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Abstract 

Molecular imaging is a field widely used in the diagnosis and treatment of 

cancer. We offer here a modular method for the synthesis of targeted molecular imaging 

agents (TMIAs), which will improve the accuracy of current molecular imaging 

methods, as well as allow for earlier detection of tumors. The use of TMIAs in 

molecular imaging yields increased signal at cancerous cells and reduced signal from 

healthy cells. Our modular approach is useful as a facile method for the synthesis of 

dual-modal TMIAs for PET-MRI, which combine the sensitive detection of functional 

activity from PET with the high-resolution structural information obtained by MRI. 

Here, we present the synthesis of both a TMIA for the MRI of prostate cancer, followed 

by the synthesis of a dual-modal TMIA for use in simultaneous MRI-PET.  By our 

method, a lysine backbone is utilized for the synthesis of imaging modules, by means 

of coupling the DOTA cyclene to the side chain of the lysine. A metal such as Gd3+ for 

use as an MRI contrast agent is chelated by DOTA. The imaging module is then coupled 

to a targeting moiety, such as c(RGDyK), through a carbon linker such as DSS or 

SMCC, to yield a novel TMIA. This same method is applied to the synthesis of dual-

modal TMIAs featuring imaging modules for use in both MRI and PET. In the case of 

PET, where a radioactive isotope is required, we utilize a stable lanthanide placeholder 

that can be replaced by a useful metal isotope, such as 64Cu, at the end of the synthesis. 

Through the course of this research, our modular approach to the synthesis of TMIAs 

has proven to be an effective method of synthesis, and intermediate steps have been 

optimized. Additionally, methods of measuring the relaxivity of MRI contrast agents 

have been applied to our novel compounds for comparison with commercial agents 

available in clinical labs, hospitals, and imaging centers today. 
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 TFA: tetrafluoroacetic acid 

 

Other Instrumentation 
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 HPLC-prep: preparative high-pressure liquid chromatography 

 NMR: nuclear magnetic resonance 

 SPE: solid-phase extraction  

 

Molecular Imaging Terms 
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 MRI: magnetic resonance imaging 

 PET: positron emission tomography 

 TCA: targeted contrast agent for MRI use 

 TMIA: targeted molecular imaging agent 
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Chapter 1. Introduction 

1.1 Background: Cancer 

 Cancer is among the most widely feared diseases of the twenty-first century, 

and one of the leading causes of mortality worldwide, due to the numerous types which 

can manifest and cause damage. In 2012, more than 14 million new cancer cases 

appeared worldwide, and there were more than 8 million deaths due to cancer.1 Even 

as our medical understanding of the disease improves and developments are made in 

medical treatment of cancer, the number of new cases of cancer annually worldwide is 

expected to increase to 22 million by 2030.2  Improving methods for the detection and 

treatment of cancer are crucial areas of research to pursue in the fight against cancer. 

 Cancer begins as a localized disease based on unrestrained cell replication. Cells 

reproduce; that is the basis of life. Healthy cellular reproduction is in equilibrium with 

cellular death and decay. When there is an error in the cells’ DNA which causes the 

cells to reproduce too quickly, unrestrained reproduction results in the growth of a 

tumor, which may or may not be cancerous. Some tumors are benign: they remain 

localized to one area, generally do not increase in size beyond a certain point, and can 

easily be removed if needed, though they often don’t warrant such treatment. (Moles 

are one example of such a benign tumor.) Other tumors, however, may be malignant, 

and are considered cancerous. Cancerous cells are able to progress through the 

circulatory and lymphatic systems, leading to metastasis to other parts of the body. The 

cancer then interferes with other cells and essential biological functions, resulting in 

serious illness or death.3  

 After the cancer has metastasized and tumors are growing in different regions 

across the body, surgical treatment of the cancer becomes difficult and will likely not 
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be wholly effective, so more aggressive methods of treatment are required. These 

aggressive treatments include chemotherapy and radiotherapy, which are meant to slow 

or stop the growth of the cancerous cells that reproduce so quickly. However, these 

methods of treatment often cannot distinguish any difference between cancerous cells 

and healthy cells, so all fast-growing cells are attacked, including, most notably, hair 

cells and cells in the digestive tract, such as those in the stomach and intestines. 

Although chemotherapy and radiation are successful in a large proportion of cases, it is 

no secret that these aggressive treatments take their toll on the patients. Side effects of 

chemotherapy- and radiation-based treatments can cause problems in and of 

themselves, and include a loss of hair, loss of appetite, change in taste preferences, 

vomiting, dehydration, fatigue, lymphedema, and blood disorders such as low red blood 

cell counts.4 

1.2. Molecular Imaging in Cancer Treatment 

Because cancerous tumors can develop and spread very quickly, early diagnosis 

is the best defense against cancer. If a cancer is detected at an earlier stage, before it 

has metastasized, then the tumor(s) may be more easily removed by surgery, 

chemotherapy or targeted radiation than would be possible for a more developed form 

of that cancer. Currently, a variety of methods are used to detect and diagnose cancer 

in patients, including invasive methods (such as biopsies) and non-invasive imaging 

methods such as x-rays, computed tomography (CT), positron emission tomography 

(PET), magnetic resonance imaging (MRI), and ultrasound imaging techniques.5–8 In 

some types of molecular imaging (most notably, MRI, PET, and CT), a variety of small 

molecules, nanoparticles, quantum dots, or biosensors may be useful as imaging agents 

or contrast agents which improve the quality of the image.8–10 
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Regardless of the method of imaging used, the purpose is to allow medical 

professionals to locate the cancerous cells in the body, determine how far the cancer 

has spread, and to what degree it is currently present in the body, and determine the 

most effective method of treatment. If the cancer is diagnosed, detected, and located 

prior to metastasis, the tumors are small and localized, and can be surgically removed 

with good prognosis.  

However, such early detection is not always possible with current methods of 

imaging. At very early stages, cancerous cells may not be distinguishable from healthy 

tissue in the image. Therefore, improvements in methods for molecular imaging of 

cancer cells offers great potential to aid doctors in the early detection and treatment of 

cancer, and will reduce the mortality associated with the most fatal types of cancer. 

 When methods of molecular imaging are considered, the extent of imaging 

required for diagnosis and treatment should be limited. This is especially true in 

methods involving exposure to potentially harmful radiation or materials. Some 

methods of imaging, such as PET, rely on the use of radioactive nuclei. Other imaging 

methods use radiation in the form of short-wave energy, such as x-rays and CT scans, 

and while limited exposure (for example, that which is experienced during the 

acquisition of a single x-ray image) is safe for the average patient, repeated exposure to 

ionizing radiation can be detrimental, and may itself may be a factor which contributes 

to an increased risk of cancer.11 Additionally, the risks associated with such radiation 

exposure are elevated for patients of compromised health, such as young children, those 

already suffering from chronic ailments, and the elderly. 

 When all of this is taken into account, there are several important factors to keep 

in mind when considering methods for the improvement of molecular imaging methods 

and the application of such methods to the diagnosis and treatment of cancer. One: the 
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imaging method should be specific to the cancerous cells of interest, so that even small 

areas of cancerous cells may be distinguished from healthy tissues, and so that healthy 

tissues will not be misdiagnosed as tumors. Two: the efficiency of the contrast agent 

used for the imaging method should be increased, thereby lowering the required dosage. 

This will reduce the potential for negative side effects that result from the accumulation 

of toxic metals in the body or excessive exposure to radiation. Three: the improvements 

to imaging methods should be easily translated to the diagnosis and treatment of a 

variety of cancers, in order to have the widest possible impact.  

1.3 Targeted Molecular Imaging Agents  

One recent development towards improving molecular imaging methods is the 

use of targeted molecular imaging agents (TMIAs).7,12–14 By targeting the imaging 

agent to the cancerous cells, the imaging agent will collect more densely at the diseased 

areas of tissue. This increases the signal at the diseased cells and reduces the signal 

arising from healthy cells.15 Therefore, the cancerous cells can be more easily 

distinguished from the healthy tissue, even when only very small quantities of diseased 

cells are present, and the cancer can be more effectively treated and removed from the 

body. Biomarkers on cancer cells have been successfully targeted in a number of 

molecular imaging methods, including ultrasound imaging, near infrared (NIR) 

imaging, MRI, and PET, by coupling a compound or small protein with an affinity for 

a biomarker to a contrast or imaging agent.7,12,14,16,17 

 Potential biomarkers for cancerous cells include a variety of components.  For 

example, prostate cancer tumors and cells overexpress prostate-membrane specific 

antigen (PSMA), so PSMA can function as a target for cancer treatments and imaging 

methods for use in patients with prostate cancer.17–19 Tumors found in breast cancer, on 
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the other hand, overexpress estrogen receptors (ER), progesterone receptors (PrG), and 

human epidermal growth factor 2 (HER2), each of which may serve as a targeted 

biomarker in breast cancer imaging, as shown in confocal fluorescence microscopy 

(CFM) studies.5  

 

1.4 Targeting Groups of Interest 

In the early days of molecular imaging, certain peptides were found to target 

biomarkers found on a wide range of cancerous cells, such as cyclo(Arg-Gly-Asp-dTyr-

Lys), or c(RGDyK) (Figure 1). The RGD peptide has an affinity for the αvβ3 integrin 

that is overexpressed in a number of types of cancer cells, including melanoma, ovarian, 

lung, and breast cancer.20,21 c(RGDyK) is favored as a targeting group and is used to 

test targeted imaging methods due to its reproducible affinity for a variety of cancer 

cells. 

 

Figure 1. c(RDGyK) 

 

The cyclic peptide, c(RGDyK) was also the first targeting moiety employed in 

our imaging agent lab leading to early TMIAs in our group in which the dye Cy5.5 was 

simply bound to the targeting agent, and was utilized to provide CFM images of A549 

lung cancer cells in the Evans lab here at RIT (Figure 2). 
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In the interest of creating TMIAs which are useful for specific types of cancer, 

it is important to explore specific targeting groups which might be useful for biomarkers 

of different cancers. Within our group, we have developed a method for the synthesis 

of a urea-based targeting moiety for prostate cancer (PrCa). DCL urea (Figure 3) is 

based on the Glu-urea-Lys dipeptide, and is known to target PSMA and therefore is 

being aggressively pursued in clinical studies as a targeting group in PrCa-specific 

imaging agents or treatments.22–29 Based on this current research, DCL is a strong 

candidate for use in a contrast agent that is specific to PrCa.  

 

 

 

Figure 3. DCL urea-based PSMA inhibitor. N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-L-lysine. 

 

Targeting Peptide

   c(RGDyK)

NIRF imaging 

dye Cy 5.5

Figure 2. CFM images of A549 lung cancer cells targeted by NIR-TMIA: c(RDGyK)- Cy5.5 
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There are also more specific targeting moieties being developed, including a 

targeting peptide for breast cancer (BrCa), 18-4 (WxEAAYQkFL). Dr. Kamalijit Kaur 

(Chapman University, CA) developed that peptide and is collaborating with our group 

to synthesize a TMIA for BrCa.30 The variety of targeting moieties available for use 

demonstrate the opportunities for collaboration and broad range of impact for this field 

of research.  The peptide, shown in Figure 4, has been synthesized in our lab and is the 

focus of a related TMIA project.   

 

Figure 4. Structure of Breast cancer peptide 18-4. 

   

1.5 Molecular Imaging Methods 

 In addition to targeting the cancer cells, the method of imaging used must be 

considered in the future of cancer diagnosis. Each imaging method – PET, MRI, 

photoacoustic (PAI), CFM, and others, offers its own merits and suffers its own 

shortcomings.  For example, CFM produces a very sharp three-dimensional image, but 

the depth of the image below the surface of the sample is limited to about 100µM, which 

limits this technique to in-vitro imaging.  

To counter the shortcomings associated with each method of imaging, dual-

modal (sometimes also called bi-modal) molecular imaging has gained some ground in 

recent years.31,32 Dual-modal imaging involves the combination of two imaging 

techniques; the images may be obtained simultaneously using specialized 
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instrumentation, or the images may be digitally fused in the post-processing stages. The 

imaging techniques for dual-modal methods are selected to complement each other – 

that is, it wouldn’t be overly helpful to combine two methods of imaging which both 

provide structural information, but combining structural details with mapped biological 

activity would very practically applicable. In the field of cancer imaging, simultaneous 

PET/MRI is presented as a dual-modal method of choice, and will be further explored 

below.17,33,34 

 PET provides physiological data for a variety of biological functions, such as 

blood flow, oxygen use, and sugar metabolism.35 Although PET is sensitive to the 

presence of even very small amounts of radiotracer in a sample, this method does not 

provide significant structural resolution for the sample. It is not immediately clear from 

a PET scan which tissues are present or whether the anatomy is at all abnormal.  

 Therefore, it is useful to fuse PET images with structural information, such as 

images obtained by CT or MRI, for a more complete analysis of cancerous cells present 

within the patient. An example of such an image overlay is shown in Figure 5. Structural 

tissue information from MRI is compared to physiological data from PET to provide a 

more specific, more accurate diagnostic of smaller cancerous tumors. 

 

Figure 5. An example of individual PET and MRI scans, and the fused image of the two scans, showing 

the high-resolution structure and the sensitive biological activity information which can be obtained 

from such an image.36 
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The integration of PET with either CT or MRI can be done with in-line systems 

(which produce both images simultaneously) or by obtaining the images from two 

separate instruments and fusing the images in post-processing. However, if images are 

to be fused during post-processing, it is important for the images to be properly aligned, 

so that the signal in the final image is correctly mapped to the body. Improper alignment 

can result in a number of problems, including misled assignment of surrounding tissues 

or incorrect diagnosis regarding the size of the tumors. If the images are overlaid 

accurately, however, they can be most useful to the diagnostic team. Therefore, 

validated methods for the accurate overlay of MRI and PET images are essential for 

diagnostic techniques associated with dual-modal imaging.37    

 PET/CT imaging methods are commonplace in hospitals today after an in-line 

method for simultaneous bi-modal imaging was introduced in the late 1990s.38 Today, 

the use of PET/MRI is considered a potential competitor for PET/CT, because MRI 

provides a comparable structural resolution when compared to the data obtained by CT, 

and because MRI does not involve high-energy x-ray exposure.39–41 PET/MRI has also 

been shown to offer higher diagnostic accuracy when directly compared to PET/CT.34 

 The primary factor currently preventing a complete transition from CT to MRI 

is a financial one. PET/CT and PET/MRI provide comparable results at the moment, so 

it is difficult to justify the expensive change from one to the other. However, MRI has 

been shown to be more sensitive than CT in some situations, such as soft tissue imaging, 

and further research and improvements to PET/MRI systems may encourage such a 

switch.42,43 
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1.6 Magnetic Resonance Imaging 

1.6.1 A Simple Treatment of MRI Theory 

 MRI is a non-invasive method of molecular imaging which uses magnetic fields 

to manipulate nuclei that have a magnetic spin.44 These nuclei include 1H, 2H, 13C, and 

14N, among others. During an MRI scan, a strong (1.5 to 3 Tesla) magnetic field (B0) is 

applied along the designated z-axis, which aligns the nuclear spins to be parallel with 

that B0 field. An RF pulse rotates the nuclei 90 degrees into the xy-plane, perpendicular 

to B0. While the nuclei are in this position, there is net transverse magnetization within 

the sample, and the nuclei precess at their Larmor frequencies as determined by the 

chemical environment; this is related to the familiar chemical shift observed in NMR 

spectra (Figure 6). The precession and the transverse magnetization induce a current in 

an RF coil. This induced current is recorded as a signal in the image. However, because 

a large magnetic field is still in place, the nuclei will eventually return to their thermal 

equilibrium and realign with the B0 field, at which point the induced current in the RF 

coil decays and, with it, the signal. 

 

 

Figure 6. Representation of the precession of a nucleus about the applied B0 magnetic field..45 
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The process by which the nuclei return to their thermal equilibrium positions is 

known as relaxation. There are two different relaxation processes to consider in MRI: 

T1 and T2. Both of these affect the strength of the signal produced in the image. The 

longitudinal relaxation time (T1) is a measure of how quickly a nucleus returns to its 

equilibrium alignment with B0 after the application of an RF pulse, which rotates the 

nuclei spins by 90 degrees. The spin-spin relaxation (T2) is the process by which the 

net transverse magnetization decays to zero, which occurs because not all spins within 

the sample precess at exactly the same frequency, but are, rather, slightly out of phase, 

so after many precessions, the spins will ‘cancel’ in the transverse direction and the net 

transverse magnetization will eventually be zero (Figure 7).  

 

 

Figure 7. Representation of the T2 decay process, showing how the many spins in a sample dephase 

over time after the initial excitation by an RF pulse to ultimately produce a net magnetic spin of zero. 

 

Those relaxation processes, T1 and T2, are measured according to the time it 

takes the signal from a sample to decay by a factor of e, and are affected not only by 

the tissues present in the sample, but also by the parameters used for the acquisition of 

the image (which are beyond the scope of this background discussion). T1 and T2 can 

then be considered as rates by taking the reciprocal of the relaxation time for each 
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process. The longitudinal relaxation rate, R1, is 1/T1, and the spin-spin relaxation rate, 

R2, is 1/T2.  

 

1.6.2 MRI Contrast Agents 

In the field of MRI, contrast agents (CAs) are commonly used to increase the 

signal generated by different types of tissues. There are two general classes of CAs for 

MRI: ferromagnetic and paramagnetic. Ferromagnetic CAs distort the magnetic field 

surrounding the CA, which have the primary effect of shortening the T2 time for nearby 

nuclei. Common ferromagnetic (or T2) CAs are based on iron nanoparticles. 

Paramagnetic (or T1) CAs, on the other hand, have unpaired electrons which primarily 

increase the rate of T1 relaxation of the nuclei in the surrounding tissue.  

Gadolinium (III) is the most frequently used paramagnetic CA due to its seven 

unpaired electrons (for a total electron spin of 7/2). CAs are considered in terms of their 

relaxivity, which is the extent to which a specific CA affects the relaxation rate of the 

tissues per unit concentration of CA, per equation (1), where n = 1 or n = 2, depending 

on which relaxation mechanism is being investigated, rn is the relaxivity of the CA, Tn 

is the relaxation time for the nuclei of interest when a certain concentration of CA is 

present in a treated sample, T0 is the relaxation time for the untreated sample when no 

CA is present, and [CA] is the concentration of CA present in the treated sample. The 

relaxivity rn has units of s-1mM-1. 

𝑟𝑛 = (
1

𝑇𝑛
−

1

𝑇𝑛0
) ÷ [CA]   (1) 

The DOTA chelating group and other cyclenes are frequently used for both MRI 

and radioisotope imaging methods (such as PET).46 Many metals used in imaging, such 

as Gd(III), are safe when chelated but can have problematic effects on the body if they 
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are released from the chelating group.47 For example, Gd(III) has a similar size to 

Ca(II), and therefore competes with Ca(II) in biological processes.48  

It is therefore necessary to develop highly stable complexes to protect the body 

from the Gd to be used during imaging. DOTA-metal complexes have been shown to 

be kinetically stable, and Gd-DOTA is particularly kinetically stable, so DOTA-type 

complexes are favored for MRI contrast agents, and are available as commercial CAs 

(Figure 8).31 In the end, a kinetically stable targeted MRI contrast agent with a high 

relaxivity could be used in much smaller doses, and the amount of gadolinium which a 

patient is exposed to would be cut drastically while still providing useful results to their 

treatment team.  

 

 

Figure 8. A selection of commercially available Gd-based CAs.49 
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1.7 Positron Emission Tomography 

1.7.1 Theory and Physics of PET 

 PET is based on the use of radioisotopes which will undergo the process of 

positron decay, also known as beta plus (β+) decay.50 Unlike MRI, which can be done 

without a contrast agent, PET is not possible without the introduction of a suitable 

radioisotope into the sample. Commonly used radioisotopes for PET include 15O, 18F, 

11C, and 13N, because it is easy to incorporate them into organic molecules that are 

metabolized by the body and, by that process, track the metabolic processes in a region 

of interest. 

 During the process of positron decay, a proton within the unstable nucleus is 

converted into a neutron, and a positron, bearing the mass of an electron and the positive 

charge of a proton, is emitted.51 The energy of the positron will vary depending on what 

type of nuclei has decayed: a positron from 18F decay will most often have around 

200keV of energy (and a maximum of 630keV), while a positron from 68Ga positron-

decay has roughly three times that. The positron will travel some small distance, on the 

scale of millimeters, while it loses kinetic energy – in 18F decay, this is an average of 

0.6mm, with a maximum of 2.4mm; for 68Ga, an average of 2.9mm and a maximum of 

8.2mm. When the positron has approximately come to rest, it undergoes annihilation 

with an electron, and this annihilation releases two photons with 511keV at 180 degrees 

from each other, whose locations can be recorded by detectors within the instrument 

(Figure 9). 
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Figure 9. Elementary graphic explanation of theory behind PET.52 

 

1.7.2 Radionuclide Imaging Agents 

 18F has been commonly used as a radionuclide for PET in the form of 18F-fluoro-

2-deoxy-glucose (18F-FDG). In this form, it is particularly useful for cancer imaging, 

because the similarities to glucose cause the imaging agent to accumulate in cancerous 

tumors more so than in healthy tissue.53 However, there are a number of issues to deal 

with when using 18F-FDG, including difficulties during the synthesis of the 

radionuclide and the short lifespan of the radioisotope.   

Because of this shortcoming, 64Cu has gained attention within the last 30 years 

for use as a radionuclide for PET.54 Copper has a number of radioactive forms, each of 

which has a different half-life and produces positrons with different amounts of energy. 

64Cu has a half-life of about 12.7 hours, which is significantly longer than several 

radioisotopes that have been used for PET in the past, including 15O, 18F, 11C, or 13N, 

which have half-lives on the scale of minutes (Table 1). This characteristic makes 64Cu 

a more useful candidate for imaging biological processes which make take longer to 

occur, and, when coupled with a targeting moiety, will provide more time for the 

imaging agent to accumulate at the desired area.  
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Additionally, the coordination chemistry of 64Cu is well understood and can be 

taken advantage of to produce an imaging agent that is stable in vivo. Although 64Cu 

undergoes multiple types of radiodecay and not all are useful for PET, this is less of a 

problem than it might first seem to be, due to the sensitivity of PET. Also note that 68Ga 

is also often used as a nucleus for PET, despite the fact that it decays by positron 

emission less than 10% of the time. 

 

Isotope Half-life β+ energy Odds of β+ 

decay 

C-11 20.4 min 0.385 MeV 99.8% 

N-13 9.97 min 0.492 MeV 100% 

O-15 122 seconds 0.735 MeV 100% 

F-18 110 min 0.250 MeV 100% 

Cu-64 12.7 hours 0.278 MeV 17.9% 

Ga-68 68.1 hours 0.836 MeV 8.79% 

Table 1. Summarizing some useful properties of isotopes used in PET as radionuclides for imaging.55 

 

It is important to ensure that the 64Cu is securely held in place in the TMIA 

before it is exposed to any in vivo conditions. While copper is an essential nutrient for 

humans, it is still possible for too much copper to accumulate in the body and interfere 

with certain biological processes. Particularly when a radioactive form of copper is 

being used, it is most undesirable to allow the radioactive copper to accumulate in any 

part of the body. Additionally, if the copper is removed from the chelating group in the 

TMIA, the imaging agent is no longer effective for PET. DOTA and DOTA-type 

derivatives are frequently used as chelating groups, and Cu2+ chelates of DOTA and its 

derivatives have been shown to be kinetically stable at in vivo conditions for 

radiopharmaceutical work.56  
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Because we do not have access to radioactive metals, we utilized the cold 

isotopes of each respective metal in our studies – that is, we used the stable 63Cu2+ and 

65Cu2+ in our studies, rather than the radioactive isotope 64Cu. However, because the 

size of the metals will not be greatly affected by that difference, the stability of the 

product and relative reaction rates are expected to be the same for both the cold and 

radioactive isotopes. 
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Chapter 2. Experimental Approach 

2.1 Modular Synthetic Approach to TMIA Synthesis 

Our group is interested in a peptide-based modular approach to synthesizing 

imaging agents. Imaging or contrast modules for each imaging method are synthesized, 

and the relevant imaging and targeting modules are coupled together.57  An amino acid 

backbone such as lysine is favorable due to its primary amine side chain. This functional 

group is easily coupled to a chelating group (such as DOTA) for chelation of a metal 

that is useful for imaging. Peptides are preferable over original small molecules that 

could possibly be designed. They have known advantages in medicinal chemistry due 

to their relatively small, compact structures and their bioavailability and biostability.58 

Because the reagents and coupling mechanisms for peptides are fairly well known, we 

can focus efforts on developing new TMIAs, rather than developing new reactions.  

Ultimately, the goal of this work was to prove the usefulness of our modular 

method by its application to the synthesis of two unique TMIAs: one for MR imaging 

of prostate cancer, and one for simultaneous MRI and PET of cancerous cells 

overexpressing the αvβ3 integrin.  

 Our method involves synthesizing each module of the TMIA on a lysine 

backbone before constructing the TMIA from C terminus to N terminus, as is the norm 

for peptide synthesis. In this case, for the synthesis of a TMIA for PET/MRI of some 

cancer, the synthesis proceeds generically as shown in Figure 10. Each of the modular 

components (MRI contrast module, PET imaging module with placeholder, linker, and 

targeting moiety) are either synthesized and purified in-house, or purchased from a 

commercial source, and then coupled to yield the penultimate product in the synthesis. 
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The last step is a simple transmetallation to replace the La2+ with Cu2+, where the use 

of Cu2+ in our lab functions as a substitute for a radioactive metal.  

 

Gd-DOTA
Gd-DOTA

La-DOTA

La-DOTA

Targeting 

Moiety

Targeting 

Moiety
Linker

Linker
(such as DSS 

or SMCC)

(such as c(RGDyK) 

or DCL for PrCa)

(PET imaging module 

with La placeholder to be 

transmetallated after coupling)

(MRI contrast module)

 

 

 

 

 

Figure 10. General schematic for synthesis of a dual-modal TMIA 

Figure 11. Color-coded structure for one of the final TMIA products,  

c(RGDyK)-SMCC-dK(DOTA-Cu)-K(DOTA-Gd)-NH2, useful for targeted PET-MR of cancer. 
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A specific TMIA for use in dual-model MRI/PET of cancer is shown above 

(Figure 11). This particular TMIA features the MRI contrast module in purple 

(Lys(DOTA-Gd)-NH2), the PET imaging module in blue (dLys(DOTA-Cu)-OH), a 

carbon linker in black (SMCC), and a commercially-available targeting group in pink 

(c(RGDyK)).  

In the world of peptide synthesis, there are important choices to make regarding 

the methods available. These include convergent versus linear synthesis, and solution-

phase versus solid-phase synthesis. Linear and convergent methods of synthesis refer 

to the order in which the peptide is built. In a linear method, the peptide is built from 

right to left. The components are connected by building peptide bonds, which involve 

a terminal N on the first component and a terminal C on the second (from right to left). 

For a specific dual-modal TMIA of interest, the linear synthesis would proceed 

according to Scheme 1. In a convergent method of synthesis, the synthesis follows 

Scheme 2. Traditionally, our group has focused on a linear method when building the 

final peptide-based TMIAs, but convergent methods have provided better yields in 

certain cases. 
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Scheme 1. Schematic for linear method of dual-modal TMIA synthesis. 

Scheme 2. Schematic for convergent method of synthesis for dual-modal TMIA. 
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The decision to use solution-phase peptide synthesis methods rather than solid-

phase methods was made based on a number of factors. Solution-phase synthesis tends 

to be more useful for shorter peptides, and the dual-model imaging agent modalities of 

interest involve just two lysine groups. Additionally, solid-phase methods require a 

linear synthesis of the final product. Solid-phase methods also require a specific type 

of resin for the peptide synthesis, which can become costly, and increases the number 

of factors that must be considered during synthesis, whereas solution-phase synthesis 

requires only a suitable organic solvent as a medium.  

Solid-phase synthesis is often preferred because the intermediate products do 

not need to be removed from the resin and purified; rather, the final peptide is cleaved 

from the resin only after synthesis is complete. In this situation, that feature is not 

necessarily a benefit, because we want to focus on the modality of the synthesis, and 

how simple it can be to substitute in a different imaging contrast agent or targeting 

group during the procedure. For example, we can potentially synthesize a dual-modal 

imaging agent and linker (DSS-dK(DOTA-La)-K(DOTA-Gd)-NH2) in large quantities, 

and later couple a small sample of this compound to different targeting groups. 

 

2.2 Novel use of Metals as DOTA-Protecting Groups 

Imaging and contrast agents have been in use since the eighties – altogether, a 

relatively new field of science. But the idea of targeting the imaging or contrast agents 

to a specific type of cell is newer still. The synthesis of such agents, then, is a developing 

area of chemistry. Even so, there are already somewhat ‘standardized’ methods of 

synthesis for targeted molecular imaging agents. 
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Because a metal is required for imaging methods such as MRI and a radioactive 

isotope is required for PET, the addition of a metal to the compound and its chelation 

into a group such as DOTA is a very important step. Current methods in the literature 

generally consider chelation as the last step in the synthesis of an imaging agent. Our 

group, however, has developed a different procedure, in which the metal is chelated 

into the DOTA-type macrocycle in the early stages of synthesis.  

By chelating the metal early on in the synthesis, the metal itself functions to 

protect the chelating group from undesirable side-ructions: DOTA and similar chelating 

groups contain reactive functional groups (i.e., carboxylic acids and amines). Left 

unprotected, these groups are susceptible to further reactions during the synthesis. Most 

methods in the literature rely on protecting groups such as t-butyl groups to protect 

these carboxylic acids; the protecting group is removed in the latter stages of synthesis 

by treatment with a strong acid like TFA before the metal is chelated. This modular 

method avoids harsh deprotections and the associated risk of decomposition of the 

TMIA under those conditions. We have found that the metal is just as capable as 

traditional protecting groups of shielding the DOTA group from further chemistry 

during synthesis. 

Chelating a metal at the beginning of the synthesis is easily said, and for stable 

isotopes (i.e. 157Gd3+ for MRI) it is easily done. However, PET requires a radioactive 

isotope, and it is not feasible to chelate a radioactive metal at the beginning stages of a 

long and arduous synthetic process. The metal would begin decaying from the time of 

its initial chelating and would no longer be useful as a PET imaging agent by the time 

the TMIA had been fully synthesized.  

Fortunately, our group has developed a workaround for this issue: the use of a 

placeholder metal. Metals of similar size to Cu2+ are useful as placeholders within the 
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DOTA group. That is, the placeholder metal is chelated in to the DOTA macrocycle in 

the early stages of synthesis, and functions as the protecting group until the end stages 

of synthesis. Then, the placeholder metal is displaced in an aqueous acidic solution, and 

the desired metal (i.e. Cu2+) is introduced and takes its own place in the DOTA group. 

Because the placeholder metal must be removed from the DOTA without 

destroying the rest of the TMIA, it is important to ensure that the metal is not too 

securely chelated – but it must also be stable enough to remain in place during the 

synthesis of a TMIA. Our hypothesis for this work was based on ionic radius: smaller 

metals, such as Gd and Cu, were expected to chelate strongly with the DOTA group, 

while larger metals would be less stable within that group. Due to the lanthanide 

contraction phenomenon, such as La3+ or Ce3+ are large enough to be significantly less 

stable within DOTA than smaller metals such as Gd3+ or Cu2+. Our aim was to find mild 

acidic conditions to displace the larger lanthanides without affecting the smaller ions 

(such as Gd3+).  We found several early literature studies which supported our 

hypothesis that mild acid would displace metals on the left of the lanthanide row more 

easily than those towards the right. 59–61 

After conducting kinetic studies of our own, we settled on La3+ as a favorite. 

The La-DOTA group holds up well to the further reactions necessary for TMIA 

synthesis, but La3+ is also readily displaced from the DOTA group in a solution of about 

0.1M TFA. Additionally, Gd3+ is strongly chelated by DOTA and is not displaced from 

the chelator under those conditions, making this suitable for use in di-metal TMIA 

synthesis (Figure 12). 
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Figure 12. Graph showing the displacement of La3+ by Cu2+ in a DOTA chelator in 0.1M TFA over 

several days, as well as the stability of Gd-DOTA in those same conditions. Data points were obtained 

by HPLC-UV analysis, and the intensity was taken from the area under the curve for the UV-

absorption of each compound. 

 

2.3 Evaluation and Analysis of Compounds 

Purified products are characterized by HMRS for an exact mass, and by NMR 

experiments for further confirmation of structure. T1 relaxation experiments are run on 

a 43MHz NMR spectrometer used to determine the relaxivity of the targeted contrast 

agents for use in MRI. These values can then be approximately compared to 

commercial MRI CAs, such as Gd-DOTA (trademarked as Dotarem). 

Unfortunately, we have no means here in our lab of testing our compounds in-

vivo as PET or MR contrast agents, so any testing on that front requires future 

collaborative efforts at another site. 

We are able, however, to verify the ability of a metal-containing TMIA to target 

a specific type of cell through CFM, through the addition of a fluorescent NIR dye 

imaging module to the TMIA, yielding a dual-modal TMIA.  In a previous dye-based 

project in our lab, we developed a TMIA containing both and MRI module and an NIRF 
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dye, Cy5.5, that effectively utilized c(RGDyK) as a targeting moiety. This TMIA was 

shown to selectively target the cells of interest, as evidenced by our collaborative work 

with Dr. Irene Evans’s lab at RIT, and their CFM imaging of A249 lung cancer cells 

treated with that TMIA (Figure 13). 

 

 

Figure 13. CFM image of A249 lung cancer cells treated with NucBlue and a previously synthesized 

TMIA for MRI and fluorescence of cancer cells, using the c(RGDyK) targeting peptide. Cell nuclei are 

stained blue; the TMIA appears red due to fluorescence. 
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Chapter 3. Results and Discussion 

3.1 Optimization of One-Pot Reactions for Synthesis of Imaging Modules 

In our group’s initial approaches to the DOTA-chelating imaging modules, a 

multi-step synthesis was developed (Scheme 3). However, the commercial DOTA-

OtBu3 used here was expensive, and the yields were not sufficient to justify the cost of 

the starting materials. Therefore, it was crucial to develop a more economical and 

efficient method of synthesizing these modules.  

 

1

2 3a

Gd(OAc)3

TFA

DCM/DMF

TBTU
DIPA

DMF 

 

 

 

To this end, a one-pot reaction was developed in our lab by former students 

(Scheme 4). In this method, the commercial unprotected DOTA was coupled to the 

Scheme 3. Multi-step procedure for synthesis of Fmoc-Lys(DOTA-Gd)-NH2 , 3a. 
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lysine side chain. However, the yield from this procedure was lower than expected. 

Therefore, one of the early goals for this project was to improve the yields of the one-

pot reaction. 

 

3b

1. TSTU
2. Fmoc-K(H)-NH2 

(shown)
3. Gd(OAc)3

DIPEA, DMF

 

 

After running both sets of reactions a number of times to synthesize the MRI 

contrast module, Fmoc-Lys(DOTA-Gd)-NH2 (3), (Scheme 3 & Scheme 4), we 

determined that any loss in overall yield in the one-pot method was outweighed by the 

reduced reaction & purification time investments required. The initial multistep 

synthesis requires at least three days to obtain the final product, whereas the more 

economical one-pot reaction can be run in a morning, and the purified product isolated 

that afternoon. 

While focusing efforts on the one-pot reaction, we found that certain 

modifications increased the yield of the reaction, and decreased the production of di-

and tri-substituted DOTA groups (Scheme 5). The use of a dilute reaction solution, 

heating the initial DOTA-OH in organic solution (to promote solvation), the slow 

Scheme 4. One-pot synthesis of Fmoc-Lys(DOTA-Gd)-NH2, 3b. 
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addition of the peptide coupling reagent TBTU (to favor mono-substitution on the 

DOTA), the slow addition of lysine, and allowing the reaction to run for no more than 

two or three hours all proved beneficial. 

(in excess)

di-substituted DOTA byproduct

tri-substituted DOTA byproduct

TSTU (excess)

 

 

Because the MRI and PET imaging modules are so similar, varying only in the 

metal used and the form of lysine used, the methods for synthesis are remarkably 

similar, as well. Improvements in method 3b also resulted in improvements for the 

synthesis of Fmoc-dLys(DOTA-La)-OH (5), shown in Scheme 6.  

Scheme 5. Undesirable di- and tri-substituted byproducts. 
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5

1. TSTU
2. Fmoc-dK(H)-OH 

(shown)
3. La(NO3)2

DIPEA, DMF

 

Scheme 6. One-pot synthesis of 5, PET placeholder module. 

 

 

3 4

DMF

DEA 

 

 

3.2 Simple Fmoc Deprotections 

Removal of the Fmoc group exposes the primary amine of the peptide backbone 

for coupling chemistry in the next step. The Fmoc deprotection of 3 was simple enough 

(Scheme 7); treatment with diethylamine in organic solution provided reproducible 

results and yields of 90% and above. Initially, purification was done by liquid-liquid 

Scheme 7. Fmoc deprotection of 3 to yield H-Lys(DOTA-Gd)-NH2, 4. 
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extraction, with the H-K(DOTA-Gd)-NH2 product (4) found in the aqueous layer and 

the Fmoc byproduct taken up by the ethyl acetate organic layer. However, on small 

scale reactions of 20mg and below, we were concerned some product might be lost by 

this method, so we decided that triturating the crude product with ethyl acetate, 

centrifuging, and decanting the organic solvent was sufficient to remove the Fmoc 

byproduct. 

 

3.3 Troublesome Dimetal Peptide Coupling Reactions 

The truly troublesome reaction was the coupling of the two imaging modules to 

yield a di-metal imaging module. Initially, this reaction was run according to Scheme 

8. However, this resulted in disappointing yields.  The product was often not able to be 

isolated, nor did the reaction run to completion according to the HPLC-MS data 

acquired. 

A number of different reagents for were considered in an attempt to solve this 

problem (Figure 14). The use of different organic bases or peptide coupling reagents as 

found in the literature failed to provide different or improved results.  

After numerous failed attempts, we began to experiment with a readily available 

commercial amino acid (Fmoc-dAla-OH, Figure 15) to couple to the MRI contrast 

module. This way, at least, large quantities of valuable imaging modules were not 

wasted when the reactions failed.  
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Scheme 8. Initial method for peptide coupling to yield dual-modal imaging agent. 
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TSTU

TBTU
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diethylamine

(DEA)

diisopropylethylamine 

(DIPEA)

triethylamine

(TEA)

n-methylmorpholine

(NMM)

pivaloyl 

chloride

 

Figure 14. A selection of organic bases (top row) and peptide coupling reagents (lower two rows) 

which were considered. 

 

 

Figure 15. Fmoc-dAla-OH (left) and Fmoc-dLys(DOTA-La)-OH (5), right. 
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Pivalyl chloride presented itself as a possible solution. Coupling reactions using 

pivalyl chloride as the coupling agent yielded good product, and the reaction run to 

completion with the trial amino acids according to the data from the HPLC-MS. Upon 

replacing the Fmoc-dAla-OH with the PET imaging module, however, the results were 

significantly less impressive. 

 It was back to the drawing board again: we needed to more thoroughly 

investigate what the basics of the reaction were and which factors (reagent, solvent, 

time, temperature, phase of the moon) were the most important.  To test the activation 

of the acid module by activating agents such as TSTU, a method was developed in 

which butyl amine was used to quench a small aliquot for analysis.  HPLC-MS reveals 

formation of butyl amide product and the saturated four-carbon chain decreases the 

polarity of the quenched product to provide good separation to a slower moving peak 

by HPLC-MS analysis; see  

Scheme 10. Additionally, the reaction of an NHS ester with H2O forms a product which 

is identical to the starting material, so diluting the active ester reaction with pure water 

for HPLC analysis is useless. 

 By testing the product of this step with a dilute aqueous solution of butylamine 

on HPLC-MS, it was evident that this step was never an issue with any set of reaction 

conditions used.   

Rather, it was found that it was the second step in the reaction – the addition of 

the MRI contrast module – which was so difficult to achieve. What remained was to 

determine which factor was negatively affecting this step. Some byproducts were seen 

in the MS data, true, but not enough was known to say exactly what these byproducts 

were (or how to avoid them). Alkaline, anhydrous conditions were needed, but 
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obtaining the correct pH by the addition of organic base was never an issue. The only 

remaining factor to consider was the choice of organic solvent. 

 

 

 

Scheme 9. Activation of an acidic lysine backbone by TSTU yields a succinimidyl leaving group. 

 

 

Scheme 10. Monitoring NHS ester formation by addition of butyl amine to form a more lipophilic 

product which is easily observed by HPLC-MS. 
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The true issue with the reaction proved to be solubility. After removal of the 

Fmoc protecting group, the MRI contrast module simply is not soluble in more 

commonly used solvents, such as NMP, DMF, ACN, or MeOH. In the past, we had 

simply heated the solution to 50℃ and given it time, in the hopes that the reagents 

would prove ‘soluble enough’ for what was needed. This, however, was not good 

enough. After running some solubility tests for the MRI contrast module, we discovered 

that the compound was readily soluble in DMSO. When the solvent was changed to 

DMSO, this allowed for successful and reproducible results of the coupling reaction. 

In addition to the reaction conditions required, the manner of purification was 

found to be an important factor to consider.  We use two primary methods of 

purification for the di-metal imaging modules: SPE and HPLC-prep, both utilizing 

reverse-phase stationary phases. We found that, although HPLC-prep is capable of 

providing sharper separations by use of a linear gradient and high pressure, yields were 

significantly smaller than expected. Conversely, when manual SPE methods were used, 

yields were in the range of what was expected based on data acquired while monitoring 

the reaction. We suspect this may be due to some chemistry occurring between the 

crude products and the HLPC columns used, but further work would be required to 

confirm or refute this. 

3.4 Fmoc Deprotection of dipeptide module 

 Upon successful coupling of the two amino acids, it was necessary to remove 

the Fmoc protecting group from the dipeptide to proceed with further chemistry. This 

reaction was run similarly to that discussed above for the deprotection of 3 to yield 4, 

and, likewise, provided reproducible results with high yields. 
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Scheme 11. Fmoc deprotection of 6 to yield H-dLys(DOTA-La)-Lys(DOTA-Gd)-NH2,7. 

 

3.5 SMCC vs DSS carbon linker 

 Within our modular approach, two different carbon-chain linkers are available 

for use. SMCC [succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, 

Figure 16] is often used for formation of peptide bonds and cross-linking in proteins. 

DSS [disuccinimidyl suberate, Figure 17] is used for a similar purpose and is more 

common in peptide synthesis and coupling as well. Because of the different functional 

groups, one may be more useful or efficient than the other for purposes of modular 

TMIA synthesis.  
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Figure 16. SMCC linker. 

 

Figure 17. DSS linker. 

 

 

 

 DSS is symmetrical and contains two succinimidyl groups which are 

equally reactive, while SMCC is asymmetrical and contains one succinimidyl group 

and one maleimide group. Therefore, SMCC is expected to be more selective for 

synthesis and limit the symmetric products formed. DSS, on the other hand, coupled to 

the targeting group in a timely manner, but the DSS reactions included additional 

factors for consideration, such as the water sensitivity of the succinimide group and the 

increased potential to form symmetric product. In the end, both DSS and SMCC were 

useful for the synthesis of TMIAs for MRI/PET of cancer, but DSS was preferable 

because it coupled more reliably than SMCC in the final steps. 

 

 



39 

 

 

3.6 Synthesis of TMIA containing SMCC linker 

 SMCC was the first of the two linkers to be introduced into the experimental 

procedures. The succinimide group coupled readily to the primary amine of lysine. 

However, the coupling of a primary amine to the maleimide of SMCC (which is 

intended for sulfur bonds) proved to be a difficult reaction to force to completion. 

SMCC was useful in that it did prevent symmetric products (wherein a dimetal imaging 

module is coupled to both the maleimide and the succinimidyl groups), but the final 

coupling to the targeting group took quite some time and/or heat to proceed; these 

reactions are shown in  

Scheme 12 and Scheme 13. Additionally, a method for the removal of excess 

SMCC from the crude product following  

Scheme 12 has yet to be developed, and the lack thereof introduces some 

complications in the coupling of c(RGDyK) to 9. 

.  
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Scheme 12. Coupling of SMCC to 7 for formation of 9. 

9

11

NMM

DMSO

 

Scheme 13. Coupling of c(RGDyK) to 9 for formation of 11. 
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3.7 Synthesis of TMIA containing DSS linker 

The final couplings, both of DSS to 7 ( 

Scheme 14) and of c(RGDyK) to 8 (Scheme 15), were improved by carefully 

determining the equivalents of each reagent to use, and by the use of a syringe pump. 

Formation of symmetrical product was reduced by ensuring an excess of DSS in 

solution. However, upon addition of a targeting group to the solution, the presence of 

excess DSS results in formation of compounds such as c(RGDyK)-DSS-c(RGDyK) 

rather than the desired c(RGDyK)-DSS-dK(DOTA-La)-K(DOTA-Gd)-NH2. Because 

c(RGDyK) is a rather expensive peptide to purchase, it is not practical to use overly 

excessive amounts to counter this problem. Therefore, 1 equivalent of DSS, 0.9 

equivalents of dimetal puzzle piece, and 1.2 equivalents of the targeting group were 

determined to be optimal for the final coupling reaction.  

 

7 8
DSS

DEA, DMSO

 

Scheme 14. Coupling of DSS to di-metal module 7 for formation of 8. 

 



42 

 

 

8

10
DMSO

TEA

 

Scheme 15. Coupling of c(RGDyK) to 8 for formation of 10. 

 

14

 

Figure 18. DCL-DSS-K(DOTA-Gd)-NH2 
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3.8 Convergent Synthesis of TMIA for MRI of Prostate Cancer 

One of the other major considerations was the order of coupling steps: that is, 

should we continue in the traditional linear right-to-left method of synthesizing 

peptides, or would a convergent synthetic method prove more efficient? (Scheme 1 

versus Scheme 2, page 21). The application of such a convergent method of synthesis 

was prompted by the use of a similar method for the synthesis of DCL-DSS-K(DOTA-

Gd)-NH2 (14), a targeted MRI contrast agent for PrCa.  

During work towards the synthesis of 14, we found that the most troublesome 

step of the synthesis was the final coupling of the DCL urea to the DSS linker. While 

small amounts of TCA were able to be synthesized this way, the reaction took a 

considerable amount of time to complete, and was not achieved on any scale suitable 

for further testing of the TCA. Therefore, we determined that the reaction could be 

simplified by coupling DSS to DCL first, and then coupling this component to the MRI 

contrast module ( 

Scheme 16). As of this writing, a manuscript from our group detailing the 

synthesis of 14 by this method is out for submission. 
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Scheme 16. Convergent synthesis of TMIA for MRI of prostate cancer,  

DCL-DSS-K(DOTA-Gd)-NH2 (14) 

 

Because a convergent method proved successful for that synthesis described 

above, we wondered whether it might also prove useful for the synthesis of a dual-

modal PET/MRI TMIA. Further support for a convergent synthesis is found in the 

potential for a method of purifying c(RGDyK)-DSS prior to the addition of an imaging 

moiety.  We have found that, though the succinimide group is reactive with water, this 

reactivity is reduced in acidic conditions, and, as found in the synthesis of 14, the 

targeting module DCL-DSS could be successfully purified by preparative HPLC. 

Because the lanthanide placeholder is, by design, labile in acidic aqueous conditions, 

purification of 8 by preparative HPLC with acidic buffers is not suitable. If a convergent 

synthesis were utilized, c(RGDyK)-DSS would not be subject to those same constraints 

and would therefore be a preferred intermediate.  
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There are drawbacks to a convergent method of synthesis, however. Because 

we want to emphasize the practicality of applying our methods of synthesis to any of a 

number of targeting groups, it is desirable to maintain linear methods of synthesis, 

wherein the targeting moiety is coupled to the linker in the last step of synthesis. 

Additionally, the primary difficulty in the DCL-linker coupling described above were 

due to the three acids present on the targeting moiety; c(RGDyK) is much less reactive 

in that regard, and therefore does not suffer quite the same difficulty in coupling. As of 

this writing, convergent methods of synthesis have not been studied for this TMIA, but 

will be considered in the future for efforts to improve synthetic methods. 

 

3.9 T1 Relaxivity Measurements 

 Once an MRI T1-contrast agent was developed, synthesized, and purified, its 

efficacy as an actual contrast agent had to be determined. This was done through 

measurement of T1 relaxivity on a 43MHz NMR from Magritek. These experiments 

allowed us to measure the effects of the contrast agent on the rate of relaxation of water 

within a magnetic field.  

 Small samples of the contrast agents were weighed, and serial dilutions were 

used to make solutions of 0, 0.5, 1, 2, 3, and 4 mM concentrations of Gd. These were 

run in the NMR in melting point capillary tubes (1.6 x 90 mm), held in a standard 5mm 

NMR tube with an adapter. The samples were exposed to a standard inversion-recovery 

pulse sequence, and the time between pulses was varied. When this integration of the 

signal was plotted against time between pulses, a logarithmic relationship was seen. 

Based on equations governing relaxivity, a time constant (T1) for each solution and the 

relaxivity (r1) of each compound could be determined.  
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 Because Gd(III) is a T1 contrast agent – that is, it primarily affects the T1 

relaxation processes of a sample, and not the T2 processes – we were interested only in 

the T1 relaxation times. The T1 relaxation time for a sample is related to its signal in 

MRI by equation (2); S is the observed signal, S0 is the maximum signal observed, t is 

the time between the initial RF-pulse and the measurement, or the interval time, and T1 

is the relaxation time of interest. We graph the signal (S) as the area under curve against 

the interval time (t), and obtain a logarithmic function (Figure 19). SOLVER is then 

used to fit equation (2) to the data by solving for values of S0 and T1. 

𝑆 = 𝑆0(1 − 𝑒−
𝑡

𝑇1)   (2) 

 The reported relaxivity is the change in T1 as a function of the change in 

concentration of contrast agent (equation 1) – in this case, it is obtained by plotting the 

values of 1/T1 (or the R1 values) observed for a range of [Gd3+] values and calculating 

the slope of that linear relationship (Figure 20). The cumulative data from DOTA-Gd 

(commercially available as Dotarem) and three Gd-containing compounds synthesized 

in our lab (3, 6, and 14) are shown below in Figure 21. 
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Figure 19. Sample plot used to determine T1 and S0 for a sample. Signal Intensity is obtained from the 

integration of the peak for each repetition, and the inversion time is increased for each repetition. The 

purple points represent the experimentally obtained data points, and the black curve represents the 

theoretical values obtained by equation (2). 

 

 

 

Figure 20. Sample plot used to determine the relaxivity of a contrast agent. R1 values are taken from 

the solution found for each equation (2) at each concentration. Y-intercept of the linear intercept 

represents the R1 for a sample of H2O without the presence of [Gd3+] contrast agent; the slope yields 

the relaxivity of the contrast agent at a given field strength. 
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Figure 21. Showing the relaxivities of four distinct compounds as measured by inversion-recovery 

sequences on the 43MHz Magritek NMR. 

 

3.10 Transmetallation of La3+ to Cu2+ Successful, Though Incomplete 

The final transmetallation process is arguably the most important step in this 

synthesis. It is the step which renders the TMIA useful for PET imaging, and it is the 

step which proves the usefulness of our method of using a placeholder metal in the 

chelating group against than using the more frequently used protecting groups in 

imaging agent synthesis. 

A few things were important to keep in mind for this transmetallation procedure. 

First, we know (thanks to J. Perez’s data) that La is labile in dilute (0.05 to 0.1 M) 

aqueous TFA solutions, and that Gd is also labile at higher concentrations of TFA (0.5 
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M). Therefore, it was important to use an appropriately dilute solution of TFA such that 

the La-DOTA bonds could be displaced, but that the stronger Gd-DOTA coordination 

bonds would not be disrupted.  

Additionally, it was important that the transmetallation occur relatively quickly. 

The half-life of 64Cu is approximately 12.7 hours; if it takes that long for 64Cu to replace 

57La in acidic solution, then the copper will hardly be useful for imaging by the end of 

the process and isolation of the product/TMIA. However, this is only an issue if the 

transmetallation is done in one step. If the process is completed in two steps, with the 

lanthanide being displaced overnight followed by the addition of Cu2+ to the solution 

the next day, this problem resolves itself. 

Based on previous data and results from transmetallation experiments, the 

demetallation of the final TMIA – the displacement of La3+ – was expected to take 

perhaps a weekend in solution. We found, however, that La3+ was completely replaced 

by Cu2+ (in the form of [Cu(NO3)2∙6H2O]) in 0.1M TFA aqueous solution overnight.  

As of the time of this writing, the experiments for the transmetallation of a final 

TMIA are not finished. In the two completed trials for the transmetallation processes 

of both 10 to 12 and 11 to 13, the process was expected to take several days, but HPLC-

MS analysis after twelve hours showed full conversion to product. In a future repetition 

of this experiment, the samples will be monitored much more frequently, and the effects 

of variables such as temperature and concentrations of reagents would be considered, 

as well. Additionally, we will pursue transmetallation in two steps as described above, 

in order to avoid the potential for a radioactive sample of copper to decay significantly 

during the process. 

Also not yet complete is a method to purify the final TMIA after 

transmetallation. An HPLC column purification is expected to be the most useful to 
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remove the excess Cu(NO3)2 and La from the sample, but with such small reaction 

scales as have been run thus far, a reverse-phase purification has not been successful. 

SPE methods have been successful for similar purifications following transmetallations 

of analogous compounds previously developed in our lab, and are expected to be useful 

here as well.  

 

3.11 Preferred Methods of Purification and Analysis 

As in any synthesis, purifying the product and isolating a pure sample is one of 

the crucial steps. Without purification, a product cannot properly be characterized. For 

these purifications, we focused on reverse phase (RP) chromatographic methods, 

including RP-HPLC and SPE. RP-HPLC and related methods were the most efficient 

method of purification for the compounds involved in this project due to their 

hydrophilic nature – they are much too polar for purification by normal phase column 

chromatography, and crystallization doesn’t provide sufficient separation of product 

from undesirable byproducts or excess reagent.  

Only those intermediates containing the Fmoc protecting group were suitable 

for analysis by UV detection during HPLC, due to the characteristic absorption of Fmoc 

at 264nm.   In general, the compounds in this synthesis were assayed and characterized 

by mass spectroscopy methods that included LC-MS and flow injection-MS (also called 

loop injection) methods.   

Historically, within our group, ACN/AmAc buffer systems were used for 

analysis of imaging agents and intermediates by HPLC-MS, and in most cases these 

were easily transferred to HPLC prep or SPE on C-18 cartridges with ACN/H2O 

systems. The reaction products involved here are, in most cases, significantly more 
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polar than any starting materials or byproducts, and this solvent system generally 

proved to be suitable for purification. However, towards the final stages of synthesis, 

this was no longer the case. 

The deprotected di-lysine, H-dK(DOTA-La)-K(DOTA-Gd)-NH2 (7), for 

example, proved difficult to purify, because all compounds of interest in the reaction 

were water-soluble and were so polar as to hardly be retained on a C18-based HPLC 

column. This problem was resolved by incorporation of a dilute acidic aqueous phase, 

and separation with a solvent system of ACN/TFA (aq.) was successful. By protonating 

the acidic nuclei, the polarity was reduced, and the purification was achievable with 

good results. Similar problems and solutions were encountered for the penultimate 

compound, c(RGDyK)-DSS-dK(DOTA-La)-K(DOTA-Gd)-NH2 (11). The only caveat 

associated with the use of an acidic buffer in these cases is that the La-DOTA bonds 

are, as discussed previously, intentionally broken in acidic solution. Therefore, it is 

important to keep the acidic solution at concentrations safely below those used for 

transmetallation, as well as to isolate the products relatively quickly after fractionation, 

in order to reduce the risk of prematurely displacing the lanthanide. 

3.12 Successful Synthesis of Several TMIAs by a Modular Approach 

Over the course of this project, our modular approach to the synthesis of TMIAs 

for both single- and dual-modal imaging was proven to be useful. Two TMIAs (12 and 

13) featuring c(RGDyK) as a targeting moiety and two DOTA-metal groups were 

synthesized and observed by both HPLC-MS and HRMS,  although further work on a 

larger scale will be required before the relaxivities of those compounds can be 

measured.  
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The single modal TMIA for MRI of PrCa, compound 14, was successfully 

synthesized and isolated; the relaxivity of this compound was measured and found to 

be comparable to, if not better than, that of the commercially-available Dotarem. This 

work provided a facile method for the preparation of a copper-containing analogue to 

14, DCL-DSS-K(DOTA-Cu)-NH2, which would be useful as a metal-based radiotracer 

for PET of PrCa. 
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Chapter 4. Conclusion 

The usefulness and applicability of our group’s modular method for the 

synthesis of amino-acid-based TMIAs has been shown by the synthesis of two related 

TMIAs, one for PET-MRI of cancer, and one for MRI of prostate cancer. Furthermore, 

our method of utilizing a La as a placeholder metal to be later replaced by Cu for PET 

in the presence of Gd was demonstrated on a final TMIA, although these processes and 

purification methods have yet to be optimized.  

 One-pot syntheses were utilized for each lysine-based imaging module, and 

TMIAs were synthesized from these modular components. During synthesis, 

compounds were characterized by HPLC-MS, HRMS, and NMR. Those compounds 

useful for MRI were tested by NMR to determine their effectiveness as MRI T1 contrast 

agents, and our compounds were found to be comparable and even slightly better than 

current commercially available non-targeted Gd-based contrast agents.  

 The solubility of intermediates was the most critical factor in the modular 

synthesis of dual modal TMIAs. The use of a metal as a placeholder and protecting 

group for DOTA was proven to be useful and effective, and the La placeholder was 

easily displaced in dilute TFA and replaced with Cu. Methods for dual-modal imaging 

agent synthesis were optimized to provide consistent results.  

 Results from this work present an effective means of synthesizing a variety of 

dual-modal TMIAs for combined PET and MRI studies, which may utilize a broad 

range of targeting moieties. The method is also applicable to imaging agents containing 

dyes that may be designed for PAI, fluorescence or optical imaging, and photodynamic 

therapy. Additionally, future research in our lab will explore modifications to the MRI 

contrast modules for the development of high-relaxivity TMIAs for use in MRI.  
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Chapter 5. Experimental Procedures 

General Considerations 

Chemicals were purchased from VWR (Radnor, PA), Sigma Aldrich (St. Louis, 

MO), Alfa Aesar (Ward Hill, MA), TCI (Tokyo, Japan), and Acros Organics (Morris 

Plains, NY), and were used as received unless otherwise stated. All were HPLC or 

American Chemical Society grade. Amino acid starting materials were purchased from 

Bachem (Bubendorf, Switzerland), and Chem-Impex Int’l Inc. (Wood Dale, IL). 

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was purchased from 

Macrocyclics (Houston, TX).  

The HPLC-MS instrument used was a Waters 2695 Alliance HPLC with a 

Waters 2998 Diode Array Detector and a Waters 3100 SQ Mass Spectrometer.  HPLC 

columns used included an Agilent XDB C18 column (3 mm x 100 mm, 3µ) and a 

Waters XBridge C18 column (50 mm x 3 mm, 3µ).  Mass spectra were recorded at unit 

resolution with positive and negative switching mode at either 35 or 50 V cone voltages.  

HPLC methods utilized 0.5mL/min flow rates and solvent systems of ACN or MeOH 

with a 0.1M ammonium acetate aqueous phase. 

Preparative HPLC was carried out with a Waters 600E system controller, and 

Waters 600 multi-solvent delivery system using a 30 mL/min flow rate.  For SPE 

purification, Varian Mega Bond Elute C18 cartridges were utilized, of appropriate size 

for the scale of the reaction. Preparative HPLC methods utilized a column from 

Keystone Scientific, Inc. Hyperprep C18 BDS (250mm x 20 mm, 8µ). 

 Chromatographic gradients for preparative HPLC, and SPE are denoted as 

(X/Y:A-B), where X is the organic mobile phase and Y is the organic mobile phase, 

and A and B are the initial and final concentrations of X, respectively. In the case of 

SPE, 5% intervals were used.  

 High resolution mass spectra (HRMS) were obtained on a Waters Synapt G2Si 

(School of Chemical Sciences, University of Illinois at Urbana-Champaign) using the 

following parameters: Flow injection at flow rate of 0.1 ml/min, H2O/ACN/0.1% 

Formic Acid, positive and negative mode ESI, Cone voltage = 25, capillary voltage = 

3.0, ion source temperature = - 100°C, desolation temperature  = 180℃,  nebulizing gas 

(N2) flow = 200 L/h, cone gas (N2) flow =  5L/h. 

 

F-K(DOTA-OtBu3)-NH2 (1) Fmoc-Lys(H)-NH2 (467mg, 0.97mmol) was dissolved 

in a mixture of DCM:DMF (1:1, 4mL total volume). Into a separate flask containing 

DCM (5mL) was added DOTA-OtBu (500.mg, 0.87mmol), HOBt (26.2mg, 

0.19mmol), TBTU (373.7mg, 1.16mmol), and DIPEA (752.2mg, 5.82mmol). The two 

solutions were combined and stirred 1 hour under inert conditions. Solvent was 

removed by rotary evaporation and vacuum pump. The crude product was purified by 

liquid-liquid extraction with EtOAC and DI H2O; organic layer was rotary evaporated 

and dried briefly under high vacuum. MS (HR, ESI) calc. for C47H75N7O10 922.5654 

[M+H], found 922.5624 [M+H]. 

 

F-K(DOTA)-NH2 (2) Compound 1 (894mg, 0.969mmol) was dissolved in TFA 

(15mL) with the addition of 0.3mL H2O and stirred, loosely capped, for two hours. TFA 

was removed by diluting the reaction solution with hexanes, then removing both 

solvents by rotary evaporation, and repeating this process three times. Once dried under 

vaccum, this crude product was brought forth to the next reaction without further 
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purification. MS (HR, ESI) calc. for C37H50N7O10 752.36192 [M-H], found 752.36240 

[M-H]. 

 

F-K(DOTA-Gd)-NH2 (3, method A) Compound 2 (730.mg, 0.968mmol) was 

dissolved in DMF (10mL). Gadolinium (III) acetate (983.2mg, 2.42mmol) was added 

to the solution. The reaction stirred under ambient conditions 1 hour. Crude product 

was isolated by rotary evaporation. Pure product was obtained by SPE (ACN/H2O:10-

60). Yield: 414.9mg (47%).  

 

F-K(DOTA-Gd)-NH2 (3, method B) Commercially-available DOTA (500.0mg, 

0.813mmol) was stirred into suspension in a solution of NMM (1233.4mg, 1.22mmol) 

in anhydrous DMF (35mL). This solution was heated briefly to promote solvation, then 

allowed to cool back to room temperature. A solution of TSTU (489.6mg, 1.63mmol) 

in DMF (10mL) was added to the reaction flask over 30 minutes with the use of a 

syringe pump, followed by the addition of a solution of Fmoc-Lys(H)-NH2 (380.0mg, 

0.81mmol) in the same manner. Immediately following the dropwise addition of this 

reagent, Gd(OAc)3 (495.5mg, 1.22mmol) was added to the reaction flask as a 

crystalline salt. The reaction was stirred another ten minutes.  Crude product was 

precipitated from the solution by the addition of ethyl ether and isolated by decanting 

the organic solvent after centrifugation. Purification by SPE (ACN/H2O:10-60) yielded 

the desired product. Yield: 200.8mg (27%). MS (HR, ESI) calc. for C37H48GdN7O10Na 

931.26014 [M+Na], found 931.2566 [M+Na]. 

 

H-K(DOTA-Gd)-NH2 (4) Compound 3 (50.0mg, 0.055mmol) was dissolved in 

anhydrous DMF (7mL). DEA (80.5mg, 1.10mmol) was added to this solution. The 

reaction stirred under inert atmosphere one (1) hour. Crude product was precipitated by 

addition of ethyl ether to the reaction solution, and organic solvent was decanted after 

centrifugation. Pure product was isolated by liquid-liquid extraction with ethyl acetate 

and H2O, with product found in the aqueous layer. Yield: 35.8mg (95%). MS (HR, 

ESI) calc. for C22H37GdN7O8 685.19447 [M-H], found 685.19477 [M-H].   

 

F-dK(DOTA-La)-OH (5) Commercially-available DOTA (500.2mg, 0.98mmol) was 

stirred into suspension in a solution of NMM (1139.2mg, 11.3mmol) in anhydrous 

DMF (30mL). This solution was heated briefly to promote solvation, then allowed to 

cool back to room temperature. A solution of TSTU (452.1mg, 1.50mmol) in DMF 

(10mL) was added to the reaction flask over 30 minutes with the use of a syringe pump, 

followed by the addition of a solution of Fmoc-dLys(H)-OH (304.0mg, 0.75mmol) in 

the same manner. Immediately following the dropwise addition of this reagent, 

La(NO3) (650.2mg, 1.50mmol) was added to the reaction flask as a crystalline salt. The 

reaction was stirred another ten minutes.  Crude product was precipitated from the 

solution by the addition of ethyl ether and isolated by decanting the organic solvent 

after centrifugation. Purification by SPE (ACN/H2O 10-60) yielded the desired 

product. Yield: 200.0mg (30%). MS (HR, ESI) calc. for C37H48LaN6O11 891.24457 

[M+H], found 891.2431 [M+H].   

 

F-dK(DOTA-Gd)-OH (6) Commercially-available DOTA (478.6mg, 0.934mmol) 

was stirred into suspension in a solution of NMM (1180.7mg, 11.7mmol) in anhydrous 

DMF (30mL). This solution was heated briefly to promote solvation, then allowed to 

cool back to room temperature. A solution of TSTU (468.6mg, 1.56mmol) in DMF 
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(10mL) was added to the reaction flask over 30 minutes with the use of a syringe pump, 

followed by the addition of a solution of Fmoc-dLys(H)-OH (315.0mg, 0.778mmol) in 

the same manner. Immediately following the dropwise addition of this reagent, 

Gd(OAc)3 (650.2mg, 1.50mmol) was added to the reaction flask as a crystalline salt. 

The reaction was stirred another ten minutes.  Crude product was precipitated from the 

solution by the addition of ethyl ether and isolated by decanting the organic solvent 

after centrifugation. Purification by SPE (ACN/H2O 10-60) yielded the desired 

product. Yield: 205.5mg (27.8%). MS (HR, ESI) calc. for C37H48GdN6O11 910.26233 

[M+H], found 910.2621 [M+H].   

 

F-dK(DOTA-La)-K(DOTA-Gd)-NH2 (7) Compound 5 (35.0mg, 3.93x10-2mmol) 

was dissolved in NMP (3mL) and to this solution was added triethylamine (39.8mg, 

0.393mmol) and a solution of TSTU (118.3mg, 0.393mmol) in NMP (3mL). This 

reaction stirred under argon 1hr and was monitored by HPLC-MS after treating a 

sample with 0.1% aqueous butylamine. Upon completion of this portion of the reaction, 

crude intermediate product was precipitated by the addition of EtOAc and diethyl ether, 

and after centrifugation the organic layer was decanted and the crude solid dried briefly 

under argon. Compound (4) (44.5mg, 6.48x10-2mmol) was dissolved in 2mL DMSO. 

To this solution was added triethylamine (39.8mg, 0.393mmol), followed by the 

previously isolated crude product which had been reconstituted in NMP (3mL). This 

reaction ran 1hr. Crude product was precipitated by the addition of ethyl ether, and the 

organic layer was decanted after centrifugation. Pure product was obtained by 

preparatory HPLC (ACN/0.1% acetic acid aqueous, 30-60%). Fractions containing 

pure product were collected, concentrated by rotary evaporation, and freeze dried. 

Yield: 16.2mg, 26.5%.  MS (HR, ESI) calc. for C59H85GdLaN13O18 780.22212 

[M+2H/2], found 780.223 [M+2H/2].   

 

H-dK(DOTA-La)-K(DOTA-Gd)-NH2 (8) Compound 7 (16.2mg, 1.04x10-3mmol) 

was dissolved in DMF (2mL) followed by the addition of diethylamine (15.21mg, 

0.208mmol). Reaction ran 1hr. Crude product was precipitated by the addition of 

diethyl ether. This was centrifuged and the organic layer decanted; the crude solid was 

triturated with EtOAc to remove Fmoc byproduct, and was again centrifuged and the 

organic layer, decanted. Yield: 12.9mg (92.8%). MS (HR, ESI) calc. for 

C44H74GdLaN13O16 1337.36822 [M+H], found 1337.369 [M+H].   

 

DSS-dK(DOTA-La)-K(DOTA-Gd)-NH2 (9) Commercial DSS (7.3mg, 1.98x10-2 

mmol) was dissolved in DMSO (2mL) and to this was added NMM (13.4mg, 

0.132mmol). Compound 8 (17.7mg, 1.32x10-2 mmol) was dissolved in DMSO (2mL) 

and was added to the first solution dropwise over 30 minutes with the use of a syringe 

pump. After the completion of this addition, the reaction stirred under argon an 

additional 30 minutes before a small aliquot was treated with butylamine and monitored 

by HPLC-MS. Crude product was isolated by precipitation with anhydrous diethyl ether 

and centrifugation with the organic solvent discarded. This crude product was dried 

under high vacuum and was not further purified before use in the next reaction. 

 

SMCC-dK(DOTA-La)-K(DOTA-Gd)-NH2 (10) Compound 8 (12.9mg, 9.56x10-

3mmol) was dissolved in DMSO (2mL). To this was added triethylamine (9.77mg, 

9.65x10-2mmol) and SMCC (16.0mg, 4.34x10-2mmol). Reaction ran under argon 2hr. 
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Crude product was precipitated by the addition of diethyl ether, and the organic layer 

was decanted after centrifugation and the solid was dried under argon. 

 

c(RGDyK)-DSS-dK(DOTA-La)-K(DOTA-Gd)-NH2 (11) Compound 9 (17.0mg, 

1.07x10-2mmol) was dissolved in DMSO (1mL). To this was added a solution of NMM 

(10.82mg, 0.107mmol) and commercial c(RGDyK) (13.3mg, 2.14x10-2mmol) in 

DMSO (1mL).  Reaction stirred under argon 1hr. Crude product was precipitated by 

the addition of diethyl ether, and organic solvent was decanted after centrifugation. The 

crude product was dried under argon and was not further purified before continuing. 

MS (HR, ESI) calculated for C79H124GdLaN22O26 1045.860141 m/z [M-2H/2], found 

1045.8607 m/z [M-2H/2]. 

 

c(RGDyK)-SMCC-dK(DOTA-La)-K(DOTA-Gd)-NH2 (12) Compound 8 (1.3mg, 

8.36x10-4 mmol) was dissolved in DMSO (1mL). To this was added a solution of NMM 

(0.57mg, 8.36x10-3 mmol) and commercial c(RGDyK) (0.85mg, 9.19x10-4 mmol) in 

DMSO (1mL).  Reaction stirred under argon 2 days. Crude product was precipitated by 

the addition of diethyl ether, and organic solvent was decanted after centrifugation. The 

crude product was dried under argon and was not further purified before continuing. 

MS (HR, ESI) calc. for C83H125GdLaN23O27 1086.37099 [M-2H/2], found 1086.3707 

[M-2H/2].  

 

c(RGDyK)-DSS-dK(DOTA-Cu)-K(DOTA-Gd)-NH2 (13) Compound 11 (20.0mg, 

1.26x10-2 mmol) was dissolved in aqueous TFA solution (0.1M, 2mL). To this solution 

was added Cu(NO3)2 (23.6mg, 0.126mmol). This reaction stirred 24 hours at ambient 

conditions. The solvent was removed by rotary evaporation. MS (HR, ESI) calc. for 

C79CuH127GdN22O26Na2 688.92081 [M+H+2Na/3], found 688.9243 [M+H+2Na/3].  

 

c(RGDyK)-SMCC-dK(DOTA-Cu)-K(DOTA-Gd)-NH2 (14) Compound 12 (2.0mg, 

9.19x10-4 mmol) was dissolved in aqueous TFA solution (0.1M, 2mL). To this solution 

was added Cu(NO3)2 (1.72mg, 9.19x10-3mmol). This reaction stirred 24 hours at 

ambient conditions. The solvent was removed by rotary evaporation. MS (HR, ESI) 

calc. for C83CuH125GdN23O27Na2 1071.37238 [M-2H+2Na/2], found 1071.3698 [M-

2H+2Na/2].  

 

DSS-K(DOTA-Gd)-NH2 (15) Commercial DSS (10.7mg, 2.92x10-2 mmol) was 

dissolved in DMSO:DMF (1:1, 2mL) and to this was added NMM (29.5mg, 

0.292mmol). Compound 4 (20.0mg, 2.92x10-2 mmol) was dissolved in DMSO (2mL) 

and was added to the first solution dropwise over 30 minutes with the use of a syringe 

pump. After the completion of this addition, the reaction stirred under argon an 

additional 30 minutes before a small aliquot was treated with butylamine and monitored 

by HPLC-MS. Crude product was isolated by precipitation with anhydrous diethyl ether 

and centrifugation with the organic solvent discarded. This crude product was dried 

under high vacuum and was not further purified before use in the next reaction. 

 

DCL-DSS-K(DOTA-Gd)-NH2 (16a) Compound 15 (5.0mg, 5.32x10-3mmol) was 

dissolved in DMSO (1mL). To this solution was added NMM (34.4mg, 0.266mmol) 

and DCL urea (8.5mg, 2.66x10-2mmol). The reaction was stirred 3 hours in an oil bath 

at 35C and under argon gas. Crude product was isolated by precipitation with anhydrous 
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diethyl ether and centrifugation with the organic solvent discarded. This crude product 

was used to experiment with HPLC and SPE purification methods. 

 

DCL-DSS-K(DOTA-Gd)-NH2 (16b)  Compound 4 (35.9mg, 5.24x10-2mmol) was 

dissolved in DMSO (2mL). To this was added TEA (67.7mg, 0.524mmol) and a 

solution of DCL-DSS (30.0mg, 5.24x10-2mmol) in DMSO (0.7mL). The reaction was 

stirred under argon 1hr. Crude product was isolated by precipitation with diethyl ether 

and centrifugation, with the organic solvent discarded. Purification by preparative 

HPLC (ACN/0.1% TFA in H2O, 5-40%) yielded pure product. Yield: 16.8mg, 28%. 

MS (HR, ESI) calc. for C42H70GdN10O17 1144.41614, found 1144.4150.  



59 

 

 

References 

(1)  Cancer today http://gco.iarc.fr/today/home (accessed Nov 7, 2017). 

(2)  Cancer Statistics https://www.cancer.gov/about-cancer/understanding/statistics 

(accessed Nov 7, 2017). 

(3)  Cooper, G. M. The Development and Causes of Cancer. 2000. 

(4)  Chemotherapy Side Effects https://www.cancer.org/treatment/treatments-and-

side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html 

(accessed Apr 2, 2019). 

(5)  Gonda, K.; Hamada, Y.; Kitamura, N.; Tada, H.; Miyashita, M.; Kamei, T.; 

Ishida, T.; Ohuchi, N. Highly Sensitive Imaging of Cancer with Functional 

Nanoparticles. J. Photopolym. Sci. Technol. 2015, 28 (6), 731–736. 

https://doi.org/10.2494/photopolymer.28.731. 

(6)  Shahbazi-Gahrouei, D. Novel MR Imaging Contrast Agents for Cancer 

Detection. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2009, 14 (3), 141–

147. 

(7)  Gao, Y.; Hernandez, C.; Yuan, H.-X.; Lilly, J.; Kota, P.; Zhou, H.; Wu, H.; 

Exner, A. A. Ultrasound Molecular Imaging of Ovarian Cancer with CA-125 

Targeted Nanobubble Contrast Agents. Nanomedicine Nanotechnol. Biol. Med. 

2017, 13 (7), 2159–2168. https://doi.org/10.1016/j.nano.2017.06.001. 

(8)  Baltzer, P. A. T.; Kapetas, P.; Marino, M. A.; Clauser, P. New Diagnostic Tools 

for Breast Cancer. Memo - Mag. Eur. Med. Oncol. 2017, 10 (3), 175–180. 

https://doi.org/10.1007/s12254-017-0341-5. 

(9)  Bohunicky, B.; Mousa, S. A. Biosensors: The New Wave in Cancer Diagnosis. 

Nanotechnol. Sci. Appl. 2010, 4, 1–10. https://doi.org/10.2147/NSA.S13465. 

(10)  Sivasubramanian, M.; Hsia, Y.; Lo, L.-W. Nanoparticle-Facilitated Functional 

and Molecular Imaging for the Early Detection of Cancer. Front. Mol. Biosci. 

2014, 1. https://doi.org/10.3389/fmolb.2014.00015. 

(11)  Lin, E. C. Radiation Risk From Medical Imaging. Mayo Clin. Proc. 2010, 85 

(12), 1142–1146. https://doi.org/10.4065/mcp.2010.0260. 

(12)  Theerasilp, M.; Sunintaboon, P.; Sungkarat, W.; Nasongkla, N. Glucose-

Installed, SPIO-Loaded PEG-b-PCL Micelles as MR Contrast Agents to Target 

Prostate Cancer Cells. Appl. Nanosci. 2017, 1–11. 

https://doi.org/10.1007/s13204-017-0610-y. 

(13)  Hu, L. Y.; Kelly, K. A.; Sutcliffe, J. L. High-Throughput Approaches to the 

Development of Molecular Imaging Agents. Mol. Imaging Biol. 2017, 19 (2), 

163–182. https://doi.org/10.1007/s11307-016-1016-z. 

(14)  Ding, F.; Chen, S.; Zhang, W.; Tu, Y.; Sun, Y. UPAR Targeted Molecular 

Imaging of Cancers with Small Molecule-Based Probes. Bioorg. Med. Chem. 

2017, 25 (20), 5179–5184. https://doi.org/10.1016/j.bmc.2017.08.034. 

(15)  Huang, H. W. and J. PEGylated Peptide-Based Imaging Agents for Targeted 

Molecular Imaging http://www.eurekaselect.com/138211/article (accessed Nov 

7, 2017). 

(16)  Le Joncour, V.; Laakkonen, P. Seek & Destroy, Use of Targeting Peptides for 

Cancer Detection and Drug Delivery. Bioorg. Med. Chem. 2017. 

https://doi.org/10.1016/j.bmc.2017.08.052. 

(17)  Moon, S.-H.; Yang, B. Y.; Kim, Y. J.; Hong, M. K.; Lee, Y.-S.; Lee, D. S.; 

Chung, J.-K.; Jeong, J. M. Development of a Complementary PET/MR Dual-



60 

 

 

Modal Imaging Probe for Targeting Prostate-Specific Membrane Antigen 

(PSMA). Nanomedicine Nanotechnol. Biol. Med. 2016, 12 (4), 871–879. 

https://doi.org/10.1016/j.nano.2015.12.368. 

(18)  Chen, Y.; Chatterjee, S.; Lisok, A.; Minn, I.; Pullambhatla, M.; Wharram, B.; 

Wang, Y.; Jin, J.; Bhujwalla, Z. M.; Nimmagadda, S.; et al. A PSMA-Targeted 

Theranostic Agent for Photodynamic Therapy. J. Photochem. Photobiol. B 2017, 

167 (Supplement C), 111–116. https://doi.org/10.1016/j.jphotobiol.2016.12.018. 

(19)  Zhang, H.; Liu, X.; Wu, F.; Qin, F.; Feng, P.; Xu, T.; Li, X.; Yang, L. A Novel 

Prostate-Specific Membrane-Antigen (PSMA) Targeted Micelle-Encapsulating 

Wogonin Inhibits Prostate Cancer Cell Proliferation via Inducing Intrinsic 

Apoptotic Pathway. Int. J. Mol. Sci. 2016, 17 (5), 676. 

https://doi.org/10.3390/ijms17050676. 

(20)  Chatzisideri, T.; Thysiadis, S.; Katsamakas, S.; Dalezis, P.; Sigala, I.; Lazarides, 

T.; Nikolakaki, E.; Trafalis, D.; Gederaas, O. A.; Lindgren, M.; et al. Synthesis 

and Biological Evaluation of a Platinum(II)-c(RGDyK) Conjugate for Integrin-

Targeted Photodynamic Therapy. Eur. J. Med. Chem. 2017, 141 (Supplement 

C), 221–231. https://doi.org/10.1016/j.ejmech.2017.09.058. 

(21)  Danhier, F.; Le Breton, A.; Préat, V. RGD-Based Strategies To Target Alpha(v) 

Beta(3) Integrin in Cancer Therapy and Diagnosis. Mol. Pharm. 2012, 9 (11), 

2961–2973. https://doi.org/10.1021/mp3002733. 

(22)  Chen, Y.; Foss, C. A.; Byun, Y.; Nimmagadda, S.; Pullambhatla, M.; Fox, J. J.; 

Castanares, M.; Lupold, S. E.; Babich, J. W.; Mease, R. C.; et al. 

Radiohalogenated Prostate-Specific Membrane Antigen (PSMA)-Based Ureas 

as Imaging Agents for Prostate Cancer. J. Med. Chem. 2008, 51 (24), 7933–7943. 

https://doi.org/10.1021/jm801055h. 

(23)  Jayaprakash, S.; Wang, X.; Heston, W. D.; Kozikowski, A. P. Design and 

Synthesis of a PSMA Inhibitor–Doxorubicin Conjugate for Targeted Prostate 

Cancer Therapy. ChemMedChem 2006, 1 (3), 299–302. 

https://doi.org/10.1002/cmdc.200500044. 

(24)  Nan, F.; Bzdega, T.; Pshenichkin, S.; Wroblewski, J. T.; Wroblewska, B.; Neale, 

J. H.; Kozikowski, A. P. Dual Function Glutamate-Related Ligands:  Discovery 

of a Novel, Potent Inhibitor of Glutamate Carboxypeptidase II Possessing 

MGluR3 Agonist Activity. J. Med. Chem. 2000, 43 (5), 772–774. 

https://doi.org/10.1021/jm9905559. 

(25)  Kozikowski, A. P.; Nan, F.; Conti, P.; Zhang, J.; Ramadan, E.; Bzdega, T.; 

Wroblewska, B.; Neale, J. H.; Pshenichkin, S.; Wroblewski, J. T. Design of 

Remarkably Simple, Yet Potent Urea-Based Inhibitors of Glutamate 

Carboxypeptidase II (NAALADase). J. Med. Chem. 2001, 44 (3), 298–301. 

https://doi.org/10.1021/jm000406m. 

(26)  Davis, M. I.; Bennett, M. J.; Thomas, L. M.; Bjorkman, P. J. Crystal Structure of 

Prostate-Specific Membrane Antigen, a Tumor Marker and Peptidase. Proc. 

Natl. Acad. Sci. U. S. A. 2005, 102 (17), 5981–5986. 

https://doi.org/10.1073/pnas.0502101102. 

(27)  Schülke, N.; Varlamova, O. A.; Donovan, G. P.; Ma, D.; Gardner, J. P.; 

Morrissey, D. M.; Arrigale, R. R.; Zhan, C.; Chodera, A. J.; Surowitz, K. G.; et 

al. The Homodimer of Prostate-Specific Membrane Antigen Is a Functional 

Target for Cancer Therapy. Proc. Natl. Acad. Sci. 2003, 100 (22), 12590–12595. 

https://doi.org/10.1073/pnas.1735443100. 



61 

 

 

(28)  Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; 

Haberkorn, U.; Eisenhut, M. 68 Ga-Complex Lipophilicity and the Targeting 

Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjug. Chem. 

2012, 23 (4), 688–697. https://doi.org/10.1021/bc200279b. 

(29)  Sanna, V.; Pintus, G.; Bandiera, P.; Anedda, R.; Punzoni, S.; Sanna, B.; 

Migaleddu, V.; Uzzau, S.; Sechi, M. Development of Polymeric Microbubbles 

Targeted to Prostate-Specific Membrane Antigen as Prototype of Novel 

Ultrasound Contrast Agents. Mol. Pharm. 2011, 8 (3), 748–757. 

https://doi.org/10.1021/mp100360g. 

(30)  Soudy, R.; Gill, A.; Sprules, T.; Lavasanifar, A.; Kaur, K. Proteolytically Stable 

Cancer Targeting Peptides with High Affinity for Breast Cancer Cells. J. Med. 

Chem. 2011, 54 (21), 7523–7534. https://doi.org/10.1021/jm200750x. 

(31)  Gros, C. P.; Eggenspiller, A.; Nonat, A.; Barbe, J.-M.; Denat, F. New Potential 

Bimodal Imaging Contrast Agents Based on DOTA-like and Porphyrin 

Macrocycles. MedChemComm 2011, 2 (2), 119–125. 

https://doi.org/10.1039/C0MD00205D. 

(32)  Jennings, L. E.; Long, N. J. ‘Two Is Better than One’—Probes for Dual-Modality 

Molecular Imaging. Chem. Commun. 2009, 0 (24), 3511–3524. 

https://doi.org/10.1039/B821903F. 

(33)  Fahnert, J.; Purz, S.; Jarvers, J.-S.; Heyde, C.-E.; Barthel, H.; Stumpp, P.; Kahn, 

T.; Sabri, O.; Friedrich, B. Use of Simultaneous 18F-FDG PET/MRI for the 

Detection of Spondylodiskitis. J. Nucl. Med. 2016, 57 (9), 1396–1401. 

https://doi.org/10.2967/jnumed.115.171561. 

(34)  Beiderwellen, K.; Geraldo, L.; Ruhlmann, V.; Heusch, P.; Gomez, B.; Nensa, F.; 

Umutlu, L.; Lauenstein, T. C. Accuracy of [18F]FDG PET/MRI for the 

Detection of Liver Metastases. PLOS ONE 2015, 10 (9), e0137285. 

https://doi.org/10.1371/journal.pone.0137285. 

(35)  Portnow, L. H.; Vaillancourt, D. E.; Okun, M. S. The History of Cerebral PET 

Scanning. Neurology 2013, 80 (10), 952–956. 

https://doi.org/10.1212/WNL.0b013e318285c135. 

(36)  Catana, C.; Drzezga, A.; Heiss, W.-D.; Rosen, B. R. PET/MRI for Neurologic 

Applications. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2012, 53 (12), 1916–1925. 

https://doi.org/10.2967/jnumed.112.105346. 

(37)  Fei, B.; Muzic, R. F.; Lee, Z.; Flask, C. A.; Morris, R. L.; Duerk, J. L.; Oleinick, 

N.; Wilson, D. L. Registration of Micro-PET and High-Resolution MR Images 

of Mice for Monitoring Photodynamic Therapy; International Society for Optics 

and Photonics, 2004; Vol. 5369, pp 371–380. https://doi.org/10.1117/12.535465. 

(38)  Beyer, T.; Townsend, D. W.; Brun, T.; Kinahan, P. E.; Charron, M.; Roddy, R.; 

Jerin, J.; Young, J.; Byars, L.; Nutt, R. A Combined PET/CT Scanner for Clinical 

Oncology. J. Nucl. Med. 2000, 41 (8), 1369–1379. 

(39)  Sawicki, L. M.; Grueneisen, J.; Buchbender, C.; Schaarschmidt, B. M.; Gomez, 

B.; Ruhlmann, V.; Wetter, A.; Umutlu, L.; Antoch, G.; Heusch, P. Comparative 

Performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in Detection and 

Characterization of Pulmonary Lesions in 121 Oncologic Patients. J. Nucl. Med. 

2016, 57 (4), 582–586. https://doi.org/10.2967/jnumed.115.167486. 

(40)  Spick, C.; Herrmann, K.; Czernin, J. 18F-FDG PET/CT and PET/MRI Perform 

Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J. 

Nucl. Med. 2016, 57 (3), 420–430. https://doi.org/10.2967/jnumed.115.158808. 



62 

 

 

(41)  Karakatsanis, N. A.; Fokou, E.; Tsoumpas, C. Dosage Optimization in Positron 

Emission Tomography: State-of-the-Art Methods and Future Prospects. Am. J. 

Nucl. Med. Mol. Imaging 2015, 5 (5), 527–547. 

(42)  Parry, D. A.; Booth, T.; Roland, P. S. Advantages of Magnetic Resonance 

Imaging over Computed Tomography in Preoperative Evaluation of Pediatric 

Cochlear Implant Candidates. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. 

Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2005, 26 (5), 976–982. 

(43)  Eiber, M.; Rauscher, I.; Souvatzoglou, M.; Maurer, T.; Schwaiger, M.; 

Holzapfel, K.; Beer, A. J. Prospective Head-to-Head Comparison of 11C-

Choline-PET/MR and 11C-Choline-PET/CT for Restaging of Biochemical 

Recurrent Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 1–10. 

https://doi.org/10.1007/s00259-017-3797-y. 

(44)  Hornak, J. The Basics of MRI; Interactive Learning Software: Henrietta, NY, 

1997. 

(45)  MRI: The Dance of the Whirling Protons – The Alcohol Pharmacology 

Education Partnership. 

(46)  Chilla, S. N. M.; Henoumont, C.; Elst, L. V.; Muller, R. N.; Laurent, S. 

Importance of DOTA Derivatives in Bimodal Imaging. Isr. J. Chem. 2017, 57 

(9), 800–808. https://doi.org/10.1002/ijch.201700024. 

(47)  Rogosnitzky, M.; Branch, S. Gadolinium-Based Contrast Agent Toxicity: A 

Review of Known and Proposed Mechanisms. Biometals 2016, 29, 365–376. 

https://doi.org/10.1007/s10534-016-9931-7. 

(48)  Sherry, A. D.; Caravan, P.; Lenkinski, R. E. Primer on Gadolinium Chemistry. 

J. Magn. Reson. Imaging JMRI 2009, 30 (6), 1240–1248. 

https://doi.org/10.1002/jmri.21966. 

(49)  Zhou, Z.; Lu, Z.-R. Gadolinium-Based Contrast Agents for MR Cancer Imaging. 

Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5 (1), 1–18. 

https://doi.org/10.1002/wnan.1198. 

(50)  Paans, A. M. J. Positron Emission Tomography. 2006. 

(51)  Positron Emission Tomography: Basic Sciences; Bailey, D. L., Townsend, D. 

W., Valk, P. E., Maisey, M. N., Eds.; Springer-Verlag: London, 2005. 

(52)  Li, Z.; Conti, P. S. Radiopharmaceutical Chemistry for Positron Emission 

Tomography. Adv. Drug Deliv. Rev. 2010, 62 (11), 1031–1051. 

https://doi.org/10.1016/j.addr.2010.09.007. 

(53)  Rohren, E. M.; Turkington, T. G.; Coleman, R. E. Clinical Applications of PET 

in Oncology. Radiology 2004, 231 (2), 305–332. 

https://doi.org/10.1148/radiol.2312021185. 

(54)  Anderson, C. J.; Ferdani, R. Copper-64 Radiopharmaceuticals for PET Imaging 

of Cancer: Advances in Preclinical and Clinical Research. Cancer Biother. 

Radiopharm. 2009, 24 (4), 379–393. https://doi.org/10.1089/cbr.2009.0674. 

(55)  Nudat 2 https://www.nndc.bnl.gov/nudat2/chartNuc.jsp (accessed May 13, 

2019). 

(56)  Voráčová, I.; Vaněk, J.; Pasulka, J.; Střelcová, Z.; Lubal, P.; Hermann, P. 

Dissociation Kinetics Study of Copper(II) Complexes of DO3A, DOTA and Its 

Monosubstituted Derivatives. Polyhedron 2013, 61, 99–104. 

https://doi.org/10.1016/j.poly.2013.05.042. 

(57)  Schmitthenner, H. F.; Beach, S.; Weidman, C.; Barrett, T. Modular Imaging 

Agents Containing Amino Acids and Peptides. US20150038672 A1, February 5, 

2015. 



63 

 

 

(58)  Azhdarinia, A.; Wilganowski, N.; Robinson, H.; Ghosh, P.; Kwon, S.; Lazard, 

Z. W.; Davis, A. R.; Olmsted-Davis, E.; Sevick-Muraca, E. M. Characterization 

of Chemical, Radiochemical and Optical Properties of a Dual-Labeled MMP-9 

Targeting Peptide. Bioorg. Med. Chem. 2011, 19 (12), 3769–3776. 

https://doi.org/10.1016/j.bmc.2011.04.054. 

(59)  Cacheris, W. P.; Nickle, S. K.; Sherry, A. D. Thermodynamic Study of 

Lanthanide Complexes of 1,4,7-Triazacyclononane-N,N’,N"-Triacetic Acid and 

1,4,7,10-Tetraazacyclododecane-N,N’,N",N’’’-Tetraacetic Acid. Inorg. Chem. 

1987, 26 (6), 958–960. https://doi.org/10.1021/ic00253a038. 

(60)  Pasha, A.; Tircsó, G.; Benyó, E. T.; Brücher, E.; Sherry, A. D. Synthesis and 

Characterization of DOTA-(Amide)4 Derivatives: Equilibrium and Kinetic 

Behavior of Their Lanthanide(III) Complexes. Eur. J. Inorg. Chem. 2007, 2007 

(27), 4340–4349. https://doi.org/10.1002/ejic.200700354. 

(61)  Chang, C. A.; Liu, Y.-L. Dissociation Kinetics of Cerium(Lll) Complexes of 

Macrocyclic Polyaza Polycarboxylate Ligands TETA and DOTA. J. Chin. 

Chem. Soc. 2000, 47 (4B), 1001–1006. https://doi.org/10.1002/jccs.200000139. 

 

  



64 

 

 

Appendix I. HPLC-MS & HRMS Data 

Compound 1 Fmoc-Lys(DOTA-OtBu3)-NH2 

 

 
 

Extracted wavelength chromatogram of 265nm for crude reaction mixture 

 

 

 

 
 

UV-Vis absorption spectrum at 6.60min with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

Extracted ion chromatogram (XIC) of 921.8 m/z 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

2.0e-1

4.0e-1

6.0e-1

17_06_05_KJ_F-K(DOTA-OtBu)-NH2_b 3: Diode Array 
265.532

Range: 8.14e-1

5.45

3.36

1.07
4.804.04

6.60

7.18

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

5.0e-2

1.0e-1

1.5e-1

17_06_05_KJ_F-K(DOTA-OtBu)-NH2_b 795 (6.617) 3: Diode Array 
1.79e-1263.53

298.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

17_06_05_KJ_F-K(DOTA-OtBu)-NH2_b 1: Scan ES- 
921.782
1.80e7

6.606.53
6.67

6.81

6.88
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Mass spectrum at 6.60min, 921.8 m/z [M-H] 

 

 

 

 

 
 

HRMS spectrum of 1. 922.5624 m/z [M+H] 

  

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

17_06_05_KJ_F-K(DOTA-OtBu)-NH2_b 191 (6.635) 1: Scan ES- 
1.35e7921.84

921.00

387.39
386.85

333.06

387.73
579.64

389.39 727.66

922.84

1844.78

1843.97

923.19
1843.67

1271.751327.97

1846.78

1866.79
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Compound 2 Fmoc-Lys(DOTA)-NH2 

 

 

 

 
 

Extracted wavelength chromatogram of 264nm for crude reaction mixture 

 

 

 

 
 

UV-Vis absorption spectrum at 1.93 min with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

XIC of 752.6 m/z  

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e-1

1.0

1.5

2.0

2.5

16_07_27_KJ_F-K(DOTA)-NH2_overnight_8 h full run 3: Diode Array 
264.532

Range: 2.93

2.08

1.28
1.73

3.983.58
2.78

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

1.0e-1

2.0e-1

3.0e-1

4.0e-1

16_07_27_KJ_F-K(DOTA)-NH2_overnight_8 h full run  117 (1.933) 3: Diode Array 
5.857e-1209.53

263.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

16_07_27_KJ_F-K(DOTA)-NH2_overnight_8 h full run 1: Scan ES- 
752.624
1.07e7

2.03
1.92

2.10

2.17

2.27

2.41

2.69
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Mass spectrum at 1.99 minutes. 752.6 m/z [M-H] 

 

 

 

 
 

HRMS of 2. 752.3624 m/z [M-H] 

 

m/z
690 700 710 720 730 740 750 760 770 780 790 800 810 820

%

0

100

16_07_27_KJ_F-K(DOTA)-NH2_overnight_8 h full run  58 (1.993) 1: Scan ES- 
8.78e6752.62

751.83

722.10708.26694.32 726.83 738.71

753.73

754.74

790.31755.67 775.68 813.94810.32
820.97
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Compound 3a Fmoc-Lys(DOTA-Gd)-NH2 

 

 

 

 
 

Extracted wavelength chromatogram of 263 nm for crude reaction mixture 

 

 

 

 
 

UV-Vis absorption spectrum at 4.32 min with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

XIC of mass range of 904.1 to 909.7 m/z  

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

1.0e-1

2.0e-1

3.0e-1

4.0e-1

5.0e-1

6.0e-1

16_07_12_KJ_F-K(DOTA-Gd)-NH2_chelation_4hr_full 3: Diode Array 
263.532

Range: 6.723e-1

4.33

1.15

5.43

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

2.5e-1

5.0e-1

7.5e-1

1.0

1.25

16_07_12_KJ_F-K(DOTA-Gd)-NH2_chelation_4hr_full 260 (4.317) 3: Diode Array 
1.495206.53

263.53

298.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

16_07_12_KJ_F-K(DOTA-Gd)-NH2_chelation_4hr_full 1: Scan ES- 
904.148_909.65

1.78e7

4.22
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Mass spectrum at 4.21 minutes. 905.8 m/z [M-H] 

 

 

 

 
 

Expanded parent ion from spectrum above, demonstrating Gd isotope pattern 

 

  

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

16_07_12_KJ_F-K(DOTA-Gd)-NH2_chelation_4hr_full 122 (4.215) 1: Scan ES- 
2.83e6905.83

904.72

118.96 904.33

902.99

686.85
121.19

492.17
400.52

907.60

909.63

1391.10910.63

1390.14
967.15

1388.99969.80

1843.631392.29
1420.94 1724.35

1877.81

1888.48

m/z
850 860 870 880 890 900 910 920 930 940 950

%

0

100

16_07_12_KJ_F-K(DOTA-Gd)-NH2_chelation_4hr_full 122 (4.215) 1: Scan ES- 
2.83e6905.83

904.72

904.33

902.99

859.10849.27 868.05
875.38

907.60

909.63

910.63

911.55
918.43 935.86938.47 952.64
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Compound 3b Fmoc-Lys(DOTA-Gd)-NH2 

 

 

 
 

Extracted wavelength chromatogram of 263 nm for crude reaction mixture 

 

 

 

 
 

UV-Vis absorption spectrum at 3.70 min with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

XIC of mass range of 905.3 to 909.7 m/z 

 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

2.0e-1

4.0e-1

6.0e-1

8.0e-1

18_02_21_KJ_[18-125]_F-K(DOTA-Gd)-NH4_onepot_check-c 3: Diode Array 
263.532

Range: 1.183

1.04

3.70

5.01

3.94

4.37

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

5.0e-1

1.0

1.5

18_02_21_KJ_[18-125]_F-K(DOTA-Gd)-NH4_onepot_check-c 446 (3.708) 3: Diode Array 
1.737208.53

263.53

298.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_02_21_KJ_[18-125]_F-K(DOTA-Gd)-NH4_onepot_check-c 1: Scan ES- 
905.309_909.69

2.54e6

3.66
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Mass spectrum at 3.59 minutes. 907.4 m/z [M-H] 

 

 

 

 
 

Expanded parent ion from spectrum above, demonstrating Gd isotope pattern 

 

 

 
HRMS of 3b. 931.2566 m/z [M+Na] 

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

18_02_21_KJ_[18-125]_F-K(DOTA-Gd)-NH4_onepot_check-c 104 (3.586) 1: Scan ES- 
2.90e5907.40

906.33

905.60119.04

904.37

179.13

229.01 901.68758.11
344.31

909.40

910.32

1391.711046.49 1873.471636.72

m/z
870 880 890 900 910 920 930 940 950

%

0

100

18_02_21_KJ_[18-125]_F-K(DOTA-Gd)-NH4_onepot_check-c 104 (3.586) 1: Scan ES- 
2.90e5907.40

906.33

905.60

904.37

901.68

909.40

910.32

942.39910.86
937.20 945.15
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Compound 4 H-Lys(DOTA-Gd)-NH2 

 

 

 

 
 

UV-Vis absorption spectrum at 1.23 minutes, demonstrating the lack of characteristic Fmoc absorption  

 

 

 

 
 

XIC of mass range of 682.0 to 687.6 m/z 

 

 

 
 

Mass spectrum at 1.13 minutes, 685.4 m/z [M-H] 

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

2.5e-2

5.0e-2

7.5e-2

1.0e-1

1.25e-1

1.5e-1

16_07_21_KJ_H-K(DOTA-Gd)-NH2_defmoc_2hr 149 (1.233) 3: Diode Array 
1.506e-1201.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

16_07_21_KJ_H-K(DOTA-Gd)-NH2_defmoc_2hr 1: Scan ES- 
682.07_687.63

6.17e5

1.13

0.99

5.40

5.01
4.844.21

6.095.47 7.807.70
7.21

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

16_07_21_KJ_H-K(DOTA-Gd)-NH2_defmoc_2hr 33 (1.126) 1: Scan ES- 
2.85e5119.14

141.08
685.38

540.18

376.09

458.07
541.14

687.41

688.37829.33
1374.161004.90

1653.46 1926.42
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Expanded parent ion from spectrum above, demonstrating Gd isotope pattern 

 

 

 

 
 

HRMS of 4. 687.2101 m/z [M+H] 

  

m/z
640 650 660 670 680 690 700 710 720

%

0

100

16_07_21_KJ_H-K(DOTA-Gd)-NH2_defmoc_2hr 33 (1.126) 1: Scan ES- 
8.13e4685.38

683.35

682.29

681.20

663.22637.92
642.07 649.53 674.25

687.41

688.37

689.52 723.62706.15 709.27
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Compound 5 Fmoc-dLys(DOTA-La)-OH 

 

 

 

 
 

Extracted wavelength chromatogram of 263nm for purified sample of 5 

 

 

 

 
 

UV-Vis absorption spectrum at 3.85 min with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

XIC of 889.4 m/z 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e-1

1.0

1.5

17_06_22_KJ_H-cK(DOTA-La)-june 3: Diode Array 
262.532

Range: 2.417

3.77

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

2.0e-1

4.0e-1

6.0e-1

8.0e-1

1.0

1.2

17_06_22_KJ_H-cK(DOTA-La)-june 232 (3.850) 3: Diode Array 
1.264208.53

263.53

298.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

17_06_22_KJ_H-cK(DOTA-La)-june 1: Scan ES- 
889.448
4.79e7

3.70
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Mass spectrum at 3.70 minutes, 889.6 m/z [M-H]. 

 

 

 

 

 
 

HRMS of 5. 891.2431 m/z [M+H] 

 

  

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

17_06_22_KJ_H-cK(DOTA-La)-june 107 (3.695) 1: Scan ES- 
2.69e7889.63

889.16

888.82

888.67

119.04
677.17363.35

1335.22

1334.65

1334.23
890.85

1333.73891.51

1780.38

1779.46

1336.22
1778.85

1484.99

1781.26

1781.84
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Compound 6 Fmoc-dLys(DOTA-Gd)-OH 

 

 

 

 
 

 

Extracted wavelength chromatogram for 266nm of crude reaction mixture 

 

 

 
 

UV-Vis absorption at 2.12 minutes with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

XIC of mass range 905.6 to 911.8 m/z [M-H] 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

5.0e-2

1.0e-1

1.5e-1

2.0e-1

2.5e-1

3.0e-1

[20180713] DMS [026-19] F-K(DOTA-Gd)-OH 30-4 3: Diode Array 
266.532

Range: 3.312e-1

2.44

1.08

3.13

3.78

5.14

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

2.0e-1

4.0e-1

6.0e-1

[20180713] DMS [026-19] F-K(DOTA-Gd)-OH 30-4 296 (2.458) 3: Diode Array 
8.911e-1206.53

263.53

298.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

[20180713] DMS [026-19] F-K(DOTA-Gd)-OH 30-4 1: Scan ES- 
904.691_910.93

3.78e6

2.45

2.27

2.13

2.52

2.653.04

3.18

3.42

3.63

4.18
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Mass spectrum at 2.00 minutes, 906.7 m/z [M-H] 

 

 

 

 
 

Expanded parent ion of mass spectrum above, demonstrating Gd isotope pattern 

 

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

[20180713] DMS [026-19] F-K(DOTA-Gd)-OH 30-4 71 (2.447) 1: Scan ES- 
7.57e5908.59

118.98
906.62

905.60

904.63
174.92

677.63454.40

910.61

911.64

1363.85912.53
1360.64

1817.16

1393.27 1813.59 1824.35

m/z
880 885 890 895 900 905 910 915 920 925 930 935 940

%

0

100

[20180713] DMS [026-19] F-K(DOTA-Gd)-OH 30-4 71 (2.447) 1: Scan ES- 
7.57e5908.59

906.62

905.60

904.63

902.35884.46 891.77

910.61

911.64

912.53

930.53
927.76

916.53 932.46
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HRMS of 6. 910.2621 m/z [M+H] 

 

  



79 

 

 

Compound 7 Fmoc-dLys(DOTA-La)-K(DOTA-Gd)-NH2 

 

 

 

 
 

Extracted wavelength chromatogram of 263nm for crude reaction mixture 

 

 

 

 
 

UV-Vis absorption spectrum at 3.35min with characteristic peak at 263nm for Fmoc protecting group 

 

 

 

 
 

 XIC of mass range 778.9 to 781.9 m/z  

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

A
U

0.0

1.0e-1

2.0e-1

3.0e-1

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 3: Diode Array 
263.532

Range: 3.819e-1

3.35

1.12

3.92
4.15

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

2.0e-1

4.0e-1

6.0e-1

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 404 (3.358) 3: Diode Array 
9.618e-1206.53

263.53

298.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 2: Scan ES+ 
778.969_781.91

1.09e7

3.29
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XIC of mass range 1558.0 to 1562.3 m/z  

 

 

 

 
 

Mass spectrum at 3.26 minutes, 779.7 m/z [M+2H/2], 1559.9 [M+H] 

 

 

 

 
 

Expanded half-mass ion from spectrum above demonstrating Gd + La isotope pattern 

 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 2: Scan ES+ 
1558.012_1562.27

1.93e5

3.29

3.43

5.69
3.60 7.54 7.85

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 95 (3.255) 2: Scan ES+ 
3.36e6779.74

778.92
100.09

179.16
515.05 778.32

781.68

782.63

891.61 1559.88
1040.35

1304.33 1868.63 1949.91

m/z
760 765 770 775 780 785 790 795 800 805

%

0

100

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 95 (3.255) 2: Scan ES+ 
3.36e6779.74

778.92

778.32
771.92770.51762.41

781.68

782.63

785.35 790.38 799.03
792.67 801.62

807.61



81 

 

 

 
 

Expanded parent ion from spectrum above demonstrating Gd + La isotope pattern 

 

 

 
 

HRMS of 7. 780.2230 m/z [M+2H/2] 

 

  

m/z
1540 1550 1560 1570 1580 1590 1600

%

0

100

19_05_17_KJ_[24-028]_F-dK(DOTA-La)-K(DOTA-Gd)-NH2 95 (3.255) 2: Scan ES+ 
4.44e41559.88

1558.67

1557.88

1555.62

1561.97

1564.72

1582.021566.07
1572.52 1595.12
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Compound 8 H-dLys(DOTA-La)-K(DOTA-Gd)-NH2 

 

 

 

 
 

UV-Vis absorption spectrum at 1.25 minutes, demonstrating the lack of characteristic Fmoc absorption  

 

 

 

 
 

XIC of mass range 667.8 to 671.0 m/z 

 

 

 

 
 

Mass spectrum at 1.20 minutes, 669.4 m/z [M+2H/s], 1337.6 m/z [M+H] 

nm
200 250 300 350 400 450 500 550 600 650 700 750

A
U

0.0

5.0e-1

1.0

1.5

2.0

2.5

19_05_23_KJ_[24-030]_H-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 151 (1.250) 3: Diode Array 
2.928209.53

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_05_23_KJ_[24-030]_H-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 2: Scan ES+ 
667.769_671

5.26e6

1.10

1.51
1.61

1.75

m/z
600 700 800 900 1000 1100 1200 1300 1400

%

0

100

19_05_23_KJ_[24-030]_H-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 35 (1.199) 2: Scan ES+ 
1.82e6669.37

668.56

667.89

660.20

670.76

680.29

687.57
891.32

692.62768.54
1337.59

1011.97
894.34 1122.53 1334.881151.88 1342.30
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Expanded parent ion from spectrum above, demonstrating Gd + La isotope pattern 

 

 

 

 
 

Expanded half-mass ion from spectrum above, demonstrating Gd + La isotope pattern 

 

 

m/z
1320 1325 1330 1335 1340 1345 1350

%

0

100

19_05_23_KJ_[24-030]_H-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 35 (1.199) 2: Scan ES+ 
1.79e51337.59

1336.68

1335.78

1334.88

1321.27

1338.62

1339.89

1342.30 1347.15

1344.50
1350.79

m/z
620 630 640 650 660 670 680 690 700 710 720 730

%

0

100

19_05_23_KJ_[24-030]_H-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 35 (1.199) 2: Scan ES+ 
1.82e6669.37

668.56

667.89

660.20619.26
632.43 650.94

670.76

680.29

679.27 687.57
690.61

706.33 718.52 728.85
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HRMS of 8. 1337.3690 m/z [M+H] 
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Compound 9 DSS-dLys(DOTA-La)-Lys(DOTA-Gd)-NH2 

 

 

 
 

XIC of mass range 1543.6 to 1550.1 m/z  

 

 

 

 
 

Mass spectrum at 3.73 minutes, 1546.0 m/z [M-H] of 9 after treatment with butylamine 

 

 

 

 

 
 

Expanded parent ion from mass spectrum above, demonstrating Gd + La isotope pattern 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_13_KJ_[18-153]_DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 1: Scan ES- 
1543.641_1550.07

8.01e5

3.803.73

1.13

4.08

4.29
4.81

7.625.29

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

18_06_13_KJ_[18-153]_DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 108 (3.732) 1: Scan ES- 
2.91e5118.89

803.54

802.46

119.23 772.97
345.92 513.56

1546.01

1544.52
804.15

1543.40
879.57 1087.46

1608.88

1609.07
1610.22 2015.55

m/z
1520 1530 1540 1550 1560 1570 1580 1590

%

0

100

18_06_13_KJ_[18-153]_DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 108 (3.732) 1: Scan ES- 
1.40e51546.18

1545.16

1543.92

1543.17

1542.45
1523.13

1528.00

1547.69

1549.09

1550.21

1578.34

1574.211551.59
1571.32

1581.34 1588.74
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Compound 10 SMCC-dLys(DOTA-La)-K(DOTA-Gd)-NH2 

 

 

 

 
 

XIC of mass range 777.3 to 780.6 m/z 

 

 

 

 
 

Mass spectrum at 1.12 minutes, 778.3 [M+2H/2] 

 

 

  

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

19_05_24_KJ_[24-031]_SMCC-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 2: Scan ES+ 
777.328_780.63

3.75e6

1.10

1.20

1.58

m/z
760 765 770 775 780 785 790 795 800 805 810 815 820

%

0

100

19_05_24_KJ_[24-031]_SMCC-dK(DOTA-La)-K(DOTA-Gd)-NH2_2hr 41 (1.405) 2: Scan ES+ 
6.75e5778.25

777.57

765.48 770.52

780.26

789.76
788.75

787.35
800.93

791.34

808.17 813.52 816.77
823.80
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Compound 11 c(RGDyK)-DSS-K(DOTA-Gd)-NH2 

 

 

 

 
 

XIC of mass range 1044.4 to 1047.9 m/z  

 

 

 

  
 

XIC of mass range 1074.1 to 2078.8 m/z 

 

 

 

 
 

XIC of mass range 1103.9 to 1108.1 m/z 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_13_KJ_[18-154]_c(RGDyK)-DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 1: Scan ES- 
1044.398_1047.97

1.83e6

2.99

1.69
0.99

1.97

3.06

3.20

3.30

3.51

3.69

4.28

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_13_KJ_[18-154]_c(RGDyK)-DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 1: Scan ES- 
1074.059_1078.83

3.72e6

2.99

1.52

3.13

3.27

3.48

3.79

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_13_KJ_[18-154]_c(RGDyK)-DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 1: Scan ES- 
1103.859_1108.1

1.23e6

3.062.99

1.59

1.03
1.73 2.33

3.37

3.44

3.79

4.04 7.747.634.42
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Mass spectrum at 2.99 minutes, 1045.7 m/z [M-2H/2] 

 

 

 
 

Expanded half mass and adduct ions from spectrum above, 1045.7 m/z [M-2H/2],  

1076.0 m/z [M-H+OAc-/2], 1105.7 m/z [M+2OAc-/2] 

 

 

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

18_06_13_KJ_[18-154]_c(RGDyK)-DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 86 (2.990)
6.23e6118.93

178.91

221.00
1076.01

618.30262.97
617.61

712.09
1045.69 1077.81

1425.471116.42 1504.81

m/z
1040 1050 1060 1070 1080 1090 1100 1110

%

0

100

18_06_13_KJ_[18-154]_c(RGDyK)-DSS-dK(La)-K(Gd)-NH2_coupling_1hr_buam 86 (2.990)
9.33e51076.01

1075.06

1045.69

1044.85

1044.13

1046.65

1047.57

1074.15

1048.39

1066.411063.58

1076.99

1077.81

1105.67

1078.50 1104.79

1079.36 1087.33
1094.58

1107.52

1108.37

1112.58
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HRMS of 11, 1047.8730 m/z [M+2H/2] 

  



90 

 

 

Compound 12 c(RGDyK)-SMCC-dLys(DOTA-La)-Lys(DOTA-Gd)-NH2 

 

 

 

 
 

XIC of mass range 1085.1 to 1089.4 m/z  

 

 

 

 
 

XIC of mass range 1114.7 to 1119.7 m/z  

 

 

 

 
 

Mass spectrum at 3.03 minutes, 1086.9 m/z [M-2H/2], 1116.8 m/z [M-H+OAc-/2] 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_13_KJ_[18-152]_c(RGDyK)-SMCC-dK(La)-K(Gd)-NH2_coupling_24hr 1: Scan ES- 
1085.07_1089.35

2.68e5

3.00

2.551.06
0.05 2.271.26

3.10

3.45
7.86

3.62

3.76

4.14 4.38 7.72
7.445.08 5.56

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_13_KJ_[18-152]_c(RGDyK)-SMCC-dK(La)-K(Gd)-NH2_coupling_24hr 1: Scan ES- 
1114.66_1119.65

3.34e5

3.14

3.03

2.24
0.36 0.99

1.92

3.45

3.73

4.35
7.89

5.01 7.54
7.19

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

18_06_13_KJ_[18-152]_c(RGDyK)-SMCC-dK(La)-K(Gd)-NH2_coupling_24hr 88 (3.032)
2.17e5118.95

1116.79

1086.94

179.01

617.98
217.08529.72

1085.04

806.82

1117.62

1147.75 1553.78
1482.51 1616.75 1997.98
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Expanded half-mass ion from spectrum above 

 

 

 

 
 

HRMS of 12, 1086.3701 [M-2H/2], 1109.3734 [M-3H+Na/2],   

m/z
1070 1075 1080 1085 1090 1095 1100 1105

%

0

100

18_06_13_KJ_[18-152]_c(RGDyK)-SMCC-dK(La)-K(Gd)-NH2_coupling_24hr 88 (3.032)
5.38e41086.94

1085.78

1085.04

1084.00
1068.91 1077.21

1087.86

1089.63
1102.78

1100.06
1107.12
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Compound 13 c(RGDyK)-DSS-dLys(DOTA-Cu)-Lys(DOTA-Gd)-NH2 

 
 

XIC of mass range 1007.8 to 1011.3 m/z 

 

 

 

 
 

Mass spectrum at 2.96 minutes, 1009.1 m/z [M-2H/2] 

 

 

 

 
 

Expanded half-mass ion from spectrum above 

 

 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_14_KJ_[18-155]_c(RGDyK)-DSS-dK(Cu)-K(Gd)-NH2_transmetallation_1day 1: Scan ES- 
1007.762_1011.26

1.06e5

2.93

2.82

2.72

1.891.61
1.26

2.61

3.24

3.62

7.64

4.314.17
4.94 5.80

5.04 5.91
7.156.70 7.92

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

18_06_14_KJ_[18-155]_c(RGDyK)-DSS-dK(Cu)-K(Gd)-NH2_transmetallation_1day 86 (2.961)
1.88e5118.88

1009.11178.96
618.55

301.78377.47 1006.82711.75
1117.01

2018.941425.07 1751.94

m/z
995 1000 1005 1010 1015 1020

%

0

100

18_06_14_KJ_[18-155]_c(RGDyK)-DSS-dK(Cu)-K(Gd)-NH2_transmetallation_1day 86 (2.961)
2.44e41009.11

1008.23

1006.82

990.73 1006.051002.63999.03

1009.99

1010.90

1011.76
1020.84

1024.37
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Compound 14 c(RGDyK)-SMCC-dLys(DOTA-Cu)-Lys(DOTA-Gd)-NH2 

 

 

 

 
 

XIC of mass range 1047.2 to 1051.8 m/z 

 

 

 

 
 

XIC of mass range 1077.7 to 1082.1 m/z 

 

 

 

 
 

Mass spectrum at 3.24 minutes, 1048.3 m/z [M-2H/2], 1078.8 m/z [M-H+OAc-/2] 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_14_KJ_[18-156]_c(RGDyK)-SMCC-dK(Cu)-K(Gd)-NH2_transmetallation_1day F1
1047.219_1051.8

1.57e5

3.17

3.07

2.201.85

3.24

3.45

3.663.72

5.353.86

4.70
7.54

7.026.01
6.53

7.75

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_06_14_KJ_[18-156]_c(RGDyK)-SMCC-dK(Cu)-K(Gd)-NH2_transmetallation_1day F1
1077.75_1082.1

9.82e4

3.17

3.10

3.03

2.130.12

2.62

3.31

4.83
4.59

3.76

4.31
7.40

6.535.32 6.08
6.81

m/z
850 900 950 1000 1050 1100 1150 1200 1250 1300

%

0

100

18_06_14_KJ_[18-156]_c(RGDyK)-SMCC-dK(Cu)-K(Gd)-NH2_transmetallation_1day 94 (3.239)
1.52e41048.31

1047.42

1038.36
830.49

973.28946.85
886.94

1049.92

1078.83

1080.01

1116.79

1158.44
1210.77 1271.86 1301.74
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Expanded half-mass ion from spectrum above 

 

 

 

 
 

HRMS of 14, 1071.3698 m/z [M+2Na/2] 

  

m/z
1035 1040 1045 1050 1055 1060 1065 1070

%

0

100

18_06_14_KJ_[18-156]_c(RGDyK)-SMCC-dK(Cu)-K(Gd)-NH2_transmetallation_1day 94 (3.239)
1.52e41048.31

1047.42

1038.36

1037.47
1046.22

1049.92

1050.71

1051.60

1055.79 1060.31
1067.19 1069.41
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Compound 15 DSS-Lys(DOTA-Gd)-NH2 

 

 

 

 
 

XIC of mass range 894.1 to 897.8 m/z  

 

 

 

 
 

Mass spectrum at 2.49 minutes, 895.7 m/z [M-H] of 15 after treatment with butylamine 

 

 

 

 
 

Expanded parent ion from spectrum above 

  

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_05_22_KJ_[18-141]_DSS-K(DOTA-Gd)-NH2_1hr 1: Scan ES- 
894.148_897.84

1.75e7

2.56
2.46

2.21

2.95 3.09

4.173.34

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

18_05_22_KJ_[18-141]_DSS-K(DOTA-Gd)-NH2_1hr 72 (2.494) 1: Scan ES- 
7.46e6118.86

895.71

893.74

178.95

892.77
220.94

263.00 686.58515.16

898.78

899.75
1375.89

959.66 1239.77
1792.48

1534.53
1853.55

m/z
860 870 880 890 900 910 920 930 940 950 960 970 980

%

0

100

18_05_22_KJ_[18-141]_DSS-K(DOTA-Gd)-NH2_1hr 72 (2.494) 1: Scan ES- 
3.83e6895.71

894.69

893.74

892.77

891.81
857.62

877.25

896.69

898.78

899.75

954.72
925.72900.74

910.53
952.72932.63

958.77
959.66 981.47 985.17
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Compound 16a DCL-DSS-Lys(DOTA-Gd)-NH2 

 

 

 
 

XIC of mass range 568.9 to 572.6 m/z 

 

 

 

 
 

XIC of mass range 1140.1 to 1144.3 m/z 

 

 

 

 

Mass spectrum at 1.06 minutes, 570.5 m/z [M-2H/2], 1143.8 m/z [M-H] 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_05_23_KJ_[18-141]_DCL-DSS-K(DOTA-Gd)-NH2_overnight 1: Scan ES- 
568.949_572.6

1.89e6

1.02

0.81

1.09

1.31

1.48
5.59

1.79
2.07

4.862.67
5.73

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_05_23_KJ_[18-141]_DCL-DSS-K(DOTA-Gd)-NH2_overnight 1: Scan ES- 
1140.16_1144.25

4.34e5

1.06

0.92

0.74

1.13

1.58
2.04 2.28

2.77 4.583.54 4.16 5.875.735.34 6.04

m/z
600 700 800 900 1000 1100 1200

%

0

100

18_05_23_KJ_[18-141]_DCL-DSS-K(DOTA-Gd)-NH2_overnight 31 (1.059) 1: Scan ES- 
4.57e5570.54

569.62

568.94

532.27

571.83

636.54

572.64
774.64

658.63
1143.83839.50

1138.871059.45 1164.80
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Expanded half-mass ion from spectrum above 

 

 

 

 
 

Expanded parent ion from spectrum above 

 

  

m/z
550 555 560 565 570 575 580 585 590

%

0

100

18_05_23_KJ_[18-141]_DCL-DSS-K(DOTA-Gd)-NH2_overnight 31 (1.059) 1: Scan ES- 
4.57e5570.54

569.62

568.94

561.14557.07548.39555.20 562.90

571.83

572.64
581.99

580.44
582.73 589.20590.24

m/z
1120 1130 1140 1150 1160 1170

%

0

100

18_05_23_KJ_[18-141]_DCL-DSS-K(DOTA-Gd)-NH2_overnight 31 (1.059) 1: Scan ES- 
7.63e41143.83

1141.88

1139.81

1138.87

1127.16

1117.27
1129.27

1163.841144.82

1161.98
1146.02

1160.92

1151.30

1164.80

1165.82

1176.72
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Compound 16b DCL-DSS-Lys(DOTA-Gd)-NH2 

 

 

 

 
 

XIC of mass range 1140.2 to 1145.3 m/z 

 

 

 

 
 

XIC of mass range 569.0 to 572.7 m/z 

 

 

 

 
 

Mass spectrum at 1.09 minutes, 570.1 m/z [M-2H/2], 1142.8 m/z [M-2H/2]  

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_07_17_KJ_[24-006]_DCL-DSS-K(DOTA-Gd)-NH2_full_20 1: Scan ES- 
1140.262_1145.26

4.92e5

0.89

0.12

1.44

0.99

1.61

1.79

2.00
2.31

7.352.52 5.854.67
3.11

4.533.56 4.81 6.51 6.96
7.66

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

%

0

100

18_07_17_KJ_[24-006]_DCL-DSS-K(DOTA-Gd)-NH2_full_20 1: Scan ES- 
569.01_572.7

6.75e5

1.480.99

0.89

0.29

1.65

1.75

1.93
2.31

3.35
3.11

4.15

m/z
500 600 700 800 900 1000 1100 1200

%

0

100

18_07_17_KJ_[24-006]_DCL-DSS-K(DOTA-Gd)-NH2_full_20 32 (1.094) 1: Scan ES- 
1.52e5570.06

569.23

568.51

571.02

1142.79
571.96

1140.98

572.65
784.44

573.68
775.65

645.53 868.85 893.27
1139.21

1009.92

1144.28

1145.19

1145.761212.44
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Expanded parent ion from spectrum above 

 

 

 

 
 

Expanded half mass ion from spectrum above 

 

 

 

m/z
1120 1130 1140 1150 1160 1170 1180

%

0

100

18_07_17_KJ_[24-006]_DCL-DSS-K(DOTA-Gd)-NH2_full_20 32 (1.094) 1: Scan ES- 
7.94e41142.79

1140.98

1140.03

1139.21

1125.971122.24

1144.28

1145.19

1145.76
1180.411161.48

1153.80 1168.01

m/z
562 564 566 568 570 572 574 576 578 580

%

0

100

18_07_17_KJ_[24-006]_DCL-DSS-K(DOTA-Gd)-NH2_full_20 32 (1.094) 1: Scan ES- 
1.52e5570.06

569.23

568.51
561.86

565.91

571.02

571.96

572.65

573.68 577.44
574.91 578.38 579.93
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HRMS of 16b, 1144.4150 m/z [M+H] 
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