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Abstract
Dr. Ernest Fokoué
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Master of Science in Applied Statistics

Predicting the Emotional Intensity of Tweets

by Intisar M. Alhamdan

Automated interpretation of human emotion has become increas-
ingly important as human computer interactions become ubiqui-
tous. Affective computing is a field of computer science concerned
with recognizing, analyzing and interpreting human emotions in a
range of media, including audio, video, and text. Social media, in
particular, are rich in expressions of peoples’ moods, opinions, and
sentiments. This thesis focuses on predicting the emotional inten-
sity expressed on the social network Twitter. In this study, we use
lexical features, sentiment and emotion lexicons to extract features
from tweets, messages of 280 characters or less shared on Twitter.
We also use a form of transfer learning – word and sentence em-
beddings extracted from neural networks trained on large corpora.
The estimation of emotional intensity is a regression task and we
use, linear and tree-based models for this task. We compare the re-
sults of these individual models as well as making a final ensemble
model that predicts the emotional intensity of tweets by combin-
ing the output of the individual models. We also use lexical fea-
tures and word embeddings to train a recently introduced model
designed to handle data with sparse or rare features. This model
combines LASSO regularization with grouped features. Finally, an
error analysis is conducted and areas that need to be improved are
emphasized.
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Chapter 1

Introduction

1.1 Introduction

Technology is often thought of as a tool or instrument. Humans use

technological tools in order to achieve certain ends and the emo-

tional state of the user is not part of this interaction. What if this

changed and technology, software and hardware, were sensitive to

the more human aspects of its users, their attitudes and emotions?

This study seeks to advance knowledge in one area of a larger

field known as affective computing.Specifically, we design features

and models that accurately gauge the emotional intensity of short

texts. Social media is rich in expressions of individual moods, sen-

timents, and opinions. In this study we use text data, Tweets, from

the social media website Twitter.

The study focuses on the detection of the emotional intensity of

tweets, short texts less than 280 characters in length. In particular,

we examine the performance of features used in building regression

models to accurately predict emotional intensity of tweets for four

different emotions: anger, fear, joy, and sadness. Three sets of fea-

tures are used as the input into a suite of regression models and one
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ensemble model. We analyze the performance and characteristics

of the resulting models and conduct an error analysis.

The use of transfer learning in natural language processing (NLP)

models is a growing area of research. Transfer learning is the use

of models or features in a machine learning task different from the

task they were trained on. We examine two sets of word embed-

dings that were trained on general language models. We compare

these word embedding features to a set of baseline features consist-

ing of sentiment and emotion lexicons along with some simple text

features.

Our main conclusion is that transfer learning features can be

used in detecting and estimating the emotional content of text data.

Models that use word embedding features trained for a general

language task are found to be competitive with the baseline fea-

tures designed for gauging emotional intensity. However, not all

word embeddings perform equally well. We find that the corpus on

which the language model is trained is the most important factor in

creating word embeddings that are useful for detecting emotions.

Corpora with high emotional content and with language features

similar to the features used in the prediction task appear more likely

to produce word embeddings useful in emotion detection models.

Although our focus is on analyzing the performance of features

used in a regression task, we also look at model performance on

our set of features. In our study of feature performance we use

three models per feature, a lasso model, random forests, and gra-

dient boosted trees. For each feature and emotion, we also create an

ensemble model by combining prediction results of the three base

models.
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We find that the random forest model performs well across all

feature sets. For one feature set, the ensemble models perform uni-

formly better than the individual models. Uncorrelated models com-

bine to form ensemble models better than the individual models

from which they are created. We find that model correlation is de-

pendent on the feature set used. This suggest that better ensemble

performance could be gained by performing model selection per

feature set.

We also analyze a recently developed model called the rare-model

(Yan and Bien, 2018a). The rare model is based on the lasso model

but is designed to group rare features. The model takes both a fea-

ture set, in this case, a document-term-matrix (DTM) and side in-

formation that gives the model information about how features are

related. We used word embeddings as the side information that

provides a metric for grouping terms in the DTM.

Our experiments with the rare-model were not conclusive. We

tested the rare-model and three DTMs of varying size. Each model

resulted in an intercept-only model. This model gives all tweets the

same level of emotional intensity regardless of the contents of the

tweet.

Our study contributes to the broader field known as affective

computing. Affective computing is a field of computer science con-

cerned with the automated interpretation of human emotion in a

variety human expressions including facial expressions, gestures,

and spoken and written language. The need for automated and ac-

curate detection of human emotions that goes beyond recognition

of positive or negative sentiment is becoming increasingly as people

interact with systems largely governed by automated algorithms.
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Human computer interaction is also becoming more widespread

and personalized with the popularity of personal assistants that re-

spond to voice commands, like those of Amazon, Apple, and Google.

Many companies also offer some level of automated customer ser-

vice through the use of chatbots. These tools may need to better rec-

ognize the emotional content of user interactions in order to more

appropriate respond to user behavior. In other fields, such as edu-

cation or marketing, the recognition of an audience’s attention and

emotional state can be used to improve lectures or commercial me-

dia.

The detection of emotion in text is particularly relevant to the

automated monitoring of social media on websites like Facebook

and Twitter. Both companies have recently come under criticism

for handling of abusive speech. Accurate detection of the intensity

of emotions like anger or sadness could enable better detection of

abuse or bullying.

Much of the background for the theory of detecting and classi-

fying emotional content is drawn from the field of psychology. A

number of different theories of the emotions have been developed.

Two of the most popular theories are the continuous and discrete

theory of the emotions. In the continuous theory, the emotions have

several poles and a particular emotional expression can fall any-

where within the emotional space between those poles (Mehrabian,

1996). A competing theory is that there are discrete ‘basic’ emotions.

Other, more complex emotions are made of combinations of these

discrete emotions (P. Ekman and Friesen, 1971).

Our study, and the data we use to create the models, are based
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on the latter theory. Our data come from the semEval 2018 emo-

tional intensity regression task. The data for this task are grouped

into four emotions: anger, fear, joy, and sadness. These emotions

correspond to four of the ‘basic’ emotions as defined by Ekman (P.

Ekman and Friesen, 1971). For our study, we use data that are la-

beled based on this discrete theory of the emotions. Whether this

theory of the emotions best captures emotional nuance in texts is

beyond the scope of our analysis.
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Chapter 2

Related Work

Summary

In this chapter, we review the literature relevant to our study of

emotion detection in texts. In order to detect emotions, we first

need a well-defined idea of what it is we are detecting. We begin

by looking at the psychological theory that has influenced the field

of affective computing. Next, we broadly discuss affective comput-

ing, a field of computer science that attempts to detect, analyze, and

respond to human emotion in a range of media. We also review

some of the techniques that have been used for analyzing text data

and look at specific text features and machine learning models that

will be used in our study.

2.1 Theory of emotions

There is a long history of the study of the emotions. In modern

times, Darwin posited that the purpose of emotions is to improve a

species’ reproductive fitness, allowing it to have a better chance at

surviving and reproducing (Darwin, 1872). A primary example of
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this theory is fear. The fight or flight response increases an organ-

ism’s likelihood of surviving and reproducing if it either flees when

encountering a predator, or if it fights and is able to kill the predator

or adversary.

Whether the fight or flight reactions of animals are of the same

nature as human emotions, is a subject of debate (P. Ekman, 1999).Whether

human emotion is different from emotion-like responses in animals

depends on the interpretation of what an emotional response is.

Some theories posit that emotions are a physiological response to a

stimulus. Cognitive theories, on the other hand, posit that thoughts

which result from an experience of the stimulus leads to emotion. In

the latter theory, it’s the higher level cognitive processing of events

which causes emotion rather than a direct external stimulus. This

is supported by research that shows that emotions are the result of

complex mental processes which may not exist in other animals.

The substantially greater complexity associated with human brains

also suggests that humans may feel and experience emotions in a

qualitatively different way than other animals (Barrett, 2017).

An example of the physiological theory of the emotions is the

James-Lange theory (Lange and James, 1922). In the James-Lange

theory, emotions depend on an interpretation of our body’s phys-

iological reactions an external stimulus. For example, coming into

contact with a wild animal would lead to a rapid heartbeat, sweat-

ing, shaking, and similar physical responses. Individuals experienc-

ing these physiological affects would then interpret their reactions

as an experience of fear. In this sense, emotion results from both

the physiological response to a stimulus and the resulting interpre-

tation of the physiological response by higher cognitive processes.
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Criticisms of this theory relate to the role of higher level cog-

nition in emotional responses. The James-Lange theory suggests

that physiological indicators of an emotional response may occur

because of emotion rather than prior to an emotional response. For

example, a feeling of fear can come after thinking about some poten-

tial danger rather than being a reaction to a present danger. Another

criticism is that physiological responses do not have a one-to-one

correspondence with emotions, and that the timing physiological

responses do not always match the subjective feeling of an emotion

in time (D. H. Hockenbury and S. E. Hockenbury, 2010).

The Cannon-Bard theory of emotion was originally proposed in

response to the James-Lange theory (Dror, 2014). This theory re-

sponded to some of the criticisms of the James-Lange theory. The

Cannon-Bard theory suggested instead that physiological responses

and emotions are experienced simultaneously. Continuing the ex-

ample from above, an individual encountering a dangerous wild

animal would experience fear while simultaneously experiencing

these physiological responses of a rapid heartbeat, sweating, etc.

While solving some of the problems associated with the James-

Lange theory, it was not until the 1960s when theories started to

incorporate cognition as an important factor in both physiological

and emotional responses. These later theories which emphasized

the cognitive role of the emotions were part of the "cognitive revo-

lution" in psychology.

An example of a cognitive theory of the emotions is Schachter-

Singer’s two-factor theory of emotion (Schachter and Singer, 1962).
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The Schachter-Singer theory posits that physiological arousal hap-

pens first. The individual, though, experiences an emotion depend-

ing on their cognitive understanding of the source. This theory

builds upon both the James-Lange and Cannon-Bard theories of the

emotion but adds a cognitive element not present in the earlier the-

ories. For example, this theory suggests different emotions can be

produced on the basis of similar physiological responses. That dif-

ference depends on the cognitive processing of information related

to the physiological response.

Lazarus’ cognitive appraisal theory suggests that both the emo-

tional and physiological experience of individuals will depend on

how they evaluate the events they witness and experience. In this

view, different emotions are a product of differing appraisals an in-

dividual makes of a situation (Lazarus and Lazarus, 1991). This the-

ory is rooted in research conducted in 1940s which posited that dif-

ferent emotions result from different excitatory phenomena (Arnold,

1945). This was further developed by Lazarus who suggested there

are two stages of appraisal, primary and secondary appraisal. Pri-

mary appraisal relates to the intensity of the emotions experienced

by individuals and relates to how individuals assess their goals and

the relevancy of the circumstances in attaining their goals (Lazarus

and Lazarus, 1991). Secondary appraisal pertains to someone’s eval-

uation of whether the resources available allow them to adequately

cope with the situation. This secondary appraisal includes several

facets: who should be accountable, an individual’s coping potential,

and what is expected of future events.

While these earlier theories related to physiological responses

and cognitive processes, more recent theories inform our study. In
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particular, the questions of whether emotions are universally shared,

between people and cultures, and how emotions can be categorized

and quantified, directly relate to if and how computational emotion

detection can be performed.

Ekman and Friesen’s research suggested that at least some emo-

tions were universal (P. Ekman and Friesen, 1971). They conducted

a study which found no significant difference in accuracy compar-

ing preliterate respondents from New Guinea with those from West-

ern cultures. In their experiment, participants had to select the

correct emotional response out of three after hearing a story writ-

ten to produce a specific emotion on the basis of Western cultures.

On the other hand, cultural differences also exist in terms of how

emotions are expressed by individuals. For example, facial expres-

sions of an emotion may vary by individual and the appropriate

expression of emotion varies by culture. One study, for example,

found that the expression of emotion was encouraged in American

culture, while alternatively being suppressed in Japanese culture

(Miyamoto, Uchida, and Ellsworth, 2010).

The uniformity of emotional expression, at least among English

speakers, is important in determining whether behavior can be seen

as an expression of a particular emotion. On the other hand, how

emotion can be modeled in a way that makes it suitable for quantifi-

cation informs strategies for computational detection of emotions.

A basic question of psychological theory is whether emotions

should be modeled as discrete or continuous. Some theorists posit-

ing there are discrete emotions also believe there is a limited set of

emotions that exist in all individuals and which can be recognized

across cultures. These researchers have posited that these discrete
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emotions can be determined on the basis of someone’s facial ex-

pression and biological processes (P. Ekman and Friesen, 1971). Ek-

man and Friesen’s early theory posited discrete emotions such as

happiness, sadness, anger, fear, disgust and interest.(P. Ekman and

Friesen, 1971) Over time, variations of what the basic emotions are

have been suggested.

In a survey, Ekman found that, among active researchers in the

field, 88% felt that there was compelling evidence for universal fea-

tures in any aspect of emotion, with 55% indicating that they felt

that both discrete and dimensional models were relevant. Opinions

relating to what emotions would be considered basic varied, with

the most common consisting of anger (91%), fear (90%), disgust

(86%), sadness (80%), and happiness (76%) (P. Ekman, 2016). Al-

though the original theory suggests there are basic emotions, later

versions allow for there to be more complex emotions which are

built of mixtures of the basic emotions.

An alternative to this discrete theory models emotions as occur-

ring in a continuous emotion space. This school of thought suggests

that all emotional states come out of the same few neurophysiolog-

ical signals which determine the dimensions of the emotion space

(Posner, Russell, and Peterson, 2005). These models are founded

on the idea that all emotions result from the same interconnected

neurophysiological network. Generally, these emotion space or di-

mensional models use two or three dimensions. The earliest such

model, proposed in the late 19th century, modeled emotions in three

dimensions: pleasure, arousal, and strain (James, 1894). Scholsberg

suggested replacing arousing and strain with the new dimensions

of attention-rejection and level of activation (Schlosberg, 1954).
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Modern models generally incorporate valence and arousal. The

PAD model uses three dimensions in order to represent pleasure,

arousal, and dominance, with the pleasure-displeasure dimension

measuring how pleasant an emotion is, arousal-non-arousal dimen-

sion measuring intensity, and the dominance-submissiveness scale

measuring how controlling an emotion is (Mehrabian, 1996).

Plutchik’s multi-factor theory consists of a hybrid theory of emo-

tions that sought to connect discrete and dimensional models, with

his "wheel" of emotions incorporating eight basic emotions, acting

like dimensions, which include Ekman’s six emotions along with

the emotions of trust and anticipation. The radius is then used to

indicate intensity, drawing parallels with the dimensional approach

with dyadic emotions also being present within this model, which

consist of emotions that result from combinations of two or more

emotions (Plutchik, 1960).

Both continuous and discrete theories allow for a quantification

of the emotions. In the PAD and VAD models, and in related con-

tinuous dimensional models, any particular emotion can be repre-

sented as a point in three dimensional space, or as a three dimen-

sional vector. Higher numbers in a particular dimension would in-

dicate that emotional dimension places a greater role in a particular

response.

The discrete emotional model, on the other hand, would label

an emotional response as belonging to one (or more) emotional cat-

egories. The response could also be labeled with an intensity, as

are the text in our study. If an emotional reaction is allowed to be-

long to more than one basic emotion, then, there is not that clear a

distinction between continuous and discrete models. In both cases,
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emotions can be quantified as having a continuous strength along

different emotional categories, although the categories vary by the-

ory. For example, in one theory, the dimensions are valence, arousal,

and domination, and in another theory the dimensions might be

fear, anger, sadness and joy.

2.2 Affective Computing

Many fields of artificial intelligence have made increased the abil-

ity of computers to perform tasks that were once thought to be

uniquely human. Affective computing can be thought of as com-

plementing these attempts to replicate human intelligence by giving

computers emotional or social intelligence by attempting to imitate

the ability of humans to recognize and react appropriately human

emotions.

The goal of computers being sensitive to human emotions may

sound far off but it has practical and current applications in a num-

ber of fields. In marketing, affective computing could be used to

recognize the user’s emotional response to various media. For ex-

ample, affective computing techniques have been used to gauge the

emotional reactions of a player to a specific game scenario based on

their body movements.(Bianchi-Berthouze and Kleinsmith, 2015).

Similarly, facial expressions could be used to measure engagement

or frustration levels of a student to educational material, and to cap-

ture the reaction of a viewer of an advertisement(Jeffrey F. Cohn

and Torre, 2015). Chatbots are widely used for customer service,

and being more aware of a customers attitude could help improve
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chatbot’s interaction with a customer (Portela and Granell-Canut,

2017).

Below, we review work on affective computing based on the

type of expression analyzed, facial expression, bodily expressions or

gestures, speech, and written texts. However, there are some com-

mon issues that arise for each of these types of expression. These

common issues are:

1. Choice of media used to analyze the expression;

2. Theory of emotions used to code expressions;

3. Coding procedure for creating labeled datasets;

4. Feature extraction from raw data;

5. Models used to analyze data.

We use these issues to organize our discussion of the techniques

used to analyze the emotional content of various types of human

expression.

2.2.1 Facial Expression

For several decades, the face has been an object of interest to com-

puter scientists as a possible biometric, with computer vision and

graphics first being used in the 1990s in order to both analyze and

synthesize facial expression (Jeffrey F. Cohn and Torre, 2015). While

work began with the simple recognition of the expression associ-

ated with a posed facial action, currently researchers are attempting

to accurately detect expressions in more natural settings and with
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naturalistic challenges such as partial occlusion, pose variation, and

so forth.

The coding of facial expression is based, for the most part, on

one of three models, the message-based models, sign-based mod-

els, or continuous coding models (Pantic, 2009). The message-based

model is based on describing a facial expression holistically, as a

single expression or emotion. The sign-based model, on the other

hand, is used to code the surface expression without necessarily

applying a single expression label. In general, the discrete theory

of the emotions is used to label expressions in the message based

model (Jeffrey F. Cohn and Torre, 2015).

The sign-based approach most commonly uses the facial action

coding system (FACS) as developed by Ekman and others (R. Ek-

man, 1997). This method breaks up an expression into separate

"signs". The way the facial expressions are categorized is largely

based on facial muscle groups (R. Ekman, 1997). The sign-based

coding method relies on expert coders while the message based

system labelling is more easily crowd-sourced (Jeffrey F. Cohn and

Torre, 2015). For either coding system, the validity of the measure-

ment or labeling of the expressions is usually gauged by analyz-

ing between coder agreement and consistency (Jeffrey F. Cohn and

Torre, 2015).

A third method is similar to the sign-based method but uses fa-

cial landmarks to measure facial expressions (Jeffrey F Cohn et al.,

2009). This method could be considered a continuous model since

the movements of facial landmarks are tracked continuously and

not broken into discrete positions, as in the FACS coding model.
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One example of this continuous coding method is the active ap-

pearance modeling (AAM) method (Jeffrey F Cohn et al., 2009).

Most facial expression methods use video to capture expressions,

either in lab-based or naturalistic settings. Analysis of facial expres-

sions share methods in common with other computer vision appli-

cations. For example, one of the first steps in using video is to detect

and then track faces (Jeffrey F. Cohn and Torre, 2015). A variety of

techniques are used to track facial positions and capture the dynam-

ics of actions in a way that accounts movement in three dimensions

and individual differences of faces (Jeffrey F. Cohn and Torre, 2015).

The sign-based FACS coding system provides a relatively small

and discrete set of features that can be used in machine learning

applications. The AAM methods that track continuous movement

produce large datasets which generally need dimension reduction

methods applied in order to prepare the data for machine learning

models. These features can be based on facial landmarks or by dis-

cretizing the data based on meaningful thresholds (Jeffrey F. Cohn

and Torre, 2015). Other methods use typical machine learning di-

mensions reduction techniques, like principal component analysis

of the raw data (Jeffrey F. Cohn and Torre, 2015).

The analysis of facial expression analysis has been applied to a

range of problems including detecting or estimating physical pain,

detecting depression, and detecting interpersonal coordination (Pan-

tic, 2009) (Jeffrey F Cohn et al., 2009) (Jeffrey F. Cohn and Torre,

2015). The application of these methods to detecting physical pain,

for example, is meant to overcome limitations of patient self-report.
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There are similar benefits with respect to the diagnosis and assess-

ment of depression and psychological pain. Other applications in-

clude being able to discriminate between subtle differences when

comparing related expressions, marketing (such as responses to com-

mercials being seen), drowsy-driver protection, and instructional

technology (Jeffrey F. Cohn and Torre, 2015).

2.2.2 Body Expressions

While the analysis of facial expression has a long history, going back

to Darwin and earlier, less research exists on the analysis of bodily

expression. Despite evidence suggesting that some affective expres-

sions may be more easily communicated by the body, until recently,

the field has attracted fewer researchers. Recent advancements in

technology used for capturing body movements has increased the

interest in the automated analysis of bodily expressions (Bianchi-

Berthouze and Kleinsmith, 2015).

Many applications and potential applications relevant to body

expressions have been identified, including applications in the fields

of security, law enforcement, health care, education, and games and

entertainment (Bianchi-Berthouze and Kleinsmith, 2015). The de-

tection of engagement as well as the emotional expressions of in-

dividuals playing games could be used for the purposes of game

evaluation or the adaptation of gameplay to users emotional state

(Bianchi-Berthouze and Kleinsmith, 2015). In clinical applications,

detection of the emotional state through bodily expressions could

be used in determining if people are suffering from depression or

from physical pain (Luo et al., 2018). Doctors or nurses could use
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this information about the patients emotional state could inform the

treatment of the patinetn and help personalize their support. In an

educational setting, systems for recognizing interest and frustration

could give designers of lessons, lectures, or other educational ma-

terial feedback for improving that material (Bianchi-Berthouze and

Kleinsmith, 2015).

Data on body expressions has primarily been captured using vi-

sion or video-based, optical, electromechanical and electromagnetic

motion capture systems. There are trade-offs between the type of

technology used for gathering data and systems vary by cost, porta-

bility, and accuracy of the data captured (Bianchi-Berthouze and

Kleinsmith, 2015). Video-based systems are commonly used be-

cause they are inexpensive and allow for coding of emotions based

both on gesture and facial expression (Luo et al., 2018). Microsoft’s

Kinect technology, on the other hand, combines video with 3-D sen-

sors and has provided researchers with an inexpensive way to cap-

ture motion data.(Zhang, 2012).

The model of the emotions used for classifying gesture and body

expressions are discrete and continuous. According to Karg et al.

the discrete method has been more popular in studies of gesture

(Karg et al., 2013). The continuous models, like the pleasure-arousal-

dominance (PAD) model, have also been used. Although continu-

ous models are thought to be closer to the physiological "ground

truth", the continuous models have had issues in practice. For ex-

ample, manual coding of gestures using continuous models has

had lower agreement than discrete models (Bianchi-Berthouze and

Kleinsmith, 2015)(Karg et al., 2013).

There does not appear to be a single notation method that has



20 Chapter 2. Related Work

become accepted among body expression researchers, although a

variety of methods have been proposed. Systems have been devel-

oped that are based loosely on the FACs annotation system for facial

recognition. These systems, like FACS, break movements into a lim-

ited set of discrete units (Karg et al., 2013). Another method map

complex motion to simpler linguistic labels, usually using some

set of emotional labels based on Ekman’s discrete system (Karg et

al., 2013). The structural approach, on the other hand, attempts to

capture the complete movements of the limbs and joints (Karg et

al., 2013). Similar to continuous models of facial recognition, these

models capture data on the geometric relations of landmark points

over time. The structural method can be used both with motion cap-

ture data which records these landmark points or with video that

uses computer vision techniques to recognize and track landmarks

over time (Luo et al., 2018).

As with studies of other affective computing methods, the two

most common methods of labeling data are by an expert, trained

coders or through crowd-sourcing. For crowd-sourced labeling meth-

ods are used to identify quality labels, either through taking the

most frequent label or by using other measures of between-coder

agreement such as the Best-Worst Scaling (BWS) method (Bianchi-

Berthouze and Kleinsmith, 2015).

2.2.3 Speech

Speech is another human expression that is rich in emotional con-

tent. A speakers dialects and word choice convey information about
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the speakers’ background, pitch and acoustic qualities convey emo-

tional information, emphasis, and other traits of the speaker such

as age, gender and health (C.-C. Lee et al., 2015). As with facial and

bodily expressions, there is a great deal of variability among speak-

ers which poses a challenge to isolating patterns that have emo-

tional significance. The physical mechanisms that produce speech

are also relatively complex and small physical differences among in-

dividuals can cause significant variations in the acoustic properties

of the speech they produce (C.-C. Lee et al., 2015).

The basic theory underlying the detection of emotion using acous-

tic patterns of speech is that emotional processes correspond to phys-

ical changes in the muscular systems responsible for speech pro-

duction (Eyben et al., 2015). Analysis of speech production data

suggests that information relating to emotion is encoded acoustic

properties modulated by the vocal tract and vocal source activities

(C.-C. Lee et al., 2015). More detailed research has focused on the

identifying mechanisms that produce acoustic traits associated with

specific emotions. Analysis based on previous research in phonetics

focuses on acoustic patterns associated phonetic articulation (Eyben

et al., 2015).

On the other hand, machine learning researchers have often ap-

proached the acoustic signals as any other audio signal, and have

used wide range of audio features to detect and analyze patterns

in speech. The use of features derived from the raw audio signal

can produce high-dimensional feature vectors with hundreds of fea-

tures or more.
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However, questions remain, such as why a large number of acous-

tic low-level descriptors work well, or what mechanisms are appro-

priately modeled using this technique. This method is also com-

putationally expensive, and may not efficiently scale to an emo-

tional recognizer that can be used in real-time efficiently and reli-

ably (C.-C. Lee et al., 2015). The proliferation and variety of features

used by researches limit the ability to interpret results across studies

(Eyben et al., 2015). Some researchers have turned to systems that

are based on more grounded understanding of human speech while

not suffering from reduced accuracy of machine learning models

(C.-C. Lee et al., 2015).

One example of such a limited system of parameters is the Geneva

Minimalistic Acoustic Parameter Set (GeMAPS). This set of features

includes parameters related to frequency, amplitude, and the spec-

tral characteristics of the audio signal (Eyben et al., 2015). The mo-

tivation for having a limited set of features is similar to that for the

FACs system for facial recognition – it provides a baseline set of

features that can be compared across studies as well as allowing

for potentially allowing for better inferences about the relationship

between emotion, vocal mechanisms, and audio characteristics.

As with other areas of affective computing, the discrete and con-

tinuous models of the emotions are the most commonly used sys-

tems for labeling or classifying emotion in speech. There has been

more success in applying continuous or dimensional models of the

emotions, like PAD, to vocal expressions, where continuous prop-

erties like pitch, duration, and energy have been related to dimen-

sions of the PAD model (Yildirim et al., 2004). However, many stud-

ies still rely on the discrete model of emotions to label categorize
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specific speech productions as belonging to small set of emotions,

similar to Ekman’s: anger, sadness, happiness, boredom, disgust,

fear, joy, and neutrality, for example (Yildirim et al., 2004)(Eyben et

al., 2015).

A common technique for labelling speech production is to task

actors with speaking the same set of sentences but with different

emotional intonations. The Geneva Multimodal expression corpus

is one such collection in which actors produced the same vowel

sounds with variations on the emotional content (Bänziger, Mor-

tillaro, and Scherer, 2012). Other speech corpora are of speech recorded

in more naturalistic contexts that are then labeled annotators using

either discrete emotional categories or as low-high activation and

positive-negative valence. Eyeben et al. include a table of that lists

several corpora and the labeling system used (Eyben et al., 2015).

While there is a range of techniques for collecting gesture and

facial expressions, the recording of speech audio is fairly standard-

ized. Some researchers also record video or use audio sources that

include video, such as the Vera-Am-Mittag corpus that is a video

recording of a daily talk show (Eyben et al., 2015).

2.3 Sentiment Analysis

The area of sentiment analysis, or opinion mining, has a long his-

tory, and a great expansion of the field has been seen alongside the

growth of social media (B. Liu, 2012). Sentiment analysis covers a

broad range of topics but generally refers to the automatic estima-

tion of the positive or negative valence of text. The more general

sense of sentiment analysis is the determination of one’s attitude
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toward some target, topic, or person, sometimes referred to as an

entity (Saif M Mohammad, 2016). It has been one of the most ac-

tive areas in natural language processing and has spread to related

fields (B. Liu, 2012). Even though the detection of positive and neg-

ative sentiment appears simpler than the detection of the full range

of human emotions, even this reduced task has proven challenging

(Pang, L. Lee, et al., 2008).

The popularity of sentiment analysis over the past two decades

can be explained by several trends. The spread of standardized and

easy to use tools for basic natural language processing tasks has en-

couraged researchers to use text data. There has also been a number

of practical applications, such as automated detection of consumer

attitudes towards consumer products. The availability of high vol-

ume, near real-time text streams that have also been used to monitor

evolving emergencies or to detect changes in investor attitudes to-

wards stocks(B. Liu, 2012) (Saif M Mohammad, 2016) (Pang, L. Lee,

et al., 2008). Sentiment analysis has also been used in a broad range

of fields from public health, political science, to education, psychol-

ogy, and literary analysis(Saif M Mohammad, 2016).

Sentiment analysis can be carried out at different levels of a text:

at the document level, the sentence level, and the entity level (Alawami,

2016) (B. Liu, 2012). At the document level, the aim consists of de-

termining whether a document contains a positive or negative sen-

timent, and assumes that each document focuses on a single en-

tity or topic. At the sentence level, the task relates to determining

whether a positive, negative, or neutral opinion is expressed in each

sentence. At the entity level, the opinion itself is examined. The

granularity associated with this level of examination allows for a
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much greater number of qualitative and quantitative analyses to be

conducted (Alawami, 2016) (B. Liu, 2012). For example, changes in

sentence level sentiment can be analyzed over the extent of a text

in order to see how positive and negative valence changes over the

course of the text.

Classifications at entity level are most difficult, even more than

those conducted at the document or sentence level (B. Liu, 2012).

NLP methods are usually frequency-based and use bag-of-words

methods, or use entity recognition methods to determine the entity

and attitude towards that entity. Other statistical approaches in-

clude topic modeling or supervised learning with labeled data sets.

(Alawami, 2016).

There are a number of challenges with correctly identifying the

valence of a text. Opinions or attitudes may be either explicit or im-

plicit. In the latter case, the valence of the text can be much harder

to classify (B. Liu, 2012). Lexicon techniques, that match words to

positive or negative valence, can be much more successful when

there are explicit opinions expressed. For example, valence indicat-

ing words like good, amazing, bad, and terrible can make valence

easier to detect (B. Liu, 2012) (B. Liu, 2007). However, sentiment lex-

icons rely on a bag-of-words model of language. The bag-of-words

(BOW) model assumes a text can be split into words "atoms" and the

meaning of the text can be determined statistically through analysis

of these atoms.

For texts with implicit attitudes or emotions expressed indirectly,

BOW methods and sentiment lexicons can be less effective. For ex-

ample, the valence of a sarcastic phrase might be hard to detect.

Consider the sentence: "We lost again, that’s great!". The word "lost"
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might be scored slightly negative while "great" is scored as having

a strong positive valence, giving the phrase an overall additive pos-

itive valence. However, the phrase is meant negatively. Sarcasm is

just one example of language subtleties that can be hard to detect

with lexicon techniques (B. Liu, 2012).

Many methods exist for compiling word lists, or more generally,

sentiment or opinion lexicon for use in sentiment analysis. Several

examples of early lexicons were compiled by psychologists manu-

ally. Some more recent lexicons are also based on manually scoring

of words for positive or negative sentiment (B. Liu, 2012) (B. Liu,

2015). The manual approach is labor intensive although crowd-

sourcing manual labelling has become more viable with tools like

Amazon’s Mechanical Turk. Lexicons that have performed well

in the past, for example, in the SemEval-2013 and 2014 Sentiment

Analysis in Twitter competition, have relied upon very large sen-

timent lexicons of 10-15,000 words that were labelled by crowd-

sourcing on Mechanical Turk (Nakov, Ritter, et al., 2016).

The dictionary method uses word relations to compile a larger

list. The dictionary approach starts with a few sentiment words

and then, using lists of synonyms and antonyms, builds an entire

list. For example, a researcher can start with a negative word, like

anger, and look up related synonyms. Words found as synonyms,

like vexatioun, irritability, or indignation, would also be listed as

words with negative valence.

More sophisticated approaches use distance measures or other

bootstrapping methodologies to go from smaller seed lists to larger

compilations of words. This method can also be automated. For ex-

ample, a small set of negative "seed words" is chosen then a graph
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of synonyms is searched and words are added to the negative list

that are found on this graph. The dictionary method has the benefit

of quickly and easily finding a large number of sentiment words,

though can result in lists that contain many errors and require man-

ual checking in order to correct, which is a time-consuming effort.

Another limitation is that the words collected using this methodol-

ogy are also independent of domain and context.

The corpus-based approach has been used to find other senti-

ment words from a domain corpus given a list of seed words. This

method is used to create a lexicon that contains words that are spe-

cific to the domain being studied. For example, a general lexicon

of sentiment words based on the Oxford English Dictionary might

not be relevant for studying Twitter. In this case, using a domain

dictionary based on words gathered from Twitter might be more ef-

fective. This approach tends to be useful if a very large and diverse

corpus is available. (B. Liu, 2012) (B. Liu, 2015).

2.4 Language models

One of the most central statistical language models is a probabilistic

or distributional model that can be used for predicting text. In gen-

eral, a probabilistic language model learns a large table of probabil-

ities of word co-occurences. This table can then be used to predict

what words would occur before, after, or between other words or

phrases.

The most common probability model learns the probability of a

word given 1 or more preceding words. The probability of a longer
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phrase or a sentence occuring can then be calculated using the con-

ditional rule of probabilit. In it’s simplest form, the probability of

an event A given an event B is:

P(A|B) = P(A) ∩ p(B)
P(B)

.

The chain rule of probability gives a formula for calculating the

probability of an event given more than one event:

P(A|B, C, D) = P(A) · P(B|A) · P(C|A, B) · P(D|A, B, C)

This is applied to predicting text by considering words in a sen-

tence as events. For a sentence with words w1, w2, · · ·wn, the chain

rule of conditional probability becomes

p(w1w2 · · ·wn) = ∏
t

P(wt|w1w2 · · ·wt−1). (2.1)

The above model of word occurrences is called the n-gram model,

where n refers to the number of words in a row whose probabilities

are being predicted (Manning, Manning, and Schütze, 1999). The

n-gram model assumes that each set of words of length n are statis-

tically independent. For example, for a model with n = 2, a word

would be predicted using a single preceding word; For n = 3, a

word would be predicted using two words preceding that word.

The assumption that every n words are independent is known as

the Markov assumption.

Mathematically, the goal of the n-gram model is to estimate the

probability of the occurrence of wt, the word w at position t . This

is done by calculating P(wt|wt+n−1 · · ·wt−1): this is the probability
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of wt given the n− 1 preceding words. To accomplish this task, the

probability distribution of sets of n− grams are estimated based on

the corpus of data D.

For a unigram model, no conditional probabilities are required

and just the frequency of individual words are used. For the bi-

gram model, the conditional probabilities of any two words, w1, w2

is estimated based on their individual and joint frequencies:

P(w2|w1) =
count(w1, w2)

count(w1)

For other n-gram models, additional conditional probabilities would

need to be calculated.

Once each order of conditional probability has been calculated,

the probability of a sentence or a given word at position t can be

calculated. Using the example of the bigram model, the probability

of the nth word in a sequence at position t is:

P(wt|w1w2....wt−1) ≈ P(wt|wt−1) (2.2)

Like other language models we will discuss, the n-gram model

is a distributional model of language. A probability distribution

of word contexts, here, the n − 1 words that precede a word, are

learned from a corpus. Below we discuss similar distributional mod-

els are used to train deep neural networks.

While many existing NLP systems view words as atomic units,

as in the Bag-of-Words models, this approach seems to have reached

the upper limit of its effectiveness in NLP tasks (Mikolov, Chen, et

al., 2013). Many texts cannot be considered or analyzed by breaking
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the text down to its atomic units, words (Kong et al., 2011). This

suggests that continuing to try to scale up these techniques will no

longer lead to continued progress (Mikolov, Chen, et al., 2013). Vec-

tor space representations of word or embeddings learned from deep

neural networks are one representation of language that attempt to

better capture the meaning and contexts in which words are used

beyond their occurrence in n-grams.

2.4.1 Vector Space Representations

The n-gram model learns a probability distribution over words, or

pairs or triplets of words. An alternative way to represent a lan-

guage is by representing words as vectors in a vector space. Early

versions of vector space models were used for solving problems re-

lated to document retrieval. In a basic vector space model, docu-

ments can be represented by a vector of terms weighted by the fre-

quency of their occurrence, although other frequency measures are

also used (Salton, Wong, and Yang, 1975).

Another method that arose in the context of document retrieval

was Latent Semantic Indexing(LSI)(Deerwester et al., 1990). This

method uses the co-occurrence of terms and documents as a starting

point. A term-document matrix represents the frequency of term wi

in document Dj as the (i, j) entry in a matrix. The total number

of terms in a set of documents can be very large. Representing a

document as a vector of term weights means this can be a very high-

dimensional representation of the document. In LSI the principal

component decomposition (PCA) of the term-document matrix is

used to reduce the dimensionality of the representation. A small
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subset of vectors can be used to capture most of the variation, or

information, in the term-document matrix. A different vector space

representation or words, also called word embeddings, has been

developed by using neural networks.

2.4.2 Neural Network Language Models

One of the innovations of the early neural network language models

was to propose a method that could learn both a probabilistic repre-

sentation of a word sequences, similar to the n-gram models, while

also learning a low dimensional representation of the language as

word vectors in the process. Bengio et al introduced a model that

learned a word embedding in the process of being trained to learn

a probability distribution over sequences of words(Bengio et al.,

2003). In Bengio et al.’s model, the neural network is trained to out-

put a probability model f (wt, · · · , wt−n+1) = P̂(wt|w1, · · ·wt−n+1).

This is similar to the objective of an n-gram model.

The first layer of this network is a mapping from the index of

any word in the input vocabulary V to a vector in Rm. This map-

ping, C, is matrix of dimension |V| ×m. The output probabilities are

determined by functions with parameters ω, which map the word

vectors output by C to a probability.

The neural network is trained to minimize:

L =
1
T ∑

t
log f (wt, wt−1, · · · , wt−n+1; θ) + R(θ). (2.3)

The final term, R(θ) is a regularization term applied to the weights

of the neural network layers as a way to avoid overfitting (Bengio

et al., 2003). In the model of Bengio et al., there is a single hidden
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layer which creates a non-linear map of the output of the first layer

to the input of the final layer, in this case a tanh function.

2.4.3 Word Embeddings, word2Vec and GLoVE, Fast-

Text

The word embeddings learned the neural network described above

come from the matrix C that makes up the first layer in the neural

network. The rows of C are an m-dimensional representation of the

words in the input vocabulary. In other words, the first layer of this

model is the "embedding layer" since it determines the embedding

of words in some m dimensional vector space. The dimension m is

also a parameter of the model that can be tuned.

One of the advantages of the vector space embedding learned

by neural networks is that they capture the semantic relationship of

words – meaningful relationships between sets of words are repre-

sented by the geometric relationship of the vectors.(Mikolov, Chen,

et al., 2013) For example, the relationship "Paris" is to "France" as

"Berlin" is to "Germany" is represented by the vectors correspond-

ing to these four words. Roughly speaking,

Paris− France + Berlin = Germany

(Mikolov, Chen, et al., 2013). The contextual information encapsu-

lated in word embeddings appears to be one of the reasons word

embeddings have performed well across a range of natural lan-

guage processing tasks.

The neural network language model as described by Bengio et
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al. was computationally complex, particularly when trained on a

very large corpus. Another reason for the more recent popularity

of word embeddings is that computational power has become less

expensive. Research has also been done on developing models that

use fewer inputs to learn word embeddings of similar quality to

models trained on very large corpora.

The word2Vec model, for example, (Mikolov, Chen, et al., 2013)

demonstrated efficient methods for learning word and phrase vec-

tor representations. The hidden layer calculations of the Bengio et

al. model were removed, creating a "shallow" or single layer neural

network. And the output layer calculations were simplified.

As well as introducing efficient computational models, (Mikolov,

Chen, et al., 2013) introduced two new language models, the Con-

tinuous Bag of Words, or CBoW model and Skip-gram models.

In the CBow model, a word wt is predicted by it’s context, or sur-

rounding 2n words. Mathematically speaking, the model deter-

mines the probability

log P(wt|wt−n, · · ·wt−1, wt + 1, · · · , wt+n) (2.4)

that is, the probability of word wt given the n words on either side

of word wt.

Similar to the CBoW model the Skip-gram model uses a window

around a word, but instead of predicting a single word, the context

is predicted. The model predicts the probability

log P(wt−n|wt)+ · · · log P(wt−1|wt)+ log P(wt+1|wt)+ · · ·+ log P(wt+n).

(2.5)
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In other words, given word wt, the n words preceding and the n

words following the word wt are predicted.

The success of the word2Vec model and the ability to learn word

representations efficiently has lead to a proliferation of models for

learning word representations. These models are trained to learn

general language models based on word or phrase probabilities.

Like the n-gram model, these models are designed to predict a word

based the surrounding words. The word embeddings learned by

these models can capture the contextual meaning of words. But the

embeddings do not necessarily include information useful for pre-

dicting sentiment in texts (Maas et al., 2011).

Another approach, taken by Maas and colleagues, uses a combi-

nation of unsupervised and supervised techniques, with the goal of

calculating word vectors which capture semantic information and

sentiment content. Within their model, the semantic component

uses an unsupervised probabilistic model which is combined with

a supervised component focused on learning sentiment. In the ex-

ample given by Maas et al., the model learns sentiment on a labeled

dataset which pushes word vectors with a more positive sentiment

to one side of a hyperplane while word vectors with negative sen-

timent are pushed to the opposite side. The model’s objective com-

bines the two goals of learning a language model and separating

words with different valence. Using these techniques, researchers

were found to achieve high levels of accuracy across several senti-

ment tasks (Maas et al., 2011).



2.5. Sentence Embeddings 35

2.5 Sentence Embeddings

While word embeddings attempt to capture the meaning of indi-

vidual words, work has also been done on creating sentence level

embeddings as well. Similar to word embeddings, sentence embed-

dings represent the meaning of a sentence as a single vector of real

values.

An approach to creating sentence embeddings that does not re-

quire building a new language model is to use word vectors trained

on existing models. To embed a sentence, the average of the words

in a sentence are used to create a sentence embedding. For some

sentence s with words w, and vw vector representation of word w,

the sentence embedding vs is calculated:

vs =
1
|s| ∑

w∈s
vw

The smooth inverse frequency (SIF) model builds on the simple av-

eraging of word vectors(Arora, Liang, and Ma, 2016). It has been

proposed as a strong baseline for sentence embeddings and is com-

petitive with embeddings based on more complex language mod-

els. The SIF weights the averages by the probability of the words

included in each sentence. It also adjusts the resulting sentence vec-

tors by subtracting the first principal component of a matrix formed

by all the sentence vectors (Arora, Liang, and Ma, 2016).

The SIF sentence vectors vs, where words of each sentence ap-

pear in the training corpus with probability p(w), are calculated:

vs =
1
|s| ∑

w∈s

a
a + p(w)

vw (2.6)
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(Arora, Liang, and Ma, 2016).

The weighting term is a
a+p(w)

.In (Arora, Liang, and Ma, 2016),

the value a is a parameter of SIF vector and was set to 0.0001.

Since p(w) is in the denominator, words that occur more fre-

quently are given less weight, similar to TF-IDF weighting. TF-IDF

or term-frequency, inverse document frequency is a widely used

method for determining the importance of a word in a collection of

documents. The method down-weights words that occur frequently

across all documents. The idea is that uncommon words that appear

in a document help identify what that document is about. Applied

to sentences, this weighting method helps determine which words

are most related to a sentences’ meaning.

After determining vs for all sentences in the training data, a ma-

trix is formed with columns vs. The first principal component, u of

this matrix is calculated and each of the original vs is updated

vs = vs − uuTvs

(Arora, Liang, and Ma, 2016). In our study, we use the SIF sentence

embedding technique with Facebook’s FastText word embeddings.

Other sentence embeddings are created in a way similar to word

embeddings: a neural network is trained in some language task and

the matrix that is the first layer of the neural network is used as the

sentence embeddings. In these models, the task uses sentence input

and generally predicts language output at the sentence level.

The OpenAI group and Radford et al. have had success creat-

ing sentence embeddings learned on a general language model that

are then applied to sentiment analysis tasks (Radford, Jozefowicz,
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and Sutskever, 2017). The authors observe that models trained on

corpora with weak sentiment may not learn information needed to

make the features useful for sentiment analysis tasks. The authors

train their model on a large corpus of Amazon reviews which can

be expected to express strong positive and negative valence. A lin-

ear model trained on the learned sentence embeddings were shown

to perform at state-of-the-art levels on the Stanford Sentiment Tree-

bank, a dataset based on sentences extracted from movie reviews.

In particular, the OpenAI sentence embeddings were shown to have

one ’neuron’ or column that by itself strongly predicted text sen-

timent (Radford, Jozefowicz, and Sutskever, 2017). These results

show that embeddings learned on a general task can be transferred

to sentiment analysis tasks.

We use the OpenAI sentence embeddings as one of our features

in our study. We refer to these sentence embeddings as the sentiment-

neuron embeddings.

2.6 Machine Learning Models

A wide range of machine learning models have been applied to text

data. We focus here on the models used in this thesis.

Raw text data can be considered as unstructured data. The data

is not represented by a fixed set of feature columns but instead is a

continuous stream of raw data: words and punctuation. The neu-

ral network models discussed above use unstructured text data to

build a probabilistic language model (Bengio et al., 2003). We use

the word vectors that are created in the process of training a neu-

ral network models. Since these word embeddings are structured
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data, they have the same number of columns for all words, they can

be used as features in models that take structured data. Structured

data can also be used as input to neural networks but we did not

use a neural network as one of our models in this study.

In what follows, we describe the details of models used in our

prediction task. These are models that use structured data, that is, a

fixed set of feature columns to predict emotional intensity of tweets.

2.6.1 Linear models

A linear model or linear regression is one of the most widely used

classes of models when modeling response variables that are con-

tinuous. Simple linear regression – when there is just one predictor

variable– models the relationship between a single feature or pre-

dictor x and a numerical response Y as a simple line:

Y = β0 + β1X. (2.7)

The coefficient β0 of the model describes the intercept of the line

and the coefficient β1 is the slope of the line. The sign of the slope

coefficient describes whether the direction in which the response

variable changes is positive or negative when the predictor variable

increases. The size of the β1 coefficient describes the rate at which

the response changes when the predictor increases.

For multiple predictors, the model is extended by adding a coef-

ficient for each additional predictor. The multiple linear regression

model is

Y = β0 +
p

∑
j=1

Xjβ j. (2.8)
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The multiple regression model assumes that the deviations of

the response around the linear model are independent and nor-

mally distributed

Y = β0 +
p

∑
j=1

Xjβ j + ε (2.9)

with ε ∼ N(0, σ2) (Trevor, Robert, and JH, 2009).

2.6.2 Lasso model

Datasets with a large number of variables may contain redundant

variables, variables that are highly correlated and whose inclusion

biases the model results. The data may also include variables with

little effect on the response. There are a number of methods for re-

moving variables using automated selection techniques such as for-

ward or backward variable selection. These methods generally use

some metric and variable is chosen for removal or inclusion base

on how this metric. These variable selection methods, though, can

have high variance because the processes of adding and removing

variables is discrete, rather than continuous (Trevor, Robert, and JH,

2009).

An alternative to variable selection are shrinkage methods that

reduce the size of the variable coefficients in a relatively continuous

way. The two most common shrinkage models for linear models

are ridge regression and the lasso model. Both models add a penalty

term to the basic linear regression model. However, the lasso model

both shrinks and removes variables from the linear model. When

using very high dimensional data, such as text data where the fea-

tures are individual words, removing variables that do not affect
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the response variable can be very useful. It reduces the dimension-

ality of the data and can make interpretation of the resulting model

simpler.

The lasso model minimizes the following equation.

β̂lasso = argminβ

 N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)2

+ λ
p

∑
j=1
|β j|

 (2.10)

(Trevor, Robert, and JH, 2009).

There are two terms that are being minimized in equation 2.10.

One term is the squared difference between the observed response

variable, yi and the prediction of the linear model from equation 2.9:

β0 +
p

∑
j=1

xijβ j.

The second term is the term that penalizes the model coefficients:

λ
p

∑
j=1
|β j|. (2.11)

The model coefficients are represented by the β j term. When

the penalization parameter λ is larger, the sum of the coefficients

are forced to be smaller. This results in setting small coefficients in

the model to zero. This penalization term is responsible for shrink-

ing some coefficients and removing other coefficients from the lasso

model.

The value of the parameter λ determines how much shrinkage

is applied to the coefficients of the model. Generally, this parameter

is varied over a wide range when fitting the model and the best pa-

rameter value is chosen by cross-validation or some similar method.
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2.6.3 The rare model

The lasso model described above is commonly applied to high di-

mensional data in order to reduce the dimensionality of the data

and to make the resulting model more interpretable. Dimensional-

ity of the data is reduced when features are removed by the penal-

ization term in equation 2.11.

For many types of data, however, the features can have charac-

teristics that make it harder for the lasso to find the coefficients that

truly affect the response variable. Data that is very sparse or has

many rare features can cause problems for the lasso model (Yan and

Bien, 2018a). For example, when building a linear regression model

to analyze tweets, most tweets will have a very small subset of the

words. This is the sparsity of the words or features in each tweet.

In addition, there may be words that show up in very few tweets.

This is rarity of any particular word. These rare features may be

important in predicting the response but if they occur infrequently

that information will not be incorporated into the model.

For example, if you are using a document-term matrix (DTM),

each word is a feature. There may be 10,000 words in a collection of

sentences or tweets from Twitter, but only only a few of these words

show up in any given tweet. The feature vector that represents that

sentence will will be sparse because most features or words are not

included in that sentence. In the feature vector, words not in the

sentence are represented as zeros.

Many words are also not used in most sentences, making those

words rare. Rare words may be very important for the meaning

of the text but a model will have difficulty using a rare word as a
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feature if it is only used once or twice in a collection of text data.

Xiaohan Yan and Jacob Bien have recently proposed the rare

model as a method for handling sparse data with rare features.

Their approach is to aggregate similar rare features into a single

feature. Using the text example from above, a set of words that in-

dividually appear infrequently may be grouped with a set of words

with similar meaning. As an aggregate, the group of words is no

longer as rare or sparse as the individual words are.

Following the example Yan and Bien’s include in their paper,

let’s assume we have a dataset with the following words that have

been determined to be similar: { ’hideous’, ’ghastly’, ’dreadful’,

’horrendous’, ’horrible’}Yan and Bien, 2018a. These words corre-

spond to a set of features in our dataset: X1, X2, X3, X4, X5. In this

example, the feature matrix records the counts of each word in our

tweets. The column ’hideous’, column X1, has the number of times

the word ’hideous’ occurs in each tweet. Aggregating the features

for a single tweet consists of summing up the counts for the aggre-

gated set of words into a single new feature X̃,

X̃ = X1 + X2 + X3 + X4 + X5 (2.12)

(Yan and Bien, 2018a).

Yan and Bien show that, at least in an ideal situation when the

aggregation matches the true model, the lasso model will recover

the true model coefficients. Without aggregation, the lasso will not

recover the true model for any parameter λ (Yan and Bien, 2018a).
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2.6.4 Feature aggregation

This leaves open the question of how to determine which words or

features should be aggregated into a single feature. Yan and Bien

propose using tree-based hierarchical clustering to aggregate vari-

ables. In order to create a cluster of features, information is used

from outside the features used to create the linear model that is part

of the rare-model. The data used to cluster the features provide

some type of information about how the features are related or how

"close" each feature is to the other. This "side data" is not part of the

feature set but provides metadata about those features. This side

data is used to build a hierarchical clustering model.

The hierarchical clustering model is built stepwise. When using

an agglomerative or bottom-up hierarchical model, the model first

identifies groups of individuals and then fuses those groups that are

close to each other in the feature space into larger groups at the next

level (Trevor, Robert, and JH, 2009). The result of this process is a

tree with multiple levels where the lowest level are the original data

points and at higher levels are fewer groups and larger clusters.

In the rare model, the leaves of the tree that results from cluster-

ing are the original features and nodes in this tree represent a cluster

of all the child nodes of that tree (Yan and Bien, 2018a). We denote

the tree formed by hierarchical clustering T with p leaves corre-

sponding to each of the features of the model. In the linear model,

each feature has a coefficient β j. The rare model parameterizes the

set of nodes in the tree formed by hierarchical clustering with each

node associated with a parameter γu.
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FIGURE 2.1: Representation of the tree from a hierar-
chical model with nodes parameterized by γu. From

(Yan and Bien, 2018a).

Each β j coefficient of the linear model is then expressed as a sum

of the γu that are ancestors of that leaf:

β j = ∑
w∈ancestor(j)∪{j}

γu.

The set of coefficients can then be expressed fi = Afl where A is

a binary matrix with:

Ajk := 1uk∈ancestor(j)∪{j} = 1j∈descendant(uk)∪{uk}

(Yan and Bien, 2018a).

The rare model encourages sparsity using a penalty term λ then

penalizes the size of the coefficients. The λ term also penalizes the

number of γu included in the model, which encourages grouping

features using higher level nodes in the hierarchical model.

The rare model introduces another term α, which determines

how the penalty of the coefficient terms and the γu terms is bal-

anced. The optimization problem solved by the model is:
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min
β∈Rp,γ∈R|T |d

1
2n
||y− Xβ||22 + λ (α||γu||1 + (1− α)||β||1) s.t.β= Aγ

(2.13)

(Yan and Bien, 2018a).

The values for both α and λ are chosen by cross-validation. This

method is implemented in the R language package, rare (Yan and

Bien, 2018b).

2.7 Twitter data

Twitter has become popular among researchers in this field as it

allows researchers to access very large textual datasets which in-

clude the expression of emotion. The use of data from Twitter also

serves to provide a challenge, as along with the informal use of

language, users also make a substantial number of grammatical er-

rors and use emojis and hashtags in a way that is unique to short

texts (Kouloumpis, Wilson, and Moore, 2011). Despite these hur-

dles faced in using Twitter data, the volume of texts and the diver-

sity of users on Twitter has made it an important source of data for

analyzing realtime public sentiment (Patodkar and I.R, 2016).

Twitter data has also been used in several competitions focused

on sentiment analysis and emotion detection including the semEval

2014 and semEval 2018 contests (S. Mohammad et al., 2018) (Nakov,

Rosenthal, et al., 2013). The data for our study comes from the se-

mEval 2018 contest and is described in more detail in 3.

In the semEval 2018 competition, the SeerNet model had the

best performance in the regression and ordinal classification tasks(S.
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Mohammad et al., 2018). The SeerNet model used word and sen-

tence embeddings as well as sentiment features from the Python

package EmoInt. The EmoInt package was created by the devel-

opers of the datasets used in the semEval 2018 contest and were

designed specifically to identify the discrete emotions, anger, fear,

joy, and sadness, used for labeling the semEval data. The SeerNet fi-

nal model consisted of an ensemble of models trained on individual

feature sets (Duppada, Jain, and Hiray, 2018).
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Data

3.1 Data Source

The data used in this study is derived from Task 1 of the SemEval-

2018 contest. This task’s purpose was to estimate the emotional con-

tent of the tweets. The data we use is from the subtask focused on

estimating the emotional intensity of tweets across four different

emotions, anger, joy, sadness and fear. The datasets were created

from tweets in three languages (English, Arabic, and Spanish). In

our study we only use the English dataset, although the the pro-

cedure used for compiling the other datasets was similar to that

used for the Enligsh dataset. This group of datasets was collectively

named the Basic Emotion Tweets dataset.

3.1.1 Data Collection and Annotation

The Basic Emotion Tweets dataset was created by querying Twitter

with a set of terms associated with each emotion. For each emotion,

fifty to 100 query terms were selected. These terms represented

a variety of emotion intensity levels. These query terms were se-

lected based on selecting a few words words associated with the
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basic emotions, angery, joy, sadness and fear. Several methods were

then used to expand this initial set of words: synonyms of these

words were selected from Roget’s Thesaurus and words close to the

initial set in word embedding space were selected (S. Mohammad et

al., 2018). Once the set of query terms was set, the Twitter API was

polled using these terms to create a large pool of tweets. A random

selection of tweets were selected from these larger pools to form the

datasets used for the emotional intensity subtask. A similar method

was used for the compilation of Arabic and Spanish tweets.

For the English dataset, annotation was done by crowd-sourcing

using between 118 and 220 residents of the United Sates for the

datasets associated with each emotion. Scoring of emotional inten-

sity was done using the Best-Worst Scaling (BWS) method. Best-

Worst Scaling addresses issues of both rating consistency and re-

duces the number of rating required for reliable ratings. BWS scal-

ing has annotators use comparative rankings between two or more

items (S. Mohammad et al., 2018). For example, if among four items,

A, B, C, D, where A is rated best and D rated worst, then a rating is

consistent if the rating also determines A > B, A > C, D < B, D < C.

For the emotional intensity datasets, the BWS method was used

with groups of 4 tweets per annotation. The BWS method gives a

ranking. Rankings were transformed into a real value by taking the

proportion of times the tweet was scored has having the highest

intenstiy and subtracting the proportion of times the tweet had the

leas intensity. The resulting set of scores was transformed to range

between 0 and 1 (S. Mohammad et al., 2018).
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The annotated tweets for each emotion were divided into train-

ing, development, and test sets. The training sets had betweet 1500-

1700 tweets, development sets had around 300 to 400 tweets, and

the test set had around 1000 tweets.

3.1.2 Bias Detection Dataset

The test set also included a large number of tweets designed for a

bias detection task. The purpose of this dataset was to determine

whether models systematically rated tweets associated with gender

and race categories differently. The dataset was formed by creating

sets of simple sentences where the only difference between exam-

ples of the sentence was the gender or name of the person in the

tweet.

These "Tweets" were generated from sentence templates. These

templates were the same for the datasets associated with each emo-

tion. The templates had simple sentences, for example :"_________

feels furious." Multiple versions of each template were formed by

inserting varying names and pronouns into the subject position.

For example: "Heather feels furious" or "Alphonso feels furious".

The words inserted into the subject position came from 6 lists. Two

lists consisted of generic male and female pronouns: "Aunt", "Sis-

ter", "She", in the female gendered list and "Uncle", "Brother, "He",

in the male gendered list, for example. The other lists consisted

of Male and Female proper names divided into names identified

as African American and more generic names. For example, the

African American male name set included "Darnell", "Jamel", and
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"Alonzo", while the names not identified as African American in-

cluded "Roger", "Justin", and "Andrew".
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Methods

In order to analyze the performance of features set and model com-

binations, we created three sets of features:

1. Baseline lexicon and text features

2. SIF sentence embeddings

3. "Sentiment Neuron" sentence embeddings.

For each feature set, we trained 3 models and one final ensemble

model for a total of 4 models per feature set. For all models, param-

eters were chosen by cross-validation using grid search to choose

parameters. Model selection was based on the minimization of the

root mean-squared error (RMSE).

4.1 Baseline features

The baseline features set included basic text and lexicon features.

The set of basic text features included counts of hashtags, mentions,

URLS, exclamation points and other punctuation. These features

also included counts of the use of first, second or third person pro-

nouns within the tweet. These features were created using the R



52 Chapter 4. Methods

package ‘textfeatures‘(Kearney, 2018). Some text features were re-

moved from the baseline set if there was near zero-variance among

the feature set. Near zero-variance implies that the feature was the

same or almost the same for all observations.

The AFINN and Bing sentiment lexicons were used for comput-

ing the valence of each tweet (Nielsen, 2011)(Hu and B. Liu, 2004).

The AFINN lexicon scores all words on an integer scale while the

Bing lexicon only labels words as positive or negative. The score of

each tweet is calculated by summing the lexicon score for all words

in the tweet.

A number of emotion specific features were created using lexi-

cons from the National Research Council of Canada (NRC) collec-

tion. The most common or widely used lexicon from this collection

is the Word-Emotion Association Lexicon (Saif M Mohammad and

Turney, 2010). This lexicon, like the AFINN and Bing lexicons, was

created by manually labelling terms. Terms in the Word-Emotion

lexicon are associated with one or more of eight emotions: trust,

fear, sadness, anger, surprise, disgust, and joy. In addition, words

can have a positive or negative association. A tweet was given a

score for each emotion by summing over the total number of words

associated with each emotion or valence.

The remaining lexicons used from the NRC collection were cre-

ated automatically and using the following methodolgy. Three hash-

tags and two emoji lexicons were created using a collection of 775,000

tweets. A set of hashtags and emojis were scored for either posi-

tive or negative valence or for association with an particular emo-

tion. For all tweets in the dataset, the pointwise mutual information

(PMI) was calculated to determine the association of words with
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each labelled hashtag or emoji. Pointwise mutual information is a

standard method for calculating the association of terms by mea-

suring how often the terms occur together in a text. For postive and

negative valence, the PMI socre is calculated:

score(w) = PMI(w, positive)− PMI(w, negative)

where w is a word in the lexicon (Saif M. Mohammad, Kiritchenko,

and Zhu, 2013).

For this set of lexicons, associations were generated for both un-

igrams (single words) and bigrams (word pairs). For our feature

set, we have only used the unigram lexicons. Sentiment and emo-

tions scores for the NRC lexicons was calculated using the syuzhet

R package (Jockers, 2015).

4.2 SIF Sentence Embeddings

FastText word embeddings were used to create sentence embed-

dings using the smooth inverse frequency(SIF) method (Bojanowski

et al., 2017)(Arora, Liang, and Ma, 2016). The FastText word em-

beddings are taken from a layer in a neural network trained on a

corpus of 16 billion tokens from Wikipedia, the UMBC webbase cor-

pus, and the statmt.org dataset (English word vectors · fastText n.d.).

These word embeddings included 1 million 300-dimensional word

vectors.

SIF embeddings were created by averaging each tweets FastText

word embeddings. The first principal component of the set of aver-

aged word embeddings was then subtracted from each embedding.
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The resulting SIF sentence embeddings were also 300-dimensional

vectors.

4.2.1 Sentiment Neuron Embeddings

The sentiment neuron sentence embeddings come from a deep learn-

ing network trained on Amazon review data by the OpenAI group,

(Radford, Jozefowicz, and Sutskever, 2017). The word embeddings

come from the first layer of this network. In addition to learning the

semantic relationships between words, the embeddings were found

to have learned a good representation of positive and negative sen-

timent, (Radford, Jozefowicz, and Sutskever, 2017).

The embeddings from this model are 4096 dimensional word

vectors.

4.3 Model Fitting

For each of the previous three features: the baseline sentiment and

word features, the SIF sentence embeddings, and the sentiment neu-

ron sentence embeddings, three models were fit: a random forest

model, a gradient boosted trees model and a lasso model. The base-

line features were pre-processed by removing near zero variance

predictors. No pre-processing was applied to the sentence embed-

ding feature sets.

Model parameters were tuned using 5-fold cross-validation over

a grid of parameters. Parameter selection was based on the RMSE

of each model. The caret package was used for parameter tuning.

The parameter search was over the default grid of parameters set
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by the caret package (Jed Wing et al., 2018). The lasso, random

forest, and gradient boosted tree models were fit using the glmnet,

randomForest and xgboost R libraries, respectively.

4.4 Ensemble

A total of nine models were created, three models for each of the

three sets of features described above. We created an ensemble

model for each feature set by stacking results from the three mod-

els trained on that feature set. Stacking was done by training a

ridge model on the predictions of the three models for each fea-

ture set. The weights of the model were tuned by five-fold cross-

validation. The ensemble model for each feature set is then based

on the weighted output of the three input models.

4.5 Bias Detection

We used the bias detection dataset included with the EI-reg test

dataset to test whether our models systematically scored male or fe-

male gendered sentences differently for each emotion. Male and fe-

male gendered tweets were separated based on gendered pronoun

lists provided with the semEval dataset. Regular expressions were

used for splitting tweets into a "male" and "female" gendered sen-

tences where sentences varied only by the pronoun or proper name

used as the subject of the sentence.

We used the three ensemble models created for each set of fea-

tures to test for gender bias. Emotional intensity was predicted for
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using each ensemble model on each of the four emotions and a dif-

ference in average intensity between the two emotions was tested

using a randomized block ANOVA test.

4.6 Rare Model and Lasso Features

As discussed in the background, the rare model takes a document-

term-matrix(DTM) as features in a penalized regression model that

is related to the lasso. The DTM is a matrix whose columns are

words and whose rows correspond to each tweet in the dataset. The

entries in the matrix are the count of the number of occurrences of

the each word in a tweet.

We created the word list used in the DTM by filtering for unique

words from the training set. Numbers were removed and hashtags

were stripped of the hash mark. Because the initial set of words

was large, around 10,000 words in total, additional filtering was ap-

plied to the word list. To do this additional filtering, we created

an index that measured the total emotional valence of each word in

the dictionary. For each word, the absolute value of the sentiment

and emotional valence were summed. Words with a low emotional

intensity were filtered out of the word list.

This filtering process could be adjusted to create datasets of dif-

ferent sizes. We adjusted the filtering threshold to create three datasets

of approximately 7,500, 5,000 and 1,500 words. The higher thresh-

old resulted in a smaller set of words used in the model so, for ex-

ample, the dataset with 1,500 words represented the 1,500 words

with the most "emotional content", based on our filtering method.
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The rare-model also uses a hierarchical clustering model which

contains information about the relationship of the words in the DTM.

To create the cluster model, we used a combination of word embed-

dings and sentiment lexicons. Facebook’s FastText word embed-

dings, (Mikolov, Grave, et al., 2018), combined with the sentiment

and lexicon data used in the baseline model. Word embeddings

contain information about the semantic relationship of words, and

the lexicons contain information about the emotional valence of the

words. We used the combination of these two datasets for cluster-

ing in order to capture information about both the meaning of the

words in the DTM and the emotional sentiment associated with the

words.

The rare model has two tunable parameters: alpha and lambda,

that control the penalization of the model coefficients and how that

penalization is balanced between the linear model coefficient and

the grouping coefficients. Ten-fold cross validation and the root

mean-squared-error (RMSE) was used to choose the parameters for

the rare model.

The rare model is a variation of the lasso model. To compare the

performance of the rare-model to the lasso model the DTM used

to fit the rare model was also fit on a lasso model. The lambda

parameter of the lasso was chosen using 10 fold cross validation.

The lasso model was fit using the glmnet package (Simon et al.,

2011). The rare model was fit using the rare package (Yan and Bien,

2018c).
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Chapter 5

Results

5.1 Model Evaluation

The twelve models were evaluated on four test datasets of approx-

imately 1000 examples each, one dataset for each emotion. A Pear-

son’s coefficient measuring the correlation of the true and predicted

emotional intensity was calculated for each combination of model,

feature and emotion. The result is sixteen Pearson’s coefficient for

each feature set. The results are shown in Tables 5.1, 5.2, and 5.3.

The baseline features and the sentiment-neuron word embed-

dings had similar performance. The best model for these two fea-

tures scored at or above 0.60 Pearson’s correlation. The baseline

model had the highest performance with the random forest model

performing the best for the anger and fear emotions. For the sentiment-

neuron embeddings, the stacked ensemble model scored best for

Emotion Lasso Random Forest XG Boost Stacked
Anger 0.51 0.64 0.569 0.63
Fear 0.59 0.628 0.54 0.63
Joy 0.57 0.608 0.55 0.62
Sadness 0.52 0.65 0.57 0.64

TABLE 5.1: Pearson’s correlation for model on base-
line features.
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Emotion Lasso Random Forest XG Boost Stacked
Anger 0.07 0.21 0.19 0.22
Fear 0.13 0.159 0.18 0.20
Joy 0.08 0.24 0.179 0.3
Sadness 0.07 0.19 0.15 0.19

TABLE 5.2: Pearson’s correlation for model on Fast-
Text SIF sentence embedding features.

Emotion Lasso Random Forest XG Boost Stacked
Anger 0.56 0.60 0.55 0.63
Fear 0.55 0.545 0.53 0.60
Joy 0.60 0.62 0.62 0.65
Sadness 0.55 0.57 0.54 0.60

TABLE 5.3: Pearson’s correlation for model on
sentiment-neuron sentence embedding features.

all models. The SIF features performed poorly and significantly

worse than the baseline and sentiment-neuron embeddings across

all models.

Leaving out the ensemble model, the random forest model tended

to perform better than the lasso and gradient boosted tree models.

In general, though, the three base models had relatively highly cor-

related predictions for the three feature sets. Tables 5.4, 5.5, and

5.6 show the Pearson’s correlation of the model prediction for the

emotion joy.

The between model correlations show generally higher correla-

tion of all models for the baseline and SIF models. In particular, the

random forest model was highly correlated with the lasso and gra-

dient boosted trees for the SIF and baseline features. The sentiment-

neuron embeddings, on the other hand, show a lower correlation of

the random forest with the other two models.

For ensemble models, it is generally preferable to have uncor-

related models so that each model contributes new information to
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Lasso Random Forest XG Boost
Lasso 1.00 0.92 0.58
Random Forest 0.92 1.00 0.84
XG Boost 0.58 0.84 1.00

TABLE 5.4: Model correlation of baseline models on
joy emotion.

Lasso Random Forest XG Boost
Lasso 1.00 0.71 0.65
Random Forest 0.71 1.00 0.91
XG Boost 0.65 0.91 1.00

TABLE 5.5: Model correlation of FastText SIF sen-
tence embeddings models on joy emotion.

the ensemble. The lower correlation of models for the sentiment-

neuron embeddings is likely why the stacked ensemble models per-

formed best across all emotions for that feature set. In particular, the

random forest model, which performed better than other models,

had a low correlation with other models for the sentiment neuron

features.

5.2 Error Analysis

Figure 5.1 shows the distribution of the scored emotional intensity

level for the test tweets for each emotion. The plot shows that the

distribution is roughly symmetrical around the mean and that most

tweets have an emotional intensity in the middle range and fewer

Lasso Random Forest XG Boost
Lasso 1.00 0.29 0.91
Random Forest 0.29 1.00 0.44
XG Boost 0.91 0.44 1.00

TABLE 5.6: Model correlation of sentiment-neuron
models on joy emotion.
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FIGURE 5.1: Tweet emotional intensity for test data.

tweets on the extremes ends of the intensity scale. The training set

had an emotional intensity distribution similar to the test data.

The baseline ensemble model’s predicted emotional intensity scores

against the actual intensity scores are shown in Figure 5.3. As sug-

gested by the ensemble results in Table 5.1, the pattern of predic-

tions is similar across emotions. There do appear to be a higher

number of large errors for the joy emotion, although the overall

prediction correlation was similar for all emotions.

Figure 5.3 shows a scatterplot of the baseline ensemble model’s

prediction errors across against the emotional intensity of the tweet.

Generally, there are larger errors in predicting tweets with more

extreme emotions both those with higher emotional intensity and

those with very low emotional intensity. This might be expected

as there are fewer examples of emotions at the extreme. There also

might be aspects of more extreme emotions that are hard to predict.

We look at some of these large prediction errors in more detail be-

low.
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FIGURE 5.2: Sentiment-neuron predicted emotional
intensity for test data vs. true emotional intensity.

The distribution of the prediction errors against the intensity

level is similar for all emotions, although the model for joy appears

to have more and larger errors on the lower end of the intensity

scale. The joy model also has more large errors in the middle range.

The prediction errors for the sentiment-neuron embeddings are

shown in Figure 5.5. The pattern is similar to that of the baseline

model. Like the baseline model, there are more large errors for joy

at the lower end of the intensity scale.

Figures 5.4 show the distribution and boxplots of just the largest

15% of the errors for the baseline ensemble. There is not a large

difference in the median of the errors but the anger and joy boxplots

show a slightly longer tail.

Tables 5.7 and 5.8 show several of tweets that our model’s pre-

dictions had the largest absolute error from the labeled intensity.

The errors for the sentiment-neuron features ensemble model show

several examples where the model seems to confused by conflicting

phrases.
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FIGURE 5.3: Prediction error vs. intensity for baseline
ensemble model.

FIGURE 5.4: Distribution of largest 15% of baseline
ensemble model errors.
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FIGURE 5.5: Prediction error vs. intensity for
sentiment-neuron word embedding ensemble model.

In the first Tweet in 5.7, the religious message is hash-tagged

with a happy sentiment, but the tweet includes the phrases "joyless"

and "died". The hashtags show that the message is supposed to be

one of faith and is intended to be joyful. We treated hashtags as

regular words, stripping the "#" mark in order to be able to match

the words to word-vectors. This means the hashtags would not be

interpreted by the model any differently than a regular word.

A similar misinterpretation of terms may have confused the base-

line model in the first example in Figure 5.7. The tweet includes

the phrase "I am fine with" but also "blood tests terrify me". This

is a statement where the first phrase is contrasted with the second

phrase, but the emphasis is on the second phrase. The "AAAAAH-

HHH" which was an emotional intensifier would also not have been

included in the baseline model because the word was not captured

as existing in the lexicons used.
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The second tweet in Table 5.7 shows a possibly similar misun-

derstanding of hashtags. Here, the hashtags "good" and "great" ap-

pear to be sarcastic, while the tweet itself expresses "anxiety". In a

similar way, the 4th tweet in 5.7 is about being out of toilet paper,

but includes the term "Wonderful" but meant sarcastically. Some

work has been done on sarcasm detection and sarcasm detection

in tweets, in particular (Rajadesingan, Zafarani, and H. Liu, 2015).

Incorporation of techniques detecting sarcasm would like improve

emotion detection for tweets where the apparent emotional content

is not really intended.

Recognition of named entities also appears to be a problem for

our model. The second tweet in the baseline model table, Table

5.8 says: "4 years rest in piece #coreymontheith #glee". The name

"Corey Monteith" contained in the hashtag was not included in our

lexicons so would have been omitted. The name is that of a now

deceased actor in the television show "Glee". The model would

have understood "glee" as a simple positive word, but in this con-

text the emotion of the tweet depends on understanding the "glee"

and "#coreymontheith" as named entities. Relating proper names

or named entities to the emotional content of the tweet would be a

challenging problem.

5.3 Bias Detection

Previous results have shown that word embedding features can con-

tain systematic gender bias (Bolukbasi et al., 2016). The semEval2018

emotional intensity regression datasets contained around 16,000 "Tweets"

or sentences designed to test for model bias.
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Tweet Affect Intensity Prediction
A joyless faith is not one for
which Jesus died. #thegospel
#joy #Jesus #happiness

sadness 0.151 0.652

my blood sugar is 399 and my
anxiety is wrecking me and i
have court like right now and i
made us late bc im fighting w
my mom #great #good

joy 0.156 0.661

@COFFEECOWal Really Sad
News, it’s been a pleasure over
the years, all the best for the
future.

joy 0.186 0.671

Down to one roll... Wonderful I
need more toilet paper. #person-
alassistant

joy 0.141 0.638

things that terrify me: remem-
bering my bf follows me on twit-
ter

fear 0.817 0.328

@DannyMcguire6 sad day
Danny you have been and still
are a true Leeds rhino you have
been brilliant at the club I will
miss you

joy 0.156 0.602

TABLE 5.7: Large prediction errors from the baseline
sentiment-neuron word vectors ensemble model.
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Tweet Affect Intensity Prediction
Considering I am 101% fine with
getting tattoos, blood tests ter-
rify me and I AM HAVING TO
GET ONE AAAAAHHHH

fear 0.845 0.374

4 years rest in piece #coreymon-
theith #glee

joy 0.047 0.671

@Afilicious I have at 7am so I
have to get up around 5am to
get ready! N also 7am classes are
never pleasant

joy 0.125 0.738

@idktaehyng the possibilities
terrify me

fear 0.911 0.357

@hamilou23 oswade I won’t
with you a happy birthday till
you pay my 12000 shillings you
borrowed on 12th January 2017.

joy 0.113 0.642

I just wanna be okay!! Like I
know I can be all smile and gig-
gles, but hot diggity dang, if that
wasn’t a mask, life would be
swell!

joy 0.258 0.78

Racing all around the seven seas
Chasing all the girls and mak-
ing robberies n’Causing panic
everywhere they go Party-hardy
on Titanic...

fear 0.200 0.676

TABLE 5.8: Large prediction errors from the baseline
ensemble model.
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Gender Emotion
Baseline p = 0.294 p� 0.001
SIF p = 0.407 p� 0.001
Sentiment-Neuron p = 0.852 p� 0.001

TABLE 5.9: ANOVA p-values for each ensemble
model.

FIGURE 5.6: Box plots of emotion intensity distribu-
tion for the baseline features ensemble model for each

emotion.

Box plots of the distribution of emotional intensity for male and

female gendered sentence templates are shown in Figures 5.6, 5.7,

and 5.8. The box plots show that the median emotional intensity

for all emotions is very similar for both male and female gendered

sentences.

A randomized block ANOVA test was run to test for an aver-

age difference between genders among any of the emotions. The

p-values for the ANOVA test for emotion and gender are shown in

Table 5.9. There was no significant difference found between the

emotional intensity predicted for male and female gendered sen-

tences. The difference in intensity between emotions was significant

for each ensemble model,
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FIGURE 5.7: Box plots of emotion intensity distribu-
tion for the SIF feature ensemble model for each emo-

tion.

FIGURE 5.8: Box plots of emotion intensity distri-
bution for the sentiment-neuron feature ensemble

model for each emotion.
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5.4 Rare Model

The rare model was trained on three sets of features, document-

term-matrices with around 7,500, 5,000 and 1,500 words. The train-

ing of these three models had similar results. As a reminder, the

rare model optimizes by grouping words in a document term ma-

trix while also regularizing the model by shrinking coefficients to

zero using a procedure similar to the lasso model.

The rare model optimization procedure resulted in models with

all terms grouped into a single parameter. We obtained this result

for each of the three models.

We also trained a lasso model on the three datasets and the re-

sult was similar: for each dataset the model with the lowest mean-

squared error was an intercept only model. Although the rare model

had a single coefficient in addition to the intercept term, the lasso

and rare models essentially predicted a single value for all tweets in

the test set.
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Chapter 6

Discussion

The comparison of the model results for word embedding features

and lexicon features designed specifically for detecting emotion in

text reveals several things. Word embeddings, like the sentiment

neuron embeddings which were trained on a general language task,

can learn language features that reveal the emotional nuance of

texts as well as specially designed emotion lexicons. Word and sen-

tence embedding features, though, do not perform equally well. In

particular, the performance difference between the FastText word

embeddings and the OpenAI sentiment-neuron sentence embed-

dings show that embeddings are not equally successful at learning

the emotional content of words.

The sentiment-neuron sentence embeddings performed similarly

to the baseline lexicon features which were designed specifically for

detecting emotions. The sentence embeddings also performed at

a similar level across emotions. The Pearson’s correlations for the

sentence embedding ensemble model was at 0.60 or above for each

emotion.

The OpenAI model which generated these sentence embeddings

was trained to predict language at the byte level, or character by
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character (Radford, Jozefowicz, and Sutskever, 2017). Although

the OpenAI model was trained as a general language model, the

authors trained the model on Amazon reviews and showed that

the resulting language representation – the sentence embeddings

– were also be useful for sentiment analysis (Radford, Jozefowicz,

and Sutskever, 2017). Our results suggest that the language repre-

sentation learned by their model is also useful for detecting emo-

tions beyond positive and negative sentiment.

The language representation or embeddings learned by a model

may not always be useful for sentiment analysis or emotion de-

tection. For example, the FastText word embedding features did

not perform well on our task. The FastText embeddings were also

learned by a model trained on a general language task to predict

sub-word length strings (Bojanowski et al., 2017). Although these

FastText word embeddings were shown to perform well on a gen-

eral text classification tests, they did not perform well in the emo-

tion detection task (Joulin et al., 2017).

The FastText model was trained on a large corpus of news and

Wikipedia articles. These texts were not likely to be rich in emotion,

since news and Wikipedia articles are often intended to be neutral in

tone. These results suggest that general embeddings, either word or

sentence embeddings, will perform better if trained on corpora with

richer emotional content. The OpenAI sentiment neuron model was

trained on reviews that likely leaned toward positive and negative

emotions, but it still appeared to learn a richer set of emotional con-

tent. Using other corpora that are created to represent a wider range

of emotions may be useful for learning word embeddings that can

be used to detect and quantify emotions in text.
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The language features of the texts used to train deep learning

models may also play an important role. We did not use any word

embeddings that were trained on Twitter data. Other results sug-

gest that embeddings trained on Twitter data would improve the

performance of embeddings analyzing Twitter data. In particular,

the SeerNet model, the top performer on several 2018 semEval tasks,

used the DeepEmoji embeddings that were trained on Twitter Data

(Duppada, Jain, and Hiray, 2018) (Felbo et al., 2017). Of the fea-

ture sets used by SeerNet, the models trained on DeepEmoji fea-

tures performed best (Duppada, Jain, and Hiray, 2018). In partic-

ular, the DeepEmoji word embeddings appear to capture certain

types of emotional nuance, including sarcasm(Felbo et al., 2017).

Our error analysis suggested that our models struggled detecting

sarcastic language, so DeepEmoji features may have helped with

these errors. Beyond that, having features trained on Twitter data

would likely help capture aspects of language as used on Twitter

that is not present in corpora with longer texts, like hashtags, user

handles, and use of emoji.

6.1 Future Work

In this work we focused on comparing models trained on small set

of features. In particular, we compared the performance of models

trained using word and sentence embeddings as features. The re-

sults show that some embeddings perform better than others and

suggest that embeddings trained on emotion rich data are more

likely to learn a representation that captures emotional content of

language.
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These results could be explored further by comparing word or

sentence embeddings learned on either additional tasks or trained

on different corpora. As mentioned above, the Deep Emoji embed-

dings are one example of embeddings that would likely be suited

for models trained on Twitter data, since the embeddings were learned

on a Twitter Corpus.

In addition, we compared the performance of these features on

only one of the semEval 2018 tasks. Comparing a wider range of

embeddings on additional tasks would allow us to compare feature

performance on a broader range of tasks.

We also did not explore the affect of using averaged word em-

beddings compared to sentence embeddings. The FastText data was

trained on word embeddings that were transformed to sentence em-

beddings using the smooth inverse-frequency (SIF) method. The

poorer performance of the SIF embeddings may also be partly due

to using transformed word embeddings rather than full sentence

embeddings. Additional research would be needed to show whether

the word to sentence embedding process had a significant effect on

the performance of embeddings transformed in this way.

Embeddings are a vector representation of words or sentences.

Past research shows that, for words, arithmetic with these vector

representations carries contextual information about the words. For

example, the result of the vector arithmetic: vec("Madrid") - vec("Spain")

+ vec("France") is close to vec("Paris"). It may be interesting to com-

pare a similar arithmetic at the sentence embedding level. Our tests

for gender bias in our features did not appear to show bias between

male and female gendered sentences. This might be able to be ex-

plored in more detail by looking at the difference in vector space of
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identical sentences or tweets where gender was changed between

sentences. A similar test could be performed by varying the emo-

tion word in the bias detection corpus of sentences that were part of

the semEval test data.

Finally, the lasso and rare models trained on document term ma-

trices resulted in intercept or single coefficient models. Additional

work would be needed to test if using a different subset of the words

in the Twitter training data would improve these models. For exam-

ple, in the paper introducing the rare model, only adjectives were

used in the document-term matrix (Yan and Bien, 2018a). It may

be that short length and the sparsity of features in each tweet were

responsible for the poor performance of these models. More work

would need to be done to test these models suitability for working

with short texts like Twitter.
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