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Abstract 

Targeted molecular imaging agents (TMIA) are emerging as useful tools for early 

diagnosis of cancer and other diseases. These agents couple imaging agents such as near 

infrared fluorescence (NIRF) dyes or metallic contrast agents such as gadolinium (Gd) used 

in magnetic resonance imaging (MRI) to targeting agents that bind to biomarker receptors 

in cancer cells. Our group has developed a modular synthesis of peptide-based TMIAs 

containing these two agents starting from “puzzle pieces”. Puzzle pieces, or modules, are 

amino acids with imaging groups bonded to their side chains. These are assembled together 

to form imaging peptides which are then conjugated to targeting groups. The research goal 

was to synthesize targeting peptides using solid phase peptide synthesis (SPPS), and then 

add the imaging puzzle pieces to these in the same SPPS method.  SPPS is widely used and 

has many advantages in the synthesis of TMIAs. The first goal, to learn how to synthesize 

simple peptides by SPPS, was accomplished. The second goal of making Met-enkephalin, 

a bioactive penta-peptide, and conjugating the imaging puzzle pieces containing a NIRF 

dye or gadolinium chelate for MRI by SPPS was also successful. The final goal, to 

synthesize a deca-peptide, 18-4a, useful for targeting breast cancer and then to couple these 

same imaging puzzle pieces, to the peptide 18-4 in the last step, was also accomplished.    
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Abbreviations 

AA (Amino Acids) 

ACN (Acetonitrile, an organic solvent used in HPLC) 

Boc (Tert-butyloxycarbonyl,  a protecting group removed in strong acid) 

CFM (Confocal fluorescence microscopy) 

DCM (Dichloromethane) 

DEA (Diethylamine, a de-protecting agent for Fmoc) 

DIPA (Diisopropyl ethyl amine, also called DIEA, used as a base in coupling reactions)  

DMF (N,N-dimethylformamide, a solvent for peptide coupling) 

DOTA (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid)  

Fmoc (Fluorenylmethyloxycarbonyl, a common peptide protecting group) 

HATU (A common peptide coupling reagent) 

HPLC (High Pressure Liquid Chromatography)  

LC-MS (liquid chromatography – mass spectrometry)  

MeOH (Methanol an organic solvent used in HPLC) 

MRI (Magnetic Resonance Imaging) 

MS (Mass Spectrometry)  

Mtt (Methyltrityl, a protecting group that is easily removed with mild acid) 

NIR (Near-Infrared) 

NIRF (Near-Infrared Fluorescent) 

NIRQ (Near-Infrared Quencher) 

NMM (N-methylmorpholine, used as a base in coupling reactions) 

NMP (N-methylpyrolidine, a peptide coupling solvent) 

PAI (Photoacoustic Imaging) 

PCa (Prostate Cancer) 

PET (Positron Emission Tomography)  

λmax (Lamda Max, peak wavelength in UV-Vis-NIR absorption spectroscopy 

TBTU (A common peptide coupling reagent) 

TCA Targeted contrast agent  

TFA (Trifluoroacetic acid, a common buffer, also used to remove protecting groups) 

THF (Tetrahydrofuran, an organic solvent)  

TMIA (Targeted molecular imaging agent) 

TSTU (A common peptide coupling reagent)  

UV-Vis-NIR (Ultra Violet – Visible – NIR absorption spectroscopy) 
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Amino Acids Abbreviations 

Amino Acids Three Letter Abbreviations One Letter Abbreviations 

Alanine Ala A 

Glutamic Acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Tryptophan Try W 

Tyrosine Tyr Y 

Norleucine Nle X 

 

Information on NIR dyes utilized  

Cy5.5: NIRF dye absorbing at 680 nM and fluorescing at 710 nM, useful in confocal 

fluorescence microscopy (CFM).  
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Nomenclature of Peptides containing Dyes and Metals 

In peptide synthesis, the structures are synthesized from right to left, but named in 

the left to right by convention. In solution phase synthesis, the C-terminal carboxylic acid 

on the right, may be changed to a C-terminal amide, to make it non-reactive. The nitrogen 

on each amino acid coupled is most often protected by an Fmoc group. This nitrogen and 

protecting group on the left side of the peptide chain is referred to as the N-terminus. 

In peptide nomenclature, the three letters abbreviation is the standard utilization for 

amino acids. Side chains are drawn alternately up and down. Natural amino acid is a solid 

wedge when up and dashed when down. Unnatural is the opposite. Unnatural amino acids 

are prefaced by d in three letter abbreviations, and are lower-case letters in one-letter 

abbreviations. Unnatural amino acids are put in to give proteolytic stability. A protecting 

group should be brought in on the amines of side chains. These protecting groups are 

written in parentheses. We introduced a convention of putting the imaging groups, 

likewise, in parentheses. This is important since our imaging groups are added on the side 

chains of the amino acids. The illustrations represent the peptide, Met-enkephalin, with the 

dye Cy5.5 or with the metal-chelate Gd-DOTA on the side chain of d-Lysine.    

        

        Fmoc-dLys(Cy5.5)-Tyr- Gly-Gly-Phe-Met-NH2             Fmoc-dLys(Gd-DOTA)-Tyr(tBu)-Gly-Gly-Phe-Met-NH2 
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Chapter 1. Background Information 

1.a. Cancer and Early Detection 

Cancer is a group of diseases involving abnormal cell growth with the potential to 

invade or spread to other parts of the body.1, 2 Our lab is focused on discovering new ways 

to image cancer, specifically prostate cancer (PCa) and breast cancer (BrCa). Cancer starts 

when cells in the these or other organs begin to grow out of control. These cells usually 

form a mass, or tumor that can often be seen with various imaging modalities such as X-

ray in a mammogram, or they can be felt as a lump upon examination. 

There were approximately 18.1 million new cases and 9.6 million deaths in 2018.  

One in 5 men and one in 6 women worldwide develop cancer during their lifetime, and one 

in 8 men and one in 11 women will die from cancer.3  

One of the main goals of this research project was to develop a method for the 

synthesis of targeted molecular imaging agents (TMIAs) for breast cancer. For females, 

breast cancer is the second main cause of death, just after lung cancer.4 In 2017, 252,710 

new diagnoses of breast cancer occurred in females, and 40,610 females died from these 

diseases.5 Since breast cancer is associated with many factors, such as age, genetics, a 

family history of breast cancer or breast lumps, alcohol consumption, radiation exposure, 

hormone treatment and dense breast tissue, it is important to be aware of the symptoms and 

how to recognize them, and it is important to undergo regular screening (i.e. 

mammograms).5 The best hope is to detect the cancer early, in order to improve the 

outcome and to reduce the risk of death.  

Molecular imaging is a multidisciplinary science that is developed rapidly recently 

which involves in chemistry, biology and medicine.6 As a result of advances in molecular 
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imaging, more and more researches has focused on the need for a variety of safe and 

effective targeting molecular imaging agents (TMIAs). The key purpose is to visualize 

disease in real time and noninvasively assess physiological or pathological processes in the 

living organisms. Molecular imaging is a powerful tool that can detect the disease in the 

early onset which could save more lives. But since it is looking for small changes, it 

requires highly sensitive instruments and techniques to detect the specific molecular 

processes in diseased cells and tissues. 

Confocal fluorescence microscopy (CFM) is a microscopy technique that provides 

three-dimensional optical resolution, which is coupled with a laser light source, diffraction-

limited optics and a high-efficiency detection system has been used to study the diffusive 

movement and emission process of individual fluorescent molecules in the liquid phase at 

room temperature.7 Because we have a relatively newly acquired CFM instrument in the 

College of Science, and have set up a collaboration with Dr. Evans, our primary focus in 

imaging has been to synthesize TMIAs which make use of a fluorescent dye.  The dye we 

chose is Cy5.5 is chosen because it falls perfectly in the range of the CFM instrument with 

excitation at 633 nm, which is the wavelength of the excitation laser, and the range of 

emission that is entirely captured between 650 nm and 750 nm. In our approaches Cy 5.5 

is conjugated to targeting systems for prostate and breasts cancer followed by evaluation 

by CFM.     

In addition to CFM the other two modalities of interest in our lab are magnetic 

resonance imaging (MRI) and to synthesizing proto-types for positron emission 

tomography (PET).  Targeted contrast agents (TCAs) for NMR make use of chelated 

gadolinium metal and TMIAs for PET make use of radioactive metals including gallium 
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(Gd) , indium (In), yttrium (Y) and copper (Cu). In our facilities radioactive agents are not 

allowed so this will not be a focus of my research. However, the results we obtain for Gd 

for MRI could be applied to the synthesis of PET agents containing other chelated metals 

that will be useful to others in related future research.     

1.b. Modular “Puzzle Piece Approach” (peptides) 

Targeted molecular imaging is emerging as a useful method for early diagnosis of 

cancer and other diseases.8 These agents couple various imaging agents such as near 

infrared fluorescence (NIRF) dyes or metallic contrast agents used in magnetic resonance 

imaging (MRI) with targeting agents. The targeting agents are designed to bind to unique 

biomarker receptors in cancer cells, and therefore highly selective at “lighting up” both 

cancer cells.   

Our group has developed a modular synthesis of peptide-based TMIAs starting 

from “puzzle pieces”.9,10 Puzzle pieces are amino acids with imaging groups bonded to 

their side chains. These are assembled together to form imaging peptides which are then 

conjugated to targeting groups to prepare TMIAs as shown in Figure 1 on the left side.  So 

far these have been synthesized by solution phase peptide synthesis. In this method the 

yields are low, and synthesis requires many steps including purification of each 

intermediate.  

The goal of my research is to synthesize targeting peptides by a technique that is 

new to our group at RIT which is solid phase peptide synthesis (SPPS), and to incorporate 

the imaging modules or “puzzle pieces” as part of the synthesis to assemble TMIAs. SPPS 

is widely used and has many advantages as outlined below. The difference in producing 

TMIAs from a SPPS versus our group’s method is that in the SPPS method, the targeting 
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peptide is prepared first, followed by incorporation of the imaging modules as shown on 

the right side of Figure 1. In the established group method, the imaging modules are 

prepared first, followed by conjugating the targeting group on last.   

 

Figure 1: Synthesis of TMIAs using solution phase synthesis (left) and SPPS (right) 

 

There are distinct benefits from using low-molecular weight (<3,000) peptides for 

both targeting and imaging agents.  Small peptides have well-known bioavailability, with 

known advantages in pharmacokinetics, tissue penetration, metabolism and clearance that 

provide beneficial aspects in efficacy and safety.11 A disadvantage is that peptides can be 

cleaved by proteases not only in the digestive tract, but also by proteases in the blood in 

the case of injectable TMIAs such as those in this project.  However, the proteolytic 

stability can be increased by incorporation of D amino acids at critical centers to optimize 

circulation time and clearance.  Rapid metabolism and clearance is a desirable factor when 

using injectable imaging agents, so D amino acids can further be used to fine-tune the 

stability in blood to last a required amount of time to match the imaging method.  For 

example an MRI study might take about 30 minutes.   

The goal of producing TMIAs with SPPS was pursued by a plan that included 

synthesizing small (mono- to tri-peptides), then medium peptides (such as penta-peptides) 
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that would emulate targeting peptides, then to couple each of these to the dye and metal 

imaging modules in the last step. The stretch goal was to synthesize an actual targeting 

deca-peptide for breast cancer and likewise couple these to the dye and metal modules 

containing Cy5.5 and Gd(III).   

Carrying out this plan, the first goal was to learn how to synthesize simple mono-, 

di- and tripeptides from common amino acids. The majority of synthesis time in this project 

was devoted this goal. It involved troubleshooting, optimizing and essentially teaching 

ourselves how to synthesis peptides utilizing SPPS, then bonding the imaging modules or 

puzzle pieces to the peptides while still on the SPPS resin or after cleavage from the resin.     

The second goal was to apply this optimized method to the synthesis of a small, 

bio-active peptide.  We chose Met-enkephalin, a natural opiate receptor targeting peptide, 

and likewise assembled these with the Cy5.5 and Gd-DOTA imaging modules.   

The third goal (a stretch goal) was to synthesize breast cancer targeting peptides of 

the type discovered by Dr. Kaur at Chapman University12–14 and attach the same imaging 

modules (“puzzle pieces”) in the last step.  All of the steps including the imaging module 

couple would be accomplished by SPPS. Progress toward these goals will be described in 

the next section.   

1.c. Solid Phase Peptide Synthesis 

Solid phase peptide synthesis (SPPS) is a method in which molecules are bound to 

a bead and synthesized step-by-step using solutions of reagents that act on these bound 

peptides.15 Compared with synthesis in a liquid state, also called solution phase peptide 

synthesis, it is easy to remove excess reactant or byproduct by simply washing the beads. 
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The advantage of solid phase peptide synthesis is that the products can be isolated easily 

since all the intermediate peptides are immobilized on a polymer such as polystyrene. Thus, 

the products can be purified by filtration and washing. Repetition of the deprotection-

coupling process will lead to larger peptides.16 In general, SPPS should give good yield 

and high purity. It is a great way to synthesize long peptide chains.   

A typical synthesis using SPPS is shown in Scheme 1 (below).  In SPPS, the first 

step is to bind the first amino acid (synthesizing from right to left) to the polymeric resin 

by a coupling reaction of the free acid on the amino acid and the amine on the polymeric 

resin. This is followed by deprotection of an Fmoc group (shown later).  Fmoc is used 

routinely in SPPS as a primary protecting group for the backbone amine. The second step 

after coupling each amino acid to the resin is to remove the Fmoc group by the use of a 

secondary amine, typically piperdine to yield the free N-terminus amine which is then 

ready to couple to the next amino acid.    

By repeating the process of bringing in an Fmoc protected amino acid, coupling it 

to the prior deprotected amine bound to the resin, and deprotecting the Fmoc again, a longer 

peptide chain can be synthesized as shown in Scheme 1. As described in the results section, 

tripeptide Fmoc-Phe-Ile-Phe-NH2 was prepared as part of the SPPS learning and 

development phase of the project.  
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Scheme 1: Solid Phase Peptide Synthesis of a Tripeptide 

 

For following the progress of reactions, the classic Kaiser test is a qualitative 

method that simply shows if the coupling reaction is completed by detecting unreacted 

amines after micro-cleavage of a small portion of the beads. However, because we had 

access to liquid chromatography-mass spectroscopy (LC-MS) right in the lab, we found it 

most effective to conduct a micro-cleavage reaction (described later) and directly assay 

each product. This, and other details of the SPPS methods that we developed are described 

in detail in the following section.   

1 

2 

3 

1R 

2R 

3R 
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Chapter 2. Solid Phase Peptide Synthesis (SPPS) Methods 

2.a. Choice of SPPS resin 

The first step to build up a peptide chain is to find the best linker resin. Historically 

the Merrifield resin was invented as the first resin. Using this resin, the final cleavage 

produces the C-terminal acid of the peptide.  The resin most currently used is a modification 

of this resin called the Wang resin. If a C-terminal amide is required, the resin most 

commonly used is currently the Rink-amide resin.   

All of these resins require pure TFA to cleave the peptide product. But because our 

near infrared dyes (NIR dyes) used in medical imaging are decomposed by strong acid, 

which means it needs to find milder conditions. Sieber resin, also known as xanthenyl 

linker resin, is the only resin commercially available at an affordable price that permits 

dilute acid (1-2 % TFA) for cleavage. The structure of the Xanthenyl containing the linker 

moiety, where the amine is protected by an Fmoc group, is shown in Figure 2. 

 

Figure 2: The structure of Sieber resin (Xanthenyl linker resin) 

 

2.b. Calculation of micro-equivalents of amine on resin   

In order to use the correct stoichiometry for each reaction on a SPPS resin, it is 

important to determine the micro-equivalents of reactive amine on the resin, upon which 
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the peptide is built. This is accomplished by deprotecting the Fmoc group from the entire 

batch of resin to be coupled, which in our case is generally 100 mg per synthesis, followed 

by measuring the absorbance of the resultant Fmoc byproduct, which as a known extinction 

coefficient (M-1cm-1) at a key absorption band of  300 nm.    

After an extensive series of trials in which many conditions were explored, the 

following set of conditions was found to provide the best results.   

First, the xanthenyl resin, which was chosen as the most appropriate resin which 

would be compatible with the acid-sensitive dyes we ultimately used, was pre-swelled for 

about twenty minutes before the experiment starts. Pre-swelling can help resin improve 

accessibility within their macroporous structure. DMF is used as the organic solvent to pre-

swell it. 

Conditions for removal of the FMOC (Fluorenylmethoxycarbonyl) group from the 

resin were optimized by a reported method which used 2% DBU, 5% saturated piperazine, 

and 93% DMF in order to completely deprotect it from the resin.17 To ensure the FMOC 

has been removed completely, about 3mL of deprotection solution was added to the resin 

and stirred for 5 minutes, then repeated twice. All deprotection solutions were drained, 

combined and diluted as described below to test the concentration of the resin. This 

optimized Fmoc deprotection process was tested by the UV absorption method several 

times and was found to be the most efficient way to remove all Fmoc groups.  

The combined deprotection solutions should be diluted in ethanol, or the 

absorbance will be too high to measure. 30uL of deprotection solution was diluted in 

2.97mL of ethanol, mixed well and assayed by UV spectroscopy to measure the absorbance 

at 300nm and calculate the equivalents of the solution. The concentration equals 
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absorbance divided the extinction coefficient and the light path length as calculated by the 

equation below (Beer’s Law).  

𝐴𝑏𝑠 = 𝜀𝑙𝑐 → 𝑐 =
𝐴𝑏𝑠

𝜀𝑙
 

2.c. Preparation of deprotected resin for synthesis    

After determination of the micro equivalents per 100 mg, which is our initial 

“reaction scale”, the SPPS resin needs to be further prepared in order to be utilized in the 

next reactions. So, the beads are next washed with DMF to remove all the deprotection 

solution by applying 2mL DMF and stirring for 30 seconds, apply air pressure to remove 

the eluent through the frit in the SPPS vessel, then repeating three times. Next, using the 

equivalents number to calculate the mass of all the compounds that are needed, the amino 

acid is first activated, then the solution transferred to be the beads and stirred for at least 

45 minutes to make sure the coupling is complete.   

The optimized stoichiometry of the coupling reaction was found to be 1.9 

equivalents of coupling reagent (HATU), 2.0 equivalents of amino acid and 10 equivalents 

of base (DIEA).  The specific order of addition is to dissolve the amino acid in DMF first, 

followed by DIEA, followed by adding HATU which was separately dissolve in DMF first. 

The mixture is transferred to the reaction vial and let it couple for 45 minutes. 

After the coupling reaction, the beads were washed with 2mL of DMF, air pressure 

was applied to remove the eluent through the frit in the SPPS vessel, and this procedure 

was repeated twice to remove all the unreacted compounds, base and starting materials. 

This is the clear advantage of SPPS in which the growing peptide chain stays on the beads 

and all starting materials and impurities are easily washed off.   
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We developed two different procedures to cleave the final peptides. The first 

procedure is more applicable to simply determine if we have synthesized the correct 

intermediate or to learn if the targeting peptide has been made. In this procedure a small 

portion of the resin was removed in order to assay the product at that step. In this case we 

are not concerned about the yield, but to identify and assess the purity of the intermediate 

peptide or product.   

For the cleavage process, the beads should be washed with DCM three times 

beforehand to remove all the DMF in the resin. By the first method, a small portion (ca. 1-

2 mg) of beads are removed and stirred with 1 mL of 1% TFA in DCM for 45 minutes, 

then filtered and concentrated on a rotovap, then dissolved in methanol for analysis by LC-

MS.   

The second method is better in the case where yields needs to be determined and is 

generally on a larger portion of the beads or the entire amount. In this procedure, 1mL of 

1% TFA in DCM is added to the resin, stirred for 45 seconds or 1 minute, then this process 

is repeated twenty times to make sure all the product has been cleaved. The solution was 

drained and concentrated on a rotovap in a pre-weighed flask for yield determination. An 

aliquot of this may be removed for LC-MS analysis.    

It is important to note that yields are subject to considerable loss due to the micro-

cleavage and LC-MS analysis at each step as in the first procedure, as well as removal of 

aliquots for various analyses in the final step. This is also noted below in the philosophy of 

yields section. In general, the focus of this research was to develop synthetic routes to 

peptides and TMIAs and not to focus on yields. In order to accomplish this purity needs to 

be examined at each step. Once a procedure has been established, it is more common to 
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run through the entire SPPS on a larger scale and measure the yields and purities of peptides 

using the optimized procedure. This will be continued by future students.   

2.d. General procedure for the optimization of peptides 

At the beginning of learning SPPS, we tried to synthesis a tripeptide Fmoc-Phe-Ile-

Phe-NH2 as the first goal. To deprotect the Fmoc group, the most common reagent, 20% 

piperidine and 80% NMP was used. After several attempts, there were always many 

impurities in the product, such as Fmoc-Phe-Phe-NH2, Fmoc-Ile-Phe-NH2.   

It is important to note that these can be caused by two incomplete processes:  by 

either incomplete Fmoc deprotection or incomplete coupling, or both.  These can lead to 

the impurities as described in Figure 3. 

 

Figure 3: The origin of impurities (Pol=polymer resin), red is desired product. 
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The first guess at the flaw in synthesis leading to the impurities was incomplete 

coupling of the first amino acid to the resin. This was deduced because the second coupling 

amino acid was found as its terminal amide form after coupling process. This indicates 

there was free amine on the resin even after the first coupling which would give rise to the 

second amino acid (monopeptide) in its amide form. In order to solve this problem, the 

equivalents of each reagent were changed several times.  

With the help of Dr. Justin Miller from Hobart College, the number of equivalents 

of the coupling reagent was advised to be a little bit less than the amino acid, so this was 

adjusted to 2 equivalents of amino acid and 1.9 equivalents of coupling reagent (HATU, 

described later).  

  In addition to the change in equivalents of coupling agent, after several more 

experiments, it was determined that the use of 10 equivalents of diethylpropylamine was 

more favorable than 20.  Although these combined changes gave better result than before, 

there were still impurities contained in the product.   

Due to the above results, the second consideration was the incomplete Fmoc 

deprotection both in the initial deprotection of the resin, and the deprotection of each amino 

acid in the SPPS.  The mechanism of this deprotection is shown in Scheme 2 (below).  

Because the Fmoc deprotection time was ten minutes initially, in order to make sure the 

process was finished completely, the deprotection time was extended to twenty minutes. 

Unfortunately, the result was not changed.  

By searching the literature, an alternative protocol for the standard deprotection by 

piperidine or diethylamine was found and tried. The new conditions, 2% DBU, 5% 

Piperazine and 93% DMF mixture solution,17 gave remarkable results and were deemed as 
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giving the best procedure to remove the Fmoc group. It reacted very rapidly. Two minutes 

were enough to remove all the Fmoc groups. But just to make sure no more Fmoc group 

has still linked to the previous peptide, five minutes of deprotection time was repeated 

twice.  

After changing all of these methods, there were almost no impurities in the product 

anymore. The conclusion of this optimization campaign was that the incomplete Fmoc 

deprotection had been the main problem that caused impurities formed. With the new 

combination of optimized coupling and optimized deprotection of Fmoc, almost all of the 

subsequent peptide syntheses were successful yielding pure di-peptides, tri-peptides and 

later longer peptides all the way up to deca-peptides.  

 

2.e. Mechanism of the deprotection of Fmoc 

 At every step in SPPS, it is most common to use the fluorenylmethyloxy carbonyl 

(Fmoc) group to protect the backbone N-terminal nitrogen of each in-coming amino acid.  

This may be effectively removed by bases such as piperidine, diethyl amine or a recipe we 

discovered in the literature using piperazine and DBU. The advantage is that acid sensitive 

groups may be used on the side chains of amino acids to be able to differentiate those 

groups. This is called “differential or orthogonal protection” strategy in SPPS. The 

mechanism of removal of the Fmoc group by the base is shown below.   
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Scheme 2: Mechanism of Fmoc deprotection 

 

2.f. Mechanism of coupling of amino acids by HATU 

 The mechanism of coupling by HATU is shown in Scheme 3. In this reaction the 

intermediate is an “activated ester” based on a pyridyl triazole, also known as oxy 

pyridyltriazole (OPT) ester. 

 

Scheme 3: Mechanism of amino acid coupling with HATU 
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2.g. Mechanism of cleavage of peptide from the Xanthenyl 

To remove the final peptide from the resin a cleavage process using dilute 

trifluoroacetic acid (TFA) was optimized.  Due to the sensitivity of dyes and metal chelates 

in our imaging agents, it was important to use very mild acid, such as 1-2 % TFA in DCM, 

and this is why the Sieber resin was chosen as described earlier.  The mechanism of 

cleavage from the xanthenyl linker in the Sieber resin is shown in Scheme 4. In this reaction 

the xanthenyl heterocycle is prone to decomposition followed by cleavage by the 

mechanism shown.  

 

Scheme 4: Cleavage of peptide from the Sieber (Xanthenyl) Resin with 1 or 2 % 

trifluoroacetic acid (TFA) yields a C-terminal amide 
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Chapter 3. Optimized Step-by-step recipe for the SPPS of peptide 

 In lieu of a detailed experimental section for the generic synthesis of peptides, it 

was decided that a recipe, or set of directions, for the synthesis by SPPS, would be more 

useful for future students in the molecular imaging lab (MIL).  The recipe was therefore 

formulated as described below. Reagent acronyms have also been defined in the 

abbreviations section.  

3.a. Pre-Swelling 

Weigh out 100 mg of Xanthenyl linker resin, transfer it to the SPPS reaction vessel. 

Then, add a stir bar into the vessel. Use a syringe to add 1~2mL of N,N-

Dimethylformamide (DMF) into the vessel. Turn on the stir plate and let it stir for about 

20 minutes. Drain the vessel by applying some air pressure to help. 

3.b. Fmoc Deprotection 

Mix 2% 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), 5% piperazine and 93% DMF 

together to make the deprotection solution, shake it well. Use a glass pipette to add 1mL 

of the deprotection solution into the SPPS vessel, let it stir for 5 minutes. Then use a 20mL 

scintillation vial to collect the deprotection solution by draining the vessel into a vial. 

Repeat it two more times. Save the collected deprotection solution. 

3.c. Washing after Deprotection 

Add about 2mL of DMF to the vessel, stir for 30 seconds and drain it. Repeat these 

3 times to make sure all the deprotection solution has been removed. 

3.d. Calculation of Equivalents 

Prepare three 3mL quartz cuvette, place 3mL 200 proof ethanol in each cuvette. 

Two of them as blank. Using a syringe to remove 10L of ethanol from the third cuvette 
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and place 10L of eluate from the scintillation vial into the cuvette. Mix it well. Use the 

cuvette which only contains ethanol to blank the instrument. Then place the cuvette in UV 

spectrophotometer. Set the wavelength range from 200nm to 500nm. Record the 

absorbance at 300nm. Use the formula 𝐴𝑏𝑠 = 𝜀𝑙𝑐  and the Excel sheet to calculate the 

concentration of the deprotection solution. Record the result. 

Example: 

   𝐴𝑏𝑠 = 𝜀𝑙𝑐 → 𝑐 =
𝐴𝑏𝑠

𝜀𝑙
=

0.633

7800 𝑀−1𝑐𝑚−1×1 𝑐𝑚
= 0.0000811 𝑀 

   300𝑋 = 300 × 0.0000811 𝑀 = 24.3 𝑚𝑀 

   24.3 𝑚𝑀 = 24.3 𝜇𝑚𝑜𝑙/𝑚𝐿 = 73.0 𝜇𝑚𝑜𝑙/3𝑚𝐿 = 73.0 𝜇𝑚𝑜𝑙/100𝑚𝑔 𝑜𝑓 𝑟𝑒𝑠𝑖𝑛 =

73.0 𝜇𝑚𝑜𝑙/0.1𝑔 = 0.730 𝑚𝑚𝑜𝑙/𝑔  

Table 1: Calculation of Equivalents 

Xanthenyl     

l (M-1) Absorbance Concentration 

(M) 

Concentration 

(mM) 

Equivalents 

(mmol/g) 

7800 0.633 8.1210-5 24.3 0.730 

 

3.e. Coupling Amino Acids 

Weigh out 2.0 equivalents of the amino acid, 1.9 equivalents of the coupling reagent 

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU) in separate scintillation vials. Add DMF to the two vials to 

dissolve the amino acid and coupling reagent. Use a glass pipette to add 10 equivalents of 

N, N-Diisopropylethylamine (DIEA) to the vessel which contains amino acids. Then use 

another glass pipette to transfer all the coupling reagent solution to the vial containing 
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amino acid and DIPEA Shake it or stir it for one minute and transfer the mixture solution 

to the reaction vial. Stir for 45 minutes. 

3.f. Washing after Coupling 

Apply air pressure to drain the vial. Add about 2mL of DMF into the vial, stir for 

30 seconds and drain it. Repeat three times. 

3.g. Synthesizing Longer Peptide Chains 

Repeat the process from Fmoc deprotection to washing after coupling until the 

targeting peptide has been made. If it is not possible to finish making the targeting peptide 

in one day, after the coupling washing step, add 1mL of dichloromethane (DCM) to wash 

the beads and drain it. Label and store it properly in the fridge for next-day use. On the 

next day, let the peptide warm up in room temperature, add some DMF to wash it before 

starting deprotecting Fmoc group. 

3.h. Final Wash 

Add about 2mL of DCM into the vial, stir for 30 seconds and drain it. Repeat three 

times. Label and store it in a vial properly. 

3.i. Cleavage 

Mix TFA and DCM together to make 1% Trifluoracetic Acid (TFA) cleavage 

solution. Weight out certain amount of peptide and transfer it to the reaction vial. Add a 

stir bar into the vial. Then, add about 1mL of 1% TFA solution to the reaction vial, stir for 

1~2 minutes, drain it and use a small flask to collect the solution. Repeat for at least five 

times. Rotavap the collected solution and test it in LCMS. Analyze the data. 
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3.j. Method development versus yield determination   

 In this project, the goal was primarily to devise a route to peptides that a student in 

our lab could utilize to effectively synthesize TMIAs. The specific stretch goal was to 

develop a method to produce product. It is important to recognize that there are two factors 

which makes yield determination difficult:   a) at each step about 3-5 mg of resin was 

removed in order to verify each intermediate in the entire synthesis. The purity of this 

intermediate was verified by an extracted wavelength chromatogram at 265nm, which is 

the lambda max of the Fmoc group. In each case it was verified by total ion current in LC-

MS that there were minimal, or no impurities related to any peptides, protected or 

deprotected amino acids or peptide combinations of those. b) at various points in the 

synthesis the remaining resin was divided into smaller portions in order to test out new 

procedures. As each portion becomes smaller, aliquots removed for analysis become more 

of a factor. For this reason, yield determination was not a priority in this research. Rather, 

relative purity of products after cleavage in each step and the final products were important.   

As described, yields can be determined by future students after SPPS methods are scaled 

up, in which case removal of micro-samples for assay by LC-MS is not a large factor.  
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Chapter 4.  Puzzle pieces 

4.a. Puzzle piece methodology  

In order to create targeted molecular imaging agents (TMIAs) from the peptide 

targeting groups that are synthesizing, we will use makes use of the puzzle piece approach 

developed in our group. Puzzle pieces (also known as imaging modules) are synthesized 

by bonding imaging groups, such as near infrared (NIR) dyes to amino acids such as lysine, 

which have a reactive amine on the side chain. NIR dyes are useful in optical molecular 

imaging (OMI) methods including confocal fluorescence microscopy (CFM) and a variety 

of other in-vitro and in-vivo fluorescent imaging methods. 18 

In addition to the use of NIR dyes, we could use metal – chelate complexes such as 

gadolinium DOTA (Gadolinium (III) 1,4,7,10-Tetraazacyclododecane-1,4,7,10-

tetraacetate) that is used as a contrast agent in MRI. There are many MRI contrast agents 

based on Gd, 19 and examples of targeted Gd-based molecular imaging agents.20 There are 

instances where chelated metals such as Gd-DOTA and radioactive metals such as Ga-

DOTA have been put on peptides,  but they are always put in after the peptide has been 

cleaved from the resin and most of the time the DOTA is protected during the synthesis 

with t-butyl groups which requires removal by harsh TFA.    

To our knowledge the use of puzzle pieces to directly incorporate a NIR dye or a 

metal in SPPS has never been reported.  
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4.b. Cy5.5 (imaging module) puzzle piece  

In our first attempt the imaging module (see Scheme 5) was synthesized utilizing a 

form of Cy5.5 that contained three sulfonates. The synthesis of this puzzle piece is shown 

in Scheme 5, where the dye is in blue and the Fmoc protected lysine amino acid in in black.   

 

Scheme 5: Synthesis of Lysine Puzzle Piece with sulfonated Cy5.5 

Unfortunately, in our test reactions with the tri-peptide model system shown above 

(Fmoc-Met-Ile-Phe-NH2), the dye, was not able to be cleaved from the resin as indicated 

by the color. A number of different experiments involving stronger acid, base, different 

solvents and increased time were not effective. It was suspected that the sulfonic acid 

(sulfonate) groups on the dye irreversibly stuck to the resin. This was verified by an 

experiment in which the dye alone was mixed with the resin in various solvents, followed 

by an attempt to separate the dye by filtration. Regardless of conditions tried, the dye 

indeed stuck to the resin and could not be freed.    
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Based on this hypothesis, a lipophilic version of Cy5.5, containing no sulfonates, 

was purchased from Lumiprobe. The analogous puzzle piece was synthesized as shown in  

Scheme 6 and we were ultimately pleased to find that using the lipophilic version that the 

labelled peptide could be removed from the resin as shown in the next section.     

 

Scheme 6: Synthesis of Lysine Puzzle Piece with non-sulfonated Cy5.5 

 

4.c. Stability of imaging agents Cy5.5 and Gd-DOTA in dilute TFA 

 In prior synthesis in the lab, it was found that under acidic conditions, dyes would 

react with methanol (MeOH) to form a methyl adduct that was 14 amu higher in the mass 

spectra.  For use in SPPS including the acidic condition of cleavage, conditions need to be 

investigated to test the stability of imaging agents including Cy5.5, IR800 and QC-1 which 

are the three main dyes of interest in our lab in order to eliminate this bi-product.   

By a chance discovery, it was found that if dichloromethane (DCM) is added to the 

methanol as a co-solvent, the + 14 amu adduct from the extra methyl disappears.  In initial 
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experiments, 50 % MeOH-DCM was found to protect the dye in acid, and in subsequent 

experiments even 20 % MeOH could also be used.  After several experiments, Cy5.5 was 

stable in 1 % and 2 % TFA for at least three hours, and it even survived in 5% TFA for one 

hour.  The table below summarizes the experiments used with the dyes in various solvents 

and conditions, monitoring the products by LC-MS.  

Table 2: Summary of stability test of dyes (see Appendix I compounds 1-3 showing mass 

spectra and the observed color.  Stable conditions are highlighted) 

 

 In previous research in the lab (unpublished results, Jessica Perez, project M.S., 

2016), kinetic studies were performed of the chelated metal, Gd-DOTA, measured on the 

puzzle piece shown in Scheme 10.  As shown in Figure 4, it was found that this chelate 

complex was stable in 0.1 M TFA in water for times up to one week.  Based on these results, 

we may safely predict that the Gd-DOTA would be stable to the conditions of cleavage 

necessary for the Sieber resin, which we have determined is 1.0 % (0.088 M) or 2.0 %  

(0.175 M) TFA in dichloromethane. In addition, the cleavage time is 30 minutes which a 

small fraction of the week-long measurements in the previous study.  However, this still 

more favorable than using pure TFA which is required in other SPPS resins such as Wang 

and Rink resins.   
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Figure 4: Graph showing the high stability of Gd-DOTA using the module Fmoc-Lys(Gd-

DOTA)-NH2.  The displacement of Gd in 0.1M TFA was measured over several days, as 

well as the formation of Cu-DOTA in an excess of Cu+2 solution in the same solution. 

(Data from Jessica Perez, MS student, 2016.) 

 

4.d. Synthesis tripeptides plus imaging modules Cy5.5  

 By using the optimized method for SPPS in Chapter 3, the puzzle piece was 

successfully coupled first to the mono-peptide shown in Scheme 7, followed by coupling 

this same imaging module to the tri-peptide. The products were verified by LC-MS which 

showed not only the correct mass of the product, but the expected absorption in the NIR 

region of the spectra at 684 nm of the same product.   

While fluorescent dyes have been conjugated to peptides by solution methods, to 

our knowledge, after searching the literature, NIR dyes have never been incorporated as 

part of an SPPS followed by cleavage from the resin. Our puzzle piece method has enabled 

this goal and this success paved the way for future syntheses involving larger peptides.   
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Scheme 7: Solid Phase Synthesis of Tripeptide with imaging agents: Cy5.5 

 

4.e.  Gd-DOTA puzzle pieces  

 The next goal was to apply the puzzle piece method to the SPPS of a tri-peptide 

containing the metal Gd as its DOTA chelated complex.  

Peptides containing Gd-DOTA on a lysine have been assembled in the past.  In a 

pioneering study, Sherry and co-workers have brought in a lysine or a phenylalanine 

containing a protected DOTA group as its tri-t-butyl ester as shown in Scheme 8.21 In that 

case, the tri-t-butyl group was removed as part of the acid catalyzed cleavage process, and 

the final DOTA containing peptide was metalized in the last step.    

4 
1R 
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Scheme 8: Synthesis by Prof. Dean Sherry’s group (world expert in chelated metals)21 

In a second related article, a similar approach was reported by Yoo and Pagel, a di-

t-butyl protected DOTA was fastened directly to the SPPS resin via a linker and the peptide 

was built onto that.22 This approach was clearly different from the approach by Sherry who 

incorporated the DOTA mid-way through the synthesis. In either approach, strong 100 % 

TFA must be utilized to protect t-butyl groups from DOTA. In our group it was previously 

determined that lower concentrations of TFA are not effective because when t-butyl groups 

are on DOTA, they are more stable than normal t-butyl esters. This would prevent the use 

of dyes in the SPPS which require the use of lower TFA concentrations as described below.   
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Scheme 9: Synthesis using Di-t-butyl protected DOTA on SPPS by Yoo and Pagel22  

In contrast to the above approach, the use of puzzle pieces to directly incorporate a 

metal-chelate complex such as in SPPS has never been reported to our knowledge.   One 

advantage of this approach is that there is no need for harsh treatment by pure TFA which 

is necessary to remove the t-butyl groups from DOTA. In our approach 1% TFA is used 

for a variety of reasons including the acid-sensitivity of most dyes. So, this approach in 

which the metal is added early in the synthesis is unique and provides several advantages. 

 The synthesis of the puzzle piece containing the Gd-DOTA is shown in Scheme 10. 

The procedure is a “one pot synthesis” developed in our lab which gives the module 

directly and was an improvement over a three steps procedure involving a protection-

deprotection scheme (not shown).   
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Scheme 10: Synthesis of Lysine Puzzle Piece with Gd-DOTA 

 

4.f.  Synthesis of tri-peptides plus Gd-DOTA   

 By using the optimized method for SPPS in Chapter 3, the puzzle piece containing 

the Gd-DOTA was successfully coupled first to the mono-peptide shown in Scheme 11, 

followed by coupling to the tri-peptide. This success paved the way for future syntheses 

involving larger peptides containing Gd-DOTA.   
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Scheme 11: Synthesis of Tripeptide with imaging agents for MRI: Gd-DOTA 
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Chapter 5. Met-enkephalins 

5.a. The choice of Met-enkephalins as a model system  

Met-enkephalins are short peptides which are the active site of endorphins which 

are larger proteins that contain the pentapeptide somewhere on their sequence. The 

discovery of enkephalins followed research findings which linked morphine and heroin 

and other opiates to a natural receptor site. This receptor site was part of a protein system 

called endorphin, which is a natural protein in the body (animal or human).  The binding 

of natural or synthetic opiates (from poppy flowers) can also be a pain killer (and produce 

a "high"). So, after the endorphins were found, researchers reduced the size of the peptide 

until they found the minimal active sequence - which were two enkephalins, Met-

enkephalin and Leu-enkephalin. 

Instead of using just a random peptide such as the tri-peptide utilized in our first 

optimization efforts, we chose to synthesize Met-enkephalin and label it with both of our 

puzzle piece imaging modules because it is a "biologically relevant" or "biologically 

important" peptide. It was also anticipated that dye and Gd – based TMIAs based on 

enkephalin may be novel and may be useful in imaging opioid receptors.    

5.b. Synthesis of Met-enkephalin 

The preparation of the pentapeptides, Met-enkephalin by the following method, 

carried out on Sieber (Xanthenyl) resin, was successful. This paved the way for bringing 

in the puzzle pieces containing Cy5.5 and Gd-DOTA.    
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Scheme 12: Synthesis of Met-enkephalin 

 

5.c. Cy5.5 Met-enkephalin 

 The method applied to the synthesis of the Cy5.5 labelled tri-peptide as designed 

in chapter 4d was utilized to synthesis Fmoc-dLys(Cy5.5)-NH2 by the method shown in 

Scheme 13. In the case of enkephalin, it is necessary to bring in the tyrosine in its t-butyl 

ether protected form. Our design is based on cleavage from the Sieber resin in 1% TFA 
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and this is fortunate, as t-butyl ethers may be removed by very mild treatment, such as 1 % 

TFA. In addition to this, the NIR dye Cy5.5 is stable to 1 % TFA.    

 

Scheme 13: Synthesis of Fmoc-dLys(Cy5.5)-Met-enkephalin (11) 

 

5.d. Gd-DOTA Met-enkephalin 

The preparation of the Gd-DOTA Met-enkephalin containing the Gd-DOTA was 

successful. Likewise, as expected from the earlier kinetic studies by Anne Marie Sweeney 

and Jessica Perez in our group the Gd-DOTA complex is stable in the mild 1 % cleavage 

solution.     

Several synthesis steps 

similar to Scheme 11 

10R 

11 
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Scheme 14: Synthesis of Fmoc-dLys(Gd-DOTA)-Met-enkephalin (12) 
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Chapter 6.  Breast cancer peptides 

6.a. Breast cancer targeting peptide 18-4    

The stretch goal of this research was to apply the SPPS methods we developed to 

the synthesis of an actual targeted imaging agent for cancer. A beautiful example of a 

targeting peptide useful for imaging breast cancer was recently reported by Dr. Kaur.12–14   

In her studies, Kaur began with a previously developed breast cancer targeting 

peptide p160 (12-mer) and prepared an enzymatically stable analogue 18-4 (10-mer) of this 

peptide, shown in Figure 5, that showed remarkable potential for targeted breast cancer 

drug delivery. The peptide was shown to target MDA-MB-231 cells in vitro by fluorescein 

labelling using CFM then extended to the delivery of drugs including streptomycin in 

animal studies.  

 

Figure 5: Structure of Breast cancer peptide 

Following this peptide, a cyclic peptide, “peptide 7”, was prepared by Dr. Kaur.  

Animal studies using mice with orthotopic breast MDA-MB-231 tumors showed that the 

cyclic peptide selectively accumulates in tumor and is rapidly cleared from all other organs 

except kidneys and liver. While the cyclic peptide may be somewhat better, Dr. Kaur 

advised us that the linear version would be suitable for our studies and would show the 

same kind of results, and that it would be far simpler to synthesize.     

22 
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In initial work by others in our group, a 20 mg sample of peptide 18-4 was sent as 

a gift by Dr. Kaur to our lab for labelling purposes. A very small amount of this peptide 

was labelled with Cy5.5 itself (not the puzzle piece) at the third amino acid (d-lysine, or k) 

to form the TMIA we called “M1” shown in Figure 6 where the peptide is shown using 

one-letter abbreviations for the amino acids, shown in red.   

 

Figure 6: TMIA “M1”, peptide 18-4 labelled on the 3-lysine side chain with Cy5.5 

Our collaborators in the School of Life Sciences, Dr. Evans and her group, were 

able to grow MDA-MD-231 breast cancer cells and stain them with 0.1 M of agent “M1” 

and stained with NucBlu which show the nuclei of cells only (in blue).   

 

Figure 7: MDA-MD-231 BrCa cells stained with TMIA “M1” and NucBlu in 

collaboration with Dr. Irene Evans, GSOLS, RIT.  
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After obtaining these preliminary results, which mirrored results obtained in the 

Kaur group (using fluorescein as the NIR dye) we were encouraged to pursue the synthesis 

of the peptide ourselves by the SPPS method described above. This was also a good time 

to do this as we had run out of the gifted peptide, and we were having considerable 

difficulty in reproducing the initial synthesis of M1.  

 

6.b. SPPS of breast cancer targeting peptide 18-4   

 The peptide was successfully synthesized by using the methodology developed as 

described in Chapter 3. Each step was carefully monitored by cleaving a tiny amount of 

the resin with 1 % TFA and assaying the trace residue by LC-MS. The recipe works well 

and each coupling and each deprotection step proceeded perfectly as shown by LC-MS,  

described in Chapters 2c, 3e and 8 and shown in the LC-MS data in Appendix I. In most 

cases the acid-sensitive protecting groups were removed but in some cases a mixture of 

protected and deprotected intermediates were observed. The Mtt on d-lysine is removed 

rapidly, but t-butyl on tyrosine and t-butyl on glutamic acid are partially removed. The Boc 

group on tryptophan is difficult to remove and requires harsher conditions. In work carried 

on in the lab, unprotected tryptophan is being used.   

 The synthesis is represented in the following table which shows each intermediate 

in its protected and deprotected forms, along with the calculated full mass and half mass.  

The results from the LC-MS are shown in Appendix I (compounds 12-23), showing that in 

each case the major product was relatively pure and showed the correct mass or half mass. 

In addition, a high-resolution mass spectra (HRMS) was obtained on the final peptide and 

the results proved that the structure was peptide 18-4 in its protected form, Fmoc-Trp(Boc)-
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d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (HRMS results: MW 

1701.9296 theory vs 1701.9264 for M+H+, deviation of 1.9 ppm).   

Table 3: Molecular Weight of Peptides 

 

Compounds 

Molecular 

Weight 

(g/mol) 

Half 

Mass 

(g/mol) 

Fmoc-Leu-NH2 352.2 177.1 

Fmoc-Phe-NH2 386.2 194.1 

Fmoc-Phe-Leu-NH2 499.2 250.6 

Fmoc-d-Lys(Mtt)-Phe-Leu-NH2 883.5 442.8 

Fmoc-d-Lys-Phe-Leu-NH2 627.3 314.7 

Fmoc-Gln-d-Lys-Phe-Leu-NH2 755.4 378.7 

Fmoc-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 974.5 488.3 

Fmoc-Tyr-Gln-d-Lys-Phe-Leu-NH2 918.5 460.3 

Fmoc-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1045.6 523.8 

Fmoc-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 989.5 495.8 

Fmoc-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1116.6 559.3 

Fmoc-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1060.5 531.3 

Fmoc-Glu(OtBu)-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1245.6 623.8 

Fmoc-Glu-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1245.6 623.8 

Fmoc-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1301.7 651.9 

Fmoc-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1189.6 595.8 

Fmoc-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1302.7 652.4 

Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1358.7 680.4 

Fmoc-d-Nle-Glu-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1358.7 680.4 

Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1414.8 708.4 

Fmoc-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1488.7 745.4 

Fmoc-Trp-d-Nle-Glu(OtBu)-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1544.8 773.4 

Fmoc-Trp-d-Nle-Glu-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1544.8 773.4 

Fmoc-Trp-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-

NH2 

1600.9 801.5 

Fmoc-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2 

1700.9 851.5 

 

It is important to note that all of the peptides in this sequence are very lipophilic.  

This causes them to stick onto the C-18 column creating wide peaks and requiring the use 

of increasing percentages of organic solvent (acetonitrile) as the chain increases. We were 
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able to chromatograph the intermediates up to the nona-peptide (gradient 80-100, but when 

we added the tenth amino acid, tryptophan we could no longer use a column and switched 

to “loop injections”.   

6.c.  Cy 5.5 labelled breast cancer Fmoc-protected targeting peptide 18-4    

Utilizing the SPPS resin that contained the fully protected deca-peptide 18-4, the 

non-sulfonated Cy5.5 puzzle piece described in Chapter 4b was coupled onto the resin to 

yield the final product “M2” in its protected form. The entire resin was then cleaved with 

1 % TFA to yield an analytical sample of the TMIA final product as partially protected 

peptide Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-

Phe-Leu-NH2, (HRMS results: MW 1198.1691 theory vs 1198.1732 for (M+2H+)/2, 

deviation of 3.42 ppm).    

 

Figure 8: Structure of Breast cancer peptide with non-sulfonated Cy5.5 

Table 4: Molecular Weight of Peptides 

Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-

Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

2394.3381 1198.17 

Fmoc-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-

Leu-NH2 

2182.1610 1092.08 

23 
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6.d.  Cy 5.5 labelled breast cancer targeting peptide 18-4    

Utilizing the SPPS resin that contained the fully protected deca-peptide 18-4, the 

non-sulfonated Cy5.5 puzzle piece described in Chapter 4b was coupled onto the resin to 

yield the final product “M2” in its protected form. Fmoc group has been taken off before 

cleavage. The entire resin was then cleaved with 1 % TFA to yield an analytical sample of 

the TMIA final product as partially protected peptide NH2-d-Lys(Cy5.5)-Trp-d-Nle-Glu-

Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2, (HRMS results: MW 981.05194 theory vs 

981.0515 for (M+2H+)/2, deviation of 0.448 ppm).    

A 100 M solution of this compound was given to Dr. Evans group (GSOLS) for testing 

in BrCa cells by CFM.   

 

Figure 9: Structure of Breast cancer peptide with non-sulfonated Cy5.5 (No Fmoc 

protecting group) 

Figure 10: Molecular Weight of Peptides 

NH2-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-

Phe-Leu-NH2 

1960.08800 981.05194 

Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-

Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

2182.15990 1092.08589 

24 
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6.e.  Gd-DOTA labelled breast cancer targeting peptide 18-4    

Utilizing the SPPS resin that contained the fully protected deca-peptide 18-4, the 

Gd-DOTA puzzle piece, described in Chapter 4e was coupled onto the resin to yield the 

final product “G2” in its protected form. The entire resin was then cleaved with 1 % TFA 

to yield an analytical sample of the final TMIA product as partially protected peptide 

Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2,  (HRMS results: MW 1186.05632 theory vs 1186.0563 for (M+2H+)/2, deviation 

of 0.02 ppm.) 

 

Figure 11: Structure of Breast cancer peptide with metal-chelate complex Gd-DOTA 

 

Table 5: Molecular Weight of Peptides 

Fmoc-d-Lys(Gd-DOTA)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-

Lys-Phe-Leu-NH2 

2167.9199 1084.9600 

Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-

Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

2370.0970 1186.0563 

 

 

25 
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6.f.  Confocal Fluorescence Microscopy of Breast Cancer Cells Targeted with Cy5.5 

labelled 18-4  

In the final weeks of research Matt Law resynthesized the Cy5.5 labelled breast 

cancer peptide 18-4 in the totally deprotected form using the method described here. Then 

our collaborators in Biology (Dr. Irene Evans and her student Josh Evans) were successful 

in culturing MDA-MB-231 breast cancer cells (triple negative type) in vitro, followed by 

staining these with 10 M solutions of the Cy5.5-18-4 TMIA.   

            The following images were obtained using the Zeiss CFM in the School of Life 

Sciences at RIT. This demonstrates that the approach of labelling 18-4 by placing the Cy5.5 

lysine puzzle piece (module) on the N-terminus of the peptide was highly successful.     

 

Figure 12: CFM image of MDA-MB-231 breast cancer cells stained with Cy5.5-18-4 

TMIA, blue is the nucleus of each cell (NucBlu), red is TMIA 
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Chapter 7.  Conclusion 

 A method has been developed for the solid phase synthesis of peptides using the 

Sieber resin. This method has been tested by the synthesis of a mono-peptide (Fmoc-Phe-

NH2), di-peptide (Fmoc-Ile-Phe-NH2) and tri-peptide (Fmoc-Met-Ile-Phe-NH2) followed 

by successfully coupling two types of imaging modules (puzzle pieces) separately onto the 

mono-peptide (Fmoc-Phe-NH2). The imaging modules consisted of an Fmoc protected 

lysine coupled to a NIR dye, Cy5.5, on the side chain nitrogen, or a Gd-DOTA coupled to 

a lysine in the same manner.   

 After optimizing the method for synthesizing peptides, the method was documented 

in the form of a recipe, then applied to the synthesis of a bioactive penta-peptide, Met-

enkephalin, followed by similarly attaching the two puzzle pieces containing Cy5.5 or Gd-

DOTA to this peptide.   

 A stretch goal was then achieved by synthesis of a breast cancer targeted peptide 

18-4, a deca-peptide reported by Dr. Kaur of Chapman University. Puzzle pieces or 

modules containing a lipophilic Cy5.5 dye and Gd-DOTA were also coupled successfully 

to the resin containing the protected form of 18-4, followed by cleavage with dilute 1 % 

TFA to yield the partially and fully deprotected TMIAs. 

 The value of this work was to provide the molecular imaging lab (MIL) at RIT with 

a powerful method to synthesize not only targeting peptides by SPPS, peptides by SPPS, 

and to synthesize targeted molecular imaging agents (TMIAs) that will be useful in the 

detection of breast cancer.  In the larger scope, these methods may be widely used to 

synthesize peptide-based TMIAs for detecting a wide variety of cancers by molecular 

imaging methods.  
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Chapter 8.  Experimental Procedures  

Materials and Methods  

Chemicals were purchased from VWR (Radnor, PA), Sigma Aldrich (St. Louis, 

MO), Alfa Aesar (Ward Hill, MA), TCI (Tokyo, Japan), and Acros Organics (Morris Plains, 

NY), and were used as received unless otherwise stated. All were HPLC or American 

Chemical Society grade. Amino acid starting materials and Xanthenyl linker resin were 

purchased from Bachem (Bubendorf, Switzerland), and Chem-Impex Int’l Inc. (Wood 

Dale, IL). 

 The HPLC instrument used was an Agilent 1100 with Diode Array Detector and 

for LC-MS a Waters 2695 Alliance HPLC with a Waters 2998 Diode Array Detector and 

a Waters 3100 SQ Mass Spectrometer was used.  For HPLC the columns used were: an 

Agilent XDB C18 column, with dimensions of 3 mm x 100 mm or a Waters XBridge C18 

column 50 mm x 3 mm and 3µ particle size.  Mass spectra from this instrument were 

recorded at unit resolution with positive and negative switching mode at 35 or 50 V cone 

voltages.  The flow rate for HPLC-MS was 0.5 mL/min.  All aqueous mobile phases for 

HPLC are 0.1M ammonium acetate unless otherwise noted. 

 Preparative HPLC (prep-HPLC) was carried out with a Waters 600E system 

controller, and Waters 600 multi-solvent delivery system using a 30 mL/min flow rate.  For 

SPE purification, a 20 g C-18 Sep-pack Varian Mega Bond Elut (20CC/5GRM) SPE 

cartridge was utilized for DCL (7) and Gd/La DOTA compounds and the DOTA 

transmetalations utilized a Varian Bond Elut (C18, 3CC/1GRM) SPE cartridge.  

 Chromatography gradients for HPLC, prep-HPLC, and SPE are noted as (method 

X: Y, t) where X is the organic mobile phase being either acetonitrile (ACN) or methanol 

(MeOH), Y is the starting percentage or overall range of the organic mobile phase, and t is 

the overall time in minutes of the gradient except for SPE where this is not applicable. For 

example, method (ACN: 60, 8min) is a gradient that is initially 60% ACN and 40% H2O, 

but gradually transitions to 100% ACN and 0% H2O in 8 minutes. Method (MeOH: 20-70, 

8min) is a gradient that starts at 20% MeOH and 80% H2O, and over 8 minutes the gradient 

transitions to 70% MeOH and 30% H2O.  

 All aqueous mobile phases for prep-HPLC are 0.1M ammonium acetate unless 

otherwise noted. Aqueous mobile phases for SPE are not buffered unless otherwise noted. 

The SPE cartridges were conditioned with their respective organic solvent, then pure DI 

H2O, then equilibrated with the initial gradient concentration. Gradients were performed 

in 5% increments with 3-10 mL fractions each unless otherwise noted. Silica gel for flash 

chromatography was purchased from Alfa Aesar and was 70-230 mesh. For DOTA 

compounds, a Keystone Scientific, Inc. Hyperprep C18 BDS 250mm x 20 mm column 

with an 8µ particle size was used for prep-HPLC.   

 High resolution mass spectra (HRMS) were obtained on a Waters Synapt G2Si 

(School of Chemical Sciences, University of Illinois at Urbana-Champaign) using the 
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following parameters: Flow injection at flow rate of 0.1 ml/min, H2O/ACN/0.1% Formic 

Acid, positive and negative mode ESI, Cone voltage =25 V, capillary voltage = 3.0, ion 

source temperature = 100°C, desolvation temperature  =180C,  nebulizing gas (N2) flow 

= 200 L/h, cone gas (N2) flow =  5L/h. 

 

Synthetic Procedures  

Fmoc-Phe-NH2 (1).  Xanthenyl linker resin (100.0 mg, 29.1 mol) was pre-swelled in 

DMF (2 mL). After draining, mixture of 5% Piperazine, 2% DBU and 93% DMF (3 × 2 

mL) were applied to the resin. DMF (3 × 2mL) was added to wash the beads. Fmoc-Phe-

OH (22.5 mg, 58.2 mol) was dissolved in 2 mL DMF, followed by addition of DIEA 

(49.7 L, 29.1 mol).  HATU (21.0 mg, 55.3 mol) was dissolved separately in 2 mL DMF 

added to the previous mixture and shaken. Then this solution was added to the resin within 

1 minute. After being stirring for about 45 minutes at room temperature, the reaction 

solution was drained and washed with pure DMF (3 × 2 mL) and DCM (2 × 2 mL). A small 

amount of the resultant resin (1R) (10 g), was removed and cleaved with 1% TFA in DCM 

(5 × 1 mL) for 1-2 min, drained through the vessel frit.  The eluent was concentrated on a 

rotovap, dissolved in 0.5 mL methanol and assayed by LC-MS.   LC-MS (LR, ESI) = Calcd. 

for C24H22N2O3: 386.444 (m/z), found: 387.28 [M+H]+. 

 

Fmoc-Ile-Phe-NH2 (2). Resin 1R was treated by the same procedure as for (1) above using 

Fmoc-Ile-OH (20.6 mg, 58.2 mol), followed by cleavage of a small amount the resultant 

resin (2R) also by the same procedure as above to yield of Fmoc-Ile-Phe-NH2 (2). LC-MS 

(LR, ESI) = Calcd. for C30H33N3O4: 499.602 (m/z), found: 500.45 [M+H]+. 

 

Fmoc-Met-Ile-Phe-NH2 (3). Resin 2R was treated by the same procedure as for (1) above 

using Fmoc-Met-OH (21.6 mg, 58.2 mol), followed by cleavage of a small amount the 

resultant resin also by the same procedure as above to yield of Fmoc-Met-Ile-Phe-NH2 (3). 

LC-MS (LR, ESI) = Calcd. for C35H42N4O5S: 630.288 (m/z), found: 631.49 [M+H]+. 

 

Fmoc-d-Lys(Cy5.5)-Phe-NH2 (4). Take a small amount of resin 1R (10 g), treated by 

the same procedure as for (1) above using Fmoc-d-Lys(Cy5.5)-NH2 (5.43 mg, 5.82 mol), 

followed by cleavage of the resultant resin also by the same procedure as above to yield of 

Fmoc-d-Lys(Cy5.5)-Phe-NH2 (4).The yield was 4.6 mg (61.3%). LC-MS (LR, ESI) = 

Calcd. for C70H75N6O5: 1080.384 (m/z), found: 1080 [M+H]+. LC-MS (HR, ESI) = Calcd. 

for C70H75N6O5: 1079.57989, found: 1080.5801 [M+H]+. 

 



 

46 

 

Fmoc-d-Lys(Gd-DOTA)-Phe-NH2 (5). Take a small amount of resin 1R (10 g), treated 

by the same procedure as for (1) above using Fmoc-d-Lys(Gd-DOTA)-NH2 (5.3 mg, 5.82 

mol), followed by cleavage of the resultant resin also by the same procedure as above to 

yield of Fmoc-d-Lys(Gd-DOTA)-Phe-NH2 (5). The yield was 15.7 mg (87.2%). LC-MS 

(LR, ESI) = Calcd. for C46H57GdN8O11: 1055.246 (m/z), found: 1056.32 [M+H]+. LC-MS 

(HR, ESI) = Calcd. for C46H57GdN8O11: 1055.33878, found: 1056.3452 [M+H]+. 

 

Fmoc-Met-NH2 (6). Xanthenyl linker resin (100.0 mg, 29.1 mol) was pre-swelled in 

DMF (2 mL). After draining, mixture of 5% Piperazine, 2% DBU and 93% DMF (3 × 2 

mL) were applied to the resin. DMF (3 × 2mL) was added to wash the beads. Fmoc-Met-

OH (21.6 mg, 58.2 mol) was dissolved in 2 mL DMF, followed by addition of DIEA 

(49.7 L, 29.1 mol).  HATU (21.0 mg, 55.3 mol) was dissolved separately in 2 mL DMF 

added to the previous mixture and shaken. Then this solution was added to the resin within 

1 minute. After being stirring for about 45 minutes at room temperature, the reaction 

solution was drained and washed with pure DMF (3 × 2 mL) and DCM (2 × 2 mL). A small 

amount of the resultant resin (3R) (10 g), was removed and cleaved with 1% TFA in DCM 

(5 × 1 mL) for 1-2 min, drained through the vessel frit.  The eluent was concentrated on a 

rotovap, dissolved in 0.5 mL methanol and assayed by LC-MS. This resin was taken 

directly on to the next step without characterization. 

 

Fmoc-Phe-Met-NH2 (7). Resin 3R was treated by the same procedure as for (4) above 

using Fmoc-Phe-OH (22.5 mg, 58.2 mol), followed by cleavage of a small amount the 

resultant resin (4R) also by the same procedure as above to yield of Fmoc-Phe-Met-NH2 

(7). This resin was taken directly on to the next step without characterization. 

 

Fmoc-Gly-Phe-Met-NH2 (8). Resin 4R was treated by the same procedure as for (4) above 

using Fmoc-Gly-OH (17.3 mg, 58.2 mol), followed by cleavage of a small amount the 

resultant resin (5R) also by the same procedure as above to yield of Fmoc-Gly-Phe-Met-

NH2 (8). This resin was taken directly on to the next step without characterization. 

 

Fmoc-Gly-Gly-Phe-Met-NH2 (9). Resin 5R was treated by the same procedure as for (4) 

above using Fmoc-Gly-OH (17.3 mg, 58.2 mol), followed by cleavage of a small amount 

the resultant resin (6R) also by the same procedure as above to yield of Fmoc-Gly-Gly-

Phe-Met-NH2 (9). This resin was taken directly on to the next step without characterization.  

 

Fmoc-Tyr-Gly-Gly-Phe-Met-NH2 (10). Resin 6R was treated by the same procedure as 

for (4) above using Fmoc-Tyr(tBu)-OH (26.7 mg, 58.2 mol), followed by cleavage of a 
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small amount the resultant resin (7R) also by the same procedure as above to yield of Fmoc-

Tyr-Gly-Gly-Phe-Met-NH2 (10). LC-MS (LR, ESI) = Calcd. for C42H46N6O8S: 794.916 

(m/z), found: 795.31 [M+H]+. LC-MS (HR, ESI) = Calcd. for C42H46N6O8S: 794.30978, 

found: 795.3162 [M+H]+. 

 

Fmoc-d-Lys(Cy5.5)-Tyr(tBu)-Gly-Gly-Phe-Met-NH2 (11). Resin 7R (8 mg, ca. 10 % of 

the prior yield of 7R) was treated by the same procedure as for (4) above using Fmoc-d-

Lys(Cy5.5)-NH2 (5.43 mg, 5.82 mol), followed by cleavage of the resultant resin also by 

the same procedure as above to yield of Fmoc-d-Lys(Cy5.5)-Tyr(tBu)-Gly-Gly-Phe-Met-

NH2 (11). The yield was 5.8 mg (71.5%). LC-MS (LR, ESI) = Calcd. for C92H107N10O10S: 

1543.78924 (m/z), found: 1544.96 [M+H]+. LC-MS (HR, ESI) = Calcd. for 

C92H107N10O10S: 1543.78924, found: 1544.7880 [M+H]+. 

 

Fmoc-d-Lys(Gd-DOTA)-Tyr-Gly-Gly-Phe-Met-NH2 (12). Resin 7R (8 mg, ca. 10 % of 

the prior yield of 7R) was treated by the same procedure as for (4) above using Fmoc-d-

Lys(Gd-DOTA)-NH2 (5.3 mg, 5.82 mol), followed by cleavage of the resultant resin also 

by the same procedure as above to yield of Fmoc-d-Lys(Gd-DOTA)-Tyr-Gly-Gly-Phe-

Met-NH2 (12). LC-MS (LR, ESI) = Calcd. for C64H81GdN12O16S: 1463.718 (m/z), found: 

1464.51 [M+H]+. LC-MS (HR, ESI) = Calcd. for C64H81GdN12O16S: 1463.48552, found: 

1464.4897 [M+H]+. 

 

Fmoc-Leu-NH2 (13). Xanthenyl linker resin (100.0 mg, 29.1 mol) was pre-swelled in 

DMF (2 mL). After draining, mixture of 5% Piperazine, 2% DBU and 93% DMF (3 × 2 

mL) were applied to the resin. DMF (3 × 2mL) was added to wash the beads. Fmoc-Leu-

OH (20.6 mg, 58.2 mol), was dissolved in 2 mL DMF, followed by addition of DIEA 

(49.7 L, 29.1 mol).  HATU (21.0 mg, 55.3 mol) was dissolved separately in 2 mL DMF 

added to the previous mixture and shaken. Then this solution was added to the resin within 

1 minute. After being stirring for about 45 minutes at room temperature, the reaction 

solution was drained and washed with pure DMF (3 × 2 mL) and DCM (2 × 2 mL). A small 

amount of the resultant resin (8R) (10 g), was removed and cleaved with 1% TFA in DCM 

(5 × 1 mL) for 1-2 min, drained through the vessel frit.  The eluent was concentrated on a 

rotovap, dissolved in 0.5 mL methanol and assayed by LC-MS. LC-MS (LR, ESI) = Calcd. 

for C21H24N2O3: 352.428 (m/z), found: 353.25 [M+H]+. 

 

Fmoc-Phe-Leu-NH2 (14). Resin 8R was treated by the same procedure as for (13) above 

using Fmoc-Phe-OH (22.5 mg, 58.2 mol), followed by cleavage of a small amount the 

resultant resin (9R) also by the same procedure as above to yield of Fmoc-Phe-Leu-NH2 

(14). LC-MS (LR, ESI) = Calcd. for C30H33N3O4: 499.602 (m/z), found: 500.32 [M+H]+. 
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Fmoc-d-Lys-Phe-Leu-NH2 (15). Resin 9R was treated by the same procedure as for (13) 

above using Fmoc-d-Lys(Mtt)-OH (36.4 mg, 58.2 mol), followed by cleavage of a small 

amount the resultant resin (10R) also by the same procedure as above to yield of Fmoc-d-

Lys-Phe-Leu-NH2 (15). LC-MS (LR, ESI) = Calcd. for C36H45N5O5: 627.774 (m/z), found: 

628.43 [M+H]+. 

 

Fmoc-Gln-d-Lys-Phe-Leu-NH2 (16). Resin 10R was treated by the same procedure as for 

(13) above using Fmoc-Gln-OH (22.5 mg, 58.2 mol), followed by cleavage of a small 

amount the resultant resin (11R) also by the same procedure as above to yield of Fmoc-

Gln-d-Lys-Phe-Leu-NH2 (16). LC-MS (LR, ESI) = Calcd. for C41H53N7O7: 755.904 (m/z), 

found: 756.47 [M+H]+. 

 

Fmoc-Tyr-Gln-d-Lys-Phe-Leu-NH2 (17). Resin 11R was treated by the same procedure 

as for (13) above using Fmoc-Tyr(tBu)-OH (26.7 mg, 58.2 mol), followed by cleavage of 

a small amount the resultant resin (12R) also by the same procedure as above to yield of 

Fmoc-Tyr-Gln-d-Lys-Phe-Leu-NH2 (17). LC-MS (LR, ESI) = Calcd. for C50H62N8O9: 

919.077 (m/z), found: 919.56 [M+H]+. 

 

Fmoc-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (18). Resin 12R was treated by the same 

procedure as for (13) above using Fmoc-Ala-OH (18.1 mg, 58.2 mol), followed by 

cleavage of a small amount the resultant resin (13R) also by the same procedure as above 

to yield of Fmoc-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (18). LC-MS (LR, ESI) = Calcd. 

for C57H75N9O10: 1045.56369 (m/z), found: 1046.64 [M+H]+. 

 

Fmoc-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (19). Resin 13R was treated by the 

same procedure as for (13) above using Fmoc-Ala-OH (18.1 mg, 58.2 mol), followed by 

cleavage of a small amount the resultant resin (14R) also by the same procedure as above 

to yield of Fmoc-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (19). LC-MS (LR, ESI) = 

Calcd. for C60H80N10O11: 1116.60080 (m/z), found: 1117.68 [M+H]+. 

 

Fmoc-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (20). Resin 14R was 

treated by the same procedure as for (13) above using Fmoc-Glu(OtBu)-OH (24.8 mg, 58.2 

mol), followed by cleavage of a small amount the resultant resin (15R) also by the same 

procedure as above to yield of Fmoc-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-

NH2 (20). LC-MS (LR, ESI) = Calcd. for C69H95N11O14: 1301.70600 (m/z), found: 1302.82 

[M+H]+. 
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Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (21). Resin 15R 

was treated by the same procedure as for (13) above using Fmoc-d-Nle-OH (20.6 mg, 58.2 

mol), followed by cleavage of a small amount the resultant resin (16R) also by the same 

procedure as above to yield of Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2 (21). LC-MS (LR, ESI) = Calcd. for C75H106N12O15: 1414.79006 (m/z), found: 

1415.91 [M+H]+. 

 

Fmoc-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (22). 

Resin 16R was treated by the same procedure as for (13) above using Fmoc-Trp(Boc)-OH 

(30.6 mg, 58.2 mol), followed by cleavage of a small amount the resultant resin (17R) 

also by the same procedure as above to yield of Fmoc-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-

Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 (22). LC-MS (LR, ESI) = Calcd. for C91H124N14O18:  

1702.044 (m/z), found: 1703.19 [M+H]+. LC-MS (HR, ESI) = Calcd. for C91H124N14O18: 

1700.92180 (m/z), found: 1701.9264 [M+H]+. 

 

Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2 (23). Take a small amount of resin 17R (10 g), treated by the same procedure 

as for (13) above using Fmoc-d-Lys(Cy5.5)-NH2 (5.43 mg, 5.82 mol), followed by 

cleavage of the resultant resin (18R) also by the same procedure as above to yield of Fmoc-

d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

(23). LC-MS (LR, ESI) = Calcd. for C137H177N18O20: 2395.985 (m/z), found: 1198.32 

[M+2H]+/2. LC-MS (HR, ESI) = Calcd. for C137H177N18O20: 2394.33866 (m/z), found: 

1198.1732 [M+2H]+/2. 

 

H-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 (24). Take a 

small amount of resin 18R (10 g), treated with Fmoc deprotection method, followed by 

cleavage of the resultant resin also by the same procedure as above to yield of NH2-d-

Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 (24). LC-MS (LR, ESI) 

= Calcd. for C109H143N18O16: 1960.08800 (m/z), found: 981.28 [M+2H]+/2. LC-MS (HR, 

ESI) = Calcd. for C109H143N18O16: 1960.08800 (m/z), found: 981.05194 [M+2H]+/2. 

 

Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-

Phe-Leu-NH2 (25). Take a small amount of resin 17R (10 g), treated by the same 

procedure as for (13) above using Fmoc-d-Lys(Gd-DOTA)-NH2 (5.3 mg, 5.82 mol), 

followed by cleavage of the resultant resin also by the same procedure as above to yield of 

Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2 (24). LC-MS (LR, ESI) = Calcd. for C113H159GdN20O26: 2370.846 (m/z), found: 
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1186.64 [M+2H]+/2. LC-MS (HR, ESI) = Calcd. for C113H159GdN20O26: 2370.09754 (m/z), 

found: 1186.0563 [M+2H]+/2. 
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Appendix I:  Analytical Data 

Stability test of IR800 

        

LC-MS total diode array chromatogram (TDA)              Mass spectra of parent dye and methyl adduct (top) 

Peak 5.51 is Methyl adducts with no DCM present                              

 

        

LC-MS total diode array chromatogram (TDA)            Mass spectra of parent dye 

No methyl adducts when DCM is present                              

 

Stability test of Cy5.5 

               

LC-MS total diode array chromatogram (TDA)              Mass spectra of parent dye and methyl adduct (top) 

Peak 6.34 is Methyl adducts with no DCM present                              
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LC-MS total diode array chromatogram (TDA)                   Mass spectra of parent dye 

No methyl adducts when DCM is present                              

 

Stability test of QC1 

        

LC-MS total diode array chromatogram (TDA)                   Mass spectra of parent dye 

                              

        

LC-MS total diode array chromatogram (TDA)                   Mass spectra of parent dye 
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Fmoc-Phe-NH2 1 

        

LC-MS Total Diode Array Chromatogram (TDA)              Mass Spectra and UV Spectra of cleaved product 

Total Ion Chromatogram (TIC)      

 

 

Extracted Ion Chromatogram (XIC) at 387 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

Fmoc-Ile-Phe-NH2 2 

        

LC-MS Total Diode Array Chromatogram (TDA)              Mass Spectra and UV Spectra of cleaved product 

Total Ion Chromatogram (TIC)      
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18_06_07_XX_Xanthenyl_FIF_NH2_2 357 (2.967) Cm (322:391) 3: Diode Array 
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Extracted Ion Chromatogram (XIC) at 500 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

Fmoc-Met-Ile-Phe-NH2 3 

       

LC-MS Total Diode Array Chromatogram (TDA)              Mass Spectra and UV Spectra of cleaved product 

Total Ion Chromatogram (TIC)      

                                  

 

Extracted Ion Chromatogram (XIC) at 631 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

 

 

 

 

18_06_07_XX_Xanthenyl_FIF_NH2_2
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18_06_07_XX_Xanthenyl_FIF_NH2_2 3: Diode Array 
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Fmoc-d-Lys(Cy5.5)-Phe-NH2 4 

 
       Single wavelength chromatogram (SWC) at 265 nm 

 

 

UV-Vis-NIR spectra shows Cy5.5 dye is present in product 
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Mass spectra of product 

 

HRMS of Fmoc-d-Lys(Cy5.5)-Phe-NH2 

 

High resolution mass spectra of product 
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Expanded high resolution mass spectra of product 

 

Fmoc-d-Lys(Gd-DOTA)-Phe-NH2 5 

        

Total Ion Chromatogram (TIC)                                           Mass Spectra and UV Spectra of cleaved product 

LC-MS Total Diode Array Chromatogram 

product at 4.11 min    

 

19_02_25_XX_Fmoc_dK(Gd-DOTA)_Phe_NH2_3
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19_02_25_XX_Fmoc_dK(Gd-DOTA)_Phe_NH2_3 1: Scan ES+ 
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4.20
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19_02_25_XX_Fmoc_dK(Gd-DOTA)_Phe_NH2_3 3: Diode Array 
Range: 1.022e+24.11

1.38
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1.82
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Extracted Ion Chromatogram (XIC) at 1056 amu.                Expanded mass spectra of product showing 

Single Wavelength Chromatogram (SWC) at 263 nm          Gd isotope pattern 

 

HRMS of Fmoc-d-Lys(Gd-DOTA)-Phe-NH2 

 

High resolution mass spectra of product 

 

19_02_25_XX_Fmoc_dK(Gd-DOTA)_Phe_NH2_3
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0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e-1

1.0

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
%

0

100

19_02_25_XX_Fmoc_dK(Gd-DOTA)_Phe_NH2_3 1: Scan ES+ 
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19_02_25_XX_Fmoc_dK(Gd-DOTA)_Phe_NH2_3 3: Diode Array 
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Expanded high resolution mass spectra of Gd isotope pattern 

Fmoc-Tyr-Gly-Gly-Phe-Met-NH2 10 

        

Total Ion Chromatogram (TIC)                                           Mass Spectra and UV Spectra of cleaved product 

LC-MS Total Diode Array Chromatogram 

product at 5.23 min               

 

 

Extracted Ion Chromatogram (XIC) at 795 amu. 

Single Wavelength Chromatogram (SWC) at 264 nm 

19_02_25_XX_Fmoc_Met Enkephalin_NH2_1b
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19_02_25_XX_Fmoc_Met Enkephalin_NH2_1b 3: Diode Array 
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HRMS of Fmoc-Tyr-Gly-Gly-Phe-Met-NH2 

 

High resolution mass spectra of product 

 

Fmoc-d-Lys(Cy5.5)-Tyr-Gly-Gly-Phe-Met-NH2 11 

              

LC-MS Total Diode Array Chromatogram (TDA)              Single wavelength chromatogram at 263 nm 
Total Ion Chromatogram (TIC)      

 

19_02_25_XX_Fmoc_dK(Cy55)_Met Enkephalin_NH2_12

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

2.5

5.0

7.5

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_02_25_XX_Fmoc_dK(Cy55)_Met Enkephalin_NH2_12 1: Scan ES+ 
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Expanded mass spectra of product 1488 amu.                      Expanded mass spectra 

(mass of product with protected groups 1544 amu.) 

                                                                                       

HRMS of Fmoc-d-Lys(Cy5.5)-Met enkephalin-NH2 

 

High resolution mass spectra of product 
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1584.99

1761.61

1598.87
1735.99

1887.65

1859.32
1948.24

2013.94
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Expanded High resolution mass spectra of product 

 

 

Expanded High resolution mass spectra of product (with protecting groups) 

 

 

M+H+ 

M+H+ 
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Fmoc-d-Lys(Gd-DOTA)-Tyr-Gly-Gly-Phe-Met-NH2 12 

        

Total Ion Chromatogram (TIC)                                           Mass Spectra and UV Spectra of cleaved product 

LC-MS Total Diode Array Chromatogram 

product at 4.12 min    

 

        

Extracted Ion Chromatogram (XIC) at 1464 amu.                Expanded mass spectra of product showing 

Single Wavelength Chromatogram (SWC) at 268 nm          Gd isotope pattern 

 

 

 

 

 

 

 

 

 

 

 

 

19_02_25_XX_Fmoc_dK(Gd-DOTA)_Met Enkephalin_NH2_New_6
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HRMS of Fmoc-d-Lys(Gd-DOTA)-Met enkephalin-NH2 

 

High resolution mass spectra of product (with protecting groups) 

 

Expanded High resolution mass spectra of product (with protecting groups) 

 

 

M+H+ 

M+H+ 
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Fmoc-Leu-NH2 13 

(First amino acid in SPPS of 18-4) 

        

LC-MS Total Diode Array Chromatogram (TDA)              Mass Spectra and UV Spectra of cleaved product 

Total Ion Chromatogram (TIC)      

 

 

Extracted Ion Chromatogram (XIC) at 353 amu. 

Single Wavelength Chromatogram (SWC) at 261 nm 

 

Fmoc-Phe-Leu-NH2 14 

(Di-peptide in SPPS of 18-4) 

       

TIC & TDA of di-peptide, product at 4.45 min                   Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  
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19_03_28_XX_Fmoc-Leu-NH2_1b 3: Diode Array 
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19_03_28_XX_Fmoc-Leu-NH2_1b 1: Scan ES+ 
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19_03_28_XX_Fmoc-Leu-NH2_1b 3: Diode Array 
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Extracted Ion Chromatogram (XIC) at 500 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

Fmoc-d-Lys-Phe-Leu-NH2 15  

(Tri-peptide in SPPS of 18-4) 

        

TIC & TDA of tri-peptide, product at 3.56 min                  Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  

 

 

Extracted Ion Chromatogram (XIC) at 628 amu.  

Single Wavelength Chromatogram (SWC) at 263 nm 
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19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3 1: Scan ES+ 
TIC

1.19e8

7.493.48
3.34

1.35

1.11

2.76

3.75

4.06

7.04

5.02

5.98

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3 3: Diode Array 
Range: 1.078e+23.56

1.30

7.68

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3

m/z
200 300 400 500 600 700

A
U

0.0

1.0

2.0

m/z
200 300 400 500 600 700

%

0

100

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3 102 (3.478) Cm (101:114)1: Scan ES+ 
5.68e7628.43

257.18
611.40

498.31278.26 481.35
406.38

629.44

630.43

727.50
782.50

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3 428 (3.558) Cm (402:470)
2.608208.53

263.53

298.53

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3

Time
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e-1

1.0

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3 1: Scan ES+ 
628.425
6.02e7

3.48
3.34

3.58

4.03

4.57

5.02
7.046.80

19_03_28_XX_Fmoc-Lys-Phe-Leu-NH2_3 3: Diode Array 
263.532

Range: 1.375

3.60

M+H+ 
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Fmoc-Gln-d-Lys-Phe-Leu-NH2 16  

(Tetra-peptide in SPPS of 18-4) 

        

TIC & TDA of tetra-peptide, product at 2.63 min               Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  

 

 

Extracted Ion Chromatogram (XIC) at 756 amu. 

Single Wavelength Chromatogram (SWC) at 264 nm 

 

Fmoc-Tyr-Gln-d-Lys-Phe-Leu-NH2 17  

(Penta-peptide in SPPS of 18-4) 

        

TIC & TDA of penta-peptide, product at 2.73 min           Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  

 

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4

Time
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e+1

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4 1: Scan ES+ 
TIC

1.42e8

7.35

7.21

1.42
1.08

2.52
2.42 2.76 7.04

5.95
5.813.10 3.82

5.33

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4 3: Diode Array 
Range: 8.567e+12.63

1.31

7.37

6.05

3.93

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4

m/z
200 400 600 800 1000 1200

A
U

0.0

1.0

2.0

m/z
200 400 600 800 1000 1200

%

0

100

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4 74 (2.519) Cm (74:82)
4.00e7756.47

406.36257.19 628.39

757.49

758.48

1162.76796.44
1042.25

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4 317 (2.633) Cm (308:343)
2.381208.53

263.53

298.53

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4

Time
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e-1

1.0

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4 1: Scan ES+ 
756.475
4.30e7

2.52

2.42

2.76

2.96

3.10

3.48

5.95

19_03_28_XX_Fmoc-Gln-Lys-Phe-Leu-NH2_4 3: Diode Array 
264.532

Range: 1.051

2.63

3.93 7.37

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5

Time
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

2.0e+1

4.0e+1

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5 1: Scan ES+ 
TIC

1.21e8

7.90

7.35
7.25
7.08

1.351.08

0.02

5.95
2.692.11 5.67

3.85

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5 3: Diode Array 
Range: 4.397e+12.73

1.311.19

7.37

6.05

3.71

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5

m/z
200 400 600 800 1000 1200

A
U

0.0

5.0e-1

1.0

m/z
200 400 600 800 1000 1200

%

0

100

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5 79 (2.690) Cm (75:82)
1.17e7919.56

406.38
153.13 479.55

791.44664.38

920.56

921.57

941.561124.37

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5 329 (2.733) Cm (316:356)
1.206202.53

263.53

M+H+ 

M+H+ 
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Extracted Ion Chromatogram (XIC) at 919 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

Fmoc-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 18  

(Hexa-peptide in SPPS of 18-4) 

        

TIC & TDA of hexa-peptide, product at 2.83 min              Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  

 

  

Extracted Ion Chromatogram (XIC) at 1046 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

 

 

 

 

 

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5

Time
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

2.0e-1

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5 1: Scan ES+ 
919.561
1.35e7

2.69
2.59

2.79

2.90

19_03_28_XX_Fmoc-Tyr-Gln-Lys-Phe-Leu-NH2_5 3: Diode Array 
263.532

Range: 3.973e-1

2.74

3.72 5.59 7.37

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c

Time
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%

0

100

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c 1: Scan ES+ 
TIC

1.19e8

1.11

0.02

1.561.66
2.76

5.295.094.543.20 7.835.95 7.32
6.87

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c 3: Diode Array 
Range: 8.088e+12.83

1.080.00 1.85

4.69

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c

m/z
250 500 750 1000 1250 1500 1750 2000
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m/z
250 500 750 1000 1250 1500 1750 2000

%

0

100

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c 81 (2.758) Cm (76:86)
2.53e71046.64

153.14
448.36 899.58

779.54

1047.64

1048.65

1069.62
1570.19 1946.34

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c 340 (2.825) Cm (304:388)
1.424204.53

263.53

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

2.5e-1

5.0e-1

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c 1: Scan ES+ 
1046.637

2.96e7

2.76

0.02

0.98

2.86

3.20

4.47 4.64 5.29

19_04_04_XX_Fmoc-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_6c 3: Diode Array 
263

Range: 7.672e-1

2.83

1.880.00
4.68

M+H+ 
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Fmoc-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 19  

(Hepta-peptide in SPPS of 18-4) 

       
TIC & TDA of hepta-peptide, product at 2.73 min             Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  

 

  

Extracted Ion Chromatogram (XIC) at 1117 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 

 

Fmoc-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 20  

(Octa-peptide in SPPS of 18-4) 

        

TIC & TDA of octa-peptide, product at 4.61 min               Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)  

 

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7

Time
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%

0

100

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7 1: Scan ES+ 
TIC

1.18e8

1.11

0.02

1.66

2.62 5.094.78

4.40

5.47
7.907.59

5.887.21

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7 3: Diode Array 
Range: 7.222e+12.73

1.821.07

4.63

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7

m/z
250 500 750 1000 1250 1500 1750 2000
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250 500 750 1000 1250 1500 1750 2000

%

0

100

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7 77 (2.621) Cm (74:85)
1.78e71117.68

523.07
153.13 1046.65824.62

1118.68

1119.68

1140.67
1677.27 2027.57

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7 328 (2.725) Cm (299:369)
1.582202.53

263.53

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
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%

0

100

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7 1: Scan ES+ 
1117.68
2.28e7

2.69

2.52 2.86

3.14

4.40 5.26

19_04_04_XX_Fmoc-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_7 3: Diode Array 
263.532

Range: 6.692e-1

2.73

1.83 4.63

19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8

Time
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19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8 1: Scan ES+ 
TIC

9.57e7

1.08

0.02

5.191.66
4.51

4.402.11

3.58

5.53

7.695.95
6.49

19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8 3: Diode Array 
Range: 5.063e+14.61

1.10

1.782.30

19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8

m/z
250 500 750 1000 1250 1500 1750 2000
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250 500 750 1000 1250 1500 1750 2000

%
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19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8 152 (5.192) Cm (129:159)
9.61e61302.82

257.19

86.09
596.15

258.20
663.20

1060.57

1303.82

1304.82

1305.82

1954.89

19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8 554 (4.608) Cm (522:587)
1.537201.53

263.53

M+H+ 

M+H+ 
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Extracted Ion Chromatogram (XIC) at 1302 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 
 

Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 21 

(Nona-peptide in SPPS of 18-4) 

 

       
TIC & TDA of nona-peptide, product at 5.72 min             Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)                               (With two t-butyl protecting groups) 

 

        

Extracted Ion Chromatogram (XIC) at 1415 amu.           Mass Spectra and UV Spectra of cleaved product 

Single Wavelength Chromatogram (SWC) at 265 nm     (With one t-butyl protecting groups, 1359.87 amu.) 

                                                                           (Without protecting groups, 1302.84 amu.) 

 

 

 

 

 

 

19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8

Time
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%
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19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8 1: Scan ES+ 
1302.819

1.40e7

5.19

5.09
4.61

5.33

5.74

6.12

19_04_04_XX_Fmoc-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_8 3: Diode Array 
263.532

Range: 2.177e-1

4.56

2.32
0.00

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9

Time
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19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 1: Scan ES+ 
TIC

1.18e8

1.11

0.02

5.985.74
1.52 5.53

4.85
4.47

2.35

6.12

6.70
6.87

7.97

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 3: Diode Array 
Range: 5.249e+14.62

1.12

0.00
1.72

2.79
5.72

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9

m/z
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250 500 750 1000 1250 1500 1750 2000

%

0

100

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 175 (5.980) Cm (165:190)
1.84e71415.91

652.69
131.12 587.56

719.73
1344.85

755.20

1417.89

1418.90

1888.65

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 688 (5.725) Cm (671:732)
2.42e-1204.53

263.53

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9

Time
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100

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 1: Scan ES+ 
1415.906

2.14e7

6.296.12
6.43

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 3: Diode Array 
265.532

Range: 7.013e-2

5.86

2.80

0.00

4.62

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9

m/z
500 1000 1500 2000
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U
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500 1000 1500 2000

%

0

100

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 76 (2.587) Cm (76:86)
1.55e6153.17

1359.87
644.25448.37

257.21
779.52 1302.84

1361.89

1382.88
1786.61

19_04_04_XX_Fmoc-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_9 688 (5.725) Cm (662:730)
2.456e-1204.53

263.53

M+H+ 

M+H+ 
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Fmoc-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 22 

(Deca-peptide in SPPS of 18-4) 

        

TIC & TDA of deca-peptide, product at 3.74 min               Mass Spectra and UV Spectra of cleaved product 

(peak is broad due to lipophilicity)   

 

       

Extracted Ion Chromatogram (XIC) at 1703 amu.              Extracted Ion Chromatogram (XIC) at 1489 amu. 

Single Wavelength Chromatogram (SWC) at 265 nm        (Product with no protecting groups) 

 

 

 

 

 

 

 

 

 

 

 

 

19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b

Time
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19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b F1
TIC

7.74e7

1.15

0.02

5.575.474.61

1.70
2.18

3.893.68

5.74

7.766.39

19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b F3
Range: 2.194e+14.64

1.08

0.34

1.35
1.74 2.33 5.54

19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b
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19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b 135 (4.609) Cm (129:142)
8.27e6257.21

851.89
795.77258.21

759.18
259.23

852.70 1703.16
864.22 1647.121235.95 1706.07

19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b 558 (4.642) Cm (534:595)
6.491e-1x4

262.53

19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b

Time
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19_04_05_XX_Fmoc-Trp-dNle-Glu-Ala-Ala-Tyr-Gln-Lys-Phe-Leu-NH2_10b F1
1703.156

1.78e6

5.474.784.54

4.09
3.82

3.58
2.93

5.71

6.22 6.53

6.60
7.21
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HRMS of Fmoc-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

  

High resolution mass spectra of product (with protecting groups) 

 

 

High resolution mass spectra of product (with protecting groups, 1701.9264 amu) 

 

M+H+ 

M+H+ 

(M+2H+)/2 
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High resolution mass spectra of product (Half mass, with protecting groups, 851.4691 amu.) 

 

Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-

NH2 23 

       

Total Ion Chromatogram (TIC)                                           Mass Spectra and UV Spectra of cleaved product 

LC-MS Total Diode Array Chromatogram (TDA)               

 

19_05_01_XX_Fmoc_dLys(Cy55)_BrC_NH2_b
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19_05_01_XX_Fmoc_dLys(Cy55)_BrC_NH2_b 3: Diode Array 
Range: 8.608e+20.49
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Extracted Ion Chromatogram (XIC) at 1326 amu. 

Single Wavelength Chromatogram (SWC) at 687 nm 

 

HRMS of Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-

Phe-Leu-NH2 

 

High resolution mass spectra of product (Half mass, with protecting groups, 1198.1732 amu.) 
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Fmoc-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 

        

             UV Spectra of cleaved product                                 Mass Spectra of cleaved product (Half mass) 

 

HRMS of Fmoc-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 

 

High resolution mass spectra of product (Half mass, without protecting groups, 1092.0850 amu.) 
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High resolution mass spectra of product (Third mass, without protecting groups, 728.3932 amu.) 

 

H-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 24 

        

           UV Spectra of cleaved product                                   Mass Spectra of cleaved product (Half mass) 
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HRMS of H-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 

 

High resolution mass spectra of product (Half mass, without protecting groups, 981.0515 amu.) 

 

High resolution mass spectra of product (Third mass, without protecting groups, 654.3713 amu.) 

 

 

(M+3H+)/3 

(M+2H+)/2 

(M+2H+)/2 
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Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2 25 

        

Total Ion Chromatogram (TIC)                                           Mass Spectra and UV Spectra of cleaved product 

LC-MS Total Diode Array Chromatogram (TDA)               

 

  

Extracted Ion Chromatogram (XIC) at 1186 amu. 

Single Wavelength Chromatogram (SWC) at 263 nm 
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HRMS of Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-

Lys-Phe-Leu-NH2 

 

High resolution mass spectra of product (Half mass, with protecting groups, 1186.0563 amu.) 

 

 

Expanded high resolution mass spectra of product (Half mass, with protecting groups, 1186.0563 amu.) 

(M+2H+)/2 

(M+2H+)/2 
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Table 6: Molecular Weight of Peptides (Bold - Targeting peptides) 

 

Compounds 

Molecular 

Weight 

(g/mol) 

Half Mass 

(g/mol) 

Fmoc-Leu-NH2 352.2 177.1 

Fmoc-Phe-NH2 386.2 194.1 

Fmoc-Phe-Leu-NH2 499.2 250.6 

Fmoc-d-Lys(Mtt)-Phe-Leu-NH2 883.5 442.75 

Fmoc-d-Lys-Phe-Leu-NH2 627.3 314.65 

Fmoc-Gln-d-Lys-Phe-Leu-NH2 755.4 378.7 

Fmoc-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 974.5 488.25 

Fmoc-Tyr-Gln-d-Lys-Phe-Leu-NH2 918.5 460.25 

Fmoc-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1045.6 523.8 

Fmoc-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 989.5 495.75 

Fmoc-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1116.6 559.3 

Fmoc-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1060.5 531.25 

Fmoc-Glu(OtBu)-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1245.6 623.8 

Fmoc-Glu-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1245.6 623.8 

Fmoc-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1301.7 651.85 

Fmoc-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1189.6 595.8 

Fmoc-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1302.7 652.35 

Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1358.7 680.35 

Fmoc-d-Nle-Glu-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1358.7 680.35 

Fmoc-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-

NH2 

1414.8 708.4 

Fmoc-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1488.7 745.35 

Fmoc-Trp-d-Nle-Glu(OtBu)-Ala-Ala-Tyr-Gln-d-Lys-Phe-Leu-NH2 1544.8 773.4 

Fmoc-Trp-d-Nle-Glu-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 1544.8 773.4 

Fmoc-Trp-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-Phe-

Leu-NH2 

1600.9 801.45 

Fmoc-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-Gln-d-Lys-

Phe-Leu-NH2 

1700.9218 851.46 

Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-Tyr(tBu)-

Gln-d-Lys-Phe-Leu-NH2 

2394.3381 1198.17 

Fmoc-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-Lys-

Phe-Leu-NH2 

2182.1610 1092.08 

NH2-d-Lys(Cy5.5)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-

Lys-Phe-Leu-NH2 

1960.08800 981.05194 

Fmoc-d-Lys(Cy5.5)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-

Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

2182.15990 1092.08589 

Fmoc-d-Lys(Gd-DOTA)-Trp-d-Nle-Glu-Ala-Ala-Tyr-Gln-d-

Lys-Phe-Leu-NH2 
2167.9199 1084.96 

Fmoc-d-Lys(Gd-DOTA)-Trp(Boc)-d-Nle-Glu(OtBu)-Ala-Ala-

Tyr(tBu)-Gln-d-Lys-Phe-Leu-NH2 

2370.0970 1186.05 
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