
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-10-2019 

Printable Thin-Film Sol-Gel Lead Zirconate Titanate (PZT) Printable Thin-Film Sol-Gel Lead Zirconate Titanate (PZT) 

Deposition Using NanoJet and Inkjet Printing Methods Deposition Using NanoJet and Inkjet Printing Methods 

Amanda R. Marotta 
arm7402@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Marotta, Amanda R., "Printable Thin-Film Sol-Gel Lead Zirconate Titanate (PZT) Deposition Using NanoJet 
and Inkjet Printing Methods" (2019). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10115?utm_source=repository.rit.edu%2Ftheses%2F10115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


 

 

RIT 

 

Printable Thin-Film Sol-Gel Lead Zirconate Titanate (PZT) 
Deposition Using NanoJet and Inkjet Printing Methods 

 

By 

Amanda R. Marotta 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

In 

Chemistry 

 

School of Chemistry and Materials Science 

College of Science 

Rochester Institute of Technology 

Rochester, NY 

May 10, 2019 

 

 

 

 

 



 

School of Chemistry and Materials Science  

Rochester Institute of Technology 

Rochester, New York 

 

This is to certify that the Master’s Thesis of 

Amanda R. Marotta 

has been approved by the Thesis Committee as satisfactory for 
the thesis requirement for the Master of Science degree at the 

convocation of 

May 2019 

Thesis Committee: 

 

 

Dr. Scott Williams, Primary Thesis Advisor 

 

 

Dr. Michael Coleman, Graduate Program Coordinator 

 

 

Dr. Denis Cormier Committee Member, Kate Gleason College of Engineering 

 

 

Dr. KSV Santhanam, Committee Member, SCMS 

 

 

Dr. John-David Rocha Committee Member, SCMS 

 

 

Dr. Gerald Takacs Committee Member, SCMS 



i 

 

ABSTRACT 
Lead zirconate titanate (PZT) sub-5µm thin-films deposited using NanoJet and inkjet printing 

techniques will be presented. PZT, a perovskite ferroelectric ceramic, possesses both electrical and 

mechanical properties making it well suited for sensor and actuator applications. Large-scale and 

additive manufacturing of PZT deposition is currently unobtainable. A novel PZT sol-gel, 

therefore, comprised of an alkoxide mixture, was adapted for printing. Polyethylene glycol (PEG, 

200MW) was discovered to be a superior film forming aid to the PZT sol-gel composite. PEG was 

added to the PZT composite to prevent film cracking upon gelation and thermal sintering. A 

powder-based sample of the PZT sol-gel was characterized using Scanning Electron Microscopy-

Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Raman Spectroscopy. The Raman 

spectra displayed wavelength peaks around 200cm-1, 400cm-1, and 800cm-1 which indicated the 

desired 52/48 PZT molar ratio composite. The PZT sol-gel was printed into a thin-film using 

NanoJet and inkjet printing onto a cleaned stainless-steel substrate. The thin-film was thermally 

sintered at 700oC, and quenched in liquid nitrogen, to produce a defect-free thick film. The sub-

five micron thick PZT films exhibited ferroelectric properties. This work begins to show a forward 

pathway for the larger scale manufacturing of device applications, such as concussion sensors, 

pressure sensors, and aerospace products.  
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CHAPTER ONE-INTRODUCTION 
PZT, a well-known ceramic material that shows optimal piezoelectric and ferroelectric 

responses, was studied. The optimal responses from the material, make it favorably used for sensor 

and actuator applications, and is currently considered best in its class for piezoelectric applications. 

A distinguishable trait of PZT, when compared to various piezoelectric materials, is that at a 52/48 

(Zr/Ti) molar ratio the crystal phase composition is nearly temperature independent up to the Curie 

Temperature.  

  Additive manufacturing is the focal point of this work. Additive manufacturing is a build-

up technique, unlike subtractive manufacturing, and therefore producing less waste upon 

manufacturing. 3D and functional printing is a subset of additive manufacturing. These printing 

techniques enable the fabrication of 3D and 2D structures of various materials. Functional printing 

facilitates the printing of materials that possess functional properties. These materials are 

comprised of inks that consist of either dielectrics, metals and/or nanoalloys. Functional printing 

is leading to the advancements in additive manufacturing which may grow to $13 billion by 2023.1  

 PZT inks are commonly prepared via a powder method. The powder method is used in 

additive manufacturing, due to its consistency to produce crack and defect-free PZT films, upon 

sintering. Several steps are involved in producing a powder-based ink. Functional printing 

techniques, such as NanoJet and inkjet, consist of small nozzles for ink deposition. Through the 

powder-based method, nozzle clogging may occur, thus preventing high-throughput of PZT films. 

An alternative approach is the formulation a particle-free solution or sol-gel.  The sol-gel route 

allows for the deposition of a film with uniform molecular PZT composition. A sol-gel approach 

provides a facile preparation route for PZT films which minimizes any hindrances with high-

throughput printing. PZT fabrication using a sol-gel method is currently not widely implemented 

in large-scale manufacturing.  

This research focused on the formulation of an optimal PZT sol-gel composite. After 

designing a stable PZT sol-gel, the work would incorporate printing methods to permit thin-film 

deposition. Nozzle clogging for the adapted printing methods was not exhibited when 

implementing the PZT sol-gel. Once printed, a curing process took place to drive the gelation step 
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of the sol-gel synthesis. A crack and defect-free thin-film was then produced after undergoing a 

rapid thermal sintering process. 

By taking on this research, knowledge of inorganic chemistry was expanded as well as an 

introduction to the field of additive manufacturing. Proper execution of this project has great 

potential for the manufacturing sector. Applications of a novel sol-gel PZT would expand from 

medical devices to instrumentations used in many labs today. Chemistry and engineering problem-

solving skills were the motivational forces to develop a working PZT sol-gel that is applied to 

additive manufacturing. This work allows for the enhancement of knowledge in the two fast 

growing fields, functional printing and printed electronics.  
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CHAPTER TWO-THEORETICAL BASIS OF RESEARCH 

2.1 PEROVSKITE MATERIALS  
Gustave Rose discovered the first perovskite material, calcium titanium oxide, in 1839.2 

These perovskite materials, however, were not named after Rose, but after a mineralogist, L.A. 

Perovski.2 The perovskite materials show to be highly efficient in areas of superconductivity, 

spintronics, and catalytic properties.2 As mentioned previously, calcium titanium oxide is a 

perovskite material, yet it is also a metal oxide.2  

 Metal oxides with a general stoichiometric formula of ABO3 may form a perovskite 

structure3. In one variation, the “A” cation is a larger cation, and where “B” is a metal ion and “O” 

is a halogen.2–4 According to the general ABO3 formula, the A cation will hold a charge of +1, +2, 

or +3. For PZT, this would be Pb+2. The B cation is the center atom of the unit cell. This cation 

will hold charges larger than the A cation, and up to +5. In PZT, B cation could be either Zr, or Ti. 

The oxygen atoms that are surrounding the cells are enlisted to balance the charges of the 

perovskite material, bringing the material into its natural cubic shape.4,5,6   

 

 
Figure 1.General schematic image of a PZT perovskite crystal in cubic form. 

These perovskite materials form a crystal structure, which are atoms arranged in an ordered 

pattern and repeated three-dimensionally.5 When a perovskite has a repetitive, basic, atomic group, 

it is referred to as a unit cell. An ideal shape of a perovskite material is considered to be a simple 

cubic lattice, which occurs when no external mechanical force or electrical field is applied to the 

crystal. If an external force or field, however, is applied to a crystal, certain lattices, such as a 

rhombohedral or tetragonal, are formed.2–5  
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2.2 PIEZOELECTRICITY AND FERROELECTRICITY  
When a mechanical force or electric fields are applied to a perovskite material, perovskites 

exhibit an electrooptic, ferroelectric, and/or piezoelectric property.13,16 Piezoelectric material 

properties are dependent on the direction of the lattice point location of the crystal structure. 5 

From the crystal lattices, the nature of the piezoelectric material is related to the specific number 

of electric dipoles within the structure. Particular molecular groups with electrical properties can 

induce these dipoles, as well as by ions on the crystal lattice sites with asymmetric charge 

surroundings. Being that a dipole is understood to be a vector, the direction and magnitude of the 

vector relates to the electrical charges around.  

 The dipole moment direction can be altered when a mechanical impairment occurs.5 This 

relates to the piezoelectric effect, which will be explained later, in the aspect that from this 

mechanical stress, the change in the polarization can change the electric dipoles. That is, the larger 

the mechanical variation, the larger the change in polarization, which creates a larger production 

of electricity.  

 Each crystal with a dipole moment takes on the shape of a symmetrical tetragonal or 

rhombohedral.5 Perovskite ceramic crystals, when mechanically or electrically distorted, take on 

these shapes and the change in the dipole vector can be exhibited as a variation of surface charge 

density upon the face of the crystal.  

 French physicists Jacques and Pierre Curie first reported the piezoelectric effect in 1880.2,5 

The word piezoelectric originates from the root word piezo, in Greek, which means push. This can 

be related to the mechanical force or electrical field that can be applied to the crystal structure. The 

piezoelectric effect is the linear relationship between the stress and strain of a perovskite material. 

2,5,7  

The piezoelectric effect is separated into two parts; the direct and the inverse effect.2 The 

direct effect states that polarization charges are induced from the material in response to an external 

mechanical stress that is applied to the crystal. The inverse effect, however, states that the resulted 

polarization charge is in response from a separate external electric field that is applied to the 

material. The Curie brothers, however, did not predict this inverse effect, but rather Gabriel 

Lippman discovered this in 1881 via mathematical deductions from thermodynamic principles.   
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The direct and indirect effect are only exhibited from non-centrosymmetric materials. If the 

material is centrosymmetric, there is no piezoelectric response. Centrosymmetric structures 

possess inversion symmetry which would result in dipole moment cancelation. Balanced charges, 

leading to a zero free energy, is the natural state of the perovskite material (see Figure 2a). 

 In order to better understand the piezoelectric effect, an understanding of elasticity would 

be of use. A material is elastic when it conforms back to its original shape after distortion resulting 

from an external mechanical force.5 When a mechanical force is applied to the perovskite material, 

the direct piezoelectric effect is displayed. Two known forces, tension or compression, can be 

involved here when applied to the material (see Figure 2b). When the material is strained, the 

charge of the material becomes unbalanced. Charge imbalance causes an increase in the free 

energy of the material. The perovskite will counteract this increase in free energy by inducing an 

opposite electric field through atomic displacement. This idea is also consistent for a material, 

which has been expanded (see Figure 2c).  

 
Figure 2.A perovskite material with no induced electric field (a). A perovskite material with an induced 
electric field (b, c). 

A dielectric material is a poor electric conductor or is an electric insulating material.9 

Several piezoelectric materials are elastic, but all piezoelectric materials are dielectric. For a 

dielectric material, an external electric field is applied to the piezoelectric material. This causes 

the material to produce an unbalanced charge increasing the free energy.  
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To counteract this displacement, the piezoelectric material produces an opposite induced dielectric 

polarization (see Figure3).5 The dielectric constant can proportionally quantify the polarization of 

the material 

 
Figure 3. A perovskite material with no induced electric field (a). A perovskite material with an induced 
electric field via an applied external electric field (b, c)  

When some materials display piezoelectric properties, they may then be categorized as a 

ferroelectric material. For a material to be ferroelectric, when in the absence of an electric field, 

the material must display a spontaneous electric polarization. When an external electric field is 

applied, the polarization response must be reversible.5  
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For a ferroelectric material to display its most optimal polarization response it must stay below the 

Curie temperature (Figure 4).  

 
Figure 4. Displays the dependence of several phases of PZT to the Curie temperature. When the crystal 
lattice displays a unit cell, a cubic shaped material is formed. Above the Curie temperature the material 
will exhibit no ferroelectric response. 

Centrosymmetric structures have inversion symmetry. Above the Curie temperature, the 

structure of the perovskite material is considered to be cubic and will exhibit no ferroelectric 

response.  Below the Curie temperature, a rhombohedral or tetragonal structure forms which will 

exhibit a piezoelectric and ferroelectric response.5,10 A material will display a ferroelectric 

response under the Curie temperature of 659 K in cases specifically for PZT. 

 The optimal ferroelectric or piezoelectric response falls along a morphotropic phase 

boundary.5,10 Generally, this boundary line defines a separation of phases. The PZT 

morphotropic phase boundary (MPB) occurs when there is a ratio between the rhombohedral and 

tetragonal phases that will display a high ferroelectric or piezoelectric response. For PZT, 

specifically, a MPB is found when the Zr/Ti concentration ratio is 52/48 at room temperature.5,10–

12 A 52/48 ratio will allow PZT to be easily poled between a rhombohedral and tetragonal phase, 

and therefore, demonstrate a large piezoelectric response. 
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2.3 X-RAY DIFFRACTION 
X-Ray Diffraction (XRD) is a characterization method used to obtain information 

regarding a specific crystal structure. XRD relies on the dual wave and particle nature of X-rays.13 

A monochromatic X-ray incident beam will come into contact with a sample, in this case lead 

zirconate titanate (PZT). The beams will scatter amongst ordered material and undergo both 

constructive and destructive interferences (Figure 5).  

 

Figure 5. Schematic representation of XRD. Incident beams, λ, hit the atoms along the sample’s plane 
and experience a destructive interference. These beams are then constructively formulated into a single 
peak. 

In order to have constructive interference, the extra distance that a diffracted beam will 

travel can be further explained through Bragg’s Law, as shown below (Equation 1).  

𝑛𝑛(𝜆𝜆) = 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃)  (𝐸𝐸𝐸𝐸1) 

Where 𝑛𝑛  represents a positive integer and 𝜆𝜆  is the wavelength of the incident beams. As the 

incident beam hits an atom in the plane, the distance between these planes is noted as, d, and the 

angle at which each beam is diffracted is known as theta.   

Miller Indices are applied in XRD in order to identify directions and planes of peaks.13 The 

number of indices is proportional to the dimension of the crystal lattice for the material being 

studied.   
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When studying a three-dimensional structure, a group of three numbers will indicate the 

orientation of the atoms along a plane in that crystal (Figure 6). These three integers are h, k, and 

l. From these integers, the families of planes can be denoted as the reciprocal lattice planes, 

where 𝑮𝑮(ℎ,𝑘𝑘,𝑙𝑙) = ℎ𝒃𝒃𝟏𝟏 + 𝑘𝑘𝒃𝒃2 + 𝑙𝑙𝒃𝒃3.  

 

Figure 6. Coordinates of the Miller Index in a crystal unit cell. 

A crystal structure has a unique XRD diffraction profile. From the XRD spectrum, the Miller 

indices of a material can be identified. Structural identification can be made by comparing an 

unknown XRD profile with published calculated data.  

2.4 THERMAL ANALYSIS  

 Thermal gravimetric analysis (TGA) is an analytical method in which the change of sample 

mass is measured as a function of temperature in the gas-filled chamber.14 TGA may provide 

information regarding a phase change, a temperature-dependent reaction or decomposition of a 

composite. The solid loading fraction of the sol-gel solutions and inks were determined using this 

technique.  

2.5 SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE X-RAY SPECTROSCOPY 
Scanning electron microscopy (SEM) is a technique used to image a sample displayed via 

a focused electron beam. The scanning electron microscope (SEM) produces visual images of 

samples.15,16 SEM generates a beam of incident electrons. This electron beam is focused onto a 

sample, where electrons will emit from the surface and contact the electron detector to produce an 

image. SEM is used in conjunction with energy dispersive x-ray spectroscopy (EDS). Energy-
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dispersive x-ray spectroscopy (EDS) provides the chemical characterization of the studied sample. 

This method uses the primary SEM electrons to eject an inner shell electron from the K or L shell 

of a surface atom. The loss of the electron from the inner shell, is filled by an electron from the 

outer shell. The energy (x-ray energy) difference of the shell prior to excitation and post excitation 

are characteristic to the atom. An x-ray detector measures the incident x-ray wavelengths. When 

the x-rays hit the detector, a charge pulse is formed, which is then converted to a voltage pulse. 

The energy is calculated from each voltage measurement. Thus, EDS can then define the elemental 

composition of the sample.17   

2.6 SOL-GEL PROCESS 
The ink production for this research is based on the sol-gel process. This method is used 

for producing solid materials from small molecules and allows for the preparation of perovskites 

with large surface area. For this research, an alkoxide-based sol-gel route was followed for the 

fabrication of metal oxides. The general sol-gel method can be seen in Figure 7. 

 

 
Figure 7. Chemical reaction schematic related to sol-gel process. Desired products are highlighted in 
green. Undesired products are highlighted in red.  

During the hydrolysis reaction, a metal alkoxide ligand is hydrolyzed to form a hydroxide. 

In addition to the hydrolysis reaction, several condensation reactions simultaneously occur. PZT 

sol-gel reactions are considered to be more complex, due to the multiple metal atoms present in 

the molecule. Overall, the polymeric products will become insoluble via cross-linking, which in 

turn causes rapid gelation. Brinker and Scherer found that when the hydrolysis step is carried out 

with the addition of an acidic or basic catalyst, an increase in the rate of gelation occurs.18 This 
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causes the polymeric products to form while simultaneously increasing the viscosity, to ultimately 

cause gelation.  

2.7 PRINTING METHODS 

 2.7.1 NANOJET PRINTING 

NanoJet printing (NJP) is a non-contact aerosol deposition printing technique using a low 

viscosity ink. The NJP method demonstrates efficiency for additive manufacturing since it can 

print both solid films and circuit traces smaller than 20 µm in width. NJP uses two forms of inert 

gas, noted as aerosol and sheath gas. The schematic printing process of NanoJet printing is shown 

in Figure 8.  

 
Figure 8. Schematic of the deposition head of NanoJet printer. Blue arrows represent aerosol gas, and red 
arrows represent sheath gas. 

Similar to the commonly known Aerosol Jet printing (AJP) method, the ink that sits in the 

ink reservoir is atomized into aerosol droplets.19 AJP forms aerosol droplets via either a pneumatic 

unit or ultrasonic unit, whereas NJP utilizes only an ultrasonic atomizer to transmit ultrasonic 

waves to the ink, to create the aerosol droplets (Figure 8A). These droplets are carried from the 

reservoir, and to the deposition head, via the pressure from the aerosol gas. Once at the deposition 
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head, the sheath gas is introduced to the system (Figure 8B). The sheath gas will surround both the 

aerosol droplets and aerosol gas, leading to a focused aerosol stream upon deposition.  

 2.7.2 INKJET PRINTING 

Inkjet printing is considered a drop on demand digital deposition technique (Figure 9).20 

There are two major forms of inkjet print heads using either a thermal and piezo process. Thermal 

inkjet cartridges have a 10-20 µm square resistive heater. This causes a vapor bubble to form that 

is adjacent to the resistive heater. From the expansion of the bubble, a droplet of ink is forced out 

from the orifice. Unlike thermal inkjet, piezoelectric inkjet causes droplets via piezoelectric 

transducers. A voltage is applied to the transducer, which in turn bends the diaphragm. The ink 

sits along the diaphragm, so the action of the bend forces the ink to eject from the orifice. Droplet 

formation and deposition of the ink will be dependent on the surface tension of the ink. Ink 

viscosity is similar to NanoJet printing, in that the viscosities should be fairly low (under 10 

centipoise (cPs)).  

 
Figure 9. Schematic of the deposition head of piezoelectric inkjet printing technique. 
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2.8 SURFACE TENSION AND CONTACT ANGLE 
 When printing an ink, it is often desired to have good adhesion between the ink and the 

substrate. This relates to the wettability of the ink when deposited on to the desired substrate. 

Surface tension is the cohesive force acting along the surface of the liquid. Surface tension is 

usually measured along with contact angle. The contact angle can vary depending on the surface 

tension of the ink and the surface energy of the substrate. If a high contact angle is measured, then 

it is suggested that ink and substrate lack compatibility.  

Inkjet and Nanojet techniques require a surface tension of approximately 20-30 dynes/cm. 

Surface tension is defined as the intermolecular forces that occur on the surface of a liquid.21 The 

molecules within the bulk liquid are uniformly attracted to one another, resulting in a low energy 

state. The surface molecules, however, experience unbalanced attractive intermolecular forces, 

resulting in a higher energy state than the molecules in the bulk. To maintain a relatively low 

energy state, the surface molecules conserve a minimum surface area.  

A liquid is held together through cohesive forces thereby maintaining a minimum surface 

area. Cohesion allows for the droplet to maintain its shape. Adhesive forces between a liquid and 

a surface will permit a droplet to spread, losing its shape. If the cohesive forces are greater than 

the adhesive forces, then the droplet will exhibit a high contact angle. For proper wetting of a 

liquid on a substrate, the adhesive forces must be greater than the cohesive forces.  

2.9 PHOTONIC SINTERING 
 Photonic sintering is a short pulse sintering technique. The process implements a xenon 

gas-filled flash lamp that generates light between the UV to IR range. This sintering method 

employs high energy flash pulses to sinter the PZT film. PZT has a higher heat capacity than a 

metallic substrate or coated surface. The PZT will then absorb a larger proportion of the pulse 

energy to drive sintering processes.   
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Since more energy is absorbed by the PZT film, photonic sintering can help eliminate variation of 

coefficient of thermal expansion (CTE) values between the thin film and the substrate, which in 

turn may minimizes film cracking (Figure 10).22  

 
Figure 10. Schematic of photonic sinter technique.  

 2.10 SAWYER-TOWER CIRCUIT 
A Sawyer-Tower circuit consists of two capacitors in series with each other (Figure 11).  

 

 
Figure 11. Sawyer-Tower circuit of two capacitors in series with each other between the stimulus signal 
and ground state. 

Since PZT is a dielectric material, a capacitor is created and is represented by Cx. A reference or 

sense capacitor is noted by Cs. When the capacitance of Cs is larger than Cx, the charge remains 

largely localized on Cx.  The charge on PZT can then be measured.23 The Sawyer-Tower circuit is 
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used to measure the polarization hysteresis of many piezoelectric materials. The hysteresis 

generated from the circuit can correlate to the ferroelectric response of the film (see Figure 12).  

 
Figure 12. Hysteresis curves of ferroelectric and non-ferroelectric materials. 

Based on the hysteresis effect, when in the absence of a positive or negative electric field, 

the material will still exhibit a remnant polarization response.  

 

Figure 13. Depiction of a hysteresis curve produced from presence and absence of an electric field. 

Figure 13 depicts a stepwise schematic of the hysteresis effect. Points B and E occur when either 

a positive or negative electric field has been applied to the material. Points C & G represent the 

measured charge stored in the material. The ability for a material to hold charge causes for a lag 

in measured polarization when the applied positive and negative electric field has been removed. 

The lag in polarization (points C and G) is known as the remnant polarization.  
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CHAPTER THREE- REVIEW OF THE LITERATURE 

3.1 PIEZOELECTRIC MATERIALS 
Piezoelectric devices have the capability to convert mechanical energy to electrical energy. 

Piezoelectric materials are well-suited for sensor and actuator device applications. Piezoelectric 

materials are a promising movement in sustainable energy due to them being highly efficient 

flexible and light-weight energy harvesters.11,24 PZT is found to be the most widely used 

piezoelectric ceramic. PZT possesses the cubic crystal lattice of an ABO3 metal oxide (Figure 14).  

 

 
Figure 14. Crystal structure of PZT. 

The general formula of PZT is Pb (ZrxTi1-x) O3. The ferroelectric response of PZT is highly 

dependent on the x value.25  
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The optimal ratio between Zr/Ti can be found at the morphotropic phase boundary (MPB). At the 

MPB, both the rhombohedral and tetragonal crystal phases of PZT are present (Figure 15).  

 
Figure 15. Phase diagram of PZT. MPB line highlighted in red. 

The optimal Zr/Ti mole ratio for ferroelectric response is found to be 52/48. At this boundary, both 

non-centrosymmetric lattices are present (Figure 15). In contrast to other piezoelectric materials, 

the PZT MPB exhibits little temperature dependence. Meaning that as the temperature of the 

system increases, the crystalline phase composition remains relatively constant.  

3.2 PZT SYNTHESIS METHODS 
 PZT preparation is commonly prepared using a powder-based process. In the group of 

Maiti, et al., they studied the synthesis of PZT using an auto-combustion process. 26 Fine particle 

PZT powder was produced through an auto-ignitable citrate-gel method, where TiO2 was their 

starting material to decrease cost in production. The method behind the auto-ignitable citrate-gel 

technique was unique because its purpose was to be initiated at low temperatures. The group found 

that at low temperatures, thermal energy is released via an anionic oxidation-reduction reaction 

between citrate and nitrate ions. The group concluded that this preparation method was less 
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explosive than other combustion reactions, and therefore had the potential to be carried out in large 

scale manufacturing settings.  

Similar to a powder-based method, the group of Tahar, et al., used a sol-gel preparation 

method to form a powder PZT composite.27 The group used both the sol-gel and powder method 

to prepare PZT in order to lower sintering temperatures thereby avoiding inter-diffusion between 

multiple thin layers of PZT. For application purposes, low sintering temperatures would help 

permit silicon-based technology. The chemical reaction for preparation of PZT consisted of using 

diethanolamine (DEA) as a polymerizing agent to control gelation formation of the complex. As 

the sol-gel mechanism was carried out into a powder route, during a calcination step, an increase 

in crystallization at a lower temperature was observed. From these results, it was thought that 

forming the powder from the sol-gel prevented presence of the pyrochlore phase. However, it was 

later discovered that the stoichiometry of PZT was off, for the group experienced a decrease in 

lead content during heat processing.  

Shakeri et al., explained that sol-gel technique offers an advantage in accurately controlling 

the molecular composition of the ceramic composite.28 Two common types of sol-gel routes are 

either typical or composite. The sol-gel route is route is developed when the starting precursor 

materials are mixed to formulate the sol-gel solution. Whereas, the composite route entails a 

powder form of PZT that is suspended into a sol-gel. This method is primarily used for thick films, 

however, produces highly porous microstructures. Porous microstructures lead to a lower dielectric 

constant. 

The Shakeri group then explored the typical sol-gel route. By altering the sol-gel route, 

using an acetic acid/alcoholic-based sol-gel, a crack-free ~45µm thick film was produced.28 

Methanol and n-butanol were added to prevent cracking of film by decreasing the solvent 

evaporation upon deposition. A 0.5 molar ratio of DEA and water was added to the solution. 

Adding DEA to the sol-gel composite introduced exothermic decomposition and combustion 

reactions at approximately 450 oC. These processes release a large amount of thermal energy, 

which suppresses the formation of pryochlore phase. By using the proposed sol-gel composite, it 

was concluded that a crack-free thick film with a remnant polarization of 7.8µC/cm2 was 

measured. 
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3.3 PZT DEPOSITION TECHNIQUES 
Tsaur et al., implemented the sol-gel synthesis for the preparation of PZT. Tsaur’s sol-gel 

method was favored to achieve high purity and a large volume deposition potential.29 To better 

enhance the deposition of the sol-gel to various substrates, the group studied laser ablation (Figure 

16).  

 
Figure 16. Laser ablation process schematic, Copyright © 2002 The Japan Society of Applied Physics.29 

Laser ablation was intended to decrease deposition time to approximately 1-2 µm/hour. To 

enhance film thickness, a 3 µm film of the PZT sol-gel was spin-coated onto desired substrate and 

dried for a short period of time. The film was formed through a two-step sintering process. Laser 

ablation was then used to deposit an additional 1.65 µm of PZT. The use of laser ablation 

successfully increased the deposition rate of sol-gel PZT and assisted in forming a film that 

produced a remnant polarization of 28.6 µC/cm2.29 

 Ouyang et al., studied the use of functional printing as the deposition technique for 

manufacture powder-based PZT inks. 30 Aerosol Jet printing (AJP) printing method was used.     

The Ouyang group was able to print PZT at speeds up to 10m/s. By repeating the printing 

procedure twice, PZT thick films were successfully printed at a fast rate.30 The films were both 

photonically and conventionally thermally sintered.  
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 3.4 PZT SINTERING METHODS 
 Various sintering techniques, such as laser, thermal and photonic methods, have been 

studied to optimize the process of PZT calcination. 27,31 Shoghi et al., uses the sol-gel preparation 

method from Shakeri et al., and investigates various temperatures of calcination on this sol-gel.31 

To do so, a glass-slide substrate was dip-coated in the PZT sol-gel. The sol was then dried to a gel 

using a hot-plate for approximately sixteen minutes. After testing temperatures from 500-650 oC, 

they concluded that at 600 oC, the perovskite crystallinity substantially increased, and the 

pyrochlore phase level was non-significant. Calcifying the film at 600 oC produced crack-free thin 

films. 

 Ouyang et al., deposited a powder-based PZT ink onto stainless steel substrates and 

preformed thermal and photonic sintering treatments.30 Prior to sintering the material, the 

deposited films were dried in a vacuumed sealed oven for two hours at 200 oC. In a conventional 

furnace, argon gas flowed through the chamber to avoid oxidation. A consistent ramp up rate of 

25 oC/min was carried out until the temperature reached 1000 oC. The sample incubated at this 

temperature for an hour, then cooled to room temperature. This method produced films with 

densified grains.30 However, to decrease sintering time, photonic sintering was implemented to 

gather similar results. 

When Ouyang et al., investigated the use of photonic sintering, the light absorbance of the 

PZT film was measured to be between 300-900 nm. Photonic sintering was done by exposing the 

sample to fifteen pulses at an applied voltage of 250 V, and pulse length of 1300 µs and frequency 

of 2 Hz.30 Similar densification of grains were observed when compared to the thermally sintered 

material.  
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To compare performance of films, a Sawyer-Tower circuit was used to measure the ferroelectric 

hysteresis of both the thermally and photonically sintered materials (Figure 17).  

 
Figure 17. Hysteresis curves of thermal and photonically sintered PZT thick films, Copyright © 2016 The 

American Ceramic.30  

When using photonic sintering, they concluded, that not only does it allow for the opportunity to 

sinter PZT in atmospheric conditions but they could also sinter PZT on low melting point 

substrates in short time, thus opening the door for a wider range of PZT applications.30  
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CHAPTER FOUR- PROBLEM STATEMENT 
The research goal was to develop a PZT sol-gel solution for Nanojet and inkjet printing. 

This sol-gel was deposited onto a stainless-steel substrate as a thin-film. Nanojet and inkjet printing 

methods include both aerosol and digital techniques, permitting large-scale additive 

manufacturing. Upon deposition, the thin-film was thermally sintered into a crack-free working 

device. The fabricated device was studied using various analytical methods to confirm the optimal 

52/48 molar ratio of Zr/Ti. This research developed a stable PZT sol-gel that was adapted to 

additive manufacturing. 
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CHAPTER FIVE- MATERIALS & METHODS 

5.1 MATERIALS 
All chemicals used were analytical grade. Lead (Pb) (IV) acetate trihydrate (molecular 

weight (MW): 379.33), Zirconium n-propoxide (molecular weight (MW): 327.57), Titanium n-

propoxide trihydrate (molecular weight (MW): 284.86), polyethylene glycol (PEG) (molecular 

weight (MW): 200) were purchased from Sigma Aldrich, USA. These chemicals were used 

without further purification. Stainless-steel (SS) 430 substrates were cleaned with 1.8 M nitric acid 

before ink deposition.  

5.2 SUBSTRATE CLEANING 
1.8M nitric acid was prepared by adding 11.47 mL of nitric acid to 100 mL of distilled H2O 

(dH2O). The mixture was heated for 20 minutes at 60 o C and cooled before use. Each substrate 

was immersed in the final 1.8 M nitric acid wash for 20 minutes prior to printing at room 

temperature. Upon removal the substrates were degreased with isopropyl alcohol and dried using 

a lint-free wipe. 
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5.3 INK FORMULATION  
Each ink was formulated in an argon filled glove bag and followed the same mixing process 

as shown in Scheme 1. All glassware was flame dried, to remove bound water, prior to being 

placed in an argon gas filled, glove-bag. 

 
Scheme 1. Mixing process for producing sol-gel PZT. 

5.3.1 STARTING PZT SOL-GEL 
A Starting PZT sol-gel formulation consisted of a lead acetate solution which prepared by 

mixing 8.510 g of Pb (IV) acetate trihydrate and 12.64 mL of acetic acid (Table 1). 

Table 1. Additive package implemented for the Starting PZT sol-gel formulation. 

Additive Mass (g) 
dH2O 0.428 

Lactic Acid 0.518 
Linoleic Acid 5.26 

Glycerol 0.538 
Ethylene Glycol 0.475 

 

 Following this, a Zr/Ti mixture under argon gas was formulated by dropwise adding 2.730 

g of titanium n-propoxide to 4.960 g of zirconium n-propoxide while stirring. The sol-gel stirred 

for 30 minutes. While the sol-gel stirred, 0.518 g of lactic acid, 5.26 g of linoleic acid, 0.538 g of 

glycerol and 0.475 g of ethylene glycol were added to 0.428 g dH2O while stirring. The prepared 
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additive package was slowly dropwise added into the sol-gel. The final product stirred for 60 

minutes, before being removed from the glove bag. The final PZT concentration was 1.6 M.  

 5.3.2 MODIFIED PZT SOL-GEL 
A Modified PZT sol-gel was formulated using the following process. A lead acetate 

solution was prepared by mixing 8.510 g of Pb (IV) acetate trihydrate and 12.64 mL of acetic acid 

(Table 2). A Zr/Ti mixture under argon gas was formulated by dropwise adding 2.730 g of titanium 

n-propoxide to 4.960 g of zirconium n-propoxide while stirring. The Zr/Ti mixture was then 

dropwise added into the acetate solution under inert conditions. The sol-gel stirred for 30 minutes.  

Then, 7.219 g of 200 MW PEG was added dropwise while stirring. After 60 minutes of stirring, 

the sol-gel was removed from the glove bag.  

Table 2. Modified PZT sol-gel fabrication used for NanoJet printing. Final concentration of composite 
was 1.6M. 

Compound Mass (g) Mols Hydrolysis Steps Mass of 
PEG(g) 

Mols of 
PEG 

Lead 
Acetate_dH2O 

21.78 0.2200   
 
 

Polyethylene Glycol 
(200MW) 

 
 
 

7.219 

 
 
 

0.0300 
Zirconium n-

propoxide 
(Sigma Aldrich) 

4.960 0.0150 

Titanium n-
propoxide  

(Sigma Aldrich) 

2.730 0.0096 

 

To remove hydrolysis reaction products, the PZT sol-gel was refluxed, under argon, for fifteen 

hours at 80 oC. An acetate film formed along the wall of the glassware. Following reflux, the PZT 

sol-gel could be printed using the NanoJet printer or adapted for inkjet printing.  
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5.3.3 OPTIMIZED PZT SOL-GEL 

Inkjet printing requires a specific ink surface tension; therefore, an inkjet printable ink 

solution was adapted to formulate the Optimized PZT sol-gel. Table 3 shows the ink vehicles used 

to produce the Optimized PZT sol-gel ink. Isopropyl alcohol and propylene glycol were dropwise 

added to 9.0 g of dH2O while stirring. The solution stirred for thirty minutes before 5.0 g of the 

Modified PZT sol-gel was slowly dropwise added. The mixture stirred overnight.  

Table 3. Optimized PZT sol-gel ink vehicles. 

Material Mass (g) 
dH2O 

  
 

 
9.00 

Propylene Glycol 

 
 

 
2.51 

Isopropyl Alcohol 

   
 

 
3.50 

 

 5.3.4 INK RHEOLOGY 

Surface tension and contact angle measurements were taken of the Modified PZT sol-gel 

and Optimized PZT sol-gel using a Ramé Hart instrument (Model: 260-U1) with teflon tip. 

Viscosity measurements were based off qualitative comparison. Each sol-gel was compared 

visually against a sample of distilled water, which has a viscosity of 1 cPs.   

5.4 SPIN COATING 
 Preliminary results of the Starting and Modified PZT sol-gels were done using a spin 

casting deposition technique. A Speedline Technologies spin coater (Model: P96700) was used 

for this work. A dozen drops of the sol-gel was deposited onto the desired substrate. The spin 

casting ramp recipe consisted of three steps. For the first five seconds the spin coater was set to 
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1800 RPM. At ten seconds the instrument was set to 3000 RPM. After fifteen seconds the 

instrument decreased to 0 RPM. The recipe used permitted for a homogenous thin-film 

deposition of the sol-gel. 

5.5 NANOJET PRINTING 
The Modified PZT sol-gel was printed using an Integrated Deposition Solutions (IDS) 

NanoJet printer. The printer uses an ultrasonic atomizer unit with a 0.51 amp current flow. A sheath 

gas flow of 80 sccm and an aerosol flow of 80 sccm were chosen for film deposition. A 22-gauge 

nozzle was selected to deposit the ink on a stainless-steel substrate (2 mm standoff distance). The 

print speed was set to 2.0 mm/s. A solid square pattern (1 cm x 1 cm) was designed using AutoCad 

(2015) and converted into a .prg file and was used for printing.                            

5.6 INKJET PRINTING 
The Optimized PZT sol-gel was printed using a Fuji Dimatix Inkjet printer (DMP 3000). 

The printer used piezoelectric, 16 nozzle ink cartridges with a 10 picolitre (pL) drop volume. The 

voltage applied to the piezoelectric cartridge was 24 V, while the nozzle temperatures remained at 

25 oC. The image printed with a file resolution set to 1270 drops/inch (dpi). A solid square film (1 

cm x 1 cm) was printed on a stainless-steel substrate (1250 µm standoff distance) and sintered in 

a muffle furnace.  

5.7 POST PROCESSING 
Upon deposition of the sol-gel PZT, the thin-film was dried using a near-IR Adphos lamp 

at 2.0 V for approximately twenty minutes. The film was then transported to a ProMetal (Model 

RF-D) muffle furnace for a thermal sintering process in ambient conditions. A crack and defect-

free thin-film was produced by rapidly heating up the sample at 100 oC/minute to 700 oC. The 

sample was immediately removed after one minute and quenched in liquid nitrogen.  

5.8 CHARACTERIZATION 
A thermal profile of the Modified PZT sol-gel was measured using TGA Q 500 (TA 

Instruments, USA). A ramp up rate of 10 oC/minute to 800 oC was set. The TGA method was done 

using nitrogen. The molar composition of PZT was analyzed using SEM-EDS (Jeol, JSM-

IT100LA, USA) under high vacuum with an accelerating voltage of 15 kV.  Raman spectroscopy 
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(Bruker, Senterra II, USA) was implemented for film analysis. The 532 nm laser with a power of 

25 mW was selected for this study. The final, un-polled, PZT thin-film ferroelectric properties 

were measured using a Sawyer-Tower circuit. A voltage amplifier was used to apply a variant 

range of 1-6 V to the sample. The maximum voltage and frequency set, from the oscilloscope, 

were 5 V and 500 Hz. 
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CHAPTER SIX- RESULTS & DISCUSSION 
When printing any ink, the process from ink to print is called the printing workflow. The 

printing press is blind to the ink technology. The ink technology, however, must be matched to the 

engineering requirements of the press. The focus of this work was to formulate a working PZT 

sol-gel that would possess a molar Zr/Ti ratio of approximately 52/48. To deposit the sol-gel 

solution using a printing method, the rheological properties required further modifications. Several 

sol-gel compositions were studied. A substrate was selected that would provide the most useful 

and stable surface to support the PZT cured film. Even when all ink and printing parameters are 

optimized, the PZT film must be transformed from a solution to solid state. The curing energy 

required must be sufficient to create a film with the paper phase, and therefore, ferroelectric 

properties. Chapter 6 will highlight the adjustments made to fabricate a crack and defect-free PZT 

working device. 

6.1 INK FORMULATION 

6.1.1 STARTING PZT FORMULATION 

  6.1.1.1 STARTING PZT FORMULATION DEPOSITED ON QUARTZ 

The sol-gel solution was spin coated onto quartz substrates. Quartz is a chemically 

compatible material to PZT, being that they are both ceramic oxides. Quartz, also known as silicon 

dioxide, takes on a tetrahedral crystal structure. Quartz can exist in several polymorphic forms, 

one of which is face-centered cubic (fcc). PZT, at room temperature, has a simple cubic structure, 

however, at elevated temperatures the fcc structure is formed. Due to the crystalline phase 

compatibility of the quartz and PZT, both ceramics are expected to possess many common 

mechanical properties, such as, the degree and rate of thermal expansion.  
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PZT was then spin-coated onto quartz substrates, however, film cracking was still exhibited. 

(Figure 18).  

  

Figure 18. PZT sol-gel thermally sintered on quartz substrate (200 µm scale). 

Gold (Au) shares the same fcc unit cell as PZT. Since the atoms of Au and PZT are 

similarly packed, the crystal growth upon thermal heating are likely comparable. Sputter coating 

both metals onto the quartz substrate, therefore, was done to enhance film quality (Figure 19). 

  

Figure 19. PZT sol-gel thermally sintered on Au sputter coated quartz substrate (200 µm scale). 

Noteworthy was the absence of film cracking within the PZT film (Figure 19).  

6.1.1.2 STARTING PZT FORMULATION DEPOSITED ON STAINLESS-STEEL 

PZT deposited on stainless steel would permit for the low cost production of a working 

device. The conductivity of stainless-steel forms the basis of a working device reducing the need 
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for an expensive bottom electrode such as evaporated gold. The PZT sol-gel, therefore, was spin-

coated onto a polished stainless-steel disk. Quartz and stainless-steel metal have significantly 

different thermal properties. For instance, the thermal rate of expansion of stainless-steel is 1.8x10-

6/ oC, whereas a typical ceramic has a rate of expansion of 10.5x10-6/ oC. The PZT film may 

experience thermal stresses that create defects upon thermal sintering given the large CTE 

differences between both materials. (Scheme 2).  

 
Scheme 2. Schematic of coefficient of thermal expansion (CTE) effects on PZT sol-gel deposited on 

stainless-steel substrate.  
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A PZT sol-gel spin-coated onto a stainless-steel substrate and thermally sintered at 800 oC 

is shown in Figure 20.  

  

Figure 20. PZT sol-gel thermally sintered onto stainless-steel substrate. Film defects are highlighted within 
white squares. (100 µm scale). 

As expected, based on difference in CTE values, the film contained multiple cracks and defects. 

Examples of some cracks and defects are highlighted in Figure 20.  

 In attempts to overcome the difference of CTE values of PZT and stainless, as well as, the 

difference in crystal structure, gold (Au) was sputtered coated onto a stainless substrate prior to 

PZT deposition (Figure 21). 

 

Figure 21. PZT sol-gel thermally sintered on Au sputter coated stainless-steel substrate (200 µm scale). 
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Examples of defects have been highlighted using white squares in Figure 21 Rather than multiple 

cracks among the grains, pinhole defects occurred upon thermal sintering. These results suggested 

that Au sputtering reduced some defects in the film. 

6.1.1.3 INCOMPLETE HYDROLYSIS REACTION 

Multiple failed attempts of sintering crack and defect-free PZT films were produced until 

the sol-gel synthesis was revisited. The reaction products in the sol-gel synthesis contained the 

same functional groups of those used in the additive package (Equations 2, 3) 

                                  𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻2𝑂𝑂 → 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑅𝑅𝑅𝑅𝑅𝑅 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)    (𝐸𝐸𝐸𝐸2) 

    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻2𝑂𝑂 → 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

2𝑀𝑀𝑀𝑀𝑀𝑀 → 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻2𝑂𝑂 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)
𝑀𝑀 −𝐻𝐻2𝑂𝑂 + 𝑀𝑀𝑀𝑀𝑀𝑀 → 𝑀𝑀2𝑂𝑂𝑂𝑂 + 𝑅𝑅𝑅𝑅𝑅𝑅 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)

(𝐸𝐸𝐸𝐸3) 

According to Le Chatlier’s Principle, when adding an excess amount of product to a 

reaction, the reaction will be driven back towards the reactants. This effect prevents the completion 

of the hydrolysis reaction for the sol-gel synthesis (Eq 4).  

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻2𝑂𝑂 ⟺ 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑅𝑅𝑅𝑅𝑅𝑅 (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)    (𝐸𝐸𝐸𝐸4) 

Sol-gel shelf-life was recorded to be less than three months; due to the progression of the reactions 

in Equations 2-4. The literature was reviewed and consulted to survey working and optimal PZT 

sol-gel preparations that might reveal the reasons for the inferior results obtained with the Starting 

Formulation of this work.  

6.1.2 MODIFIED PZT FORMULATION 

The PZT sol-gel was modified to avert concerns with incomplete hydrolysis as well as to 

lower the viscosity of the ink to permit printing. According to Yao et al., by implementing a 

polymer to the additive package, such as polyethylene glycol (PEG), it would aid in film formation 

and inhibit cracking upon sintering.32 This is because a large polymer has a high boiling point.  It 

will not evaporate at low temperatures and will rather slowly leave the PZT film over the course 

of both the gelation and sintering processes.  

The group of Yao, et al., experimented with adjusting the molecular weight of PEG from 

400-1200 MW and spin-coated the solution onto platinum substrates.32 The group found that 1200 

MW PEG produced a crack and defect-free ~35 µm thick sol-gel PZT film due to a decrease in 

residual stress upon thermal annealing. For this work, however, 1200 MW PEG would counteract 
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the need for a low viscosity ink. From the work of Shuhui, et al., a 600 MW PEG was tested.33 

Using low molecular weight PEG, they reported minimal defects and cracks were found within 

the deposited films. Multiple depositions were required, however, to obtain the desired film 

thickness of ~35 µm. Figure 22 shows a thermally sintered PZT (PEG 600 MW) sol-gel spin-

coated onto a stainless-steel substrate.  

 

Figure 22. Spin-coated PZT (PEG 600 MW) sol-gel thermally sintered on a stainless-steel substrate (500 
µm scale). 
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Figure 23 shows improvement of PZT grain quality when sintered on a stainless-steel 

substrate. Although there is cracking between the grains, the magnified image shows no cracking 

within an individual grain (Figure 23).  

 

Figure 23. SEM image of delaminated grain of a spin-coated PZT (PEG 600MW) thermally sintered sol-
gel on a stainless-steel substrate 

The film appeared to be delaminating from the substrate, and this is possibly due to the 

stress of the grains forming during the sintering process. These results suggested that implementing 

a polymer to the additive package would help lead towards the development of a defect-free PZT 

grain.  
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Qualitative results, though, confirmed that the viscosity of the PZT (PEG 600MW) sol-gel 

was not in range for that of print deposition. A 200 MW PEG, then, was adapted to this work.    

The working PEG additive package is shown in Table 4.  

 

Table 4. Modifiied PZT sol-gel fabrication used for NanoJet Printing. Final concentration of composite 
was 1.6 M.  

Compound Molar Ratio Sintering Aid Molar Ratio 
Lead Acetate_3H2O 0.50  

Polyethylene Glycol 
(200MW) 

 
0.36 Zirconium n-propoxide 

(Sigma Aldrich) 
0.26 

Titanium n-propoxide  
(Sigma Aldrich) 

0.24 

 

6.1.3 OPTIMIZED PZT FORMULATION 

6.1.3.1 INCOMPLETE CONDENSATION REACTION 

Although PEG prevented some cracks forming amongst the grains, defects, such as 

minimal cracking and pinholes, were still evident in the prints (Figure 24).  

 

Figure 24. SEM image of spin-coated PZT (PEG 200MW) sol-gel thermally sintered on a stainless-steel 
substrate (10 µm). 
 

The pinholes and cracks may be related back to the overall sol-gel reaction mechanism. The sol-

gel syntheses consist of a series of condensation reactions that occur at the same time, but at 
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different rates (Eq 3). It was possible that outgassing of volatiles from the products of the 

condensation reactions was occurring during the sintering of the thin-films.  

Under argon gas, the Modified sol-gel PZT composite was heated at 80oC and refluxed for 

fifteen hours in order for all the reaction processes to reach completion and equilibrium. Upon 

removal, an acetate film was produced. The acetate film indicated the large number of volatile 

products present in the sol-gel composite. When removing these products, outgassing and 

decomposition would no longer cause film defects. These results suggested that all condensation 

reactions were driven to completion (Figure 25). 

 

 

Figure 25. Acetate film infrared (IR) spectroscopy spectra (left) produced after reflux reaction of Modified 
PZT sol-gel composite (right). 

The produced film was characterized using IR spectroscopy and the spectrum was compared to 

the literature to confirm that the material was an acetate film.34  
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6.1.3.2 OPTIMIZED PZT FORMULATION ADAPTED TO INKJET PRINTING 

Inkjet printing, another additive manufacturing printing technique, was adapted to this 

work alongside with NanoJet printing. Similar to NanoJet printing, inkjet printing requires a 

specific ink surface and viscosity properties as shown in Table 5.  

Table 5. Ink rheology towards an inkjet printable ink. 

Viscosity Surface Tension 

1-5 cPs 20-30 dynes/cm 

 

The Modified PZT formulation surface tension was measured to be 16 dynes/cm, which was 

considered too low for inkjet printing. The surface tension of the ink, therefore, was adjusted by 

adapting the PZT sol-gel to a pre-determined inkjet printable solution (Table 6). 

Table 6. Inkjet printable ink vehicle implemented to PZT sol-gel. 

Ink Components Viscosity  Surface Tension 

DI H2O 

Propylene Glycol 

Isopropyl Alcohol 

 

3.6 cPs 

 

30 dynes/cm 

 

The Optimized sol-gel formulation was used for inkjet printing. The newly formulated ink 

exhibited no precipitation or agglomeration of PZT particles over that time period, confirming that 

ink was stable. The aqueous-based ink has maintained a shelf-life of over 7 months. 

 

 

 

 

 

 

 

 



39 

 

6.1.4 INK CHARACTERIZATION 

6.1.4.1 STARTING PZT FORMULATION INK CHARACTERIZATION 

The Starting PZT sol-gel formula was analytically characterized using differential scanning 

calorimetry (DSC)-TGA, XRD and surface tension measurements. According to the DSC-TGA 

results, the weight percent of the Starting PZT sol-gel was found to be 10% PZT (Figure 26), and 

the curing temperature needs to be greater than 500 oC. The final concentration of the Starting PZT 

sol-gel was calculated to be 1.6 M.  Typical PZT sol-gel solutions range from 1-1.5M.28,32,33,35,36  

 
Figure 26. DSC-TGA of starting PZT sol-gel. 35 
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A powdered sample of the PZT sol-gel was measured using XRD analysis (Figure 27). 

 

Figure 27. Powder XRD of starting PZT sol-gel. 35 

The XRD confirmed that the perovskite crystal structure of PZT was achieved after thermal 

sintering. The material, therefore, may exhibit optimal ferroelectric and piezoelectric responses in 

response to mechanical or electrical properties.  

After confirming the concentration and crystal structure of the sol-gel, the surface tension 

and viscosity of the ink were analyzed. Good print quality is dependent on both surface tension 

and viscosity of an ink. Both printing methods require a surface tension between 20-30 dynes/cm 

and an ink viscosity between 1-5 cPs. The surface tension measurements of the PZT sol-gel are 

compatible with that of both NanoJet and inkjet printing (Table 7).  

Table 7. Surface tension measurements of starting PZT formulation. 

Ink Formulation Tip Average Surface Tension 

Starting PZT Formulation Teflon 22.39 dynes/cm 

  

The Starting ink viscosity was estimated to be too high for optimal print deposition based on the 

flow behavior. 
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6.1.4.2 MODIFIED & OPTIMIZED PZT FORMULATION INK            

CHARACTERIZATION 

The Modified and Optimized PZT sol-gel was analytically characterized using TGA and 

surface tension measurements. According to the TGA results, the weight percent of the Modified 

PZT sol-gel was found to be 10%, similar to that of the Starting PZT sol-gel (Figure 28). There 

were two thermal decomposition temperatures for Modified PZT around 300 oC and 600 oC.  The 

300 oC may correspond with PEG decomposition while 600 oC was PZT formation. Since the PEG 

has a large molecular weight, the mass loss of the polymer occurs slowly as the temperature 

increases.  

 

Figure 28. TGA of Modified PZT sol-gel. 
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A TGA of the Optimized PZT sol-gel yielded a weight percent of PZT of 5% (Figure 29). 

The curing temperature range of the sol-gel was found to be around 200 oC and 300 oC. Rich with 

oxygen functionality, the ink jet vehicle component addition appears to lower the PZT sintering 

temperature by 300 oC. More analysis would be required, but if this result is found to be 

reproducible, a 300 oC sintering temperature would be a substantial process improvement. 

 

Figure 29. TGA of Optimized PZT sol-gel. 

The surface tension and viscosity were measured of the Modified and Optimized PZT sol-gel. The 

surface tension measurement of the Optimized sol-gel was considered within the working range 

for both NanoJet and inkjet printing methods (Table 8).  

 
Table 8. Surface tension measurements of modified PZT formulation. 

Ink Formulation Tip Average Surface Tension 

Modified PZT Formulation Teflon 16 dynes/cm 

Optimized PZT Formulation Teflon 30 dynes/cm 

 

Based off qualitative results, the viscosity of the ink was also optimal for both printing methods. 
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6.2 PZT PRINT DEPOSITION  

6.2.1 SUBSTRATE SELECTION 

Quartz and stainless-steel are both chemically compatible materials with PZT. Given 

stainless-steel is a conductive substrate, it provides the opportunity to develop a working device, 

potentially requiring less fabrication costs over rare metal films (Figure 30).   

 

 

  Figure 30. Schematic of a non-working device compared to a working device. 

A non-conductive substrate, shown in Figure 30, indicates that the material does not have a bottom 

electrode. Adding connections to the material via gold sputter coating techniques, would fabricate 

a bottom electrode on the quartz (Figure 31). 

 

Figure 31. Schematic of functionally grading quartz with sputter coated gold. 

The functional graded material technique, and implementing gold on the substrate, is both costly 

and hinders the fast throughput process. Using an inexpensive metal, such as stainless-steel, allows 

the project the opportunity to adapt to large-scale manufacturing methods. 

Various stainless-steel substrates, therefore, were investigated for this work. Stainless-steel 

flexible foils and polished stainless-steel substrates were used in conjunction with the modified 
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PZT formulation. The stainless-steel foil was an interesting substrate to adapt to this work because 

it would potentially move the project into the developing field of printed electronics.  

6.2.2 STARTING PZT FORMULATION 

6.2.2.1 NANOJET PRINTING 

According to Integrated Deposition Solutions, Inc (IDS), film deposition of an ink will 

require low sheath flow, and relatively high aerosol flow; depending on desired thickness of film.37 

The atomizer unit should also maintain a current flow of 0.42 amps. The viscosity of the ink should 

range between 1-5 cPs. This range permits aerosol droplet formation of the ink based on the 

suggested current flow from the atomizer unit.37 

Although the viscosity of the ink was known to not fall within the working print parameters 

of NanoJet printing, preliminary prints were still trialed. Aerosol production and print deposition 

of the Starting PZT sol-gel was not attained from the suggested parameters from IDS. High 

viscosity, outside the recommended range, was the suspected cause. Rather than modifying the ink 

composition, the printing parameters were adjusted. Printing parameters, as shown in Table 9, 

were found to achieve a printed trace (see Figure 32).  

 

Figure 32. NanoJet printed 200 µm trace width serpentine of Starting PZT sol-gel on stainless-steel 
substrate. 

Theoretically, by increasing the current flow of the atomizer unit, the number of ultrasonic waves 

transmitted to the ink reservoir would increase, and in turn produce more aerosol droplets.  
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Table 9. Print parameters used for serpentine depositions of PZT sol-gel on stainless-steel substrate. 

Ink 
Formulation 

Aerosol 
Flow 

(sccm) 

Sheath 
Flow 

(sccm) 

Atomizer 
Unit (A)  

Print 
Speed 

Nozzle 
Gauge 

Standoff 
Distance 

Starting PZT 
Formulation 

60 50 0.54  2.0 mm/s 22 2.0 mm 

 

Since ink deposition was achieved using the print parameters found in Table 9, the same 

parameters were trialed in attempts to achieve film deposition (Figure 33).  

 

Figure 33. NanoJet printed one centimeter square of Starting PZT sol-gel on stainless-steel substrate. White 
boxed regions show areas in which film was not infilled. (500µm). 

The print shown in Figure 33 indicated that the amount of aerosol droplets formed and deposited 

did not create an infilled film. The flow rate of both aerosol and sheath, therefore, were adjusted 

to increase amount of aerosol droplets directed to the deposition head and decrease fine line 

printing (Table 10).  

Table 10. Print parameters used for film depositions of PZT sol-gel on stainless-steel substrate. 

Ink 
Formulation 

Aerosol Flow 
(sccm) 

Sheath Flow 
(sccm) 

Atomizer 
Unit (A)  

Print Speed  Nozzle 
Guage 

Starting PZT 
Formulation 

90 40 0.54  2.0 mm/s 22 
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The new print parameters were used to develop the film shown in Figure 34.  

 
Figure 34. NanoJet printed one cm square of Starting PZT sol-gel on stainless-steel substrate (2000µm). 
 

Film deposition was enhanced when increasing the amount of aerosol droplets deposited 

on the substrate. Using this method, however, would decrease lifetime of atomizer unit and digital 

transducer. Prior to deposition of the PZT sol-gel, the digital transducer was replaced. After 

increasing the atomizer current flow past the manufacturing suggested limits, the digital transducer 

was found to only perform for three months. Since lifetime of the transducer decreased, the ink 

was modified in respect to the printing technique.  

6.2.3 MODIFIED PZT FORMULATION 

6.2.3.1 NANOJET PRINTING 

The ink rheology, shown in Table 1, of the Modified PZT sol-gel was considered to be 

NanoJet printable. For thin-film deposition low aerosol flow, slow print speed, and 0.42 amps set 

on the atomizer unit were suggested factors for a NanoJet printable ink. The working print 

parameters for the Modified PZT sol-gel, though, required relatively high aerosol and high current 

flow (Table 11).  

Table 11. Print parameters used for film depositions of Modified PZT sol-gel on stainless-steel substrate. 
Ink 

Formulation 
Aerosol 

Flow 
(sccm) 

Sheath 
Flow 

(sccm) 

Atomizer 
Unit (A)  

Print 
Speed  

Nozzle 
Gauge 

Standoff 
Distance 

Modified PZT 
Formulation 

80 80 0.51 2.0 mm/s 22 2.0 mm 
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The aerosol and current flow were set to these values in response to the realization that the 

ink was adhering to the walls and baffle of the flow cell. The flow cell and baffle are both made 

up of aluminum. Aluminum has a surface energy of 850 dynes/cm.38 From the large difference in 

surface energy between the aluminum surface and the Modified ink, the PZT aerosol droplets 

adhered to the walls of the flow cell, preventing print flow. The current flow was then increased 

to produce more aerosol droplets in the ink reservoir. As well, the aerosol flow was increased to 

carry these aerosol droplets to the deposition head. By increasing the amount of aerosol droplets 

formed and the aerosol stream carried to the deposition head, the loss of PZT remaining on the 

walls of the flow cell was counteracted.  

  The PZT sol-gel was NanoJet printed onto both the polished stainless-steel and stainless-

steel foil substrates (see Figure 35). Print quality varied when comparing the Modified PZT sol-

gel on both substrates.  

 

Figure 35. NanoJet printed Modified PZT sol-gel on a polished stainless-steel substrate (A) and a stainless-
steel foil (B) (200µm). 

Ink droplet formation ranged in various sizes when PZT was printed on the polished stainless-steel 

substrate due to the ink crawling back. The Modified PZT sol-gel printed on the stainless-steel 

foil, however, showed consistent droplet formation and proper film formation. 
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The observed results can be explained by comparing the surface energy of both substrates as 

measured by contact angle (Table 12). 

 
Table 12. Contact angle of modified PZT sol-gel on stainless substrates. 

Ink Formulation Substrate Average Contact Angle 
 

Modified PZT Formulation 
  

Stainless-Steel Foil 28.5 o 
 

Polished Stainless Steel 
 

14.8 o 

  
Contact angle illustrates that the change in surface energy between the ink and the polished 

stainless-steel substrate was smaller than that to the stainless-steel foil. This can be further 

explained from the Gibbs Free Energy equation, where 𝛾𝛾 is surface energy. 

 
When temperature (T) and pressure (P) are constant, the change in free energy, 𝑑𝑑𝑑𝑑, is proportional 

to the change in surface area, 𝑑𝑑𝑑𝑑, where 𝛾𝛾 (surface energy) acts as the proportionality constant.  

 The stainless-steel foil was analyzed using optical profilometry to confirm that the material 

has a higher surface roughness, and therefore higher surface energy, than the polished stainless-

steel substrate (Figure 36).  

 

 

Figure 36. Optical profilometry scan of stainless-steel foil. 

Optical profilometry showed that the stainless-steel foil had ± 0.5 µm groves along the substrate 

and a measured surface roughness of 0.141µm.  
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A polished stainless-steel was also characterized using optical profilometry (Figure 37). The 

profile scan of the polished stainless-steel shows minimal groves along the surface and measured 

a surface roughness of 0.124 µm. The overall surface roughness of the polished substrate, 

therefore, will be less than that of the foil. 

 

Figure 37.Optical profilometry scan of polished stainless-steel disk. 

These results suggest that the stainless-steel foil had a higher surface energy, allowing the 

Modified PZT sol-gel to experience proper adhesion upon deposition.  

Using polarized optical microscopy (see Figure 38), supports the optical profilometry 

measurements. 

 

Figure 38. Polarized optical imaging of the modified PZT sol-gel deposited on stainless steel foil (50 µm 
scale). 

The multiple colors imaged from the film, under polarized light, indicated that the film was 

comprised of multiple thicknesses, and ultimately non-homogenous.  
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6.2.3.1.1 SUBSTRATE CLEANING 

Since the stainless-steel foil was found not to be a suitable substrate, the polished stainless-

steel substrate underwent surface treatment to enhance ink adhesion. A cleaning method, using 1.8 

M nitric acid was used (Figure 39).  

 

 

Figure 39. Schematic depiction of acid treatment. 
 

The cleaning method acts as an oxide etching treatment. By partially removing the native oxide 

layer, found on stainless-steel substrates, the surface energy of the substrate would decrease. A 

decrease surface energy would result in an increase in the measured contact angle of the deposited 

Modified and Optimized PZT sol-gel (Table 13). 

 

Table 13. Contact angle measurements of the modified PZT sol-gel on polished stainless-steel before and 
after nitric acid wash. Measurements were compared to an untreated stainless-steel foil. 

 

 
 

 

 

 

 

Substrate Before 
Treatment 

After 
Treatment 

Polished 
Stainless-Steel 

14.81o 21.21o 

 
Stainless-Steel 

Foil 

 
28.50o 
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Figure 40 shows the modified PZT sol-gel NanoJet printed onto a stainless substrate after cleaning.  

 

Figure 40. NanoJet printed PZT sol-gel (200 µm scale). 

The ink deposition and film quality showed improvements from that shown in Figure 33. 

Although the wet film formation was still not homogenous, the ink and substrate wetting improved. 

Better wetting resulted from a substrate surface energy decrease after acid treatment. The film 

quality would not lead to a uniform film thickness upon thermal sintering either. While the ink 

was atomized in the ink reservoir, an increase in thermal energy occurred in response to the 

ultrasonic waves produced to atomize the sol-gel. Some gelation may have occurred from the 

ultrasonic heating with a corresponding increase in viscosity. Changing viscosity would result in 

changing print quality. Since the NanoJet printing performance is so dependent on ink rheology, 

more research would need to be done to inhibit gelation processes that affect print quality. 
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6.2.3.2 INKJET PRINTING 

The Optimized PZT sol-gel ink (Chapter 5, Section 3.3) was then applied using inkjet 

printing. The printing parameters that produced stable ink jet droplets are shown in Table 14. The 

waveform voltage used for printing was pre-determined based on the inkjet ink that was adapted 

to this work.20 The temperature of each ink cartridge stayed at room temperature in order to prevent 

the PZT sol-gel from undergoing a gelation process.  

Table 14. Print parameters used for film depositions of PZT sol-gel on stainless-steel substrate. 

Ink 
Formulation 

Waveform  Standoff 
Distance 

Platen 
Temperature 

Cartridge 
Temperature 

Optimized PZT 
Formulation 

 
24 V 

 
1250 µm 

 
25 oC 

 
25 oC 

 

The wet PZT film printed using nitric acid cleaned stainless steel is shown in Figure 41.  

 

Figure 41. One cm square, inkjet printed Optimized PZT sol-gel on a polished stainless-steel substrate (500 
µm scale). 

The rheological properties of the Optimized PZT ink were adjusted to be in working range of inkjet 

printing parameters. The increase in surface tension led to better adhesion of the Optimized PZT 

on the substrate, enhancing the as-printed film quality. 
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6.3 PZT POST PROCESSING 
Sol-gel films post-processing entails curing and sintering steps. Sintering involves atomic 

diffusion from one location to another. Prior to this step, the sol-gel underwent a curing process to 

allow the film to go through the gelation route in the sol-gel mechanism. The gelation process 

occurs from the condensation reactions that are associated with the sol-gel synthesis. Once the 

solution has become a gel, sintering is then conducted. During the sintering process, the material 

will form a metal oxide film, and all volatiles that may have remained in the gel, such as gel 

forming and sintering aids, will be evaporated off.  

 Curing and sintering conditions of the PZT films printing using the Modified formulation 

were optimized in this project. The Starting PZT sol-gel would cure at room temperature for 

several hours in ambient conditions. This curing method was optimized, for the Modified 

formulation, by thermally heating the sample via a hotplate or near infrared (NIR) lamp. Both 

methods involved heating the deposited film on the polished stainless-steel substrate at a range of 

80-100 oC for 15 minutes. The parameters, therefore, were set to use an Adphos NIR lamp for 15 

minutes at 90 oC. This method limits substrate heating, being that it is a top-down thermally curing 

approach, rather than a bottom-up approach like hot-plate heating. Defect-free gel formation may 

result since thermal expansion of the substrate has been limited. NIR lamp produced superior 

results over a hotplate. 

 Thermal sintering in a muffle furnace is a commonly practiced technique. Optimizing 

thermal sintering of PZT films, in a muffle furnace, was performed. At the start of this project, the 

sintering parameters consisted of the film being sintered to 800 oC at a ramp up rate of 25 
oC/minute.  
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A temperature of 800 oC was maintained for approximately an hour, then the film was slow cooled 

at a rate of 25 oC/minute to 25 oC (Figure 42). 

 

Figure 42. Optical image of a deposited starting PZT sol-gel film on a polished stainless-steel substrate. 
Examples of defects and cracks are highlighted (100 µm scale). 

The produced PZT films presented various defects and cracks within the grains (Figure 42). This 

confirmed that the thermal sintering method needed to be adjusted.  

6.3.1 MODIFIED PZT FILM SINTERING 

According to the group of Shuihu et al., when implementing high molecular weight PEG 

to the PZT sol-gel additive package, a crack and defect-free thick film was produced with spin-

coated samples.33 These crack and defect-free films were produced using a rapid heat up and slow 

cool down process. The rheological properties between the Modified PZT sol-gel and Shuihu 

group’s sol-gel differ from one another. Deposition of the sol-gels and film thickness were other 

variant factors. The sintering method from the Shuihu group, though, was implemented to gather 

preliminary sintering information to better understand the role PEG has in the sol-gel.  
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Figure 43 shows a thermally sintered film in a muffle furnace. The sample was cured using an 

AdphosNear-IR lamp at 90 oC for 15 minutes. The film was heated from 25 oC to 700 oC at a rate 

of 100 oC/minute. After one minute, upon reaching 700 oC, a slow cool down process followed. 

The PZT film was cooled to 25 oC at a rate of 50 oC/minute.  

The SEM image of the rapidly heated and slow cooled PZT film displayed random cracks 

along the PZT grains, as highlighted in outlined boxes of Figure 43. 

 

Figure 43. SEM image of a NanoJet deposited Modified PZT sol-gel film on a polished stainless-steel 
substrate. 

These cracks indicated defects within the film. As mentioned previously, the rate at which stainless 

steel expands is greater than that of PZT. The rapid heat up process was meant to introduce the 

stainless-steel to thermal energy for a shorter amount of time, to inhibit the material from 

expanding. The slow cool down process, however, still introduced a change in thermal energy to 

the stainless-steel substrate over a longer period of time. The stainless-steel substrate, therefore, 

was undergoing both thermal expansion at elevated temperatures, and thermal compression at 

lower temperatures. Cracks and defects in the PZT, consequently, were caused by the substrate 

expanding and compressing.  From these observations, it was understood that the substrate needed 

to be minimally exposed to thermal energy.  

The work of Wang et al., studied a slow heat up process and a rapid cool down process of 

a ceramic material.39 Understanding that optimal PZT film sintering would be aided by decreasing 

the amount of time that the substrate was heated, the Wang method was adapted to the sintering 

process used for the Modified PZT sol-gel.39  
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Figure 44 shows a PZT film that was deposited on a stainless-streel substrate and sintered in a 

muffle furnace. The sample was cured, prior to sintering, using an Adphos NIR lamp at 90 oC for 

15 minutes. Upon curing the PZT, the sample was heated to 700 oC at a ramp up rate of 100 
oC/minute. The PZT film incubated at 700 oC for one minute and was immediately removed from 

the furnace to room temperature.  

 

Figure 44. Optical image of a NanoJet deposited Modified PZT sol-gel film on a polished stainless-steel 
substrate post thermal sintering (500 µm scale). 

In Figure 44, examples of defects and cracks are highlighted in the boxed areas. The rate 

at which both the substrate and sintered film would expand occurred so quickly, due to the rapid 

heat up technique, that when removed from the furnace the materials would rapidly compress, due 

to the drastic change in temperature from 700 oC to 25 oC. Significant cracking and defect 

formation were an outcomes of this sintering method.  

6.3.2 RAPID CYCLE PZT FILM SINTERING 

Additive manufacturing and large-scale manufacturing were key motivating models for 

this work. Scalability for fabricated working devices, was kept in mind when adjusting post-

processing of the film. The rapid heating and cooling method, was modified to develop a sintering 

process that adapts to large-scale manufacturing.  

Linde’s U.S. additive manufacturing group produced sintered metal powder films from a 

rapid cool down approach by introducing liquid nitrogen to the material.40 Using the determined 

Optimal sol-gel formulation, the liquid nitrogen approach was adapted to the rapid sintering 
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method. Quenching both the substrate and ceramic film in liquid nitrogen would hinder negative 

effects of slow thermal cooling. Substrate thermal expansion could be effectively minimized, 

preventing film defect formation. Rapidly freezing the materials, quenched in liquid nitrogen, 

could eliminate the negative effects of thermal expansion. Combining both ideas enhanced the 

opportunity to fabricate a fully sintered crack and defect-free PZT film. 

  The inkjet deposited PZT film, on a stainless-steel substrate, shown in Figure 45 had been 

cured using an Adphos NIR lamp for 90 oC for 15 minutes.  

 

Figure 45. Optical image of a nearly defect free inkjet deposited modified PZT film on a polished stainless-
steel substrate. 
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The film was sintered to 700 oC at a ramp up rate of 100 oC/minute. The material remained 

at 700 oC for one minute. The PZT film was then quenched in liquid nitrogen. An example of a 

sintered PZT film from this adapted method can be seen in Figure 46.  

 

Figure 46. Polarized optical image of an inkjet deposited modified PZT sol-gel film on a polished stainless-
steel substrate. 

Figure 46 demonstrates a crack and defect-free PZT thin-film. The polarized optical image shows 

that the film was homogenous. The material exhibited no cracks and defects; meaning that the 

material will not short in device applications. Under polarized light, the blue image indicates both 

a thin film, on the order of 0.4-0.5 µm, and homogeneous in thickness. The optical image does 

reveal evidence of cracking or defects across the film surface. 
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This sintering method enabled the production of multiple crack and defect-free films. Some 

examples of these films can be seen in the SEM images found in Figure 47.  

 

Figure 47. SEM imaging of examples of crack and defect-free sintered PZT thin-films. 

In the SEM images above, white particles were found between the PZT grain boundaries. These 

are lead oxide particles, which was confirmed through EDS analysis. Lead oxide is formed during 

the sintering process. Rather than the PZT film experiencing a loss of lead from the composite, the 

produced lead oxide was forming between the individual grains. The dense grain boundaries have 

a larger surface area than that of the grains themselves, therefore the grain boundaries have a larger 

surface energy. The larger surface energy then, in turn, causes the nucleation sites for chemical 

processes, such as lead oxide growth, during the sintering process. When the film was not sintered 

optimally, random cracking will occur amongst the PZT grain boundaries. However, proper 

sintering of the film will cause the excess lead oxide to form amongst these grain boundaries and 

act as a sintering aid to the PZT grain crystal structure.  
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6.3.2.1 SINTERED PZT FILM CHARACTERIZATION 

6.3.2.1.1 ENERGY-DISPERSIVE X-RAY SPECTROSCOPY ANALYSIS 

The sintered film composition was evaluated using SEM-EDS analysis (see Table 15). To 

confirm the excess lead material, and the formation of the Zr/Ti 52/48 ratio, the sintered films were 

characterized using EDS.  

Table 15. EDS results of PZT thermally sintered film. 

Substrate Formula Mol % Zr/Ti Molar Ratio % 
 
 

Polished Stainless-Steel 

PbO 
 

52.53 %  
 

52.68/47.32 ZrO2 25.01% 
 

TiO2 22.46% 
 
Based on the EDS results, the PZT film had close to the optimal 52/48 molar Zr/Ti ratio. There 

was excess lead, which correlates with lead oxide within the grain boundaries.  

6.3.2.1.2 RAMAN SPECTROSCOPY  

Raman spectroscopy was another analysis method utilized on the thermally sintered PZT 

thin-film (see Figure 48).  

 

Figure 48. Raman spectra of thermally sintered PZT thin-film on a polished stainless-steel substrate. 

The sharp iron oxide (Fe2O3) peaks are shown in the Raman spectra because of surface-enhanced 

effects from the substrate. The measured broad peaks in Figure 48, are PZT peaks, which correlates 
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to that found in the literature.41 According to the literature, the Raman spectra of did not show 

evidence of pyrochlore phase in the sintered PZT film. These results confirmed that the PZT is a 

fully densified perovskite crystal.41 

6.3.2.1.3 FERROELECTRIC RESPONSE  

The ferroelectric response was measured using a Sawyer-Tower circuit (Figure 49).  

 

Figure 49. Ferroelectric response of a thermally sintered PZT sub-5 µm film on polished stainless-steel 
substrate. 

The measured samples were unpoled. An unpoled sample, results in the direction of the 

dipoles to be randomly oriented throughout the grains, potentially leading to a weaker ferroelectric 

response relative to a poled sample. A remnant polarization of ± 0.001 µC/cm2 was produced.  

Although the ferroelectric response from the material was weak, an electrical response 

from the PZT thin-film was observed when a mechanical force was applied to the substrate. When 

tapping the substrate, a measureable electrical response on an oscilloscope was detected. In order 

to optimize the ferroelectric response from the PZT film, a better top electrode must be fabricated 

for the device. This work utilized copper tape as the top working electrode. Poor adhesion of the 

copper tape on the PZT film led to a weak connection between the film and top electrode, which 

in turn led to a weak ferroelectric response from the PZT film. This qualitative analysis confirmed 
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that a PZT sol-gel was formulated and deposited using additive manufacturing techniques and 

rapidly sintered into a crack and defect-free thin-film to create a working device.  
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CHAPTER SEVEN- SUMMARY 
A novel PZT sol-gel synthesis was developed. The sol-gel comprised of an alkoxide 

mixture with a Zr/Ti ratio of 52/48. The polymer, PEG (200 MW), was realized to be a superior 

film forming and thermal sintering aid. The PEG containing PZT sol-gel was adapted to two 

additive manufacturing processing techniques, NanoJet and inkjet printing. NanoJet printing was 

performed with the Modified PZT sol-gel formulation yielding a non-homogenous thin-film. 

Thick-film deposition of the Modified PZT sol-gel may be possible using a build-up deposition 

approach. Print quality was optimized when the Optimized PZT sol-gel was adapted to inkjet 

printing. Reproducible PZT thin-films were achieved after inkjet deposition, curing and sintering 

were completed.  

 Crack and defect-free film sintering was successful using a rapid thermal sintering 

approach. The PZT film was sintered for 700 oC for one minute before being quenched in liquid 

nitrogen. This method hindered the process of thermal expansion between the chosen stainless 

substrate and the deposited PZT ceramic material. This newly adapted thermal sintering method 

may permit high throughput manufacturing.  

 The PZT films were characterized using Raman spectroscopy, SEM-EDS, and ferroelectric 

response measurements. EDS results showed that the PZT consisted of the proper 52/48 Zr/Ti 

molar ratio. This molar ratio was confirmed by Raman spectroscopy. There was no evidence of a 

pyrochlore PZT phase in the spectra. EDS and Raman spectra suggested that the material may 

exhibit a ferroelectric response. A Sawyer-Tower circuit was used to measure the ferroelectric 

response of the PZT thin-film. An unpoled sample of PZT measured a remnant polarization of 

±0.001µC/cm2. Upon mechanical applied stress, the material exhibited a change in polarization, 

confirming that the material was a working piezoelectric.  

 This project demonstrated that a working PZT sol-gel can be fabricated and adapted to 

additive manufacturing. Rapid thermal sintering proved to be an excellent method when 

reproducing the PZT films. A working device was developed.  
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7.1.1 FUTURE WORK 

7.1.1.1 DIPOLE MOMENT POLING 

PZT has randomly aligned domains. Randomly aligned domains, generally, causes weak 

ferroelectric responses emitted from the material.42 This is because when a mechanical stress is 

applied to the material the dipole vectors are expected to rotate. When the dipoles are in random 

orientation, the mechanical stress will cause the vectors to rotate into another random orientation. 

Since the new dipole orientation is still randomized, the expected response will be weak.  

 To overcome the possibly negligible response, orienting the grains initially upon 

sintering can be done (Figure 50).  

 
Figure 50. Depiction of an un-poled ceramic material and poled ceramic material. The electric dipole 
moment vectors are noted by the oriented arrows.  
 
When the material is being poled, a large electric field is applied. Poling causes distortion in the 

PZT crystal lattice, in response to the applied electric field. The pinning effect causes the dipole 

vectors to stay relative to the poling direction.42 Once the poling electric field has been removed 

from the material, the dipoles are no longer randomly oriented. Orienting the dipoles in the same 

direction, will then cause for a larger ferroelectric response measured from the material.  

According to the work of Ouyang et al., a lower poling electric field was 30 kV/cm.43 For 

a film thickness of approximately 5 µm, 15 V should be applied to the material. The poling time 

suggested in Ouyang et al., work was for two hours. It should be noted, however, that both the 

time and poling electric field are possibly dependent on the thickness and type of material. Results 

have been reported of a 100 kV/cm electric field being used over a course of several hours.43 
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7.1.1.1 PHOTONIC SINTERING 

Ouyang et al., denoted rapid pulses applied to the sample force film can change crystal 

phases.43 Meaning that the material is exposed below and above the Curie temperature. This cyclic 

temperature digression is reported to simultaneously pol and sinter the PZT film.43 

Photonic sintering also permits the use of low-temperature substrates. The pulses absorbed 

by films can last as little as a few microseconds. By implementing the short pulse technique, the 

film is able to absorb the pulsed flash, rather than the substrate, consequently, limiting substrate 

heating (Figure 51).   

By eliminating substrate heating, concerns regarding thermal expansion rates could be 

considered insignificant. Low melting point temperature substrates could also be investigated, such 

as flexible plastic substrates. The thickness of flexible substrates is generally thinner than that of 

a metallic plate; therefore, the amount of thermal energy that the substrate can be exposed to may 

change. To confirm the possibility of implementing photonic sintering to this work, the preliminary 

results of an inkjet deposited PZT sol-gel on the flexible stainless-steel substrate is shared in Figure 

51.  

 

Figure 51. SEM image of a photonically sintered inkjet deposited PZT sol-gel on a stainless-steel foil 
substrate (200 µm scale). 

A 350 µs pulse with a 400 V flash was applied to this film that is shown in Figure 51. 

Although there was no cracking along the grains, the PZT grains are not fully densified. This can 

be confirmed on the SEM image scale, for fully densified grains are smaller in size. To enhance 

grain densification, a larger amount of energy from the flash lamp needs to be exposed to the 
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substrate. Optimizing the photonic sintering of the PZT sol-gel, would push this project into the 

field of printed flexible electronics. The field of flexible printed electronics is an innovative 

discipline of functional printing. Thin-film deposition of an optimal PZT sol-gel onto a flexible, 

conductive substrate that is rapidly sintered into a crack and defect-free working device will permit 

a wider range of sensor and actuator applications.  
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