harmonic energy of the electronic keyboard is much more spread out, and the second

harmonic has the most energy. Interestingly, these timbres are unique to the specific

characteristics of each physical instrument, not simply the instrument class.

2.3.2 Short-Time Fourier Transform

One drawback of the DFT is that it is cannot specify when each frequency compo-

nent is active. Rather, it assumes that the frequencies are active for the entirety of

the signal. The spectral energy of music signals evolves quickly over time. Timing

information corresponding to active frequencies is crucial for a well performing AMT

system. A much more powerful set of features for audio signals can be generated by

employing the Short-Time Fourier Transform (STFT) [9]:

F (µ, λ) =
M−1∑
k=0

w[k]g[k + λR]e−j
2πµk
M , µ = 0, . . . ,M − 1 (2.6)

The STFT effectively breaks the analyzed signal into L windowed frames of size M

and generates a set of spectral coefficients for each frame, advanced with hop size R

and indexed with λ, using the DFT. In (2.6), a window function w[k] is employed to

isolate an analysis frame from the rest of the signal. It is also useful in reducing signal

activity near the beginning and end of the analysis frame, which will yield spectra

with more localized frequency peaks. If a rectangular window function were to be

used here, i.e. w[k] = 1∀ k, a phenomena known as spectral leakage would occur.

13
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Figure 2.8: Spectrogram for solo piano recording taken from the MAESTRO dataset [1].
The STFT is generated with size M = 2048 and hop size R = 512.

This can result in de-sparsification of the spectra in order to accurately model the

signal, which is undesirable for analysis. A better option would be to use a bell-shaped

window function known as the Hanning window:

w[k] = 0.5− 0.5 cos (k
2π

M − 1
) (2.7)

The features resulting from the STFT represent what is known as a TFR, where

spectral coefficients vary over time. The resolution in time of a TFR is much more

coarse than the sampling period Ts. Instead, there is a set of spectral coefficients

for every T = R
fs

seconds. Also notice that the DFT size M determines both the

resolution in frequency and in time. Smaller analysis windows are more localized, but

can represent less frequencies, and vice versa. A visualization of the STFT output,

also known as the spectrogram, for a recording of a solo pianist can be seen in Figure

2.8. The heatmap3 representation is much more descriptive and visually intuitive

than the DFT of the whole signal. The spectral energy changes across time from

3Instead of allowing arbitrary amplitudes, as can be seen in Figures 2.6 and 2.7, the log-magnitude
20 ∗ log(|F (µ, λ)|) is a more common way to normalize the spectral energy across the signal using
the Decibel scale. In this way, spectral energy is attenuated based on its strength relative to the
rest of the signal.
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what can be presumed to be a musician playing different notes on the piano.

2.3.3 Mel-Frequency Features

Researchers in the speech domain typically use the psycho-acoustically motivated

Mel-scale to generate features which align with the way humans perceive frequency

[9]:

fmel = 2595 log(1 +
fhz
700

) (2.8)

Choosing two boundary frequencies in Hertz, one may convert them to Mel and set

N−1 frequencies linearly between them, before converting these back to Hertz. Then,

triangular filters ∆m[µ] centered at the Hertz frequencies fm can be used to filter the

STFT power spectrum in frequency to obtain MFSCs [9]:

FM(m,λ) =

M/2∑
µ=0

|F (µ, λ)|2∆m[µ], m = 0, . . . , N (2.9)

The mth triangular filter is zero outside the range of fm−1 and fm+1, and peaks at

fm, where it reaches magnitude one. MFSCs reduce the dimensionality of the STFT

spectra and provide a compact set of features which may be better suited for certain

audio tasks. The effect of this dimensionality reduction is mostly dependent on the

number of Mel frequency bins. As such, they can be equally powerful in settings

where music is to be analyzed instead of speech [7, 1].

In Figure 2.9 the MFSCs of the recording from the previous section are calculated

and displayed using what is known as the Mel spectrogram, derived from the same

Decibel conversion as with the nominal STFT spectrogram. Rather than the linear

frequency spacing in Hertz, we can see that the center frequencies of the Mel bins

follow a more logarithmic pattern. Additionally, it is clear that energy at higher

frequencies is less localized than in the STFT.

Before DL pushed back the envelope of feature processing, many state of the
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Figure 2.9: Mel spectrogram generated from the STFT in Figure 2.8 using N = 128 filters
spaced between zero and the Nyquist frequency.

art speech systems operated on further high level features such as Mel-Frequency

Cepstral Coefficients (MFCC)s. MFCCs are built atop MFSCs, derived from the

Discrete Cosine Transform of the log-scaled MFSCs. After DL, this step became less

relevant, as approaches using less meddled-with features were shown to outperform

the hand-crafted feature sets [3].

2.3.4 Constant-Q Transform

Although MFSCs are perceptually motivated, they still do not align directly with

the content of music signals. In music analysis, the most interesting frequencies for

common tasks are those which correspond to the f0 of music notes. Recall that (2.2)

models the f0 of all notes in the Western music scale, requiring that only one be fixed

to instantiate the relationship. Similarly, in the CQT formulation, the Fourier bases

are set with center frequencies

fµ = fmin2
µ
b , (2.10)

where fmin is chosen as the first center frequency, b defines the number of bins per

octave interval, and µ represents the number of semitone intervals beyond fmin [11].

The frequency support of every b
12

th
basis is centered over a semitone, whereas the
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other bases are spaced linearly between semitones on the log scale. The transform

can extend to the Nyquist frequency, or can cease support at a chosen nbins such that

fnbins ≤
fs
2

. With the CQT, rather than using fixed-size frequency analysis windows as

in the STFT, a constant Q-factor is maintained for all of the bases. This means that

the passband width Bµ = fµ+1 − fµ of the basis associated with each fµ depends on

the constant Q-factor Q = fµ
Bu

= fµ
fµ+1−fµ = 1

2
1
b−1

. As a result, the size in time-domain

samples of the analysis frames Mµ = Q fs
fµ

and the necessary windowing function wµ[k]

differ for each basis [9]:

FC(µ, λ) =
1

Mµ

Mµ−1∑
k=0

wµ[k]g[k + λR]e
−j 2πQk

Mµ , µ = 0, . . . , nbins (2.11)

If a Hanning window function were used in the case of a CQT, a separate instance

would correspond to each basis to match the size of the respective analysis window:

wµ[k] = 0.5− 0.5 cos (k
2π

Mµ − 1
) (2.12)

Since the size of the analysis frame for each basis is not static, each coefficient is

normalized by the analysis frame length Mµ. A CQT spectrogram can be generated

as with the previous feature sets. As exemplified in Figure 2.10, the same signal from

Figures 2.8 and 2.9 is now much easier to interpret spectrally, especially at lower

frequencies. Notice also that the relative spacing between harmonics remains constant

for each f0. For standard CQT representations, there exist efficient implementations

that leverage multiplication in the frequency domain instead of convolution as well as

iterative octave-wise processing [12]. Signal reconstruction is generally not possible

with the CQT, unless it is formulated with redundancy and variable sampling density

[13].
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Figure 2.10: CQT spectrogram of the same recording used for Figure 2.8. The CQT is
generated starting at fmin ≈ 32.7, spanning 8 octaves with b = 60 bins per octave, and
advanced with hop size R = 512.

2.3.5 Variable-Q Transform

The main advantage of the CQT is its ability to provide the same frequency support

to all semitones, and a variable number of bins in between them. Unfortunately, this

also has its drawbacks, one being the lack of solid time resolution at lower frequencies.

Figure 2.10 clearly shows that higher frequency energy is well localized in time, while

lower frequency energy suffers due to compensation for the desired resolution at lower

frequencies, where semitones are much less spread out. This tradeoff can be alleviated

by introducing another parameter γ to the CQT formulation. The purpose of γ is to

dampen the Q factor at lower frequencies, while maintaining roughly a constant Q at

higher frequencies [14]:

Bµ = fµ+1 − fµ + γ (2.13)

The additional parameter γ can be interpreted as an offset in Hertz, and is typically

chosen to be relatively small, i.e. no greater than approximately 30 Hz. Intuitively,

γ has a larger relative effect at lower frequencies where the bandwidth is very small,

but diminishing effect at higher frequencies. In order to remain musically relevant,

the center frequencies do not change. This modification yields what is known as the
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Figure 2.11: VQT spectrogram analysis identical to that of Figure 2.10, but with a
smoothly decreasing Q-factor using γ ≈ 2.657. This is the special case where bandwidths
vary proportionally to the ERB scale.

VQT.

When γ = 0, nothing about the formulation in (2.11) is modified, and the trans-

form is identical to the original CQT. The parameter can also be set, such that the

bandwidths of the bases are all a constant fraction of the corresponding bandwidths

derived from the Equivalent Rectangular Bandwidth (ERB) scale [14, 15]. The ERB

scale is psycho-acoustically motivated, and this parameter setting allows the VQT

to mimic its bandwidth evolution. This is not to be confused with the actual ERB

scale. It can be seen in Figure 2.11 that the lower frequency energy is now much

more defined along the time axis. The sacrifice of resolution at higher frequencies

is negligible. Note that the lower frequency activity is slightly less discernible along

the frequency axis as a result of the VQT. In Figure 2.12 the VQT spectrogram is

shown for a larger γ. Although it may seem in this example that too much frequency

resolution of lower frequencies has been traded for time resolution, a higher γ allows

the size of analysis windows for lower frequency channels to be reduced significantly.

The benefit to applying the VQT over the CQT largely depends on the task at

hand. In [16] it was reported that the VQT outperformed the CQT for the task of

multi-instrument transcription. The VQT has also gained more traction within the
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Figure 2.12: VQT spectrogram analysis identical to that of Figure 2.10, but with a
smoothly decreasing Q-factor using γ = 25. The analysis windows toward lower frequencies
are shrunk due to the bandwidth offset, and thus, the resolution is poor for lower frequencies,
while higher frequency bins still enjoy an approximately constant Q factor.

MIR community in recent years [17, 18, 19, 20].

2.3.6 Harmonic Transforms

The CQT and VQT are suitable for music signals, as the frequency bins map directly

to the f0s of the Western scale. Unfortunately, both transforms are limited in their

harmonic coverage of the semitones. Given the center frequencies of (2.10), precise

coverage can only be exhibited at power-of-2 harmonics. Clearly, there is no way to

produce the integers 3, 5, 6, 7, etc. from any combination of 2
m
n where m and n

are integers. This means that significant harmonic energy finds its way into nearby

frequency bins, where it may not be fully aligned, possibly impairing the features for

classification systems tasked with e.g. AMT. This problem was addressed in [21],

where a 3-dimensional TFR known as the Harmonic Constant-Q Transform (HCQT)

was constructed by stacking CQTs starting at different harmonics of fmin.

fmin(h) = hfmin, h ∈ H (2.14)
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Figure 2.13: Illustration of a harmonic transform corresponding to the VQT calculated for
Figure 2.11, where H = {0.5, 1.0, 3.0, 4.0}. Due to the need for transforms with matching
size, only 6 octaves are spanned in the stacked transforms, such that the 4th harmonic
transform does not contain filters which exceed the Nyquist frequency in support.

Barring memory and computational constraints, one may choose any subset H of

harmonics for which to generate CQTs. Since the only effect of the chosen set is

scaling for fmin, decimal and sub-harmonics are also possible. A visualization of

the harmonic transform for a music excerpt using various harmonics is offered in

Figure 2.13. The HCQT is a rather small fine-tuning that may not manifest visually.

As such, besides the noticeable frequency shift, the energy does not appear to vary

significantly across the harmonic axis. Note that the VQT can also be used in this

arrangement to create a Harmonic Variable-Q Transform (HVQT).

2.4 Audio Feature Learning

A neural network is essentially a parametric mapping from one domain, e.g. an in-

put space, to another domain, e.g. classwise probabilities. Feature learning within a

neural network architecture can be viewed as an optimization problem characterized

as the minimization of an objective function. The objective function typically aims
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Figure 2.14: Example of multi-layer perceptron with ReLU activation for hidden neurons
and sigmoid activation for the output neuron.

to calculate some metric of performance, the loss or error Li, derived from the rela-

tionship between a model’s response yi to some input xi and the desired response zi,

the ground truth data.

In a supervised learning scenario, a neural network formulation contains many

parameters or weights W which are iteratively updated to generate better responses

across a dataset, such that some classification or regression goal may be achieved.

Weights are initialized randomly and updated by computing the derivative of the loss

at a given training step with respect to each parameter of the neural network. The

derivatives can be efficiently computed using the back-propagation algorithm and

bundled together to form the gradient. In each iteration, where a group of training

samples is presented to a model and a loss is calculated, all of the weights are updated

to move away from the gradient by a fixed amount η known as the learning rate. This

equates to an iterative descent of a stochastic performance surface, which ideally

transfers to robust and invariant responses for input samples outside of the training

set.

Deep neural networks characteristically include many layers of processing. They

are built from various combinations of components including multi-dimensional con-

volutional layers, activations, feature aggregation and pooling layers, fully connected
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Figure 2.15: Examples of neural network components. (Left) 1D convolutional layer with
1 filter of size 4 and a stride of 1. The filter weights are shared across the input signal.
(Right) Multi-layer perceptron with recurrent weights U and a softmax layer to obtain
pseudo-probabilites for mutually exclusive classes 1 and 2.

layers, recurrent layers, etc. There are also plenty of techniques such as batch nor-

malization and dropout which can improve training efficiency. A full overview of DL

and more general machine learning techniques is outside of the scope of this work.

Excellent surveys of DL as it applies to MIR and other audio can be found in [22]

and [23].

After the successes of DL applied to computer vision and speech recognition prob-

lems, the MIR community began to increasingly embrace learning architectures for

various tasks. DL approaches are well-suited for MIR, since they are able to exploit

the hierarchical structure of music [3]. What’s more, the traditionally separated fea-

ture extraction and classification algorithms are blurred into one within deep neural

networks [24], removing the need to iterate endlessly on either. This means that

with a well-formulated objective function, sufficient data, and enough computational

resources, an optimal model for a task can be found with DL.

Traditionally, the input features that have been fed to deep neural networks for

audio tasks involving speech and music have been TFRs or feature sets built upon

them. Whether the TFR features are perceptually or musically motivated, they are

generated from a bank of stock filters with strictly defined bands centered at fixed

frequencies. Although standard TFRs like MFSCs and the CQT are appropriate
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feature representations for audio, they may not be equally powerful for all tasks

from a data-driven perspective. Alternatively, the calculation of a TFR may be

replaced with 1D convolutional filters which can be inserted at the front of a deep

neural network and learned jointly with the rest of the model. In this approach,

learning can be expanded such that the waveform is given as input instead of a TFR.

For instance, in Figures 2.6 and 2.7, the timbre of instruments affects the harmonic

energy distribution of notes. Similarly, Alvarado et. al. [25] determined that priors

were needed to model the frequency content of sounds to be detected after learning

spectral templates for Bayesian inference. A deep neural network tasked with e.g.

AMT might leverage this information while learning to extract features and classify

notes in an end-to-end fashion.

Several attempts have been made to learn filterbanks for music related tasks.

Dieleman et. al. [26] fed waveform features into a Convolutional Neural Network

(CNN) for the task of automatic music tagging, though they found that the model

performed better with spectrogram features. Verma et. al. [27] trained a multi-layer

perceptron with waveform features for the task of f0 estimation. Lee et. al. [28]

experimented with adding multiple layers below the frame level, effectively adding

more depth to the waveform feature extraction process. Perhaps most relevant to

this work, [29] trained several models using waveform features for frame-based music

transcription, and found that the learnt filters resembled those of an STFT while

improving performance.

As a whole, the current trend in MIR still involves using log-scaled TFRs as input

features to deep neural networks. This may be due to the need for sufficiently large

datasets to properly learn convolutional features competitive with those of typical

TFRs for music signals [30]. There are also possible pitfalls of learning end-to-end,

such as learned filterbanks overfitting to a dataset or the loss of structure inherent with

the frequency-ordered channels of a fixed transform [31]. In order to overcome these
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challenges in this work, we utilize a large dataset for the task of music transcription,

and initialize convolution filters with the frequency response of a standard TFR. In

this way, a significant amount of training involves fine-tuning filterbanks rather than

realizing them from random weights.

This work is motivated largely by the success of filterbank learning observed within

the speech community for several tasks. A variety of approaches have been proposed

which span from joint learning of spectrogram filters in place of MFSCs [32, 33], to

learning time-domain filterbanks directly from the waveform [34]. In the speech com-

munity, filterbank learning directly from the waveform has proven to generate results

consistent with Mel-spectrograms [35]. Several studies highlight the importance of

low-pass filtering, e.g. with pooling layers, and global or instance-wise normalization

for quick convergence [36, 37, 38]. In systems where 1-D convolutional filters replace

standard TFRs, the filter size, number of filters, and stride are incredibly important

with respect to the performance of a learned filterbanks [39]. When learning is suc-

cessful, resulting filterbanks tend to mimic spectrogram filters that resemble auditory

filterbanks [35, 40].

Interestingly, some results suggest that the learned filterbanks are still not supe-

rior, and combinations of learned and standard features as input lead to even further

improvement [36, 35]. Some systems utilize filterbank learning at multiple scales, ag-

gregating the filter outputs for a final representation [39]. In [41], multichannel time

domain filters were learned and shown to be sensitive to frequency and direction of

arrival. More recently, [42] formulated MFSCs in time domain using the scattering

transform, reaching state of the art performance for a phone recognition task. Several

other approaches have added more constraints to the process of filterbank learning,

such as the optimization of parametric Gaussian functions for frequency responses

[43], or the optimization of low and high cutoff frequencies for a set of bandpass

filters [44].
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Figure 2.16: Visualization of main idea behind AMT. An audio signal is parsed while
semantic musical notation (in this case a piano-roll representation) is created. While this
illustration suggests real-time operation and mono-linear signal analysis, neither are hard
constraints.

2.5 Automatic Music Transcription

Transcription is the process by which the notation corresponding to music is realized

through listening and understanding. It has a broad impact on the landscape of musi-

cians who want to learn how to play the songs from their favorite artists, or those who

wish to compose music in real-time. Additionally, the listening and understanding

capabilities necessary to transcribe music have other applications, such as real-time

instructional music scenarios which listen and provide feedback, mid-level music rep-

resentations for database querying, and the improvement of approaches to other MIR

tasks. Currently, transcription is a skill only experts with extensive music knowledge

or experienced musicians possess. Even still, it is an expensive and inefficient process

that is prone to human error and does not scale well.

AMT is an MIR task which seeks to solve the transcription problem. That is,

AMT approaches algorithmically recover the information sufficient to form a symbolic

representation of the music inherent in an audio signal. There are several degrees to

how this can be interpreted, each of which expects increasingly articulated symbolic

representations. For instance, in Figure 2.16, AMT is portrayed as the extraction of

notes from a music signal into a pianoroll representation. In a pianoroll representation,

each note is described with an f0 and a duration. Duration implies that two times,
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Figure 2.17: (Left) Pitch salience representation for a set of musical frequencies, indexed
by µ for L frames indexed by λ. (Right) Note-level predictions generated using pitch salience
refined with e.g. onset and offset predictions.

the onset and the offset, are necessary to define a note. There are other more simple

forms of musical notation, such as guitar tablature, which do not typically require

an offset be defined for notes. Other forms of notation, e.g. sheet music, are more

descriptive and require additional attributes about a recording. These can include

loudness, instrument-specific note segmentation, timing information, etc. Across all

notation, regardless of complexity, f0 activity serves as the foundational ingredient.

The acquisition of active f0s across time is already challenging enough to merit

its own MIR task, Multiple f0 Estimation (MFE). One could consider MFE a means

to generate a frame-based transcription, where estimates are quantized into analysis

frames separated by a fixed resolution. Here, the task becomes the mapping of a

small audio segment to a set of frequencies. MFE is not specific to MIR, being that it

is also relevant from a speech perspective. However, analyzed through an MIR lens,

MFE may be interpreted as a frame-wise multi-class binary detection problem, where

the classes represent a range of frequencies corresponding to the f0s of music notes.

For AMT, some form of note tracking is commonly built atop MFE to smooth
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Figure 2.18: Example of an acoustic model for AMT [1], described with more detail in
Section 3.1.

predictions and generate note-level predictions rather than frame-level predictions.

Note tracking can take different forms, depending on the desired level of transcription

complexity for the task at hand. It may include the application of MIR subtasks like

onset and offset detection to determine, sometimes ignoring frequency, where notes

appear to begin and end. This type of information can further assist in generating

predictions when taken into account with frame-wise frequencies. Figure 2.17 provides

a visualization of the desired output for each respective task. In [45], a neural network

with several different training configurations was applied to MFE. Another MFE

approach employed a CNN to learn pitch salience representations, similar to piano

rolls, using a large dataset [21].

Overall, AMT is a large multi-faceted task which is challenging due to its com-

plexity, aforementioned harmonic overlap, large degrees of polyphony, variance in

recording scenarios and instrumentation, lack of data, noise, etc. For monophonic

signals, the story is quite different, and the best approaches are now relatively robust

[46]. Before DL was a viable means to tackle AMT, approaches relied upon clas-

sic statistical signal processing, heuristics, and shallow classification algorithms [47],

which unsurprisingly reached a limit in terms of effectiveness. A good review of this

period of AMT history can be found in [5], where authors suggested that approaches

can be improved by making them instrument specific, acquiring larger datasets, and

jointly tackling other MIR tasks. A more recent review after the passing of several

years of DL research for music is presented in [4].

There have been several data-driven neural network approaches to AMT, some
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Figure 2.19: Example of a language model for AMT [1], described with more detail in
Section 3.1.

involving only recurrent neural networks [48], and some using only convolution [49].

A common formulation involves training both an acoustic model to predict f0s and a

music language model to aggregate the predictions over time for a task [50, 51]. Of this

flavor, [7] trained acoustic models jointly for framewise transcription, onset detection,

and velocity estimation, where frame predictions were gated by the onset detector,

and a language model was incorporated to smooth output. A subsequent iteration

of the model was presented in [1], where several improvements were made including

the use of separate acoustic models for offset detection and velocity estimation, and

a dataset one order of magnitude larger than the previous standard for training.

Elowsson [19] trained a layered neural network which performed each subtask jointly

in an iterative manner. Kelz et. al. [52] were the first to propose the training of a

separate acoustic model for offset detection. Although DL is only one approach to

AMT, the rest of the literature is too vast to cover in this work.
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Method

Our approach involves the fine-tuning of a front-end filterbank which accepts a wave-

form as input. The filterbank replaces the calculation of the TFR corresponding to a

waveform for input features. It is implemented as a module1 configurable such that

it can be randomly initialized, or set to match the frequency response of a CQT, a

VQT, or a 3D harmonic version of either. When the module is not trained and no

other modifications are made, it acts as a convolutional implementation of the config-

ured transform, matching indistinguishably the output from the community standard

Librosa implementation2 [53]. When it is trained, the weights making up the filter-

bank are allowed to fluctuate based on the gradients of the downstream loss. With

the learnable replacement, any arbitrary MIR system can be trained end-to-end and

deployed on the raw waveform of music signals. Ideally, fine-tuning the filterbank

will lead to the emphasis of relevant harmonic frequencies over less discriminative

frequencies for a given task. Another possibility of learning or fine-tuning the filter-

bank is one which can better understand and capture the ADSR behavior of specific

instruments.

In this work, we are not interested in developing a new transcription model, but

rather testing out the usefulness of the learnable filterbank. As such, in order to

1Our code is written in PyTorch and publicly available at https://www.github.com/

cwitkowitz/LHVQT.
2The Librosa CQT calculation has been modified to incorporate γ for VQT calculation.
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Figure 3.1: Baseline model presented in [1] and implemented in [2]. The specification
for the acoustic models and music language models are displayed in Figures 2.18 and 2.19,
respectively.

investigate the efficacy of the learnable replacement, we exchange it with the MFSC

calculation of a baseline architecture and optimize the combination jointly for the

task of piano transcription. These tasks allows us to observe the types of impulse

responses and frequency bands learned for transcription tasks with one instrument in

isolation.

3.1 Baseline Architecture

The back-end architecture we use for our experiments is a strong baseline developed in

[7], improved in [1], and implemented in PyTorch [54] in a publicly available GitHub

repository [2]. The model takes as input a TFR with a fixed number of frequency

bins and arbitrary length in time. As we will see, this is perfectly compatible with

the output of our learned filterbank. The system outputs frame-wise predictions

corresponding to onset, offset, and f0 probabilities as well as velocity estimates for a

note range of size L = 88.

The entire architecture is illustrated at high-level in Figure 3.1. It is made up

of four separate convolutional acoustic models, each intended to perform a differ-

ent subtask of AMT. These include onset detection, offset detection, f0 estimation,

31



CHAPTER 3. METHOD

and velocity estimation. Music language models containing bilinear long short-term

memory units (LSTM)s are employed at several stages of processing. The onset and

offset acoustic models feed directly into bilinear LSTMs, and each model contains

a fully connected layer with L output sigmoid activated units for obtaining pseudo-

probabilities. A sigmoid activation is not used for the velocity estimation model, since

it is performing regression rather than classification. For a refined f0 estimation, the

initial f0 predictions are appended to the onset and offset predictions, and fed to an

additional bilinear LSTM. The refined predictions are post-processed with a sigmoid

activated fully-connected layer.

The convolutional architecture is constant across all acoustic models. It includes

three convolutional layers with L
16

, L
16

, and L
8

learned filters respectively of kernel size

3 by 3. After each convolutional layer, batch normalization and ReLU activation are

applied. Before and after the third layer, a max-pooling operation is performed to

downsample features along the frequency axis by a factor of two. These are followed by

dropout with probability 0.25. Finally, a fully-connected layer with L output units

and dropout with probability 0.5 generate the unsmoothed output of the acoustic

model. The acoustic model is presented in Figure 2.18.

In order to generate note predictions, several post-processing steps are necessary.

First, the frame-wise onset and f0 pseudo-probabilities are used to generate binary

labels using a threshold of 0.5. Pairs of subsequent non-active-to-active onset predic-

tion frames are taken as note candidates. For each candidate, starting from the frame

where the prediction became active, if there is either an onset or f0 activation in the

next frame for the candidate, the candidate becomes a note prediction. The predicted

onset frame of the note is the first frame where the onset prediction became active.

The predicted offset frame of the note is the last consecutive frame where either an

onset or f0 activation exists. The onset and offset frame numbers are converted to

onset and offset times. Finally, a note’s predicted velocity is taken to be the mean of
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all velocity predictions for frames with onset activations.

3.2 Learnable Filterbank

In our scheme, we construct a bank of complex-valued time-domain filters with a 1-D

convolutional layer. The filters can be initialized such that their center frequencies

fµ and bandwidths Mµ in the frequency domain match a standard filterbank. Our

module is configurable through several parameters, of which the most important are

explained next.

3.2.1 Parameters

• fs : sampling rate - necessary to determine the size of each filter Mµ in samples

such that the Q-factor Qµ of the filter is met.

• R : hop length - chosen separation in samples for each frame calculation. In

our convolutional implementation, it is the same thing as stride.

• fmin : minimum center frequency - required to fix the rest of the center fre-

quencies to geometrically align with music notes. For example, to start the

transform at the note C1, fmin ≈ 32.7 Hz.

• b : number of bins per octave - influences the frequency resolution of the trans-

form as well as the amount of features for each semitone.

• nbins : number of frequency bins - effectively determines the maximum frequency

of the transform.

• γ : variable-Q parameter - degree of smooth decreasing for the Q-factor towards

lower frequencies. This can be set to zero to initialize CQT weights.
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• Mmp : max pooling amount - max pooling downsampling factor across the time

dimension. This can increase invariance to phase or can be set to one to negate

the max pooling operation.

• H : set of harmonics - outlines the transforms calculated using (2.14), holding all

other parameters constant. If H only contains the first harmonic, i.e. H = {1},

a normal CQT or VQT representation is generated.

• random : boolean - after constructing a filterbank of appropriate size for the

chosen transform, random = False will load the appropriate weights, whereas

random = True will leave the weights randomly initialized, though they are

normalized to have a summed magnitude equal to one.

3.2.2 Initialization

In order to mimic the nominal transforms in such a way that they can be fine-tuned,

the complex weights of the configured transform must first be calculated. First, the

geometric center frequencies for the filters µ = 0, . . . , nbins are calculated using (2.10).

After the center frequencies have been fixed, the Q-factors for the corresponding filters

are calculated with the chosen b using

Qµ =
fµ

(2
1
b − 1)fµ + γ

. (3.1)

If the parameter γ is equal to zero, then 3.1 will produce the same Q factor for each

filter, as is the case for the CQT. With the Q factors, the size in samples of each filter

can be determined using

Mµ = Qµ
fs
fµ
. (3.2)
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Once the lengths for the filters have been determined, they are rounded to the nearest

integer, and the filter weights W are generated as windowed sinusoids using

Wµ[k] = wµ[k]ej
2πfµk

fs , k = −Mµ

2
, . . . ,

Mµ

2
, (3.3)

where the choice of window function wµ is arbitrary as long as its length coincides

with that of the filter. We use the Hanning window function defined in 2.12. The

weights are normalized such that their summed magnitude is one. In order to place

all of the filter weights in a 1D convolutional layer, they are zero-padded so that they

all have the same length M0 as the largest filter. At this point, the filter bases have

been created, but their weights are complex and cannot be supported within PyTorch

modules as such. For this reason, a 1D convolutional layer is created with 2nbins filters

of kernel size M0, stride R, and padding M0

2
. Lastly, if random = False, all of the

filter weights are split into real and imaginary parts and loaded into the convolutional

layer. If random = true, the filter weights are discarded, and the weights which were

randomly initialized with the instantiation of the convolutional layer remain after

undergoing the normalization procedure. Figure 3.2 illustrates how the largest and

smallest 1D time-domain convolutional filter appear for a VQT-initialized filterbank

where γ = 25. As can be seen, the real and imaginary parts are slightly out of phase,

and the receptive field becomes smaller across frequency channel.

The separation of the weights into real and imaginary produce disjoint transforms

Freal and Fimag which correspond to the real and imaginary parts of the spectrum,

respectively. Figure 3.3 shows the layout for the module. Additionally for post-

processing, L2 pooling, max pooling, and 1D batch normalization layers are initial-

ized. Their purpose is described further in Section 3.2.3. Since our module is formu-

lated as a harmonic transform, this initialization procedure is conducted separately

for a filterbank corresponding to each harmonic in H.
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Figure 3.2: Real and imaginary weights for smallest (µ = 0) and largest (µ = 439) filters
in the learnable filterbank when γ = 25.
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Figure 3.3: Learnable filterbank module constructed for each harmonic within the set of
the desired configuration. The stack of output TFRs assembled using each instance of the
module is used as input to the baseline transcription model.

3.2.3 Forward Pass

When a waveform is passed to the learnable module, it is transformed with each fil-

terbank in isolation to create 2D TFRs which are later concatenated along a third

dimension. For each harmonic filterbank, the filters are convolved with the input

signal to produce Freal and Fimag. In practice, the convolutional filters are inter-

leaved such that adjacent filters make up the real and imaginary components to fil-

terbank filters µ. Thus, the output of the convolutional layer is really Freal+imag, where

Freal+imag(bn2 c) = Freal(µ) and Freal+imag(bn2 c + 1) = Fimag(µ) for n = 0, . . . , 2nbins.

The magnitude coefficients F are generated by passing Freal+imag through an L2 pool-

ing layer with a kernel size and stride of 2, effectively computing F =
√
F 2
real + F 2

imag.

Next, if the filterbanks are not being trained, the output of each filter F (µ) is scaled

by the filter length 1
Mµ

, as in (2.11). If the filterbank is being trained, this operation is

no longer valid, since previously null weights are allowed to fluctuate. The filterbank

output is max pooled across the time axis with kernel size and stride Mmp. Finally,

the filterbank output is log-scaled and passed through a per-channel batch normal-

ization module. Although max pooling and batch normalization are not part of the

standard TFR equivalents, they are still used when emulating these fixed transforms.
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Experiments

In order to determine if the learned filters improve transcription, we conduct exper-

iments using several different filterbank configurations on two types of instrument-

specific datasets. We connect the learnable filterbank to the baseline architecture,

removing the previous calculation of MFSCs. The experimental configurations are

outlined in Table 4.1. In experiments 1 through 3, the filterbank weights were fixed

and only the baseline architecture was trained. In experiments 4 and 5, the filterbank

weights were trained jointly with the baseline architecture. In experiments 6 and 7,

the previous two experiments were repeated with a smaller batch size and a larger

sequence length.

For each experiment, the convolutional layer was designed such that it could be

loaded with the appropriate weights for a filterbank. The appropriate weights were

either loaded into the module, or the random weights initialized with the convolution

1. Fixed Random Weights (FRW)
2. Fixed Constant-Q Filterbank (FCQ)
3. Fixed Variable-Q Filterbank (FVQ)
4. Trained Random Weights (TRW)
5. Fine-Tuned Variable-Q Filterbank (TVQ)
6. Trained Random Weights (TRW2)
7. Fine-Tuned Variable-Q Filterbank (TVQ2)

Table 4.1: Experiment specification and labels.
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layer were kept. The convolutional layer design and the loading of the appropriate

weights were separated, in order to vary the size of a random-weight filterbank through

the VQT parameter γ. In every experiment, the parameters were set such that

fmin = fC1, nbins = 440, and b = 60. This way, the filterbank initialization covered 88

semitones starting at the note C1, with a resolution of 5 frequency bins per semitone.

For all filterbanks, a hop length of R = 0.032fs
Mmp

is used as the convolutional stride,

where Mmp = 16. In all experiments except for experiment 2, γ is set to be 25.

Notice that there is no experiment where a CQT filterbank is fine-tuned. This

is because the length M0 of the largest filter within the CQT filterbank becomes

extremely large with the desired frequency resolution of b = 60. All 1D convolutional

filters are zero-padded to match the length of the longest filter and there are too many

parameters to learn in a convolution layer of that size. With the parameters specified

above, excluding the zero γ necessary for a CQT, the length of the longest filter M0

is 42110. In this case the analysis window spans ≈ 2.6 seconds for audio sampled at

16000 Hz and signal stationarity assumptions are likely violated.

4.1 Datasets

4.1.1 MAESTRO

The MAESTRO dataset [1] is used for training, validation and testing. It contains ap-

proximately 172 hours of virtuoso piano performances played on Yamaha Disklaviers

by different contestants of the International Piano-e-Competition. The performances

are recorded both acoustically and with a MIDI system. The note-wise annotations

are encoded with MIDI and programmatically aligned with the acoustic recordings.

We choose data splits which are consistent with those recommended by the authors.

The splits are organized such that no performance is repeated outside of a split and

the training, testing, and validation portions make up roughly 80%/10%/10% of the
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data.

4.1.2 MAPS

The MAPS dataset [55] is used for additional testing. It includes, among other

content, synthesized renderings and real recordings of full-piece music performances.

We evaluate our approach using only the real recordings, and apply the same pre-

processing as in [7]. The purpose of evaluation on MAPS is mainly to offer a point of

comparison between the results of our approach and previous approaches. This was

the primary piano transcription dataset before the recent release of MAESTRO.

4.2 Metrics

Relevant metrics for AMT include precision pr, recall re, and F1 score across K total

predictions [56]:

pr =

∑K−1
k=0 TP [k]∑K−1

k=0 TP [k] + FP [k]
(4.1)

re =

∑K−1
k=0 TP [k]∑K−1

k=0 TP [k] + FN [k]
(4.2)

F1 =
2pr × re
pr + re

(4.3)

In (4.1 - 4.3), TP , FP , and FN represent true positive, false positive, and false

negative binary descriptors indexed by prediction. These metrics are used on a frame-

based level and a note-based level. We use the MIR community standard evaluation

package mir eval [57] to compute these scores for each experiment.

For frame-based evaluation, the frame-wise f0 activity inferred from the notes

predictions are compared against the ground truth frame-wise f0 activation inferred

from the ground-truth notes. The problem then becomes akin to that of MFE, where
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the goal is to detect active frequencies across frames using multi-class binary classi-

fication. The resolution of predictions is relatively arbitrary using this system, and

does not necessarily correspond to the frame resolution of the model set by R, since it

is reliant on the note predictions. However, as time resolution of original f0 activity

lessens, onset and offset times become more quantized, affecting this metric.

For note-based evaluation, there are several definitions for what constitutes a

correct note, each adding a further layer of complexity to the task. The most simple

definition of a correct note prediction is one where the estimated f0 is within half a

semitone interval of the true value, and there is a corresponding onset time estimation

within 50 ms of the true value. Another more challenging definition builds upon the

previous, but also requires that there exist a corresponding offset time estimation

within the larger of either 50 ms or 20% of the ground truth duration. For piano-

based experiments, both datasets include the MIDI-encoded strike velocity for each

note annotation, allowing us to add a valid velocity estimation to all the previous.

The metric which factors velocity is described in [7].

4.3 Training Procedure

In [7, 1], a batch size of 8 was used with samples of sequence length 20 seconds.

Due to the increased computational demands wrought by learning a filterbank, it

was necessary to reduce both of these parameters. In experiments 1 through 5, the

batch size was set to 4 and the sample length to 10 seconds. In experiments 6 and

7, these parameters were 3 and 20, respectively. No precautions were made to avoid

choosing audio sequences which began or ended during a note activation. Due to

timing constraints, we were unable to train on MAESTRO for 670k steps as detailed

in [1], needing instead to stop at 200k steps. A coarse manual search was conducted

in order to fix a separate learning rate for the filterbank at 6E− 6. The learning rate

of the transcription model was set to 6E − 4, and both learning rates decayed across
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Frame Note Note w/ off. Note w/ off. & vel.
P R F1 P R F1 P R F1 P R F1

FRW 67.68 35.82 45.51 84.43 43.56 56.90 35.01 18.22 23.72 29.83 15.74 20.40
FCQ 69.07 67.00 66.63 85.44 75.56 80.07 41.22 36.60 38.71 38.41 34.14 36.09
FVQ 68.79 62.40 64.07 85.08 72.36 78.04 40.40 34.47 37.12 37.88 32.37 34.84
TRW 69.42 50.71 57.10 85.81 60.15 70.30 40.02 28.25 32.92 35.17 25.03 29.08
TVQ 67.12 57.95 60.76 84.58 65.21 73.34 39.39 30.58 34.29 35.19 27.43 30.71

TRW2 67.41 59.19 61.60 85.34 65.62 73.96 39.90 30.84 34.68 35.86 27.81 31.23
TVQ2 66.08 61.07 62.06 84.19 66.75 74.26 39.55 31.46 34.95 36.07 28.79 31.93

Table 4.2: Results from evaluation using the acoustic recordings of the full-pieces contained
within the ENSTDkAm and ENSTDkCl partitions of the MAPS dataset.

Frame Note Note w/ off. Note w/ off. & vel.
P R F1 P R F1 P R F1 P R F1

FRW 79.31 51.33 62.01 95.80 51.88 66.64 52.07 28.92 36.81 45.90 25.65 32.58
FCQ 93.31 82.22 87.34 98.86 87.90 92.99 80.83 72.02 76.11 78.95 70.40 74.38
FVQ 92.47 74.97 82.68 98.30 81.40 88.87 76.26 63.39 69.09 74.28 61.82 67.34
TRW 89.88 68.48 77.55 97.17 72.61 82.79 71.15 53.45 60.80 65.72 49.54 56.27
TVQ 91.13 74.45 81.82 97.79 78.94 87.15 74.41 60.31 66.47 70.45 57.22 63.00
TRW2 90.01 75.45 81.97 97.57 79.01 87.11 73.23 59.56 65.53 68.95 56.22 61.79
TVQ2 90.48 78.05 83.70 97.88 80.69 88.27 75.67 62.63 68.39 72.23 59.89 65.35

Table 4.3: Results from evaluation using the MAESTRO dataset testing partition.

10000 step intervals with a rate of 0.98 before being reset. As in [7], Adam optimizer

[58] was used to learn the parameters of both the filterbank and the transcription

model jointly.

4.4 Results

The results obtained using the real piano data from the MAPS dataset and the testing

partition of the MAESTRO dataset are presented in Tables 4.2 and 4.3, respectively.

We can see that for both datasets, the fixed CQT from FVQ outperformed all other

fixed and fine-tuned filterbanks. In general, fine-tuning the VQT configuration did

not improve performance. One exception is the frame score for TVQ2 when evaluated

on MAESTRO, which is significantly higher than the fixed counterpart FVQ, though

this is not reflected in the MAPS evaluation. In all other experiments, the fixed

VQT was superior in performance for all other metrics. However, the margins are

much smaller within the MAESTRO evaluation, which may suggest that learned
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Figure 4.1: Subset of learned filters along with the overall frequency response for TRW.
The filters are shown in no particular order, though the frequency response is ordered by
spectral centroid.

filters generalize less effectively to other datasets with alternate recording conditions.

Another interesting trend is the increase in performance in the second set of TRW and

TVQ, where the batch size was lowered and the sequence length increased. Across

most metrics, TRW2 actually outperforms TVQ, highlighting the importance of a

longer sequence length during training and the efficacy of learning filters from random

weights.

A small selection of the learned filters for each experiment where the filterbank

weights were trained are presented in Figures 4.1 through 4.4. Quite possibly

the most notable observation from the experiments is that the filterbanks which were

trained from a random initialization were able to come very close to matching the per-

formance of the fine-tuned VQT. VQT-like filters were learned in these experiments,

though it is clear that the experiments with VQT initialization converge faster and

more effectively since the filters are analytic from the start. This point is further
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Figure 4.2: Subset of learned filters along with the overall frequency response for TVQ.
The frequency response is ordered in accordance with an unmodified VQT.

Figure 4.3: Subset of learned filters along with the overall frequency response for TRW2.
The filters are shown in no particular order, though the frequency response is ordered by
spectral centroid.
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Figure 4.4: Subset of learned filters along with the overall frequency response for TVQ2.
The frequency response is ordered in accordance with an unmodified VQT.

solidified by the fact that some filters from the random initialization remain noisy

and unintelligible. In the random initialization, it appears that high frequency filters

are rare, if learned at all.

The results and visualization for the experiments with fine-tuned VQT filterbanks

suggest that in these situations, the optimization process simply added noise to the

previously robust filters. The weights of most filters tend to resemble the initialization

without the cleanliness of the standard counterparts, bolstering concerns laid out in

[31]. The frequency responses for TVQ and TVQ2 further back this up, since they are

asymmetric about zero and largely retain the strong response of the standard VQT

with seemingly uniform noise across the response. It is difficult to say whether or

not the learned filterbanks actually enhanced certain harmonics so that they could

be prioritized at later stages, or if they actually modeled note events at specific

frequencies. Answers to these uncertainties would require much deeper digging.
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4.5 Future Work

The results suggest that the learnable filterbank struggles to find arrangements which

are superior to the fixed TFR calculations. One reason for this may be the excess

stochasticity that results from attempting to generalize from too few samples at a

time during the training process. It also may be due to too little training, as is hinted

by the amount of training that was needed to achieve state-of-the-art performance

with the MAESTRO dataset [1]. One can only imagine that even more training than

was previously necessary is required to learn something as delicate as a filterbank.

Several questions still surround the hyperparameter settings for the experiments.

For instance, a coarse search was used to decide the learning rate, and it is not clear

whether it was chosen optimally or not. In the future, a genetic algorithm may be a

better way to choose the optimal setting dynamically. The batch size and sequence

length clearly play a role in the experiments, and it seems that a longer sequence

length is desirable, while still maintaining as large a batch size as possible. By making

the weights of the filterbank learnable, there are limits to how much processing can be

done at a time. As evidenced by the increase seen in experiments TRW2 and TVQ2,

a longer sequence length and larger batch size may be necessary to efficiently learn

filters which can generalize to a whole dataset.

It is not fully clear how the filterbanks should be constructed such that the best

filters can be learned. The experiments show that the CQT is sufficiently more

powerful than the VQT with γ set to 25, at least for piano transcription with the

MAPS and MAESTRO dataset. Since γ can vary the transform from a CQT to a

heavily saturated VQT, the subject of the experiments conducted in this work, it

would be interesting to see if lowering γ would lead to a better filterbank layout, i.e.

with enough space to learn good filters. The γ parameter chosen here allowed the

filterbank to become sufficiently small so that it could be learned fast, giving it very

46



CHAPTER 4. EXPERIMENTS

little capacity compared to the CQT. The amount of bins per octave b was also not

tuned. In the original release of the transcription model [7], the authors claimed that

the CQT reduced performance with respect to the MFSCs calculation, though they

did not mention what parameters they used; the MFSCs were calculated using 229

filters, resulting in a feature set roughly half the size of the 440 bins calculated in the

transforms here. This may have assisted the model in convergence, since there was

less information and less redundancy.

There was not enough time to perform experiments using 3D harmonic transforms,

and it would be interesting to see if these can further improve transcription in the

future. Once the hyperparameters of the base transforms and learning procedure

are optimally tuned, the filterbank learning procedure may be able to enhance the

response to certain harmonic frequencies without affecting the base transform for the

first harmonic. However, there is no clear answer as to which harmonic transforms

should be used in this representation, and each additional harmonic transform will

require increased resources during training.

As learning from the waveform becomes more popular, it will be necessary to con-

sider which architectural components are most important to filterbank learning, and

how the model presented here may be further improved. Finally, since the learnable

filterbank is extensible to other MIR tasks, it would be interesting to see if it can

be used to improve other architectures, or assist in performing tasks where multiple

instruments are present.
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Conclusion

Time-frequency calculations and features built upon them have long served as the

primary input to any music classification system. While they are great for general-

purpose music analysis, they are not tailored to any specific tasks. As such, in some

cases it may be worthwhile to learn features directly from the waveform. In this

work, an attempt was made to improve contemporary music transcription by jointly

learning a filterbank with a transcription model. The filterbank can be initialized

with random weights or it can be populated with the time-domain equivalent of

the frequency response of a harmonic transform. Though there was no significant

improvement to approaching the problem in this way, visualization of the learned

filterbanks showed that they indeed are pulled toward modeling analytic filterbanks

during training. In the future, it would be interesting to evaluate an increased amount

of filterbank and architectural configurations, as well hyperparameter sets. For now,

time-frequency calculations still reign supreme in the music space.
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[48] S. Böck and M. Schedl, “Polyphonic piano note transcription with recurrent
neural networks,” in 2012 IEEE international conference on acoustics, speech
and signal processing (ICASSP), 2012, pp. 121–124.

[49] R. Kelz, M. Dorfer, F. Korzeniowski, S. Böck, A. Arzt, and G. Widmer, “On the
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[51] C. Thomé and S. Ahlbäck, “Polyphonic pitch detection with convolutional re-
current neural networks,” Music Information Retrieval Evaluation eXchange
(MIREX), 2017.

52



BIBLIOGRAPHY
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