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Controllability of Cardiac Alternans

Abstract

An arrhythmia is a disorder in the heart that occurs due to irregular or abnormal heartbeats.

There are many types of arrhythmias, some of which are harmless, but some, including ventric-

ular tachycardia and fibrillation, can be life-threatening. Certain arrhythmias are preceded by

electrical alternans, which is a state characterized by beat-to-beat alternation in cellular action

potential duration. Cardiac alternans may arise from instabilities in either voltage or intracellular

calcium cycling. Although a number of techniques have been proposed to suppress alternans,

most have focused on appropriately adding a new ionic current or adjusting the timing of pacing

stimuli based on the difference between recent action potential durations, rather than affecting

intracellular calcium directly. In addition, most of the methods proposed to suppress alternans

have been tested using models that do not include calcium-driven alternans. Therefore, it is

important to establish a theoretical basis for understanding how control methods may apply

when alternans is driven by instabilities in calcium cycling.

In this study, we apply controllability analysis to a discrete map of alternans dynamics in

a cardiac cell. In particular, we compare three different controllability measures to determine

to what extent different control strategies can suppress alternans. The modal controllability

measure was found to be the most informative measure, with effective variables through which

to apply control being action potential duration regardless of alternans mechanism along with

sarcoplasmic reticulum calcium load in the calcium-driven alternans case. Moreover, we de-

signed and compared three feedback controllers, with the aim of suppressing alternans, based

on our controllability results. As expected, full state feedback methods, such as pole placement

and the Linear Quadratic Regulator, were more successful in stabilizing unstable alternans

modes compared with feedback based on a single variable. We also conducted preliminary work

on analyzing controllability of a different model of cardiac alternans described by nonlinear

differential equations. Our study provides insight into the feasibility of controlling alternans

driven wholly or partially by voltage or intracellular calcium instabilities.
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Controllability of Cardiac Alternans

I. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide [1]. In 2016, it was

estimated that about 841,000 people in the United States died from CVDs [2]. Moreover, between

2014 and 2015, about 14% of total health expenses were allocated to CVDs and stroke, with the

medical costs of CVD estimated to more than double from $351 billion to about $749 billion by 2035

[2]. One form of heart disease is arrhythmia, which is a condition defined by irregularities in the

heartbeat. Many cardiac-related deaths have been linked to specific types of cardiac arrhythmias,

such as ventricular tachycardia (VT) and ventricular fibrillation (VF). In VT, the heart rate in the

ventricles (lower chambers of the heart) is fast, whereas in VF, the heart rate in the ventricles not

only is fast but also follows a highly irregular or chaotic pattern. As a result of this uncoordinated

activity, the ventricles are unable to pump blood, so that VF is fatal within minutes if left untreated.

Theoretical and experimental studies [3, 4, 5, 6] have shown that some arrhythmias can be preceded

by electrical alternans, which refers to a long and short alternation in the cardiac rhythm that can

be observed at the whole-heart level on the electrocardiogram (ECG) as well as in the cellular

electrical activations, called action potentials, that trigger contraction. Because alternans can

precede the onset of VT and VF, suppressing cardiac alternans may be an approach for preventing

some arrhythmias, and methods for control may be useful in doing so.

Previous studies (e.g., [3, 7, 8]) have tested different control algorithms for suppressing alternans.

Examples of approaches for eliminating alternans include appropriately adding a new ionic

current and adjusting the timing of pacing stimuli based on the difference between recent action

potential durations (APDs). Some researchers have applied “chaos control" techniques, such as

the methods of Ott, Grebogi, and Yorke [9] or the method of Pyragas [10], to the suppression of

alternans, either in theoretical studies or to live tissue [5, 7, 11, 12, 13, 14]. Chaos control methods

generally involve adding small perturbations to a system, where the perturbations are chosen

in a manner that will stabilize an unstable periodic orbit. When used to suppress alternans, an

advantage of certain chaos control methods is that they are relatively straightforward to implement,

in the sense that they may only require information about quantities, such as APD, that are easy

to measure in a lab setting. A disadvantage of chaos controllers is that the distance over which

they can suppress alternans, relative to a stimulating electrode used to apply perturbations to

the tissue, is limited [11, 13]. This shortcoming has motivated the investigation of other control

techniques, such as state feedback control, as a means of suppressing alternans. “State feedback"

typically refers to perturbing a dynamical system by adding a term that is a linear function of

1



Controllability of Cardiac Alternans

the system state vector. State feedback has been shown to suppress alternans, and in some cases

conduction block that occurs when every other stimulus arrives during the refractory period [15],

over longer distances relative to a stimulating electrode, compared with chaos control [15, 16, 17].

However, state feedback algorithms often require measurements or estimates of every dynamical

variable, not just APD measurements (in the cardiac setting); hence, state feedback is generally

more difficult to implement than chaos control.

A smaller number of researchers have applied techniques from modern control theory, such as

controllability analysis, to the problem of alternans suppression. The purpose of controllability

analysis is to determine whether perturbing one or more of the dynamical equations of a system

can feasibly drive the system to a desired state. An advantage of controllability analysis is that

it aims to answer questions of control feasibility in a broader sense, based purely on model

properties, before a researcher selects, designs, and tests a specific control algorithm, such as

state feedback. The controllability of AP dynamics has been investigated, usually with a goal

of alternans suppression, in single-cell models [15, 18], an open-ended cable [16, 17, 19], and

2D sheets [20]. There is also a broader class of studies on controllability of reaction-diffusion

systems [21, 22], including examinations of reaction-diffusion models that represent cardiac AP

dynamics [23, 24, 25]. However, the computational models involved either were not used to

differentiate among different sources of alternans or were not capable of representing different

mechanisms for alternans.

It has been shown that alternans may arise due to instabilities in voltage [4, 26] or intracellular

calcium cycling [27, 28]. Although there is at present no reliable method for identifying the

mechanism underlying alternans in a particular scenario, it is possible that alternans arising

from different mechanisms may respond differently to different control strategies. Previous

studies generally have not considered the role of alternans mechanism on control. This is partly

because most of the existing models of cardiac action potentials capable of reproducing alternans

were designed to do so only through instabilities in voltage. Recently, a few models have been

developed to describe intracellular calcium instabilities as a mechanism for cardiac alternans [28,

29], including some that allow for alternans to be driven by voltage or calcium [30, 31, 32]. Such

methods provide an avenue for implementing control methods.

In this thesis, we build on the work of a small number of prior studies, including [15, 16, 18, 19],

that used controllability analysis to study control strategies for simulated cells and tissue. Here,

we aim to extend these prior studies by comparing several methods for assessing controllability as

well as by testing controllability predictions using single-variable feedback and full state feedback

2
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(SF) control methods for voltage- and calcium-driven alternans. Thus, the aims of this thesis are as

follows.

• To use controllability analysis to establish a theoretical basis for determining which control

strategies are best for suppressing alternans. In particular, we investigate the system variables

through which control methods can be applied successfully.

• To determine to what extent the source of the alternans (instabilities in voltage vs. calcium)

impacts the best strategy.

• To compare the predictions from controllability analysis for alternans dynamics to outcomes

obtained using control methods including single-variable feedback, closed-loop eigenvalue

placement, and a linear quadratic regulator (LQR) optimal control technique.

The rest of this thesis is organized as follows. Chapter 2 provides a detailed discussion of the

methods, including the models used, controllability analysis as a tool for assessing the effectiveness

of control techniques, and feedback control. In Chapter 3, we present the results of applying

controllability analysis and feedback control to a discrete-time (difference equation) model as well

as preliminary work with a more complicated continuous-time (differential equation) model. In

Chapter 4, we present our conclusions and discuss limitations and future work.
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II. Methods

This chapter provides a description of two models that describe the nonlinear dynamics of voltage

and intracellular calcium cycling in a cardiac cell and that are capable of reproducing cardiac

alternans arising from instabilities in voltage and intracellular calcium cycling. In addition, we

describe the methods we use to perform a controllability analysis, which can provide a basis for

understanding how easily the phenomenon of cardiac alternans reproduced by the two models

can be suppressed. Controllability analysis also can provide insights regarding which control

strategies (state variables through which control is delivered) may be most effective. Furthermore,

we provide a detailed description of the design of control strategies based on the framework

established by the controllability analysis. The control strategies we design are based on three

feedback techniques: single-variable feedback (SV), pole placement (PP), and the linear quadratic

regulator (LQR) state feedback designs.

II.1 Models

In this study we employ two models that describe the dynamics of the membrane potential and

intracellular calcium cycling in cardiac cells. Moreover, both models can exhibit alternans arising

from mechanisms related to instabilities in voltage and intracellular calcium cycling. The Qu,

Shiferaw, and Weiss (QSW) model [31] consists of a system of nonlinear difference equations,

while the Shiferaw, Sato, and Karma (SSK) model [32] is a system of nonlinear ordinary differential

equations.

II.1.1 The Qu-Shiferaw-Weiss Model

The QSW model is a discrete-time model consisting of four coupled nonlinear difference equations

that describe the beat-to-beat evolution of the cardiac action potential duration (APD) and three

intracellular calcium concentrations just before applying the next stimulus. The four state variables

after the ith stimulus are the APD ai (ms), the sarcoplasmic reticulum (SR) calcium concentration

li (µM), the calcium released from the SR ri (µM), and the total intracellular calcium concentration

4
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bi (µM). The state variables evolve according to the following equations:

ai+1 =
f (di)

1− γcp
i+1

(II.1a)

ri+1 = q(di)g(li) (II.1b)

li+1 = li − ri+1 + νu(T)h(cp
i+1) (II.1c)

bi+1 = bi − κ(ci − c(T)) + η(ai+1 − ai) (II.1d)

where ci is the cytoplasmic calcium concentration (µM), di is the diastolic interval (ms), cp
i+1 is the

peak cytoplasmic calcium concentration (µM), and T is the period (ms). The equations also include

a series of functions defined in Ref. [31]: f (di) is the APD restitution function, q(di) defines the

restitution properties of SR calcium (Ca) release, g(li) describes the dependence of calcium release

on the SR load, u(T) describes the period dependence of SR Ca uptake, h(cp
i+1) accounts for the

dependence of uptake on peak Ca (note that we have moved the coefficient ν outside this function

compared to Ref. [31]), and c(T) is the steady-state cytoplasmic Ca concentration. The quantities

ci, di and cp
i , which represent the intracellular Ca concentration, diastolic interval (DI), and peak

intracellular Ca concentration for beat i, are obtained from the state variables as follows.

ci = bi − li

di = T − ai

cp
i+1 = ci + ri+1

For the default parameter set we used, no alternans occurs for any period. Tab. 1 gives the default

values of several key parameters whose values can be adjusted to induce alternans; the remaining

parameter values are taken from Ref. [33].

Parameter Default Value Units

τ0 60 ms

ν 0.1 -

Initial Values

a 197.57 ms

b 117.09 µM

r 2.3762 µM

l 67.791 µM

Table (1) Key parameter values and initial conditions used for the QSW model.

In this model, voltage instability arises via a steep dependence of APD on the preceding DI (steep
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restitution mechanism); fixed points lose stability when the magnitude of the restitution curve

slope exceeds one [4]. To promote alternans by steepening restitution (voltage mechanism), the

value of τ0 in f (di) was decreased from 60 ms to 30 ms. Calcium-driven alternans arises from

instabilities in intracellular calcium cycling. To induce calcium-driven alternans in the QSW model,

the value of ν, which scales the strength of calcium uptake into the SR, was increased from 0.1 to

0.4. To produce bifurcation plots showing the periods for which alternans occurs (see Fig. 4), the

QSW model was iterated for 1000 cycles at each period, starting from 600 ms and reduced by 20

ms until 80 ms. The final iterated values of a and peak calcium for each period were then plotted

vs. period.

II.1.2 The Shiferaw-Sato-Karma Model

The SSK model [32] describes the nonlinear dynamics of voltage and intracellular calcium cycling

in a cardiac cell using a system of nonlinear ordinary differential equations. It was developed as

a combination of a canine ventricular myocyte model [34] and a model of intracellular calcium

cycling [29]. It also provides extra detail compared to the QSW model by including the trans-

membrane ionic currents and gating variables. The SSK model begins from the Fox et al. canine

ventricular model [34], which consists of 11 state variables and can reproduce only voltage-driven

alternans. This action potential model then was combined with the Shiferaw et al. calcium

cycling model [29] by replacing the original two calcium variable formulations (cytosolic and

SR concentrations) with a more detailed calcium cycling submodel, a process resulting in five

more state variables. The combined model [32], which we refer to as the Shiferaw-Sato-Karma

(SSK) model, can reproduce both voltage- and calcium-driven alternans. It can be written simply

as

Ẋ = fS(X, Istim(t)), X(t0) = X0 (II.2)

where Ẋ is the vector of time derivatives of the state variables and

X = [V, m, h, j, Xr, Xs, Xto, Yto, d, f , q, cs, ci, cj, cj
p, Irel ]

T

is the vector of the 16 state variables: the voltage V (mV), the activation gate m and fast and slow

inactivation gates h and j of the fast Na+ current, the rapid delayed rectifier K+ current activation

gate Xr, the slow delayed rectifier K+ current activation gate Xs, the transient outward K+ current

activation and inactivation gates Xto and Yto, the L-type Ca2+ channel current activation gate d and

voltage- and calcium-dependent inactivation gates f and q, the cytosolic calcium concentration

ci(µM), the submembrane space calcium concentration cs(µM), the SR calcium concentration

6
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cj (µM), the average junctional SR calcium concentration of compartments not being drained

c′j(µM), and the SR calcium release flux Irel(µM/s); Istim is an external stimulus. All variables

listed without units are dimensionless. Table 2 shows the initial values and the units for the SSK

model.

To promote alternans, we use the SSK model parameterizations of Groenendaal et al. [35], which

can lead to instabilities in voltage, calcium, or both. Voltage instability is induced by increasing τf ,

the time constant associated with the f gate, while calcium instability is promoted by increasing u,

the load dependence of calcium release from the SR. Here we use the parameter sets for instability

through voltage alone (u = 5 and τf = 60 ms) and through calcium alone (u = 22 and τf = 20

ms). The SSK model was numerically integrated using an explicit Euler method together with a

Rush-Larsen scheme [36] with a time step of 0.01 ms. The applied current Istim was a square-pulse

stimulus current of 1 ms duration and 50 mV/ms amplitude [37].

Initial Conditions

Parameter Value Unit

V -96.08 mV

m 2.4× 10−4 -

h 0.9989 -

j 0.9964 -

Xr 2.286× 10−7 -

Xs 2.64× 10−4 -

Xto 3.675× 10−5 -

Yto 1.0 -

d 9.255× 10−8 -

f 0.9992 -

q 0.8775 -

cs 0.1 µ M

ci 0.1 µ M

cj 150.0 µ mol/l cytosol

cj
p 150.0 µ M

Irel 1.0× 10−5 µ M/s

Table (2) Initial values used for the SSK model (from [32]).
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II.2 Controllability Analysis

Controllability is a property of a dynamical system that describes how strongly the state variables

of a system are influenced by inputs to the system [38]. The aim of our controllability analysis

is to help us to understand how well alternans due to voltage and intracellular calcium cycling

can be suppressed and through which state variables applied control techniques may work more

effectively. In particular, we obtain conditions under which the state trajectory can be driven to

a non-alternans state by a control input over a finite time interval. In addition, controllability

provides us with a framework for designing control techniques for suppressing both voltage-

and calcium-driven alternans. In general, to assess controllability, we do the following for each

parameter regime and period considered.

• Compute the fixed point.

• Linearize the system about the fixed point.

• Compute controllability matrices based on the linearized system considering each of the

state variables in turn as the channel through which to apply perturbations to implement

control.

• Compute the rank and minimum singular value (σmin) of each controllability matrix, for

each combination of parameter regime, period, and state variable used for control.

• Compute modal controllability measures for each linearized system.

II.2.1 Fixed points

The QSW model equations described in Eqn. II.1 above can also be written as

Xk+1 = fQ(Xk), (II.3)

where Xk is the system state at time step k and Xk+1 is the next state at time step k + 1. The fixed

points are the system states X∗ such that

X∗ = fQ(X∗).

We compute the fixed points for the QSW model by employing MATLAB’s fsolve function, which

attempts to solve X∗ − fQ(X∗) = 0 using a trust-region dogleg method. Examples of fixed points

are shown in Fig. 1(a)(b). Note that fixed points exist for all periods considered for the parameter

8
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regimes analyzed in this thesis, but in other parameter regimes fixed points are not guaranteed to

exist, especially for regimes with dynamics more complex than alternans. We used an initial guess

of [r, a, b, l]T = [4, 100, 150, 100]T , which converged for both voltage-and calcium-driven alternans

parameter sets. Estimated fixed points for different periods are shown in Fig. 1(a)(b).

For the SSK model, we obtain a discrete map model by integrating the model Ẋ = fS(X, Istim(t))

from time ta to tb, yielding X(tb) = FS(X(ta), Istim[ta, tb]), where Istim[ta, tb] is the time history

of the stimulus current over the interval [ta, tb]. While we do not know the explicit form of

FS, it can be evaluated by numerically integrating the SSK ODEs over an appropriate time

interval. We let tb = ta + T, where T is the inter-stimulus interval. We can then search for fixed

points X∗ = X(ta + T) = X(ta) of X(ta + T) = FS(X(ta), Istim[ta, tb]). This can be simplified to

X∗ = FS(X∗), since the Istim(t) function is kept identical from one cycle to the next.

To compute the fixed point of the newly defined map for the SSK model, we employ a Newton-

Krylov solver [39], which solves a system of nonlinear equations using the Jacobian-Free Newton-

Krylov (JFNK) method. The main advantage of using JFNK over the traditional Newton’s method

is to avoid the need for generating and inverting the Jacobian matrix. Typically the Jacobian matrix

is not analytically attainable and its numerical approximation (e.g., via finite-difference methods)

is not easily invertible [40]. Starting with the initial condition shown in Table 2 and a period of 800

ms, we used the Newton-Krylov solver to estimate a fixed point. Next, the period was reduced to

780 ms, and we searched for a new fixed point, using the 800 ms fixed point as the initial condition

for the search. By continuing this process we obtained fixed points for periods from 800 ms, in

intervals of 20 ms, down to 600 ms, and from 590 to 150 ms in intervals of 10 ms. The values of

two of the variables at the fixed points are shown as a function of period in Fig. 1(c)(d).

II.2.2 Linearization of the Models

Given a system Xk+1 = f (Xk) with a fixed point X∗, where we replace f with fQ or FS depending

on which model is being analyzed, we can linearize the system by Taylor expanding about X∗ to

obtain

xk+1 ≈ Axk. (II.4)

Here, xk = Xk − X∗, and the Jacobian evaluated at the fixed point is the state matrix A =
∂ f
∂X

∣∣∣
X=X∗

∈ Rn×n. Although the QSW model is time-discrete, its highly nonlinear nature makes

calculation of the Jacobian analytically challenging, so instead we compute a numerical approxima-

tion of the Jacobian for each period using finite differences with MATLAB. The Jacobian step size

9
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(a) QSW model: voltage-driven alternans (b) QSW model: calcium-driven alternans

(c) SSK model: V for voltage-driven alternans (d) SSK model: Ci calcium-driven alternans

Figure (1) Fixed points as a function of period. (a) QSW model with voltage-driven alternans; all state

variables are shown. (b) QSW model with calcium-driven alternans; all state variables are shown.

(c) SSK model voltage variable (V) with voltage-driven alternans. (d) SSK model cytosolic calcium

concentration variable (Ci) with calcium-driven alternans.

used for the QSW model was 10−5. For the SSK model, we tuned the Jacobian step size in powers

of 10 from 10−2 to 10−12. We then obtained an optimal step size of 10−5, which minimized the

differences in eigenvalues across neighboring step sizes, as will be discussed in more detail later in

this thesis. For each model, we computed numerical approximations of the Jacobian for each fixed

point using forward and backward differences based on functions provided by C. T. Kelley [39]. A

central-differencing step was used to reduce the impact of fixed-point approximation error on the

Jacobian.

II.2.3 Controllability

To employ controllability analysis, we begin with a model linearized about a fixed point. The

resulting linearized model may be written as

xk+1 = Axk + Buk. (II.5)

10
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Here, we have augmented Eq. (II.4) with the term Buk, where uk denotes the control input at time

step k and B ∈ Rn×m is the input matrix, which is a matrix denoting the variables through which

control inputs may be applied. Here n is the number of state variables and m is the number of

variables through which control is being delivered. Typically, we chose B = Bj, where Bj is the jth

column of the identity matrix In, in order to study the ability to control the system by perturbing

one variable at a time.

Both A and B are time-invariant matrices. The system given by II.5 is said to be controllable at

kinitial if for any arbitrary initial state xkinitial
and arbitrary final state xfinal there exists a finite time

index kfinal and an input sequence ukinitial
, ukinitial+1, · · · , ukfinal

that will transfer xkinitial
to xfinal at

time index kfinal. If we iterate xk+1 = Axk + Buk through kfinal = n, we obtain

xn − Anx0 = P


un−1

...

u0

 (II.6)

where P = [B AB A2B · · · An−1B] is referred to as the controllability matrix. The dimension

of the controllability matrix is always n× nm. Since the number of control inputs for all our tests

is 1, here m = 1. Hence for our studies the dimension of P is n× n. If P has full rank, we can solve

for the input sequence, given any arbitrary pair of initial and final states x0 and xn; this means the

system is controllable.

II.2.4 The Rank Test

The rank test is a measure of controllability [41]. The rank of a matrix is defined by the number of

linearly independent rows or columns. The system given by Eq. II.5 is controllable if and only

if

rank(P) = n.

We used MATLAB’s function rank for computing controllability matrix ranks. If P does not

have full rank, we still may be able to control the system if all of the unstable modes of A are

controllable. The modal view on controllability will be discussed further later.

II.2.5 Minimum Singular Value Controllability Measure

In cases where the controllability matrix has full rank, the minimum singular value σmin of the

controllability matrix may be used as a measure of how close the matrix is to rank deficiency.

11



Controllability of Cardiac Alternans

For the system to be controllable, the controllability matrix must be nonsingular. σmin = 0 means

that P does not have full rank, and therefore the system is not controllable, whereas small but

nonzero σmin means that the system is weakly controllable. σmin is a function of P, which is in

turn a function of the A and B matrices from Eq. II.5. When comparing different control strategies

(represented by different B matrices Bi and Bj), we judged one strategy to be better than another

if it produced a larger value of σmin. MATLAB’s svd function was used to compute singular

values.

II.2.6 Modal Controllability Measure

Another measure of controllability to which we compared singular-value controllability measures

is modal controllability. To produce a modal measure of controllability, we start with a linear

system, xk+1 = Axk + Buk, where A has left and right eigenvectors wi and vi and eigenvalues λi.

Here, x, B ∈ Rn. Suppose A is diagonalizable. Define x̄ = V−1x, where the ith column of V is vi.

The ith row of V−1 is w∗i . Applying a similarity transform to the system yields

x̄k+1 = V−1 AVx̄k + V−1Buk
x̄1
...

x̄n


k+1

=


λ1 · · · 0
...

. . .
...

0 · · · λn




x̄1
...

x̄n


k

+


w∗1 · B

...

w∗n · B

 uk

If w∗i · B = ‖wi‖‖B‖ cos θ 6= 0, then x̄i can be controlled. An exception occurs when λi is repeated

and A is diagonalizable, in which case x̄i cannot be controlled through any single input [41]; in

general we will need to perturb as many dynamical equations (through adding more columns to

B) as repetitions of λj [42].

The modal controllability measure proposed by Hamdan and Nayfeh [43] is based on the cosine

of the controllability angles, which indicate how well-aligned the left eigenvectors are with a given

B matrix. The cosine of the controllability angle is given by

| cos θij| =
|w∗i · Bj|
‖wi‖‖Bj‖

(II.7)

where wj is the jth left eigenvector of A and θ is the controllability angle. Minimum (more effort)

and stronger (less effort) controllability occurs when | cos θij| takes on values closer to 0 and 1,

respectively. If cos θij 6= 0 and λi is not repeated, then we say the eigenvalue λi of the dynamical

system is controllable from input j. Controllability of repeated λi is more complicated, as indicated

12



Controllability of Cardiac Alternans

previously. Negative real-valued λi are alternans eigenvalues. “Stable" or “unstable" eigenvalues

are used as respective shorthands for eigenvalues that lie within or outside the fixed-point stability

boundary |λ| = 1. If all of the eigenvalues are controllable, then the controllability matrix will be

nonsingular [41]. If all of the unstable eigenvalues (if any) are controllable, even if one or more of

the stable eigenvalues is not controllable, then the system is said to be stabilizable.

II.3 Single-Variable and State Feedback Control

In this study, we make a distinction between control strategy and control algorithm. Control strategy

refers to which state variable’s dynamical equation (i.e., for the QSW model, our choices are the r

equation, the a equation, the b equation, or the l equation) we are perturbing to try to suppress

alternans. Of course, we could perturb multiple dynamical equations at once, but here we only

perturbed one at a time for simplicity. Control algorithm refers to the formula we are using to

compute control inputs. An example of a control algorithm is uk = [ −3 0 0 0 ]xk. For the QSW

model, different control strategies are represented by different Bj matrices:

Br =


1

0

0

0

 , Ba =


0

1

0

0

 , Bb =


0

0

1

0

 , Bl =


0

0

0

1

 .

Physically we implement Br by making perturbations to the SR calcium released, Ba by adding a

stimulus that changes the duration of the action potential, Bb by adjusting the ionic concentration

by injecting calcium, and Bl by making a perturbation to the SR calcium load.

A controllable eigenvalue can be moved through feedback by applying a control algorithm of the

form

uk = −Kxk,

where K is a gain matrix with dimension 1× n. This type of control algorithm is known as a state

feedback control law and its use makes it possible to rewrite the system xk+1 = Axk + Bjuk as a

closed-loop state equation of the form

xk+1 = (A− BK)xk.

Eigenvalues (also known as poles) of the closed-loop system are the eigenvalues of A− BK, which

are generally different from the λi belonging to A. In contrast with “closed-loop systems," the

QSW and SSK models are referred to as open-loop systems.
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If the controllability matrix is nonsingular, all of the eigenvalues of A may be reassigned to

arbitrary locations by adding an appropriate state-feedback term to the dynamical equations. In

the weaker case where the system is at least stabilizable, useful control designs are still possible,

since any unstable eigenvalues may be reassigned [41]. In this study, we tested three types of

controllers: single-variable feedback (SV), pole placement (PP), and a linear quadratic regulator

(LQR). In all cases, the goal of the control strategy is to stabilize any unstable modes, including

alternans, if it occurs. In other words, feedback control helps us to construct various control

designs to suppress alternans.

II.3.1 Single-variable Control

Single-variable feedback control is a method that attempts to stabilize a fixed point by perturbing

a system with a term that is based on only one state variable. The feedback control law is given

as

uk = −KSV xk,

where the feedback gain KSV is a 1× n row vector. The key feature of single-variable feedback

is that all of the KSV components are zero except for one entry. For the QSW model, this can be

rewritten as

uk = −[Kr Ka Kb Kl ]xk.

We tested “matched" configurations: if B = Br, then Kr 6= 0; if B = Ba, then Ka 6= 0, etc.

The closed-loop state equation for single-variable state-feedback control is then given by the

form

xk+1 = (A− BKSV)xk.

II.3.2 Pole Placement

Pole placement (PP) is a state feedback method employed to relocate eigenvalues to desired

locations in the unit circle. The method feeds back through all the state variables of the system.

Hence, for the QSW model feedback occurs through the four state variables and for the SSK model

it is through the 16 state variables. The state feedback control law for PP is given as

uk = −KPPxk,
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where the feedback gain KPP is a m× n matrix. The closed-loop state equation for PP is then given

in the form

xk+1 = (A− BKPP)xk.

We used MATLAB’s place algorithm to compute a gain KPP that places the eigenvalues of

(A− BKPP) at locations of our choosing.

II.3.3 Linear Quadratic State Feedback Control

The main aim of the Linear Quadratic Regulator (LQR) is to relocate eigenvalues to “optimal"

locations in the unit circle by minimizing a quadratic cost function. The idea of the LQR is similar

to the other state feedback methods; however, the gain value is selected directly by the user

for single-variable state-feedback control and as a function of the desired eigenvalues for pole

placement, and in contrast with the LQR gain, the KSV and KPP gains may not be optimal in any

sense.

For our discrete system we have

xk+1 = Axk + Buk,

uk = −Kxk,

xk+1 = (A− BK)xk,

where K is the feedback gain. The LQR cost function is defined as

J(K) = ∑∞
k=1 xT

k Qxk + uT
k Ruk,

where we choose Q as a positive semidefinite matrix that represents the penalty on the deviation

of the state vector from the origin and R as a positive definite matrix that represents the penalty

on the magnitude of the control input u [44]. Since uk = −Kxk, the cost function J is a function of

the feedback gain K. The sign-definiteness constraints on Q and R help to ensure the existence of a

K that minimizes J. We used MATLAB’s lqr function to solve for K = KLQR = min
K

(J(K)), given

the Jacobian A, input matrix B, and penalty matrices Q and R. Our typical choices for penalties

were Q = In and R = αRQ‖Q‖, and we tested various values of αRQ > 0, where αRQ is the R-Q

ratio. For diagonal Q, allowing Q to be positive semidefinite (but not positive definite) would

represent a decision not to penalize one or more state variables, but for our study, we decided to

penalize all components of x.

15



Controllability of Cardiac Alternans

III. Results

In this chapter we present our main results. In particular, we present our controllability analysis

for the QSW model including fixed-point analysis and tests of controllability using the rank,

minimum singular value, and modal controllability tests. Furthermore, for comparison with our

controllability results we present feedback results for the QSW model using three controllers:

SV, PP and LQR. We compare the controllers, including their consistency with controllability

predictions, and we quantify the impact of the controllers on the closed-loop eigenvalues, in

addition to testing the linearized system response to selected LQR controllers. In addition, we

present preliminary work toward controllability analysis for the SSK model, including the results

of fixed-point and eigenvalue analysis as well as tuning of the Jacobian step size.

III.1 Fixed Point and Linearization Results for the QSW Model

We successfully found fixed points for the QSW model for both parameter sets we considered and

for a broad range of periods. Examples of the results of our fixed-point and linearization analysis

are shown in Fig. 2 for the case of voltage-driven alternans. As the period is decreased, the fixed

point loses stability when at least one eigenvalue has a magnitude greater than one. Hence, the

eigenvalue modulus plot indicates that the fixed points are unstable for periods shorter than

290ms. The unstable eigenvalue is an alternans eigenvalue, as shown via magenta color-coding in

the plot for eigenvalues with negative real part. The expected long-run behavior of the model is

confirmed in the time-series plots, which show convergence of the APD a and the derived peak

calcium concentration cp after iterating the dynamical equations at a period of 350ms along with

alternating (period-2) behavior for a period of 260ms.
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Figure (2) Fixed points and QSW model behavior with voltage-driven alternans. Upper and lower left plots:

fixed points and moduli of the eigenvalues as a function of period. The black, red, blue and

green curves correspond to the values of a, l, r and b at the fixed point for each period. Alternans

arises for periods where at least one eigenvalue has a negative real part (shown in magenta).

Right: Examples of ai and cp
i vs. iteration index i for periods of 350 and 260 ms.

17



Controllability of Cardiac Alternans

III.2 Controllability Results for the QSW Model

We computed three different measures of controllability: the rank test, the minimum singular

value test, and the modal controllability test. All the results described below are based on the

linearized QSW model and the approaches described in the Methods section.

III.2.1 Rank Test

As a first assessment of controllability for the QSW model, we calculated the ranks of the

controllability matrices (P) for different control strategies as discussed in the Methods section.

When the rank of P is 4, it has full rank, meaning that the system is controllable. Figures 3a and 3b

show the ranks obtained for a range of periods for cases of voltage- and calcium-driven alternans,

respectively, as control is applied through each of the four state variables r, a, b, and l. Regardless

of the alternans mechanism, rank(P) for each period tested is 1 or 4. Specifically, when control is

applied through only the SR calcium release r (i.e., B = Br), rank(P) is 1. However, when control

is applied through only the APD a, total intracellular calcium concentration b, or the SR calcium

load l, rank(P) is 4, indicating that the system is controllable through this variable. Overall, the

results from the rank test indicate that the system is controllable through all variables except r for

both voltage- and calcium-driven alternans.

(a) (b)

Figure (3) Ranks of controllability matrices based on different control strategies (B matrices) as a function

of period for alternans driven by (a) voltage and (b) calcium instability.

III.2.2 Minimum Singular Value Test

Although we determined that the controllability matrices have full rank for some of the control

strategies, the rank test does not indicate the relative magnitude of controllability for each of
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these strategies. Hence we consider σmin(P), which is a measure of how close to or far from

rank deficiency the matrix P is, as a measure of the magnitude of controllability. Figure 4 shows

steady-state a, peak calcium (Cap
i ), and σmin(P) for periods between 80 and 600 ms for voltage-

and calcium-driven alternans. As shown in Fig. 4a, APD and peak calcium bifurcate at a period of

about 290 ms for voltage-driven alternans, with a loss in stability of the fixed points for periods

below 290 ms (also see Fig. 2). Within the range of periods with alternans, the values of σmin(P)

when using Ba are closer to zero and those obtained using Bl are the largest, indicating that control

should be easiest when applied through the SR load and most difficult when applied through the

APD. Similarly, for calcium-driven alternans, APD and peak calcium bifurcate at a period of about

240 ms (see Fig. 4b), corresponding to a loss in stability of the fixed point. We also observe that

within the alternans regime the values of σmin(P) associated with control through the l, b and a

variables are farther from zero, indicating that control is more effective when applied through

those variables than through r.

(a) (b)

Figure (4) (a) Voltage-driven alternans: for periods with alternans (indicated by the bifurcated regions

in the top two rows of plots), the bottom plot (σmin) shows that control was easiest through

the SR load l and most difficult through the APD a. (b) Calcium-driven alternans: for periods

with alternans, control was easiest through the SR load l, total Ca2+ b, or APD a. In both cases,

σmin,r ≈ 0 so it does not appear on a log plot.
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III.2.3 Modal Controllability Test

We also applied the modal controllability test to the QSW model. Figures 5 and 6 show the

controllability magnitudes (| cos θij|) for all four eigenvalues λi, with separate plots for the

different control strategies (represented by Bj = Br, Ba, Bb, or Bl), over a range of periods

for voltage- and calcium-driven alternans, respectively. Minimum controllability occurs when

| cos θij| = 0 (black) and stronger controllability occurs when | cos θij| = 1 (gold). Thus, we will

identify the best control strategies as those for which every eigenvalue whose magnitude is

greater than one has strong controllability (gold). In the case of voltage-driven alternans, the

best control strategy (stronger controllability) for alternans involves delivering control through

a, whereas weaker controllability occurs when control is applied through any of the other state

variables.

(a) (b)

(c) (d)

Figure (5) Controllability magnitude as a function of period for voltage-driven alternans using different

control strategies: (a) Br (control through r), (b) Ba (control through a), (c) Bb (control through b),

and (d) Bl (control through l).

Similarly, Fig. 6 shows that for calcium-driven alternans, controllability is stronger through a and l

and weaker through the other state variables. Thus, our modal controllability results indicate that

alternans may be controlled through APD for either alternans mechanism and that SR calcium
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load is an additional promising channel for control for calcium-driven alternans.

(a) (b)

(c) (d)

Figure (6) Controllability magnitude as a function of period for calcium-driven alternans using different

control strategies: (a) Br (control through r), (b) Ba (control through a), (c) Bb (control through b),

and (d) Bl (control through l).

III.3 State Feedback Results for the QSW Model

Informed by our controllability results for the QSW model, we explored three feedback strategies:

single-variable feedback (SV), pole placement (PP), and the linear quadratic regulator (LQR). We

compared the maximum closed-loop eigenvalue moduli for the SV and PP approaches and also

selected R-Q ratios for the LQR strategy and computed corresponding optimum gains.

III.3.1 Comparing Maximum Eigenvalue Moduli for Single-Variable Feedback and Pole Place-

ment for Voltage- and Calcium-Driven Alternans

We compared the maximum closed-loop eigenvalue moduli for the single-variable and pole

placement state-feedback controllers. We focused on applying the controllers through the strategies

associated with APD (Ba) and SR calcium load (Bl) for voltage- and calcium-driven alternans,
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since these strategies had more favorable modal controllability results. The designs of the SV and

the PP controllers and their respective gains can be found in the Methods section.

Voltage-driven Alternans with Control Applied Through the APD (Ba)

To test the SV controllers, we hand-tuned gain values. Values in the range of -100 to 100 were

considered. Table 3 shows the “best" gains that we found, in the sense of minimizing the maximum

closed-loop eigenvalue modulus, for the range of periods shown in the table with B = Ba in

the case of voltage-driven alternans. KSV represents the gain and λSV represents the closed-loop

eigenvalues for SV. As shown in the table, the SV controllers performed well in stabilizing the

fixed points, which were open-loop unstable for this range of periods, by decreasing the maximum

eigenvalue moduli below one. Also, the gains increased with decreasing period, although it is

difficult to conclude anything about the relative difficulty of control across periods, since increasing

gains also led to decreasing maximum eigenvalue moduli.

Period (ms) KSV,Ba Max (|λSV,Ba |)

270 -2.10 0.8759

260 -2.19 0.8633

250 -2.27 0.8538

240 -2.35 0.8411

Table (3) Best gains for minimizing the closed-

loop eigenvalue modulus for voltage-

driven alternans using the SV con-

troller with Ba.

Period (ms) Max (|λSV,Ba |) Max (|λPP,Ba |)

270 0.8759 0.9593

260 0.8633 0.9563

250 0.8538 0.9533

240 0.8411 0.9505

Table (4) Maximum closed-loop eigenvalue

moduli for voltage-driven alternans

using the SV and PP controllers with

Ba.

Table 4 compares the maximum magnitude of the closed-loop eigenvalues for SV and Pole

Placement (PP) controllers. λPP represents closed-loop eigenvalues for the PP controller. The “pole

placement" step consisted of specifying the following desired closed-loop eigenvalue locations:

[ λ1
2 λ2 λ3 λ4], where λ1, λ2, λ3, λ4 are the eigenvalues of A listed in order of decreasing modulus.

Our intent in halving the largest eigenvalue was to create PP controllers that would stabilize the

fixed points; of course, other designs are possible that would move the eigenvalues farther inside

the unit circle. Next, we computed KPP to yield the desired eigenvalue locations. The max(λPP)

values in Table 4 thus match the moduli of the second-largest open-loop eigenvalue. Even though

we obtained smaller maximum closed-loop eigenvalue moduli for SV compared with PP, based on

Table 4 we cannot draw a conclusion about which control strategy performed better, since we have
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not attempted to hold the maxiumum eigenvalue modulus (or alternatively, the gain magnitude)

fixed across control algorithms.

Voltage-driven Alternans with Control Applied Through the SR Calcium Load (Bl)

When control was applied through the SR calcium load rather than through APD, the best gains

we found using SV feedback for periods associated with voltage-driven alternans were unable

to stabilize the unstable fixed points (maximum closed eigenvalue modulus was greater than

one), even though more effort was being applied by increasing the gains as the period decreased,

as shown in Table 5. Moreover, Table 6, which compares the maximum closed-loop SV and PP

eigenvalue moduli, shows that the PP controller could always stabilize the unstable fixed points

and thus performed better than the SV strategy when control was applied through Bl , in contrast

with the Ba case, where it was unclear which control algorithm performed better.

Period (ms) KSV,Bl Max (|λSV,Bl |)

270 1.86 1.1373

260 1.96 1.2507

250 2.07 1.3669

240 2.14 1.4593

Table (5) Best gains for minimizing the closed-

loop eigenvalue modulus for voltage-

driven alternans using the SV con-

troller with Bl .

Period (ms) Max (|λSV,Bl |) Max (|λPP,Bl |)

270 1.1373 0.9593

260 1.2507 0.9563

250 1.3669 0.9533

240 1.4593 0.9505

Table (6) Maximum closed-loop eigenvalue

moduli for voltage-driven alternans

using the SV and PP controllers with

Bl .

Calcium-driven Alternans with Control Applied Through the APD (Ba)

Table 7 shows that the best gains for the SV controller using the Ba control strategy were only able

to stabilize the unstable fixed points for periods of 200 ms or longer for calcium-driven alternans;

the magnitudes of the maximum closed-loop eigenvalues were greater than one for periods

shorter than 200 ms. Moreover, Table 8 indicates that the PP controller performed better when

compared with the SV controller for control through APD (Ba), since the maximum magnitudes of

all closed-loop eigenvalues were less than one.
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Period (ms) KSV,Ba Max (|λSV,Ba |)

220 -1.78 0.9290

210 -1.86 0.9581

200 -1.93 0.9857

190 -2.0 1.0114

180 -2.08 1.0345

170 -2.14 1.0548

Table (7) Best gains for minimizing the closed-

loop eigenvalue modulus for calcium-

driven alternans using the SV con-

troller with Ba.

Period (ms) Max (|λSV,Ba |) Max (|λPP,Ba |)

220 0.9290 0.9256

210 0.9581 0.9249

200 0.9857 0.9243

190 1.0114 0.9236

180 1.0345 0.9230

170 1.0548 0.9224

Table (8) Maximum closed-loop eigenvalue

moduli for calcium-driven alternans

using the SV and PP controllers with

Ba.

Calcium-driven Alternans with Control Applied Through the SR Calcium Load (Bl)

As shown in Table 9, for calcium-driven alternans, the best gains for the SV controller were only

able to stabilize the unstable fixed points for periods of 190 ms or longer with the Bl control

strategy. The PP controller performed better when compared with the SV controller for control

applied through Bl , since all the maximum magnitudes of the closed loop eigenvalues were less

than one; see Table 10.

Period (ms) KSV,Bl Max (|λSV,Bl |)

220 -0.78 0.9452

210 -1.10 0.9608

200 -1.30 0.9769

190 -1.44 0.9912

180 -1.54 1.0026

170 -1.61 1.0108

Table (9) Best gains for minimizing the closed-

loop eigenvalue modulus for calcium-

driven alternans using the SV con-

troller with Bl .

Period (ms) Max (|λSV,Bl |) Max (|λPP,Bl |)

220 0.9452 0.9256

210 0.9608 0.9249

200 0.9769 0.9243

190 0.9912 0.9236

180 1.0026 0.9230

170 1.0108 0.9224

Table (10) Maximum closed-loop eigenvalue

moduli for calcium-driven alternans

using the SV and PP controllers with

Bl .
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III.4 Summary Comparison for State Feedback Controllers

One of our goals is to determine to what extent, if any, the controllability measures are predictive

of the performance of different control strategies and algorithms; specifically, it would be helpful

if larger controllability magnitudes corresponded to smaller gain values and smaller closed-loop

eigenvalue moduli, since we could then use controllability analysis to predict the properties

and impacts of specific control algorithms. We will consider in particular our more quantitative

controllability measures, the minimum singular value magnitude of the controllability matrix and

the cosine of the controllability angle. The latter quantity, | cos θij|, is an indication of the difficulty

of moving λi to a desired location in the complex plane via strategy Bj. Hence, we expect for the

PP method that ‖KPP‖ should vary inversely with | cos θij|, supposing that we chose ‖KPP‖ to

move λi to a desired location and left all other eigenvalues in their original locations. However,

| cos θij| may or may not vary inversely with SV or LQR gain values, since these algorithms may or

may not have an impact on λi. Since the controllability matrix P is a mapping between the input

sequence space and the state space, large σmin(P) indicates that it is relatively easy to transfer the

system from an initial state to a desired final state, but it is unclear how well σmin(P) will align

with specific gain magnitudes or closed-loop eigenvalue sizes.

For alternans due to voltage instability, the σmin test predicted weak controllability through Ba and

strong controllability through Bl . However, modal controllability (| cos θ|) predicted the reverse:

strong controllability through Ba and weak controllability through Bl . Table 11 summarizes algo-

rithms, control strategies, | cos θ| of the maximum-modulus eigenvalue of the system (max |λi|),

the gain value for the SV (KSV) or norm of the gain vector (‖K‖) for the PP and LQR algorithms,

and the maximum closed-loop eigenvalue modulus (max(|λCL|)). We only included results for

the two control strategies that appeared to be the most promising based on the controllability

results (Ba and Bl). Table 11 only covers one scenario, specifically a period of 240 ms, for the case

of voltage-driven alternans. To aid in comparing control strategies, more favorable values (i.e.,

stronger controllability, smaller gains, or smaller closed loop eigenvalue moduli) are highlighted

in blue.

Comparing the Ba and Bl control strategies, we observe from Table 11 that for the SV algorithm,

larger | cos θ| (i.e., stronger controllability of the maximum modulus eigenvalue) corresponds to

smaller max(|λCL|), when |KSV | is held fixed at a value of 2.35. We were not able to find a positive
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or negative KSV that stabilized the fixed point for the Bl strategy, but KSV = 2.35 is reported in

the table, since it yielded a smaller max(|λCL|) than KSV = −2.35. In addition, we observe from

Table 11 that for the PP algorithm, larger | cos θ| corresponds to smaller ‖KPP‖, when comparing

results from the two strategies Ba and Bl . Here, the largest eigenvalue was reassigned to 0.95, with

all other eigenvalues left unchanged. Hence, the value max(|λCL|) = 0.9505 that appears in the

table coincides with the magnitude of the second-largest open-loop eigenvalue. Furthermore, we

observe from Table 11 that for the LQR algorithm, strategy Ba, which had a larger | cos θ| value,

yields both a smaller KLQR and smaller max(|λCL|) compared with Bl . Here, the R/Q ratio was

fixed at 0.125 when computing the gains.

Algorithm Strategy σmin(P) | cos θ| for KSV , ‖KPP‖ max(|λCL|)

(B) max |λi| or ‖KLQR‖

SV Ba 2.63× 10−5 0.99 -2.35 0.84

Bl 7.29× 10−3 0.09 2.35 1.56

PP Ba 2.63× 10−5 0.99 2.48 0.9505

Bl 7.29× 10−3 0.09 35.78 0.9505

LQR (R/Q = 0.125) Ba 2.63× 10−5 0.99 1.36 0.84

Bl 7.29× 10−3 0.09 8.73 0.86

Table (11) Controllers through the APD (a) and SR calcium (l) variables for voltage-driven alternans at a

period of 240 ms.

In summary, for voltage-driven alternans at a period of 240 ms, all three controllers were consistent

with | cos θ| predictions (Ba is better) but not with σmin predictions (Bl is better). The lack of

consistency with σmin may be a result of our choice to use gain size and max(|λCL|) as indicators

of control effort and performance, instead of other measures, such as the energy expended in

transferring the initial state to a desired final state, which are more closely related to σmin [45].

Moreover, SV was only successful through Ba, not Bl , since we were not able to find a stabilizing

KSV for Bl , regardless of the sign of KSV . Non-zero controllability does not guarantee that SV

control will work, since in general, all four elements of K may need to be nonzero to stabilize the

fixed point. In addition, both PP and LQR control show smaller ‖K‖ when | cos θ| is larger, as

expected.
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For calcium-driven alternans, the σmin test predicted that Bb, Bl , and Ba were all similarly good

control strategies, where the the strategies are listed in decreasing order of the strength of

controllability according to σmin. Modal controllability (| cos θ|) predicted strong controllability

through either Ba or Bl but somewhat stronger through Bl . According to | cos θ|, the Bb strategy is

helpful for controlling a stable eigenvalue that is the second-largest eigenvalue during alternans,

but has less of an impact on the alternans eigenvalue. Table 12 shows related results for a period of

210 ms for the case of calcium-driven alternans. We observe that for the SV algorithm, when KSV

is fixed at -1.10, the larger | cos θ| associated with Bl aligns with smaller max(|λCL|), as expected,

although the max(|λCL|) values are similar for both strategies. In addition, for the PP algorithm,

when max(|λCL|) was held fixed at 0.95, larger | cos θ| corresponded to smaller ‖KPP‖, which is

consistent with our expectations. The LQR results did not show any obvious alignment with the

modal controllability values, since a smaller max(|λCL|) was achieved through applying the Ba

strategy, whereas the Bl strategy yielded a smaller gain size.

Algorithm Strategy σmin(P) | cos θ| for KSV , ‖KPP‖ max(|λCL|)

(B) max |λi| or ‖KLQR‖

SV Ba 4.24× 10−3 0.48 -1.10 0.97

Bl 5.21× 10−3 0.86 -1.10 0.96

PP Ba 4.24× 10−3 0.48 4.25 0.95

Bl 5.21× 10−3 0.86 2.37 0.95

LQR (R/Q = 0.125) Ba 4.24× 10−3 0.48 2.24 0.81

Bl 5.21× 10−3 0.86 1.09 0.90

Table (12) Controllers through the APD (a) and SR calcium (l) variables for calcium-driven alternans at a

period of 210 ms.

We found that the controllability measures we considered (| cos θ| and σmin) both predicted that Ba

and Bl are good strategies, though both favored Bl . In addition, SV and PP results were consistent

with Bl being somewhat better (smaller max(|λCL|) for SV and smaller ‖K‖ for PP). LQR results

were less straightforward to interpret, as holding R/Q fixed led to different combinations of

max(|λCL|) and ‖K‖.

In summary, the modal controllability test gave a better prediction of control performance than the
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minimum singular value test. This may be due to our choice of performance measures, max(|λCL|)

and ‖K‖. It is possible that a different criterion for performance, such as the 2-norm of the

vector [u0, u1, ...un−1] computed for a given control algorithm and a given choice of initial and

final states, may show a relationship with σmin, since σmin is inversely related to the theoretical

minimum of this norm [45]. Comparing algorithms, we found that LQR and PP control algorithms

were generally capable of stabilizing the fixed point, whereas SV control was not always capable

of doing so. In comparing modal controllability results for different strategies, we find that the

results in Tables 11 and 12 are consistent with those in Figs. 5 and 6 in the sense that all of them

suggest that only the Ba strategy is a promising approach for suppressing both voltage- and

calcium-driven alternans, at least for instabilities that are well captured by the two sets of model

parameters we considered. For alternans driven only by calcium instability, the Bl strategy also

may be viable, in addition to Ba.

Varying the R-Q ratio for Voltage and Calcium-Driven Alternans

Table 13 illustrates the impact of varying the R-Q ratios on the norm of the gain of the LQR

controller (‖KLQR‖) and the maximum closed-loop eigenvalue modulus (max (|λLQR|)) for the

voltage-driven alternans parameter set. We varied the R-Q ratios by starting with αRQ = 20 and

repeatedly halving it until αRQ = 2−9. When control was applied through a (i.e., B = Ba), ‖KLQR‖

increased and the max (|λLQR|) decreased as the R-Q ratio was progressively halved. This was

the outcome we expected, since reducing αRQ increases the penalty on the deviation of the state

vector from the origin relative to the penalty on the control input, which should result in stronger

feedback. When control was applied through l (i.e., B = Bl), both ‖KLQR‖ and max(|λLQR|)

decreased as the R-Q ratio was halved. This trend for gain magnitudes is the opposite of what

we expected, although we note that the changes in closed-loop eigenvalue moduli were relatively

minor as αRQ was varied, which may be due to weak controllability of the largest eigenvalue. For

αRQ ≤ 2−2, both ‖KLQR‖ and max(|λLQR|) values were larger for Bl compared with Ba, which is

consistent with the modal controllability result that Ba is a better strategy than Bl . For αRQ = 20

and 2−1, relative to Ba, the Bl strategy yielded both larger ‖KLQR‖ but smaller max(|λLQR|), hence

making it more challenging to make comparisons across strategies.

Table 14 shows how varying the R-Q ratio affects ‖KLQR‖ and max(|λLQR|) for calcium-driven

alternans. When control was applied through a, ‖KLQR‖ increased and max(|λLQR|) decreased as

the R-Q ratio was halved, which is the same trend that emerged in the voltage-driven case for the

Ba strategy. When control was applied through l, ‖KLQR‖ increased and max(|λLQR|) decreased
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Period (ms) B αRQ ↓ ‖(KLQR)‖↑ max(|λLQR|)↓ B ‖(KLQR)‖↓ max(|λLQR|)↓

240 a 20 1.0871 0.90660 l 9.9450 0.86637

2−1 1.1854 0.88530 9.4252 0.86420

2−2 1.2817 0.86190 9.0124 0.86300

2−3 1.3602 0.84047 8.7296 0.86241

2−4 1.4145 0.82409 8.5578 0.86211

2−5 1.4475 0.81344 8.4619 0.86197

2−6 1.4659 0.80724 8.4111 0.86189

2−7 1.4758 0.80384 8.3845 0.86185

2−8 1.4808 0.80209 8.3711 0.86184

2−9 1.4834 0.80117 8.3643 0.86183

Table (13) Effect of the R-Q ratio αRQ in the LQR controller for voltage-driven alternans (period = 240 ms).

Period (ms) B αRQ ↓ ‖(KLQR)‖↑ max(|λLQR|)↓ B ‖(KLQR)‖↑ max( |λLQR |)↓

210 a 20 1.6489 0.87483 l 0.99411 0.90222

2−1 1.8977 0.85251 1.04320 0.89864

2−2 2.0971 0.83014 1.07160 0.89638

2−3 2.2353 0.81161 1.08700 0.89509

2−4 2.3200 0.79869 1.09500 0.89440

2−5 2.3676 0.79083 1.09910 0.89404

2−6 2.3929 0.78644 1.10120 0.89386

2−7 2.4062 0.78408 1.10220 0.89376

2−8 2.4128 0.78287 1.10280 0.89372

2−9 2.4162 0.78225 1.10300 0.89369

Table (14) Effect of the R-Q ratio αRQ in the LQR controller for calcium-driven alternans (period = 210 ms).

as the R-Q ratio was halved, which also matches our predictions of the impact of decreasing αRQ.

The LQR gain norms for Bl were smaller than those for Ba, which is consistent with controllability

results showing that Bl was a better strategy, although this is called into question somewhat by

the lack of sensitivity of ‖KLQR‖ and max(|λLQR|) to changes in αRQ for the Bl strategy.
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III.4.1 LQR Closed-loop Eigenvalues and Linearized System Simulation Results

In this subsection we compare the magnitudes of the closed-loop eigenvalues across a range of

periods for voltage- and calcium-driven alternans using two R-Q ratios (R = 2−9 ‖Q‖ and R =

20 ‖Q‖) We also show the behavior of xk vs. iteration index (k) in response to LQR control for

the linearized QSW model for selected alternans periods for the voltage-driven (240 ms) and

calcium-driven (210 ms) alternans cases.

Closed-loop Eigenvalues and Simulation Results for Voltage-driven Alternans

Figure 7 shows the closed-loop eigenvalue magnitudes for the voltage-driven alternans case. The

eigenvalues were generally closer to the origin when R = 2−9 ‖Q‖ compared to when R = 20

‖Q‖. This finding fits with our expectation that reducing the R-Q ratio should lead to smaller

max(|λLQR|), which was also shown in Table 13. Based on the Ba and Bl results in Fig. 7, it is

not entirely clear which strategy yields the more favorable closed-loop eigenvalue placements,

although the Ba strategy appears to avoid the peak in magnitude that occurs for one of the two

larger eigenvalues near T = 300 ms.

Figure 8 shows the evolution of the deviational state vector xk for the voltage-driven alternans case

at a period of 240 ms. The plots were obtained from a simulation of the closed-loop linearized

system xk+1 = (A− BKLQR)xk for initial condition x0 =
[
0.1 0.1 0.1 0.1

]T
We observe that xk

converged to zero when control was applied through either a or l. As expected, the convergence

was faster for the smaller R-Q ratio αRQ = 2−9 compared to αRQ = 20.
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(a) αRQ = 20 ‖Q‖ (b) αRQ = 2−9‖Q‖2

(c) αRQ = 20 ‖Q‖ (d) αRQ = 2−9‖Q‖

Figure (7) Closed-loop eigenvalues for voltage-driven alternans in the QSW model for two different control

strategies and for two different R-Q ratios. (a) Ba and αRQ = 20. (b) Ba and αRQ = 2−9. (c)

Bl and αRQ = 20. (d) Bl and αRQ = 2−9. The periods within the dashed vertical lines are the

periods that are in the alternans regime and whose APD values are less than the period (thereby

avoiding 2:1 block).
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(a) αRQ = 20 ‖Q‖ (b) αRQ = 2−9‖Q‖

(c) αRQ = 20 ‖Q‖ (d) αRQ = 2−9‖Q‖

Figure (8) Deviational state vector components of the linearized system for voltage-driven alternans using

two control strategies and two values of αRQ. (a) Ba and αRQ = 20. (b) Ba and αRQ = 2−9. (c) Bl

and αRQ = 20 (d) Bl and αRQ = 2−9.
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Closed-loop Eigenvalues and Simulation Results for Calcium-driven Alternans

We next consider the closed-loop eigenvalues for calcium-driven alternans. Figure 9 shows

closed-loop eigenvalue magnitudes as a function of period. The eigenvalues, on average, appear

to be closer to the origin for αRQ = 2−9 compared to αRQ = 20 , which is consistent with our

findings in Table 14. However, comparing Figs. 9 (c) and (d) confirms that the larger closed-loop

eigenvalues are mostly insensitive to changes in αRQ, which was also seen in Table 14. It is difficult

to determine whether the figure supports the controllability prediction that Bl is better than Ba

for reassigning the alternans eigenvalue. The larger closed-loop eigenvalues appear to be closer

to the origin under Ba in Fig. 9, but Table 14 indicates that larger gains were obtained for the Ba

strategy.

(a) αRQ = 20 ‖Q‖ (b) αRQ = 2−9‖Q‖

(c) αRQ = 20 ‖Q‖ (d) αRQ = 2−9‖Q‖

Figure (9) Closed-loop eigenvalues for calcium-driven alternans in the QSW model for two different control

strategies and for two different R-Q ratios. (a) Ba and αRQ = 20. (b) Ba and αRQ = 2−9. (c)

Bl and αRQ = 20. (d) Bl and αRQ = 2−9. The periods within the dashed vertical lines are the

periods that are in the alternans regime and whose APD values are less than the period (thereby

avoiding 2:1 block).
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Figure 10 shows xk vs. k for calcium-driven alternans at a period of 210 ms. The deviations

converged to zero when control was applied through either a or l, as expected. The deviations

converged faster when control was applied through a compared to l, but this is difficult to use as

a means to compare strategies, given that we showed that holding αRQ fixed does not necessarily

lead to equal gain sizes. We also observed that convergence was faster for the smaller R-Q ratio

(αRQ = 2−9 compared to αRQ = 20).

(a) αRQ = 20 ‖Q‖ (b) αRQ = 2−9‖Q‖

(c) αRQ = 20 ‖Q‖ (d) αRQ = 2−9‖Q‖

Figure (10) Deviational state vector components of the linearized system for calcium-driven alternans using

two control strategies and two values of αRQ. (a) Ba and αRQ = 20. (b) Ba and αRQ = 2−9. (c)

Bl and αRQ = 20 (d) Bl and αRQ = 2−9.

III.5 Eigenvalue Analysis of the SSK Model

As part of this thesis, we began an analysis of the SSK model and successfully completed several

of the first steps needed for assessing controllability. A full analysis of controllability and the

effectiveness of different control algorithms for stabilizing unstable fixed points for this system is

reserved for future work.
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III.5.1 Fixed Points

The first step we needed to complete was calculation of the fixed points of the beat-to-beat map

of the SSK model. We computed the fixed points as described in the Methods section. Fixed

points were readily found for both voltage- and calcium-driven alternans when the maximum

number of nonlinear iterations (maxit), the maximum number of inner iterations (maxitl), and

the tolerance (tol) in the Newton-Krylov solver were set to 90, 90, and 10−12 respectively. The

maximum iteration values had to be increased beyond the default value of 40 in order to find

fixed point estimates that met the tolerance.

III.5.2 Selection of the Step Size Used in Numerical Approximation of the Jacobians

To assess stability of the fixed points, it is necessary to analyze the Jacobian of the linearized SSK

beat-to-beat map evaluated at each fixed point. Because of the absence of an analytical form for

the map, the Jacobian must be evaluated using a numerical approach. We used a finite-difference

approximation, which necessitated choosing a step size for evaluating the partial derivatives. We

evaluated the impact of the step size used in the numerical approximation of the Jacobians, as

described in the Methods section, by calculating the norm of the difference in Jacobian eigenvalues

corresponding to neighboring step sizes, where the step size was varied over negative integer

powers of 10. We sought to identify a step size that would cause the smallest possible changes in

the Jacobian eigenvalues if that step size were changed slightly.

The range of step sizes for which the eigenvalues were changing the least was found to be

approximately 10−3 to 10−6 for both voltage- and calcium-driven alternans. Figure 11 shows the

norms of the differences with respect to the Jacobian step sizes. For voltage-driven alternans, the

minimum of the norm of the differences occurs for step sizes in the range of 10−4 to 10−6. For

calcium-driven alternans, the interval of least change is somewhat longer, covering a range of

approximately 10−3 to 10−6. For simplicity, we prefer to have a common Jacobian step size for

both parameter sets; thus, we chose a step size of 10−5 for both cases.

III.5.3 Eigenvalues

Using the Jacobian step size obtained as described above, we calculated the moduli of the

eigenvalues of the Jacobian evaluated at the fixed point as a function of period for both voltage-

and calcium-driven alternans, as illustrated in Fig. 12. (Recall that Fig. 1(c)(d) shows the values
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(a) Voltage-driven alternans (b) Calcium-driven alternans

Figure (11) Norms of the differences in the eigenvalues of the linearized beat-to-beat map for neighboring

values of the step size for (a) voltage- and (b) calcium-driven alternans as the step size ε is

varied. Each individual curve corresponds to the norms of the eigenvalue differences for a

single period, as a function of step size.

of one variable at the fixed point across a range of cycle lengths for both alternans scenarios.)

Figure 12a shows that for voltage-driven alternans, the fixed point loses stability at a period

of about 370 ms when the maximum eigenvalue modulus exceeds one. Similarly, for calcium-

driven alternans, the fixed point becomes unstable at a period of about 450 ms, as shown in

Fig. 12b.

(a) (b)

Figure (12) Moduli of the eigenvalues of the linearized beat-to-beat map for (a) voltage- and (b) calcium-

driven alternans using a step size of 10−5.
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IV. Discussion and Conclusion

Understanding the effectiveness of control strategies for cardiac alternans, including the variables

through which they work more effectively and the impact of alternans mechanism (voltage or

calcium) could be useful in preventing life-threatening arrhythmias such as ventricular fibrillation.

In this thesis we first studied the controllability of the QSW model using three different measures

of controllability and then compared the controllability results against a measure of control effort

(the norm of the feedback gain) for selected cases. Our first test, the controllability matrix rank

test, indicated that the system was not controllable through the calcium release variable but

was controllable through all other variables, regardless of alternans mechanism. Our second

method, which was based on the minimum singular values of controllability matrices, showed

strong and weak controllability through the SR load and APD, respectively, for voltage-driven

alternans and strong controllability through the SR load, APD, and total Ca concentration for

calcium-driven alternans. Our last test, the modal controllability test, indicated strong and weak

controllability through APD and SR Ca load, respectively, for voltage-driven alternans and strong

controllability through the APD or SR load for calcium-driven alternans (but somewhat stronger

for the latter).

In addition, we designed three controllers for the QSW model to test our controllability findings:

the single-variable (SV), pole placement (PP), and Linear Quadratic Regulator (LQR) controllers.

For voltage-driven alternans, we found, for a selected period, that applying control through APD

was successful in stabilizing the unstable fixed point, and thus eliminating alternans, for each of

the controllers. The SV controller could not achieve stabilization through the SR calcium load,

but both the PP and LQR controllers could do so, although not as easily (higher gain required)

as through APD. These two controllers also showed a smaller gain matrix magnitude (easier to

control) for larger controllability angle cosine magnitude (more controllable), as expected. All

three controllers performed consistently with the modal controllability test that favored controlling

through APD and disagreed with the prediction from the minimum singular value test that

favored controlling through SR calcium load. For many of our control algorithm tests, regardless

of the alternans mechanisms, we only tried controlling through the APD or SR load variables,

since those appeared to be among the more promising strategies according to our controllability

tests. Control through other variables was not explored as thoroughly. For alternans driven by

instabilities in intracellular calcium, we found for a selected period that all three controllers could

stabilize the unstable fixed point when control was applied through either the APD or SR calcium
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load. Control was shown to be roughly equally easy through APD and SR calcium load for the

SV controller and easier through SR calcium load for PP (smaller gain); for the LQR controller, a

smaller maximum eigenvalue could be achieved by controlling through APD, but control through

SR calcium load required a smaller gain. The SV and PP controllers performed consistently with

predictions from the modal controllability test that control could be achieved more easily through

SR Ca load than through APD, although none of the findings were inconsistent with the minimum

singular value test results, which predicted strong controllability through SR Ca load as well as

APD, as control could be achieved in all cases through either variable. For the LQR controller, the

question of which variable was better for use in control algorithms depended on whether greater

priority was given to achieving a smaller eigenvalue or a smaller gain value.

Overall, for the QSW model with voltage-driven alternans induced by steepening the APD

restitution curve and calcium-driven alternans induced by increasing the strength of SR uptake,

our analysis showed that control of alternans could be accomplished more easily through the

APD variable for voltage-driven alternans and through the SR calcium load variable for calcium-

driven alternans. We found that the rank test provided the least information and that the modal

controllability test generally gave more accurate predictions of control algorithm performance

than the minimum singular value test. This may be due to our choice of performance measures.

The minimum singular value test gives information about the control strategy that minimizes

the energy expended in controlling the system [45], and control energy is different from the

measures (maximum closed-loop eigenvalue modulus and gain size) that we used to evaluate

the performance of the control algorithms. Among the controllers, the SV approach was the least

effective at stabilizing the fixed points. Note that direct comparison of the PP and LQR methods

is not straightforward, especially given the performance measures we have chosen, since it is

difficult to hold either the maximum closed-loop eigenvalue modulus or the gain size fixed across

algorithms. In the case of PP, the gain is computed based on the choice of closed-loop eigenvalues,

while for LQR, both the gain and eigenvalues are consequences of the choice of Q and R.

Our results are consistent with a well-known result from control theory, which is that mutli-

variable state feedback should generally be able to outperform single-variable feedback, since

multi-variable feedback gives us more degrees of freedom through which we can manipulate the

closed-loop eigenvalues. That is, single-variable feedback, which corresponds to a 1× n gain vector

(K) with only one nonzero entry, will not be able to impact as many elements of the closed-loop

Jacobian (A− BK) compared with multi-variable feedback, where all entries of K are typically

nonzero. The downside of multi-variable feedback is that it usually requires all of the state
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variables to be measured or estimated. If some of the state variables cannot be measured directly,

a standard approach is to design an observer or Kalman filter that reconstructs unmeasured state

variables from available data. Among multi-variable algorithms, LQR is often preferred over PP,

since LQR has favorable properties, such as a degree of robustness to modeling errors [46], which

PP is not guaranteed to have. However, PP control is easier to compare with modal controllability

predictions.

We also looked briefly at the SSK model. For this model, controllability is more complicated to

assess, both because it involves significantly more state variables (16) and because it is a continuous-

time model, thus necessitating the definition of a discrete-time beat-to-beat map. Although it

was beyond the scope of the present work to perform a full controllability analysis for the SSK

model, we completed some of the most difficult initial steps, including computing fixed points,

Jacobian matrices, and eigenvalues of the Jacobian for the discrete map in different parameter

regimes. We note that we are not the first to perform a linear stability analysis on a myocyte

model with realistic internal calcium dynamics. Related work includes Li and Otani’s linearization

and controllability analysis of the Fox-McHarg-Gilmour myocyte model [18], an examination of

alternans mechanisms in SSK and other models [47], studies of subcellular alternans [35, 48, 49],

and investigations of empirical data-based estimation of SSK eigenvalues [50, 51]. However, as

stated previously, these studies either did not compare different alternans mechanisms [18] or did

not include any investigation of controllability properties [35, 47, 48, 50, 49, 51].

IV.1 Limitations

Our study includes several important limitations. We investigated controllability only for the

QSW model, and those results provided a basis for implementing state feedback controllers for

the linearized system. We do not know how applicable our results are to other models or to

the heart more broadly. In particular, our findings concerning the best ways to control voltage-

and calcium-driven alternans may be limited by the model we chose or the specific ways in

which these alternans mechanisms are implemented in the model; in particular, other models

may produce calcium alternans through different mechanisms. More generally, we do not know

whether alternans in the heart is driven primarily by voltage or calcium, by a combination of the

two, or perhaps by other mechanisms.

Furthermore, our results showed that control strategies through the SR load were useful for elimi-

nating calcium-driven alternans. However, beat-to-beat perturbation of any calcium concentration
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currently is not technologically feasible. Applying control strategies to the APD is the most feasible

experimentally, since APD can be adjusted by applying an electrical current to the tissue. In

addition, our work is somewhat limited by the hand-tuning of the gain and desired eigenvalues

when implementing the SV and the PP controllers, respectively. It may be possible that better

choices exist (associated with lower gain, for example) that were not considered as part of the

hand-tuning process. Another limitation of our work is that our controllability and algorithm tests

were confined to linearized models; although our results are valid for sufficiently small excursions

from fixed points, our findings may not be accurate for larger deviations.

IV.2 Future Work

Many directions of the research presented here could lead to interesting future work. We could

test controllability using a combination of two or more variables of the QSW model. For example,

applying a proportional feedback current through calcium ion channels would affect both the

APD a and the total calcium b. In the present work, we confined our analysis to a small number of

controllability measures (rank, σmin, and modal) for the sake of tractability, but we could consider

other measures of controllability, such as the condition number of the controllability matrix P. In

addition, we only designed feedback controllers for the linearized QSW model. A more realistic

result could be obtained by implementing the controllers on the nonlinear system. Furthermore,

we could compare our findings with the results of other types of control schemes that do not rely

on state feedback, such as constant diastolic interval pacing [8, 37], to determine whether our

controllability analysis makes helpful predictions in such contexts.

Another planned step is to apply a nondimensionalizing transformation to the linearized QSW

model. Reference values for each of the variables remain to be determined, but nondimensionaliz-

ing the model will aid us in making fairer comparisons across control strategies, given that some

of the state variables have different units. We will also extend the comparisons made between

controllability measures and performance measures (such as feedback gain size) to cover a wider

range of alternans periods.

It is worth noting that our minimum singular value controllability tests did not always favor the

same control strategies as the modal controllability tests. One possible explanation is that the

discrepancies are due to different state variables having different units, hence nondimensionalizing

the linearized QSW system could resolve these disagreements. Another possible explanation is

based on the fact that the controllability measures, while related to one another, capture different
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aspects of the ease with which a system may be controlled. The modal controllability measure

indicates how easy or difficult it is to use a specific control strategy to move a specific eigenvalue.

In contrast, the minimum singular value of the controllability matrix is related to the “control

energy" needed to move the system from one point in the state space to another. The control

“energy," which is really just the 2-norm of the vector containing the sequence of control inputs, is

usually defined as E = ∑
k f−1
k=0 ‖uk‖2. The minimum singular value of the controllability matrix is

inversely related to the theoretical minimum of E, where the minimum is taken over all possible

input sequences from k = 0 to k = k f − 1 [45]. If we were to compute E for each of the control

algorithms we tested, along with the theoretical minimum of E, these should show a better

correspondence with the minimum singular value measures, compared with the modal measures.

Of the three control algorithms we investigated, LQR most closely resembles a minimum energy

control strategy, due to the “energy-like" uT
k Ruk term in the cost function, so it is not entirely

clear why the minimum singular value measure was not always inversely related to the LQR

gain sizes. After nondimensionalizing the QSW model, we aim to determine whether there is a

relationship between σmin values belonging to different Bj strategies and the corresponding LQR

control energies for some range of R-Q ratios. For example, when R = 1 and Q approaches zero,

the LQR cost more closely resembles E, so we would expect to see a relationship between gains

and σmin.

We also would like to apply our controllability analysis to other models that support both voltage-

and calcium-driven alternans, including both discrete-time and continuous-time models (such as

the SSK model), to determine the generality of our findings. Furthermore, we could extend our

analysis from the case of a single cell to spatially extended systems with one, two, or three spatial

dimensions. Finally, our work may be useful in providing insights leading to the design of novel

control strategies.
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