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TRANSVERSE DISKS, SYMBOLIC DYNAMICS, HOMOLOGY
DIRECTION VECTORS, AND THURSTON-NIELSON THEORY

WILLIAM BASENER

Abstract. We review some properties of transverse disks and use symbolic
dynamics to determine rotation vectors from the return map to a transverse
disk. We also prove connections between the symbolic dynamics and Nielson
equivalence of orbits.

homology direction; Nielson equivalence; transverse disk; global cross section;

1. Introduction

Let M be a n-dimensional manifold and ϕ : R×M → M be a C1 nonsingular flow
on M . A transverse disk Σ for ϕ is a compact (n− 1)-dimensional disk imbedded
in M and transverse to the flow. Since Σ is compact, by transverse to the flow
we mean that there exists an open (n − 1)-dimensional disk E containing Σ that
is transverse to the flow. We call Σ a global transverse disk if it is a transverse
disk and the positive and negative orbits through any x ∈ M both intersect Σ. It
is proven in [2] that every C1 nonsingular flow on a manifold of dimension greater
than 2 has a global transverse disk.

Transverse disks have been used as a tool in various settings. In [8], Carlos
Gutierrez uses transverse disks in dimension 3 to prove a result concerning prime
knotting of orbits. Based on Gutierrez’ work, it is proven in [4] that if a flow has
a dense orbit and H2(M) = 0 then there exists a dense open set N such that
any periodic orbit intersecting N is a prime knot. Marcy Barge and Bob Williams
use transverse disks in torus flows to classify Denjoy Continua and prove results
concerning continued fractions. They are a common tool in the study of flows on
surfaces, especially regarding Cherry flows and billiards.

We take the point of view that the return map to a transverse disk captures all
of the topology of a flow. Specifically, in ?? it is proven that, for flows ϕ, ϕ′ with
transverse disks Σ, Σ′ and return maps h, h′, the return maps h and h′ are conjugate
if and only if the flows are topologically equivalent. In this paper we prove that
important topological invariants can be “read off” from the symbolic dynamics of
the return map to a transverse disk. Specifically, from the symbolic dynamics of
the return map one can determine the space of homology directions for the flow,
the Albelian Nielson classes of periodic orbits. One can also determine information
about the periodic Nielson classes and strong Nielson classes of orbits as described
in Section 4.

2. Basic Definitions

For the rest of this paper, assume that M is 3-dimensional and that Σ is a global
transverse disk for ϕ. Associated with Σ is a first return map h : Σ → Σ. In [1] it
is proven that if Σ is chosen correctly then there exists a partition of Σ into points,
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2 WILLIAM BASENER

1-manifolds, and 2-manifolds such that h is continuous on each submanifold. The
images of these manifolds also forms a partition of Σ. We make this rigorous in the
following definitions.

A natural structure that we need is an M complex, which is a generalization of
a CW complex and is defined as follows.

DEFINITION 1. An M complex is a topological space defined as follows.
For each n = 0, 1, . . . , N , let {en

α} be a set of compact n-dimensional manifolds
with boundary where α runs over some finite indexing set. For each en

α, we denote
the interior of en

α by en
α. The en

α are called M-cells, being manifolds which play the
role of cells in the definition of a CW complex.

(1) Let X0 = {e0
α} be a discrete set of points.

(2) Inductively define Xn, called the n−skeleton, from Xn−1 by attaching each
en
α by maps ψα : ∂en

α → Xn−1. That is, Xn is the identification space of
Xn−1

∐
α en

α under x ∼ ψα(x) for x ∈ ∂en
α.

Following the notational conventions in [10] for CW complexes, if C denotes the set
of cells and attaching maps then |C| = XN denotes the resulting topological space.

The following is our definition of M-cellwise continuous.

DEFINITION 2. Suppose that Cd and Cr are M complexes and h : |Cd| → |Cr|
is a (not necessarily continuous) map. (The notation is chosen because Cd is the
cell complex on the domain of h and Cr is the cell complex on the range of h.) If
h restricted to any M-cell of Cd is continuous and the image of any M-cell of Cd

under h is an M-cell of Cr then we say h is M-cellwise continuous. For us h
will be a bijection.

So an M-cellwise continuous map is essentially a piecewise continuous map where
the regions of continuity are M-cells. For the rest of this paper we will use the term
cell for short, instead of M-cell.

Consider again the case of our 3-dimensional M . Define N : Σ → N by

N(x) = min{n > 0 : hn(x) ∈ intΣ}.
As is proven in [1] that for a generic global transverse disk Σ, we can choose Cd

satisfying the following properties:
(1) The union of the two cells of Cd is the set {x ∈ Σ : N(x) = 1}.

(2) The union of the one cells in intΣ is the set {x ∈ Σ : N(x) = 2}.

(3) The union of the zero cells in intΣ is the set {x ∈ Σ : N(x) = 3}.
In this case, the one cells of Cd on ∂Σ are the images under h of the one cells in
intΣ and the zero cells in ∂Σ are the images of the zero cells in intΣ. It is clear
then that Cd and Cr agree on ∂Σ.

It is sometimes required for Σ to obey further restrictions. It is possible to
perturb any global cross section Σ by an arbitrarily small amount so that every
intersection between h(∂Σ) and h−1(∂Σ) occurs at the intersection of 1-cells and is
transverse. Such a perurbation exists by standard arguments regarding transver-
sality. Assuming Σ is so perturbed, it is possible to reduce the M-complexes Cd and
Cr (by subdividing some of the cells) to get new complexes C ′d and C ′r such that
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every cell of C ′d and C ′r is simply connected and so that h(A)∩B is path connected
for every pair of cells A,B in C ′d. For such a Σ, we say Σ and the complexes C ′d
and C ′r are in topologically reduced form. Observe that if Σ and the complexes Cd

and Cr are in topologically reduced form then C ′d no longer satisfies properties (1)
through (3) above.

3. Symbolic Dynamics in Homology and the Fundamental Group

h(x)

y

a
x

h(a)

Figure 1. For a point a in a 1-dimensional M-cell, orbits begin-
ning to one side of a return close to h(a) while orbits beginning to
the other side of a pass by Σ near h(a) and return to Σ away from
h(a).

For our 2-dimensional global transverse disk Σ, the set of top dimensional cells
of Cd is {e2

1, ..., e
2
K}. For every cell en

α with n ∈ {1, 2}, there is a unique e2
k such that

en
α ⊂ e2

k and h restricted to en
α ∪ e2

k is continuous. This is proven in [1], although
the reason is simple. For a point a ∈ en

α, h(a) ∈ ∂Σ and for all x in a 2-cell near a,
h(x) is near h(a). See Figure 1. For each 2-dimensional cell e2

k, let Ak denote the
union of e2

k with all lower dimensional cells having this property. Equivalently, Ak

is the largest set containing e2
k such that h restricted to Ak is continuous. So the

discontinuity set of h is the boundaries of the regions Ak. Clearly, Σ is the disjoint
union

Σ =
K⋃

k=1

Ak.
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If the cross section Σ and complexes C ′d and Cr′ are in reduced form it is still
possible to write Σ as the union of nonintersecting regions A1, ..., AK where each
Ak is the union of a 2-cell with some lower dimensional cells that are contained
in its closure. Moreover, the return map h will be continuous on each Ak. The
difference is that the discontinuity set of h will be contained in the boundaries of
the A′ks, but may not be equal to the union of the boundaries of the Ak.

Define A : Σ → {A1, .., Ak} by letting A(X) be the unique region that contains
x. Let

an(x) = A(hn(x)).
and let

a(x) = {..., a−1(x), a0(x), a1(x), ...}
Let ΣK be the space of all bi-infinite sequences of the symbols {A1, ..., Ak}, endowed
with the usual cylinder topology making ΣK a Cantor set. Then a is a function
from Σ to ΣK that takes a point x in Σ to the itinerary of x. Define the usual
shift map σ : ΣK → ΣK by the rule that the ith coordinate of σ(a) is equal to the
(i + 1)th coordinate of a. Then a(Σ) is a shift invariant subset of ΣK .

The sequence a(x) keeps account of the way O(x) winds around the manifold
M . Let b be any point in Σ, and for every x ∈ Σ let b(x) be a path from b to x.
For each Ak, choose a point xk ∈ Ak. For each k = 1, ..., K, define the loop γk by

γ(Ak) = b(xk) ∪ −−−−−→xkh(xk) ∪ b(h(xk))−1,

where −→xy denotes the orbit segment from x to y. Observe that the homotopy
equivalence class of γ(Ak) does not depend on the choice of the paths b(x) or on
the choice of xk ∈ Ak. Let [[γ(Ak)]] denote the equivalence class of γ(Ak) in
π1(b,M) and let [γ(Ak)] denote the equivalence class of γ(Ak) in H1(M ;R ). For a
point x ∈ M , define

α(x) = γ(a(x))

αn(x) = γ(an(x))

α(x) = {..., α−1(x), α0(x), α1(x), ...}
We consider α(x) as a point in ΣK , where ΣK is now the space of bi-infinite
sequences of the K symbols {α(A1), ..., α(AK)}.

The winding of an orbit the the homology of a manifold can be measured in a
number of ways. We use ideas from [6] and track the homology of the orbit in the
space of homology directions, DM = H1(M ;R )/(x ∼ rx, r > 0), with the topology
of a sphere together with a point representing the zero class. Let p be the natural
projection from H1(M ;R ) to DM which is continuous everywhere except at zero.
Each point in DM represents a direction vector in the homology space for M . The
flow gives rise to a subset Dϕ ⊂ DM as follows. Let R denote the set of all x in
M for which there exists a sequence of points xn and real numbers tn such that
xn → x, ϕ(tn, xn) → xn and tn 9 0 (all as n →∞), called the recurrent set of ϕ.
Such a sequence (xn, tn) is called a closing sequence at x. The set of nonwandering
points of a flow ϕ, denoted by NW (ϕ), is the set of all points p ∈ M such that
every neighborhood U os p, there is a time t > 1 such that ϕ(t, U) ∩ U 6= ∅. It is
obvious that a point has a closing sequence if and only if it is a nonwandering point.
For each pair (xn, tn) in a given closing sequence, let γn be a short path from xn

to x, joined to the flowline from xn to ϕ(tn, xn), and then joined to a short path
from ϕ(tn, xn) to x. For each closing sequence, p([γn]) is a sequence in DM and
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hence has accumulation points. Each such accumulation point is called a homology
direction, and, as in [6], we denote the space of all homology directions by Dϕ.

Returning to our global cross section Σ, for each point x ∈ Σ and n ∈ N , let

dn(x) = p([α0(x)] + · · ·+ [αn(x)]).

For a fixed x ∈ Σ, we define the ω-limit set of the sequence {dn(x)}n∈N to be

ωd(x) =
⋂

N∈N

⋃

n>N

dn(x).

set of points in this omega limit set are the homology directions for x. We call the
set DΣ = {ωd(x) : x ∈ Σ} the collection of homology directions for Σ. Clearly DΣ

is a compact nonempty subset of DM . Let NW (ϕ) denote the nonwandering set
of ϕ and let DΣ,NW = {ωd(x) : x ∈ Σ ∩ NW (ϕ)} which we call the collection of
nonwandering homology directions for Σ. Observe that for each d ∈ DΣ there is
an obit segment beginning and ending in Σ that, when closed by a segment in Σ,
represents a class close to d.

THEOREM 1. For a smooth flow on a manifold M , Dϕ = DΣ,NW .

Proof. Suppose d ∈ Dϕ. Then for some closing sequence (tn, xn), d can be approx-
imated by a long flowline from xn to ϕ(tn, xn). By pushing x, xn and ϕ(tn, xn)
each a bounded amount along the flow until they are all in Σ, one obtains a loop
dn(x). Since the amount that we push x, xn and ϕ(tn, xn) along the flow to get
them in Σ is bounded above by the maximum first return time for Σ, the homology
class of dn(x) can be made arbitraraly close to the class of γn. Hence, d ∈ DΣ,NW .

Suppose d ∈ DΣ,NW . Then d can be approximated by loops generated from a
closing sequence consisting of points in Σ. Thus, d ∈ Dϕ. ¤

Observe that DΣ determines how orbits wind around the homology of M but,
in contrast to the homological rotation vectors of Franks [7], it does not indicate
how quickly the orbits go around these directions. This is the most that can be
determined from the return map h : Σ → Σ because h determines the flow up to
topological equivalence and hence does not determine the velocity of orbits.

4. Nielson Equivalence of Orbits

Let γ and γ′ be periodic orbits in M and x and x′ be points in γ ∩Σ and γ′ ∩Σ
respectively. For a periodic point y ∈ Σ, let per(y) denote the period of y under
the return map h : Σ → Σ. For a thorough treatment of Thurston-Neilson Theory,
see [5] and [11]. The following are trivial.

(1) γ and γ′ are Abelien Nielson equivalent (they are homologous) if and only
if

Σper(x)
i=0 [αi(x)] = Σper(x′)

j=0 [αj(x′)].

(2) γ and γ′ are periodic Nielson equivalent (they are freely homotopic) if

Σper(x)
i=0 [[αi(x)]] = Σper(x′)

j=0 [[αj(x′)]].
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(3) Suppose that Σ and the complexes C ′d and C ′r are in reduced form. Then
γ and γ′ are strongly Nielson equivalent (they are isotopic) if

α(x) = σn(α(x′)) for some n ∈ N .

It is an interesting question under what conditions is item (2) an if and only
if. That is, under what conditions is it true that γ and γ′ are periodic Nielson
equivalent (they are freely homotopic) if and only if

Σper(x)
i=0 [[αi(x)]] = Σper(x′)

j=0 [[αj(x′)]].
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