
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-2019

Deep Grassmann Manifold Optimization for Computer Vision Deep Grassmann Manifold Optimization for Computer Vision

Breton Lawrence Minnehan
blm2144@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Minnehan, Breton Lawrence, "Deep Grassmann Manifold Optimization for Computer Vision" (2019).
Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10122?utm_source=repository.rit.edu%2Ftheses%2F10122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Deep Grassmann Manifold Optimization for Computer Vision

by

Breton Lawrence Minnehan

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Engineering

Kate Gleason College of Engineering

Rochester Institute of Technology

August 2019

Signature of the Author

Certified by
Ph.D. Program Director Date

Ph.D. IN ENGINEERING PROGRAM

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. degree dissertation of Breton Lawrence Minnehan
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the
Ph.D. degree in Engineering

Dr. Andreas Savakis, Dissertation Advisor Date

Dr. Christopher Kanan, Committee Member Date

Dr. Andres Kwasinski, Committee Member Date

Dr. Panos P. Markopoulos, Committee Member Date

ii

This dissertation is dedicated to my Papou, Nicholas Papatones. Whenever I’m in
need of encouragement I think of you and hear you saying:

“Be strong, like bull!”

iii

Deep Grassmann Manifold Optimization for Computer Vision

by

Breton Lawrence Minnehan

Submitted to the
Kate Gleason College of Engineering Ph.D. in Engineering Program

in partial fulfillment of the requirements for the
Doctor of Philosophy Degree

at the Rochester Institute of Technology

Technical Abstract

In this work, we propose methods that advance four areas in the field of computer
vision: dimensionality reduction, deep feature embeddings, visual domain adaptation,
and deep neural network compression. We combine concepts from the fields of
manifold geometry and deep learning to develop cutting edge methods in each of these
areas. Each of the methods proposed in this work achieves state-of-the-art results
in our experiments. We propose the Proxy Matrix Optimization (PMO) method for
optimization over orthogonal matrix manifolds, such as the Grassmann manifold. This
optimization technique is designed to be highly flexible enabling it to be leveraged in
many situations where traditional manifold optimization methods cannot be used.

We first use PMO in the field of dimensionality reduction, where we propose an
iterative optimization approach to Principal Component Analysis (PCA) in a frame-
work called Proxy Matrix optimization based PCA (PM-PCA). We also demonstrate
how PM-PCA can be used to solve the general Lp-PCA problem, a variant of PCA
that uses arbitrary fractional norms, which can be more robust to outliers. We then
present Cascaded Projection (CaP), a method which uses tensor compression based on
PMO, to reduce the number of filters in deep neural networks. This, in turn, reduces
the number of computational operations required to process each image with the
network. Cascaded Projection is the first end-to-end trainable method for network
compression that uses standard backpropagation to learn the optimal tensor compres-
sion. In the area of deep feature embeddings, we introduce Deep Euclidean Feature
Representations through Adaptation on the Grassmann manifold (DEFRAG), that
leverages PMO. The DEFRAG method improves the feature embeddings learned
by deep neural networks through the use of auxiliary loss functions and Grassmann

iv

v

manifold optimization. Lastly, in the area of visual domain adaptation, we propose
the Manifold-Aligned Label Transfer for Domain Adaptation (MALT-DA) to trans-
fer knowledge from samples in a known domain to an unknown domain based on
cross-domain cluster correspondences.

Deep Grassmann Manifold Optimization for Computer Vision

by

Breton Lawrence Minnehan

Submitted to the
Kate Gleason College of Engineering Ph.D. in Engineering Program

in partial fulfillment of the requirements for the
Doctor of Philosophy Degree

at the Rochester Institute of Technology

Outreach Abstract

As digital imaging sensors have become ubiquitous in modern society, there has
been increasing interest in extracting information from the data the sensors collect.
The study of extracting information from visual data is known as computer vision.
The field of computer vision has made significant progress in recent years thanks
in large part to the emergence of deep learning. In this work, we present novel
methods that advance five areas of computer vision and deep learning. The first
area of contribution is Grassmann manifold optimization, a constrained optimization
technique that has application in many fields, including: physics, communications,
deep learning, and computer vision. In the second area of research, we propose
methods for dimensionality reduction based on our manifold optimization method.
Dimensionality reduction is used in many fields to reduce high dimensional data to
a more compact representation. In the third area of research we propose a method
for compressing deep neural networks in order to reduce the number of computations
required and reduce the processing time. In the fourth area of research we propose
a method that encourages deep networks to learn better representations of data by
grouping similar classes closer than dissimilar classes. The fifth area of research is
in the field of domain adaptation, that aims to solve a problem known as domain
shift encountered due to the difference between the data that a classifier is trained on
and data the classifier encounters when deployed. The domain adaptation method
developed in this work mitigates the domain shift by finding correspondences between
the data in two domains and uses the correspondences to transfer the labels from the
labeled source samples to the unlabeled target samples. Our proposed work in each of
these areas has many applications such as pedestrian detection in autonomous vehicles,
classifying remote sensing images and object recognition on mobile devices.

vi

Contents

1 Introduction 1
1.1 Contributions . 3

2 Deep Learning 5
2.1 Artificial Neural Networks . 5

3 Manifold Optimization 13
3.1 Mathematical Definitions . 13
3.2 Manifold Operations . 16
3.3 Proposed Proxy Matrix Manifold Optimization 18

3.3.1 One-Step iterative manifold optimization 18
3.3.2 Two-step iterative manifold optimization 20
3.3.3 Proxy Matrix Optimization 22

3.4 Experimental Results . 26
3.4.1 Learning Rate Convergence Analysis 26
3.4.2 Number of Iterations for Convergence 29

3.5 Implementation Details . 32

4 Dimensonality Reduction 33
4.1 Background . 33

4.1.1 Grassmann Optimization for Linear Dimensionality Reduction 34
4.1.2 L2-norm Based PCA . 35
4.1.3 L1-norm Based PCA Background 36
4.1.4 Lp-Norm Based PCA . 37
4.1.5 Linear Discriminant Analysis 37

4.2 Dimensionality Reduction Using Proxy-Matrix Optimization 38

vii

CONTENTS viii

4.2.1 Lp-PCA . 39
4.2.2 Weighted Contribution PCA 40

4.3 Experiments . 41
4.3.1 Initialization Experiments 43
4.3.2 L2-PCA Experiments . 44
4.3.3 L1-PCA Experiments . 45
4.3.4 Lp-PCA Experiments . 50
4.3.5 Weighted Contribution PCA Experiments 54
4.3.6 Labeled Faces in the Wild Outlier Experiments 57
4.3.7 Labeled Faces in the Wild Occlusion Experiments 63

4.4 Remarks . 68

5 Cascaded Projection Network Compression 69
5.1 Introduction . 70
5.2 Related Work . 72
5.3 Cascaded Projection Methodology 73

5.3.1 Problem Definition . 73
5.3.2 Single Layer Projection Compression 74
5.3.3 Cascaded Projection Compression 75
5.3.4 Mixture Loss . 77
5.3.5 Compressing Multi-Branch Networks 77
5.3.6 Back-Propagated Projection Optimization 79

5.4 Experiments . 80
5.4.1 Layer-wise Experiments . 81
5.4.2 CaP Ablation Experiments 82
5.4.3 ResNet Compression on CIFAR 10 85
5.4.4 VGG16 Compression with ImageNet 85

5.5 Observations . 87

6 Feature Embedding 88
6.1 Feature Embedding Background 88
6.2 Learning Deep Feature Embeddings on Euclidean manifolds 91

6.2.1 Clustering Auxiliary Loss 92
6.2.2 Grassmann manifold Retraction 92

6.3 Feature Learning Experiments . 92
6.3.1 Fashion MNIST Experiments 93

CONTENTS ix

6.3.2 Qualitative MNIST Experiments 95
6.4 Remarks . 96

7 Domain Adaptation 97
7.1 Domain Adaptation Background 98

7.1.1 Deep domain adaptation . 101
7.2 Domain Adaptation Proposed Work 103

7.2.1 Center-loss feature training 104
7.2.2 Adaptive Batch Normalization 105
7.2.3 Subspace Alignment on the LPP manifold 106
7.2.4 Feature Clustering using Gaussian Mixture Model 108
7.2.5 Dual-Classifier Pseudo-Label Filtering 109
7.2.6 Label Transfer via manifold clustering 110

7.3 Domain Adaptation Experiments 112
7.3.1 Network Architecture . 112
7.3.2 Digit Classification . 114
7.3.3 Remote Sensing Datasets 118

7.4 Remarks . 119

8 Conclusion 120

List of Figures

2.1 Visual depiction of the Perceptron. 6
2.2 Visual depiction of using multiple perceptrons to generate multiple

outputs for a single input. 7
2.3 Visual depiction of a Multiple Layer Perceptron (MLP). 8
2.4 Visual depiction of a single layer of a Convolutional Neural Network

(CNN). 9
2.5 Visual depiction of the decomposition of a convolution operation into

a locally connected implementation. 10
2.6 ResNet convolutional network architecture. 11
2.7 Densely connected convolutional network architecture. 12

3.1 Visual depiction of the One-Step retraction process. The point is first
updated based on the gradients calculated through backpropagation.
Then the point is retracted directly to the closest point on the manifold.
This process is repeated until some stopping criteria is met. 19

3.2 Visual depiction of the Two-Step retraction process. The point is first
updated based on the gradients calculated through backpropagation.
Then the point is first projected to the tangent-space (green plane) at
Ri using Equation (3.2), the projection is shown as the dotted blue
line. Then the point is retracted from the tangent space to the closest
point on the manifold using Equation (3.3). This process is repeated
until some stopping criteria is met. 21

x

LIST OF FIGURES xi

3.3 Visual depiction of the Proxy Matrix Optimization process. The proxy
matrix, Pi, is first retracted to the manifold using Equation (3.3). Then
the gradients ∇R(Pi) in ambient space, to move the proxy matrix in
a direction that minimize the loss of its retraction. These gradients are
used to move the proxy matrix in Euclidean space in the direction that
minimizes the loss. 24

3.4 Example behavior of the loss when varying the learning rate using the
Two-Step retraction method. The learning rates used were: Red 10.0,
Blue 1.0, Green 0.1, Black 0.01. 28

3.5 Example behavior of the loss when varying the learning rate using
the Proxy-Matrix method. The learning rate was reduced by an order
of magnitude at 50% and again at 75% through training.The learning
rates used were: Red 1000.0, Blue 100.0, Green 10.0, Black 1.0. . . 29

3.6 Convergence plot of Two-Step and Proxy Matrix methods, Blue and
Red plots respectively, for L2-PCA. 30

3.7 Convergence plot of Two-Step and Proxy Matrix methods, Blue and
Red plots respectively, for L1-PCA. (Note the horizontal axis is in
log-scale.) . 31

3.8 Convergence plot of Two-Step and Proxy Matrix methods, Blue and
Red plots respectively, for L0.5-PCA. (Note the horizontal axis is in
log-scale.) . 31

4.1 Relative percent reduction in error for 5 random initializations vs.
initializing with the L2 solution. Experiments were run on 10 sets of
data with four different dimensionality reduction objectives. 43

4.2 Average reprojection error for standard SVD based L2-PCA and pro-
posed PM-L2-PCA methods for varying number of principal compo-
nents. 45

4.3 Average reprojection error for four PCA methods for varying number
of principal components. The mean from runs on 10 separate dataset
are plot. The results from L2-PCA are shown in blue, BF-L1-PC
are shown in green, PM-L1-PCA-RPR are shown in red, and PM-L1-
PCA-PRJ are shown in cyan. 46

4.4 Percent improvement of the PMO and Bit-Flipping L1-PCA meth-
ods relative to L2-PCA for varying number of principal components.
Mean calculated based on 10 runs on randomly initialized datasets. . . 47

LIST OF FIGURES xii

4.5 Percent improvement of the PMO and Bit-Flipping L1-PCA methods
relative toL2-PCA for datasets with various number of samples. Mean
calculated based on 10 runs on randomly initialized datasets. 48

4.6 Processing time for L1-PCA algorithms run on 500 samples from the
toy datasets with varying number of principal components. 49

4.7 Processing time for L1-PCA algorithms run on varying number of
samples 50-500 from the toy calculating 10 principal components. . 50

4.8 Improvement in reprojection error using the reprojection objective
with the PM-Lp-PCA framework for different number of components,
all relative to L2-PCA. 52

4.9 Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework for different number of components, all
relative to L2-PCA. 52

4.10 Improvement in reprojection error using the reprojection objective
with the PM-Lp-PCA framework for different dataset sizes, all relative
to L2-PCA. 53

4.11 Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework for different dataset sizes, all relative to
L2-PCA. 53

4.12 Improvement in reprojection error using the reprojection objective
with the PM-Lp-PCA framework using p of 0.5, 1.0, 2.0. both without
and with weighted-contributions, solid and dashed lines respectively.
All results are relative improvement to L2-PCA. 55

4.13 Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework using p of 0.5, 1.0, 2.0. both without and
with weighted-contributions, solid and dashed lines respectively. All
results are relative improvement to L2-PCA. 55

4.14 Improvement in reprojection error using the reprojection objective
with the PM-Lp-PCA framework for different dataset sizes, all relative
to L2-PCA. 56

4.15 Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework for different dataset sizes, all relative to
L2-PCA. 56

4.16 Example images of faces in the Labeled Faces in the Wild Dataset.
The right-most image is an example of outlier noise image added to
the training dataset in experiments. 57

LIST OF FIGURES xiii

4.17 Improvement in reprojection error for the LFW dataset with varying
values of p using the proposed PM-Lp-PCA framework, all relative to
L2-PCA. 58

4.18 Improvement in reprojection error using the reprojection objective
with the PM-Lp-PCA framework, both with and without the weighted
loss functions, all relative to L2-PCA. 59

4.19 Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework, both with and without the weighted loss
functions, all relative to L2-PCA. 60

4.20 Reprojection of face images using the proposed POM-L1-PCA and
standard L2-PCA principal components extracted from corrupted face
training set. First row: Input Image. Second row: Reprojection using
L2-PCA. Third row: Reprojection using PM-L1-PCA with projection
formulation. Third row: Reprojection using PM-L1-PCA with repro-
jection formulation. Fourth row: Reprojection using PM-L1-PCA
with reprojection formulation and weighted contribution. Fifth row:
Reprojection using PM-L1-PCA-W with Projection Maximization
Formulation. 61

4.21 Example principal components resulting from training different PCA
methods on a dataset of facial images with 10% of the image corrupted
with uniform noise. The rows are organized as follows. First row: L2-
PCA. Second row: projection formulation of PM-L1-PCA. Third row:
reprojection formulation of PM-L1-PCA. Forth row: reprojection
formulation of PM-L1-PCA with weighted contribution. 62

4.22 Improvement in reprojection error using the reprojection objective
with the PM-Lp-PCA framework, both with and without the weighted
loss functions, all relative to L2-PCA. 64

4.23 Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework, both with and without the weighted loss
functions, all relative to L2-PCA. 65

LIST OF FIGURES xiv

4.24 Example principal components resulting from training different PCA
methods on a dataset of facial images with all images corrupted by
a patch covering 10% to 30% of the image made of uniform noise.
The rows are organized as follows. First row: L2-PCA. Second
row: projection formulation of PM-L1-PCA. Third row: reprojection
formulation of PM-L1-PCA. Fourth row: reprojection formulation of
PM-L1-PCA with weighted contribution. 65

4.25 Reprojection of face images using the proposed PM-L1-PCA and
standard L2-PCA principal components extracted from the corrupted
face training set. First row: Input Image. Second row: Reprojection
using L2-PCA. Third row: Reprojection using PM-L1-PCA with
Reprojection Minimization Formulation. Fourth: Reprojection using
PM-L1-PCA with Projection Maximization Formulation. Fifth row:
Reprojection using PM-L1-PCA-W with Projection Maximization
Formulation. 66

4.26 Reprojection of face images using the proposed PM-L1-PCA and
standard L2-PCA principal components extracted from the corrupted
face training set. First row: Input Image. Second row: Reprojection
using L2-PCA. Third row: Reprojection using PM-L1-PCA with Re-
projection Minimization Formulation. Fourth row: Reprojection using
PM-L1-PCA with Projection Maximization Formulation. Fifth row:
Reprojection using PM-L1-PCA-W with Projection Maximization
Formulation. 67

5.1 Visual representation of network compression methods on a single
CNN layer. Top row: Factorization compression with a reprojection
step that increases memory. Middle row: Pruning compression where
individual filters are removed. Bottom row: Proposed CaP method
which forms linear combinations of the filters without requiring repro-
jection. 71

5.2 Visual representation of the compression of a CNN layer using the CaP
method to compress the filters Wi and Wi+1 in the current and next
layers using projections Pi and PT

i respectively. The reconstruction
error in the next layer is computed after the nonlinearity G(·). . . . 75

LIST OF FIGURES xv

5.3 Illustration of simultaneous optimization of the projections for each
layer of the ResNet18 network using a mixture loss that includes
the classification loss and the reconstruction losses in each layer for
intermediate supervision. We do not alter the structure of the residual
block outputs, therefore we do not affect residual connections and
we do not compress the outputs of the last convolution layers in each
residual block. 78

5.4 Plot of the reconstruction error (vertical axis) for the range of com-
pression (left axis) for each layer of the network (right axis). The
reconstruction error is lower when early layers are compressed. . . . 81

5.5 Plot of the classification accuracy (vertical axis) for the range of
compression (left axis) for each layer of the network (right axis).
The classification accuracy remains unaffected for large amounts of
compression in a single layer anywhere in the network. 81

5.6 Classification accuracy drop on CIFAR10, relative to baseline, of
compression methods (CaP, PCAS [155], PFEC [85] and LPF [60])
for a range of compression levels on ResNet18 (Right) and ResNet50
(Left). 83

6.1 Example images from MNIST (top row) and Fashion MNIST (bottom
row). 93

6.2 Visualization of feature representations in 2D trained on the MNIST
dataset using a combination of Classification Loss and Auxiliary Loss.
Features are learned using (a) Softplus activation from classification
loss only; (b) linear activation function; (c) center loss [150]; (d)
contrastive center loss [111]; (e) our DEFRAG method. 95

7.1 Overview unsupervised domain adaptation of deep network to the
target domain. Adaptive batch normalization is used for training and
adaptation in both source and target domains. Subspace alignment is
performed for source and target features on the LPP manifold and the
features are clustered to determine if label transfer is appropriate based
on a clustering criterion. Label transfer is performed by assigning
labels from the closest source cluster to each target cluster and using
them to retrain the network. 103

7.2 Sample images from different datasets showing variations in the same
category across domains. 113

LIST OF FIGURES xvi

7.3 Feature visualization using t-SNE plots. The two leftmost columns
show the Source (Red) and Target (Blue) features though each stage
of the MALT-DA pipeline. The first column (Left) shows the source
and target features, red and blue respectively, resulting from the un-
adapted network with ABN. The second column depicts the same
features after our Subspace Alignment process on the LPP manifold.
The third column shows the only the features from the target domain
that passed the dual-classifier pseudo label filtering, the different
colors correspond to the class of each data-point. The last column
displays the visualization of the, unfiltered, features resulting from
the proposed network adaptation method.. Each row corresponds to
a different adaptation problem. First: from MNIST to USPS dataset.
Second: from MNIST to the SVHN dataset. Third: from Syn. Digits
to the SVHN dataset. Last: from USPS the MNIST dataset. 117

7.4 Sample images from the shared classes in the UCM (top row) and
AID (bottom row) aerial datasets. From left to right, the classes
are:Farmland/Agricultural, Airport/Runway & Airplane, Baseball
Field, Beach, Dense Residential, Forest, Port/harbor, Medium Res-
idential, Viaduct/Overpass, Parking lot, River, Sparse Residential,
Storage Tanks. 118

List of Tables

4.1 Improvement reprojection errors, relative to L2-PCA, for clean test
set when PM-Lp-PCA with varying values of p is trained on corrupted
Synthetic-Dataset. 51

5.1 Network compression ablation study of the CaP method compress-
ing the ResNet18 Network trained on the CIFAR100 dataset. (Bold
numbers are best). 82

5.2 Comparison of CaP with pruning and factorization based methods
using ResNet56 and ResNet110 trained on CIFAR10. FT denotes
fine-tuning. (Bold numbers are best). * Only the relative drop in
accuracy was reported in [160] without baseline accuracy. 84

5.3 Network compression results of pruning and factorization based meth-
ods without fine-tuning. The top-5 accuracy of the baseline VGG16
network varies slightly for each of the methods due to different models
and frameworks. (Bold numbers are best). Results marked with *
were obtained from [53]. 86

5.4 Network compression results of pruning and factorization based meth-
ods with fine-tuning. (Bold numbers are best). 86

6.1 Network Architecture . 93
6.2 Fashion MNIST Results . 94

7.1 Quantitative results for SoftMax and Center-loss networks with 2D
feature representations. 105

7.2 Accuracy of digit classification datasets. 115

xvii

LIST OF TABLES xviii

7.3 Coverage of performance gap by the proposed MALT-DA method
relative to training on target domain. 116

7.4 Accuracy of MALT-DA on remote sensing datasets. 118

Chapter 1

Introduction

The contributions of this dissertation can roughly be separated into four distinct areas:
dimensionality reduction, network compression, deep feature embeddings, and visual
domain adaptation. However, all four areas are closely related and improvements in
one can prove useful in the others. There are two core conceptual threads that tie all
of these areas together: deep learning and manifold optimization. Chapter 2 provides
the reader with the theoretical background on the former while Chapter 3 focuses on
the latter.

Deep Convolutional Neural Networks (CNNs) and their variants have emerged as
the architecture of choice for computer vision. Deep networks have achieved state-
of-the-art results in object class recognition [73], [130], [48], face recognition [123],
semantic segmentation [90], pose estimation [149], and visual tracking [106] among
other applications.

There is a large body of work studying Grassmann manifolds and their applications
in the field of computer vision. Grassmann manifolds have been used in distance met-
ric learning and subspace analysis for problems such as domain adaptation and visual
object tracking. In this work we demonstrate how Grassmann manifold optimization
can be used to perform robust Principal Component Analysis in a computationally
efficient manner. We demonstrate how by restricting fully-connected layers of Artifi-
cial Neural Networks we can ensure the feature embedding is a Euclidean space. This
provides multiple benefits including that the resulting features can be accurately com-
pared using the Euclidean distance. Additionally, we demonstrate how this framework
can be adopted to obtain an end-to-end method for visual domain adaptation.

Dimensionality reduction methods have an incredibly vast array of applications

1

CHAPTER 1. INTRODUCTION 2

in signal processing, such as signal compression or classification applications in
computer vision. Most computer visions tasks require extremely high dimensional
data to be reduced to only the pertinent information in the form of features. In this work
we propose new methods for dimensionality reduction using iterative optimization
methods originally developed in the field of deep learning.

The field of feature embedding has received some attention recently from the
standpoint of improving feature clustering [101] or for zero/one-shot learning. In each
of these cases, attempts have been made to learn image embeddings using deep neural
networks where images of similar subjects/classes have features that are close together
and images of different subjects/classes are further apart. However, many of these
works ignore a key problem, the feature spaces they learn lack an orthonormal basis,
and thus are not Euclidean spaces. Yet these methods continue to use the Euclidean
distance as a similarity metric for the feature embeddings. Furthermore, there are
many examples of methods which use the features extracted from the last layer of a
deep neural network, specifically after a rectified linear activation function, as their
feature embedding. This is even more problematic as the feature representation is
inherently sparse. We will go into more detail as to why this is a problem in Chapter
6. We will also discuss how Grassmann manifold optimization can be used during
the training process to generate proper Euclidean space embeddings such that the
resulting features can be accurately compared using the Euclidean metric.

There are many potential applications for learning deep Euclidean embedding
spaces from direct use in deep networks to reduce overfitting and improve the clus-
tering behavior. For applications where there is only a limited number of samples
available, such as person re-identification, a k-Nearest Neighbor (kNN) classifier is
typically used which often relies on the Euclidean distance metric between features.
In a different context, deep Euclidean embeddings could be used in applications such
as visual object tracking.

A common problem that is faced when a classification method is developed for
application to a real-world problem is a reduction in accuracy when applied to new
data. This problem arises because the data used to train the classifier and the data
the classifier processes when deployed can be quite different. This difference, known
as domain shift or dataset bias, can result from changes in illumination conditions
(daylight vs. night, sunny vs. cloudy), environmental conditions (desert vs. forest,
urban vs. residential), or changes in sensor modalities (low resolution vs. high
resolution). Each of these presents an instance where a classifier trained in one
domain, called the source, would not perform well in a different domain, called

CHAPTER 1. INTRODUCTION 3

the target, unless somehow adapted. This adaptation process is known as domain
adaptation and is a quickly developing area of research. As is evident from the multiple
examples there are many applications that would greatly benefit from advances in
domain adaptation. We propose the development of domain adaptation techniques
that leverage our work in the two other fields to provide a method that is better suited
for the situations commonly faced in modern computer vision applications.

The remainder of this work is organized as follows: Chapter 2 discusses related
work and other background knowledge in the field of deep learning. Chapter 3
provides background knowledge on manifold optimization and presents a new method
developed in this work. Chapter 4 outlines our work in the field of dimensionality
reduction. Chapter 5 applies our manifold optimization method to the field of deep
neural network compression for improved efficiency and reduced size. Chapter
6 introduces new methods for learning better features representations though the
combination of deep learning and manifold optimization. Chapter 7 presents our work
in the field of domain adaptation. Finally, Chapter 8 provides concluding remarks.

1.1 Contributions

The contributions of this dissertation are as follows:

• Develop optimization on Grassmann Manifolds using recent advancements in
gradient-based optimization to accelerate convergence and improve robustness
to non-convex loss functions. We call our new Grassmann manifold optimization
technique Proxy Matrix Optimization.

• Develop a novel dimensionality reduction framework that uses an artificial
neural network approach for Grassmann manifold optimization. The proposed
framework can solve for various dimensionality reduction techniques through
simple changes in the network’s training loss function.

• Develop a new method for compression of deep neural networks using a decom-
position method and Proxy Matrix Optimization, that is trained in an end-to-end
manner.

• Develop a deep feature embedding method that learns semantically meaningful
Euclidean embedding space. The deep embeddings can both reduce the potential
for overfitting and ensure the network is more adaptable to different problem-
types and image-domains.

CHAPTER 1. INTRODUCTION 4

• Advance the field of domain adaptation so that a trained classifier can be adapted
to new domains with minimal loss in classification accuracy.

Chapter 2

Deep Learning

Deep learning is one of the fastest growing areas of research in the field of computer
science. In recent years there have been countless breakthroughs across a wide array
of problem areas that have been achieved through use of deep learning methods. In
this chapter we provide a general overview of the field of Artificial Neural Networks
(ANNs) and Deep Learning.

2.1 Artificial Neural Networks

The fast-growing field of deep learning traces its origins back to the artificial perceptron
[115] first proposed in the 1950’s. The design of the perceptron is said to be inspired
by the connections on neurons. Where, similar to a biological neuron, the perceptron’s
activation is determined based on a weighted summation of its input.

The basic building block of ANNs is the artificial perceptron, shown in Figure
2.1. At its core the perceptron is a weighted summation of an input vector that is
passed through a nonlinearity. This operation consists of an inner product of the input
vector, x, and the weight vector, w. A bias, b is added to the weighted sum, and then
a nonlinear function g(·) is applied as:

f(x) = g(xTw + b) (2.1)

The perception can easily process multiple inputs simultaneously, known as batch
processing. Additionally, perceptrons can be used in parallel to generate what is known
as a layer of perceptrons with multiple outputs, as shown in Figure 2.2. This doesn’t

5

CHAPTER 2. DEEP LEARNING 6

Figure 2.1: Visual depiction of the Perceptron.

require any change to the linear algebra except that the weight vector, w, is replaced
with a m × n weight matrix, generated by stacking the m different n-dimensional
weight vectors where m is the number of perceptrons (output dimension).

The power of the artificial perceptron becomes more apparent when d layers of
perceptrons are stacked on top of each other, where the output of one layer is used as
the input to the next layer, as shown in Figure 2.3. A non-linear function is used as the
activation function for each perceptron. Again, the mathematics for the Multi-Layer
Perceptron (MLP) do not change besides stacking the operations of each perceptron
as:

f(x) = g(...g(g(x(W0)T + b0)(W1)T + b1)...(Wd−1)T + bd−1) (2.2)

To this point we only discussed the forward pass of ANNs. In ANNs the weight
and bias values are adjusted with back propagation [118] using an optimization
method, e.g. stochastic gradient decent. The weights and biases are adjusted by first
calculating the outputs, f(x), generated by the input, x. The output f(x) is compared
to a desired output, t, such as a one-hot encoding of the samples class, and a loss L is
calculated using one of many commonly used loss functions such as the L2-norm or
cross entropy. No matter which loss is used, the core concept behind backpropagation
is the application of the chain rule to calculate the partial derivatives of the loss with
respect to each sets of weights. The partial derivative of the error with respect to each
of the weights, ∂L∂w , is then used to adjust the weights in the direction that minimizes
the error. For networks with multiple layers, this process is performed through use of
the chain rule. For output nodes the partial derivative of loss, L with respect to the

CHAPTER 2. DEEP LEARNING 7

Figure 2.2: Visual depiction of using multiple perceptrons to generate multiple outputs
for a single input.

weight connecting the output node oj with the node oi in the previous layer is given
as:

∂L

∂wi,j
= oi(oj − tj)oj(1− oj) (2.3)

where tj is the ground truth output value for the node oj . If the node oj is not an output
node the partial derivative of the loss function with respect to the weight connecting it
to the node oi in the previous layer is ∂L

∂wi,j
= oiδj where δj is given as:

δj = (
∑
l∈L

wi,lδl)oj(1− oj) (2.4)

The loss produced by the perceptron for each input is used to update the weight and
bias vectors.

The field of ANNs stalled for many years for three primary reasons: Firstly, the
fully-connected ANN architecture required a large number of parameters and thus
was prone to overfitting smaller datasets. Secondly, ANNs require many passes of
forward and backward propagation the computational resources were not sufficient to

CHAPTER 2. DEEP LEARNING 8

Figure 2.3: Visual depiction of a Multiple Layer Perceptron (MLP).

train deep networks on large datasets. Third, ANNs were viewed as theoretical black
boxes with little intuition or framework.

Convolutional Neural Networks [82] were revolutionary because they provided a
way for ANNs leverage the spatial information available in imagery. Another benefit
to CNNs over MLPs is that they required a much smaller set of trained-parameters.
With traditional fully-connected MLPs the number of parameters for each layer was
nm where n is the input dimension (h × w) of the image and m is the number of
outputs for the layer is the number of outputs for the layer. For example, a two layer
layer fully-connected network with 2516 hidden nodes and 10 output nodes and an
input image of size (28 × 28), requires 203,530 parameters. However, with CNNs
the number of parameters for each layer is reduced to mk2 where k is the size of
the convolution kernel, usual 3 to 7 pixels. Therefor a similar convolutional network
with (3× 3) kernels would require just 33,280 parameters, assuming a global pooling
layer is on the last layer to reduce each feature map to a scalar value, as is commonly
done. A visual representation of a CNN is given in Figure 2.4. The mathematical
formulation for each layer of a CNN is given as:

f(X) = g(XW + b) (2.5)

where X is the Two-Dimensional input to the layer and W is the weight kernel and

CHAPTER 2. DEEP LEARNING 9

Figure 2.4: Visual depiction of a single layer of a Convolutional Neural Network
(CNN).

∗ is the convolution operation. This can be extended for cases where the input has
multiple channels by performing the 2D convolution on the H ×W × C input with a
k × k × C kernel.

Although it is more efficient to implement a CNN using convolution operations it is
important to recognize that this operation can be performed using the MLP formulation.
The only change required is that the input image must be decomposed into separate
k×k blocks that are vectorized from an input matrix X that has dimensionsWH×k2.
A visual example of this decomposition method is given in Figure 2.5.

The field of deep learning did not fully take off until AlexNet [73] which demon-
strated the ability of deep CNNs to classify a large number of classes in ImageNet by
leveraging their parallel nature and using Graphic Processing Units (GPUs) during
training. The advances in the field of deep learning are too numerous to review here.
However, we will outline some of the particular advances that are specifically pertinent
to this work.

Batch Normalization was originally introduced as a method to improve the training
speed and reduce the tendency of deep neural networks to overfit the training set. This
was done by normalizing inputs to each neuron, xi, in the network across all the
samples in the current mini-batch. The whitened input, x̂i, of each input to neurons is

CHAPTER 2. DEEP LEARNING 10

Figure 2.5: Visual depiction of the decomposition of a convolution operation into a
locally connected implementation.

calculated as follows:

x̄i =
1

T

∑
i=(0,T)

xi (2.6)

σ2
i =

1

T

∑
i=(0,T)

(xi − x̄i)2 (2.7)

x̂i =
(xi − x̄i)√

σ2
i

(2.8)

Where T is the number of samples in the mini-batch, and i is the is the dimension
index of the input. Normalizing the activations across each mini-batch ensures that

CHAPTER 2. DEEP LEARNING 11

the gradients for each update set are better suited for training, especially in early
epochs with randomly initialized weights. Batch Normalization allows for much faster
training with higher learning rates. Traditionally the statistics and scale/shift values
for the activations are learned at training time and frozen at test time, meaning that the
activations are whitened based on the statistics of the training set, but not the test set.

Another technique that is commonly used to train deep neural networks is dropout
[133]. The aim of dropout is to prevent deep networks from overfitting by forcing
redundancy into the network. Dropout forces redundancy by randomly selecting a
set of neurons in each layer with a given probability, generally between 25% to 50%,
and setting their activations to zero. This forces the network to rely on the remaining
features in the layer, and thus builds redundancy into the network. The introduction
of dropout into the training process allows deeper networks to be trained with a
significantly lower risk of overfitting. Convolutional neural network architectures
have made significant advances in recent years. In this section we only highlight three
commonly used architectures: VGG [129], Residual Networks (ResNet) [49] and
Densely Connected Networks (DenseNet) [57]. There are many others that are used
for various applications.

The VGG architecture is a traditional convolutional network architecture that was
built with the same design in the original CNNs introduced in [80] and popularized
in [73]. The VGG architecture generally has several convolutional layers utilizing 3x3
filters followed by a max pooling layer. These convolutional blocks are repeated until
the last convolutional features are vectorized and fed into several fully connected layers.
This type of architecture is the fundamental type of CNN, yet it is still commonly used
throughout the field of deep learning. A common variation is that most researchers
introduce batch normalization layers into the network as well.

Figure 2.6: ResNet convolutional network architecture.

More recently, techniques such as ResNet [49] have introduced feed forward con-
nections into networks that allow for training deeper networks. Residual connections
provide a pathway around each convolution layer through which the gradients can

CHAPTER 2. DEEP LEARNING 12

flow. This is done by summing the input to each convolutional layer with its output. A
visual example of a ResNet is presented in Figure 2.6

Figure 2.7: Densely connected convolutional network architecture.

The concept of residual connections was further advanced in [57] which introduced
densely connected networks (DenseNets). DenseNets are different than ResNets in
that they are built using Dense Blocks where the feature maps from each layer are
used as inputs for every subsequent layer in the block. This architecture allows for
the combination of both high and low-level features throughout the network. An
example DenseNet architecture with 25 layers split into three Dense Blocks is shown
in Figure 2.7. In this work we primarily chose to use a DenseNet architecture because
the state-of-the-art results it achieved on many of the standard image classification
datasets [107] [74] [25]. DenseNets have also been shown to have a smoother error
surface and thus are more likely to converge to a global minimum, as shown in [86].

Chapter 3

Manifold Optimization

Manifolds are used through the field of machine learning for various applications such
as: dimensionality reduction [20], invariant subspace learning [144, 145], clustering
[16, 148], regularization [59], and many more. Of particular interest to this work are
matrix manifolds, the Stiefel manifold and the Grassmann manifold. We develop
the Proxy Matrix Optimization (PMO) method which improves the convergence of
iterative manifold optimization by reformulating the optimization problem to directly
incorporate the manifold retraction into the gradient calculation. This reformulation
alleviates the constraint on update step size required by previous methods due to their
reliance on the tangent space.

In this chapter, we first provide the reader with the definitions of several important
manifold structures. We then outline operations that can be performed on specific
manifolds. After providing the theoretical background and a review of previous works
in the field of manifold optimization, we propose our PMO method for optimizing
over the Stiefel and Grassmann manifold. Manifold optimization methods form the
core of three out of the four areas of application in this work: dimensionality reduction,
improving learned feature embeddings, and network compression.

3.1 Mathematical Definitions

Prior to discussing the field of manifold optimization and our specific contributions, we
provide a review of some of the core theory. The works of [2] and [9] provide a more
detailed theoretical background on the field of optimization over matrix manifolds. We
start with the question: what are manifolds and how are they used? A d-dimensional

13

CHAPTER 3. MANIFOLD OPTIMIZATION 14

manifold is a set M that is fully covered by a set of charts that form one to one
correspondences between points in the setM and elements in the d-dimensional real
space Rd. A more formal definition is supplied in [2]. A manifoldM is a set in a
couple (M,A+) where A+ is a maximal atlas of the setM into the d-dimensional
real space Rd. An atlas A is a set of charts, (Ua, ϕa), that cover the entire manifold,⋃
a Ua = M, and overlap smoothly for any point x ∈ Ua ∩ Ub. A chart (U , ϕ) is a

bijection, one-to-one mapping, of the each of the points in the set U ∈ M to points in
the d-dimensional real space Rd. Given a chart (U , ϕ) and a point x ∈ U , the bijection
of ϕ(x) maps the point to a coordinate in the real space, ϕ(x) ∈ Rd. The manifoldM
is a smooth manifold if all charts in its atlas are infinitely differentiable over its own
set. This is why the atlas is sometimes referred to as the differentiable structure ofM.

A d-dimensional vector space v̄ with basis (v1, v2, ...vd) for i ∈ [1, ...d] is a
manifold. The manifold structure of v̄ is given by the fact that a chart ϕ exists for
the set such that all points in v̄ are mapped to Rd. This is most easily defined based
on the inverse of mapping ϕ−1 = x =

∑d
i=1 x

ivi. The manifolds formed by linear
subspaces are a special type of manifold, called a linear manifold.

It can be shown that the set of real valued matrices Rm×p form a mp-dimensional
manifold, as the column vector of the matrix are the basis for the vector space ε. A
chart for this manifold that maps from Rm×p to Rmp is defined as the vectorization
of the matrix, i.e. stacking each of the m columns of length p to form a single vector
of length mp. This manifold of real-valued matrices is an important manifold for
this work as it forms the set on which other submanifolds are defined. Another
important property of the real matrix manifold is that it forms a Euclidean space with
the traditional inner product given as 〈X,Y〉 = ϕ(X)Tϕ(Y). This inner product
can also be calculated using the trace of the transposed matrix multiplication as
〈X,Y〉 = tr(XTY). This inner product induces the traditional Frobenious norm
‖X‖2F = tr(XTX). For the remainder of this work the manifold of real valued
matrices is implied whenever we refer to the matrix manifold.

There are two categories of sub-manifolds of the real matrix manifold that are
pertinent to this work: embedded manifolds and quotient manifolds. Embedded matrix
manifolds are formulated as the subset of a set of real (m× p) matrices, Rm×p, where
1 ≤ p ≤ n, and the matrices satisfy an explicit constraint. An example of an embedded
manifold in the Rm×1, is the unit sphere Sm−1, which contains all column vectors
with unit norm i.e. if X ∈ Sm−1 then XTX = 1.

Quotient manifolds differ from embedding manifolds in that they are defined
by the set of equivalence classes of (m × p) matrices. An example of a quotient

CHAPTER 3. MANIFOLD OPTIMIZATION 15

manifold is the set of orthogonal p-dimensional subspaces in Rm, this is known
as the Grassmann manifold [44], denoted as Gm×p. The Grassmann manifold will
be discussed in more detail later in this section. However, the important takeaway
here is that if an (m × p) matrix X exists on the Grassmann manifold Gm×p, then
any matrix resulting from the right multiplication by an orthonormal (p× p) matrix
Q ∈ Op×p, exists on the same point in the Grassmann manifold. These are equivalent
representations of the point on the Grassmann manifold. It is important to highlight
the fact that because quotient manifolds represent equivalence classes, there is not
an inherent singular matrix representation of each point on the manifold. Instead,
any arbitrary matrix belonging to the given subspace on the manifold can be used
to represent the point on the manifold. The results of matrix algebra operations
performed on the representative matrix are equivalent regardless of which matrix was
selected to represent the subspace.

The first important submanifold of the matrix manifold is the Orthogonal matrix
manifold. The Orthogonal manifold Om×m is formed by the subset of real m×m
matrices that satisfy the QTQ = Im. The matrices that make up Om×m have
independent columns with unit norms.

Another important manifold is the Stiefel manifold, Sm×p. The Stiefel manifold
is an embedded submanifold in the matrix manifold Rm×p where all points on the
manifold, X ∈ Sm×p satisfy XTX = Ip. Using this definition the Stiefel manifold is
defined as an embedded submanifold in the matrix manifold which is itself an embed-
ded manifold in mp-dimensional Euclidean space Rmp. However, some embedded
manifolds can also be defined in terms of quotient spaces. The benefit to defining a
manifold as quotient spaces of well defined manifolds leads to simpler formulae for
operations on the manifold. Both Stiefel Sm×p and Grassmann manifolds Gm×p can
be defined as a quotient manifold of the Orthogonal manifold Om×m. This can be
done by representing the set of equivalency classes for Sm×p in Om×m as the set [X]
where X ∈ Om×m and Qn−p ∈ On−p×n−p then:

[X] =

(
Ip 0n−p

0p Qn−p

)
(3.1)

An equivalent expression to this equation is to say that the set of points on the orthog-
onal manifold Om×m form an equivalency class for Sm×p if their first p columns are
the same. It should be noted that we provide the quotient space definition of Stiefel
manifold for convenience to the reader, however, in the remainder of this work we will
generally refer to the Stiefel manifold as an embedded manifold in Euclidean space.

CHAPTER 3. MANIFOLD OPTIMIZATION 16

A full derivation of the operations based on the quotient space definition of the Stiefel
manifold is provided in [2, 9, 31].

The Grassmann manifold Gm×p is a quotient manifold because it defines a set of
equivalence classes, the p-dimensional subspaces in Rm. Unlike the Stiefel manifold,
a point on the Grassmann manifold can be be represented as any matrix whose columns
span the subspace. Points on the Grassmann manifold are invariant to the ordering
of the basis vectors, as long as they span the same subspace. More concretely two
(m×p) matrices X and Y represent the same point on the Grassmann manifold Gm×p
if there exists an orthogonal square matrix Q ∈ Op that satisfies X = YQ.

In the next section we provide important definitions of geometric structures and
operations on the Stiefel and Grassmann manifolds.

3.2 Manifold Operations

In this section we discuss geometries of manifolds and operations on manifolds that
are pertinent to this work. The aim of this section is to simply introduce the concepts,
but we do not provide their formal derivations.

The first important geometry of manifolds is the concept of the tangent space
of a manifold M at point Y ∈ M. In order to derive the tangent space for an
embedded submanifold of the Euclidean space, one must only take the derivative of
the constraint of the manifold. In the case of the Stiefel manifold, the equation of its
constraint is YTY = Ip, and its derivative can be calculated using the chain-rule as
YT Ẏ + ẎTY = 0p. The tangent space for the Stiefel manifold at point Y can be
defined as the set of points X that satisfy YTX + XTY = 0p.

We next define the normal space for a manifold as the space of points orthogonal
to the tangent space, that is the set of points whose inner product with all points in the
tangent space is 0. The inner product of two points in Euclidean space, X,Y ∈ Rm×p
is the Frobenius norm given as g(X,Y) = tr(XTY). The normal space of the
manifold at point Y consists of all points N that have inner product of 0 with any
element of the tangent space of the manifold at, T, tr(TTN) = 0.

One of the most important geometrical structures on manifolds is the concept of
the geodesic. The geodesic of a manifold generalizes the concept of lines in Euclidean
space, in that they represent the shortest length between two points on the manifold.
The geodesic can also be described based on its direction in the tangent space at a
given point on a manifold.

CHAPTER 3. MANIFOLD OPTIMIZATION 17

The tangent directional description of the geodesic on a manifold gives rise to the
important concept of parallel transport of vectors in tangent space of points along a
manifold. This concept follows from the idea of parallel translation of tangent space
in Euclidean space, i.e. a tangent vector is transported along a line by moving the tail
of the vector to the location on the line. However, this transport of tangent vectors
does not hold for motion along the geodesic of a manifold. A vector that exists in
the tangent space of one point on a manifold is not guaranteed to exist in the tangent
space at a different location on the geodesic. It is important to define such parallel
transport of vectors in the tangent space of a point along a geodesic, even if only for
transporting the vector defining a geodesic to the tangent spaces of the points on a
geodesic. Assuming the distance between points on the geodesic is not too large, the
parallel transport of vectors in the tangent space can be performed by orthogonally
projecting the point to the tangent space by removing the normal component of the
point using:

πT,Y (Z) = Y
1

2
(YTZ− ZTY) + (Im −YYT)Z (3.2)

Another important operation is the retraction of an arbitrary point in Euclidean
space to a location on the manifold. There are many different methods for retracting
a point on matrix manifolds [3]. In this case we use the one that minimizes the
Frobenius norm between the point Z ∈ Rm×p in Euclidean space and its retraction
rS(Z) ∈ Sm×p. This retraction can be performed through the use of the singular
value decomposition of Z = UΣVT . The retraction then takes the form:

rS(Z) = UVT (3.3)

This retraction method on the Stiefel, and inherently the Grassmann, manifold forms
the basis for much of the literature for optimization on orthogonal matrix manifolds,
where matrices are updated in unconstrained Euclidean space and then retracted back
to the manifold.

Many manifold optimization techniques rely on the computation of the Gradient
of function F (·) defined over the manifold, as ∇F . The most common method to
calculate the gradient direction of a loss function defined on a manifold is to calculate
the partial derivatives of the loss function with respect to the components of the point
Y as ∂F

∂Yi,j
where Yi,j is the (i, j) elements of the matrix representation of the point

Y. The gradient is then orthogonally projected onto the tangent space of the manifold

CHAPTER 3. MANIFOLD OPTIMIZATION 18

at Y to provide a direction in the tangent space that minimizes the function F (·) at
the point Y ∈ Sm×p as:

∇F =
∂F

∂Y
−Y(

∂F

∂Y
)TYT (3.4)

This is an important formula as it defines the direction in the tangent space at point
Y that minimizes the loss of the function F (·). Thus, assuming the loss function
is smooth, Equation (3.4) defines the loss minimizing geodesic along the manifold
emanating from point Y.

3.3 Proposed Proxy Matrix Manifold Optimization

In this section, we outline methods for iterative optimization of a function which is
defined over either a Stiefel or Grassmann manifold. Here we discuss the design
decisions made during the development of our method. We start by describing the
simplest formulation and grow its complexity in order to improve its robustness and
convergence. We first describe One-Step retraction, which is simple to implement
but does not have a theoretical proof of convergence. We then describe the Two-
Step retraction method, which does have a theoretical proof of convergence. Finally
we outline our proposed proxy matrix manifold optimization method. All of these
methods are implemented using Stochastic Gradient Descent due to its demonstrated
history of robust optimization.

The aim of both the One-Step and Two-Step iterative optimization methods is to
find a solution, X∗ for the following problem:

X∗ = arg min
X∈Gm×p

F (X) (3.5)

Where F (X) is some scalar loss function for the point X ∈ Gm×p.

3.3.1 One-Step iterative manifold optimization

Let us begin with the simplest of the methods for iterative manifold optimization,
One-Step retraction, a method based on a concept originally developed in [7]. A
visual representation of the One-Step retraction method is shown in Figure 3.1. The
core concept of the One-Step retraction method is the idea that any arbitrary point
in Rm×p can be retracted to the closest point on the manifold using Equation (3.3).

CHAPTER 3. MANIFOLD OPTIMIZATION 19

Figure 3.1: Visual depiction of the One-Step retraction process. The point is first
updated based on the gradients calculated through backpropagation. Then the point is
retracted directly to the closest point on the manifold. This process is repeated until
some stopping criteria is met.

The first step in the iterative process is to retract an initial point in ambient Euclidean
space, Rm×p, to the manifold using Equation (3.3). Once the point is on the manifold,
the gradient of Ri are calculated and used to update Ri, shown as ∇Yi. This step
will likely take the point out of the manifold, thus it must be retracted again to the
manifold using Equation (3.3). Once the point is returned to the manifold, the process
is repeated until a desired stopping criteria is met. In our implementation we ran for a
set number of iterations with a decreasing learning rate to ensure relative convergence.
We algorithm for the One-Step manifold optimization method is provided in Algorithm
1 . Though this method is easy to implement and in practice it does converge, there is
no convergence proof, as the point’s direct retraction is not guaranteed to fall on the
geodesic defined by the direction of the projection of the gradients to the tangent space.
We will highlight the reason for the lack of provable convergence for this method next,
when we discuss the convergence proof of the Two-Step projection then retraction
method.

CHAPTER 3. MANIFOLD OPTIMIZATION 20

Data: X
Result: Locally Optimal R for fX

initialize R ∈ Gm×p;
for i > iter do

Yi = fX(Ri); /* Calculate loss for Ri */
Zi+1 = Ri − β∇Yi; /* Calculate update Zi+1 */
USVT = Zi+i; /* Retract Zi+1 to Gm×p */
Ri+1 = UVT ; /* Set Ri+1 to retracted Zi+1 */

end
Algorithm 1: One-Step iterative Grassmann manifold optimization algorithm

3.3.2 Two-step iterative manifold optimization

The Two-Step projection retraction method is a modification on the One-Step retraction
method that guarantees convergence. A visual depiction of this method is shown in
Figure 3.2. Like the One-Step retraction method, the Two-Step method relies on
retraction of the gradients in the ambient Euclidean space to the manifold. However,
unlike the One-Step, the gradients are first orthogonally projected to the local tangent
space of the manifold TRi , shown as the green plane in Figure 3.2. Then retraction to
the manifold is performed on the projection of the gradients to the tangent space. This
Two-Step procedure is performed to ensure convergence to a minimum of the loss
function. The algorithm for the Two-Step manifold optimization method is provided
in Algorithm 2

The Two-Step method is guaranteed to converge based on the following. The first
important fact is that the gradients calculated in Euclidean space can be decomposed
into two components: the first component captures gradients corresponding to the
normal space to the manifold, and the second corresponds the to tangential space to
the manifold. Therefore, the gradients can be projected onto the tangent space of the
manifold using Equation (3.2). It is important to note that because the tangential and
normal components of the gradients are orthogonal, removing one will not impact
the other. Because, by definition, the gradients are along the direction that minimizes
the loss in ambient Euclidean space, if any tangential component of the gradients
exist, they indicate a loss minimizing direction on their own. By removing just the
normal components of the gradients, the projection of the gradient indicates a loss
minimizing direction in the tangent space based on the loss minimizing direction in
the ambient space. Once the gradients are projected to the tangent space, generating
a loss reducing direction, the gradients can be retracted to the manifold, with the
guarantee that the closest point on the manifold will lay on the loss-reducing geodesic
described by the current location on the manifold and the projected gradients on the
tangent space, presuming the step is not too large.

CHAPTER 3. MANIFOLD OPTIMIZATION 21

Figure 3.2: Visual depiction of the Two-Step retraction process. The point is first
updated based on the gradients calculated through backpropagation. Then the point
is first projected to the tangent-space (green plane) at Ri using Equation (3.2), the
projection is shown as the dotted blue line. Then the point is retracted from the
tangent space to the closest point on the manifold using Equation (3.3). This process
is repeated until some stopping criteria is met.

Unlike the One-Step retraction approach, the Two-Step method is guaranteed
to converge because the retraction of the projected gradients is guaranteed to lay
on the loss minimizing geodesic. Though it is likely that the updated locations on
the manifold resulting from each method are quite similar, there is no guarantee of
convergence if the normal components of the gradients are not first removed prior to
retraction.

CHAPTER 3. MANIFOLD OPTIMIZATION 22

Data: X
Result: Locally Optimal R for fX

initialize R ∈ Gm×p;
for i > iter do

Yi = fX(Ri); /* Calculate loss for Ri */
; /* Project gradients to tangent space */

πT
(
β∇Yi

)
= Ri

1
2

(
Ri

T (β∇Yi)− (β∇Yi)TRi

)
+
(
Im−RiRi

T
)
(β∇Yi);

; /* Retract from tangent space to Gm×p */
USVT = πT

(
β∇Yi

)
;

r
(
πT
(
β∇Yi

))
= UVT ;

Ri+1 = Ri − r
(
πT
(
β∇Yi

))
; /* Update R */

end
Algorithm 2: Two-step iterative Grassmann manifold optimization algorithm

3.3.3 Proxy Matrix Optimization

We now present one of the key contributions of this work, the Proxy Matrix Optimiza-
tion (PMO) for optimization over orthogonal matrix manifolds. We first provide the
formulation for PMO, and then prove that PMO converges to a minimum for the loss
function. After the proof of convergence, we highlight the differences between the
Two-Step method and PMO, and derive the computational complexity. Following our
complexity derivation, we provide some experimental results and discussion which
highlight the difference between the iterative manifold optimization method discussed
in this chapter.

In PMO the approach to optimization is flipped from the intuitive two-step ap-
proach. Instead of restricting the search to the local region of the manifold, PMO
optimizes in ambient space such that each update moves the point in a direction that
its mapping to the manifold reduces the loss. More formally the optimization problem
in PMO is to find the optimal X∗ by solving:

X∗ arg min
X∈Rm×p

F (UVT) (3.6)

Subject to:
X = UΣVT (3.7)

Where X = UΣVT is the singular value decomposition of X.
This formulation of the manifold optimization alters the problem so that the point

being optimized is not restricted to the manifold. In the Two-Step optimization method
this restriction is enforced by projecting the ambient gradients to the tangent space,

CHAPTER 3. MANIFOLD OPTIMIZATION 23

then retracting to the manifold. The PMO method embeds the manifold retraction
inside the optimization function, instead of performing retraction after optimization.
Therefore the optimizer is no longer limited in the degree that it can move at each step.
The Two-Step method requires that the point remains in the region of the manifold
where the tangent-space is still applicable. This restriction is to ensure the retraction
to the manifold will be along the geodesic described by the projection of the ambient
gradients at the current location. This unconstrained optimization allows for greater
steps in ambient space, and therefore faster convergence and a lower likelihood of
being stuck at local minima.

It is important to point out the difference between the gradients resulting from
optimizing the Two-Step formulation, Equation (3.5), and the gradients resulting
from optimizing the PMO formulation, Equation (3.6). The Two-Step gradients,
once projected to the tangent space of the manifold, represent the direction along
the manifold that minimizes the loss. The PMO gradients represent the unrestricted
direction in Rm×p that will minimize the loss of direct retraction of the point X to the
manifold. A visual representation of the PMO method is given in Figure 3.3.

Unlike other iterative optimization and retraction methods, the Proxy Matrix
Optimization method does not aim to directly optimize a matrix on the manifold.
Instead PMO uses an auxiliary, or Proxy Matrix, that exists in the ambient Euclidean
space and is retracted the closest location on the manifold using Equation (3.3). We
depict the PMO process in Figure 3.3, and present the algorithm for PMO in Algorithm
3. The first step in the PMO process is to retract the proxy matrix, Pi to its closest
location on the manifold, Yi. Once the proxy matrix is retracted to the manifold, the
loss is calculated based on the loss function at Yi. This loss is then backpropagated
through the singular value decomposition of proxy matrix using a method developed
by [66]. Unlike backpropagation through standard layers of neural networks, such as
convolution and fully connected layers, backpropagation through structured layers is
significantly more complex.

CHAPTER 3. MANIFOLD OPTIMIZATION 24

Figure 3.3: Visual depiction of the Proxy Matrix Optimization process. The proxy
matrix, Pi, is first retracted to the manifold using Equation (3.3). Then the gradients
∇R(Pi) in ambient space, to move the proxy matrix in a direction that minimize the
loss of its retraction. These gradients are used to move the proxy matrix in Euclidean
space in the direction that minimizes the loss.

Data: X
Result: Locally Optimal P such that r

(
Pi

)
minimizes the loss fX

initialize P ∈ Rm×p and P /∈ Gm×p;
for i > iter do

USVT = Pi; /* Retract Pi to Gm×p */
r
(
Pi

)
= UVT ;

∇r
(
Pi

)
= δ

δPi
fX

(
r
(
Pi

))
; /* Calculate gradients for Pi

*/
Pi+1 = Pi − β∇r

(
Pi

)
; /* Update P */

end
Algorithm 3: Proxy-Matrix iterative Grassmann manifold optimization algorithm.

The formulation for calculating the partial derivatives through SVD was only
recently proposed by Ionescu et al. in [66]. We will provide a brief description of the
formulation for backpropagation through SVD, but a full derivation is provided in [66].
That work combines the concept of a variation, from the field of calculus of variations,
with partial derivatives using Taylor expansion, where the variation of the function
f(·), which takes as input the matrix X and outputs a matrix Y as f(X) = Y, is

CHAPTER 3. MANIFOLD OPTIMIZATION 25

given as:
dY = df(X; dX) = f(X + dX)− f(X) (3.8)

The chain rule can then be derived by forcing the first order terms from the Taylor
expansion of both sides to match:

∂L ◦ f
∂X

: dX =
∂L

∂Y
: dY (3.9)

Where L is a function that maps to real numbers and A : B = tr
(
ATB

)
. Ionescu

et al. use this identity to derive the expression of the partial derivative that we are
interested in ∂L◦f

∂X as a function of the right hand side. To do this they use a two-step
procedure: They first derive the variations dY, with respect to the variations of the
inputs, using the identity in Equation (3.8). Then, given dY, the chain rule can be
used, based on the identity in Equation (3.9), to obtain the partial derivatives of the
loss with respect to X.

For completeness we provide the derived equation for backpropagation of the loss
to calculate the partial derivatives of the loss with respect to the proxy matrix P as
derived by Ionescu et al.

∂F

∂P
= DVT+U

(
−UTD

)
diag

VT+2UΣ

(
KT ◦

(
VT
(∂F
∂V
−VDTUΣ

)))
sym

VT

(3.10)
where Asym is the symmetric part of matrix A given as Asym = 1

2(AT + A), and
Adiag the diagonalization operator on A, where all of elements on the main diagonal
are the same as A and all elements off the main diagonal are set to 0. More formally
the elements of Adiag are given as:

Ai,j =

{
Ai,j , i = j

0, i 6= j
(3.11)

The formulation for the matrix D is given as:

D =
(∂F
∂U

)
1
Σ−1
n −U2

(∂F
∂U

)T
2
U1Σ

−1
n (3.12)

The elements of the matrix K are given as:

Ki,j =

{
1

Σ2
ii−Σ2

jj
, i 6= j

0, i = j
(3.13)

CHAPTER 3. MANIFOLD OPTIMIZATION 26

where Σii is the (i, i) element of the matrix Σ.
It is important to note that because the retracted point on the manifold does not

depend on the matrix Σ, the partial of the loss with respect to the proxy matrix does
not have any component associated with the partial of the loss with respect to Σ.

We now provide a theoretical proof that PMO converges to a minimum. Unlike
the proof of convergence for the Two-Step solution, the proof of convergence of PMO
is comparably straight forward. Because the invariant of U and V is preserved in the
variations dU and dV, namely that they satisfy the orthogonality constraints:

UTdU + dUTU = 0 (3.14)

and:
VTdV + dVTV = 0 (3.15)

Then it follows that the update of the gradient of X is the direction that minimizes
the loss function based on maintaining the invariants of U and V. Because of the
retraction to the manifold, Equation (3.3), is embedded in the loss function, Equation
(3.6), the gradient of the loss function will move X in the direction that minimizes the
loss, assuming the step size is not too large.

3.4 Experimental Results

In this section we present our experimental results comparing the iterative manifold
optimization techniques based on Stochastic Gradient Descent. The proposed PMO
method is used heavily throughout the remainder of this work, so the aim of this
section is to highlight its improvement over current manifold optimization methods
based on SGD. We focus on the Two-Step and PMO methods as they have theoretical
guarantees of convergence, where as the One-Step method does not.

3.4.1 Learning Rate Convergence Analysis

The first step in our examination of the behavior of the Two-Step and PMO manifold
optimization methods is explore the impact different learning rates have on conver-
gence. This step is important for ensuring the optimal convergence behavior with the
fewest number of iterations. This is particularly true for the Two-Step method, as it
relies on the on the assumption that the retraction of the projected point on the tangent
plane falling on the geodesic of the gradient. If the update step is too large for the

CHAPTER 3. MANIFOLD OPTIMIZATION 27

Two-Step method the retraction from the tangent space may not fall on the geodesic,
leading to divergent behavior.

In order to explore the behaviors of the Two-Step and PMO methods we ran
multiple sets of experiments with different loss functions and varied the learning
rate for each optimizer. Though the differences between the Two-Step and PMO
methods were very pronounced, we found that each method behaved consistently
across the different loss functions. This suggests that a single learning rate can be
used irrespective of changes in the function that is optimized. Though we did find
it is important to normalize the loss function so that the magnitude of the loss is of
the same scale. In our work we found that normalizing the magnitudes of the loss so
that it was in the range of ±1.0 worked well, and alleviated the need for finding new
learning rates for different loss functions.

To highlight the behavior the two methods with different loss functions we selected
the L1-PCA problem as an example optimization problem. The details of L1-PCA
and the dataset are highlighted in Chapter 4 but all of the various losses we used
demonstrated similar behavior for the different learning rates. For these experiments
we extracted the top 10 principal components from a dataset consisting of 400 25-
dimensional vectors. In all of these experiments we use a learning rate schedule that
reduced the learning rate by an order of magnitude at 50% and again at 75% through
training. We provide example plots of the loss over the course of training with the
Two-Step and PMO methods in Figures 3.4 and 3.5, respectively.

The plot in Figure 3.4 shows the significant impact the learning rate has on the
Two-Step method. If the learning rate is too-high the optimizer takes excessively large
steps and fails to converge, depicted by the Red and Blue plots in Figure 3.4. This
verifies a key requirement in the proof of convergence for the Two-Step method: the
step size must be small enough that the update is in the local region of the manifold
where the tangent space is still representative. However, if the loss function is too
small the optimizer will fail to converge to the global minimum, depicted by the Black
plot in Figure 3.4. We found that a learning rate of 0.1 generally assured convergence
to the global minimum, shown as the green plot in Figure 3.4.

There is a drawback to using lower learning rates for the Two-Step method:
very slow convergence. The Two-Step method with a learning rate of 0.1 took over
3000 epochs to plateau. An interesting behavior that can be seen from the Blue plot
(learning rate of 1.0) in Figure 3.4 is that even though the learning rate is too large
for convergence, the optimizer is pushed in the direction of the minima and therefore
converges faster once the learning rate is reduced. We decided to leverage this behavior

CHAPTER 3. MANIFOLD OPTIMIZATION 28

Figure 3.4: Example behavior of the loss when varying the learning rate using the
Two-Step retraction method. The learning rates used were: Red 10.0, Blue 1.0, Green
0.1, Black 0.01.

to accelerate the convergence of the Two-Step method using a customized learning rate
schedule. We initially train with a high learning rate of 1.0 for the first 5% of training,
then the learning rate is reduced by an order of magnitude at 60% and 85% through
training. We found that this configuration allowed for the optimal convergence of
the Two-Step method. Even with the optimized learning rate schedule, the Two-step
method often takes over 2000 epochs to converge.

The behavior of the Proxy-Matrix Optimizer with various learning rates is plotted
in Figure 3.5. It should be noted that the scale of the horizontal axis in Figure 3.5 is
an order of magnitude smaller than that in Figure 3.4. The first observation that is
striking from the plot is the quick convergence of all methods, where all are reaching
a plateau before 400 epochs. It is hard to visually see the differences between the
different learning rates but we found slight numerical differences in the final results
for each learning rate. Our experiments show that a learning rate above 100.0, Blue in
figure, did not allow the network the converge to a constant solution. A learning rate
of 1.0, Black in figure, had slower convergence. We therefore selected a learning rate
of 10.0 for the Proxy-Matrix Optimization method. As was done with the Two-Step

CHAPTER 3. MANIFOLD OPTIMIZATION 29

Figure 3.5: Example behavior of the loss when varying the learning rate using the
Proxy-Matrix method. The learning rate was reduced by an order of magnitude at
50% and again at 75% through training.The learning rates used were: Red 1000.0,
Blue 100.0, Green 10.0, Black 1.0.

method, we designed a learning rate schedule for PMO to accelerate convergence
based on the behavior of demonstrated in the Figure 3.5. We found that PMO tends to
make the majority of the reduction to the optimization loss with the largest learning
rate, and only needs the learning rate to be reduced to minimize oscillation. Therefore
we settled on a learning rate schedule for PMO where the learning rate was reduced
by an order of magnitude at 80% and 90% through training.

3.4.2 Number of Iterations for Convergence

We next investigate how many epochs are required to train both the Two-Step and PMO
methods until they converge to the global minima. We performed these experiments

CHAPTER 3. MANIFOLD OPTIMIZATION 30

with various loss functions, however we will provide only a few informative results
for the reprojection loss formulation of PCA with various norms. The utility of such
optimization problems is discussed in Chapter 4.

In order to demonstrate the consistent improved convergences of the Proxy-Matrix
method, we plot the convergence plots for optimization of three different variants of
PCA in Figures 3.8, 3.7, and 3.6, where the L0.5 L1 and L2 norms are optimized,
respectively. To do this we trained each optimizer for a wide range of iterations, from
1 to 10000, and report the final reprojection accuracy they achieved relative to the
optimal solution. For all experiments in this section the customized learning rate
schedules were used for both methods.

101 102 103 104
0

0.2

0.4

0.6

0.8

1

Epochs

C
on

ve
rg

en
ce

R
at

io

Two-Step
Proxy-Matrix

Figure 3.6: Convergence plot of Two-Step and Proxy Matrix methods, Blue and Red
plots respectively, for L2-PCA.

The PMO method demonstrates consistent convergence behavior and generally
converges orders of magnitude faster than the Two-Step method. The faster con-
vergence is important because it means PMO requires significantly fewer iterations
without any loss in accuracy. The smooth degradation is also a favorable behavior,
because it means that the accuracy of the result will be affected predictably if the
number of iterations are reduced in order to accelerate the algorithm.

CHAPTER 3. MANIFOLD OPTIMIZATION 31

101 102 103 104

0.4

0.6

0.8

1

Epochs

C
on

ve
rg

en
ce

R
at

io

Two-Step
Proxy-Matrix

Figure 3.7: Convergence plot of Two-Step and Proxy Matrix methods, Blue and Red
plots respectively, for L1-PCA. (Note the horizontal axis is in log-scale.)

101 102 103 104
0.5

0.6

0.7

0.8

0.9

1

Epochs

C
on

ve
rg

en
ce

R
at

io

Two-Step
Proxy-Matrix

Figure 3.8: Convergence plot of Two-Step and Proxy Matrix methods, Blue and Red
plots respectively, for L0.5-PCA. (Note the horizontal axis is in log-scale.)

CHAPTER 3. MANIFOLD OPTIMIZATION 32

3.5 Implementation Details

We present a neural network-based implementation of Grassmann manifold optimiza-
tion for dimensionality reduction based on our initial work in [102]. Many methods
exist for optimization over the Grassmann manifold, but many have drawbacks in-
cluding lack of flexibility or slow convergence. Many other methods for Grassmann
manifold optimization require the partial derivative of the loss function either be
explicitly provided or solved for using suboptimal numerical differentiation. These
requirements limit the flexibility of the optimizer to be used for various loss functions.
In contrast, our method leverages the auto-differentiation methods supplied in the
PyTorch Deep Learning framework [108] to automatically calculate the gradients
of the loss functions, allowing for much greater flexibility. The proposed approach
leverages the PyTorch framework by reformulating the Grassmann manifold opti-
mization problem into a neural network architecture. Our initial work in the field
of manifold optimization was an implementation of the One-Step retraction method
using TensorFlow Deep Learning framework [1] proposed GM-PCA method [102].
The GM-PCA method was based on the One-Step optimization method, so it did not
have a theoretical proof of convergence, however we found experimental that it almost
always did converge.

Since then, we reformulated our method into the Proxy-Matrix Optimization
technique that proved to be greatly superior to our initial One-Step method. For
PMO we have changed our deep learning framework to PyTorch [108], because
of its increased flexibility. Another important factor in the framework change was
that PyTorch provided a built in implementation for backpropgation through SVD.
Backpropagation with Gradient Descent, and the mini-batch variant of Stochastic
Gradient Descent, are the most widely used optimization methods in the field of
deep learning. The robustness of SGD is primarily due to its ability to optimize over
a large dataset and thus escape the local minima that can trap other optimization
techniques [10].

Chapter 4

Dimensonality Reduction

Linear Dimensionality Reduction (LDR) is a broad range of methods which are
widely used throughout the fields of machine learning and signal processing. Broadly
speaking all LDR methods share a common goal, learning a low dimensional subspace
that better captures the structure of the data. Different LDR methods focus on capturing
different structures or features in the low dimensional representation of the data. In
this section we discuss various LDR methods and how they can be reformulated to
fit in a unified LDR framework which uses our proposed Proxy Matrix Optimization
method.

4.1 Background

Linear Dimensionality Reduction methods are commonly used by many machine
learning and signal processing methods to both reduce the processing time and extract
the nominal data from noisy signals in high-dimensional data. Of particular interest
in this dissertation is the application of different LDR methods to computer vision
problems. Each LDR method has a unique optimization objective, fX(R), based on
the desired structure they aim to preserve or enhance in the low dimensional space.
This optimization objective is used to search for a projection matrix R ∈ Rn×p
which projects n-dimensional input data to a lower p-dimensional space such that
it minimizes the objective loss. The input data is stored in an (m× n)-dimensional
matrix, X = [x1, ...x1]T , whose m rows hold the n-dimensional data vectors. Thus
projection of high-dimensional data, X, to the low-dimensional space performed using

33

CHAPTER 4. DIMENSONALITY REDUCTION 34

to the projection matrix, R, is given as:

Y = XR (4.1)

Where Y is the low-dimensional representation of the data, with dimensions (m× p).
Some dimensionality reduction methods focus on optimizing projection matrix based
on the low dimensionality representation, Y. Others reproject the low-dimensional
data back to the high-dimensional space using the following:

Ẋ = YRT = XRRT (4.2)

This reprojection is often performed when the objective focuses on learning a repre-
sentation of the data that is similar to the original input data.

For most LDR methods the projection matrix is often constrained to be an or-
thonormal matrix, i.e. it satisfies RTR = Ip where Ip is the (p×p) identity matrix. If
the matrix R conforms to this constraint, its columns are orthogonal basis vectors. The
set of all orthogonal matrices belonging to Rn×p is the well-studied Grassmann Mani-
fold Gn×p discussed in Chapter 3. It therefore follows that the general dimensionality
reduction optimization problem can be given as:

R∗ = arg min
R∈Gn×p

fX(R) (4.3)

The field of linear dimensionality reduction is broad, and includes a huge variety
of methods, each aimed at solving a particular problem with a unique optimization
formulation. In this section, we present Linear Dimensionality Reduction methods
that are pertinent to this work. We aim to provide both the theoretical basis for each
method, as well as the formulation for their optimization objective based on Equation
(4.3).

4.1.1 Grassmann Optimization for Linear Dimensionality Reduction

In [20], Cunningham and Ghahrammani reformulate Linear Dimensionality Reduction
problems as variants of Grassmann manifold optimization with different loss functions.
The authors demonstrate that, though particular heuristic optimal approaches may
exist, identical results can be achieved by their Grassmann optimization approach.
The heuristic approaches are sometimes more efficient, but they may not always be
optimal. The benefit to a manifold optimization approach is two-fold: Firstly, it means
that a single optimization framework can be used for a large number of LDR problems.

CHAPTER 4. DIMENSONALITY REDUCTION 35

Secondly the Grassmann manifold optimization approach finds all components of the
projection simultaneously.

Instead of the greedy approach that is typically taken for problems such as PCA,
the authors propose an iterative two-step approach to optimization on the Grassmann
manifold, outlined in Section 3.3.2. The first step minimizes the loss function, and the
second step retracts the updated projection matrix R back to the Grassmann manifold.
This work demonstrated that though it may not be the most efficient method for
L2-PCA, identical results to the traditional decomposition methods can be achieved
with manifold optimization techniques. They went on to show that indeed greedy
decomposition methods which are commonly used on similar dimensionality reduction
methods are sub-optimal for the Linear Discriminant Analysis (LDA) problem.

This approach to Linear Dimensionality Reduction based on optimization on the
Grassmann manifold serves as the inspiration for much of our work in the field of
LDR using our proposed PMO manifold optimization technique.

4.1.2 L2-norm Based PCA

A great deal of work has been done on L2-norm based PCA methods [30, 110]. The
L2 variant of PCA is widely used because there is an efficient solution that is proven to
be optimal. There are three equivalent formulations for L2-PCA optimization fX(R),
given in Equations (4.4), (4.5), and (4.6).

The goal of the first optimization formulation of L2-PCA, Equation (4.4), is to
learn an orthogonal projection, R, of a low-dimensional surrogate of the data, S,
such that the maximum amount of information in X is retained in S. Where X is the
(m× n) matrix composed m data n-dimensional samples, R is a (n× p) orthogonal
projection matrix, and S is a (m×p) matrix composed of the p-dimensional surrogates
of the m data samples. This can be represented similarly as a by replacing S using
Equation (4.1), S = XR, resulting in an equivalent optimization problem, Equation
(4.5). These two formulations are often referred to as reprojection error minimization
problems.

There is a third formulation of the L2-PCA optimization that results from prop-
erties of the L2-norm and aims to maximize the energy of the data in the projection
space, given in Equation (4.6). The third formulation is the most commonly used
today because it has an efficient solution that can be obtained in quadratic time by de-
composing the covariance matrix of the input data, XTX, and taking the eigenvectors
corresponding to the K highest eigenvalues.

CHAPTER 4. DIMENSONALITY REDUCTION 36

{R∗,S∗} = arg min
R∈Gn×p,S

(‖X− SRT ‖22) (4.4)

R∗ = arg min
R∈Gn×p

(‖X−XRRT ‖22) (4.5)

R∗ = arg max
R∈Gn×p

(‖XR‖22) (4.6)

4.1.3 L1-norm Based PCA Background

L2-PCA is commonly used in many applications, but it is sensitive to outliers in the
dataset [77]. If the data contain outliers from a significantly different distribution,
the noise has a destructive impact on the principal components. This effect is more
apparent in the case of the L2-PCA because of the squared magnitude in the L2-Norm,
as explained in [14].

One approach to minimizing the impact of outlying data points is to replace the
L2-Norm with the L1-Norm when calculating the principal components (PCs). The
drawback to using the L1-Norm is that the reprojection theorem does not hold under
the L1-Norm, thus the Singular Value Decomposition (SVD) method used for the
L2 norm can no longer be applied. Additionally, the three corollary L1 optimization
problems, Equations (4.7), (4.8), and (4.9), are no longer equivalent. Focus has
primarily been on two of the formulations: reprojection error minimization, Equation
(4.8), and projection energy maximization, Equation (4.9).

{R∗,S∗} = arg min
R∈Gn×p,S

(‖X− SRT ‖1) (4.7)

R∗ = arg min
R∈Gn×p

(‖X−XRRT ‖1) (4.8)

R∗ = arg max
R∈Gn×p

(‖XR‖1) (4.9)

It is not known which optimization formulation is best suited for L1-PCA. One
of the advantages of our approach is that it can be used with either of the above
loss functions. Some works have focused on minimizing the reprojection error in
Equation (4.8), for example [12, 13, 70, 71]. However, due to the non-smooth error
surface, an optimal solution has not yet been developed. The L1 energy maximization
formulation, Equation (4.9), has been demonstrated to be more tractable. Two optimal

CHAPTER 4. DIMENSONALITY REDUCTION 37

solutions have been developed in [96, 97] with computational complexity O(2NK)
and O(N rank(X)K−K+1), respectively, where N is the number of data points. More
recently a sub-optimal but more efficient method for L1-PCA was proposed in [98].
Markopoulos et al. develop a method which greedily searches for each L1 principal
component using bit flipping to find the components that maximize the projection
energy.

4.1.4 Lp-Norm Based PCA

The concept of energy maximization in the low-dimensional space was generalized
from the L1 and L2 norms to the more general Lp-norm. The equation for the Lp-norm
of the n-dimensional vector x is given as:

‖x‖PP =
n∑
i=0

|xi|P (4.10)

Where | · | is the absolute value function, and p is an arbitrary real value greater than
zero. The optimization problem for energy maximization based Lp-PCA is:

R∗ = arg max
R∈Gn×p

(‖XR‖PP) (4.11)

In [78] Kwak suggests that the use of fractional Lp-norms allows PCA to better fit
datasets that are non-Gaussian distribution. Kwak proposed a solution for Lp-norm
PCA based on a greedy component by component search using either Gradient ascent
or Lagrangian multiplier methods. Their results demonstrate that for some datasets
the components extracted using P < 1.0 work best, however they also demonstrate
how the error surface is highly non-convex when p < 1.0. Therefore, they suggest
that optimizing for lower values of p may not always converge.

4.1.5 Linear Discriminant Analysis

Fisher’s Linear Discriminant Analysis (LDA) [8,33,36,113] is a popular LDR method
that uses class labels to find the projection which minimizes the covariance between
samples from the same class, ΣW , while maximizes the covariance of samples from
different classes, ΣB . The intra-class, within-class, variance is given as:

ΣW =
n∑
i=0

(xi − µci)(xi − µci)T (4.12)

CHAPTER 4. DIMENSONALITY REDUCTION 38

The inter-class, between-class, covariance is given as:

ΣB =

n∑
i=0

(µci−µ)(µci − µ)T (4.13)

Where µ is the mean for all of the data, and µci is the mean of the class that the
ith sample belongs to. If the data is already zeros-mean prior to preforming LDA,
Equation (4.13) simplifies to:

ΣB =
n∑
i=0

µciµ
T
ci (4.14)

The loss function formulation of the LDA optimization objective is given as:

R∗ = arg max
R∈Gn×p

(
tr
(
RTΣBR

)
tr
(
RTΣWR

)) (4.15)

Where is tr(·) is the matrix trace operator, which sums the elements on the main
diagonal of the matrix.

Cunningham and Ghahramani [20] highlight an important error in a commonly
used formulation of LDA, which uses the a greedy eigenvector decomposition of
ΣW

TΣB. The authors point out that this solution minimizes the following equation,
which is related to but not the actual optimization objective of LDA.

R∗ = arg max
R∈Gn×p

(
tr

((
RTΣWR

)−1(
RTΣBR

)))
(4.16)

The difference between the optimization objective in Equation (4.15) and Equation
4.16, is the difference between minimizing the quotient of the traces, the correct
objective, and minimizing the trace of the quotients, the incorrect objective. This
difference is further discussed in [127, 156].

4.2 Dimensionality Reduction Using Proxy-Matrix Optimiza-
tion

In this work we apply the Proxy Matrix Optimization methods to the problem of
Linear Dimensional Reduction. At its core, PMO is a neural network-based imple-
mentation of Grassmann manifold optimization for dimensionality reduction. This

CHAPTER 4. DIMENSONALITY REDUCTION 39

method was inspired by our work in [102], however, the method was reformulated to
accelerate convergence to the optimal solution. This approach is based on the iterative
Grassmann manifold optimization approach to dimensionality reduction originally pre-
sented in [20]. Cunningham and Ghahramani present a method to optimize the entire
projection matrix Rk×n simultaneously using an iterative approach of a line-search
optimization technique and Grassmann manifold retraction step. This approach was
highly influential for the development of the proposed work, but had several drawbacks
including lack of flexibility due to it requiring the partial derivative of the loss function
either be explicitly provided or solved for using suboptimal numerical differentiation.
In contrast, the PMO method leverages the auto differentiation methods supplied in
the PyTorch Deep Learning framework [108] to automatically calculate the gradients
of the loss functions, allowing for much greater flexibility.

One of the key benefits of the neural network based approach of the PMO over
other LDR methods is its flexibility. Proxy Matrix Optimization can be used for any
LDR method, as long as the projection matrix is required to be orthogonal. The only
other requirement is that the LDR method’s optimization objective can be formulated
as a loss function that can be implemented in the PyTorch framework, which is often
relatively straight forward. In this section we highlight some specific details for a
handful of example LDR methods implemented using PMO. However, these method
just serve as some key examples, and do not exhaust the full variety of LDR methods
that can be implemented using PMO.

4.2.1 Lp-PCA

In this section we formulate our PCA method for the general Lp-norm, where if
p = 2 the problem is the special case of L2-PCA and if p = 1 the problem is the
L1-PCA. This is the first time the behavior of the reprojection minimization and the
projection maximization formulations of PCA could be directly compared for cases
where p 6= 2. Previously most works on PCA that were based on non-L2 norms
have focused on the projections maximization, due to its improved tractability. We
hope that by providing a direct comparison we gain insight into the behaviors of each
formulation and encourage future work on the reprojection formulation.

We also note that we scale the loss for each problem by the norm of the input data
‖X‖PP so that the same learning rate can be used regardless of the magnitudes of the
values in the input or number of samples. Because the scaling factor is constant, it can
be precomputed and does not impact the geometry of the error surface. It only affects

CHAPTER 4. DIMENSONALITY REDUCTION 40

the magnitudes of the gradients.
We implement the reprojection error minimization formulation for general Lp-

PCA as:

R∗ = arg min
R

(
1

‖X‖PP
‖X−XRRT ‖PP

)
(4.17)

The projection maximization is implemented in a similar fashion, however the norm is
negated so that it can be treated as a a minimization problem. This was done because
all optimizers in PyTorch are implemented for minimization. Thus, the loss function
we use for the projection maximization problem is given as:

R∗ = arg min
R

(
− 1

‖X‖PP
‖XR‖PP

)
(4.18)

By formulating our two loss functions for PCA in the more general Lp-norm
manner we have the flexibly to explore the impact of different Lp-norms for PCA and
instigate their impact on robustness to outliers. Previously the area of Lp-norm PCA
has been under-explored because of the lack of flexibility, computational complexity,
and instability of many solutions to the general Lp-PCA problem. In Section 4.3 we
perform these experiments on multiple datasets.

4.2.2 Weighted Contribution PCA

The main motivation for using Lp-norms is that it has been shown that when p < 2 the
components extracted using Lp-PCA are more robust to outliers [78]. As previously
discussed this improved robustness is due to the lower impact on the loss when the
norm is raised to a power less than 2.0. In this section we propose a new method for
outlier robustness based on the concept of explicitly weighting the contribution of the
loss of each point based on how well it fits our model for the data. We call this method
Weighted contribution PCA (W-PCA).

There has been limited work in this area in the past. Some related works [5,23,143]
aimed to learn a combination of a weighting matrix W in combination with the
projection R with the goal of performing PCA on data with lost or corrupted samples.
These works used an Expectation-Maximization approach to finding a solution for
a W and R and were only focused on L2-PCA. A key difference between these
previous works is not only that they optimize W along with R, but also that the
weights for each entry of Wi,j were specific to each dimension of each input. In this

CHAPTER 4. DIMENSONALITY REDUCTION 41

work we fix W based some precomputed metric, and equally scale the contribution of
all dimensions for each data point.

Our formulation for the Reprojection minimization variant of W-PCA is then
given as:

arg min
R

(
1

‖X‖PP
‖X−XRRT ‖PP

)
(4.19)

The projection maximization optimization objective is given as:

arg min
R

(
− 1

‖X‖PP
‖XR‖PP

)
(4.20)

Where W (Xi) is the weighted calculated by some weighting function for the input
data point Xi.

The exact weighting function used in W-PCA can be any arbitrary function that
produces a real valued scalar based on a n-dimensional vector input. In this work we
implement weighting function W ()̇ based on the distance of each the datapoint to the
median of the dataset. Our weighting metric is given as:

W (Xi) =
n∑n

j=0 ‖Xj − X̃‖PP
‖Xi − X̃‖PP (4.21)

Where row vector corresponding to the ith data point, and X̃ n-dimensional vector
containing the median value for each dimension of all the data points.

We choose this simple weighting function because it does not impose to constraint
of prior knowledge about the data. However, if more information about the data is
known, a data specific metric could be used. One potential example is that if the data
is know to come from a Gaussian distribution, then a Gaussian distribution could be
fit to the data. With the weight for each data point would be the probability density
sampled at the location corresponding to the data point.

4.3 Experiments

In this section we outline our experimental results using our proposed PMO Grassmann
manifold Optimization framework for dimensionality reduction. We first present the
results from a series of experiments performed on an artificially generated dataset, we
call the Synthetic-Dataset. The Synthetic-Dataset is a collection of multiple sample

CHAPTER 4. DIMENSONALITY REDUCTION 42

sets, each consisting of a training set with 500 samples and a test set with 100 samples.
The data in both sets are samples from a randomly generated 25-dimensional Gaussian
distribution with a unique random covariance matrix. These experiments are useful
because the provide a controlled environment to test the methods with the ability to
verify the repeatably of the results.

For our initial experiments with L2-PCA we compare the proposed PMO based
method against the proven optimal SVD-based PCA method. We perform these
experiments on an uncorrupted version of the Synthetic-Dataset. After our L2-PCA
experiments, we perform a set of experiments with L1-PCA. We compare our PM-L1-
PCA to a sate-of-the-art L1 PCA method, on the version Synthetic-Dataset that has
been corrupted with outliers. After comparing the special cases of L2 and L1 PCA to
the state of the art methods in the field, we explore the behavior of the PMO method
in the general Lp-PCA problem. We pay specific attention to the impact of both the
value of p and difference between the reprojection and projection objectives.

Following our experiments on the impact of different Lp-norms, we demonstrate
how adding our W-PCA method can improve the robustness of Lp-PCA to outliers
in the training set. All experiments on the Synthetic-Dataset, except for the L2-PCA
experiments, were performed on a variation of the Synthetic-Dataset where 10% of
the data points were replaced with samples for a significantly different distribution, i.e.
outlier points.

Once we verify that the PMO methods perform as expected in our experiments on
the Synthetic-Dataset, we then demonstrate that PMO based PCA methods perform
similarly on real-world computer vision tasks. The second dataset is a large collection
of facial images that is commonly used for facial identification, known as Labeled
Faces in the Wild (LFW) [58]. We test the PMO method on two types of dataset
corruption on the LFW dataset, outlier datapoints and partial missing/corrupted data.
The outlier experiments were performed in a manner similar to the experiments on
the Synthetic-Dataset. In the missing/corrupted data experiments a randomly selected
block covering 10% of every image is replaced with random noise.

The full set of experiments performed in this section demonstrates the potential
improvement that is provided by our PMO based LDR methods. However, more
importantly we hope that the results provide deeper insight into the general field of
LDR using Grassmann manifold optimization and inspire future work in the area.

CHAPTER 4. DIMENSONALITY REDUCTION 43

4.3.1 Initialization Experiments

Prior to preforming our experiments we acknowledge one drawback of using an
optimization method based on SGD on a nonconvex loss surface. That drawback
is that the optimizer may converge to different local minimum depending on its
initialization. There are two popular approaches that are often used to mitigate the
problem of converging to a local minima. The first approach is to randomly initialize
multiple times and select the best solution. This method has the drawback of requiring
the optimization to be run multiple times, thus significantly increasing the processing
time. The second approach is to use prior knowledge to initialize in a region that is
close to the global minimum. However, if the loss surface is non-convex, there is no
guarantee that the optimizer will converge to the global minimum, even if initialized
relatively close to it.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

−10

0

10

20

30

Principal Components

Pe
rc

en
ti

m
pr

ov
em

en
t

L1-PCA-RPR
L1-PCA-PRJ
L0.5-PCA-RPR
L0.5-PCA-PRJ

Figure 4.1: Relative percent reduction in error for 5 random initializations vs. initializ-
ing with the L2 solution. Experiments were run on 10 sets of data with four different
dimensionality reduction objectives.

There is no consensus on which approach produces better results, thus, we decided
to run multiple experiments with both initialization methods. We ran our method
once with an initialization based on the L2 solution. Then we ran for 5 runs with
a random initial locations and selected the solution with the minimum loss on the
training set as the final solution. In Figure 4.1 we then plot the percent improvement

CHAPTER 4. DIMENSONALITY REDUCTION 44

of random initialization method relative to the L2 based initialization. It is clear in
the plot that most of the results were relatively similar for both initialization methods.
However, random initialization did generally perform better. In the end we selected
a compromise between the two methods. For the remainder of this work we ran the
optimizer three times for each problem, once with the L2 based initialization and
twice with a random initialization. We should note that for any experiment where we
were using a p value of 2, we ran with three random initializations.

4.3.2 L2-PCA Experiments

As previously mentioned, there already exists an optimal solution for L2-PCA. Thus
in this work we do not aim to further improve on the reprojection results of current
L2-PCA methods. Instead we aim to demonstrate that our proposed neural network
based Grassmann manifold optimization approach converges to the same minima as
the optimal solution. For these validation experiments we used our Synthetic-Dataset.
The Synthetic-Dataset consists of 10 separate sets of data-points each generated from
a 25-dimensional multi-dimensional Gaussian distribution, with randomly selected
covariances. All data is centered (zero-mean) before processing by any LDR methods
so all of the data was inherently zero mean.

We extracted the top principal components using the standard method for L2-PCA,
greedily selecting the top principal components using the Singular Value Decom-
position of the covariance matrix. We compare the baseline L2-PCA method with
our proposed method which simultaneously optimizes all of the principal compo-
nents using our proposed Grassmann manifold based method, PM-L2-PCA. For these
experiments we randomly seed the initial state of the principal components for the
PM-L2-PCA method.

The plots in Figure 4.2 demonstrate that the reprojection error for the two loss
functions optimized using PMO matched the result of the proven optimal solution.
This is an important result as it demonstrates that the proposed PMO technique
does converge to the optimal Principal Components. By demonstrating that the
proposed method achieves identical results these experiments provided evidence that
the proposed method is in fact an optimal solution for L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 45

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

10

20

Principal Components

A
ve

ra
ge

R
ep

ro
je

ct
io

n
E

rr
or

SVD-L2-PCA
PM-L2-PCA-RPR
PM-L2-PCA-PRJ

Figure 4.2: Average reprojection error for standard SVD based L2-PCA and proposed
PM-L2-PCA methods for varying number of principal components.

4.3.3 L1-PCA Experiments

In this section we first provide a direct comparison of our proposed method with
the current state of the art L1-PCA method, Bit-Flipping L1-PCA [98]. In these
experiments we compare the behavior of both the reprojection minimization and
projection maximization formulations, Equations (4.8) and (4.9) respectively.

The experiments in this section are performed on the Synthetic-Dataset. We use
a similar Synthetic-Dataset as in Section 4.3.2, however, in these experiments the
training set for each of these datasets was corrupted by replacing 10% of the data
with data from a significantly different distribution. A separate test partition was kept
uncorrupted to test the reconstruction ability of each PCA method.

In order to better demonstrate the benefit of using L1-PCA versus the L2-PCA, we
first present results with the current state of the art Bit-Flipping L1-PCA [98] method,
on our Synthetic-Dataset. We choose this method over a method for the exact optimal
solution [97], because it has a better balance of computational time and accuracy.

Our first performance comparison is focused on the ability of each method to
generate accurate reprojections of a clean dataset using principal components that
were exacted from a training set that is corrupted with outlying data points. This
metric is a good indication of how well each method captured the structure of the
signal, clean data, and disregarded the noise, outlying data points, in the training set.
It is commonly assumed that the lower the reconstruction on the clean data, the better

CHAPTER 4. DIMENSONALITY REDUCTION 46

the signal is captured by the Principal Components.
The plot in Figure 4.3 presents the results for the reprojection error of both the L2-

PCA and L1-PCA methods relative to the number of principal components extracted
from the 25-dimensional data, ranging from 1 to 24 principal components. Here it
is clear that in almost all instances the L1-PCA outperforms the L2-PCA until 24
principal components are extracted. At that point the reprojection error for both
methods is almost zero and any difference is insignificant.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

10

20

30

40

Principal Components

A
ve

ra
ge

R
ep

ro
je

ct
io

n
E

rr
or

L2-PCA
BF-L1-PCA

PM-L1-PCA-RPR
PM-L1-PCA-PRJ

Figure 4.3: Average reprojection error for four PCA methods for varying number of
principal components. The mean from runs on 10 separate dataset are plot. The results
from L2-PCA are shown in blue, BF-L1-PC are shown in green, PM-L1-PCA-RPR
are shown in red, and PM-L1-PCA-PRJ are shown in cyan.

We next plot the percent improvement of the L1-PCA method relative to L2-PCA,
in terms of reprojection error. This is formulated as, Pim =

EL2
−EL1
EL2

× 100.0. We
plot the percent improvement result for the principal component sweep experiments
in Figure 4.4. We don’t show the difference for the experiments with 24 components
because the loss is so small that even a small variance is over-amplified. It is clear in
4.3 that all methods produces similar errors in the case of the number of components
being one less than the original dimension of the data. This plot shows that in general
the L1-PCA method reduces the reprojection error relative to L2-PCA, at the very
least L1-PCA does not under-perform L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 47

0 2 4 6 8 10 12 14 16

6

8

10

12

14

16

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) PM-L1-PCA-RPR
PM-L1-PCA-PRJ

BF-L1-PCA

Figure 4.4: Percent improvement of the PMO and Bit-Flipping L1-PCA methods
relative to L2-PCA for varying number of principal components. Mean calculated
based on 10 runs on randomly initialized datasets.

The plots in Figure 4.4 show that, unlike our experiments with L2-PCA in Figure
4.2, there is a clear difference between the reprojection and projection objectives
for L1-PCA. The results produced by using the projection objective with the PMO
optimizer are very similar to the results produced by the bit-flipping method. This
is consistent with what is expected because they share the same objective and the
bit-flipping method was shown to produce results close to the optimal L1-PCA method.

The more interesting result from this experiment is the result produced using
the reprojection objective. The reprojection objective is generally less-well studied
due to its highly nonconvex loss surface. In these experiments we demonstrate that
the reprojection objective always outperforms the projection objective in terms of a
lower reconstruction error of the clean data. These results show that in general the
reprojection objective produces a solution that more accurately captures the structure
of the data rather than the noise. The other interesting difference between the two is
that the projection objective produces solutions that provide the maximal improvement
over L2-PCA when the number of components extracted is around half of the data’s
original dimension. The reprojection method, on the other hand, produces a maxi-
mal improvement when fewer components are extracted and its advantage steadily
decreases as more components are extracted. This is consistent with the fact that there
is a higher probability of capturing the structure of the noise in the components when
more components are extracted.

CHAPTER 4. DIMENSONALITY REDUCTION 48

After the principal component sweep experiments, we tested both L1-PCA and
L2-PCA on varying dataset sizes, from 50-500 data points. We plot these results in
the right plot of Figure 4.5. In these experiments the L1-PCA method does not always
outperform L2-PCA. For very small datasets, with only 50 samples, the reprojection
error of L1-PCA is significantly worse for the projection objective and only marginally
worse for the reprojection objective. However, for larger datasets the L1-PCA methods
produce better results than L2-PCA. This under-performance is likely due to the fact
the outliers have a larger impact in a small dataset.

50 100 150 200 250 300 350 400 450 500

−10

−5

0

5

10

Number of Samples

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

)

PM-L1-PCA-RPR
PM-L1-PCA-PRJ

BF-L1-PCA

Figure 4.5: Percent improvement of the PMO and Bit-Flipping L1-PCA methods
relative to L2-PCA for datasets with various number of samples. Mean calculated
based on 10 runs on randomly initialized datasets.

A benefit of the proposed PM-L1-PCA method is the reduced computational time
required to find the principal components so that L1-PCA can be more appealing
for widespread use. In the plots in Figures 4.6 and 4.7 we demonstrate that the
proposed method provides a significant speedup relative to the current state of the art
BF-L1-PCA method [98].

These figures show that the proposed PM-L1-PCA method has a relatively low
execution time irrespective of the number of principal components extracted or the
dataset size. This is because the major contributing source of computations is the
singular value decomposition of the proxy matrix, and the backpropgation through the
SVD layer. The primary factors that affect the computation time of the PM-based PCA
method are the number of input dimensions and number of output dimensions. The
number of computations required by the PMO algorithm is only linear with respect

CHAPTER 4. DIMENSONALITY REDUCTION 49

0 2 4 6 8 10 12 14 16 18 20 22 24 26

101

102

103

104

Principal Components

Pr
oc

es
si

ng
Ti

m
e

(S
ec

on
ds

)

BF-L1-PCA
PM-L1-PCA-RPR
PM-L1-PCA-PRJ

Figure 4.6: Processing time for L1-PCA algorithms run on 500 samples from the toy
datasets with varying number of principal components.

the number of input points. However, PM-based PCA can also be performed in a
mini-batch manner, making the computation time constant with respect to the number
input data points. This is in contrast to the exponential relationship between each of
these parameters and the computation time of the BF-L1-PCA method.

The reprojection variant of PM-PCA seems to maintain constant run times while
the projection variant changes as the number of extracted components increases. We
suggest that this is an artifact of our early termination criteria being too restrictive for
the reprojection loss which tends to have more variation. None of the reprojection runs
met the criteria for early termination while the projection methods did when fewer
components were extracted.

CHAPTER 4. DIMENSONALITY REDUCTION 50

50 100 150 200 250 300 350 400 450 500
101

102

103

104

Number of Samples

Pr
oc

es
si

ng
Ti

m
e

(S
ec

on
ds

)

BF-L1-PCA
PM-L1-PCA-RPR
PM-L1-PCA-PRJ

Figure 4.7: Processing time for L1-PCA algorithms run on varying number of samples
50-500 from the toy calculating 10 principal components.

4.3.4 Lp-PCA Experiments

In this section we perform experiments to determine what is the impact to the repro-
jection error when the p-norm is varied from 0.1 to 2.0. Previous work in the area of
Lp-PCA based on the projection objective [78] suggests that PCA can be made more
robust when 0 < p < 1. In this section we perform additional experiments on the
Synthetic-Dataset corrupted with outliers, using both the reprojection and projection
objectives.

In Table 4.1 we present the reprojection errors on a clean test set when PM-Lp-
PCA is trained on the corrupted dataset. In the table we present the results for both the
reprojection and projection objectives. We also plot the result for the two objectives
with their varying Lp-norms in Figures 4.8 and 4.9. We plot the results for the two
objectives separately to better highlight the impact of p on the reprojection accuracy
on the test set. We do not plot the results for the reprojeciton objective for L0.1 because
the error is so large it distorts the plots of the rest of the data.

The plots in Figure 4.8 indicate that for the reprojection objective, the optimal
value for p is always 0.5, providing an up to 30% improvement over L2-PCA. The
plots in Figure 4.9 show a similar story for the projection objective, a p-norm of 0.5
tends to be best. However, the reprojection error on the test set tends to be higher
for the projection objective than the reprojection objective. Another trend that we
noticed was the results with a p-norm of 0.1 were significantly worse than the rest.

CHAPTER 4. DIMENSONALITY REDUCTION 51

P-norm 1 2 5 10 15 24

Reproject Min

L0.1 -64.6 -61.9 -61.1 -43.6 -73.4 -100.6
L0.25 -38.9 5.4 4.9 14.1 18.5 -6.9
L0.5 13.4 25.3 25.9 28.5 20.9 20.4
L0.75 11.0 22.6 20.9 18.6 17.5 4.8
L1 7.4 15.3 14.6 12.2 10.7 11.8
L1.5 1.9 3.2 3.5 3.6 2.7 7.9

Project Max

L0.1 0.4 7.9 14.7 13.9 13.5 -2.5
L0.25 7.6 9.6 19.2 15.6 11.4 -2.5
L.05 11.0 13.2 18.3 16.8 14.8 1.6
L0.75 9.1 13.1 16.1 14.3 14.1 11.9
L1 6.0 8.6 11.9 10.2 8.5 8.0
L1.5 1.5 1.2 3.7 3.6 2.3 -1.2

Table 4.1: Improvement reprojection errors, relative to L2-PCA, for clean test set
when PM-Lp-PCA with varying values of p is trained on corrupted Synthetic-Dataset.

We believe that this is because the loss surface is nonconvex to an extent that makes it
non-suitable for traditional gradient-based optimization techniques.

We also ran experiments with varying datasets sizes to determine how PCA
with the different Lp-norms responded to smaller datasets. We plot the relative
improvement, to L2-PCA, for the reprojection and projection objectives in Figures
4.10 and 4.11, respectively. We observe similar behavior to our experiments perform
in previous section, where for very small datasets Lp-PCA under-performs L2-PCA.
However, for larger datasets Lp-PCA significantly outperforms L2-PC, with L0.5-PCA
providing the most improvement.

The plots in Figures 4.10 and 4.11 are consistent with the results from our exper-
iments extracting different number of components, Figures 4.8 and 4.9. Generally
using a norm with a lower p-norm provides the most robustness to outliers. However,
using p < 0.5 generally does not result in any additional improvement. In fact, in
the case of a p-norm of 0.1 the method performs worse. Our results demonstrate
that L0.5-PCA achieves a 30% reduction in reprojection error, relative to the standard
L2-PCA. This is a promising result and consistent with the results in [78]. Based on
these results, for the remainder of our experiments in this chapter we use both L1 and
L0.5 norms due to their robustness.

CHAPTER 4. DIMENSONALITY REDUCTION 52

0 2 4 6 8 10 12 14 16

−20

−10

0

10

20

30

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

)

L0.25-PCA-RPR
L0.5-PCA-RPR
L0.75-PCA-RPR
L1-PCA-RPR
L1.5-PCA-RPR

Figure 4.8: Improvement in reprojection error using the reprojection objective with the
PM-Lp-PCA framework for different number of components, all relative to L2-PCA.

0 2 4 6 8 10 12 14 16

0

10

20

30

40

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.1-PCA-PRJ
L0.25-PCA-PRJ
L0.5-PCA-PRJ
L0.75-PCA-PRJ
L1-PCA-PRJ
L1.5-PCA-PRJ

Figure 4.9: Improvement in reprojection error using the projection objective with the
PM-Lp-PCA framework for different number of components, all relative to L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 53

50 100 150 200 250 300 350 400 450 500

−20

−10

0

10

20

30

Number of Samples

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

)

L0.25-PCA-RPR
L0.5-PCA-RPR
L0.75-PCA-RPR
L1-PCA-RPR
L1.5-PCA-RPR

Figure 4.10: Improvement in reprojection error using the reprojection objective with
the PM-Lp-PCA framework for different dataset sizes, all relative to L2-PCA.

50 100 150 200 250 300 350 400 450 500

−60

−40

−20

0

20

Number of Samples

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

)

L0.1-PCA-PRJ
L0.25-PCA-PRJ
L0.5-PCA-PRJ
L0.75-PCA-PRJ
L1-PCA-PRJ
L1.5-PCA-PRJ

Figure 4.11: Improvement in reprojection error using the projection objective with the
PM-Lp-PCA framework for different dataset sizes, all relative to L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 54

4.3.5 Weighted Contribution PCA Experiments

We next investigate the impact of introducing our weighted-contribution component
to the PM-LP -PCA process, on the synthetic-dataset. For these experiments we focus
on the impact of our W-PCA method for norms with p of 0.5, 1.0, and 2.0. Again
we compare the reconstruction error for each method against the baseline L2-PCA
method. We first present the results for the reprojection objective in Figure 4.12. Here
we see that the W-PCA method, dashed lines, has a significant impact on PM-Lp-PCA
with the reprojective objective for all three norms. Surprisingly even L2 experiences a
close to 20% improvement over the L2-PCA baseline when the weighting component
is used, suggesting it provides a significant improvement to robustness even for non-
robust Lp-norms. The W-PCA has an even more significant impact on the L0.5 and L1

based PCA methods. By adding the weighted contribution component to PM-L1-PCA
it outperforms PM-L0.5-PCA with the weighted contribution method.

In Figure 4.13 we plot the impact of W-PCA on the PM-Lp-PCA with the pro-
jection objective. Here we find that W-PCA has an even more pronounced impact
on the PM-L2-PCA, improving the results by up to 60% from the L2-PCA baseline.
The W-PCA method also significantly improves the results produced by PM-L1-PCA.
However, the PM-L0.5-PCA is only marginally improved by the W-PCA method.

We next performed experiments varying the number of samples in the dataset to
examine the impact on the W-PCA methods. In Figures 4.14 and 4.15 we present
the results achieved with and without the W-PCA method for the reprojection and
projection objectives, respectively.

In this section our experiments were performed on a dataset that was synthetically
generated in order to better examine the behavior of our PM-Lp-PCA method. In the
next sets of experiments we use real imagery to demonstrate that the improvements
demonstrated in this section were not artifacts specific to our dataset.

CHAPTER 4. DIMENSONALITY REDUCTION 55

0 2 4 6 8 10 12 14 16
0

20

40

60

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-RPR
L0.5-PCA-RPR-W
L1-PCA-RPR
L1-PCA-RPR-W
L2-PCA-RPR-W

Figure 4.12: Improvement in reprojection error using the reprojection objective with
the PM-Lp-PCA framework using p of 0.5, 1.0, 2.0. both without and with weighted-
contributions, solid and dashed lines respectively. All results are relative improvement
to L2-PCA.

0 2 4 6 8 10 12 14 16
0

20

40

60

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-PRJ
L0.5-PCA-PRJ-W
L1-PCA-PRJ
L1-PCA-PRJ-W
L2-PCA-PRJ-W

Figure 4.13: Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework using p of 0.5, 1.0, 2.0. both without and with weighted-
contributions, solid and dashed lines respectively. All results are relative improvement
to L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 56

50 100 150 200 250 300 350 400 450 500

−20

0

20

40

Number of Samples

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

)

L0.5-PCA-RPR
L0.5-PCA-RPR-W
L1-PCA-RPR
L1-PCA-RPR-W
L2-PCA-RPR-w

Figure 4.14: Improvement in reprojection error using the reprojection objective with
the PM-Lp-PCA framework for different dataset sizes, all relative to L2-PCA.

50 100 150 200 250 300 350 400 450 500

−40

−20

0

20

40

Number of Samples

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

)

L0.5-PCA-PRJ
L0.5-PCA-PRJ-W
L1-PCA-PRJ
L1-PCA-PRJ-W
L2-PCA-PRJ-w

Figure 4.15: Improvement in reprojection error using the projection objective with the
PM-Lp-PCA framework for different dataset sizes, all relative to L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 57

4.3.6 Labeled Faces in the Wild Outlier Experiments

Figure 4.16: Example images of faces in the Labeled Faces in the Wild Dataset. The
right-most image is an example of outlier noise image added to the training dataset in
experiments.

In order to demonstrate the benefits of our proposed PMO based Lp-PCA method
in a computer vision application we ran experiments extracting subspaces from a
popular dataset consisting of images of faces. For these experiments we used the
Labeled Faces in the Wild (LFW) Dataset [58], a dataset commonly used for facial
identification. Examples from the LFW dataset and outlier noise samples are shown
in Figure 4.16. Prior to the recent development of deep learning based methods, a
common first step in many facial identification methods is to extract the principal
components from the set of images, known as Eigenfaces [131]. In these experiments
we demonstrate how such a technique would benefit from using the proposed Lp-PCA
method if the dataset of faces is corrupted by outliers. We first present results where
we simulate a corrupted dataset by outlying data samples. Then we present results on
a dataset that simulates partially corrupted/lost/occluded training data.

For these experiments we downsampled each image to 25% of its original dimen-
sion to reduce computation time. We then split the LFW dataset into separate train
and test partitions using an 80:20 split. For the outlier experiments the training set was
then corrupted by replacing 10% of the samples with random noise. We then extracted
the principal components from the corrupted training set using multiple methods.

We plot the improvement it terms of reduced reprojection error for our proposed
PM-L1-PCA method relative to the results from L2-PCA in Figure 4.17. We found
that when more than 50 components were extracted, both formulations of our pro-
posed PM-Lp-PCA method outperform L2-PCA. The increase in performance is most
pronounced with the reprojection minimization formulation which achieves over a
40% reduction in reprojection error over L2-PCA. Unlike in the synthetic-dataset
there is not as pronounced a difference between the PM-L0.5-PCA and PM-L1-PCA
results. One trend seems to be that PM-L1-PCA tends to produce a lower reprojection

CHAPTER 4. DIMENSONALITY REDUCTION 58

error on the clean test set when fewer components are extracted. When more than 200
components are extracted PM-L0.5-PCA seems to produces better results.

0 50 100 150 200 250 300 350 400 450 500

0

20

40

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-RPR
L0.5-PCA-PRJ
L1-PCA-RPR
L1-PCA-PRJ

Figure 4.17: Improvement in reprojection error for the LFW dataset with varying
values of p using the proposed PM-Lp-PCA framework, all relative to L2-PCA.

We then applied our weighted contribution method to the PM-Lp-PCA methods.
The results for the reprojection and projection objectives are plotted in Figure 4.18 and
4.19, respectively. Again in these experiments the W-PCA versions of each method
(dashed lines) significantly improve on their baselines (solid-lines) for the projection
formulation. The reprojection formulation does not exhibit significant improvement,
outside of PM-L2-PCA, though it always improves. Again PM-L1-PCA becomes the
top performing method when the W-PCA method is used.

In addition to our quantitative results in this section we also provide qualitative
results in the form of example reprojections of uncorrupted test images in Figure 4.20.
These results were produced by extracting the top 100 components from a dataset
corrupted with 10%. Then the components trained on the corrupted dataset were used
to reproject clean images, to determine how much of the noise was was captured in
the components.

It is clear from the examples in Figure 4.20 that the projection formulation of PM-
L1-PCA does not perform any better than the L2-PCA. Unfortunately, the projection
formulations of PM-L1-PCA captures a fair amount of noise in the reprojection. This
confirms the results in Figures 4.17 and 4.19, where the projection formulation of PM-

CHAPTER 4. DIMENSONALITY REDUCTION 59

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-RPR
L0.5-PCA-RPR-W
L1-PCA-RPR
L1-PCA-RPR-W
L2-PCA-RPR-W

Figure 4.18: Improvement in reprojection error using the reprojection objective with
the PM-Lp-PCA framework, both with and without the weighted loss functions, all
relative to L2-PCA.

L1-PCA does not outperform L2-PCA until more than 200 components are extracted.
The reprojection formulation of PM-L1-PCA, on the other hand, shows a significant
reduction in noise in the reprojections. The differences are particularly evident in the
areas with less variation, such as the forehead and cheeks. The improvement between
the contribution variant is not as visually apparent however the quantitative results
confirm there is small improvement when the weighted contribution method is uses.

The images that make up the columns in Figure 4.21 show the principal com-
ponents (1,11,21,31,41,51,61,71,81,91) for: L2 PCA (first row), PM-L1-PCA with
projection (second row), PM-L1-PCA with reprojection (third row), and PM-L1-PCA
with reprojection and weighted contribution (fourth row), for these experiments. No-
tice how principal components in the first 5 columns of L2-PCA do not contain much
noise, while the last 5 columns are significantly influenced by noise. The projection
formulation of PM-L1-PCA appears to incorporate a small portion of noise into each
component, though every component also appears to have some structure correspond-
ing to the characteristics of a face. The components learned using PM-L1-PCA with
the reprojection formulations on the other hand have very little noise in their structure.
Instead, each component seems to capture some facial structure such as edges around
the nose, mouth and eyes.

CHAPTER 4. DIMENSONALITY REDUCTION 60

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-PRJ
L0.5-PCA-PRJ-W
L1-PCA-PRJ
L1-PCA-PRJ-W
L2-PCA-PRJ-W

Figure 4.19: Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework, both with and without the weighted loss functions, all
relative to L2-PCA.

CHAPTER 4. DIMENSONALITY REDUCTION 61

Figure 4.20: Reprojection of face images using the proposed POM-L1-PCA and
standard L2-PCA principal components extracted from corrupted face training set.
First row: Input Image. Second row: Reprojection using L2-PCA. Third row: Re-
projection using PM-L1-PCA with projection formulation. Third row: Reprojection
using PM-L1-PCA with reprojection formulation. Fourth row: Reprojection using
PM-L1-PCA with reprojection formulation and weighted contribution. Fifth row:
Reprojection using PM-L1-PCA-W with Projection Maximization Formulation.

CHAPTER 4. DIMENSONALITY REDUCTION 62

Figure 4.21: Example principal components resulting from training different PCA
methods on a dataset of facial images with 10% of the image corrupted with uniform
noise. The rows are organized as follows. First row: L2-PCA. Second row: projection
formulation of PM-L1-PCA. Third row: reprojection formulation of PM-L1-PCA.
Forth row: reprojection formulation of PM-L1-PCA with weighted contribution.

CHAPTER 4. DIMENSONALITY REDUCTION 63

4.3.7 Labeled Faces in the Wild Occlusion Experiments

The definition of what constitutes an outlier is very broad and there are multiple ways
to model the corruption of a dataset. In the previous sections we modeled outliers as
points that were entirely replaced by samples from a different dataset. However, a
more common type of corruption is when only a portion of the data for each sample is
replaced with values from a different distribution. The partial corruption could result
from lost data during transmission or partial occlusion of an object. In this section
we test the robustness of our proposed method to such corruptions. To do this we
replace a randomly placed patch which covers roughly 10% to to 30% of each image
with noise sampled from a uniform distribution. This type of data corruption models a
situation where all of the faces in a dataset are partially occluded by an object, such as
a scarf/hat/glasses.

In this section we perform the same analysis as in the previous section. In Figures
4.22 and 4.23 we plot the the improvement to reprojection error of the the reprojection
and projection formulations of PM-Lp-PCA, respectively. In Figure 4.24 we plot a
selection of the components learned by the various PCA methods. We present the
reconstructions of clean data samples using the features extracted from the corrupted
dataset in Figure 4.25. In Figure 4.26 we show the reprojection of corrupted data
points using the same components.

The plots in Figures 4.22 and 4.23 show an interesting difference in reconstruction
behavior based on the type of corruption. In the previous section the weighted con-
tribution method provided a significant benefit to all PM-Lp-PCA methods, whereas
in the occlusion experiments it provided little to no benefit. This makes sense as it
is primarily designed to discard datapoints that are far away from the average of the
dataset. However, in the occlusion experiments all of the samples are corrupted to a
similar extent. Thus it is not beneficial to minimize the contribution of any particular
point, as they are all equally corrupted. The more interesting behavior is that in almost
every case the projection maximization formulation of PM-Lp-PCA produces worse
results than L2-PCA. However, the reprojection formulations generally improve on
L2-PCA providing further evidence that the reprojection formulation is generally
superior to the projection formulation.

The principal components, shown in Figure 4.24, show a similar behavior as in
the previous section. The initial components extracted using L2-PCA are generally
unaffected by the noise, where as the higher order components tend to capture the
noise, as seen at the center of the images. Again, the components extracted using the
projection formulation of PM-L1-PCA capture some face structure, but also capture

CHAPTER 4. DIMENSONALITY REDUCTION 64

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-RPR
L0.5-PCA-RPR-W
L1-PCA-RPR
L1-PCA-RPR-W
L2-PCA-RPR-W

Figure 4.22: Improvement in reprojection error using the reprojection objective with
the PM-Lp-PCA framework, both with and without the weighted loss functions, all
relative to L2-PCA.

the noise. Finally, the reprojection versions of PM-L1-PCA both capture face structure
and generally ignore the noise.

The images in Figure 4.25 show that the reprojections using L2 capture some
portion of the noise from the training set, while the reprojection formulation of PM-L1-
PCA focuses on the general structure of the faces. A more interesting set of results are
those shown in Figure 4.26, where we plot the reconstruction ability of the different
methods when the input images are partially corrupted. For these experiments we used
input images that had the random corruption patches, and we show the reconstruction
using different PCA methods. These experiments are interesting because they show
how well each method captured the underlying structure of the faces. Here we see that
there is a fair amount of noise in the L2-PCA reprojections. While the reprojection
PM-Lp-PCA methods generally fill in the regions with believable face structures, even
if the brightness of the patch is distorted due to the nature of the corruption patch.

CHAPTER 4. DIMENSONALITY REDUCTION 65

0 50 100 150 200 250 300 350 400 450 500

−10

−5

0

5

10

15

Principal Components

Im
pr

ov
em

en
tv

s
L

2
-P

C
A

(P
er

ce
nt

) L0.5-PCA-PRJ
L0.5-PCA-PRJ-W
L1-PCA-PRJ
L1-PCA-PRJ-W
L2-PCA-PRJ-W

Figure 4.23: Improvement in reprojection error using the projection objective with
the PM-Lp-PCA framework, both with and without the weighted loss functions, all
relative to L2-PCA.

Figure 4.24: Example principal components resulting from training different PCA
methods on a dataset of facial images with all images corrupted by a patch covering
10% to 30% of the image made of uniform noise. The rows are organized as follows.
First row: L2-PCA. Second row: projection formulation of PM-L1-PCA. Third row:
reprojection formulation of PM-L1-PCA. Fourth row: reprojection formulation of
PM-L1-PCA with weighted contribution.

CHAPTER 4. DIMENSONALITY REDUCTION 66

Figure 4.25: Reprojection of face images using the proposed PM-L1-PCA and stan-
dard L2-PCA principal components extracted from the corrupted face training set.
First row: Input Image. Second row: Reprojection using L2-PCA. Third row: Re-
projection using PM-L1-PCA with Reprojection Minimization Formulation. Fourth:
Reprojection using PM-L1-PCA with Projection Maximization Formulation. Fifth
row: Reprojection using PM-L1-PCA-W with Projection Maximization Formulation.

CHAPTER 4. DIMENSONALITY REDUCTION 67

Figure 4.26: Reprojection of face images using the proposed PM-L1-PCA and stan-
dard L2-PCA principal components extracted from the corrupted face training set.
First row: Input Image. Second row: Reprojection using L2-PCA. Third row: Repro-
jection using PM-L1-PCA with Reprojection Minimization Formulation. Fourth row:
Reprojection using PM-L1-PCA with Projection Maximization Formulation. Fifth
row: Reprojection using PM-L1-PCA-W with Projection Maximization Formulation.

CHAPTER 4. DIMENSONALITY REDUCTION 68

4.4 Remarks

In this section we outlined how linear dimensionality reduction problems can be
reformulated as Grassmann Manifold optimization problems. We then demonstrated
how the Proxy-Matrix optimization methods developed in Chapter 3 can be used to
find a solution the LDR problem, given a loss function. We then perform an in-depth
analysis on multiple version of the most popular LDR method, Principal Component
Analysis. We present multiple results for different versions of PCA on both synthetic
and real-world datasets corrupted by outliers. In Chapter 5 we demonstrate how the
methods developed in this chapter can be used to compress deep neural networks.

Chapter 5

Cascaded Projection Network
Compression

We propose a data-driven approach for deep convolutional neural network compres-
sion that achieves high accuracy with high throughput and low memory requirements.
Current network compression methods either find a low-rank factorization of the
features that requires more memory, or select only a subset of features by pruning
entire filter channels. We propose the Cascaded Projection (CaP) compression method
that projects the output and input filter channels of successive layers to a unified low
dimensional space based on a low-rank projection. We optimize the projection to
minimize classification loss and the difference between the next layer’s features in
the compressed and uncompressed networks. To solve this non-convex optimization
problem we propose a new optimization method of a proxy matrix using backpropaga-
tion and Stochastic Gradient Descent (SGD) with geometric constraints, as described
in Chapters 3. Our cascaded projection approach leads to improvements in all crit-
ical areas of network compression: high accuracy, low memory consumption, low
parameter count and high processing speed. The proposed CaP method demonstrates
state-of-the-art results compressing VGG16 and ResNet networks with over 4× reduc-
tion in the number of computations and excellent performance in top-5 accuracy on
the ImageNet dataset before and after fine-tuning.

69

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 70

5.1 Introduction

The compression of deep neural networks is gaining attention due to the effectiveness
of deep networks and their potential applications on mobile and embedded devices.
The powerful deep networks developed today are often overparameterized [26] and
require large amounts of memory and computational resources [15]. Thus, efficient
network compression, that reduces the number of computations and memory required
to process images, enables the broader application of deep neural networks.

Methods for network compression can be categorized into four types, based on
quantization, sparsification, factorization and pruning. In this work we leverage the
advantages of factorization and pruning methods, as they are the most popular. Quanti-
zation methods accelerate deep networks and reduce storage by using mixed precision
arithmetic and hashing codes [17, 19, 46]. However most of them require mixed preci-
sion arithmetic, which is not always available on standard hardware. Sparsification
methods eliminate individual connections between nodes that have minimal impact on
the network, however, they are not well suited for current applications because most
neural network libraries are not optimized for sparse convolution operations and fail
to achieve significant speedup.

Factorization methods [27, 68, 79, 161] reduce computations by factorizing the
network kernels, often by splitting large kernels into a series of convolutions with
smaller filters. These methods have the drawback of increasing memory consumption
due to the intermediate convolution operations. Such memory requirements pose a
problem for mobile applications, where network acceleration is needed most. Pruning
methods [46, 53, 85, 93, 104, 132, 160, 164] compress layers of a network by removing
entire convolutional filters and the corresponding channels in the filters of the next
layer. They do not require feature map reprojection, however they discard a large
amount of information when eliminating entire filter channels.

In this paper, we propose the Cascaded Projection (CaP) compression method
which combines the superior reconstruction ability of factorization methods with the
multi-layer cascaded compression of pruning methods. Instead of selecting a subset of
features, as is done in pruning methods, CaP forms linear combinations of the original
features that retain more information. However, unlike factorization methods, CaP
brings the kernels in the next layer to low dimensional feature space and therefore
does not require additional memory for reprojection.

Figure 5.1 provides a visual representation of the differences between the three
methods: factorization (top row) reprojects to higher dimensional space and increases

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 71

Figure 5.1: Visual representation of network compression methods on a single CNN
layer. Top row: Factorization compression with a reprojection step that increases
memory. Middle row: Pruning compression where individual filters are removed.
Bottom row: Proposed CaP method which forms linear combinations of the filters
without requiring reprojection.

memory, pruning (middle row) masks filters and eliminates their channels, and our
proposed CaP methods (bottom row) combines filters to a smaller number without
reprojecting. Our results demonstrate that by forming filters based on linear com-
binations instead of pruning with a mask, more information is kept in the filtering
operations and better network classification accuracy is achieved.

The primary contributions of this chapter are the following:
1. We propose the CaP compression method that finds a low dimensional projection

of the feature kernels and cascades the projection to compress the input channels
of the kernels in the next layers.

2. We introduce proxy matrix projection backpropagation, the first method to
optimize the compression projection for each layer using end-to-end training
with standard backpropagation and stochastic gradient descent.

3. Our optimization method allows us to use a new loss function that combines the
reconstruction loss with classification loss to find a better solution.

4. The CaP method is the first to simultaneously optimize the compression projec-
tion for all layers of residual networks.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 72

5. Our results illustrate that CaP compressed networks achieve state-of-the-art
accuracy while reducing the network’s number of parameters, computational
load and memory consumption.

5.2 Related Work

The goal of network compression and acceleration is to reduce the number of parame-
ters and computations performed in deep networks without sacrificing accuracy. Early
work in network pruning dates back to the 1990’s [47]. However, the area did not gain
much interest until deep convolutional networks became common [73, 74, 130] and
the redundancy of network parameters became apparent [26]. Recent works aim to
develop smaller network architectures that require fewer resources [55, 62, 114].

Quantization techniques [17, 19, 46, 67] use integer or mixed precision arithmetic
only available on state-of-the-art GPUs [95]. These methods reduce the computation
time and the amount of storage required for the network parameters. They can be
applied in addition to other methods to further accelerate compressed networks, as
was done in [72].

Network sparsification [89], sometimes referred to as unstructured pruning, re-
duces the number of connections in deep networks by imposing sparsity constraints.
The work in [56] proposed recasting the sparsified network into separate groups of
operations where the filters in each layer are only connected to a subset of the input
channels. In [152] k-means clustering is used to encourage similarity between features
to aid in compression. However, these methods require training the network from
scratch which is not practical or efficient.

Filter factorization methods reduce computations at the cost of increased memory
load for storing intermediate feature maps. Initial works focused on factorizing
the three-dimensional convolutional kernels into three separable one-dimensional
filters [27, 68]. In [79] CP-decomposition is used to decompose the convolutional
layers into five layers with lower complexity. More recently [161] performed a channel
decomposition that found a projection of the convolutional filters in each layer such
that the asymmetric reprojection error was minimized.

Channel pruning methods [85, 93, 104, 132, 164] remove entire feature kernels for
network compression. In [46] kernels are pruned based on their magnitudes, under the
assumption that kernels with low magnitudes provide little information to the network.
Li et al. [85] suggested a similar pruning technique based on kernel statistics. He
et al. [53] proposed pruning filters based on minimizing the reconstruction error of

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 73

each layer. Luo et al. [93] further extended the concepts in [53] to prune filters that
have minimal impact on the reconstruction of the next layer. Yu et al. [160] proposed
Neuron Importance Score Propagation (NISP) to calculate the importance of each
neuron based on its contribution to the final feature representation and prune feature
channels that provide minimal information to the final feature representation.

Other recent works have focused less on finding the optimal set of features to prune
and more on finding the optimal amount of features to remove from each layer of the
network. This is important to study because the amount of pruning performed in each
layer is often set arbitrarily or through extensive experimentation. In [155, 160] the
authors propose automatic pruning architecture methods based on statistical measures.
In [52,60] methods are proposed which use reinforcement learning to learn an optimal
network compression architecture. Additional work has been done to reduce the
number of parameters in the final layers of deep networks [18], however the fully
connected layer only contributes a small fraction of the overall computations.

5.3 Cascaded Projection Methodology

In this section we provide an in depth discussion of the CaP compression and ac-
celeration method. We first introduce projection compression when applied to a
single layer, and explain the relationship between CaP and previous filter factoriza-
tion methods [161]. One of the main goals of CaP compression is eliminating the
feature reprojection step performed in factorization methods. To accomplish this, CaP
extends the compression in the present layer to the inputs of the kernels in the next
layer by projecting them to the same low dimensional space, as shown in Figure 5.2.
Next we demonstrate that, with a few alterations, the CaP compression method can
perform simultaneous optimization of the projections for all of the layers in residual
networks [49]. Lastly we present the core component of the CaP method, which is our
new end-to-end optimization method that optimizes the layer compression projections
using standard back-propagation and stochastic gradient descent.

5.3.1 Problem Definition

In a convolutional network, as illustrated in the top row of Figure 5.2, the ith layer
takes as input a 4-Tensor Ii of dimension (n×ci×hi×wi), where n is the number
of images (mini-batch size) input into the network, ci is the number channels in the
input and wi and hi are the height and width of the input. The input is convolved

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 74

with a set of filters Wi represented as a 4-Tensor with dimensions (ci+1×ci×k×k),
where ci+1 is the number of kernels and k is the spatial dimensions of the kernels,
generally 3 pixels. In many networks, there is an additional bias, bi, of dimension
(ci+1 × 1 × 1 × 1), that is added to each channel of the output. More formally, the
convolution operation for layer i of a CNN is given as:

Oi = Ii ∗Wi + bi (5.1)

where (∗) is the convolution operator. The input to the next layer is calculated
by applying a nonlinearity to the output as Ii+1 = G(Oi), where G(·) is often a
ReLU [105].

Network compression aims to reduce the number of filters so that the classification
accuracy of the network is minimally impacted. In this work we find a projection
Pi that maps the features to a lower dimensional space by minimizing both the
reconstruction error and the classification loss, as described in the rest of this section.

5.3.2 Single Layer Projection Compression

We first present how projection based compression is used to compress a single layer
of a network. To compress layer i, the output features are projected to low dimensional
representation of rank r using an orthonormal projection matrix Pi represented as a
4-Tensor of dimension (ci+1×r×1×1). The optimal projection, P∗i for layer i, based
on minimizing the reconstruction loss is given as:

P∗i = arg min
Pi

∥∥Oi−(Ii∗Wi∗Pi + bi∗Pi)∗PT
i

∥∥2

F
(5.2)

where ‖·‖2F is the Frobenious norm.
Inspired by [161], we alter our optimization criteria to minimize the reconstruction

loss of the input to the next layer. This results in the optimization:

P∗i =arg min
Pi

∥∥G(Oi)−G((Ii∗Wi∗Pi+bi∗Pi)∗PT
i)
∥∥2

F
(5.3)

The inclusion of the nonlinearity makes this a more difficult optimization problem.
In [161] the problem is relaxed and solved using Generalized SVD [43, 141, 142]. Our
Cascaded Projection method is based on the end-to-end approach described next.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 75

Figure 5.2: Visual representation of the compression of a CNN layer using the CaP
method to compress the filters Wi and Wi+1 in the current and next layers using
projections Pi and PT

i respectively. The reconstruction error in the next layer is
computed after the nonlinearity G(·).

5.3.3 Cascaded Projection Compression

Factorization methods, including the single layer projection compression discussed
above, are inefficient due to the additional convolution operations required to reproject
the features to high dimensional space. Pruning methods avoid reprojection by
removing all channels associated with the pruned filters. CaP takes a more powerful
approach that forms linear combination of the kernels by projecting without the extra
memory requirements of factorization methods. Following the diagram in Figure 5.2,
we consider two successive convolutional layers, labeled i and i+1, with kernels Wi,
Wi+1 and biases bi, bi+1 respectively. The input to layer i is Ii, while the output of
layer i+1 is the input to layer i+ 2, denoted by Ii+2 and given below.

Ii+2 = G(G(Ii ∗Wi + bi) ∗Wi+1 + bi+1) (5.4)

After substituting our compressed representation with reprojection for layer i in the
above we get:

Ii+2 = G(G((Ii∗Wi∗Pi+bi∗Pi)∗PT
i)∗Wi+1+bi+1) (5.5)

To avoid reprojecting the low dimensional features back to higher dimensional
space with PT

i , we seek two projections. The first PO
i which captures the optimal

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 76

lower dimensional representation of the features in the current layer, and the second
PI

i which pulls the kernels of the next layer down to lower dimensional space. This
formulation leads to an optimization problem over the projection operators:

{PI
i
∗
,PO

i
∗}=arg min

PI
i ,P

O
i

‖Ii+2−G(G((Ii∗Wi∗PO
i

+bi∗PO
i))∗PI

i ∗Wi+1+bi+1)‖2F
(5.6)

To make the problem tractable, we enforce two strong constraints on the projec-
tions. We require that they are orthonormal and transposes of each other: PI

i = (PO
i)T .

For the remainder of this work we replace PO
i and PI

i with Pi and PT
i , respectively.

These constraints make the optimization problem more feasible by reducing the
parameter search space to a single projection operator for each layer.

P∗i = arg min
Pi,Pi∈On×m

‖Ii+2−G(G((Ii∗Wi∗Pi

+bi∗Pi))∗PT
i ∗Wi+1+bi+1)‖2F

(5.7)

We solve the optimization of a single projection operator for each layer using a
novel data-driven optimization method for projection operators discussed in Section
5.3.6.

Kernel Compression and Relaxation

Once the projection optimization is complete, we replace the kernels and biases
in the current layer with their projected versions WO

i = Wi∗Pi and bO
i = bi∗Pi

respectively. We also replace the kernels in the next layer with their input compressed
versions WI

i+1 =PT
i ∗Wi+1. Thus,

Ii+2 = G(G((Ii ∗WO
i + bO

i)) ∗WI
i+1 + bi+1) (5.8)

Figure 5.2 depicts how the filters WI
i+1 in the next layer are compressed using

the projection PT
i and are therefore smaller than the kernels in the original network.

Utilizing the compressed kernels WO
i and WI

i results in twice the speedup over
traditional factorization methods for all compressed intermediate layers (other than
first and last layers).

Following kernel projection, we perform an additional round of training in which
only the compressed kernels are optimized. We refer to this step as kernel relaxation
because we are allowing the kernels to find a better optimal solution after our projection
optimization step.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 77

5.3.4 Mixture Loss

A benefit of gradient based optimization is that a loss function can be altered to
minimize both reconstruction and classification error. Previous methods have focused
on either reconstruction error minimization [53, 93] or classification [160] based
metrics when pruning each layer. We propose using a combination of the standard
cross entropy classification loss, LClass, and the reconstruction loss LR, shown in
Figure 5.2. The reconstruction loss for layer i is given as:

LR(i) = ‖Ii+2 −G(G((Ii ∗Wi ∗Pi

+bi ∗Pi)) ∗PT
i ∗Wi+1 + bi+1)‖2F

(5.9)

The mixture loss used to optimize the projections in layer i is given as

L(i) = LR(i) + γLClass (5.10)

where γ is a mixture parameter that allows adjusting the impact of each loss during
training. By using a combination of the two losses we obtain a compressed network
that maintains classification accuracy while having feature representations for each
layer which contain the maximal amount of information from the original network.

5.3.5 Compressing Multi-Branch Networks

Multi-branch networks are popular due to their excellent performance and come in a
variety of forms such as the Inception networks [137, 138, 139], Residual networks
(ResNets) [49] and Dense Networks (DenseNets) [57] among others. We primarily
focus on applying CaP network compression to ResNets, but our method can be
integrated with other multi-branch networks. We select the ResNet architecture for
two reasons. First, ResNets have a proven record of producing state-of-the art results
[49, 50]. And second, the skip connections work well with network compression, as
they allow propagating information through the network regardless of the compression
process within the individual layers.

Our CaP modification for ResNet compression is illustrated in Figure 5.3. In our
approach, we do not alter the structure of the residual block outputs, therefore we do
not compress the outputs of the last convolution layers in each residual block, as was
done by [93]. In [85, 160] pruning is performed on the residual connections, but we
do not affect them, because pruning these layers has a large negative impact on the
network’s accuracy.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 78

Figure 5.3: Illustration of simultaneous optimization of the projections for each layer
of the ResNet18 network using a mixture loss that includes the classification loss
and the reconstruction losses in each layer for intermediate supervision. We do not
alter the structure of the residual block outputs, therefore we do not affect residual
connections and we do not compress the outputs of the last convolution layers in each
residual block.

We calculate the reconstruction error in ResNets at the outputs of each residual
block, as shown in Figure 5.3, in contrast to single branch networks where we calculate
the reconstruction error at the next layer as shown in Figure 5.2. By calculating the
reconstruction error after the skip connections, we leverage the information in the skip
connections in our projection optimization.

Simultaneous Layer Compression

Most network compression methods apply a greedy layer-wise compression
scheme, where one layer is compressed or pruned at a time. However, this layer-by-
layer approach to network compression can lead to sub-optimal results [160]. We now
present a version of CaP where all layers are simultaneously optimized. This approach
allows the latter layers to help guide the projections of the earlier layers and minimize
the total reconstruction error throughout the network.

In our experiments, we found that simultaneous optimization of the projection
matrices has the risk of becoming unstable when we compress more than one layer in
each residual block. To overcome this problem we split the training of the projections
in residual blocks with more than one compressible layer into two rounds. In the first

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 79

round, the projections for the odd layers are optimized, and in the second round the
even layer projections are optimized.

Additionally, we found that using the reconstruction loss at the final layers did not
provide enough supervision to the network. We therefore introduced deep supervision
for each layer by minimizing the sum of normalized reconstruction losses for each
layer, given by:

arg min
Pi∈P

N∑
i=0

LR(i) +γLClass (5.11)

where Pi is the projection for the ith layer, and N is the total number of layers. We
outline our approach to finding a solution for the above optimization using iterative
backpropagation next.

5.3.6 Back-Propagated Projection Optimization

In this section we present an end-to-end Proxy Matrix Projection (PMaP) optimization
method, which is an iterative optimization of the projection using backpropagation
with Stochastic Gradient Descent (SGD). The proposed method efficiently optimizes
the network compression by combining backpropagation with geometric constraints.

In our framework, we restrict the projection operators to be orthogonal and thus
satisfy Pi

TPi = I. The set of (n×m) real-valued orthogonal matrices On×m, forms
a smooth manifold known as a Grassmann manifold. There are several optimization
methods on Grassmann manifolds, most of which include iterative optimization and
retraction methods [2, 3, 20, 140, 151].

With CaP compression, the projection for each layer is dependent on the projec-
tions in all previous layers adding dependencies in the optimization across layers.
Little work had been done in the field of optimization over multiple dependent Grass-
mann manifolds. Huang et al. [59] impose orthogonality constraints on the weights
of a neural network during training using a method for backpropagation of gradients
through structured linear algebra layers developed in [65,66]. Inspired by these works,
we utilize a similar approach where instead of optimizing each projection matrix
directly, we use a proxy matrix Xi for each layer i and a transformation Φ(·) such that
Φ(Xi) = Pi.

We obtain the transformation Φ(·) that projects each proxy matrix Xi to the closest
location on the Grassmann manifold by performing Singular Value Decomposition
(SVD) on Xi, such that Xi =UiΣiV

T
i , where Ui and VT

i are orthogonal matrices

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 80

and Σi is the matrix of singular values. The projection to the closest location on the
Grassmann manifold is performed as Φ(Xi)=UiV

T
i = Pi.

During training, the projection matrix Pi is not updated directly; instead the proxy
parameter Xi is updated based on the partial derivatives of the loss with respect to Ui

and Vi, ∂L
∂Ui

and ∂L
∂Vi

respectively. The partial derivative of the loss L with respect to
the proxy parameter Xi was derived in [65, 66] using the chain rule and is given by:

∂L

∂Xi
= Ui

{
2Σi

(
KT

i ◦
(

VT
i

∂L

∂Vi

))
sym

+
∂L

∂Σi

}
VT

i (5.12)

where ◦ is the Hadamard product, Asym is the symmetric part of matrix A given as
Asym = 1

2(AT+A). Since Φ(Xi)=UiV
T
i , the loss does not depend on the matrix

Σi. Thus, ∂L
∂Σi

=0, and Equation (5.12) becomes:

∂L

∂Xi
= Ui

{
2Σi

(
KT

i ◦
(

VT
i

∂L

∂Vi

))
sym

}
VT

i (5.13)

The above allows us to optimize our compression projection operators for each
layer of the network using backpropagation and SGD. Our method allows for end-
to-end network compression using standard deep learning frameworks for the first
time.

5.4 Experiments

We first perform experiments on independent layer compression of the VGG16 network
to investigate how each layer responds to various levels of compression. We then
perform a set of ablation studies on the proposed CaP algorithm to determine the
impact for each step of the algorithm on the final accuracy of the compressed network.
We compare CaP to other state-of-the-art methods by compressing the VGG16 network
to have over 4× fewer floating point operations. Finally we present our experiments
with varying levels of compression of ResNet architectures, with 18 or 50 layers,
trained on the CIFAR10 dataset.

All experiments were performed using PyTorch 0.4 [108] on a work station running
Ubuntu 16.04. The workstation had an Intel i5-6500 3.20GHz CPU with 15 GB of
RAM and a NVIDIA Titan V GPU.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 81

Figure 5.4: Plot of the reconstruction error (vertical axis) for the range of compression
(left axis) for each layer of the network (right axis). The reconstruction error is lower
when early layers are compressed.

Figure 5.5: Plot of the classification accuracy (vertical axis) for the range of compres-
sion (left axis) for each layer of the network (right axis). The classification accuracy
remains unaffected for large amounts of compression in a single layer anywhere in the
network.

5.4.1 Layer-wise Experiments

In these experiment we investigate how each layer of the network is affected by
increasing amounts of compression. We perform filter compression using CaP for
each layer independently, while leaving all other layers uncompressed. We considered
a range of compression for each layer, from 5% to 99%, and display the results in
Figures and . This plot shows two trends. Firstly the reconstruction error does not
increase much until 70% compression, indicating that a large portion of the parameters
in each layer are redundant and could be reduced without much loss in accuracy. The

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 82

second trend is the increase in reconstruction error for each level of compression for
the deeper layers of the network (right axis).

In Figure 5.4.1 we plot the network accuracy resulting from each level of com-
pression for each layer. The network is relatively unaffected for a large range of
compression, despite the fact that there is a significant amount of reconstruction error
introduced by the compression shown in Figure 5.4.1.

5.4.2 CaP Ablation Experiments

We ran additional experiments to determine the contribution of the projection opti-
mization and kernel relaxation steps of our algorithm. We first trained the ResNet18
network on the CIFAR100 dataset and achieved a baseline accuracy of 78.23%. We
then compressed the network to 50% of the original size using only parts of the CaP
method to assess the effects of different components. We present these results in Table
5.1.

ResNet18 Network Variation Accuracy
ResNet18 Uncompressed (upper bound) 78.23

Compressed ResNet18 from Scratch 77.22
CaP Compression with Projection Only 76.65
CaP with Random Proj. & Kernel Relax 76.27

CaP with Projection & Kernel Relax 77.47

Table 5.1: Network compression ablation study of the CaP method compressing the
ResNet18 Network trained on the CIFAR100 dataset. (Bold numbers are best).

We also trained a compressed version ResNet18 from scratch for 350 epochs,
to provide a baseline for the compressed ResNet18 network. When only projection
compression is performed on the original ResNet18 network, there was a drop in
accuracy of 1.58%. This loss in classification accuracy decreased to 0.76% after kernel
relaxation. In contrast, when the optimized projections are replaced with random
projections and only kernel relaxation training is performed, there is a 1.96% drop
in accuracy, a 2.5 times increase in classification error. These results demonstrate
that the projection optimization is an important aspect of our network compression
algorithm, and the combination of both steps outperforms training the compressed
network from scratch.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 83

Figure 5.6: Classification accuracy drop on CIFAR10, relative to baseline, of compres-
sion methods (CaP, PCAS [155], PFEC [85] and LPF [60]) for a range of compression
levels on ResNet18 (Right) and ResNet50 (Left).

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 84

ResNet Method FT FLOPs% Acc. / Base

56

PFEC [85] N 72.4 91.31 / 93.04
CP [53] N 50.0 90.90 / 92.80
SFP [51] N 47.4 92.26 / 93.59

AMC [52] N 50.0 90.1 / 92.8
CaP N 50.2 92.92 / 93.51

PFEC [85] Y 72.4 93.06 / 93.04
NISP [160] Y 57.4 (-0.03) *

CP [53] Y 50.0 91.80 / 92.80
SFP [51] Y 47.4 93.35 / 93.59

AMC [52] Y 50.0 91.9 / 92.8
DCP [164] Y 35.0 93.7 / 93.6

CaP Y 50.2 93.22 / 93.51

110

PFEC [85] N 61.4 92.94 / 93.53
MIL [29] N 65.8 93.44 / 93.63
SFP [51] N 59.2 93.38 / 93.68

CaP N 50.1 93.95/ 94.29
PFEC [85] Y 61.4 93.30 / 93.53
NISP [160] Y 56.3 (-0.18) *
SFP [51] Y 59.2 93.86 / 93.68

CaP Y 50.1 94.14/ 94.29

Table 5.2: Comparison of CaP with pruning and factorization based methods using
ResNet56 and ResNet110 trained on CIFAR10. FT denotes fine-tuning. (Bold numbers
are best). * Only the relative drop in accuracy was reported in [160] without baseline
accuracy.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 85

5.4.3 ResNet Compression on CIFAR 10

We perform two sets of experiments using ResNet18 and ResNet50 trained on the
CIFAR10 dataset [74]. We compress 18 and 50 layer ResNets with varying levels of
compression and compare the relative drop in accuracy of CaP with other state-of-the-
art methods [60,85,155]. We plot the drop in classification accuracy for ResNet18 and
ResNet50 in Figure 5.6. For both networks, the CaP method outperforms the other
methods for the full range of compression.

In Table 5.2, we present classification accuracy of ResNet56 and ResNet110 with
each residual block compressed to have 50% fewer FLOPs using CaPs. We compare
the results obtained by CaP with those of [51,52,53,85,160] where the networks have
been subjected to similar compression ratios. We report accuracy results with and
without fine-tuning and include the baseline performance for comparison.

Results with fine-tuning are generally better, except in cases when there is over-
fitting. However, fine-tuning for a long period of time can hide the poor performance of
a compression algorithm by retraining the network filters away from the compression
results. The results of the CaP method without fine-tuning are based on projection
optimization and kernel relaxation on the compressed filters with reconstruction loss,
while the fine-tuning results are produced with an additional round of training based
on mixture loss for all of the layers in the network.

5.4.4 VGG16 Compression with ImageNet

We compress the VGG16 network trained on ImageNet2012 [25] and compare the
results of CaP with other state-of-the-art methods. We present two sets of results,
without fine-tuning and with fine-tuning, in Tables 5.3 and 5.4 respectively. Fine-
tuning on ImageNet is time intensive and requires significant computation power. This
is a hindrance for many applications where users do not have enough resources to
retrain a compressed network.

In Table 5.3 we compare CaP with factorization and pruning methods, all without
fine-tuning. As expected, factorization methods suffer from increased memory load
due to their additional intermediate feature maps. The channel pruning method
in [53] has a significant reduction in memory consumption but under-performs the
factorization method in [161] without fine-tuning. We present two sets of results for
the CaP algorithm, each with different levels of compression for each layer. To match
the architecture used in [53] we compressed layers 1-7 to 33% of their original size,
and filters in layers 8-10 to 50% of their original size, while the remaining layers are

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 86

Method Parameters Memory
(Mb) FLOPs GPU

Speedup
Top-5 Acc/

Baseline
VGG16 [130]

(Baseline)
14.71M 3.39 30.9B 1 89.9

Low-Rank [68] - - - 1.01* 80.02 / 89.9
Asym. [161] 5.11M 3.90 3.7B 1.55* 86.06 / 89.9

Channel
Pruning [53]

7.48M 1.35 6.8B 2.5* 82.0 / 89.9

CaP
([53] arch)

7.48M 1.35 6.8B 3.05 86.57 / 90.38

CaP Optimal 7.93M 1.11 6.8B 3.44 88.23 / 90.38

Table 5.3: Network compression results of pruning and factorization based methods
without fine-tuning. The top-5 accuracy of the baseline VGG16 network varies slightly
for each of the methods due to different models and frameworks. (Bold numbers are
best). Results marked with * were obtained from [53].

Method Mem. FLOPs Top-5 Acc.
(Mb) / Baseline

VGG16 [130] 3.39 30.9B 89.9
Scratch [53] 1.35 6.8B 88.1
COBLA [84] 4.21 7.7B 88.9 / 89.9
Tucker [72] 4.96 6.3B 89.4 / 89.9

CP [53] 1.35 6.8B 88.9 / 89.9
ThiNet-2 [93] 1.44 6.7B 88.86 / 90.01

CaP 1.11 6.8B 89.39 / 90.38

Table 5.4: Network compression results of pruning and factorization based methods
with fine-tuning. (Bold numbers are best).

left uncompressed . We also used the CaP method with a compression architecture that
was selected based on our layer-wise training experiments. The results in Table 5.3
demonstrate that the proposed CaP compression achieves higher speedup and higher
classification accuracy than the factorization or pruning methods.

CHAPTER 5. CASCADED PROJECTION NETWORK COMPRESSION 87

In Table 5.4 we compare CaP with state-of-the-art network compression methods,
all with fine-tuning. The uncompressed VGG16 results are from [130]. We include
results from training a compressed version of VGG16 from scratch on the ImageNet
dataset as reported in [53]. We compare CaP with the results of two factorization
methods [72, 84] and two pruning methods [53], [93]. Both factorization methods
achieve impressive classification accuracy, but this comes at the cost of increased
memory consumption. The pruning methods reduce both the FLOPs and the memory
consumption of the network, while maintaining high classification accuracy. However,
they rely heavily on fine-tuning to achieve high accuracy. We lastly provide the
results of the CaP compression optimized at each layer. Our results demonstrate that
the CaP algorithm gives state-of-the-art results, has the largest reduction in memory
consumption, and outperforms the pruning methods in terms of top-5 accuracy.

5.5 Observations

We propose cascaded projection, an end-to-end trainable framework for network
compression that optimizes compression in each layer. Our CaP approach forms linear
combinations of kernels in each layer of the network in a manner that both minimizes
reconstruction error and maximizes classification accuracy. The CaP method is the
first in the field of network compression to optimize the low dimensional projections
of the layers of the network using backpropagation and SGD, using our proposed
Proxy Matrix Projection optimization method.

We demonstrate state-of-the-art performance compared to pruning and factoriza-
tion methods, when the CaP method is used to compress standard network architectures
trained on standard datasets. A side benefit of the CaP formulation is that it can be
performed using standard deep learning frameworks and hardware, and it does not
require any specialized libraries for hardware for acceleration. In future work, the CaP
method can be combined with other methods, such as quantization and hashing, to
further accelerate deep networks.

Chapter 6

Feature Embedding

6.1 Feature Embedding Background

There are many variants of auxiliary loss functions used when training deep networks
to encourage different behaviors. One of the first auxiliary losses proposed was feature
regularization. The goal of regularizing the feature activations is to keep the values in
the feature representation small or sparse by using L2-norm or L1-norm, respectively.
The underlying assumption is that small-valued or sparse feature representations
generally reduce overfitting. L2 regularization encourages activations with small
magnitudes

L2 = ‖G(xW + b)‖22 (6.1)

where G(·) is an activation function, x is the layer’s input vector, W is the weight
matrix and b is the bias vector. L1 regularization encourages sparsity in the activations

L1 = ‖G(xW + b)‖1 (6.2)

The use of these regularization techniques has waned due to reliance on robust
training methods such as Batch Normalization [64] and Dropout [133]. Batch Normal-
ization reduces the covariance shift and potential for vanishing or exploding gradients
by normalizing the activations from each layer to be zero-mean and unit-variance.
Dropout on the other hand reduces the potential for co-adaptation of neurons by
randomly setting a fraction of neurons to zero on each training iteration, thus, forcing
neurons to be more self-reliant. Though these techniques have improved training time
and network accuracy, they do not address generalizable feature representations.

88

CHAPTER 6. FEATURE EMBEDDING 89

Recent work introduced an auxiliary function called the center loss [150], that
increases the robustness of the feature representation by encouraging tightly grouped
clusters. The center loss represents the average distance of each point xi, in feature
space, to the mean cyi

of the corresponding class yi.

LC =
1

2m

m∑
i=1

‖xi − cyi
‖22 (6.3)

Where m is the number of samples in the mini-batch, xi is the feature space represen-
tation for the ith sample and cyi

is the center for the class yi of the ith sample.
The tight Euclidean clustering in feature space encouraged by the center loss

is useful in situations where the feature representations are compared to estimate
similarity between samples, such as is done with k-Nearest Neighbors (k-NN). The
work in [150] focused on person re-identification, a problem that requires robust
feature representations that can be compared using Euclidean distance metrics.

More recently [111] introduced contrastive center loss, a technique that encourages
tight clustering and increases class separation. The contrastive center loss is given as:

LCtC =
1

m

m∑
i=1

‖xi − cyi
‖22∑k

j=i,j 6=yi‖xi − cj‖22 + δ
(6.4)

where δ is a small value that ensures the denominator is non-zero. Our work builds
upon the center loss and contrastive center loss for better feature clustering and more
robust performance.

Like many other methods in the field, both [150] and [111] use the Euclidean,
L2-norm as a similarity metric between deep feature vectors. This use of the L2 norm
can be problematic when applied to arbitrary feature spaces. The Euclidean norm is
intended to operate in RN , represented by an orthogonal basis. However, the L2-norm
is often applied to vector representations without an orthogonal basis. We propose
to produce feature representations with an L2-norm similarity metric. This behavior
is critical for many applications that use feature similarity, such as k-NN and other
graphical methods. We ensure orthogonality by retracting the weight matrix of our
feature representation layer to the Grassmann manifold, the set of orthogonal spaces
in RN .

Learning feature embeddings using deep neural networks is a fast-growing area of
research largely because of the number of potential applications that such a universal
feature embedding network could have. To this point the feature embeddings learned

CHAPTER 6. FEATURE EMBEDDING 90

using deep neural networks have largely been treated as naturally emergent behavior,
i.e. the network will learn optimal feature embeddings based on the difficulty of the
task on which it is trained. We suggest that this is not always the case and that often
neural networks will learn sufficient features and not the most widely applicable, as
demonstrated by their tendency for over-fitting. We also suggest that by using the
responses from the last layer of a deep network, especially when the activations are
used after being sent through a rectified linear function, is not the best approach for
feature representations.

The research in the area of learning feature embeddings for images has largely
focused on application to zero-shot or one-shot learning problems. Zero-Shot learning
is a technique where a feature extraction method, often a deep network, is pretrained
to learn a feature embedding that is semantically meaningful. i.e. images of similar
objects are closer in feature space than images of different types of objects. Often
with zero-shot learning, image embedding is mapped to a semantic space, such as
Word2Vec [99]. Once the image embedding is aligned with the semantic space,
zero-shot learning methods can make predictions for object categories outside of the
training set. This is done by first using the deep neural network to generate the feature
embedding for the image. Then the closest label in the aligned semantic feature space
is chosen as the class label [35].

One-shot learning is a variant of the zero-shot learning problem, except that a
single exemplar is provided for each class. This makes the problem significantly
more tractable, as it relies on the semantic structure of the image embedding and
does not also require alignment between the embedding spaces of the image and text
modalities.

One of the most popular methods for zero-shot learning is the DeViSE [35] method.
The DeViSE method learns an image embedding that is similar to the embedding of the
image labels by fine-tuning a pretrained network to learn a dense feature embedding
instead of the original classification task. That method achieved impressive results,
however there is room for improvement. Enforcing the embedding space to have
orthogonal basis could potentially use a simpler Euclidean loss function, instead of
the rank loss formula.

CHAPTER 6. FEATURE EMBEDDING 91

6.2 Learning Deep Feature Embeddings on Euclidean man-
ifolds

In its simplest form a CNN consists of a feature extraction convolutional network
followed a linear classifier at the head of the network. One benefit of CNNs is that
they are trained in an end to end manner, thus the maximum benefit can be extracted
from each stage. However, the features learned by CNNs can be further improved for
robustness. A robust feature representation is one that minimizes differences between
samples of the same class and maximizes differences between samples from different
classes.

We present a method referred to as DEFRAG [101], inspired by Linear Discrimi-
nate Analysis (LDA) [33]. Our approach shapes the feature representation through a
novel auxiliary loss function, described in Section 6.2.1, and a constrained optimiza-
tion problem that involves the Grassmann manifold, described in Section 6.2.2.

An auxiliary loss, Laux, is secondary metric that is added to the loss from the
main training objective, Lclass, for the optimizer to minimize, as

L = LClass + λauxLaux (6.5)

Where λaux is a mixture parameter used to balance the impact of the auxiliary loss.
In this work the main loss objective is the traditional categorical cross-entropy loss
which learns to classify the samples, and a proposed new auxiliary loss function,
the Silhouette Loss. Figure 6.2 illustrates the clustering characteristics of DEFRAG
compared to other methods. The contributions of this approach are the following:
We introduce a new auxiliary loss functions based on the Silhouette clustering metric
which encourages tight intra-class clustering and inter-class separation. We propose
an orthogonalization step which retracts the optimized feature projection matrix back
on the Grassmann manifold.

The DEFRAG method consists of two components: an auxiliary loss component,
and a retraction of the feature projection on the Grassmann manifold. The auxiliary
loss is designed to encourage better feature clustering of samples based on their class
labels, while the Grassmann manifold retraction ensures the features are in a space
suitable for the L2-norm similarity metric. A side benefit of our DEFFRAG training
approach is that due to the robustness of the features generated, smaller networks can
be used. The two components of DEFRAF are discussed next.

CHAPTER 6. FEATURE EMBEDDING 92

6.2.1 Clustering Auxiliary Loss

Robust feature representations are important for classification, as they increase the
classifier’s ability to generalize across different datasets and operating conditions. We
formulate robust feature representations by seeking a feature space that encourages
tight clusters for samples in the same class and large separations between clusters
from different classes, for some similarity metric. Training deep networks with only
the classification loss does not inherently encourage feature clustering.

Our auxiliary loss function is the Silhouette loss Lsil shown below:

LSil =
1

m

m∑
i=1

‖xi − cyi
‖22

arg minj 6=yi‖xi − cj‖22 + δ
(6.6)

The Silhouette loss is inspired by the Silhouette score [116], which is used to
assess clustering performance. The Silhouette loss is different from the center loss and
contrastive center loss in that is focuses on separating classes that are close to each
other, instead of maximizing the overall class separation. This criterion is important
because it forces the network to focus on classes that are hard to separate and results
in better classification performance. To reduce computation, we use a running average
method to update the class centers as suggested in [150].

6.2.2 Grassmann manifold Retraction

The set of orthogonal spaces in RN form a Grassmann manifold. We therefore
formulate our feature learning process as an optimization problem on the Grassmann
manifold. Our optimization process uses the Proxy-Matrix method described in
Chapter 3. In this instance we optimize our classification and auxiliary losses instead
of the loss functions developed for dimensionality reduction in Chapter 4. This is
done by using a linear activation function for the last layer of the network, reducing it
to a linear projection with projection matrix M. The update step of the Grassmann
optimization is done using the PMO method. This process enforces features that
satisfy the Silhouette auxiliary loss criterion and reside in an orthonormal space.

6.3 Feature Learning Experiments

We performed a series of experiments by training a deep neural network using the
proposed DEFRAG method and compared the results with the state of the art deep

CHAPTER 6. FEATURE EMBEDDING 93

Figure 6.1: Example images from MNIST (top row) and Fashion MNIST (bottom
row).

networks. The network architecture of our choice is small network with only two
convolutional layers and three fully connected layers. The network parameters are
given in Table 1. This network choice is intentionally simplistic so that the benefit of
the DEFRAG method is made apparent.

Table 6.1: Network Architecture
Stage Layer Type Size

Convolution Stage 1
Conv 32 (5x5)

Pooling 2x2

Convolution Stage 2
Conv 256 (5x5)

Pooling 2x2
Fully Connected ReLU 256
Feature Representation ReLU/Linear 8
Output SoftMax 10

We used standard classification datasets in these experiments including: MNIST
[81] and Fashion MNIST [154]. Example images of the datasets used are shown
in Figure 6.1. In Section 6.3.1 we show quantitative comparisons of the proposed
DEFRAG method to standard deep networks on the Fashion MNIST dataset. Section
6.3.2 presents qualitative results of feature clustering with the MNIST [81] dataset.

6.3.1 Fashion MNIST Experiments

The Fashion MNIST dataset [154] was developed as a significantly more challenging
alternative to the original MNIST dataset [81]. Like the original MNIST dataset,
Fashion MNIST dataset consists of 60,000 training samples and 10,000 test samples
from objects in 10 different classes. The objects in the Fashion MNIST set are ten
different articles of clothing: T-Shirt/Top, Trouser, Pullover, Dress, Coat, Sandals,

CHAPTER 6. FEATURE EMBEDDING 94

Shirt, Sneaker, Bag, Ankle boots. This dataset is significantly harder than the original
MNIST dataset. In crowd-sourced experiments on a subset of 1000 examples, humans
were only able to achieve 83.5% accuracy. The current state of the art performance on
the dataset without augmentation is only 93.7%. Examples form the Fashion MNIST
dataset are shown on the bottom row of Figure 6.1 and the experimental results are
summarized in Table 6.2.

Our experiments with the Fashion MNIST dataset illustrate the impact on classifica-
tion accuracy of both DEFRAG components, the Silhouette loss and orthogonalization
step. We first trained the network using only the classification loss traditional ReLU
activation function to get a baseline, Sparse (ReLU) in the table. We then considered
a linear activation function for the feature representation layer, as well as Silhouette,
Center and DEFRAG. The results in Table 6.2 demonstrate that the DEFRAG method
outperforms the other methods with a relative reduction in error of 7% compared
the original network. The results also demonstrate a significant improvement using
just the Silhouette loss, however, DEFRAG shows improvement as a result of the
orthonormal feature space.

Table 6.2: Fashion MNIST Results
Network Accuracy Parameters
GoogleNet [17] 0.9370 5M
VGG16 [18] 0.9350 26M
HOG+SVM
[19]

0.9260 N.A.
Other Works

Human [20] 0.8350 N.A.
Sparse (ReLU) 0.9347
Linear 0.9369
Silhouette 0.9375
Center 0.9371
Contr. Center 0.9368

Our Network

DEFRAG 0.9393

1.4M

Our experiments demonstrate that state of the art results can be achieved on the
Fashion-MNIST dataset with a simple network that benefits from a feature space
clustering regularization technique. The accuracy achieved by our network is better
than the results achieved with the much larger GoogLeNet [136] and VGG16 [130]
architectures. In comparison with the other two architectures, our network has 24 and

CHAPTER 6. FEATURE EMBEDDING 95

1.4 times fewer parameters, respectively. These comparisons are based on the updated
results reported in [154].

(a) (b)

(c) (d)

(e)

Figure 6.2: Visualization of feature representations in 2D trained on the MNIST
dataset using a combination of Classification Loss and Auxiliary Loss. Features are
learned using (a) Softplus activation from classification loss only; (b) linear activation
function; (c) center loss [150]; (d) contrastive center loss [111]; (e) our DEFRAG
method.

6.3.2 Qualitative MNIST Experiments

The MNIST dataset serves as a useful tool in understanding the behavior of the
network. In this chapter, we qualitatively investigate the clustering behavior of the

CHAPTER 6. FEATURE EMBEDDING 96

proposed method. To visualize the clustering behavior the dimensions the feature
representation was reduced to two, we replaced the fully connected layer with a layer
that had only two neurons, and the resulting features were plotted in Figure 6.2. The
X-axis corresponds to the response of the first unit and the Y-axis corresponds to the
second unit.

A few observations can be made on these results. Firstly, it is clear that the
SoftPlus activation function is not ideal for classification. This was confirmed by the
results where the SoftPlus implementation achieved only 88.6% accuracy on the test
set while the other methods achieved classification accuracy of over 99.0%.

Secondly, the plots of Figure 6.2 show that auxiliary cluster losses have a signif-
icant impact on the clustering behavior of the network. The linear implementation
forms linearly separable clusters for each class, however, the intra-class variance is
much higher than the inter-class separation. We measured the separability of each
method by both the Silhouette score or the ratio of average inter- to intra-class dis-
tances. In both of these metrics the DEFRAG method outperformed all other methods.
The DEFRAG method outperformed the center loss, the second-best method, with a
16% reduction in the Silhouette score and 13% in the distance ratio.

6.4 Remarks

We believe the area of deep feature embeddings offers a lot of potential for advance-
ments through application of the Grassmann concepts proposed in this work. One
avenue for additional research is finding new auxiliary loss function that encourage dif-
ferent types of behaviors of the feature embeddings learned with deep neural networks.
These image embeddings can be useful in many applications where labeled data is
limited such as visual object tracking and domain adaptation. Another application of
interest is using the DEFRAG method in the area of out of distribution detection. The
detection of input samples that are from a significantly different distribution than those
those in the training set is important to provide a confidence of a networks prediction.
If the feature representation extracted from the network is significantly different than
the features from the training set the network should not make a prediction at all,
because it will likely be wrong. We believe that the improved clustering and reduced
feature manifold distortion of DEFRAG makes it well suited for this problem.

Chapter 7

Domain Adaptation

Domain Adaptation (DA) is process of adapting a classifier pre-trained on a specific
dataset, the source dataset, to a separate dataset, the target dataset. The problem
domain adaptation methods attempt to mitigate is known as the covariance shift,
the difference between the data in different datasets. Covariance shifts can result
from many different sources: difference between imaging sensors, image resolution,
environmental conditions, and view point to name a few. The most common instance
where DA is used is in situations where there is a large amount of labeled training
data from a specific data source. However, the classifier is intended to be used on data
from a different dataset that does not have as much labeled data. In these instances a
classifier can be trained in the source dataset, with a large amount of labeled training
data. Then the pretrained classifier can be adapted to the unlabeled target domain, the
data the classifier is intended to be used on, using a DA method.

Domain adaptation has gained increased interest in recent year because of the
importance of adaptability for methods that are deployed in real world applications. In
the past 10 years computer vision and machine learning methods have been applied in
many more commercial products including automatic copyright detection on YouTube
[63], automatic face identification by Google [123], and traffic monitoring from
Unmanned Aerial Vehicles (UAVs) [69], to name a few. A key factor that determines
if methods are ready to commercial application is their robustness/adaptability to new
data from potentially different domains. Many modern datasets such as IMAGENET
[25] and MS-COCO [88], attempt to minimize the impact of covariance shift by having
a large variety of samples in the training set that cover many of the environmental
conditions faced by real world applications. However, it is difficult to fully capture all

97

CHAPTER 7. DOMAIN ADAPTATION 98

of the different conditions or imaging sensors encountered in the real world.

7.1 Domain Adaptation Background

Due to the importance of robustness and adaptability to new data for commercial
applications there exists a large body of work in the area of Domain Adaptation (DA).
This section provides background on the most important methods related to this work.
The approaches to domain adaptation can be grouped into two primary categories:
supervised and unsupervised methods. Supervised methods adapt to a new domain
by using a small set of labeled data in the target domain. This is sometimes referred
to as semi-supervised training depending on the size of the adaptation set. During
unsupervised DA, the classifier must adapt to a new dataset without any knowledge of
class labels for the target samples.

The choice of feature representation used the source and target data is crucial for
robust domain adaptation. If features are not similar across domains it will be difficult
to transfer knowledge from the source domain to the target domain. While traditional
features, such as Scale-Invariant Feature Transform (SIFT) [92] and Histogram of
Gradients (HoG) [22], have been used in multiple domain adaptation works. As with
many other areas of computer vision and deep learning most recent domain adaptation
works focus on adapting the features extracted using deep neural networks.

Fine-tuning a pre-trained network is the most commonly used method for super-
vised domain adaptation, [28]. However, fine-tuning based methods often face the
problem of overfitting to the small adaptation set. Thus, most work in the field of
supervised domain adaptation has focused on developing an adaptation methodology
that allows the network to adapt to the new data without over-fitting. Various strategies
have been considered to minimize overfitting including training only a subset of the
network layers, reducing the learning rate, and introducing dropout to increase regu-
larization. The conclusion is that there is no single optimal approach for fine-tuning a
network. Each adaptation problem is unique and thus the optimal approach depends
on the specific conditions.

This work primarily focuses on the unsupervised domain adaptation problem,
because this problem is more challenging and most commonly faced when real world
situations. Unsupervised domain adaptation is a particularly difficult task, as there are
no labels for the target domain data that can be used to retrain the classifier. There
have been a large variety of methods proposed for domain adaptation which take
different approaches to solving the adaptation problem. In this section we categorize

CHAPTER 7. DOMAIN ADAPTATION 99

the methods based on which part of the feature extraction and classification pipeline
they alter to adapt to the target domains. Each method can be placed into one of four
categories: methods that adapt the feature extractor, methods that adapt the feature
after extraction, methods that retrain the classifier, and lastly method that alter both
the feature extractor and the classifier.

Domain adaptation methods that adapt the feature extraction method aim to
increase the similarity of the features between the domains [37], [146], [38], [87]. This
group can further be broken down into two sub-categories based on learning symmetric
vs. asymmetric feature mappings for the source and target domains. Methods which
learn symmetric feature mapping for source and target domains, such as [37], postulate
that better features are learned by training on both domains simultaneously rather
than on each domain separately. However, works by [75] and [135] have shown
independently that a symmetric feature mapping/extraction is likely not optimal.
Instead it is suggested that learning an asymmetric feature extractor for the source
and target domains produces features that are better suited for domain adaptation.
Thus, methods such as ADDA [146] and deep CORAL [135] learn asymmetric feature
extraction methods that result in similar features from source and target domains.

While the first group of domain adaptation methods primarily focuses on deep
learning base applications, the second group can be applied to both traditional hand-
crafted features and deep features. This group alters the features after they have
been extracted. These methods learn a transformation that maps both the source
and target features into a unified feature space. The first method to generate a linear
transformation from the target feature domain to the source feature domain was the
domain invariant transform method [120]. Another method that maps source features
space to the target feature space was Grassmann Subspace Sampling [42]. This method
interpolates a series of feature subspaces between the source and target domains on
a Grassmann manifold to transfer classification knowledge from the source to target
domain. An asymmetric transformation of the target features to the source domain
is learned in [40] by using landmarks in the source domain to transfer to the target
domain. Gong et al. suggest that it is not always the best solution to use all the
source data to train the feature transformation. Instead, an iterative training method is
proposed where a subset of the source samples are selected for training which closely
match the target distribution. Thus, during the course of training the subset of the
source samples that is used for training grows as the two feature spaces become more
aligned. These methods do not require any retraining of the classifier because the
target features are adapted to match the source features.

CHAPTER 7. DOMAIN ADAPTATION 100

The third group of domain adaptation methods leave the features unchanged,
instead focusing on retraining the classifier based on the small set of label data
in the training domain. The Adaptive-SVM [157] is an adaptation method which
trains Support Vector Machines (SVMs) to maximize the classification accuracy in
both domains, to minimize overfitting the limited labeled set in the source domain.
The method of fine-tuning a pre-trained deep network [28] is a popular adaptation
technique for deep neural networks. The premise behind fine-tuning a neural network
is that if a training dataset is sufficiently large and diverse, the features learned of the
course of training should be broadly applicable irrespective of target classification
task or imagery. Thus, Decaf [28] proposes that by retraining only the last few fully
connected layers of a neural network, the network can be adapted to a new task or
imagery.

The fourth and final group of domain adaptation algorithms is a group that alters
both the features extraction and classification components of the pipeline. The most
common approach in this group is to learn a feature transformation from the two
domains to a uniform subspace then learn a classifier based on the labeled examples
in the unified subspace, such as [126], [32]. A popular DA method is Subspace-
Alignment [32], which aligns the principal components for the source and target
features. In SA, separate subspaces Rs and Rt are learned for the features extracted
from the source and target domains, respectively. In [32] the subspaces were extracted
using principal component analysis as:

R∗S = arg max
RS∈G

(‖XSRS‖) (7.1)

for the source domain and:

R∗T = arg max
RT∈G

(‖XTRT‖) (7.2)

for the target domain. The low-dimensional representation of the target features are
then generated using:

ST = XTR∗T (7.3)

However, the subspace of the source features, RS
∗, is not used directly to generate

the aligned low-dimensional representations. Instead, the features are aligned with the
target domain using:

SS = XSR∗SR∗S
TR∗T (7.4)

CHAPTER 7. DOMAIN ADAPTATION 101

Once the source subspace is aligned to the target subspace a classifier is trained based
on the labeled source domain samples. It was found that transforming the source
feature to the target domain made the classifier more robust to novel examples from the
target domain. More recently methods have been developed which adapt the feature
extractor and classifier simultaneously, such as [21] and [28].

7.1.1 Deep domain adaptation

Due to the prevalence of deep learning techniques in the fields of machine learning
and computer vision it is particularly important to focus on methods developed for
deep learning based domain adaptation. One of the first deep learning based domain
adaptation methods to be developed was fine-tuning [28], a supervised domain adap-
tation method which uses a small subset of labeled samples in the target domain to
adapt a pretrained network. However, most recent works have focused on the problem
of unsupervised domain adaptation for deep learning, with many methods adapting
the feature extraction network. Some deep learning methods match the statistical
distribution of source and target features explicitly [134], while other use different loss
functions to adapt the feature extraction network in Deep Domain Confusion [147],
Deep Adaptation Networks [91], and Deep Transfer Networks [162]. Each of these
methods require the target data at training time, even though they do not have access
to the target domain labels. This is different from the method proposed in this work
which aims to adapt a network already trained on the source domain to a new target
domain.

Recent work in the area of deep domain adaptation has focused on matching
the statistical distributions of the feature from the source and target domains. The
primary difference between these distribution matching methods are the different
similarity metrics used to measure the similarity between the feature distributions.
Sun et al. [134] for example propose using second order statistics to “whiten” and
“recolor” the target features to match the source features by minimizing what their
proposed CORAL loss. This method was then extended in [135] to retrain the entire
target feature extraction network based on minimizing the CORAL loss. Adaptive
Batch Normalization (ABN) [87] continues to update the statistics in batch normal-
ization layers for the target data inorder to leverage the inherent whitening of batch
normalization layers. By doing so ABN effectively normalizes the features in the
source and target domains in a simple easy to implement manor. In [34] the authors
propose the association loss function as a better similarity metric than the Maximum

CHAPTER 7. DOMAIN ADAPTATION 102

Mean Discrepancy that is commonly use. In [45] the authors propose a student-teacher
network configuration for training on the source and target domains. The student
network (source domain) is trained to on both classification and embedding similarity
and the teacher network (target domain) is trained to produce similar embeddings.

Adversarial Learning is a growing area of deep learning that recently received
a lot of attention [41]. Adversarial methods iteratively training two networks with
opposing objectives to learn optimal feature representations. These networks were
originally developed to randomly generate synthetic imagery that was “believable”
or looking similar to actual imagery. These networks have been used for domain
adaptation, first in DANN [37], [38] and later in ADDA [146]. Adversarial learning is
used for domain adaptation to learn feature representations for the source and target
domains that are indistinguishable, and therefore theoretically robust across domains.
The primary difference between these two methods is that whether or not the weights
are shared for the source and target feature extraction network. The DANN method
uses a single symmetric feature extraction network, where the same weights are used
to extract the features form the source and target domains. Conversely, the ADDA
method uses an asymmetric feature extraction configuration, where separate feature
extraction networks are trained for the source and target domains.

Another group of domain adaptation techniques are known as Self-learning domain
adaptation methods. Self-learning domain adaptation methods are closely related to
the unsupervised learning algorithm proposed by Yarowsky [159]. These methods
assumes that the source and target domains are close enough so that the classifier itself
could be used to retrain on the target domain. These methods use “pseudo-labels” [83]
to bootstrap the network and adapt based on its own predictions. Asymmetric Tri-
training (ATT) [121] relies on a similar method for generating labels for the data
except the labels are generated based on the results from three independently trained
networks, to increase the accuracy of the “pseudo-labels”. Both techniques use
Inductive-Learning (IL) to adapt to the source domain.

A different subcategory of self-learning techniques uses Transductive-Labeling
(TL) to adapt the network to the new domain. Transductive-labeling transfers the
label from a sample in the source domain to a sample in the target domain to retrain
the network. A common transductive-labeling approach is to use the dominant label
of the closest K sample from the source domain, in feature space, to each sample
from the target domain [125]. Information-Theoretical Learning of Discriminative
Clusters (ITLDC) [128] proposes a transductive learning method that adapts both the
feature space representation and the classifier, based on the clustering characteristics

CHAPTER 7. DOMAIN ADAPTATION 103

of the target data. ITLDC assumes that optimal features for both the source and target
domain will generate tightly grouped clusters, based on class boundaries. Additionally,
the Shi et al. assume that the clusters for the source and target domains will exist in
close geometric proximity, thus this behavior can be used to train the network for the
target domain. These techniques work well when the source and target domains are
relatively similar, i.e. the geometric distance between the source and target features are
close but fail when there is a stark difference between the source and target domain.

7.2 Domain Adaptation Proposed Work

Figure 7.1: Overview unsupervised domain adaptation of deep network to the target
domain. Adaptive batch normalization is used for training and adaptation in both
source and target domains. Subspace alignment is performed for source and target
features on the LPP manifold and the features are clustered to determine if label
transfer is appropriate based on a clustering criterion. Label transfer is performed by
assigning labels from the closest source cluster to each target cluster and using them
to retrain the network.

We propose manifold-Aligned Label Transfer for Domain Adaptation (MALT-
DA) [103] a new approach for unsupervised deep domain adaptation based on cluster
association between source and target domains, as outlined in Figure 7.1. The first
step in our approach is to use Adaptive Batch Normalization [87] to produce features
that are similar between source and target domains. The features are then clustered in
to groups, with each group ideally consisting of only elements of a specific category.
The distributions of these groups are compared using the silhouette distance [117] as a
clustering metric to determine if the target features are well suited for label transfer.
The second step of our method transfers the labels from the source clusters to the

CHAPTER 7. DOMAIN ADAPTATION 104

target clusters to provided labels to train the classifier on target domain samples. Each
step of the MALT-DA method is discussed in the rest of this section.

7.2.1 Center-loss feature training

The standard method for training a neural network is to use the cross-entropy loss of
the output of the SoftMax layer and the one-hot encoded ground-truth label vectors.
This loss encourages feature representations, layer before the SoftMax layer, that are
linearly separable, however, this does not encourage tight clustering of the classes.
Well-clustered feature representations are important to insuring generalization of a
classifier across domains. These tight clusters are particularly important for domain
adaptation methods, such as the one proposed in this work, that use the clusters
behavior to adapt to the target domain.

In order to demonstrate how the SoftMax loss alone does not encourage well
clustered features we trained a network with a two-dimensional feature representation
and plotted the feature responses directly. We compare the SoftMax-trained features
with features resulting from a network that was trained with an auxiliary loss that
encourages tightly clustered features, the center-loss [150]. The center-loss was
previously proposed for learning better spatially consistent feature representations
for tasks that rely on distance comparisons between features, i.e. k-NN matching for
human face identification. In this work we leverage the center-loss to learn better
feature representations that are more well-suited for our domain adaptation method.

Quantitative results comparing the SoftMax and Center-loss networks trained
on the MNIST [82] dataset are shown in Figure 7.1. Though both the SoftMax and
Center-loss networks achieved the same classification accuracy on the MNIST test
set, 99.65%. There were significant differences in the feature representations when
inspecting the cluster separation metrics in Table 7.1. In this table the accuracies for
each network are presented as well as the ratio of the distance between each point to
its class center and all other class centers. A better metric of cluster separability, the
silhouette score [117], is the ratio of the average distance of each point to its class
center and the closest class center that the point does not belong to.

In Table 7.1 we present the Inter-Intra class ratio and silhouette score because they
are good indicators of the difference in class separation between the networks. The
center-loss network clearly outperforms the SoftMax network with a greater than 30%
improvement in each metric. This translates to each point being on average 46 times
closer to its class center than all other classes, and 37 times closer on average than

CHAPTER 7. DOMAIN ADAPTATION 105

Table 7.1: Quantitative results for SoftMax and Center-loss networks with 2D feature
representations.

MNIST-Network
softmax center

Accuracy on MNIST Test-set 99.65% 99.65%
Inter-Intra class ratio. 0.0312 0.0216
Silhouette Score 0.0382 0.0265
Accuracy on USPS Test-set 91.69% 96.60%

the closest point, whereas the separation for the SoftMax network is 32 and 26 times
respectively.

We propose that adding one of our auxiliary loss functions proposed in Section
6.2, such as the silhouette loss, to the SoftMax loss while training our network on
the source domain, we learn features that have a higher separability than the SoftMax
loss alone. We suggest that the increased separability positively impacts the network’s
ability to generalize across domains. This hypothesis is confirmed by the data in the
last row in Table 7.1 where we present the test accuracy of the networks, un-adapted,
on the USPS test-set. The center-loss network has a relative reduction in error rate of
59%.

7.2.2 Adaptive Batch Normalization

The first and often most important step in domain adaptation is to adapt the features
for the target domain to match those of the source domain. This could be done in two
ways: adapt the feature extraction network, or align the features after extraction. The
work in [146], [38] focuses on adapting the feature extraction method for the target
domain in a way that the two sets of features are in the same subspace. In this work we
opt to align the features from the two domains using two alignment techniques. Firstly,
we normalized the features throughout the network using adaptive batch normalization,
as done in [87]. Then, after extraction, we aligned the dimensionality reduced feature
spaces using subspace alignement [32]. This method was selected because it allowed
for quick alignment of the two domains and we preferred to alter the feature extraction
network as part of the classifier update procedure instead of the feature alignment stage.
We also found retraining the feature extraction network using adversarial training, as
was done in [146], [38], proved to be a delicate process that could easily fall into a

CHAPTER 7. DOMAIN ADAPTATION 106

degenerate state.
In our framework, we do not explicitly retrain the feature extraction network,

but instead we rely on adaptive batch normalization for a more effective method
of ensuring that the source and target features exist in the same subspace. The
difference between ABN and traditional batch normalization is that normally the
whitening statistics are learned at training time and frozen at test time. However, as
suggested in [87], by allowing the batch normalization layer to continue to adapt at
test time one can achieve a domain adaptation without any additional training. The
process of normalizing the activations in each layer of features for the mini-batches
inherently aligns the distributions of the source and target domains, such that both
have a zero-centered normal distribution. This approach has improved results on
domain adaptation, without requiring any parameter tuning or re-training. Our results
in Section 7.3.2 demonstrate how significant a role ABN plays in our domain adaption
method, by reducing the classification error on the target data by an average of 30%
without any retraining.

7.2.3 Subspace Alignment on the LPP manifold

In our work, we found that while ABN was useful for feature conditioning, the features
of the source and target domains were not closely aligned. In our initial investigation
[100] we used a variation of Subspace-Alignment [32] for aligning the subspaces
of the two domains based on the basis vectors obtained using PCA [109], [54]. We
found that the combination of dimensionality reduction and subspace alignment both
positively impacted the clustering behavior for each domain and improved the cluster-
correspondence between domains.

There is, however, one limitation to using PCA for dimensionality reduction. Since
the objective of PCA is to maximize the variance of the overall data reconstruction
based on the top principal components, the local neighborhood structure of the data is
ignored, this can adversely affect local clustering. In this work, we utilize LPP which
focuses on preserving the local structure of the data. The local structure of the data is
encoded in a graph where the nodes represent each data point and the weighted edges
between the nodes represent relative interactions based on some distance between
these data points. There are several variations on methods that form this graph, e.g.
one forms edges between nodes if their Euclidean distance is below a certain threshold,
while another uses a k-Nearest Neighbor (k-NN) search to find the closest k (k=15)
neighbors for each node and forms edges between them. Additionally, there are two

CHAPTER 7. DOMAIN ADAPTATION 107

methods for calculating the edge weights for the graph: the simplest method is a
binary weighting scheme, where all edges between nodes that are connected based on
the previous criteria are given a weight of 1 and all other edges are assigned a weight
of 0. A more advanced method of determining the edge weights uses a heat kernel to
calculate the edge weight wi,j based on the relative distance between two samples, xi
and xj , as follows:

wi,j = e
‖(xi−xj)‖

τ (7.5)

Where τ is a constant parameter that is tuned to the given dataset. In this work, we
selected a simple binary weighting scheme based on the k-NN for each node, because
this required the fewest number of parameter to be tuned for each dataset.

Once the weight matrix is generated, a diagonal matrix, D, is formed as D = vI .
where I is the identity matrix and v is a vector whose entries are the summation of the
rows of the weight matrix:

vi =
∑
j

wi,j (7.6)

The calculation of the D matrix was further simplified because of selecting a
binary weighting scheme with the k-NN neighbor selection. Thus, all the rows will
have k entries with weights of 1 and the remainder will be zeros. Therefore, D is
simply D = kI .

After D is generated, it is used to calculate the Laplacian of the weight matrix as:

L = D −W (7.7)

The Laplacian of the weight matrix is used to find the optimal linear transformation
of the features, a, the preserves the data’s local structure by solving:

arg min
a

aTXLXTa

s.t. aTXLXTa = 1
(7.8)

Where the columns of X are made up of the features vectors of all the samples. This
can be formulated as a generalized eigenvector problem:

XLXTa = λXDXTa (7.9)

CHAPTER 7. DOMAIN ADAPTATION 108

Where λ is the corresponding eigenvalue for each eigenvector that solves the equation.
The linear transformation matrix can then be formed but selecting eigenvectors with
the highest corresponding eigenvalues and forming the matrix A by ordering the
eigenvectors as columns from highest eigenvalue to lowest.

The work in [163] demonstrates the improvement in clustering behavior of LPP
relative to PCA or LDA for face recognition. These conclusions were later expanded
to demonstrate the improvement of LPP relative to PCA for k-means clustering in [24].
Our experiments confirmed the previous results by demonstrating that clusters formed
based on the LPP subspace had a higher purity than both the original features and the
features in the PCA subspace. Once the transformation is calculated for the source
and target domains independently, we align the subspaces based on LPP Subspace-
Alignment [112]. This differs from a previous approach [100] where we slightly
modified the subspace alignment method [32] to align the feature subspaces to the
source domain in order to reduce the number of iterations of the clustering algorithm.
In this work we found that, when using the LPP manifold, aligning the target subspace
to the source subspace generally did not harm the clustering behavior and improved
the cluster correspondence between the source and target clusters. We followed the
procedure in [112] to calculate a transformation matrix, M , that optimally aligned the
subspaces by solving:

arg min
M

‖MAS −AT ‖2F − β‖M‖2F (7.10)

where the first term minimizes the disparity between the source transformation AS
and the target transformation AT . The second term is a regularization term regulated
by a scaling constant β. A closed from of the solution is given as:

M = ATA
T
S (ASA

T
S + βI)−1 (7.11)

The original, high dimensional, features from the source and target domains, XS

and XT respectively, can be transformed to the low dimensional aligned subspace by:

YS
T = (MAS)TXS (7.12)

YT
T = AT

TXT (7.13)

7.2.4 Feature Clustering using Gaussian Mixture Model

After the source and target subspaces are aligned, the next step in our process is to
cluster the features from both domains in to C clusters, where C is the number of

CHAPTER 7. DOMAIN ADAPTATION 109

classes. Ideally, if the feature extraction network is robustly trained, the features in
both domains will naturally form individual clusters for each of the classes. Our work
leverages this assumption to improve label transfer. In [100], we used a k-Means
algorithm to cluster our data. However, we found that the hard cluster boundaries
produced by this method did not accurately represent all of the data. Because the
network is not initially adapted to the target domain it is quite likely that the extracted
features will not form tightly grouped clusters that are easily separable. Instead,
clusters might be closer together with limited overlapping.

We consider a Gaussian Mixture Model (GMM) [24] to form clusters, such that
each, in principle, corresponds to a unique class. We used two separate processes to
calculate the Gaussian Mixtures for the source and target domains. For the source
domain data, we leverage the sample labels and can thus calculate a single best fitting
Gaussian for each subset based on its class labels. For the target domain, however, we
don’t have the labels to separate the data. Thus, we fit a GMM with C components,
where C is the number of classes. The GMM uses an Expectation-Maximization
(EM) [24] procedure to determine the components of the Gaussian Mixtures. During
this process the optimal mean (cluster centers), covariance (shape), and weights of
each of the C Gaussian mixtures must be calculated. We used K-Means clustering
to provide initial parameters for the Gaussian mixtures. The first step of the EM
algorithm, the expectation step, where the probability of each point, xi, being a
member of each cluster, Cj , as P (xiCj |xi). After the cluster probabilities for each
of the points are calculated the mixture parameters are recalculated based on the new
probabilities. This process is iterated until the algorithm converges to a stable solution.

In an effort to simplify the cluster correspondence process between the two do-
mains, we impose an additional constraint on the GMM estimation. We enforce
diagonal covariance matrices, i.e. we assume that the dimensions of the features in
the LPP space are independent and the covariance between them is 0. We found that
imposing this constraint had little impact on the cluster purity relative to an uncon-
strained covariance matrix. This does, however, significantly reduce the complexity
of the cluster correspondence calculations, which makes it worthwhile to impose this
constraint.

7.2.5 Dual-Classifier Pseudo-Label Filtering

In [100] a test was performed to determine the fitness for adaptation of a given set of
target domain samples prior to doing any domain adaptation. The test was a binary

CHAPTER 7. DOMAIN ADAPTATION 110

decision based on the silhouette score [117] of the target dataset. This was done to
determine if the features extracted from the target dataset formed well defined clusters
that could be used to transfer labels from the source to target datasets. We found that
if the target data did not form well defined clusters in the feature space, our method
would degrade classification performance. Thus we developed a test prior to running
adaptation to terminate the process if it would not be beneficial.

The next step in our work is to develop a domain adaptation method that would
work in cases where the target domain forms ill-defined clusters. To do this we
replaced the binary yes/no perform adaptation test with a data-filtering method to only
adapt based on confident samples. This procedure is inspired by the approach in [121]
where they required the agreement of two independent classifiers for the pseudo-labels
to be used to train the adapted target network. In our work instead of training two
separate classifiers, we propose using the original source classifier as one source for
the pseudo-labels and the cluster assignment as the second source. If the pseudo-labels
from each classifier match then the target sample is used for adapting to the target
domain. If the labels do not match then the sample is not used for this adaptation
process.

Our approach is novel because instead of relying on two classifiers of the same
type, it uses two different types of classifiers, each focusing on different aspects of
the data. The original classifier is trained to learn a linear separation of the high
dimensional feature representations, whereas the second classifier is trained on the
clustering behavior of the subspace aligned lower dimensional feature representations.
When these two methods of classification agree, there is a high confidence that the
target data is well-aligned with the source data, and thus the pseudo-label for the target
data is correct.

7.2.6 Label Transfer via manifold clustering

The focus of our work is on retraining the classifier to adapt to the target domain.
Unlike many previous works in unsupervised domain adaptation which focus solely
on aligning the distributions of the high-dimensional feature representations of the
source and target examples. Previous works assume that if the target and source
feature distributions are perfectly aligned, the classifier should perform equally well
on the target and source samples. Unfortunately, this is not always the case because
there can be multiple transformations that align the features from the two domains.
The work in [6] has shown that the optimal feature transformation belongs to the set

CHAPTER 7. DOMAIN ADAPTATION 111

of transformations that perfectly align the two distributions. However, there is no
guarantee that the transformation used to align the two distributions is the optimal
transformation. In our experience, we have found that the blindly aligning the two
domains is just as likely to be destructive as it is to be beneficial to domain adaptation.
The problem is that feature alignment is not enough for domain adaptation. The
feature adaptation must be optimized for both aligning the two domains and the
classification task. However, the difficulty is that there are no labels for the target data,
thus traditional methods for retraining deep networks, such as [28], cannot be used.

Once the GMMs for the two domains are calculated, the next step is to form one-
to-one correspondences between the clusters in the two domains. We propose using
the Kullback–Leibler (KL) divergence [76] to determine the optimal correspondence
between clusters in the target domain and clusters in the source domain. The KL
divergence between two distributions is a measure of the information gain from using
one distribution instead of another. If the two distributions are quite similar this
information gain will be low, or 0 if the distributions are identical. If the distributions
are dissimilar there will be a greater amount of information gain, thus the divergence
will be higher, and completely unique distributions have a divergence of 1. It is
important to note the direction of the KL divergence calculation is from the target to
the source clusters, as the measurement does not satisfy the triangle inequality. Thus,
the divergence between a given target cluster and a source cluster is different than the
divergence between the same source cluster and same target cluster.

The KL divergence between two k-dimensional Normal Distributions,N0 andN1,
with means, µ0 and µ1, and covariances, Σ0 and Σ1, respectively, is given as:

DKL(N0||N0) =
1

2
Tr (Σ−1

1 Σ0)

+
1

2
(µ1 − µ0)TΣ−1

1 (µ1 − µ0)

+
1

2
ln

det Σ1

det Σ0
− k

2

(7.14)

This can be simplified because of the diagonal covariance matrix constraints
imposed on the GMM process. The first component can be simplified as:

Tr (Σ−1
1 Σ0) =

∑
j

Σ0,jj

Σ1,jj
(7.15)

CHAPTER 7. DOMAIN ADAPTATION 112

Secondly the inverse of the covariance matrix Σ1 can be calculated by inverting
the elements along the main diagonal,

Σ−1
1 =

{
1

Σ1,ij
if i = j

0 otherwise
(7.16)

Thirdly, the last component can be replaced, as follows:

ln
det Σ1

det Σ0
= ln

∑
i Σ1,i∑
i Σ1,i

(7.17)

The above results in the simplified KL Divergence equation used in this work:

DKL(N0||N0) =
1

2

∑
j

Σ0,jj

Σ1,jj

+
1

2
(µ1 − µ0)TΣ−1

1 (µ1 − µ0)

+
1

2
ln

∑
i Σ1,i∑
i Σ1,i

− k

2

(7.18)

We use this KL divergence calculation to form the optimal on-to-one association
between target and source clusters by greedily selecting the target and source pairs
that have the lowest divergence. This method provides a significant improvement
in the label transfer accuracy, which leads to improved accuracy of the final trained
network using the transferred labels.

7.3 Domain Adaptation Experiments

7.3.1 Network Architecture

For our experiments, we used two separate DenseNet architectures, without the
bottleneck configuration, as proposed in [57]. An example DenseNet architecture is
shown in Figure 2.7. The DenseNet architecture lends itself well to ABN because it
already has a batch normalization layer before each convolution operation, and the
original architecture does not need to be changed to leverage ABN. Unlike the original
DenseNet implementation which pre-whitened the input data, we normalized the input
through a batch normalization layer.

CHAPTER 7. DOMAIN ADAPTATION 113

Figure 7.2: Sample images from different datasets showing variations in the same
category across domains.

We further introduced a fully connected layer after the last global pooling layer in
the DenseNet architecture to aid in the center-loss training by reducing the dimension-
ality of the feature representations. We found that this additional layer has no effect
when training with the SoftMax loss but is important when training with the center
loss.

For the digit classification experiments we used a smaller DenseNet that is 25
layers deep with three dense blocks and a growth rate of 12. We selected this shallower
network for digit classification to reduce over-fitting, as the digits datasets are relatively
small.

The network used for the aerial image classification was 40 layers deep and had
three dense blocks and a growth rate of 12. The network for the aerial datasets is larger
because the task is harder due to more classes, the input images have higher resolution
(256x256 pixels), and the datasets are larger allowing the training of deeper networks.

The networks were trained on the source data for 300 epochs for the MNIST,
USPS, MNIST M datasets and 40 epochs on the SVHN, Syn. Digits, UCM, and AID
dataset. The Stochastic Gradient Decent optimizer was used with a momentum of
0.9, a learning rate of 0.1 which was dropped to 0.01 50% through training and then
again to 0.001 at 75% through training. We used a 20% dropout rate. For the digits
experiments we used a mini-batch size of 256, and for the Aerial experiments we used
a mini-batch size of 64.

After the label transfer procedure, the network was adapted using the filtered label
for 15 epochs using the same learning rate schedule and optimizer as was done for the
original training of the network.

CHAPTER 7. DOMAIN ADAPTATION 114

7.3.2 Digit Classification

In our first set of experiments we tested the proposed MALT-DA method on digit
classification across multiple datasets [82], [61], [107], [37], [38]. Examples from all
5 digit classification datasets can be seen in Figure 7.2. The MNIST [82] dataset is one
of the first digit recognition datasets used in deep learning. It contains 60,000 training
sample and 10,000 test samples of 28x28 black and white examples of handwritten
digits 0-9. The USPS [61] dataset is quite similar to the MNIST dataset; however, the
number of samples is much smaller, and the images are in gray scale.

The works in [37], [38], presented a more challenging digits dataset that was
generated by combining the MNIST images with randomly cropped patches from the
BSDS500 dataset [4]. Since the exact dataset used in [37] and [38] is not released
publicly, we followed an identical procedure to that proposed in their works to generate
a similar dataset that we refer to as MNIST M.

The most recent digits dataset is the Street View House Numbers (SVHN) [107]
dataset in which 600,000 labeled examples are extracted from RGB images, many
include additional digits in the bounding box for each individual digit. The SVHN
dataset is the most diverse and challenging of the digit’s datasets. It is common for
DA methods to work well when adapting from SVHN to a different domain. However,
it is not common for methods to work well transferring to the SVHN domain because
of its complexity. The SVHN dataset is a practically hard dataset because the image
patches often include multiple digits, as illustrated in Figure 7.2.

Another synthetic digit classification dataset is the Synthetic Digits (Syn. Digits)
dataset from [38]. The Synthetic Digits dataset was created using various computer
fonts on different backgrounds with various alterations such as blur, rotations, color,
etc. The dataset was deigned to be a synthetic set that more closely matches the SVHN
dataset, and thus was of a similar size.

Since the MNIST and USPS datasets are single channel images, we duplicated the
single channel in the MNIST and USPS data to simulate RGB imagery, so that they
could be used in our experiments. Additionally, because the other three datasets have
a mixture of light digits on dark backgrounds and dark digits on light backgrounds,
50% of the MNIST and USPS samples were inverted, as suggested in [34]. Note that
this process was not data augmentation, because the number of samples in the dataset
remained the same.

In Table 7.2 we compare the results produced by our method with the results
reported by state-of-the-art DA methods on digit datasets. We consider methods
that do not use data augmentation and methods without tuned parameters for each

CHAPTER 7. DOMAIN ADAPTATION 115

Table 7.2: Accuracy of digit classification datasets.
Source MNIST USPS MNIST SVHN MNIST Syn. Digits
Target USPS MNIST SVHN MNIST MNIST M SVHN
Rev. Grad. [38] 91.11% 74.01% 35.67% 73.91% 76.67 91.09%
DCRN [39] 91.80% 73.67% 40.05% 81.97% - -
G2A [122] 92.50% 90.80% 36.40% 84.70% - -
ADDA [146] 89.40% 90.10% - 76.00% - -
ATT [121] - - 52.80% 86.20% - 93.10%
SBADA-GAN [119] 95.04% 97.60% 61.08% 76.14% - -
SE DA [34] 88.14% 92.35% 33.87% 93.33% - 96.01%
Assoc DA [45] - - - 95.68% 89.53% 91.30%
Transfer. Rep. [124] - - - 78.80% 86.70% -
SA [32] - - - 59.32% 56.90% 86.44%
CORAL [134] - - - 63.10% 57.70% 85.20%
DSN w/ DANN [11] - - - 82.70% 83.20% 91.20%
DSN w/ MMD [11] - - - 72.20% 80.50% 88.50%
MMD [91] - - - 71.10% 76.90% 88.00%
Source 36.05% 10.28% 32.27% 93.68% 58.53% 70.70%
Source+ABN [87] 96.60% 19.59% 60.01% 90.60% 68.86% 81.20%
MALT-DA (ours) 97.81% 10.28% 78.36% 99.38% 66.25% 95.63%

adaptation task, as this keeps the comparison more in the spirit of the unsupervised
domain adaptation task. The results with the highest accuracy are in red and those
with the second highest are shown in bold. These results illustrate that for several
adaptation tasks the proposed MALT-DA method improves significantly on the state
of the art results.

Table 7.2 compares the classification accuracies achieved by our adaptation method
Aa to the results from the network trained on just the source data As as well as other
state of the art DA methods.

The results in Tabel 7.3 show the coverage of the performance gap our adaptation
method achieves relative to training on the target domain as:

Coverage =
Aa −As
At −As

(7.19)

The performance gap coverage is a good metric to compare DA methods across
different works because it is normalized with respect the networks base performance on
the target domain, without any adaptation. In other words, if a more advanced network

CHAPTER 7. DOMAIN ADAPTATION 116

Table 7.3: Coverage of performance gap by the proposed MALT-DA method relative
to training on target domain.

Target
MNIST USPS SVHN Syn. Digits MNIST M

MNIST - 100.1% 70.1% 65.8% 18.9%
USPS 0.0% - 5.7% -0.4% -0.8%

Source SVHN 95.1% 99.8% - 60.8% 39.2%
Syn. Digits 81.2% 83.8% 91.3% - 58.1%
MNIST M 95.7% 59.2% 29.1% 92.0% -

is used for a domain adaptation task it will likely have a higher base performance and
thus most-likely achieve a higher accuracy on the final adaptation task. However, when
the results are normalized using the gap closure metric the impact of the improved
base performance is accounted for. It is clear in this table that for most adaptation
tasks the proposed MALT-DA method covers the majority of the performance gap
between source only and target only training, averaging 57% coverage.

In addition to our quantitative results for the digit classification experiments in
Tables 7.2 and 7.3, we present qualitative results of the features for several adaptation
tasks in Figure 7.3. In this figure we used t-SNE visualization [94] to present a
2D representation of our multidimensional features through our adaptation process.
Each column is a different step in the adaptation process. The first three rows show
adaptation tasks where the proposed method performs well and the last one shows an
instance where the proposed method does not work well.

CHAPTER 7. DOMAIN ADAPTATION 117

Figure 7.3: Feature visualization using t-SNE plots. The two leftmost columns show
the Source (Red) and Target (Blue) features though each stage of the MALT-DA
pipeline. The first column (Left) shows the source and target features, red and blue
respectively, resulting from the un-adapted network with ABN. The second column
depicts the same features after our Subspace Alignment process on the LPP manifold.
The third column shows the only the features from the target domain that passed the
dual-classifier pseudo label filtering, the different colors correspond to the class of
each data-point. The last column displays the visualization of the, unfiltered, features
resulting from the proposed network adaptation method.. Each row corresponds to
a different adaptation problem. First: from MNIST to USPS dataset. Second: from
MNIST to the SVHN dataset. Third: from Syn. Digits to the SVHN dataset. Last:
from USPS the MNIST dataset.

CHAPTER 7. DOMAIN ADAPTATION 118

Figure 7.4: Sample images from the shared classes in the UCM (top row) and AID
(bottom row) aerial datasets. From left to right, the classes are:Farmland/Agricultural,
Airport/Runway & Airplane, Baseball Field, Beach, Dense Residential, Forest,
Port/harbor, Medium Residential, Viaduct/Overpass, Parking lot, River, Sparse Resi-
dential, Storage Tanks.

7.3.3 Remote Sensing Datasets

We considered two remote sensing datasets that were independently developed and
have different class labels that partially overlap. The UCM dataset [158] has 20 labeled
classes whereas the AID dataset [153] has 30 different classes. In total we found 13
common classes between the two datasets. Examples of each of the shared classes for
the UCM and AID datasets can be found in Figure 7.4.

As a means to treat these experiments as a better use case for domain adaptation we
trained each network on the full set of classes on the source domain and only adapted
to the shared classes in the target domain. This might have made the adaptation task
harder because the network was trained to differentiate between more classes than
were present in the target domain, but this is a good example of problems faced when
using domain adaptation.

We present quantitative results for each aerial adaptation task in Table 7.4. The
results in this table demonstrate how the proposed method improves the classification
accuracy on the target domain significantly over the training on the source alone, but
also indicate that there is room for improvement.

Table 7.4: Accuracy of MALT-DA on remote sensing datasets.
Source AID UCM
Target UCM AID
Source only 50.00% 42.17%
LPP SA [112] 58.18% 45.20%
MALT-DA (ours) 58.04% 55.90%

CHAPTER 7. DOMAIN ADAPTATION 119

7.4 Remarks

In this chapter, we present a novel approach to unsupervised domain adaptation of
a deep neural network to a new, unlabeled domain. The proposed approach relies
on Adaptive Batch Normalization to condition the statistics of the source and target
features for effective feature alignment and label transfer. Transductive label transfer,
based on feature alignment on the LPP manifold and GMM cluster association with
KL divergence, is used for improved labeling of target samples after aligning feature
clusters in the source and target domains. We found that our approach works well
when the source domain contains sufficient variation, relative to the target domain, to
generate meaningful features that capture the variation in both domains. The results
produced by the MALT-DA approach outperform state-of-the-art methods for many
of the domain adaptation experiments with digits datasets. Furthermore, we present
results on a new domain adaptation task between two visible spectrum remote sensing
datasets.

Chapter 8

Conclusion

This dissertation presented novel methods in the areas of: manifold optimization,
linear dimensionality reduction, network compression, deep feature embeddings, and
visual domain adaptation. In the field of Manifold Optimization we propose the Proxy-
Matrix Optimization method, a new iterative approach to constrained optimization.
Proxy Matrix Optimization is a new approach on the manifold optimization that
leverages deep learning to reformulate the problem for faster convergence. We then
use our Proxy-Matrix method for four different applications: dimensionality reduction,
network compression, improved deep feature embeddings, and domain adaptation.

Our work in the field of dimensionality reduction used the Proxy-Matrix method
to reformulate common linear dimensionality reduction methods into a single unified
framework. We demonstrate how a solution to many different linear dimensionality
reduction methods can be obtained using the same manifold optimization framework.
After this we propose multiple variations to the commonly used Principal Component
Analysis method to improve its robustness to outlying datapoints.

We then extend our dimensionality reduction method to a more general tensor
decomposition method and use it to compress deep neural networks. The cascaded
projections method that we developed in this dissertation reduced the parameters in a
state of the art deep network by 50%, and speed up the processing time of an image
by 3.44×, while only experiencing a 0.51% drop in accuracy.

The Proxy Matrix method was then used in deep neural networks to improve the
learned feature embeddings. The proposed Deep Euclidean Feature Representations
through Adaptation on the Grassmann manifold (DEFRAG) method encourages better
clustering behavior of the features, while maintaining orthogonal basis for feature

120

CHAPTER 8. CONCLUSION 121

embedding space. The importance of orthogonal basis is often overlooked when
features are compared using the Euclidean distance metric.

Lastly we apply our manifold optimization to the field of domain adaptation,
where we use subspace alignment and clustering methods to aid in the process of
label transfer for adaptation of deep networks. Our proposed Manifold-Aligned
Label Transfer for Domain Adaptation (MALT-DA) method achieves state of the art
performance on many challenging adaptation tasks.

The methods proposed in this work have many potential applications to real-world
problems such as: scene analysis from aerial platforms, object and pedestrian detection
in autonomous vehicles, face identification on mobile devices, visual object tracking,
online adaptation of deep neural networks, and many more.

Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 265–283, 2016.

[2] P. A. Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[3] P. A. Absil and Jérôme Malick. Projection-like retractions on matrix manifolds.
SIAM Journal on Optimization, 22(1):135–158, 2012.

[4] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour
detection and hierarchical image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 33(5):898–916, 2011.

[5] Stephen Bailey. Principal component analysis with noisy and/or missing data.
Publications of the Astronomical Society of the Pacific, 124(919):1015, 2012.

[6] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different domains.
Machine Learning, 79(1-2):151–175, 2010.

[7] Dimitri P. Bertsekas. On the goldstein-levitin-polyak gradient projection
method. In Conference on Decision and Control including the 13th Symposium
on Adaptive Processes, pages 47–52, 1974.

122

BIBLIOGRAPHY 123

[8] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[9] William M. Boothby. An introduction to differentiable manifolds and Rieman-
nian geometry, volume 120. Academic press, 1986.

[10] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of
Neuro-Nımes, 91(8):0, 1991.

[11] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and
Dilip Krishnan. Unsupervised pixel-level domain adaptation with generative
adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 1, page 7, 2017.

[12] J. Paul Brooks and José H. Dulá. The L1-norm best-fit hyperplane problem.
Applied Mathematics Letters, 26(1):51–55, 2013.

[13] J. Paul Brooks, José H. Dulá, and Edward L. Boone. A pure L1-norm principal
component analysis. Computational Statistics and Data Analysis, 61:83–98,
2013.

[14] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM, 58(3):11, 2011.

[15] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis
of deep neural network models for practical applications. arXiv preprint
arXiv:1605.07678, 2016.

[16] Hasan Ertan Cetingul and René Vidal. Intrinsic mean shift for clustering on
stiefel and grassmann manifolds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1896–1902, 2009.

[17] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin
Chen. Compressing neural networks with the hashing trick. In Proceedings of
the International Conference on Machine Learning (ICML), pages 2285–2294,
2015.

[18] Yu Cheng, Felix X. Yu, Rogerio S. Feris, Sanjiv Kumar, Alok Choudhary, and
Shi-Fu Chang. An exploration of parameter redundancy in deep networks with
circulant projections. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 2857–2865, 2015.

BIBLIOGRAPHY 124

[19] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep
neural networks with low precision multiplications. In Proceedings of the
International Conference on Machine Learning (ICML) Workshop, 2014.

[20] John P. Cunningham and Zoubin Ghahramani. Linear dimensionality reduction:
survey, insights, and generalizations. Journal of Machine Learning Research,
16(1):2859–2900, 2015.

[21] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring naive
bayes classifiers for text classification. In Proceedings of AAAI conference on
Artificial Intelligence, volume 7, pages 540–545, 2007.

[22] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages 886–893, 2005.

[23] Ludovic Delchambre. Weighted principal component analysis: a weighted
covariance eigendecomposition approach. Monthly Notices of the Royal Astro-
nomical Society, 446(4):3545–3555, 2014.

[24] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (methodological), pages 1–38, 1977.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
248–255, 2009.

[26] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting
parameters in deep learning. In Advances in Neural Information Processing
Systems (NIPS), pages 2148–2156, 2013.

[27] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob
Fergus. Exploiting linear structure within convolutional networks for efficient
evaluation. In Advances in Neural Information Processing Systems (NIPS),
pages 1269–1277, 2014.

[28] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for

BIBLIOGRAPHY 125

generic visual recognition. In Proceedings of the International Conference on
Machine Learning (ICML), pages 647–655, 2014.

[29] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A
more complicated network with less inference complexity. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2017.

[30] Carl Eckart and Gale Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[31] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algo-
rithms with orthogonality constraints. SIAM journal on Matrix Analysis and
Applications, 20(2):303–353, 1998.

[32] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsu-
pervised visual domain adaptation using subspace alignment. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pages 2960–
2967, 2013.

[33] Ronald A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Human Genetics, 7(2):179–188, 1936.

[34] Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for
domain adaptation. arXiv preprint arXiv:1706.05208v3, 2017.

[35] Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas
Mikolov, et al. Devise: A deep visual-semantic embedding model. In Advances
in Neural Information Processing Systems (NIPS), pages 2121–2129, 2013.

[36] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier,
2013.

[37] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by
backpropagation. arXiv preprint arXiv:1409.7495, 2014.

[38] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. The Journal of Machine
Learning Research (JMLR), 17(1):2096–2030, 2016.

BIBLIOGRAPHY 126

[39] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and
Wen Li. Deep reconstruction-classification networks for unsupervised domain
adaptation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 597–613. Springer, 2016.

[40] Boqing Gong, Kristen Grauman, and Fei Sha. Connecting the dots with land-
marks: Discriminatively learning domain-invariant features for unsupervised
domain adaptation. In Proceedings of the International Conference on Machine
Learning (ICML), pages 222–230, 2013.

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems (NIPS),
pages 2672–2680, 2014.

[42] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation
for object recognition: An unsupervised approach. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 999–1006, 2011.

[43] John C. Gower, Garmt B. Dijksterhuis, et al. Procrustes problems, volume 30.
Oxford University Press on Demand, 2004.

[44] Hermann Grassmann. Die ausdehnungslehre. 1862.

[45] Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, and Daniel Cremers.
Associative domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), volume 2, page 6, 2017.

[46] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
In Proceedings of the International Conference on Learning Representations
(ICLR), 2015.

[47] Babak Hassibi and David G. Stork. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in Neural Information Processing
Systems (NIPS, pages 164–171, 1993.

[48] K. He, X. Zhang, S. Ren, and J.: Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

BIBLIOGRAPHY 127

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 630–645. Springer, 2016.

[51] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter
pruning for accelerating deep convolutional neural networks. In International
Joint Conference on Artificial Intelligence (IJCAI), 2018.

[52] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:
Automl for model compression and acceleration on mobile devices. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 784–800,
2018.

[53] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very
deep neural networks. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[54] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(6):417, 1933.

[55] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[56] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Condensenet: An efficient densenet using learned group convolutions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[57] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.
Densely connected convolutional networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), volume 1, page 3,
2017.

BIBLIOGRAPHY 128

[58] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled
faces in the wild: A database for studying face recognition in unconstrained
environments. Technical report, Technical Report 07-49, University of Mas-
sachusetts, Amherst, 2007.

[59] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and
Bo Li. Orthogonal weight normalization: Solution to optimization over mul-
tiple dependent stiefel manifolds in deep neural networks. arXiv preprint
arXiv:1709.06079, 2017.

[60] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. Learning to
prune filters in convolutional neural networks. In Proceedings of the IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 709–718,
2018.

[61] Jonathan J. Hull. A database for handwritten text recognition research. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 16(5):550–
554, 1994.

[62] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360,
2016.

[63] Vance E. Ikezoye and James B. Schrempp. Method and apparatus for identifying
media content presented on a media playing device, March 29 2011. US Patent
7,917,645.

[64] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the International
Conference on Machine Learning (ICML), page 448–456, 2015.

[65] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix Backpropagation for Deep
Networks with Structured Layers. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015.

[66] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Training deep
networks with structured layers by matrix backpropagation. arXiv preprint
arXiv:1509.07838, 2015.

BIBLIOGRAPHY 129

[67] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-arithmetic-only inference.
arXiv preprint arXiv:1712.05877, 2017.

[68] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolu-
tional neural networks with low rank expansions. In British Machine Vision
Conference (BMVC), 2014.

[69] Konstantinos Kanistras, Goncalo Martins, Matthew J. Rutherford, and Kimon P
Valavanis. Survey of unmanned aerial vehicles (uavs) for traffic monitoring.
Handbook of Unmanned Aerial Vehicles, pages 2643–2666, 2015.

[70] Qifa Ke and Takeo Kanade. Robust subspace computation using L1 norm.
Technical Report TR-CMU-CS-03-172-, Computer Science Dept. Carnegie
Mellon Univ., 2003.

[71] Qifa Ke and Takeo Kanade. Robust l/sub 1/norm factorization in the presence of
outliers and missing data by alternative convex programming. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 739–746, 2005.

[72] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. Compression of deep convolutional neural networks for fast and
low power mobile applications. In Proceedings of the International Conference
on Learning Representations (ICLR), 2016.

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing
Systems (NIPS), 25:1097–1105, 2012.

[74] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, Department of Computer Science, University of Toronto, 2009.

[75] Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you
get: Domain adaptation using asymmetric kernel transforms. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1785–1792, 2011.

BIBLIOGRAPHY 130

[76] Solomon Kullback and Richard A. Leibler. On information and sufficiency.
The annals of Mathematical Statistics, 22(1):79–86, 1951.

[77] Nojun Kwak. Principal component analysis based on l1-norm maximization.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
30(9):1672–1680, 2008.

[78] Nojun Kwak. Principal component analysis by l {p}-norm maximization. IEEE
Transactions on Cybernetics, 44(5):594–609, 2014.

[79] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor
Lempitsky. Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. arXiv preprint arXiv:1412.6553, 2014.

[80] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Comput., 1(4):541–551, December 1989.

[81] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. In IEEE, page 2278–2323, no. 11, 1998. vol. 86.

[82] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[83] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Proceedings of the Proceedings
of the International Conference on Machine Learning (ICML) Workshop on
Challenges in Representation Learning, volume 3, page 2, 2013.

[84] Chong Li and C. J. Richard Shi. Constrained optimization based low-rank
approximation of deep neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 732–747, 2018.

[85] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

[86] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss
landscape of neural nets. arXiv preprint arXiv:1712.09913, 2017.

BIBLIOGRAPHY 131

[87] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Re-
visiting batch normalization for practical domain adaptation. arXiv preprint
arXiv:1603.04779, 2016.

[88] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common
objects in context. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 740–755. Springer, 2014.

[89] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna
Pensky. Sparse convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 806–
814, 2015.

[90] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[91] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learn-
ing transferable features with deep adaptation networks. arXiv preprint
arXiv:1502.02791, 2015.

[92] David G Lowe. Object recognition from local scale-invariant features. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
volume 2, pages 1150–1157, 1999.

[93] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning
method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[94] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[95] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and
Jeffrey S Vetter. Nvidia tensor core programmability, performance & precision.
arXiv preprint arXiv:1803.04014, 2018.

[96] Panos P. Markopoulos, George N. Karystinos, and Dimitris A. Pados. Some
options for L1-subspace signal processing. In International Symposium on
Wireless Communication Systems, pages 622–626, 2013.

BIBLIOGRAPHY 132

[97] Panos P. Markopoulos, George N. Karystinos, and Dimitris A. Pados. Optimal
algorithms for l {1}-subspace signal processing. IEEE Transactions on Signal
Processing, 62(19):5046–5058, 2014.

[98] Panos P. Markopoulos, Sandipan Kundu, Shubham Chamadia, and Dimitris A.
Pados. Efficient l1-norm principal-component analysis via bit flipping. IEEE
Transactions on Signal Processing, 65(16):4252–4264, 2017.

[99] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[100] Breton Minnehan and Andreas Savakis. Manifold guided label transfer for deep
domain adaptation. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 65–73, 2017.

[101] Breton Minnehan and Andreas Savakis. Defrag: Deep euclidean feature rep-
resentations through adaptation on the grassmann manifold. arXiv preprint
arXiv:1806.07688, 2018.

[102] Breton Minnehan and Andreas Savakis. Grassmann manifold optimization for
l1-norm principal component analysis. IEEE Signal Processing Letters, 2018.

[103] Breton Minnehan and Andreas Savakis. Deep domain adaptation with manifold
aligned label transfer. Machine Vision and Applications, pages 1–13, 2019.

[104] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.
Pruning convolutional neural networks for resource efficient inference. In
Proceedings of the International Conference on Learning Representations
(ICLR), 2017.

[105] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 807–814, 2010.

[106] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional
neural networks for visual tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4293–4302, 2016.

[107] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y. Ng. Reading digits in natural images with unsupervised feature

BIBLIOGRAPHY 133

learning. In NIPS workshop on deep learning and unsupervised feature learning,
volume 2011, pages 1–9, 2011.

[108] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in pytorch. In Advances in Neural Information
Processing Systems (NIPS) workshops, 2017.

[109] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. volume 2, pages 559–572. Taylor & Francis, 1901.

[110] Karl Pearson. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[111] C. Qi and F. Su. Contrastive-center loss for deep neural networks. preprint,
2017.

[112] Viresh Ranjan, Gaurav Harit, and C. V. Jawahar. Domain adaptation by aligning
locality preserving subspaces. In International Conference on Advances in
Pattern Recognition (ICAPR), pages 1–6, 2015.

[113] C. Radhakrishna Rao. The utilization of multiple measurements in problems
of biological classification. Journal of the Royal Statistical Society. Series B
(Methodological), 10(2):159–203, 1948.

[114] Joseph Redmon and Ali Farhadi. Yolo v3: An incremental improvement. arXiv,
2018.

[115] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386, 1958.

[116] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Computational and Applied Mathematics, 20:53–65, 1987.

[117] Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53–65, 1987.

[118] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533, 1986.

BIBLIOGRAPHY 134

[119] Paolo Russo, Fabio Maria Carlucci, Tatiana Tommasi, and Barbara Caputo.
From source to target and back: symmetric bi-directional adaptive gan. arXiv
preprint arXiv:1705.08824, 2017.

[120] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual
category models to new domains. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 213–226. Springer, 2010.

[121] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-training
for unsupervised domain adaptation. arXiv preprint arXiv:1702.08400, 2017.

[122] Swami Sankaranarayanan, Yogesh Balaji, Carlos D. Castillo, and Rama Chel-
lappa. Generate to adapt: Aligning domains using generative adversarial
networks. arXiv preprint arXiv:1704.01705, 2017.

[123] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[124] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Learning
transferrable representations for unsupervised domain adaptation. In Advances
in Neural Information Processing Systems (NIPS), pages 2110–2118, 2016.

[125] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Unsu-
pervised transductive domain adaptation. arXiv preprint arXiv:1602.03534,
2016.

[126] Sumit Shekhar, Vishal M. Patel, Hien V. Nguyen, and Rama Chellappa. Gener-
alized domain-adaptive dictionaries. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 361–368, 2013.

[127] Chunhua Shen, Hongdong Li, and Michael J Brooks. A convex programming
approach to the trace quotient problem. In Asian Conference on Computer
Vision (ACCV), pages 227–235. Springer, 2007.

[128] Yuan Shi and Fei Sha. Information-theoretical learning of discriminative
clusters for unsupervised domain adaptation. arXiv preprint arXiv:1206.6438,
2012.

BIBLIOGRAPHY 135

[129] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

[130] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In Proceedings of the International Conference on
Learning Representations (ICLR), 2015.

[131] Lawrence Sirovich and Michael Kirby. Low-dimensional procedure for the
characterization of human faces. Josa a, 4(3):519–524, 1987.

[132] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning for deep
neural networks. In British Machine Vision Conference (BMVC), 2015.

[133] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal
Machine Learning Research, 15:1929–1958, 2014.

[134] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy
domain adaptation. In Proceedings of AAAI conference on Artificial Intelligence,
volume 6, pages 2058–2065, 2016.

[135] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep
domain adaptation. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 443–450. Springer, 2016.

[136] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. preprint,
2014.

[137] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In Proceedings of AAAI conference on Artificial Intelligence, volume 4,
page 12, 2017.

[138] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

BIBLIOGRAPHY 136

[139] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[140] Hemant D. Tagare. Notes on optimization on stiefel manifolds. Technical
report, Technical report, Yale University, 2011.

[141] Yoshio Takane and Heungsun Hwang. Regularized linear and kernel redundancy
analysis. Computational Statistics & Data Analysis, 52(1):394–405, 2007.

[142] Yoshio Takane and Sunho Jung. Generalized constrained redundancy analysis.
Behaviormetrika, 33(2):179–192, 2006.

[143] P. Tsalmantza and David W. Hogg. A data-driven model for spectra: Finding
double redshifts in the sloan digital sky survey. The Astrophysical Journal,
753(2):122, 2012.

[144] Pavan Turaga, Ashok Veeraraghavan, and Rama Chellappa. Statistical analysis
on stiefel and grassmann manifolds with applications in computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–8, 2008.

[145] Pavan Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chellappa.
Statistical computations on grassmann and stiefel manifolds for image and
video-based recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 33(11):2273–2286, 2011.

[146] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
discriminative domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), volume 1, pages 2962–2971,
2017.

[147] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

[148] Qiong Wang, Junbin Gao, and Hong Li. Grassmannian manifold optimization
assisted sparse spectral clustering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5258–5266, 2017.

BIBLIOGRAPHY 137

[149] S. E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose
machines. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[150] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning
approach for deep face recognition. In Proceedings of the European Conference
on Computer Vision (ECCV), 2016.

[151] Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogo-
nality constraints. Mathematical Programming, 142(1-2):397–434, 2013.

[152] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan,
and Yingyan Lin. Deep k-means: Re-training and parameter sharing with harder
cluster assignments for compressing deep convolutions. In Proceedings of the
International Conference on Machine Learning (ICML), volume 80 of Proceed-
ings of Machine Learning Research, pages 5363–5372, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018.

[153] Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong,
Liangpei Zhang, and Xiaoqiang Lu. Aid: A benchmark data set for performance
evaluation of aerial scene classification. IEEE Transactions on Geoscience and
Remote Sensing, 55(7):3965–3981, 2017.

[154] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist a novel image
dataset for benchmarking machine learning algorithms. 2017.

[155] Kohei Yamamoto and Kurato Maeno. Pcas: Pruning channels with attention
statistics. arXiv preprint arXiv:1806.05382, 2018.

[156] Shuicheng Yan and Xiaoou Tang. Trace quotient problems revisited. In
Proceedings of the European Conference on Computer Vision (ECCV), pages
232–244. Springer, 2006.

[157] Jun Yang, Rong Yan, and Alexander G. Hauptmann. Cross-domain video
concept detection using adaptive svms. In Proceedings of the ACM international
conference on Multimedia, pages 188–197. ACM, 2007.

[158] Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for
land-use classification. In Proceedings of the 18th SIGSPATIAL international

BIBLIOGRAPHY 138

conference on advances in geographic information systems, pages 270–279.
ACM, 2010.

[159] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In Proceedings of the 33rd Annual Meeting on Association for
Computational Linguistics, pages 189–196. Association for Computational
Linguistics, 1995.

[160] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong
Han, Mingfei Gao, Ching-Yung Lin, and Larry S. Davis. Nisp: Pruning
networks using neuron importance score propagation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[161] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient
and accurate approximations of nonlinear convolutional networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1984–1992, 2015.

[162] Xu Zhang, Felix Xinnan Yu, Shih-Fu Chang, and Shengjin Wang. Deep transfer
network: Unsupervised domain adaptation. arXiv preprint arXiv:1503.00591,
2015.

[163] Xin Zheng, Deng Cai, Xiaofei He, Wei-Ying Ma, and Xueyin Lin. Locality
preserving clustering for image database. In Proceedings of the 12th annual
ACM international conference on Multimedia, pages 885–891. ACM, 2004.

[164] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao
Wu, Junzhou Huang, and Jinhui Zhu. Discrimination-aware channel pruning for
deep neural networks. In Advances in Neural Information Processing Systems
(NIPS), pages 875–886. 2018.

	Deep Grassmann Manifold Optimization for Computer Vision
	Recommended Citation

	tmp.1564489812.pdf.C783b

