
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2019

Design of a Flexible Schoenhage-Strassen FFT Polynomial Design of a Flexible Schoenhage-Strassen FFT Polynomial

Multiplier with High-Level Synthesis Multiplier with High-Level Synthesis

Kevin Millar
kdm8162@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Millar, Kevin, "Design of a Flexible Schoenhage-Strassen FFT Polynomial Multiplier with High-Level
Synthesis" (2019). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10128?utm_source=repository.rit.edu%2Ftheses%2F10128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Design of a Flexible Schönhage-Strassen FFT
Polynomial Multiplier with High-Level Synthesis

Kevin Millar

Design of a Flexible Schönhage-Strassen FFT
Polynomial Multiplier with High-Level Synthesis

Kevin Millar
May 2019

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Department of Computer Engineering

Design of a Flexible Schönhage-Strassen FFT
Polynomial Multiplier with High-Level Synthesis

Kevin Millar

Committee Approval:

Dr. Marcin Lukowiak Advisor Date
RIT, Department of Computer Engineering

Dr. Stanis law Radziszowski Date
RIT, Department of Computer Science

Dr. Sonia López Alarcón Date
RIT, Department of Computer Engineering

i

Acknowledgments

I would like to thank my family for all of their support throughout the years, I would

not be where I am today without them. Specifically, thank you Mom, Dad, Caela,

Kristen, Matthew, Kelly, Mary, Natalie, Katie and Brian.

I would like to thank my girlfriend of seven years, Sarah Hannigan. Thank you

for all of your support and putting up with me even if I had to work on my thesis

while we talked.

I would like to thank all of my friends for helping me and pushing me to keep

working even when things seemed impossible. I would especially like to thank Humza

Syed, no one works harder than you do, and I have been incredibly fortunate to have

you as my closest friend and roommate these past five years. I would also like to

thank Stephanie Soldavini, Dakota Folger, Michael Shullick, Chris Fernandez, Max

Proskauer, Andrew Ramsey, Emily Reynolds, Hunter Newman, Andrew Hamrick,

Nick Higby, Nathan Reed, and the RIT Honors squad. You have all been incredible

and supportive friends, and I wish I could write a paragraph about each and every

one of you.

I would like to thank my friends who worked alongside me in the Applied Cryptog-

raphy and Information Security (ACIS) lab including Cody Tinker, Prathibha Rama,

Eric Scheler, Jason Blocklove, and Thomas Cenova. Your insight and company were

always greatly appreciated.

Finally, I’d like to thank my professors, advisors, and committee members who

have made all of this possible: Dr. Kurdziel for sharing his industry experience and

teaching me the basics of cryptography through his entertaining lectures, Dr. Radzis-

zowski for sharing his deep understanding and passion for the mathematics behind

cryptography, Dr. López Alarcón for her help and support, and Dr. Lukowiak for

guiding me through the research process and encouraging me to think more about

the big picture.

ii

Abstract

Homomorphic Encryption (HE) is a promising field because it allows for encrypted

data to be sent to and operated on by untrusted parties without the risk of privacy

compromise. The benefits and applications of HE are far reaching, especially in

regard to cloud computing. However, current HE solutions require resource intensive

arithmetic operations such as high precision, high degree polynomial multiplication

resulting in a minimum computational complexity of O(n log n) on standard CPUs

though application of the Fast Fourier Transform (FFT). These operations result in

poor overall performance for HE schemes in software and would benefit greatly from

hardware acceleration.

This work aims to accelerate the multi-precision arithmetic operations used in

HE with specific focus on an implementation of the Schönhage-Strassen FFT based

multiplication algorithm. It is to be incorporated into a larger HE library of arithmetic

functions tuned for High-Level Synthesis (HLS) that enables flexible solutions for

hardware/software systems on reconfigurable cloud resources. Although this project

was inspired by HE, it could be incorporated within a generic mathematical library

and support other domains. The developed FFT based polynomial multiplier exhibits

flexibility in the selection of security parameters facilitating its use in a wide range

of HE schemes and applications. The design also displayed substantial speedup over

the polynomial multiplication functions implemented in the Number Theory Library

(NTL) utilized by software based HE solutions.

iii

Contents

Signature Sheet i

Acknowledgments ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

Acronyms x

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

2 Background 4

2.1 Related Work . 4

2.2 High-Level Synthesis . 5

2.3 Homomorphic Encryption . 5

2.3.1 Learning with Errors . 6

2.3.2 Ring Learning with Errors . 6

2.3.3 Basic Scheme . 8

2.4 Arithmetic Software Libraries . 10

2.5 Multiplication Algorithms . 11

2.6 Polynomial vs. Integer Multiplication 13

2.7 Basic Convolution . 15

2.8 Discrete Fourier Transform . 15

2.9 Fast Fourier Transform . 16

2.10 FFT Polynomial Multiplication . 18

2.11 FFT Modular Polynomial Multiplication 19

2.12 FFT Integer Multiplication . 21

2.13 Modular Reduction Algorithms . 22

iv

CONTENTS

2.13.1 Barret Reduction . 22

2.13.2 Montgomery Reduction . 23

3 FFT Based Integer Multiplier 25

3.1 Initial Implementation . 25

3.2 Arbitrary Precision Data Types . 27

3.3 Arithmetic Modulo 2N + 1 . 28

3.3.1 Addition . 29

3.3.2 Multiplication by 2k . 29

3.3.3 Subtraction . 30

3.3.4 Division by 2k . 30

3.3.5 Modular Reduction . 31

3.3.6 Results . 31

3.4 Parameter Selection . 33

3.5 Results . 34

4 FFT Based Polynomial Multiplier 37

4.1 Initial Implementation . 37

4.2 Loop Structure of the FFT . 42

4.3 Pipelining . 46

4.4 Loop Unrolling . 52

4.5 Design Parameters . 56

4.6 Initial Results . 57

4.7 Resource Allocation . 63

4.8 Synthesis Results . 64

4.9 Implementation Results . 72

5 Conclusion 78

Bibliography 79

v

List of Figures

1.1 Operation on private data in the cloud through a conventional encryp-

tion scheme . 1

1.2 Operation on private data in the cloud through a homomorphic en-

cryption scheme . 2

1.3 Anticipated design flow of an HE application utilizing the accelerated

HLS library developed in this work 3

2.1 Design flow and deployment of an HLS application in the cloud . . . 5

4.1 Basic block diagram of the FFT based polynomial multiplier 38

4.2 Structure of an 8-point decimation-in-frequency FFT 43

4.3 Butterfly computation of a decimation-in-frequency FFT 43

4.4 Structure of an 8-point decimation-in-time FFT 44

4.5 Butterfly computation of a decimation-in-time FFT 45

4.6 Basic block diagram of the FFT with “ping-pong” memory buffer . . 48

4.7 Index mapping of a 16-point FFT . 53

4.8 Speedup of the pipelined and loop unrolled polynomial multiplier with

resource sharing versus NTL . 67

4.9 Speedup of the pipelined polynomial multiplier with resource sharing

versus NTL . 71

4.10 Implementation speedup of the pipelined and loop unrolled polyno-

mial multiplier with resource sharing versus NTL for 256-bit security

configurations targeting part xczu9eg-ffvb1156-2-i-es2 74

4.11 Implementation speedup of the pipelined polynomial multiplier with

resource sharing versus NTL for 256-bit security configurations target-

ing part xczu9eg-ffvb1156-2-i-es2 . 76

vi

List of Tables

2.1 Recommended Security Parameters for RLWE-based HE Schemes [19] 8

2.2 Computational complexities of common multiplication algorithms . . 12

2.3 Operand size thresholds for multiplication using Multiple Precision In-

tegers and Rationals (MPIR) [25] . 13

3.1 Available resources for part xczu9eg-ffvb1156-2-i-es2 26

3.2 Synthesis results of the base integer multiplier 27

3.3 Synthesis results of the integer multiplier with arbitrary precision data

types . 28

3.4 Synthesis results of the integer multiplier with efficient arithmetic mod-

ulo 2N + 1 . 32

3.5 Synthesis results of the integer multiplier with efficient modular reduc-

tion by 2N + 1 . 32

3.6 Final synthesis results of the integer multiplier 33

3.7 Efficiency of the parameter k for various operand sizes 34

3.8 Synthesis results of the final integer multiplier, values with * indicate

that they do not fit on the target device 35

3.9 Timing results of the final integer multiplier 36

4.1 Synthesis results of the initial polynomial multiplier 40

4.2 Timing results of the initial polynomial multiplier 40

4.3 Timing results of the polynomial multiplier with main loops pipelined 41

4.4 Timing results of the polynomial multiplier with improved FFT loop

structure . 46

4.5 Timing results of the improved FFT 46

4.6 Timing results of the FFT with pipelined loops 51

4.7 Timing results of the polynomial multiplier with pipelined FFT . . . 51

4.8 Timing results of the FFT with partially unrolled fft group loop . . . 56

4.9 Timing results of the polynomial multiplier with partially unrolled FFT

loops . 56

4.10 Synthesis results of the base polynomial multiplier for each security

configuration . 57

4.11 Resource utilization of the base polynomial multiplier for each security

configuration targeting part xczu9eg-ffvb1156-2-i-es2 58

vii

LIST OF TABLES

4.12 Timing results of the base polynomial multiplier for each security con-

figuration . 59

4.13 Synthesis results of the pipelined and loop unrolled polynomial multi-

plier for each security configuration 60

4.14 Resource utilization of the pipelined and loop unrolled polynomial mul-

tiplier for each security configuration targeting part xczu9eg-ffvb1156-

2-i-es2 . 61

4.15 Timing results of the pipelined and loop unrolled polynomial multiplier 62

4.16 Synthesis results of the pipelined and loop unrolled polynomial multi-

plier with resource sharing for each security configuration 64

4.17 Resource utilization of the pipelined and loop unrolled polynomial mul-

tiplier with resource sharing for each security configuration targeting

part xczu9eg-ffvb1156-2-i-es2 . 65

4.18 Timing results of the pipelined and loop unrolled polynomial multiplier

with resource sharing for each security configuration 66

4.19 Synthesis results of the pipelined polynomial multiplier with resource

sharing for each security configuration 68

4.20 Resource utilization of the pipelined polynomial multiplier with re-

source sharing for each security configuration targeting part xczu9eg-

ffvb1156-2-i-es2 . 69

4.21 Timing results of the pipelined polynomial multiplier with resource

sharing for each security configuration 70

4.22 Available resources for various Xilinx FPGAs 70

4.23 Implementation results of the pipelined and loop unrolled polynomial

multiplier with resource sharing for 256-bit security configurations tar-

geting part xczu9eg-ffvb1156-2-i-es2 72

4.24 Implementation resource utilization of the pipelined and loop unrolled

polynomial multiplier with resource sharing for 256-bit security config-

urations targeting part xczu9eg-ffvb1156-2-i-es2 73

4.25 Implementation timing results of the pipelined and loop unrolled poly-

nomial multiplier with resource sharing for 256-bit security configura-

tions targeting part xczu9eg-ffvb1156-2-i-es2 73

4.26 Implementation results of the pipelined polynomial multiplier with re-

source sharing for 256-bit security configurations targeting part xczu9eg-

ffvb1156-2-i-es2 . 74

viii

LIST OF TABLES

4.27 Implementation resource utilization of the pipelined polynomial multi-

plier with resource sharing for 256-bit security configurations targeting

part xczu9eg-ffvb1156-2-i-es2 . 75

4.28 Implementation timing results of the pipelined polynomial multiplier

with resource sharing for 256-bit security configurations targeting part

xczu9eg-ffvb1156-2-i-es2 . 75

ix

Acronyms

ASIC Application Specific Integrated Circuit

AWS Amazon Web Services

BGV Brakerski-Gentry-Vaikuntanathan

BRAM Block RAM

DFT Discrete Fourier Transform

DIF Decimation In Frequency

DIT Decimation In Time

DSP Digital Signal Processing

FFT Fast Fourier Transform

FHE Fully Homomorphic Encryption

FLINT Fast Library for Number Theory

FPGA Field-Programmable Gate Array

FV Fan-Vercauteren

GMP GNU Multiple Precision

HDL Hardware Description Language

HE Homomorphic Encryption

HLS High-Level Synthesis

x

Acronyms

IFFT Inverse Fast Fourier Transform

II Initiation Interval

LUT Lookup Table

LWE Learning with Errors

MPFR Multiple Precision Floating-Point Reliable

MPIR Multiple Precision Integers and Rationals

NTL Number Theory Library

NTT Number Theoretic Transform

RLWE Ring Learning with Errors

RTL Register Transfer Level

SHE Somewhat Homomorphic Encryption

WNS Worst Negative Slack

xi

Chapter 1

Introduction

1.1 Motivation

As cloud computing grows in popularity, solutions like Amazon Web Services (AWS)

[1] are becoming more desirable as an affordable means by which to utilize comput-

ing resources. Though cloud resources offer many benefits, the off-loading of private

data to third party systems for computation introduces new privacy risks. Conven-

tional cryptographic solutions do not solve this problem as protected data requires

decryption to allow for operation on these shared computing resources as illustrated

in Figure 1.1. This image shows the transfer of multiple encrypted plaintext data to

Cloud Service

C f (P0, P1)

C0P0

P1

Enc(P0)

Enc(P1)

Dec(C)

Dec(C0)

f(P0,P1)

Dec(C1)

Enc(f)

C1

Figure 1.1: Operation on private data in the cloud through a conventional encryption
scheme

a cloud service for operation. The receiving platform must decrypt the data to per-

form operations between the underlying plaintexts, and the result is then encrypted

and sent back to the user. A potential solution to this problem is Homomorphic

1

CHAPTER 1. INTRODUCTION

Encryption (HE) which allows for arbitrary operations to be performed on encrypted

data without exposing the underlying plaintext to untrusted parties. This allows for

data secured with an HE scheme to be operated on homomorphically and the result

returned to the user without security compromise as depicted in Figure 1.2. This

Cloud Service

C f (P0, P1)

C0P0

P1

EncFHE(P0)

EncFHE(P1)

DecFHE(C)
Homomorphic

Evaluation
f(C0,C1)

C1

Figure 1.2: Operation on private data in the cloud through a homomorphic encryption
scheme

illustration shows the transfer of encrypted data to a cloud service with operations

performed homomorphically on the underlying plaintext. The still encrypted result

is then returned to the user for decryption. This removes the necessity of decrypting

the data before operation and retains the privacy of the data even when evaluated

on cloud resources. Though HE schemes do exist, current solutions require complex

arithmetic operations that are computationally resource intensive.

1.2 Objective

The goal of this work was to accelerate the resource intensive arithmetic operations

heavily relied upon in many HE schemes to enable secure cloud computing. This

was achieved through the continued development of a library containing arithmetic

functions accelerated through High-Level Synthesis (HLS) to allow for the flexible

design of hardware/software systems on reconfigurable cloud resources. The develop-

ment flow of an application utilizing this library is shown in Figure 1.3. This diagram

shows the design flow of an HE application in which the computationally intensive

2

CHAPTER 1. INTRODUCTION

Math Software
Library

HE Application

Tune for HLS

HW/SW
Partitioning

Reconfigurable
Hardware

Software

Hardware
Synthesis

HW/SW System
Integration

Cloud Deployment

Hardware/Software
Development

Figure 1.3: Anticipated design flow of an HE application utilizing the accelerated HLS
library developed in this work

operations are partitioned for hardware acceleration through the HLS accelerated

math library. These operations are then designated for execution on a hardware

co-processor that is synthesized for the available target reconfigurable resources. In-

tegration is performed by establishing communication between the main program

running on a conventional CPU and the reconfigurable resources, and the full system

is deployed within a cloud environment. Although this project directly targeted HE,

the functions developed could be incorporated within a generic mathematical library

and support theoretical computations. This focused explicitly on the design and de-

velopment of a flexible Fast Fourier Transform (FFT) based multiplier through HLS

to offer improved performance over software solutions.

3

Chapter 2

Background

2.1 Related Work

The hardware design of large-scale FFT multipliers for HE has been explored in var-

ious works such as [2, 3, 4]. Each of these works designed custom hardware targeting

either Application Specific Integrated Circuit (ASIC) or Field-Programmable Gate

Array (FPGA) platforms using conventional Hardware Description Language (HDL)

development and implementation techniques. Michael Foster began work on a po-

tential case study for the creation of an arithmetic library for hardware accelerated

HE in [5]. This work designed and developed a flexible Karatsuba multiplier with

Vivado HLS achieving a maximum theoretical speedup up to 136 times the Fast Li-

brary for Number Theory (FLINT) arithmetic software library. A similar accelerator

for HE was created using the Karatsuba multiplication algorithm through the ap-

plication of hardware/software co-design techniques in [6] specifically targeting the

Fan-Vercauteren (FV) HE scheme introduced in [7]. A hardware accelerated FFT

algorithm for HE acceleration was designed in [8] with Vivado HLS achieving a maxi-

mum speedup of 6.9 times the same algorithm run on an Intel Core i7-5600U CPU at

2.6GHz. Mkhinini et. al designed a flexible RNS-based large polynomial multiplier

through HLS for HE and achieved significant speedup over software implementations

[9, 10, 11].

4

CHAPTER 2. BACKGROUND

2.2 High-Level Synthesis

HLS is a method by which software written in a programming language such as

C/C++ can be converted into HDL, synthesized, and implemented in hardware.

This allows for a simpler method of hardware/software co-design and deployment of

flexible hardware accelerated designs. The inclusion of FPGAs in the cloud allows for

the deployment of hardware accelerated designs through HLS as shown in Figure 2.1.

Cloud Service

HLS
Software
Solution

FPGA

CPU

HW/SW
Partitioning

Figure 2.1: Design flow and deployment of an HLS application in the cloud

The HLS tool utilized in this work is Xilinx Vivado HLS [12] which transforms

a C/C++ program into a synthesizable HDL model for Xilinx FPGAs. This tool

provides various directives that can be applied to the software design to guide syn-

thesis toward the desired hardware structure. These directives include the UNROLL

directive which specifies the number of times a loop should be unrolled to implement

parallel hardware processors to decrease latency and the PIPELINE directive which

specifies the placement of registers between hardware operations to allow for increased

throughput.

2.3 Homomorphic Encryption

HE cryptographic schemes allow for an arbitrary number of operations to be per-

formed on encrypted data. This has far reaching benefits as they allow for potentially

5

CHAPTER 2. BACKGROUND

sensitive information to be encrypted and operated on by untrusted parties without

compromising the underlying data. Though Somewhat Homomorphic Encryption

(SHE) schemes allowing for a limited number of operations on encrypted data have

existed for a long time, the first Fully Homomorphic Encryption (FHE) scheme en-

abling boundless operations on encrypted data was introduced by Craig Gentry in

2009 [13]. This breakthrough was achieved through a scheme based on bootstrapping,

the principle by which an encryption scheme evaluates its own decryption circuit, and

operates over ideal lattices. Gentry later assisted in the development of a more effi-

cient FHE scheme called Brakerski-Gentry-Vaikuntanathan (BGV) without the need

of bootstrapping by utilizing a novel modulus switching technique [14, 15]. The BGV

scheme is much more efficient than previous implementations and can operate over

the Learning with Errors (LWE) or Ring Learning with Errors (RLWE) hardness

assumptions.

2.3.1 Learning with Errors

The LWE problem was first proposed by Regev in [16]. Select a dimension n ≥ 1,

a prime modulus q ≥ 2, and an error distribution χ over Zq. Establish a uniformly

random secret vector s ∈ Znq . Choose a vector a ∈ Znq uniformly at random, select

e ∈ Zq based on the error distribution χ, and output (a, 〈a, s〉+e). The LWE problem

thus states that for an arbitrary number of samples of the form (a, 〈a, s〉 + e), it is

computationally infeasible to determine s [16, 17].

2.3.2 Ring Learning with Errors

The RLWE problem is an extension of the LWE problem over algebraic rings first

introduced in [18]. This allows for simpler computations as it reduces the inherent

quadratic overhead associated with the basic implementation of LWE. An informal

definition of the RLWE problem is presented here for simplicity. Select a dimension

6

CHAPTER 2. BACKGROUND

n ≥ 1 where n is a power of 2, a prime modulus q ≥ 2 such that 1 = q mod 2n, and

f(x) = xn + 1 ∈ Z[x]. Let R = Z[x]/〈f(x)〉, Rq = Zq[x]/〈f(x)〉, and χ be an error

distribution over R. Establish a uniformly random secret polynomial s = s(x) ∈ Rq.

Choose a polynomial a = a(x) ∈ Rq uniformly at random, generate e = e(x) ∈ R

based on the error distribution χ, and output(a, a · s + e). Like LWE, the RLWE

problem thus states that for an arbitrary number of samples of the form (a, a · s+ e),

it is computationally infeasible to determine s [17, 18].

Security

The security of RLWE is currently an area of research. It is heavily dependent upon

the noise e added to the coefficients along with the selection of n and the prime

modulus q. An ongoing effort is being made to standardize HE schemes based on

RLWE for power 2 cyclotomic rings. The security analysis in [19] presents recom-

mended parameters n and q for various levels of the security parameter λ. Though

separate parameters are provided for uniform, ternary, and error distributions, the

parameters based on the error distribution will be used here as shown in Table 2.1.

These recommendations are made based on the LWE-estimator tool introduced in

[20] which determines parameters for a given λ based on the estimated complexi-

ties of currently known attacks on RLWE. These attacks include the unique shortest

vector attack (uSVP) [21], the decoding attack (dec) [22, 20], and the dual attack

(dual) [23]. The total size in bits of a single plaintext is calculated by multiplying

the number of polynomial coefficients n and the size of the ciphertext modulus q in

bits. Note that increasing the polynomial degree allows for larger coefficients while

achieving the same level of security. The typical plaintext space is equal to n with

a single plaintext bit encoded within each coefficient, but other packing techniques

may be used.

7

CHAPTER 2. BACKGROUND

Table 2.1: Recommended Security Parameters for RLWE-based HE Schemes [19]

n λ log q Size (bits) uSVP dec dual

1,024 256 19 19,456 269.9 280.5 259.5

1,024 192 22 22,528 203.6 211.2 200.8

1,024 128 31 31,744 130.6 133.8 129.6

2,048 256 33 67,584 263.8 270.7 258.1

2,048 192 42 86,016 194.0 197.6 190.6

2,048 128 58 118,784 132.1 132.4 130.2

4,096 256 62 253,952 266.0 268.9 259.3

4,096 192 80 327,680 195.6 196.1 192.2

4,096 128 113 462,848 131.9 129.4 128.8

8,192 256 123 1,007,616 259.6 259.4 256.2

8,192 192 157 1,286,144 195.4 192.8 192.3

8,192 128 223 1,826,816 132.3 128.3 128.0

16,384 256 243 3,981,312 259.5 256.6 259.3

16,384 192 310 5,079,040 196.4 192.4 193.9

16,384 128 443 7,258,112 133.0 128.1 129.3

32,768 256 481 15,761,408 261.0 257.0 256.2

32,768 192 616 20,185,088 197.4 192.5 192.2

32,768 128 886 29,032,448 133.4 128.2 129.4

2.3.3 Basic Scheme

The following is a basic outline of the BGV scheme based on RLWE [14, 15, 19].

• ParamGen(λ, L) → q, n, χ: Given security parameter λ (e.g. 128, 192, or

256) and the maximum multiplicative depth of the circuit L, the parameters

q, n, and χ are generated where q is the ciphertext modulus, n is the message

8

CHAPTER 2. BACKGROUND

polynomial degree, and χ is a discrete Gaussian distribution.

• SecKeygen(q, n, and χ) → sk: The secret key sk is generated as a polynomial

s(x) generated by selecting random elements from the error distribution χ.

• PubKeygen(q, n, and χ) → pk: The public key pk is generated as a pair of

polynomials (a,b) = (a, a · s + e) where e is a polynomial sampled from the

error distribution χ.

• SecEncrypt(sk, P) → C: The secret key encryption function first maps the

plaintext P over the ring Rp = Zp[x]/〈f(x)〉 where f(x) = xn + 1 ∈ Z[x] and p

is the plaintext modulus. A random polynomial a(x) is sampled from the ringRp

and the ciphertext is output as a pair of polynomials (c0, c1) = (a, a ·s+p ·e+P)

where e is a polynomial sampled from the error distribution χ.

• PubEncrypt(pk, P) → C: The public key encryption function first maps the

plaintext P over the ring Rp = Zp[x]/〈f(x)〉 where f(x) = xn + 1 ∈ Z[x] and p

is the plaintext modulus. Three random polynomials r(x), f(x), and f ′(x) are

sampled from the ring Rp, and the ciphertext is output as a pair of polynomials

(c0, c1) = (a · r + f , b · r + p · f ′ + P).

• Decrypt(sk, C) → P : The decryption function reduces the ciphertext C by

computing c′ = c0 · s + c1 over Rq and calculating c′ mod p.

• EvalAdd(C0, C1) → C2: Addition is performed homomorphically between two

ciphertexts C0 = (c0,0, c0,1) and C1 = (c1,0, c1,1) by producing the output C2 =

(c0,0 + c1,0, c0,1 + c1,1).

• EvalMult(C0, C1)→ C2: Multiplication is performed homomorphically between

two ciphertexts C0 = (c0,0, c0,1) and C1 = (c1,0, c1,1) by producing the output

C2 = (c0,0 · c1,0, c0,0 · c1,1 + c0,1 · c1,0, c0,1 · c1,1).

9

CHAPTER 2. BACKGROUND

2.4 Arithmetic Software Libraries

This section contains summaries of a subset of mathematic software libraries imple-

mented in C. These libraries contain efficient algorithms that enable fast computations

for software implementations of HE. Analysis of these libraries will allow for insight

into the design of algorithms for arithmetic libraries and a benchmark by which to

compare the final hardware accelerated algorithm developed in this work.

GMP

The GNU Multiple Precision (GMP) arithmetic library is a portable library written

in C allowing for multiple precision arithmetic on integers, rational numbers, and

floating-point numbers [24]. The goal of GMP is to provide high speed arithmetic for

high precision data types that are outside of the basic C data types. The library is

developed with a general emphasis on speed with optimized assembly code and full

word arithmetic.

MPIR

The Multiple Precision Integers and Rationals (MPIR) library is a fork of the GMP

library written in assembly language and C [25]. The goal of the library is the same

as GMP, emphasizing speed for higher precision data types than directly supported

by C.

MPFR

The Multiple Precision Floating-Point Reliable (MPFR) library is a portable library

written in C for arbitrary precision arithmetic on floating-point numbers based on

GMP [26, 27]. MPFR is unique in that the code is fully portable and independent

of machine word size, the precision of bits can be set exactly for each variable, and

10

CHAPTER 2. BACKGROUND

advanced rounding modes are supported on top of the four rounding modes specified

in the IEEE 754-1985 standard.

NTL

The Number Theory Library (NTL) is a portable, high-performance library written in

C++ to allow for arithmetic operations over finite fields [28]. NTL is compatible with

Unix, MacOS, and Windows and can be built with GMP to improve performance.

PARI/GP

The PARI library is a computer algebra library written in C for number theory oper-

ations [29]. The three main benefits of the PARI library are its speed, mathematician

friendly data types, and extensive support of number theory operations. Another

benefit of PARI is gp, a user shell with access to PARI functions that can be used as

a programmable number theory calculator. The interactive shell gp operates on the

scripting language GP.

FLINT

The FLINT library was first introduced in [30, 31] as an arithmetic library for number

theory computations. The initial goal of FLINT was to match the functionality of

NTL and eventually act as an alternative to PARI. FLINT is written in C with

assembly optimizations and is threadsafe.

2.5 Multiplication Algorithms

Most arithmetic software libraries contain implementations of several multiplication

algorithms of varying complexity. These methods introduce benefits and drawbacks

stemming from the overall asymptotic complexity and inherent overhead associated

with each of them. The most common multiplication algorithms and their respective

11

CHAPTER 2. BACKGROUND

computational complexities are shown in Table 2.2. The Schönhage-Strassen algo-

rithm was the asymptotically fastest known integer multiplication algorithm until

the introduction of Fürer’s algorithm in 2007 [32]. Implementation of Fürer’s algo-

rithm is currently impractical, however, as it does not achieve performance benefits

over Schönhage-Strassen until very large values of n are reached.

Table 2.2: Computational complexities of common multiplication algorithms

Algorithm Complexity

Schoolbook O(n2)

Karatsuba [33] O(nlog2 3)

k-way Toom-Cook [34, 35] O(nlog(2k−1)/ log k)

Schönhage-Strassen [36, 37] O(n log n log log n)

Fürer [32] O(n log n 23 log∗ n)

Because of the differences between multiplication algorithms, each library selects

the best implementation for a specific application through a method generally based

upon both the size of the operands and the target computer architecture. Table

2.3 shows the operand size threshold for each multiplication algorithm in the MPIR

library. Though these values are strictly for MPIR, similar thresholding methods are

used by other libraries.

12

CHAPTER 2. BACKGROUND

Table 2.3: Operand size thresholds for multiplication using MPIR [25]

Algorithm
Threshold for Generic

Architecture with 32-bit
Limbs (bits)

Threshold for x86 64
Haswell with 64-bit

Limbs (bits)

Basecase (Schoolbook) N/A N/A

Karatsuba 1,024 1,024

Toom-3 4,096 6,720

Toom-4 9,600 15,744

Toom-8.5 12,832 19,392

Schönhage-Strassen 128,320 249,856

2.6 Polynomial vs. Integer Multiplication

The link between polynomial and integer multiplication can be illustrated by the

Kronecker-Schönhage trick. This trick (also known as Kronecker Substitution or

segmentation) is a method that converts the multiplication of integers to the multi-

plication of polynomials and vice versa [38]. Let A be an integer represented in base

β. Then A can be represented as a polynomial of the form

A = a(β) =
n−1∑
i=0

aiβ
i

For example, let A = 147 and B = 239 be the integers to be multiplied with base

β = 10. Then

a(β) = 1β2 + 4β + 7

b(β) = 2β2 + 3β + 9

13

CHAPTER 2. BACKGROUND

with multiplication of the two polynomials resulting in

c(β) = a(β) · b(β) = 2β4 + 11β3 + 35β2 + 57β + 63

The integer result can then be recovered by evaluating c(β) for β = 10 resulting in

c(10) = A · B = 35133. This method can also be performed in reverse to multiply

polynomials as integers. Let a(x) and b(x) be polynomials of degree less than n

with positive coefficients bounded by p. The desired computation is thus c(x) =

a(x) · b(x). Select X = βk > np2 where β is the base of the coefficients. Solving for

c(X) = a(X) · b(X) results in c(X) =
∑n−1

i=0 ciX
i where ci is a coefficient of C(x).

Because each ci is bound by a fixed multiple of the base, the coefficients of c(x) can

simply be extracted. For example, suppose we want to perform the multiplication

c(x) = (6x2 + 5x+ 1) · (9x2 + 3x+ 7)

with base β = 10 where the degree of the polynomials is less than n = 3 and each

coefficient is bounded by p = 9. Then X = 103 > 3 · 92 and the multiplication of the

polynomials evaluated at X results in

c(X) = 006 005 001 · 009 003 007

c(X) = 54 063 066 038 007

from which the polynomial product can be extracted as

c(x) = 54x4 + 63x3 + 66x2 + 38x+ 7

14

CHAPTER 2. BACKGROUND

2.7 Basic Convolution

Let R be an arbitrary ring with vectors a and b of length n composed of elements

ai, bi ∈ R for i = 0, 1, . . . , n−1. Then the convolution between vectors a and b results

in a vector c of length 2n where

ci =
n−1∑
j=0

ajbi−j, i = 0, 1, . . . , 2n− 1 (2.1)

and ai = bi = 0 for i < 0 or i ≥ n [39]. Note that if a and b are composed of

polynomial coefficients, then the convolution of a and b is equivalent to polynomial

multiplication. For example if a = [5, 3, 1] and b = [4, 2, 3] represent the polynomials

a(x) = 5x2 +3x+1 and b(x) = 4x2 +2x+3, then the convolution between the vectors

results in

c0 = a0 · b0 = 5 · 4 = 20

c1 = a0 · b1 + a1 · b0 = 5 · 2 + 3 · 4 = 22

c2 = a0 · b2 + a1 · b1 + a2 · b0 = 5 · 3 + 3 · 2 + 1 · 4 = 25

c3 = a1 · b2 + a2 · b1 = 3 · 3 + 1 · 2 = 11

c4 = a2 · b2 = 1 · 3 = 3

c5 = 0

representing the product polynomial c(x) = 20x4 + 22x3 + 25x2 + 11x+ 3.

2.8 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) has the unique property of converting convo-

lution to a simple point-wise product [40]. This feature is known as the convolution

theorem and forms the basis for many useful applications of the DFT, and can be

15

CHAPTER 2. BACKGROUND

applied to any vector x of length n within a field or ring in which n−1 exists. Let ω

be a primitive n-th root of unity within the target domain, hence ωn = 1 and ωk 6= 1,

for 1 ≤ k < n. The DFT can then be defined as

Xi =
n−1∑
j=0

xjω
ji (2.2)

By extension, the inverse DFT can be defined as

xj =
1

n

n−1∑
i=0

Xiω
−ji (2.3)

A typical signal processing application of the DFT is to transform samples of a signal

measured in the time domain to their frequency domain counterparts through appli-

cation of ω = e2πi/n in C, the complex numbers field, in which i =
√
−1. However,

the transform can be applied to a vector in any field or ring with an appropriately

selected primitive root of unity. The application of a DFT over a ring or field is some-

times referred to as the Number Theoretic Transform (NTT). Naive computation of

the DFT yields complexity O(n2), but many algorithms exist that allow for faster

computation.

2.9 Fast Fourier Transform

The FFT is a classifier for any algorithm that resolves the DFT with a computational

complexity of O(n log n). These algorithms apply a divide and conquer technique to

reduce the computation of the DFT into two smaller problems.

Xi =
n−1∑
j=0

xjω
ji =

n
2
−1∑
j=0

x2jω
2ji +

n
2
−1∑
j=0

x2j+1ω
(2j+1)i (2.4)

16

CHAPTER 2. BACKGROUND

These methods require the length of the input vector to be of the form n = 2k,

but the FFT can be applied to vectors of arbitrary length by zero padding until

a length of this form is achieved. The most popular iterative forms of the FFT

exploit a reordering technique in which each element is swapped with its reverse-

binary index. This allows for in place computations to be performed where the

elements of the original vector are directly replaced with the calculated DFT values

[40]. Depending on implementation, the FFT can be of the form Decimation In Time

(DIT) or Decimation In Frequency (DIF) stemming from the typical application of

the DFT for Digital Signal Processing (DSP) applications. The Cooley-Tukey DIT

algorithm performs the scrambling operation prior to the DFT calculations as shown

in Algorithm 1.

Algorithm 1 Cooley-Tukey FFT Algorithm (DIT) [40]

Input: vector x of length n, primitive n-th root of unity ω
Output: transformed vector x

1: reorder(x)
2: for m ← 1 to n by 2m do
3: for j ← 0 to m do
4: a← ωjn/2m

5: for i ← j to n by 2m do
6: (xi, xi+m)← (xi + axi+m, xi − axi+m)

Conversely, the Gentleman-Sande DIF algorithm performs the scrambling opera-

tion after computation of the DFT as shown in Algorithm 2.

Algorithm 2 Gentleman-Sande FFT Algorithm (DIF)[40]

Input: vector x of length n, primitive n-th root of unity ω
Output: transformed vector x

1: for m ← n/2 to 1 by m/2 do
2: for j ← 0 to m do
3: a← ωjn/2m

4: for i ← j to n by 2m do
5: (xi, xi+m)← (xi + xi+m, a(xi − xi+m))

6: reorder(x)

17

CHAPTER 2. BACKGROUND

The Inverse Fast Fourier Transform (IFFT) can be computed using a forward

FFT algorithm by replacing ω with ω−1 and multiplying each element of the resulting

vector by n−1. Because the DIF and DIT algorithms perform the reordering operation

before and after the DFT calculations, respectively, a DIF algorithm can be used to

calculate the FFT and a DIT method can be used to compute the IFFT eliminating

the need for the reordering procedure to be implemented and performed discretely.

2.10 FFT Polynomial Multiplication

The FFT can be used to simplify the operation of polynomial multiplication through

application of the convolution theorem. Let R be an arbitrary ring with polynomials

a(x) and b(x) of degree n−1 with vectors of coefficients a = ai ∈ R and b = bi ∈ R for

i = 0, 1, . . . , n−1. Then the convolution of the coefficient vectors results in a vector c

with ci ∈ R for i = 0, 1, . . . , 2n−2 representing the product polynomial c(x) of degree

2n−2. Performing this convolution directly results in complexity O(n2), but this can

be reduced by instead computing the FFT of the vectors a and b, performing point-

wise multiplication of the vector elements, and computing the IFFT of the resulting

vector to retrieve the product vector c. Therefore, convolution, and thus polynomial

multiplication, becomes

c = IFFT−1(FFT (a) · FFT (b)) (2.5)

with reduced complexity O(n log n). Note that because the result vector c has a

resulting length of 2n, the input vectors a and b must be zero padded to a length

greater than or equal to 2n of the form 2k in order to produce the correct result

through application of the FFT. For example, if a = [5, 3, 1] and b = [4, 2, 3]

represent the polynomials a(x) = 5x2 + 3x + 1 and b(x) = 4x2 + 2x + 3, the vectors

must be of length greater than or equal to length 2n = 2·3 = 6 of the form 2k resulting

18

CHAPTER 2. BACKGROUND

in 23 = 8. Zero padding the polynomial vectors and rearranging them for the FFT

results in a = [1, 3, 5, 0, 0, 0, 0, 0] and b = [3, 2, 4, 0, 0, 0, 0, 0]. Then, operating

modulo 257 with ω = 4, the FFT can be performed on each vector producing

FFT (a) = [9, 3, 44, 205, 93, 69, 113, 243]

FFT (b) = [9, 5, 31, 224, 75, 59, 67, 68]

Point-wise multiplication is then performed between the two transformed vectors

resulting in

FFT (a) · FFT (b) = [81, 15, 79, 174, 36, 216, 118, 76]

Finally, the product polynomial can be retrieved by performing the IFFT with w−1 =

193 yielding

IFFT−1(FFT (a) · FFT (b)) = [3, 11, 25, 22, 20, 0, 0, 0]

representing the product polynomial c(x) = 20x4 + 22x3 + 25x2 + 11x+ 3.

2.11 FFT Modular Polynomial Multiplication

Let a, b, and c be vectors of length n where c is the negative wrapped convolution of

a and b. Then each element ci can be calculated as

ci =
i∑

j=0

ajbi−j −
n−1∑
j=i+1

ajbn+i−j (2.6)

19

CHAPTER 2. BACKGROUND

This computation is equivalent to polynomial multiplication modulo xn + 1. Let ω

be a primitive n-th root of unity and θ2 = ω, then with

â = (a0, θa1, . . . , θ
n−1an−1)

b̂ = (b0, θb1, . . . , θ
n−1bn−1)

the negative wrapped convolution can be computed as

c = IFFT−1(FFT (â) · FFT (b̂))

Polynomial multiplication can also be performed through negative wrapped convo-

lution with coefficients modulo a prime p of the form p = 1 mod 2n by selecting θ

such that θ2 = ω mod p and reducing the coefficient calculations at each stage. The

application of negative wrapped convolution to perform polynomial multiplication

with coefficients modulo p and the result modulo xn + 1 is shown in Algorithm 3.

Algorithm 3 FFT Based Modular Polynomial Multiplication

Input: Polynomials a(x) and b(x) of maximum degree n with coefficients ai, bi ∈ Zp
for i = 0, 1, . . . , n− 1

Output: c(x) = a(x) · b(x) mod (xn + 1)
1: Select primitive n-th-root of unity ω
2: Select θ such that θ2 = ω mod p
3: for i ← 0 to n do
4: (ai, bi)← (θiai, θ

ibi) mod p

5: a← fft(a, ω)
6: b← fft(b, ω)
7: for i ← 0 to n do
8: ci ← ai · bi mod p

9: c← ifft(c, ω−1)
10: for i ← 0 to n do
11: ci ← ci · θ−i mod p

20

CHAPTER 2. BACKGROUND

2.12 FFT Integer Multiplication

The Schönhage-Strassen algorithm first introduced multiplication of large integers

through an application of the FFT with a complexity of O(n log n log log n) [36]. This

algorithm was later improved by Schönhage in 1982 to remove some of the clumsiness

of the original implementation [37]. The algorithm multiplies two integers modulo

2n+1, but standard multiplication can be achieved through selection of n large enough

such that all desired operands are less than n/2 bits in length. Let A,B < 2n + 1

be the two integers to be multiplied. Select an integer k such that n = MK and

K = 2k. This value is necessary to decompose each input integer into K segments

of M bits. The integer A ∈ [0, 2n] can be represented in the form A =
∑K−1

i=0 ai2
iM .

Note that because the value 2n requires n + 1 bits for representation, 0 ≤ ai < 2M

for i < K − 1 and 0 ≤ aK−1 ≤ 2M . Integer B is decomposed similarly, and the

product of A and B can be represented as C =
∑K−1

i=0 ci2
iM = A · B mod (2n + 1).

The FFT modular polynomial multiplication algorithm can then be applied through

negative wrapped convolution of the decomposed integers with coefficient modulus

2N + 1. This requires selection of N ≥ 2n
K

+ k to ensure that no precision is lost. If

an element of the resulting vector exceeds its initial interval, the value requires an

adjustment step to return the value to the correct interval by subtracting 2N +1. The

final integer result C can then be obtained by evaluating the resulting polynomial at

2M . The general form of the Schönhage-Strassen integer multiplication is presented

in Algorithm 4.

21

CHAPTER 2. BACKGROUND

Algorithm 4 FFT Based Integer Multiplication (Schönhage-Strassen) [38]

Input: Integers A,B with 0 ≤ A,B < 2n + 1; Integer K = 2k such that n = MK
Output: C = A ·B mod (2n + 1)

1: A =
∑K−1

i=0 ai2
iM . Decompose A

2: B =
∑K−1

i=0 bi2
iM . Decompose B

3: Select N ≥ 2n
K

+ 1, where N is a multiple of K; Let θ = 2
N
K , ω = θ2

4: for i ← 0 to K do
5: (ai, bi)← (θiai, θ

ibi) mod (2N + 1) . Weight the inputs

6: a← fft(a, ω)
7: b← fft(b, ω)
8: for i ← 0 to K do
9: ci ← ai · bi mod (2N + 1) . Any multiplication algorithm can be used

10: c← ifft(c, ω−1)
11: for i ← 0 to K do
12: ci ← ci · θ−i mod (2N + 1)
13: if ci ≥ (i+ 1)2M then
14: ci ← ci − (2N + 1)

15: C =
∑K−1

i=0 ci2
iM

2.13 Modular Reduction Algorithms

Many algorithms exist to perform efficient general modular reduction. Though op-

timizations can be performed based on the specific modulus, these implementations

are restrictive and do not allow for arbitrary selection of the modulus value. The

two most common modular reduction algorithms are the Montgomery and Barret’s

reduction techniques.

2.13.1 Barret Reduction

The Barret reduction algorithm was first introduced in [41] and operates over the

basic idea that c = a mod b is equivalent to

c = a− b · ba/bc (2.7)

22

CHAPTER 2. BACKGROUND

A general version of Barrett reduction is presented in Algorithm 5. This algorithm

has been slightly modified as it was presented in [42] to substitute a slightly larger

initial computation for a reduction in stages and a singular correction step.

Algorithm 5 Barrett Modular Reduction [42]

Input: Integer a, b with 0 ≤ a < b2, b > 1; µ = bβ2m/bc; m = dlogβ be
Output: c = a mod b

1: q ← a · µ
2: q ← bq/βmc
3: q ← q · b
4: c← a− q
5: if c < 0 then
6: c← c+ b

7: return c

2.13.2 Montgomery Reduction

Montgomery reduction was first introduced in [43] and reduces a modulo b where

the modulus value b is odd and 0 ≤ a < b2. This algorithm does not compute the

residue of the input directly and instead computes an equivalent residue of the input

multiplied by a constant. A general version of Montgomery reduction is presented in

Algorithm 6.

23

CHAPTER 2. BACKGROUND

Algorithm 6 Montgomery Modular Reduction [42]

Input: Integer a, b with 0 ≤ a < b2, b > 1; ρ = −1/n0 mod b
Output: c = β−ka mod b

1: for i ← 0 to k do
2: µi ← ai · ρ mod β
3: u← 0
4: for j ← 0 to k do
5: r̂ ← µbj + ai+j + u
6: ai+j ← r̂ mod β
7: u← br̂/βc
8: while u > 0 do
9: j ← j + 1

10: ai+j ← ai+j + u
11: u← bai+j/βc
12: ai+j ← ai+j mod β

13: c← ba/βkc
14: if c ≥ b then
15: c← c− b
16: return c

24

Chapter 3

FFT Based Integer Multiplier

The Schönhage-Strassen FFT multiplication algorithm was initially chosen as the

target for HLS design of the flexible FFT multiplier. This algorithm was cho-

sen because it performs integer multiplication with a computational complexity of

O(n log n log log n) allowing for flexibility in hardware for high-precision integers. This

algorithm is implemented within software libraries such as GMP and FLINT for inte-

gers of very large size. The algorithm is also naturally parallelizable lending itself to

be implemented efficiently in hardware. Through the application of the Kronecker-

Schönhage technique presented in Section 2.6, a large scale integer multiplier is also

capable of performing polynomial multiplications for polynomials of varying degree

and coefficient sizes. To maintain flexibility, this method would require that all mod-

ular reductions be performed in software after the result has been received.

3.1 Initial Implementation

Initial design of the high-precision multiplier began with selection of the target lan-

guage as Vivado HLS supports synthesis of both C and C++ designs. Though both

languages natively support integers up to only 64 bits in size, Vivado HLS provides

libraries with arbitrary precision data types allowing for data types up to 1024 bits

to be utilized in C designs and data types up to 32,768 bits to be utilized in C++

designs [12]. Because of the larger maximum data type size, C++ was chosen as

25

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

the target language for the design. Though a maximum size of 32,768 bits is smaller

than the typical use case of the Schönhage-Strassen algorithm, the selection of various

sizes up to this maximum should provide a semi-accurate model by which to estimate

the scalability of the design. The initial implementation of the Schönhage-Strassen

algorithm was directly modeled after Algorithm 4 and written in Python. The design

targeted standard multiplication with operands of size 2n/2 and an output size of 2n

allowing for removal of the correction step on lines 13 and 14. Note that this effec-

tively removed the modular reduction by 2n + 1 on the output of the algorithm as all

results were bounded by 2n. This design was tested for integers up to 32,768 bits in

size against the built-in multiplication operation to verify correct functionality.

Once completed, the design was ported to C++ to allow for synthesis through

Vivado HLS, starting with a base operand size of 128 bits. A simple testbench

was created to ensure the design functioned correctly. This was achieved though

the generation of 100 test vectors and verification of the experimental result against a

calculated value using the standard multiplication operator. The target device for this

work is the Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit (xczu9eg-ffvb1156-2-

i-es2). The available resources for the target device are listed in Table 3.1. This basic

Table 3.1: Available resources for part xczu9eg-ffvb1156-2-i-es2

BRAM 18K DSP48E FF LUT

1,824 2,520 548,160 274,080

design was run through Vivado HLS 2018.3 on the default settings targeting the same

device with a clock period of 10 ns resulting in the output shown in Table 3.2.

These results are far from desired with 20% of the available device LUTs ac-

counted for with only a 128-bit multiplier. These base synthesis results show that the

design requires optimizations to improve device utilization through the application of

synthesis directives and improved coding style techniques. Because hardware designs

26

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

Table 3.2: Synthesis results of the base integer multiplier

BRAM 18K DSP48E FF LUT

Required 38 361 60,499 56,540

Available 1,824 2,520 548,160 274,080

Utilization (%) 2 14 11 20

have an inherent trade-off between speed and area, initial optimizations of the design

targeted area reduction by improving the basic structure of the algorithm to allow

for further flexibility in decreasing the latency of the final design.

3.2 Arbitrary Precision Data Types

Analysis of the design for possible areas of improvement revealed that all loop counter

variables were implemented as 32-bit integers. Additionally, 256-bit data types were

allocated for the operands despite requiring only 128 bits, and when decomposed,

they were constructed as an array of 256-bit values regardless of the number of bits

required by the design. The use of generic data types for these variables led to the

synthesis and inclusion of signals with larger data widths than necessary within the

design. For example, when multiplying 128-bit operands with the selection of k = 4,

the input operands are both decomposed into arrays containing 16 elements each

with a maximum size of 248. In the current state of the design, each array element

was represented with 256-bits resulting in a large waste of 207 bits for each element.

Similarly, the loop counter variables iterating over the elements of the array were

instantiated as standard 32-bit integers whereas only 4 bits were actually necessary

to address the 16 elements of each array. Each variable in the design was therefore

analyzed to determine the maximum number of bits required and declared with an

arbitrary precision data type of the correct size.

The design at this stage was also constructed such that the main multiplication

27

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

function took as input the decomposition parameter k and the output operand size

n. Though these values are required for the algorithm to function properly, allowing

these inputs to be variable forced the HLS tools to construct hardware such that

any value could be passed into the multiplication function. These parameters were

therefore changed to be defined as constants in a header file to ensure that the design

was synthesized strictly for a fixed output size n, a fixed input operand size of n/2, and

a fixed decomposition parameter k. Selection of these parameters heavily impact the

size and speed of the design and will be discussed further in Section 3.4. The design

was then synthesized using the same settings as the base implementation producing

the results shown in Table 3.3.

Table 3.3: Synthesis results of the integer multiplier with arbitrary precision data types

BRAM 18K DSP48E FF LUT

Required 15 36 18,636 19,803

Available 1,824 2,520 548,160 274,080

Utilization (%) ∼0 1 3 7

These results show a significant improvement over the base implementation with

the resource utilization reduced by more than half. Despite this decrease in area, the

design continued to exhibit major areas of potential optimization.

3.3 Arithmetic Modulo 2N + 1

The heart of the Schönhage-Strassen algorithm requires arithmetic operations modulo

2N + 1. As the selected primitive roots of unity are always powers of 2, the required

operations are addition, subtraction, multiplication by 2k, and division by 2k. Note

that the smallest representation for all values modulo 2N + 1 requires N + 1 bits.

Though reductions modulo 2N + 1 are relatively fast, arithmetic operations between

values represented with N + 1 bits would require modulo reduction after each step.

28

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

By selecting an operating size of 2N -bits, all operations can be performed through a

series of shifts and additions with a single reduction modulo 2N + 1 applied only at

the final stage to represent the value with N + 1 bits [2]. Further optimizations can

then be applied through application of the following identities:


−1 ≡ (2N)k mod (2N + 1), k is odd

1 ≡ (2N)k mod (2N + 1), k is even

3.3.1 Addition

Let a, b, and r be integers modulo 2N + 1 represented with 2N bits. Then the

computation of r = a+ b may result in a carry at the most significant bit with value

(2N)2. Because it is known that 1 ≡ (2N)2 mod (2N + 1), if a carry occurs, it is

sufficient to simply add 1 to the result. This method of performing addition modulo

2N + 1 is presented in Algorithm 7.

Algorithm 7 Addition Modulo 2N + 1

Input: Integers a, b mod (2N + 1) represented with 2N bits
Output: c = a+ b mod (2N + 1) represented with 2N bits

1: (c, r)← a+ b . c is the carry bit, r is the 2N -bit result
2: if c then
3: return r
4: else
5: return r + 1

3.3.2 Multiplication by 2k

Let a and r be integers modulo 2N + 1 represented with 2N bits with desired compu-

tation r = a · 2k. Multiplication by 2k is typically performed by a left shift operation

in hardware. This is also the case here, however, special care must be taken to ensure

that the resulting value is correct modulo 2N + 1. The simple case of multiplication

by 2 results in a single left shift. If the most significant bit of a is ’1’, then the shift

29

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

results in the value (2N)2 requiring that 1 is added to the result. If the most signifi-

cant bit of a is ’0’, then the shift does not result in this overflow. Both of these cases

can be represented through a single circular left shift. Therefore, all multiplications

by 2k can be computed through a circular left shift of k bits.

3.3.3 Subtraction

Let a, b, and r be integers modulo 2N + 1 represented with 2N bits with desired

computation r = a − b. Because it is known that −1 ≡ (2N) mod (2N + 1), this

operation can be represented as r = a + b · 2N . This allows for subtraction to be

performed between any two values by utilizing a constant circular left shift of N bits

and addition as in Algorithm 7.

3.3.4 Division by 2k

Let a and r be integers modulo 2N+1 represented with 2N bits with desired computa-

tion r = a/2k. Division by 2k is typically performed by a right shift operation in hard-

ware, however, division modulo 2N + 1 requires division to be implemented through

multiplication by the multiplicative inverse. Because 1 ≡ (2N)2 mod (2N + 1), the

multiplicative inverse x of 2k can be calculated as follows:

x · 2k mod (2N + 1) = 1 mod (2N + 1)

=⇒ x · 2k mod (2N + 1) = 22N mod (2N + 1)

=⇒ x · 2k · 2−k mod (2N + 1) = 22N · 2−k mod (2N + 1)

=⇒ x mod (2N + 1) = 22N−k mod (2N + 1)

The resulting operation thus becomes r = a · 22N−k. Therefore, division by 2k can be

performed by applying a circular left shift of 2N − k bits.

30

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

3.3.5 Modular Reduction

This operation reduces integers modulo 2N +1 represented with 2N bits down to their

N -bit representation. Let a < 2N + 1 be an integer represented with 2N bits. This

integer can be represented in the form a = b + c · 2N where b and c are each N bits.

Because it is known that −1 ≡ (2N) mod (2N + 1), the value can be represented as

a = b− c. The only step necessary to complete the reduction is then to add the value

2N + 1 to this result if it is negative. This method of reducing a value with 2N bits

modulo 2N + 1 is presented in Algorithm 8.

Algorithm 8 Reduction Modulo 2N + 1

Input: Integer a mod (2N + 1) represented with 2N bits
Output: Integer a mod (2N + 1) represented with N + 1 bits

1: (c, b)← a . c, b are the upper and lower N bits of a, respectively
2: a← b− c
3: if a < 0 then
4: return a+ 2N + 1
5: else
6: return a

3.3.6 Results

The design was modified to perform the modular arithmetic operations as described

above. The modular reduction step was left unchanged leaving the standard modulus

operator to observe the direct impact of these optimizations. The design was then

synthesized using the same settings as the base implementation producing the results

shown in Table 3.4.

The improvements to the modular arithmetic operations led to a significant re-

duction in both FF and LUT utilization. There was, however, an increase in the

number of BRAM 18K resources from 15 to 18 instances. This rise in memory us-

age is a direct result of the change from the working values represented with N + 1

bits to 2N bits as the elements are stored in arrays. Despite this, the trade-off is

31

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

Table 3.4: Synthesis results of the integer multiplier with efficient arithmetic modulo
2N + 1

BRAM 18K DSP48E FF LUT

Required 18 36 5,765 14,015

Available 1,824 2,520 548,160 274,080

Utilization (%) ∼0 1 1 5

acceptable because the overall BRAM 18K utilization remains less than 1%. The

modular reduction algorithm described above was then implemented and the design

was synthesized yielding the results shown in Table 3.5.

Table 3.5: Synthesis results of the integer multiplier with efficient modular reduction by
2N + 1

BRAM 18K DSP48E FF LUT

Required 18 9 4,016 12,160

Available 1,824 2,520 5,48160 274,080

Utilization (%) ∼0 ∼0 ∼0 4

Implementation of the efficient modular reduction technique resulted in a signifi-

cant decrease in both FF and LUT usage as well as a 75% reduction in the number

of DSP48E instances. The standard modulus operator results in the instantiation

of parameterized Xilinx LogiCORE divider cores in the design resulting in a large

allocation of DSP resources [12]. These DSP resources will be critical in performing

the large scale multiplication operations necessary to achieve high-precision multipli-

cation and will likely be the resource bottleneck of the design. Therefore, the resource

savings obtained by the implementation of efficient modular reduction through the

increased data width of 2N bits further outweighs the increase in BRAM 18K in-

stances. Final steps were taken to refactor the design and perform the optimizations

described above in areas that were overlooked producing the synthesis results shown

in Table 3.6.

32

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

Table 3.6: Final synthesis results of the integer multiplier

BRAM 18K DSP48E FF LUT

Required 18 9 1,972 10,869

Available 1,824 2,520 5,48160 274,080

Utilization (%) ∼0 ∼0 ∼0 3

3.4 Parameter Selection

To perform integer multiplication through application of the FFT, the decomposed

modulus 2N + 1 must be chosen such that N ≥ 2n
K

+ k to prevent the loss of precision

in the result. Furthermore, N must be a multiple of 2k to ensure that the weight

parameter θ = 2
N
K and that ω is a primitive n-th root of unity such that ω = θ2

allowing for all multiplications to be by a power of 2. Therefore, the minimum size

for the working modulus is achieved when N = 2n
K

+k with the efficiency of the design

for a selected k defined as

2n/K + k

N
[44].

The efficiency of the algorithm for various operand sizes and selected values of k

were calculated as shown in Table 3.7. These calculations show that typically a lower

value of k results in higher efficiency. However, when selecting a value of k for the

design, there is an expected trade-off between latency and the number of resources

required as a lower k is expected to result in lower latency but increased resource

utilization whereas a higher k is expected to result in increased latency but reduced

resource utilization. This is because the value of k specifies the amount by which the

integer operands are decomposed. Decomposition of the operands into more pieces

results in smaller individual operations, but the number of loop iterations and the

resulting latency are increased because each decomposed portion must be read from

33

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

Table 3.7: Efficiency of the parameter k for various operand sizes

n k N Efficiency

2,048 2 1,028 0.998
2,048 3 520 0.990
2,048 4 272 0.956
2,048 5 160 0.831
2,048 6 128 0.547

4,096 3 1,032 0.995
4,096 4 528 0.977
4,096 5 288 0.906
4,096 6 192 0.698

8,192 4 1,040 0.989
8,192 5 544 0.950
8,192 6 320 0.819
8,192 7 256 0.527

16,384 5 1,056 0.974
16,384 6 576 0.899
16,384 7 384 0.685

32,768 6 1,088 0.947
32,768 7 640 0.811
32,768 8 512 0.516

BRAM and operated on. In contrast, a smaller value of k results in fewer decomposed

portions of the original operands requiring fewer loop iterations but more resources

to operate on each part.

3.5 Results

The integer multiplier was synthesized with Vivado HLS 2018.3 on the default settings

targeting the Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit (xczu9eg-ffvb1156-2-

i-es2) with a clock period of 5 ns resulting in the output shown in Table 3.8. Multiple

configurations were generated for operands ranging from 1 kB to 16 kB and the val-

ues of k presented in Table 3.7. As expected, the smaller values of k resulted in an

increase in the number of required DSP resources with the smallest configurations

34

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

Table 3.8: Synthesis results of the final integer multiplier, values with * indicate that they
do not fit on the target device

n k N BRAM 18K DSP48E FF LUT

2,048 2 1,028 0 3,601∗ 150,760 85,707
2,048 3 520 145 961 36,502 53,896
2,048 4 272 78 256 18,561 52,616
2,048 5 160 45 82 11,906 33,963
2,048 6 128 38 50 10,007 25,868

4,096 3 1,032 288 3,721∗ 60,497 68,939
4,096 4 528 148 961 40,972 54,262
4,096 5 288 80 289 23,443 53,707
4,096 6 192 55 122 17,190 39,652

8,192 4 1,040 290 3,722∗ 69,039 69,193
8,192 5 544 153 1,024 49,838 54,873
8,192 6 320 90 361 36,981 56,026
8,192 7 256 73 225 29,677 51,086

16,384 5 1,056 295 3,845∗ 86,048 69,586
16,384 6 576 160 1,156 67,503 56,044
16,384 7 384 108 529 59,384 60,540

32,768 6 1,088 303 4,096∗ 120,003 70,307
32,768 7 640 180 1,444 105,329 58,740
32,768 8 512 143 901 97,273 53,278

for each value of n exceeding the available DSP resources. To benchmark the speed

of the design over a proven software solution, the performance of the synthesized in-

teger multiplier was compared against the polynomial multiplication function within

the NTL software library as it is used within HELib, a software library for FHE

[45]. This was achieved by generating and performing 100 random multiplications for

each operand size through the NTL software library on a 4-core/4-thread 3.7 GHz

AMD A10-7850k CPU with 16 GB of RAM and measuring the average computation

time. From these results, the speedup of the design over the integer multiplication

function within NTL was calculated as shown in Table 3.9. The synthesized con-

figurations unfortunately resulted in speedups less than 1.000 for all values of k as

the hardware design required more time to perform the various multiplications than

35

CHAPTER 3. FFT BASED INTEGER MULTIPLIER

Table 3.9: Timing results of the final integer multiplier

n k Latency Time (µs) NTL (µs) Speedup

2,048 2 244 1.220 1.157 0.948
2,048 3 665 3.325 1.157 0.348
2,048 4 1,706 8.530 1.157 0.136
2,048 5 4,399 21.995 1.157 0.053
2,048 6 10,912 54.560 1.157 0.021

4,096 3 687 3.435 2.156 0.628
4,096 4 1,720 8.600 2.156 0.251
4,096 5 4,701 23.505 2.156 0.092
4,096 6 13,506 67.530 2.156 0.032

8,192 4 1,766 8.830 5.274 0.597
8,192 5 4,715 23.575 5.274 0.224
8,192 6 14,208 71.040 5.274 0.074
8,192 7 40,356 201.780 5.274 0.026

16,384 5 4,809 24.045 1.575 0.066
16,384 6 14,014 70.070 1.575 0.023
16,384 7 45,891 229.455 1.575 0.007

32,768 6 14,204 71.020 40.556 0.571
32,768 7 45,505 227.525 40.556 0.178
32,768 8 146,984 734.920 40.556 0.055

the NTL software library. This is not a fair comparison, however, as the NTL soft-

ware library does not utilize the Schönhage-Strassen multiplication algorithm for the

small operand sizes tested here. Though it is possible that positive speedup would

be achieved for larger operand sizes, the arbitrary precision integer library provided

through Vivado HLS limits the maximum size of a variable to 32,768 bits making it

impossible to synthesize larger designs. For these reasons, the integer multiplier was

not improved further and the development of an FFT based polynomial multiplier

was explored.

36

Chapter 4

FFT Based Polynomial Multiplier

The FFT based polynomial multiplication algorithm was chosen as the next design

target for HLS. The algorithm was chosen because application of the FFT on the

input polynomials reduces convolution to a point-wise multiplication of the trans-

formed elements reducing the computational complexity of polynomial multiplication

to O(n log n). Many steps of the algorithm are also naturally parallelizable accom-

modating efficient hardware implementation. FFT polynomial multiplication is im-

plemented within software libraries such as NTL and FLINT for polynomials of very

large degree. The design includes the pre- and post-processing steps described in

Section 2.10 to perform negative-wrapped convolution. The addition of these steps

allow for in place modular reduction by a polynomial of the form xn + 1. This is

greatly beneficial as it enables the multiplier to be used directly in RLWE base HE

schemes. Modular reduction of the coefficients is not inherent to the algorithm and

requires the design and inclusion of a generic reduction technique.

4.1 Initial Implementation

Implementation of the FFT based polynomial multiplication algorithm borrowed

heavily from the previously implemented integer multiplier discussed in Chapter 3

as the Schönhage-Strassen algorithm contains polynomial multiplication at its core.

Like the integer multiplier, the algorithm was implemented in C++ and utilized the

37

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

arbitrary precision types available through Vivado HLS. Because the coefficient sizes

required by secure RLWE schemes as outlined in Table 2.1 are far below the 32,768 bit

limit of the arbitrary precision type library, the design of the polynomial multiplier is

not limited in its scope like the integer multiplier. The basic structure of the polyno-

mial multiplier was based on Algorithm 3. The basic block diagram of the targeted

design for the polynomial multiplier is displayed in Figure 4.1. This image shows the

a

BRAM

a

BRAM

FFTai ∙ θi

b

BRAM

b

BRAM

FFTbi ∙ θi

IFFT
FFT(ai ∙ θi)

∙

FFT(bi ∙ θi)

c

BRAM

c

BRAM

IFFT(ci)

∙
θi
-1

a(x)

b(x)

c(x)θ

BRAM

θ-1

BRAM

Figure 4.1: Basic block diagram of the FFT based polynomial multiplier

storage of the input polynomials a and b into Block RAMs (BRAMs) and the oper-

ations necessary to produce the resulting product polynomial c. Unlike the integer

multiplier, the primitive n-th root of unity ω and the weighting parameter θ were not

guaranteed to be powers of 2. The coefficients are also reduced by some prime p that

is not guaranteed to be of the form 2n + 1 making the efficient arithmetic operations

modulo 2n + 1 discussed in Section 3.3 unable to be used. Therefore, modular re-

duction of the coefficients was modeled after Barrett’s reduction algorithm outlined

in Algorithm 5 through the creation of a reduce function. Furthermore, because the

algorithm requires consecutive powers of ω and θ, and their inverses ω−1 and θ−1,

by which to multiply the coefficients, Lookup Tables (LUTs) were generated with

all pre-calculated powers of these values to prevent the expensive task of computing

38

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

them in real time. These LUTs provided further benefits as well as the backward

FFT typically requires an additional step in which each of the vector elements is mul-

tiplied by n−1. This would require an additional loop iterating through each element

and performing this computation. An optimization can be performed to remove this

step, however, by instead pre-calculating the multiplicative inverse of n modulo p

and multiply each power of θ−1 by this value. The reduction of each resulting value

modulo p can then instead be stored in an array and used in the unweighting step to

perform both operations at once and retrieve the final result. The initial design of

the FFT polynomial multiplier is shown in Algorithm 9.

Algorithm 9 Initial Implementation of the FFT Polynomial Multiplier

Input: Polynomials a(x) and b(x) of maximum degree n with coefficients ai, bi ∈ Zp
for i = 0, 1, . . . , n− 1

Output: c(x) = a(x) · b(x) mod (xn + 1)
1: Pre-calculate arrays for consecutive powers of θ, ω, θ−1, and ω−1

2: weight coeff : for i ← 0 to n do
3: ai ← reduce(ai · θi, p)
4: bi ← reduce(bi · θi, p)
5: a← fft(a, ω)
6: b← fft(b, ω)
7: mult coeff : for i ← 0 to n do
8: ci ← reduce(ai · bi, p)
9: c← ifft(c, ω−1)

10: unweight coeff : for i ← 0 to n do
11: ci ← reduce(ci · (θ−1 · n−1 mod p)i, p)

A simple testbench was created to test the functionality of the base design support-

ing a small polynomial with n = 512 and log p = 17. These basic design parameters

were used throughout the optimization process to benchmark the progress of the

current design in both area and latency. The testbench generated 100 random test

vectors through the NTL software library and verified the produced result against a

calculated value. This basic, unoptimized design was run through Vivado HLS 2018.3

on the default settings targeting the Zynq UltraScale+ MPSoC ZCU102 Evaluation

39

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Kit (xczu9eg-ffvb1156-2-i-es2) with a clock period of 4 ns resulting in the output

shown in Table 4.1.

Table 4.1: Synthesis results of the initial polynomial multiplier

BRAM 18K DSP48E FF LUT

Total 5 7 1,560 3,750

Available 1,824 2,520 548,160 274,080

Utilization (%) ∼0 ∼0 ∼0 1

These results show that the initial design does not utilize more than 1% of the

resources on the target device. This suggests that the area of the design has already

been sufficiently minimized based on the techniques borrowed from the design of

the integer multiplier. Because of this, attention was turned to reducing the overall

latency of the design, and the initial timing results are shown in Table 4.2.

Table 4.2: Timing results of the initial polynomial multiplier

Section Latency Iteration Latency Initiation Interval Trip Count

weight coeff 2,560 5 2,560 512

FFT N/A - N/A -

mult coeff 2,560 5 2,560 512

IFFT N/A - N/A -

unweight coeff 2,560 5 2,560 512

Total 37,397 - 37,398 -

This table shows the latency, iteration latency, Initiation Interval (II), and trip

count for each of the major sections within the design. The latency of a section is

the number of clock cycles required for the input data to be fully operated on within

that section whereas the iteration latency is the number of clock cycles required for

each iteration. The initiation interval is the number of clock cycles required before

new data can be operated on within the section, and the trip count is the number of

iterations required for the section. Note that both the FFT and IFFT sections have

40

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

unknown latency. This is because it was not possible for the tool to report the exact

latency of the design as the inner loops of these sections did not have fixed bounds at

compile time. The table also shows that each of the three major loops in the design

have a latency of 2,560 clock cycles, an iteration latency of 5 clock cycles, and a trip

count of 512. The HLS PIPELINE directive was applied to each of the three main

loops in the design to exemplify the impact that the inclusion of HLS directives has

on the synthesis of the design producing the timing results shown in Table 4.3.

Table 4.3: Timing results of the polynomial multiplier with main loops pipelined

Section Latency Iteration Latency Initiation Interval Trip Count

weight coeff 515 5 1 512

FFT N/A - N/A -

mult coeff 515 5 1 512

IFFT N/A - N/A -

unweight coeff 515 5 1 512

Total 31,265 - 31,266 -

The addition of these directives reduce the overall latency from 37,397 clock cycles

to 31,265. An iteration interval of 1 was achieved by each loop resulting in an overall

latency of 515 clock cycles, just above the trip count of 512. These loops were pipelined

without issue because the arrays accessed in each of the loops are composed of dual

port BRAMs allowing for two concurrent memory accesses from each. This allows for

the scheduling of both a read and a write operation of the same memory during each

loop iteration. The further addition of HLS directives to the design requires careful

consideration and analysis of the scheduling and inclusion of hardware primitives. For

example, unrolling the weight coeff loop by any factor to parallelize the operations

within it would not be possible because this would require more than two concurrent

memory accesses. In contrast, the mult coeff loop performs read and write operations

between three different memories requiring the use of only a single port from each

memory on each iteration and could potentially be unrolled by a factor of two.

41

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

4.2 Loop Structure of the FFT

The loop structures of both the backward and forward FFTs up until this point were

based on Algorithm 1 and Algorithm 2, respectively. Though these implementations

are effective in software because they ensure that the same power of ω is used in each

inner loop iteration to prevent its calculation at each step, the triple loop structure

utilized in each is nonoptimal. This is because the entrance and exit of each loop

requires an extra cycle, increasing latency over time especially for a large number

of coefficients. Furthermore, because the consecutive powers of ω are stored in a

array and read from memory when needed, it is not necessary to ensure that every

computation requiring the same power of ω is performed together. In order to improve

the loop structure of the implemented FFT algorithms, it was thus necessary to

investigate the overall construction of the FFT. Focus began with the design of the

forward FFT implemented in the Gentleman-Sande DIF form. The basic structure of

the FFT is composed of log n stages with each stage requiring the computations over

the n points contained within the vector, or in this case, the polynomial coefficients.

Note that the combination of these stages attains the computational complexity of

O(n log n) for which the FFT is known. As an example, a diagram of the basic

structure of an 8-point FFT of the DIF form is shown in Figure 4.2.

The fundamental building block of an n-point FFT is the 2-point FFT in which

a simple computation is performed between two elements of the input vector. This

2-point FFT is commonly referred to as a “butterfly” operation. The typical butterfly

for a decimation-in-frequency FFT is shown in Figure 4.3.

Note that n calculations are performed at each of the log(n) stages between ele-

ments within the array from decreasing distances apart, with each stage decomposed

into twice as many smaller groups. If the size of the FFT were increased to be a

16-point computation, then after the initial stage the design would be split into two

42

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Figure 4.2: Structure of an 8-point decimation-in-frequency FFT

Figure 4.3: Butterfly computation of a decimation-in-frequency FFT

8-point FFTs. This trend continues as the size of the n-point FFT increases. There-

fore, the improved design of the FFT was modeled after the basic structure of the

FFT. This design contained only two nested loops with the outer loop iterating over

each of the log n stages and the inner loop performing the butterfly computations

between the n elements. Note that because the butterfly operation operates on two

elements at once, the inner loop requires only an iteration depth of n/2. Pseudocode

of the improved forward FFT in the Gentleman-Sande DIF form is described in Al-

gorithm 10.

43

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Algorithm 10 Improved Forward FFT Algorithm (DIF)

Input: vector x of length n, pre-computed powers of ω
Output: transformed vector x

1: m = n/2
2: j = log n− 1
3: fft stage : for s ← 0 to log n do
4: fft group : for k ← 0 to n/2 do
5: i← k + bk/2jc · 2j
6: a← k · 2s
7: (xi, xi+m)← (xi + xi+m, ω

a(xi − xi+m))

8: m← m/2
9: j ← j − 1

Similarly, the backward FFT was implemented in the Cooley-Tukey DIT form.

This form of the FFT works in reverse from the DIF version with the first stage

starting with n/2 2-point FFTs and each of the next log n stages combines the results

of the previous stage in groups of two. A diagram of the basic structure of an 8-point

FFT of the DIF form is shown in Figure 4.4.

Figure 4.4: Structure of an 8-point decimation-in-time FFT

Note that the DIF form begins with the components in typical binary order and

44

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

ends with the elements in reverse binary order whereas the DIT form begins with

the components in reverse index order and returns them to typical binary order. It

is this property that makes these forms best suited for the forward and backward

FFTs, respectively. The standard butterfly for a decimation-in-time FFT is shown in

Figure 4.5.

Figure 4.5: Butterfly computation of a decimation-in-time FFT

Like the forward FFT, the backward FFT was implemented using only two nested

loops with the outer loop iterating over each of the log n stages and the inner loop

performing the butterfly computations between the n elements. Pseudocode of the

improved backward FFT of the DIT form is described in Algorithm 11.

Algorithm 11 Improved Backward FFT Algorithm (DIT)

Input: vector x of length n, pre-computed powers of ω−1

Output: transformed vector x
1: m = 1
2: j = log n− 1
3: ifft stage : for s ← 0 to log n do
4: ifft group : for k ← 0 to n/2 do
5: i← k + bk/2jc · 2j
6: a← k · 2j
7: (xi, xi+m)← (xi + ω−1a xi+m, xi − ω−1a xi+m)

8: m← 2m
9: j ← j − 1

With the FFT and IFFT of the polynomial multiplier design replaced with these

modified versions, it became possible for the HLS tools to determine their latency.

The design was then synthesized producing the results shown in Table 4.4.

45

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.4: Timing results of the polynomial multiplier with improved FFT loop structure

Section Latency Iteration Latency Initiation Interval Trip Count

weight coeff 515 5 1 512

FFT 11,539 - 11,539 -

mult coeff 515 5 1 512

IFFT 16,147 - 16,147 -

unweight coeff 515 5 1 512

Total 29,240 - 29,240 -

These results show that the FFT and IFFT operations within the design comprise

the majority of the latency with each requiring 11539 and 16147 clock cycles, respec-

tively. Optimization of these sections was critical in reducing the overall latency of

the design.

4.3 Pipelining

To further optimize the design, it was necessary to reduce the latency of both the

FFT and IFFT functions. This was done through analysis and modification of the

FFT algorithm with successful improvements carried over to the IFFT algorithm due

to their nearly identical structure. The timing results of the internal loops of the

FFTs are shown in Table 4.5.

Table 4.5: Timing results of the improved FFT

Section Latency Iteration Latency Initiation Interval Trip Count

FFT 16,147 - 16,147 -

fft stage 11,538 1,282 - 9

fft group 1,280 5 - 256

IFFT 16,147 - 16,147 -

ifft stage 16,146 1,794 - 9

ifft group 1,792 7 - 256

These results show that the fft group loop would benefit greatly from pipelining

46

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

as each iteration currently has a latency of 5 cycles with the corresponding ifft group

loop requiring 7 cycles per loop iteration. Direct application of the HLS PIPELINE

directive to each of these loops with a target II of 1 resulted in synthesis errors be-

cause the tool was unable to ensure that there were no data dependencies between loop

iterations. It is known that the inner loop of the FFT does not contain data dependen-

cies between loop iterations because it performs all computations in place, iterating

through each element within the array. Therefore, an HLS DEPENDENCE directive

was added to each of these loops to inform the tool that they could be pipelined with-

out the risk of compromising the data dependencies between loop iterations. Because

the fft group loop both reads and writes to the same array, the scheduling of store op-

erations became an issue when attempting to reach an II of 1 and a minimum interval

of 2 was the best that could be achieved. Unfortunately, though the inclusion of the

HLS DEPENDENCE directive permitted the tool to continue pipelining the design,

the C/RTL co-simulation of the synthesized design returned dependence errors. This

was caused by the fact that when the HLS PIPELINE directive is applied to a nested

loop, it automatically flattens the outer loops by default. This became an issue be-

cause, despite the fact that no data dependencies existed between groups, the entire

ifft group must be executed and the pipeline flushed before the next iteration of the

fft stage loop due to dependencies between each stage. To combat this, applying an

HLS LOOP FLATTEN directive to the fft stage with the ‘off’ option was attempted

to prevent the tool from flattening the outer loop. Though this directive performed

correctly and the outer loop was not flattened, co-simulation of the design continued

to report dependency errors as the inner loop pipeline must not be guaranteed to

flush. The next attempt to combat the data dependency issue was the application

of an HLS UNROLL directive to the fft stage loop. The idea was that the inclusion

of this option would ensure that each stage would perform the fft group loop sepa-

rately with their own pipelined logic. Unfortunately, this option also did not solve the

47

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

problem with the loop dependency error still appearing during co-simulation of the

design. The application of HLS directives did not appear to be a sufficient solution to

this problem and the design was analyzed to determine areas of possible architectural

improvement.

A new design was conceived utilizing a “ping-pong” buffer structure to prevent

data dependencies between loop iterations and to allow for full pipelining of the

fft group loop with an II of 1. This was achieved through the addition of two memories

to the design with each loop iteration reading from one memory and writing to the

other. The memories would then swap in functionality each stage, ensuring that all

read and write operations could be scheduled without contention. The basic hardware

layout of the FFT with the “ping-pong” buffer is shown in Figure 4.6.

M1

BRAM

M1

BRAM

x

BRAM

x

BRAM

M0

BRAM

M0

BRAM

x

BRAM

x

BRAM
FFT

FFT

Stage 1 Stages 2 – log n - 1 Stage log n

FFT

Figure 4.6: Basic block diagram of the FFT with “ping-pong” memory buffer

This block diagram shows the first iteration operating over the data in the input

memory and writing the result into the first ‘ping’ memory. The next stage then reads

from the ‘ping’ memory and writes the result to the ‘pong’ memory. The following

stage then reads the previous result from the ‘pong’ memory and stores the results in

48

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

the ‘ping’ memory. This pattern continues until the last stage of the FFT at which

point the last memory to have been written is read from and the results stored back

into the input memory for further operation. Though the array containing the initial

data could be used as one of the two required memories, an odd number of stages

would require an entire memory copy between the second and initial memory to allow

the next operations access to the result. Because of this, it was decided to use the

input array only in the initial and final iterations of the FFT. The goal then became

to design the software in such a way that the HLS tool would generate this desired

hardware design. The first step was modification of the FFT functions to include the

“ping-pong” memory structure. A 2D array was added to the design with dimension

1 of size 2 and dimension 2 of size n. This made differentiating between the ‘ping’

and ‘pong’ memories simple as a single bit could be used as the address to select the

desired memory for access. By default, HLS does not implement these as two separate

memories because they are declared under the same array structure. To ensure that

each memory was implemented as its own BRAM, the HLS ARRAY PARTITION

directive was applied on the first dimension with the option ‘complete’. The first

iteration of the fft stage was then manually unrolled with the data read from the

input array and the result stored in the first ‘ping’ memory by setting the array index

to ’0’. The main fft stage loop was largely unchanged with only the loop bounds

reduced to allow for the unrolled stages and the address bit of the “ping-pong” array

negated to swap the role of each memory. The main fft group loop was then modified

to read from and write to the selected memories based on this address bit. The final

stage was also manually unrolled to read the data from the last written memory and

write the result to the input array. Pseudocode for the FFT with the “ping-pong”

memory structure is shown in Algorithm 12.

The HLS PIPELINE directive was then added to the fft stage 1, fft group, and

fft stage log n loops with a target II of 1. The IFFT was also modified through the

49

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Algorithm 12 Forward FFT Algorithm with “Ping-Pong” Memory Structure

Input: vector x of length n, pre-computed powers of ω
Output: transformed vector x

1: m = n/2
2: j = log n− 1
3: addr = 0
4: fft stage 1 : for k ← 0 to n/2 do
5: i← k
6: a← k
7: Maddr,i ← xi + xi+m
8: Maddr,i+m ← ωa(xi − xi+m)

9: m← m/2
10: j ← j − 1
11: fft stage : for s ← 1 to log n− 1 do
12: fft group : for k ← 0 to n/2 do
13: i← k + bk/2jc · 2j
14: a← k · 2s
15: M¬addr,i ←Maddr,i +Maddr,i+m

16: M¬addr,i+m ← ωa(Maddr,i −Maddr,i+m)

17: m← m/2
18: j ← j − 1
19: addr ← ¬addr
20: fft stage log n : for k ← 0 to n/2 do
21: i← k · 2
22: xi ←Maddr,i +Maddr,i+m

23: xi+m ←Maddr,i −Maddr,i+m

addition of the “‘ping-pong” memory structure in the same manner as the FFT. Syn-

thesis of the design failed because the HLS tool continued to detect data dependencies

between loop iterations. An HLS UNROLL directive was applied to the fft stage loop

to ensure that the HLS tool would pipeline each trip of the fft group loop separately.

Because of the “ping-pong” memory structure, each fft group contained explicit read

and write operations between separate memories. Synthesis of the design was suc-

cessful with all loops achieving the desired II of 1 clock cycle. The timing results of

the pipelined design are shown in Table 4.6.

These results show significant reduction in latency over the non-pipelined design of

the FFT. Note that the because the fft stage loop is completely unrolled, the latency

50

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.6: Timing results of the FFT with pipelined loops

Section Latency Iteration Latency Initiation Interval Trip Count

FFT 2,363 - 2,363 -

fft stage 1 261 7 1 256

fft group 261 7 1 256

fft stage log n 257 3 1 256

IFFT 2,371 - 2,371 -

ifft stage 1 257 3 1 256

ifft group 262 8 1 256

ifft stage log n 262 8 1 256

of the fft group loop is reported for only a single instance but is performed log n− 2

times. The timing results for the polynomial multiplier with pipelined FFT and IFFT

functions are shown in Table 4.7.

Table 4.7: Timing results of the polynomial multiplier with pipelined FFT

Section Latency Iteration Latency Initiation Interval Trip Count

weight coeff 516 6 1 512

FFT 2,363 - 2,363 -

mult coeff 516 6 1 512

IFFT 2,371 - 2,371 -

unweight coeff 516 6 1 512

Total 6,290 - 6,291 -

The overall latency of the design was significantly reduced to 6,290 clock cycles

from the 29,240 clock cycles required by the base implementation through the addition

of pipelined loops within the FFT and IFFT functions. Despite this, these functions

still comprise over 75% of the total latency of the design.

51

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

4.4 Loop Unrolling

The unrolling of loops was explored to further increase the parallelism of the design.

All of the inner loop operations within the design perform operations between ele-

ments within the array in place and could potentially be performed in parallel. There

is a large inherent trade-off between loop unrolling and the area of the design. Though

unrolling a loop divides the latency of that loop by the factor it is unrolled, it also

multiplies the number of operations by the same factor. As a result, the number of

hardware primitives required is also nearly multiplied by the loop unrolling factor.

Because of this, it is not possible to simply unroll every loop in the design by the

maximum amount possible and careful selection of both the loops to unroll and the

factor by which to unroll them must be considered. Because the fft group loop is a

nested loop with log n− 2 occurrences, unrolling this loop would result in the largest

reduction in latency. The memories within this loop already contain two concurrent

read and write operations per iteration making it impossible to unroll the loop and

achieve further parallelization without increasing the number of available read and

write ports. Though the loop would be unrolled and the trip count of the loop un-

rolled by the unrolling factor, the iteration latency would be multiplied by the same

factor resulting in the same overall latency. Thus, partitioning of the memories was

necessary to create more ports from which to access the memories concurrently. The

HLS PARTITION directive allows for the partitioning of arrays in multiple ways. The

cyclical option will partition the array into n segments with the data at each index

cyclically allocated to the n arrays in numeric order. For example, cyclic partitioning

by a factor of two would result in two arrays with one containing all data from the

even indices and the other containing all data from the odd indices of the original

array. Alternatively, block partitioning can be applied in which the array is directly

divided into even segments. For example, an array containing 100 elements that is

52

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

block partitioned by a factor of two would result in 2 arrays with the first array con-

taining the first 50 elements and the second array containing the last 50 elements. To

accurately determine the best partitioning scheme necessary to unroll the fft group

loop, a map of the indices necessary at each stage of a 16-point FFT was analyzed as

shown in Figure 4.7.

Stage 1

i i + m

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

k

Stage 2

i i + m

0

1

2

3

8

9

10

11

4

5

6

7

12

13

14

15

Stage 3

i i + m

0

1

4

5

8

9

12

13

2

3

6

7

10

11

14

15

Stage 4

i i + m

0

2

4

6

8

10

12

14

1

3

5

7

9

11

13

15

m = 8 m = 4 m = 2 m = 1

Figure 4.7: Index mapping of a 16-point FFT

It should be noted that in the case of the IFFT, the stage order is simply reversed

while all index values remain the same. This image shows that the FFT alternates

between operating on two even indices and operating on two odd indices. This is true

for all stages except for the last in which the first index is always even and the second

index is always odd. Analysis of the FFT structure shows that this will be the case for

all n-point FFTs because each stage forms groups of consecutive powers of two with

m = 20 = 1 resulting in the only group that operates on two points in an even/odd

pair. These results suggest that cyclically partitioning the input arrays and unrolling

the fft group by a factor of two would be optimal if not for the deviation in indexing

on the last stage. Fortunately, the stage resulting in m = 1 has already been manually

unrolled from the main fft group loop permitting the HLS UNROLL directive to be

53

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

applied with an unrolling factor of two along with the HLS PARTITION array with

cyclic partitioning by a factor of two on the input arrays. Synthesis of the design

with these directives applied did not result in the desired output as the HLS tool

was unable to determine the static nature of the indexing between the odd and even

partitions within the loop structure. This resulted in the tool scheduling two read and

write operations for each partitioned array and a multiplexer to dynamically select

which partition was necessary for the current iteration. This effectively nullified the

unrolling of the loop as no parallelization was achieved due to the incorrect scheduling

of the read and write operations. To remedy this, the input arrays were manually

partitioned into two arrays of half the size containing the even and odd data. To

improve the layout of the code, the butterfly operation was placed in a function. The

butterfly function was designed with a C++ function template to ensure that each

iteration of the fft stage loop statically selected which of the “ping-pong” memories

from which to read and write. This was necessary because the HLS tools cannot

resolve dependencies between function calls within a loop that operate on the same

array and will always schedule them sequentially. Use of the templated function

ensures that only a single version of the templated function will be called in each loop

iteration with static memory addressing allowing for parallel execution. The fft group

loop was then manually unrolled by a factor of two as shown in Algorithm 13 with the

unrolled initial and final stages omitted for clarity. The design was then synthesized

producing the timing results shown in Table 4.8. These results show that unrolling the

fft group loop resulted in the expected latency reduction of both the FFT and IFFT

functions by nearly half. Because the input arrays of the design were partitioned, the

weight coeff, mult coeff, and unweight coeff were also unrolled through application of

the HLS UNROLL directive with an unrolling factor of two producing the timing

results shown in Table 4.9.

Though a large reduction in latency is achieved, these reductions in latency result

54

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Algorithm 13 Forward FFT Algorithm with Partially Unrolled fft group Loop

Input: vector x of length n, pre-computed powers of ω
Output: transformed vector x

1: ... stage 1 is omitted ...
2: m← m/4
3: j ← j − 2
4: fft stage : for s ← 1 to log n− 1 do
5: fft group : for k ← 0 to n/2 by 2 do
6: base← k + bk/2jc · 2j
7: idx0← base/2
8: idx1← (base+m)/2
9: a← k · 2s

10: b← (k + 1) · 2s
11: if s0 then
12: addr = 0
13: else
14: addr = 1
15: fft butterfly(M,addr, idx0, idx1, a, b)

16: m← m/2
17: j ← j − 1
18: addr ← ¬addr
19: ... stage log n is omitted ...

in increased resource utilization. This trade-off between latency and resource utiliza-

tion required further analysis of the synthesized design for various polynomial degrees

and coefficient sizes.

55

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.8: Timing results of the FFT with partially unrolled fft group loop

Section Latency Iteration Latency Initiation Interval Trip Count

FFT 1,202 - 1,202 -

fft stage 1 131 5 1 128

fft group 132 6 1 128

fft stage log n 129 3 1 128

IFFT 1,210 - 1,210 -

ifft stage 1 129 3 1 128

ifft group 133 7 1 128

ifft stage log n 132 6 1 128

Table 4.9: Timing results of the polynomial multiplier with partially unrolled FFT loops

Section Latency Iteration Latency Initiation Interval Trip Count

weight coeff 132 6 1 128

FFT 1,202 - 1,202 -

mult coeff 132 6 1 128

IFFT 1,210 - 1,210 -

unweight coeff 132 6 1 128

Total 2,816 - 2,817 -

4.5 Design Parameters

A python script was created to generate various design parameters based on the

security recommendations in Table 2.1. This table presents the maximum size of the

coefficients for polynomials of varying degree achieving 128, 192, and 256-bit security

levels. The script generated primes of the maximum coefficient size for each of the

configurations along with the primitive n-th root of unity ω and the weighting factor

θ associated with each. The memories containing the exponentiation of these values

were also generated for each of these configurations with the script automatically

creating a header file containing the initialization of constant arrays to be included in

the synthesized design. The script allows for the design to be flexible for polynomials

56

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

of any degree and coefficient size requiring only the specification of n and log p to

obtain the necessary constants to synthesize a specific design configuration.

4.6 Initial Results

The basic and modified polynomial multipliers were synthesized with Vivado HLS

2018.3 using the default settings and targeted the Zynq UltraScale+ MPSoC ZCU102

Evaluation Kit (xczu9eg-ffvb1156-2-i-es2) with a clock period of 4 ns for each of the

configurations outlined in Table 2.1. The synthesis results of the base multiplier are

shown in Table 4.10. The resource utilization is best put in perspective of the target

Table 4.10: Synthesis results of the base polynomial multiplier for each security configu-
ration

n log p BRAM 18K DSP48E FF LUT

1,024 19 18 42 3,705 4,286
1,024 22 18 49 3,872 4,265
1,024 31 18 112 5,454 5,277

2,048 33 28 112 5,681 5,605
2,048 42 37 133 9,133 6,938
2,048 58 51 266 10,569 8,000

4,096 62 86 399 12,484 9,281
4,096 80 110 623 13,895 10,402
4,096 113 158 1,218 15,974 12,108

8,192 123 303 1,281 18,494 12,499
8,192 157 386 2,086 21,146 14,380
8,192 223 552 4,277 28,307 17,898

16,384 243 1,136 4,956 30,098 18,854
16,384 310 1,452 8,134 35,927 22,137
16,384 443 2,070 16,828 47,143 23,850

device with the percentage of available resources that would be required to imple-

ment the design. The utilization percentage of each resource on the target device

for the base design was calculated as shown in Table 4.11. These results show that

configurations up to and including n = 8192 and log p = 157 fit on the device without

57

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.11: Resource utilization of the base polynomial multiplier for each security con-
figuration targeting part xczu9eg-ffvb1156-2-i-es2

n log p BRAM 18K (%) DSP48E (%) FF (%) LUT (%)

1,024 19 1 2 1 2
1,024 22 1 2 1 2
1,024 31 1 4 1 2

2,048 33 2 4 1 2
2,048 42 2 5 2 3
2,048 58 3 11 2 3

4,096 62 5 16 2 3
4,096 80 6 25 3 4
4,096 113 9 48 3 4

8,192 123 17 51 3 5
8,192 157 21 83 4 5
8,192 223 30 170 5 7

16,384 243 62 197 5 7
16,384 310 80 323 7 8
16,384 443 113 668 9 9

issue whereas larger configurations run out of DSP resources. Because the amount of

DSP resources required are only dependent upon the size of the coefficients and the

maximum coefficient size grows for polynomials of higher degree, larger polynomials

could be utilized for the resource constrained maximum coefficient size without com-

promising security. For example, it would be possible to have a configuration with

n = 16384 and log p = 157 that would both fit on the target device and allow for

double the amount of data with at least a 256-bit level of security.

The latency of the design was also reported by the HLS tool and recorded in

Table 4.12. Because the design was synthesized with a target clock period of 4 ns,

the time required to produce a polynomial product was calculated by multiplying the

clock period by the latency in clock cycles. The goal of this work is to improve the

performance of purely software based HE solutions through the design of hardware

accelerators with HLS. To benchmark this achievement, the performance of the syn-

58

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.12: Timing results of the base polynomial multiplier for each security configuration

n log p Latency Time (ms) NTL (ms) Speedup

1,024 19 94,251 0.377 1.231 3.265
1,024 22 94,251 0.377 1.211 3.212
1,024 31 114,734 0.459 1.211 2.639

2,048 33 250,928 1.004 2.486 2.477
2,048 42 284,726 1.139 2.337 2.052
2,048 58 284,726 1.139 3.248 2.852

4,096 62 741,438 2.966 7.301 2.462
4,096 80 741,438 2.966 10.436 3.519
4,096 113 741,438 2.966 14.582 4.917

8,192 123 1,654,848 6.619 25.367 3.832
8,192 157 1,654,848 6.619 30.280 4.574
8,192 223 1,761,347 7.045 40.644 5.769

16,384 243 3,784,773 15.139 98.995 6.539
16,384 310 3,784,773 15.139 121.281 8.011
16,384 443 4,128,840 16.515 228.205 13.818

thesized design was compared against the polynomial multiplication function within

the NTL software library as it is used within HELib, a software library for FHE [45].

This was achieved by generating and performing 100 random multiplications for each

configuration through the NTL software library on a 4-core/4-thread 3.7 GHz AMD

A10-7850k CPU with 16 GB of RAM and measuring the average computation time.

With these results, it was possible to calculate the speedup of the design synthe-

sized through HLS over a proven software solution. The results were promising as

even the basic implementation produced a speedup greater than 1 with a maximum

speedup of 4.574 achieved for the largest configuration fitting on the target device

with n = 8192 and log p = 157. The synthesis results of the pipelined and loop

unrolled polynomial multiplier are shown in Table 4.13 and the resource utilization

percentage for the target device is shown in Table 4.14. As expected, these results

show an increase in utilization across all resources, but both FF and LUT totals

remain below the available device total for all configurations. The DSP resources

59

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.13: Synthesis results of the pipelined and loop unrolled polynomial multiplier for
each security configuration

n log p BRAM 18K DSP48E FF LUT

1,024 19 114 156 15,883 20,158
1,024 22 114 182 16,697 20,350
1,024 31 114 416 23,432 24,852

2,048 33 140 416 24,718 26,907
2,048 42 197 494 38,090 32,441
2,048 58 267 988 44,530 37,967

4,096 62 412 1,482 52,407 43,294
4,096 80 526 2,314 59,921 49,322
4,096 113 754 4,524 70,349 58,500

8,192 123 1,401 4,758 81,179 61,183
8,192 157 1,774 7,748 93,895 71,371
8,192 223 2,538 15,886 132,084 90,935

16,384 243 5,116 18,408 141,242 96,662
16,384 310 6,540 30,212 170,052 115,156
16,384 443 9,318 62,504 238,129 134,520

32,768 481 19,534 72,462 254,683 143,607
32,768 616 25,022 119,366 368,677 174,071
32,768 886 35,972 248,092 396,001 122,653

continue to be the limiting factor as the design achieves a maximum configuration of

n = 4096 and log p = 80 before more than 100% of the available DSP resources are

required. The timing results of the design were recorded and the speedup over NTL

was calculated as shown in Table 4.15. These results show a significant improvement

over the base design achieving a minimum speedup over the NTL software library of

44.626 for n = 2048 and log p = 42 and a maximum speedup of 93.092 for n = 4096

and log p = 80 for configurations fitting the target device. Though the design achieves

significant speedup over NTL, the explosion of DSP and BRAM resources for large

polynomials becomes problematic as the design is very restrictive in terms of possible

configurations on the target device. As flexibility is another primary goal of the work,

the design was analyzed to reduce the number of required resources.

60

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.14: Resource utilization of the pipelined and loop unrolled polynomial multiplier
for each security configuration targeting part xczu9eg-ffvb1156-2-i-es2

n log p BRAM 18K (%) DSP48E (%) FF (%) LUT (%)

1,024 19 6 6 3 7
1,024 22 6 7 3 7
1,024 31 6 17 4 9

2,048 33 8 17 5 10
2,048 42 11 20 7 12
2,048 58 15 39 8 14

4,096 62 23 59 10 16
4,096 80 29 92 11 18
4,096 113 41 180 13 21

8,192 123 77 189 15 22
8,192 157 97 307 17 26
8,192 223 139 630 24 33

16,384 243 280 730 26 35
16,384 310 359 1,199 31 42
16,384 443 511 2,480 43 49

32,768 481 1,071 2,875 46 52
32,768 616 1,372 4,737 67 64
32,768 886 1,972 9,845 72 45

61

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.15: Timing results of the pipelined and loop unrolled polynomial multiplier

n log p Latency FPGA (ms) NTL (ms) Speedup

1,024 19 6,083 0.024 1.231 50.592
1,024 22 6,083 0.024 1.211 49.770
1,024 31 6,122 0.024 1.211 49.453

2,048 33 13,056 0.052 2.486 47.603
2,048 42 13,092 0.052 2.337 44.626
2,048 58 13,092 0.052 3.248 62.023

4,096 62 28,026 0.112 7.301 65.127
4,096 80 28,026 0.112 10.436 93.092
4,096 113 28,026 0.112 14.582 130.076

8,192 123 59,812 0.239 25.367 106.028
8,192 157 59,812 0.239 30.280 126.563
8,192 223 59,841 0.239 40.644 169.800

16,384 243 127,458 0.510 98.995 194.172
16,384 310 127,458 0.510 121.281 237.884
16,384 443 127,502 0.510 228.205 447.454

32,768 481 270,898 1.084 470.785 434.467
32,768 616 270,926 1.084 570.413 526.355
32,768 886 270,865 1.083 901.426 831.988

62

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

4.7 Resource Allocation

The DSP resources were primarily utilized for the many multiplication operations

within the polynomial multiplier. Because the multiplication operation was per-

formed at many different stages within the design, these they were implemented as

separate multiplier primitives in hardware utilizing different DSP resources. Vivado

HLS supports resource sharing in which the number of instances of specific hardware

primitives or functions can be allocated. This allows for a single hardware instance to

be utilized in multiple locations within the design. Though resource sharing is bene-

ficial in that it can reduce the number of required resources, it does have drawbacks

as the sharing of hardware resources results in more congested routing and can lower

the maximum clock frequency achievable by the design. The first step taken was to

move the multiplication operation within the modular reduction function and target

this as the limited resource. The current design contained HLS UNROLL directives

with a factor of two applied to the weight coeff, mult coeff, and unweight coeff loops

resulting in a minimum of four concurrent modular multiplication functions as each

array was manually partitioned by two and operated in parallel. To reduce the num-

ber of required function calls, the HLS UNROLL directives were removed from each of

these loops resulting in a reduced minimum of two required instances. To ensure that

the tool shared these resources in the synthesized design, the HLS ALLOCATION

directive was applied to the top-level function limiting the total number of instances

of the modular multiplication to two. A second version of the design was also created

removing the manual partitioning of the data arrays and the manual loop unrolling

of the FFT and IFFT functions for comparison. With these changes, the design re-

quired a minimum of only a single shared modular multiplication function and the

HLS ALLOCATION directive was applied to the top-level function accordingly.

63

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

4.8 Synthesis Results

The final polynomial multiplier designs with resource sharing were synthesized with

Vivado HLS 2018.3 using the default settings targeting the Zynq UltraScale+ MPSoC

ZCU102 Evaluation Kit (xczu9eg-ffvb1156-2-i-es2) with a clock period of 4 ns for each

of the configurations outlined in Table 2.1. The synthesis results of the pipelined and

loop unrolled polynomial multiplier with resource sharing are shown in Table 4.16.

These results show a significant reduction in the number of required BRAM and DSP

Table 4.16: Synthesis results of the pipelined and loop unrolled polynomial multiplier
with resource sharing for each security configuration

n log p BRAM 18K DSP48E FF LUT

1,024 19 59 24 10,568 20,172
1,024 22 59 48 11,225 21,924
1,024 31 59 96 14,363 25,420

2,048 33 66 96 17,213 23,044
2,048 42 97 120 24,490 26,724
2,048 58 130 240 29,338 31,842

4,096 62 207 384 35,009 36,743
4,096 80 265 600 40,235 42,553
4,096 113 381 1,176 49,143 52,555

8,192 123 754 1,200 44,847 31,264
8,192 157 947 1,968 51,613 35,318
8,192 223 1,354 4,056 71,926 43,426

16,384 243 2,812 4,728 79,519 46,395
16,384 310 3,594 7,800 98,020 53,599
16,384 443 5,125 16,224 129,570 56,349

32,768 481 10,916 18,840 140,062 60,114
32,768 616 13,980 31,128 189,248 70,952
32,768 886 20,100 64,896 229,909 62,180

resources. For example, the largest achieved configuration of the pipelined and loop

unrolled polynomial multiplier without resource sharing for the target device was

n = 4096 and log p = 80 requiring 526 BRAM 18K and 2,314 DSP48E resources

whereas this same configuration with resource sharing requires only 265 BRAM 18K

64

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

and 600 DSP48E resources. The utilization percentage of each resource on the target

device for the pipelined and loop unrolled polynomial multiplier with resource sharing

was calculated as shown in Table 4.17. The largest configuration achieved without

Table 4.17: Resource utilization of the pipelined and loop unrolled polynomial multiplier
with resource sharing for each security configuration targeting part xczu9eg-ffvb1156-2-i-es2

n log p BRAM 18K (%) DSP48E (%) FF (%) LUT (%)

1,024 19 3 1 2 7
1,024 22 3 2 2 8
1,024 31 3 4 3 9

2,048 33 4 4 3 8
2,048 42 5 5 4 10
2,048 58 7 10 5 12

4,096 62 11 15 6 13
4,096 80 15 24 7 16
4,096 113 21 47 9 19

8,192 123 41 48 8 11
8,192 157 52 78 9 13
8,192 223 74 161 13 16

16,384 243 154 188 15 17
16,384 310 197 310 18 20
16,384 443 281 644 24 21

32,768 481 598 748 26 22
32,768 616 766 1,235 35 26
32,768 886 1,102 2,575 42 23

over utilization of DSP resources became n = 8192 and log p = 157, a significant

improvement over the implementation without resource sharing. Despite this, these

changes were expected to come at a cost as the removal of unrolled loops will increase

the latency of the design to some degree. The timing results of the pipelined and

loop unrolled polynomial multiplier with resource sharing are shown in Table 4.18.

The speedup of the configuration with n = 4096 and log p = 80 for the pipelined

and loop unrolled polynomial multiplier with resource sharing is 78.587 versus the

speedup of 93.092 achieved without resource sharing. Though reduced, the speedup

65

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.18: Timing results of the pipelined and loop unrolled polynomial multiplier with
resource sharing for each security configuration

n log p Latency FPGA (ms) NTL (ms) Speedup

1,024 19 7,390 0.030 1.231 41.644
1,024 22 7,390 0.030 1.211 40.968
1,024 31 7,399 0.030 1.211 40.918

2,048 33 15,614 0.062 2.486 39.804
2,048 42 15,686 0.063 2.337 37.247
2,048 58 15,686 0.063 3.248 51.766

4,096 62 33,184 0.133 7.301 55.004
4,096 80 33,199 0.133 10.436 78.587
4,096 113 33,210 0.133 14.582 109.771

8,192 123 70,120 0.280 25.367 90.441
8,192 157 70,120 0.280 30.280 107.958
8,192 223 70,150 0.281 40.644 144.847

16,384 243 148,011 0.592 98.995 167.209
16,384 310 148,011 0.592 121.281 204.851
16,384 443 148,041 0.592 228.205 385.375

32,768 481 311,920 1.248 470.785 377.328
32,768 616 311,978 1.248 570.413 457.094
32,768 886 311,948 1.248 901.426 722.417

remains significantly above 1 showcasing the speed of the accelerated multiplier over

the polynomial multiplication function within the NTL software library. Additionally,

the largest achieved configuration of n = 8192 and log p = 157 for the design with

resource sharing results in a maximum speedup of 107.958 over the NTL software

library. The full speedup results for this design are displayed in Figure 4.8.

The synthesis results of the pipelined polynomial multiplier with resource sharing

and no unrolled loops are shown in Table 4.19. These results also show a significant

reduction in the number of required BRAM and DSP resources as the pipelined and

loop unrolled design with resource sharing with n = 4096 and log p = 80 required only

265 BRAM 18K and 600 DSP48E resources whereas the pipelined only version with

resource sharing required 191 BRAM 18K and 300 DSP48E resources. The number

66

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

1024 2048 4096 8192 16384 32768

0

100

200

300

400

500

600

700

Number of Coefficients

S
p

ee
d
u
p

Speedup of the Polynomial Multiplier versus NTL

256-bit Security
192-bit Security
128-bit Security

Figure 4.8: Speedup of the pipelined and loop unrolled polynomial multiplier with resource
sharing versus NTL

of required DSP resource were reduced by half, directly proportional to the removal

of the loops unrolled by a factor of two. The utilization percentage of each resource

on the target device for the pipelined polynomial multiplier with resource sharing and

no unrolled loops was calculated as shown in Table 4.20. The largest configuration

achieved by the pipelined design without unrolled loops became n = 8192 and log p =

223 with the number of available BRAMs becoming the new limiting factor as n =

16384 and log p = 243 would require only 93.810% of the DSP resources but 115.170%

of the available BRAM resources. The timing results of the pipelined polynomial

multiplier with resource sharing and no unrolled loops are shown in Table 4.21. As

anticipated, the removal of unrolled loops by a factor of two doubled the latency of

the design as the configuration with n = 4096 and log p = 80 yielding a speedup

of 39.557 versus the speedup of 78.587 achieved previously. The largest achievable

configuration of n = 8192 and log p = 223 for this design resulted in a maximum

67

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.19: Synthesis results of the pipelined polynomial multiplier with resource sharing
for each security configuration

n log p BRAM 18K DSP48E FF LUT

1,024 19 27 12 8,744 13,357
1,024 22 27 24 9,041 14,227
1,024 31 27 48 10,182 15,745

2,048 33 46 48 11,379 17,965
2,048 42 61 60 15,100 20,417
2,048 58 84 120 17,580 24,464

4,096 62 149 192 21,503 27,981
4,096 80 191 300 26,482 33,073
4,096 113 275 588 32,278 40,681

8,192 123 552 600 35,863 44,922
8,192 157 701 984 42,017 54,077
8,192 223 1,002 2,028 69,054 72,665

16,384 243 2,108 2,364 77,740 81,999
16,384 310 2,694 3,900 95,734 100,511
16,384 443 3,843 8,112 136,186 134,169

32,768 481 8,240 9,420 152,827 152,290
32,768 616 10,552 15,564 254,252 189,655
32,768 886 15,172 32,448 266,559 137,797

speedup of 72.704 over the NTL software library. The full speedup results for this

design are displayed in Figure 4.9.

The developed polynomial multiplier designs expose the trade-offs between speed

and area that can be achieved and allow for further flexibility depending upon the

resource and security constraints of the target device. For example, the fully pipelined

and loop unrolled design provides improved speed at the cost of increased resource

utilization, but it may be suitable in an application that does not require polynomials

with large coefficients. Furthermore, the xczu9eg device targeted in this work was

used to benchmark the design, but there are many devices available that contain a

larger number of hardware resources. For example, the Virtex Ultrascale+ devices

utilized by AWS F1 instances in the cloud (xcvu9p) [1] and the Xilinx Alveo family

68

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.20: Resource utilization of the pipelined polynomial multiplier with resource
sharing for each security configuration targeting part xczu9eg-ffvb1156-2-i-es2

n log p BRAM 18K (%) DSP48E (%) FF (%) LUT (%)

1,024 19 1 0 2 5
1,024 22 1 1 2 5
1,024 31 1 2 2 6

2,048 33 3 2 2 7
2,048 42 3 2 3 7
2,048 58 5 5 3 9

4,096 62 8 8 4 10
4,096 80 10 12 5 12
4,096 113 15 23 6 15

8,192 123 30 24 7 16
8,192 157 38 39 8 20
8,192 223 55 80 13 27

16,384 243 116 94 14 30
16,384 310 148 155 17 37
16,384 443 211 322 25 49

32,768 481 452 374 28 56
32,768 616 579 618 46 69
32,768 886 832 1,288 49 50

of data center workload accelerator cards (xcu250) [46] contain vast quantities of

available resources for hardware acceleration of large-scale computing tasks. The

available resources of each of these parts are outlined in Table 4.22. Both devices

provide significantly more resources over the target xczu9eg device with the xcvu9p

devices attaining a maximum configuration of n = 16, 384 and log p = 310 and the

xcu250 devices reaching a maximum configuration of n = 32, 768 and log p = 481

before running out of DSP resources for the pipelined polynomial multiplier with

resource sharing and no unrolled loops. The developed polynomial multiplier is thus

configurable for a wide range of security configurations that can be selected depending

on the required latency and resource constraints for a particular application.

69

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.21: Timing results of the pipelined polynomial multiplier with resource sharing
for each security configuration

n log p Latency FPGA (ms) NTL (ms) Speedup

1,024 19 14,551 0.058 1.231 21.150
1,024 22 14,551 0.058 1.211 20.806
1,024 31 14,560 0.058 1.211 20.793

2,048 33 30,964 0.124 2.486 20.072
2,048 42 31,036 0.124 2.337 18.825
2,048 58 31,036 0.124 3.248 26.163

4,096 62 65,930 0.264 7.301 27.685
4,096 80 65,956 0.264 10.436 39.557
4,096 113 65,967 0.264 14.582 55.262

8,192 123 139,728 0.559 25.367 45.386
8,192 157 139,728 0.559 30.280 54.177
8,192 223 139,758 0.559 40.644 72.704

16,384 243 295,441 1.182 98.995 83.769
16,384 310 295,441 1.182 121.281 102.627
16,384 443 295,486 1.182 228.205 193.076

32,768 481 623,204 2.493 470.785 188.857
32,768 616 623,334 2.493 570.413 228.775
32,768 886 623,290 2.493 901.426 361.560

Table 4.22: Available resources for various Xilinx FPGAs

Part URAM 288K BRAM 36K BRAM 18K DSP48E FF LUT

xczu9eg - - 1,824 2,520 548,160 274,080

xcvu9p - - 4,320 6,840 2,364,480 1,182,240

xcu250 1,280 2,000 - 11,508 2,749,000 1,341,000

70

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

1024 2048 4096 8192 16384 32768

0

50

100

150

200

250

300

350

Number of Coefficients

S
p

ee
d
u
p

Speedup of the Polynomial Multiplier versus NTL

256-bit Security
192-bit Security
128-bit Security

Figure 4.9: Speedup of the pipelined polynomial multiplier with resource sharing versus
NTL

71

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

4.9 Implementation Results

The synthesized polynomial multiplier designs with resource sharing were exported

to and implemented with Vivado 2018.3 using the default settings targeting the Zynq

UltraScale+ MPSoC ZCU102 Evaluation Kit (xczu9eg-ffvb1156-2-i-es2). The initial

target clock period was 4 ns for a subset of the 256-bit security configurations out-

lined in Table 2.1 up to a maximum of 8,192 coefficients. The implementation results

of the pipelined and loop unrolled polynomial multiplier with resource sharing are

shown in Table 4.23. This table shows that the actual number of resources required

Table 4.23: Implementation results of the pipelined and loop unrolled polynomial mul-
tiplier with resource sharing for 256-bit security configurations targeting part xczu9eg-
ffvb1156-2-i-es2

n log p BRAM 18K DSP48E FF LUT

1,024 19 30 24 8,177 6,485
2,048 33 36 96 10,160 10,789
4,096 62 120 384 20,228 18,956
8,192 123 483 1,192 41,645 28,407

for each configuration is less than reported by synthesis for all types. For example, for

n = 8192 and log p = 123, synthesis reported utilizations of 754 BRAMs, 1,200 DSPs,

44,847 FFs, and 31,264 LUTs whereas implementation of the design actually required

483 BRAMs, 1,192 DSPs, 41,645 FFs, and 28,407 LUTs. The utilization percentage

of each resource on the target device for the pipelined and loop unrolled polynomial

multiplier with resource sharing was also calculated for the implementation results as

shown in Table 4.24. Because of the reduced resource utilization, the percentage of

resources required for the target device has been decreased as well. The BRAM uti-

lization has been significantly reduced as, with n = 8192 and log p = 123, 41% of the

BRAM resources are required for synthesis whereas only 26% of the BRAM resources

are actually required for implementation. The implementation timing results of the

pipelined and loop unrolled polynomial multiplier with resource sharing are shown in

72

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

Table 4.24: Implementation resource utilization of the pipelined and loop unrolled poly-
nomial multiplier with resource sharing for 256-bit security configurations targeting part
xczu9eg-ffvb1156-2-i-es2

n log p BRAM 18K (%) DSP48E (%) FF (%) LUT (%)

1,024 19 2 1 1 2
2,048 33 2 4 2 4
4,096 62 7 15 4 7
8,192 123 26 47 8 10

Table 4.25. Note that the target clock period was 4 ns for all configurations and was

Table 4.25: Implementation timing results of the pipelined and loop unrolled polynomial
multiplier with resource sharing for 256-bit security configurations targeting part xczu9eg-
ffvb1156-2-i-es2

n log p WNS (ns) fmax (MHz) Latency FPGA (ms) NTL (ms) Speedup

1,024 19 0.658 299.222 7,390 0.025 1.231 49.843
2,048 33 0.317 271.518 15,614 0.058 2.486 43.230
4,096 62 0.099 256.345 33,184 0.129 7.301 56.400
8,192 123 0.002 200.080 70,120 0.350 25.367 72.382

achieved for n = 1024, 2048, 4096, but had to be increased to 5 ns for n = 8192 as

setup times were violated and timing was not met. The maximum achievable clock

frequency for each configuration was calculated based on the Worst Negative Slack

(WNS) achieved from the place and route of the design on the target device. The

goal clock period of 4 ns was used as the basis for the timing calculations from the

synthesis results, but the actual timing results for the target device were obtained

from the implementation. A maximum clock frequency of 299.222 MHz was achieved

for n = 1024 and log q = 19 resulting in a speedup of 49.843 versus the synthesis

speedup of 41.644. As the synthesis speedup results were based on a 250 MHz clock,

the actual speedup that can be achieved is greater once implemented on the target

device. Conversely, a minimum clock frequency of 200.080 MHz was achieved for

n = 8192 and log q = 123 resulting in a speedup of 72.382, significantly lower than

the speedup of 90.441 achieved by the synthesis target. The speedup results using the

73

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

achieved frequencies from implementation versus the target frequencies from synthesis

for a clock frequency of 250 MHz are displayed in Figure 4.10.

1024 2048 4096 8192

40

60

80

Number of Coefficients

S
p

ee
d
u
p

Speedup of the Polynomial Multiplier versus NTL

Synth
Impl

Figure 4.10: Implementation speedup of the pipelined and loop unrolled polynomial mul-
tiplier with resource sharing versus NTL for 256-bit security configurations targeting part
xczu9eg-ffvb1156-2-i-es2

The implementation results of the pipelined polynomial multiplier with resource

sharing are shown in Table 4.26. Additionally, this table shows that the actual num-

Table 4.26: Implementation results of the pipelined polynomial multiplier with resource
sharing for 256-bit security configurations targeting part xczu9eg-ffvb1156-2-i-es2

n log p BRAM 18K DSP48E FF LUT

1,024 19 15.5 12 5,282 5,154
2,048 33 32.5 48 7,412 7,570
4,096 62 113 192 14,144 13,860
8,192 123 479 596 35,665 31,993

ber of resources required for each configuration is also less than reported by synthesis

for each type. For n = 8192 and log p = 123, synthesis reported utilizations of

552 BRAMs, 600 DSPs, 35,863 FFs, and 44,922 LUTs whereas implementation of the

design actually required 479 BRAMs, 596 DSPs, 35,665 FFs, and 31,993 LUTs. Inter-

74

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

estingly, the BRAMs necessary for synthesis of the design without loop unrolling was

much closer to the amount required for implementation than the design with loop

unrolling. The utilization percentage of each resource on the target device for the

pipelined and loop unrolled polynomial multiplier with resource sharing was also cal-

culated for the implementation results as shown in Table 4.27. Though the amount of

Table 4.27: Implementation resource utilization of the pipelined polynomial multiplier
with resource sharing for 256-bit security configurations targeting part xczu9eg-ffvb1156-2-
i-es2

n log p BRAM 18K (%) DSP48E (%) FF (%) LUT (%)

1,024 19 1 0 1 2
2,048 33 2 2 1 3
4,096 62 6 8 3 5
8,192 123 26 24 7 12

required resources has been reduced compared to synthesis, because the design with-

out loop unrolling requires fewer resources overall, there was not a large reduction in

the utilization percentage. For example, the BRAM utilization has been not signifi-

cantly reduced as, with n = 8192 and log p = 123, 30% of the BRAM resources were

estimated for synthesis whereas 26% of the BRAM resources are actually required

for implementation. The implementation timing results of the pipelined multiplier

with resource sharing are shown in Table 4.28. As before, the target clock period was

Table 4.28: Implementation timing results of the pipelined polynomial multiplier with
resource sharing for 256-bit security configurations targeting part xczu9eg-ffvb1156-2-i-es2

n log p WNS (ns) fmax (MHz) Latency FPGA (ms) NTL (ms) Speedup

1,024 19 0.692 302.297 14,551 0.048 1.231 25.574
2,048 33 0.246 266.383 30,964 0.116 2.486 21.387
4,096 62 0.079 255.037 65,930 0.259 7.301 28.242
8,192 123 0.084 203.417 139,728 0.687 25.367 36.930

4 ns for all configurations and was achieved for n = 1024, 2048, 4096, but had to be

increased to 5 ns for n = 8192 as setup times were violated and timing was not met.

The maximum achievable clock frequency for each configuration was again calculated

75

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

based on the WNS achieved from the place and route of the design on the target

device. The goal clock period of 4 ns was used as the basis for the timing calculations

from the synthesis results, but the actual timing results for the target device were

obtained from the implementation. A maximum clock frequency of 302.297 MHz

was achieved for n = 1024 and log q = 19 resulting in a speedup of 25.574 versus

the synthesis speedup of 21.150. As the synthesis speedup results were based on a

250 MHz clock, the actual speedup that can be achieved is greater once implemented

on the target device. Conversely, a minimum clock frequency of 203.417 MHz was

achieved for n = 8192 and log q = 123 resulting in a speedup of 36.930, much lower

than the speedup of 45.386 achieved by the synthesis target. The speedup results us-

ing the achieved frequencies from implementation versus the target frequencies from

synthesis for a clock frequency of 250 MHz are displayed in Figure 4.11.

1024 2048 4096 8192

20

30

40

Number of Coefficients

S
p

ee
d
u
p

Speedup of the Polynomial Multiplier versus NTL

Synth
Impl

Figure 4.11: Implementation speedup of the pipelined polynomial multiplier with resource
sharing versus NTL for 256-bit security configurations targeting part xczu9eg-ffvb1156-2-i-
es2

These implementation results show that the smaller configurations are able to

achieve higher clock frequencies than the larger configurations for both designs. This

76

CHAPTER 4. FFT BASED POLYNOMIAL MULTIPLIER

allows for the smaller configurations to achieve greater speedups than the target

results from synthesis. The larger designs required slower clock frequencies than the

target resulting in lower speedups than the synthesis results. This is likely due to

more congested routing on the FPGA because of the higher resource utilization and

larger coefficient sizes. It is suggested that the coefficient size is the largest bottleneck

because the design without loop unrolling does not reach significantly higher clock

frequencies than the design with loop unrolling for the same configuration despite

much higher resource utilization. Further speedup could potentially be achieved by

dividing the integer multiplications for these large coefficients into multiple operations

with smaller operands. Though this method would result in higher latency, this

drawback may be overshadowed by an increase in clock frequency and requires further

investigation. Despite this, the overall results continue to show a positive increase in

speedup over NTL. This is shown by the implementation results in Figures 4.10 and

4.11 in which an increase in the configuration size continues to result in an increase in

achieved speedup despite the decrease in achieved clock frequency over the synthesis

results. It should be noted that these implementation results are dependent upon

the target device and larger devices with more resources may be able to achieve the

target frequency of 250 MHz or more. Therefore, the best design and configuration

for a specific application will be heavily dependent on the overall timing requirements

and the selected target device.

77

Chapter 5

Conclusion

The security benefits of HE are significant, especially in regards to cloud computing,

as secure data can be operated on without revealing the underlying plain text to

untrusted parties. The acceleration of the computationally intensive high-precision,

high-degree polynomial arithmetic operations within FHE schemes is of the utmost

importance to enable their widespread use. The hardware accelerated FFT based

polynomial multiplier developed in this work through HLS shows promise in achiev-

ing this reality with significant speedup over the modular polynomial multiplication

operations performed by the NTL software library for various security configurations.

Although the design does not exceed the performance of dedicated hardware solu-

tions, the multiplier exhibits flexibility in the selection of both the polynomial degree

and coefficient size allowing for it to be configured for the security level and target

device required for a specific application. This would not be possible for a typical

hardware design flow without significant effort. Future work will be necessary to im-

plement the remaining functions required by FHE schemes and to test a full system

within a cloud environment.

78

Bibliography

[1] Amazon. Amazon Web Services (AWS) - cloud computing services. [Online].
Available: https://aws.amazon.com

[2] W. Wang, X. Huang, N. Emmart, and C. Weems, “VLSI design of a large-number
multiplier for fully homomorphic encryption,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 1879–1887, Sept 2014.

[3] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao,
and I. Verbauwhede, “High-speed polynomial multiplication architecture for ring-
LWE and SHE cryptosystems,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 62, no. 1, pp. 157–166, Jan 2015.

[4] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic encryption
in hardware,” IEEE Transactions on Computers, vol. 64, no. 6, pp. 1509–1521,
June 2015.

[5] M. J. Foster, “Accelerating homomorphic encryption in the cloud environ-
ment through high-level synthesis and reconfigurable resources,” Master’s thesis,
Rochester Institute of Technology, 2017.

[6] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and G. Gogniat,
“Hardware/software co-design of an accelerator for FV homomorphic encryption
scheme using karatsuba algorithm,” IEEE Transactions on Computers, vol. 67,
no. 3, pp. 335–347, March 2018.

[7] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryp-
tion,” Cryptology ePrint Archive, Report 2012/144, 2012, https://eprint.iacr.
org/2012/144.

[8] K. Kawamura, M. Yanagisawa, and N. Togawa, “A loop structure optimization
targeting high-level synthesis of fast number theoretic transform,” in 2018 19th
International Symposium on Quality Electronic Design (ISQED), March 2018,
pp. 106–111.

[9] A. Mkhinini, P. Maistri, R. Leveugle, R. Tourki, and M. Machhout, “A flexible
RNS-based large polynomial multiplier for fully homomorphic encryption,” in
2016 11th International Design Test Symposium (IDT), Dec 2016, pp. 131–136.

[10] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki, “HLS design of a hard-
ware accelerator for homomorphic encryption,” in 2017 IEEE 20th International
Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS),
April 2017, pp. 178–183.

79

https://aws.amazon.com
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

BIBLIOGRAPHY

[11] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki, “Co-designed accelerator
for homomorphic encryption applications,” Advances in Science, Technology and
Engineering Systems Journal, vol. 3, no. 1, pp. 426–433, 2018.

[12] Vivado Design Suite User Guide: High-Level Synthesis, Xilinx, 2018. [On-
line]. Available: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2018 3/ug902-vivado-high-level-synthesis.pdf

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the 41st annual ACM symposium on Symposium on theory of computing -
STOC ‘09. ACM Press, 2009.

[14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic encryp-
tion without bootstrapping,” Cryptology ePrint Archive, Report 2011/277, 2011,
https://eprint.iacr.org/2011/277.

[15] ——, “(Leveled) fully homomorphic encryption without bootstrapping,” in Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference on
- ITCS ‘12. ACM Press, 2012.

[16] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in Proceedings of the Thirty-seventh Annual ACM Symposium
on Theory of Computing, ser. STOC ’05. New York, NY, USA: ACM, 2005,
pp. 84–93. [Online]. Available: http://doi.acm.org/10.1145/1060590.1060603

[17] O. Regev, “The learning with errors problem (invited survey),” in 2010 IEEE
25th Annual Conference on Computational Complexity, June 2010, pp. 191–204.

[18] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with
errors over rings,” in Advances in Cryptology – EUROCRYPT 2010, H. Gilbert,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–23.

[19] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter,
S. Lokam, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Security of
homomorphic encryption,” HomomorphicEncryption.org, Redmond WA, USA,
Tech. Rep., July 2017.

[20] M. Albrecht, R. Player, and S. Scott, “On the concrete hardness of learning with
errors,” Journal of Mathematical Cryptology, vol. 9, 10 2015.

[21] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, “On the efficacy of solving LWE
by reduction to unique-SVP,” in Information Security and Cryptology – ICISC
2013, H.-S. Lee and D.-G. Han, Eds. Cham: Springer International Publishing,
2014, pp. 293–310.

[22] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based en-
cryption,” in Topics in Cryptology – CT-RSA 2011, A. Kiayias, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 319–339.

80

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://eprint.iacr.org/2011/277
http://doi.acm.org/10.1145/1060590.1060603

BIBLIOGRAPHY

[23] H. Chen, K. E. Lauter, and K. E. Stange, “Attacks on the search-RLWE
problem with small errors,” CoRR, vol. abs/1710.03739, 2017. [Online].
Available: http://arxiv.org/abs/1710.03739

[24] T. Granlund and the GMP development team, “GNU multiple precision arith-
metic library,” 2016, version 2.5.2,, https://gmplib.org/.

[25] B. Gladman, W. Hart, J. Moxham et al., “MPIR: Multiple Precision Integers
and Rationals,” 2017, version 3.0.0, http://mpir.org.

[26] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR:
A multiple-precision binary floating-point library with correct rounding,”
ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1236463.1236468

[27] W. Hart, F. Johansson, and S. Pancratz, “The GNU MPFR library,” 2018,
version 4.0.1, https://www.mpfr.org/.

[28] V. Shoup, “NTL: A library for doing number theory,” 2018, version 11.3.2, https:
//www.shoup.net/ntl/.

[29] PARI/GP , The PARI Group, Univ. Bordeaux, 2018, version 2.11.0, http://pari.
math.u-bordeaux.fr/.

[30] W. B. Hart, “Fast library for number theory: An introduction,” in Proceedings
of the Third International Congress on Mathematical Software, ser. ICMS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 88–91, http://flintlib.org.

[31] W. Hart, F. Johansson, and S. Pancratz, “FLINT: Fast Library for Number
Theory,” 2015, version 2.5.2, http://flintlib.org.

[32] M. Fürer, “Faster integer multiplication,” SIAM Journal on Computing, vol. 39,
no. 3, pp. 979–1005, 2009. [Online]. Available: https://ezproxy.rit.edu/login?
url=https://search.proquest.com/docview/880199851?accountid=108

[33] A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital numbers by
automatic computers,” 1963.

[34] A. L. den Toom, “The complexity of a scheme of functional elements realizing
the multiplication of integers,” 1963.

[35] S. A. Cook and S. O. Aanderaa, “On the minimum computation time of func-
tions,” 1969.

[36] A. Schönhage and V. Strassen, “Schnelle multiplikation großer zahlen,” Comput-
ing, vol. 7, no. 3-4, pp. 281–292, sep 1971.

[37] A. Schönhage, “Asymptotically fast algorithms for the numerical multiplication
and division of polynomials with complex coefficients,” in Computer Algebra,
J. Calmet, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 3–15.

81

http://arxiv.org/abs/1710.03739
https://gmplib.org/
http://mpir.org
http://doi.acm.org/10.1145/1236463.1236468
https://www.mpfr.org/
https://www.shoup.net/ntl/
https://www.shoup.net/ntl/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://flintlib.org
http://flintlib.org
https://ezproxy.rit.edu/login?url=https://search.proquest.com/docview/880199851?accountid=108
https://ezproxy.rit.edu/login?url=https://search.proquest.com/docview/880199851?accountid=108

BIBLIOGRAPHY

[38] R. P. Brent and P. Zimmerman, Modern Computer Arithmetic. Cambridge
University Press, 2010. [Online]. Available: https://www.ebook.de/de/product/
12890013/richard p brent modern computer arithmetic.html

[39] S. Benz, “Fast multiplication of multiple-precision integers,” Master’s thesis,
Rochester Institute of Technology, 1991.

[40] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective,
2nd ed. Springer-Verlag, 2005.

[41] P. Barrett, “Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor,” in Advances in Cryptology
— CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1987, pp. 311–323.

[42] T. Saint Denis and G. Rose, BigNum Math: Implementing Cryptographic Multi-
ple Precision Arithmetic. Syngress Publishing Inc., 01 2006.

[43] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics
of Computation - Math. Comput., vol. 44, pp. 519–519, 04 1985.

[44] P. Gaudry, A. Kruppa, and P. Zimmermann, “A gmp-based implementation of
schönhage-strassen’s large integer multiplication algorithm,” in Proceedings of
the 2007 International Symposium on Symbolic and Algebraic Computation, ser.
ISSAC ’07. New York, NY, USA: ACM, 2007, pp. 167–174. [Online]. Available:
http://doi.acm.org/10.1145/1277548.1277572

[45] S. Halevi and V. Shoup, “HElib - an implementation of homomorphic
encryption,” Online, 2013. [Online]. Available: https://github.com/shaih/
HElib/

[46] Alveo U200 and U250 Data Center Accelerator Cards Data Sheet, Xilinx,
2018. [Online]. Available: https://www.xilinx.com/support/documentation/
data sheets/ds962-u200-u250.pdf

82

https://www.ebook.de/de/product/12890013/richard_p_brent_modern_computer_arithmetic.html
https://www.ebook.de/de/product/12890013/richard_p_brent_modern_computer_arithmetic.html
http://doi.acm.org/10.1145/1277548.1277572
https://github.com/shaih/HElib/
https://github.com/shaih/HElib/
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf

	Design of a Flexible Schoenhage-Strassen FFT Polynomial Multiplier with High-Level Synthesis
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objective

	Background
	Related Work
	High-Level Synthesis
	Homomorphic Encryption
	Learning with Errors
	Ring Learning with Errors
	Basic Scheme

	Arithmetic Software Libraries
	Multiplication Algorithms
	Polynomial vs. Integer Multiplication
	Basic Convolution
	Discrete Fourier Transform
	Fast Fourier Transform
	FFT Polynomial Multiplication
	FFT Modular Polynomial Multiplication
	FFT Integer Multiplication
	Modular Reduction Algorithms
	Barret Reduction
	Montgomery Reduction

	FFT Based Integer Multiplier
	Initial Implementation
	Arbitrary Precision Data Types
	Arithmetic Modulo 2N + 1
	Addition
	Multiplication by 2k
	Subtraction
	Division by 2k
	Modular Reduction
	Results

	Parameter Selection
	Results

	FFT Based Polynomial Multiplier
	Initial Implementation
	Loop Structure of the FFT
	Pipelining
	Loop Unrolling
	Design Parameters
	Initial Results
	Resource Allocation
	Synthesis Results
	Implementation Results

	Conclusion
	Bibliography

