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Abstract

TVA: A Requirements Driven, Machine-Learning Approach for
Addressing Tactic Volatility in Self-Adaptive Systems

Jeffrey Palmerino

Supervising Professor: Dr. Daniel Krutz

From self-driving cars to self-adaptive websites, the world is increasingly becoming

more reliant on autonomous systems. Similar to many other domains, the system’s be-

havior is often determined by its requirements. For example, a self-adaptive web service is

likely to have some maximum value that response time should not surpass. To maintain this

requirement, the system usestactics, which may include activating additional computing

resources. In real-world environments, tactics will frequently experience volatility, known

as tactic volatility. This can include unstable time required to execute the tactic or fre-

quent fluctuations in the cost to execute the tactic. Unfortunately, current self-adaptive ap-

proaches do not account for tactic volatility in their decision-making processes, and merely

assume that tactics have static attributes.

To address the limitations in current processes, we propose a Tactic Volatility Aware

(TVA) solution. Our approach focuses on providing a volatility aware solution that enables

the system to properly maintain requirements. Specifically, TVA utilizes a Autoregres-

sive Integrated Moving Average Model (ARIMA) to estimate potential future values for

requirements, while also using a Multiple Regression Analysis (MRA) model to make pre-

dictions of tactic latency and tactic cost at runtime. This enables the system to both better
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estimate the true behavior of its tactics and it allows the system to properly maintain its re-

quirements. Using data containing real-world volatility, we demonstrate the effectiveness

of using TVA with both statistical analysis methods and self-adaptive experiments. In this

work, we demonstrate (I) The negative impact of not accounting for tactic volatility (II)

The benefits of a ARIMA-modeling approach in monitoring system requirements (III) The

effectiveness of MRA in predicting tactic volatility (IV) The overall benefits of TVA to the

self-adaptive process. This work also presents the first known publicly available dataset of

real-world tactic volatility in terms of both cost and latency.
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Chapter 1

Introduction

The world is increasingly relying upon autonomous, self-adaptive systems that have the

ability to function independently without human interaction. Examples of these self-adaptive

systems include UAVs, as well as both IoT and medical devices. With widespread adop-

tion into many domains, it is imperative that these systems remain effective, efficient and

resilient, even when operating in stochastic environments. To accomplish this, one path

we can take is make requirements the driving force behind adaptations, as they can play

a key role in determining if, when, and how the system should adapt to change. For cur-

rent self-adaptive systems, these requirements are defined in the Service Level Agreement

(SLA). Within the SLA are definitions for how utility is calculated for the system, along

with defined rewards for meeting specific requirements, and defined penalties for not meet-

ing these requirements [20]. While self-adaptive systems spread across a wide variety of

domains, SLA’s can vary considerably from system to system.

Regardless if requirements varying from system to system, tactics are how these sys-

tems handle changes in their surrounding environments. Examples of these tactics include

the provisioning of an additional virtual machine in a web farm when workload reaches a

specific threshold, or reducing non-essential functionality on an autonomous plane when

battery levels are low. In current self-adaptive systems, many approaches utilize adap-

tation tactics to make necessary changes [28, 35, 25, 14, 12] or closed-loop control sys-

tems to monitor current states and to determine the appropriate adaptation tactics to exe-

cute [22, 2, 34, 7]. However, tactics frequently have two characteristics in common: tactic

latency and tactic cost. Tactic latency is the amount of necessary time from when a tactic
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is invoked until its effect on the system is realized [28, 31, 32, 27]. Tactic cost refers to the

relative expense that the system experiences in performing the tactic. Cost may be in the

form of resource consumption (battery power, workload on servers, etc.), or in actual mon-

etary value [20, 36, 18]. Both tactic latency and cost are likely to be first-class concerns

in the decision-making process of a self-adaptive system, as they may directly impact the

selection of the most appropriate tactic(s) and when potential future tactics may begin to

be executed [28, 32, 27]. Due to their significant impact on the decision-making process,

improperly accounting for tactic latency or tactic cost can lead to situations where tactics

are executed too early, too late, or they consume too many additional resources; hindering

the rest of the adaptation process. This will frequently result in higher levels of uncertainty

within the decision-making process, as the system’s behavior will become much more er-

ratic and unpredictable.

Real-world systems will frequently encounter tactic volatility, which is variability in

the attributes of the tactic. Tactic volatility can be caused by innumerable internal and

external factors, and should be accounted for in a real-world, robust self-adaptive system.

As an example, one tactic in a cloud-based system could be to add an additional server

resource when needed to handle an increased workload [28]. The time necessary to add

the extra server would be a primary concern for two reasons including: (I) When to begin

the process of adding the resource since adding it too early before it is needed could incur

unnecessary costs, while adding it too late will mean that it is not ready when needed; (II)

The anticipated latency could impact the decision of if the tactic of adding a resource is the

most appropriate tactic over alternative options. Due to multiple factors such as software

configurations, varying network congestion or even hardware failure, the necessary amount

of time to add the additional resource could widely vary. Therefore, using a static latency

value this tactic is not sufficient for ensuring that the system operates at optimal levels.

Unfortunately, state-of-the-art decision-making processes in self-adaptive systems do

not sufficiently account for tactic volatility, which can adversely impacting the decision-

making process [28, 27]. For example, a system may assume that it always takes two
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seconds to execute a tactic when in reality it has been observed to fluctuate rapidly between

one and five seconds. Therefore, without being able to learn from these observations, the

system will continue to make incorrect assumptions about how tactics behave – frequently

leading to less than optimal decisions.

To address the limitation of current self-adaptive processes not accounting for tactic

volatility, we propose a Tactic Volatility Aware (TVA) solution. Our approach focuses

on handling tactic volatility, while also maintaining system requirements defined in the

SLA. TVA utilizes an Autoregressive Integreated Moving Average (ARIMA) to estimate

potential future values for requirements, while also using a Multiple Regression Analysis

(MRA) model to make predictions of tactic latency and tactic cost at time of adaption.

This not only allows the system to accurately predict how tactics are going to behave, but

it also supports the system to better maintain its requirements. In this work, we use data

containing real-world volatility to demonstrate the positive impact that TVA has in handling

tactic volatility to maintain system requirements.

To summarize, this work makes the following contributions:

1. Requirements Monitoring: Our TVA approach takes into account requirements that

have been defined by the systems engineers in the SLA. TVA uses time series fore-

casting with an ARIMA model to enable the system to maintain important functional

requirements by knowing when and/or if a requirement will be broken in the near

future. Furthermore, by examining requirements in the SLA, TVA ensures that re-

quirements with higher priorities are addressed first.

2. Concept: Our TVA approach, to the best our knowledge, is the first process that

accounts for tactic volatility. Existing processes merely consider tactics to have static

values, whereas our TVA approach enables the system to better adapt to real-world

tactic volatility through the use of runtime predictions of latency and cost.

3. Experiments: We conducted several experiments using real-world scenarios and

systems that emulate a self-adaptive system to demonstrate the positive impact TVA
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has on the decision making process. These experiments are conducted using real-

world data, thus providing additional confidence in our findings. Furthermore, our

proof-of-concept simulation demonstrates the negative effects of not accounting for

tactic volatility.

4. VALET Tool: Our custom VolAtiLety EmulaTor (VALET) tool includes forms of

tactic volatility data generated from a physical system. The data generated from the

physical system enables the evaluation of our TVA process and provides other re-

searchers with a foundational dataset that they may use to support their own research

in self-adaptive systems and autonomy.

The rest of the paper is organized as follows: Section 3 defines the keywords in our

work using a self-adaptive web service example. Section 4 discusses our proposed tech-

nique using ARIMA and MRA, while also examining the general workflow of our ap-

proach. Section 6 examines the research questions our work addresses, and discusses how

experiments were set up and any analysis tools used. Section 7 and Section 8 discuss the

results from evaluating TVA and its implications on self-adaptive systems. This work is

concluded with details of the proposed VALET tool and limitations/future work ideas that

came out of our work.
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Chapter 2

Related Works

Although our work is, to the best of our knowledge, the first known to make tactic volatility

a first-class concern in the self-adaptive decision-making process, previous works have

examined the impact of tactic latency in self-adaptive systems. Cámara et al.[4] was likely

the first to consider tactic latency and examined how considering latency could be used to

assist the proactive adaptation process. However, this work differs from TVA in that it did

not consider any forms of tactic volatility that tactics are likely to encounter.

In SB-PLA, the latency of an adaptation is considered in the adaptation decision-

making process [26]. A primary benefit of SB-PLA is that systems that cannot used

tactic-based adaptations can still include latency awareness into their decision-making pro-

cess [28]. In addition to supporting pro-activeness and concurrent tactic execution, PLA

techniques also recognizes latency awareness. PLA considers the amount of time neces-

sary for a tactic to execute, in order to avoid situations that are not achievable when time

dimensions are recognized. However, like with many latency aware approaches, it is still

considered to be a static attribute. In our work, we do not consider latency to be static and

provide the system with the ability to predict tactic latency at runtime.

Jamshidi et al.[17] presented FQL4KE, a self-learning fuzzy cloud controller. This

enables systems to not rely upon design-time knowledge, but allows users to simply adjust

weights that represent system priorities. The experimental results found that this process

outperformed a previously devised technique that did not have a learning mechanism. Our

work is similar in that we both utilize learning to enable the system to make better decisions.

However, our work differs in that Jamshidi et al.focused on improving resource planning,
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and not in addressing tactic volatility as is accomplished by TVA.

While our work is the first to account for cost volatility, existing research has accounted

for cost in the self-adaptive decision-making process. While several works have considered

cost in their utility equations, it is still considered to be a static value that does not account

for real-world volatility [31, 27, 28, 30]. Jung et al.[21] demonstrated that ignoring costs

can have a significant impact on the ability to satisfy response-time-based SLAs. This

work also proposed a cost-sensitive self-adaption engine using middleware to create adap-

tation decisions. This work differs from TVA in that cost is addressed in only cloud-based

controllers, while we focus on cost in the entire decision-making process.

Esfahani et al.[9] utilized learning to improve the self-adaptive process. A primary

contribution of this work is a new process of reasoning and assessing adaptation decisions

using online learning. A preliminary work by Elkhodary [16] proposed combining feature-

orientation, learning and dynamic optimization techniques to create a new class of self-

adaptive systems that would be able to modify their adaptation logic at run-time. TVA

differs from this work in that learning is utilized to predict tactic latency and cost at runtime,

while also providing away to estimate future values for requirements.

Kinneer et al.[24] developed a process for reusing prior planning knowledge to help

the system to adapt to unexpected situations. This process considered that tactics mail fail,

and supports reasoning about tactic latency. While this work is helpful for assisting in the

overall planning process, it does not enable the system to actively learn and predict future

values for tactic latency and cost like our TVA approach does.
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Chapter 3

Problem Definition

To define the key concepts and problems addressed in our work, we will use a self-adaptive

web service scenario as our motivating example.

3.1 Monitoring SLA Requirements

To begin our motivating example, we will define what an SLA might look like for a self-

adaptive web service. We will assume that one of the main requirements of this web service

is that “response time is not allowed to, or should not, surpass specific thresholds”. Mean-

ing, when response times surpasses some threshold, the web service is going to experience

some kind of penalty as defined in the SLA [20]. This may come in the form of overloaded

servers or interruptions in loading content causing negative impacts to the user experience.

For this scenario specifically, a basic SLA with requirement (REQ) possessing our arbi-

trarily defined penalties (P ) and rewards (RWD) may be defined as:

SLA =


REQ =response time ≤ 3 seconds

P =3

RWD =10

In real-world systems, however, the system is going to have more than one require-

ment defined for it. Therefore, it is imperative that the system has the ability to know
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what requirements to do address and when to address them. Fortunately, this can be de-

termined by another component of the SLA. By examining the defined reward (RWD) for

requirements, the system is able to know the exact order in which requirements need to be

addressed since (RWD) represents how much “reward” the system gains from maintaining

the requirement. For example, if the web service also had the following requirement where

capacity represents the maximum load for a server:

SLA =


REQ =server loads ≤ .75 ∗ capacity

P =2

RWD =7

and determined that both needed to be addressed, it would first address the response time

issue, and then handle the server load issue since the reward for the former is greater than

that of the latter.

Yet, knowing all of this still does not allow the web-service to properly maintain its

requirements. In order for the web service to do this, we must allow the system to become

“proactive” rather than “reactive”. In many of today’s self-adaptive processes, systems

adapt to surrounding changes in a “reactive” manner. For example, if the web-service was

acting in a reactive manner it would not adapt to broken requirements until they were actu-

ally broken. This inevitably would lead to the system experiencing the penalty defined for

the requirement since it is now broken, possibly leading to further issues within the system.

However, if we provide the web service the ability to know when a requirement may be

broken in the future, the system could adapt and handle this change before it becomes an

issue – thus acting in a “proactive” manner.

3.2 Tactic Latency

The amount of time necessary to complete an implementation of a tactic is known as tactic

latency [5]. Self-adaptive systems must account for tactic latency as accurately as possible
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since it can have a large impact on the decisions the system makes. For example, the

anticipated latency of a tactic can impact the selection of the most appropriate tactic(s) for

an encountered scenario, and when the tactics are invoked to ensure that they are available

when needed [28]. Previous works have shown that latency aware algorithms offer several

advantages compared to those that do not consider latency [4, 28]. However, these same

processes still consider tactic latency to be a predetermined, static value. In reality, these

tactic latency times can be highly volatile due the environments the system is operating in.

Thus, it is imperative that the system has a reliable, accurate way to estimate latency.

Since the success of a web service heavily depends on how network traffic is managed,

whether it be to regulate resource consumption or provide a fluent user experience, dealing

with tactic latency plays a crucial role in maintaining viable operations. For example,

when a web service experiences spikes or elongated times of increased network traffic, it

can account for this in two ways: (I) Reduce the amount of content they are showing to

the user at a time, or (II) adding additional servers to support the increased network traffic.

For the web service, these two options would be considered the available tactics. The

former has negligible latency, but the latency of the latter can be on the order of minutes.

Therefore, if the service determines that more servers are needed to handle the increase in

network traffic, it is imperative that it anticipates this time accurately. For example, the

web service may define that adding a server only takes one minute to become available

(i.e., the static approach to defining tactic latency). Due to this, it may decide that it is

not worth reducing content shown to the user in the mean time. However, if the additional

server suddenly takes four minutes to become available, the system has now found itself

in a no-win scenario. Not only was the static assumption of latency extremely off, but

the system could have already been dealing with the network traffic slightly by reducing

content shown to the user. Therefore, accounting for tactic latency volatility is a paramount

concern.
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3.3 Tactic Cost

To demonstrate the need to account for tactic cost volatility, we will continue to use our

example of the self-adaptive web service. However, in this scenario, we will assume that

the system’s main source of power is through a battery and not direct power through outlets

or other resources.

An extremely common process in web services is the backing up of data by sending it

to servers or logging it internally through their networks. Transmitting this data regularly

to backup servers is crucial for some systems because it may contain user activity, account

info, or person informational that would be detrimental if lost. Since this web service

operates using mostly battery power, the energy cost to perform this action will likely be

a primary concern in deciding when to perform this data transfer process. Furthermore, it

is likely that this will also dictate the frequency of this operation as well. Unfortunately,

the cost for performing this action could be volatile due to numerous reasons. These could

include include erratic hardware behavior (battery or another component not operating at

optimal levels), or the file transfer taking longer than expected (packet loss, adversarial

actions). Since the system’s battery has a finite amount of energy, the relative cost of this

transfer process increases as the battery level decreases.

To demonstrate the deficiency of assuming tactic cost to be a static value, we will as-

sume that the web service initially defined the backup process to have a cost (C) of 5 units.

However, after observing the backup process for a period of time, it was found that cost

behaved quite erratically; returning cost values of C = {10, 2, 7, 12, 15}. This means that

when using a static value, the system could have potentially performed the backup process

while consuming the remaining amount of battery power, thus leading to an overall crash

of the system. Therefore, when cost is a consideration in the decision-making process,

volatility should be a first class-concern.
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Chapter 4

Proposed TVA Process

Our TVA process differs from current techniques in that we do not assume tactic character-

istics to have static values [31, 19, 28]. Specifically, our approach combines a requirements-

monitoring process that uses time-series analysis and a machine-learning model to predict

tactic latency and cost at runtime – allowing the system to have a better understanding of

how its tactics behave regardless of the environments they operate in. In this section, we

describe our TVA approach in the following phases: I) An examination of Autoregres-

sive Integrated Moving Average (ARIMA) models II) How Multiple Regression Analysis

(MRA) is used to predict tactic latency and cost III) Discussing how ARIMA and MRA are

specifically used in the TVA workflow.

4.1 Autoregressive Integrated Moving Average Model

The first component of our TVA work revolves around the ability to monitor requirements.

To do this, TVA conducts time series analysis, which is the examination of data that has

been indexed over a specific period time, at equal intervals, in order to predict potential

future values. For example, recording the outside temperature at the same time everyday so

you could predict the next day’s temperature at that time would qualify as valid time series

analysis. In our TVA approach, we specifically use time series forecasting, which is the

analysis of time series data to predict future values based on old values. Initially, our work

examined the use of a Hidden Markov Model (HMM) to perform time series forecasting.

However, through multiple evaluations of HMM against other types of models, we decided
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it was not appropriate (more details in Section 6). The time series model that we found was

most appropriate for our work and the data we collected, was an Autoregressive Integrated

Moving Average (ARIMA) model – described in this section.

ARIMA is one of the most commonly used approaches for time series modeling [13]. It

is considered to be a generalization of an ARMA (autoregressive moving average) model,

in which both models can be used to fit time series data in order to predict future points

in the series. Specifically, ARIMA is defined by the following three parts (included in its

name):

1. AR - Standing for autoregression, this portion of ARIMA uses a dependent relation-

ship between an observation and some number of lagged observations

2. I - Standing for integrated, this portion of the model represents the use of “differenc-

ing” raw observations to make the time series stationary

3. MA - Standing for moving average, this portion of ARIMA represents the use of

dependencies between an observation and its residual errors from a moving average

model, applied to lagged observations

with the main difference between the two being the inclusion of I in ARIMA. Furthermore,

a full ARIMA treatment also requires the following notation:

ARIMA(p, d, q) (4.1)

where p represents the number of lag observations included in the model, d represents the

degree of differencing (discussed further in this section), and q represents the size of the

moving average window, also known as the order of moving average. Another ARIMA-

like model that was potentially appropriate for our work was seasonal-ARIMA (SARIMA).

SARIMA applies all the same techniques that ARIMA does, but is more robust when deal-

ing with seasonal time series data. However, upon examination of the time series data

collected for this work, we did not find any seasonality within the data.

There are multiple ways in which an ARIMA model can be applied. In this work, we

used the Box-Jenkins approach to find the best fit of a time series model for predicting



13

future values. To properly apply this approach, we must apply the following three compo-

nents/steps of Box-Jenkins:

Identification One of the main reasons ARIMA is more appropriate for our work than

ARMA is that ARMA has a strict assumption that the time series data will always be sta-

tionary – therefore the model is incapable of “identifying” any non-stationary data. When

non-stationary data exists, we must transform it to be stationary. This is done through a

method called differencing, which examines the difference between consecutive observa-

tions. Mathematically, this is shown as:

y′t = yt − yt−1 (4.2)

where yt represents the current observation and yt−1 represents the immediate-prior obser-

vation. Differencing allows the model to remove any changes in the levels of time series

data, thus eliminating trend and seasonality. For some cases, it is possible that differencing

needs to be applied a second time in order to obtain stationary data. If we find this to be

true, we refer to this as second order differencing.

Once we have transformed non-stationary data to stationary data, the next step is to

identify the order of our autoregressive and moving average terms (i.e. p and q). There are

many different approaches to how p and q can be identified, but for this work we used the

classic autocorrelation and partial autocorrelation plots. Both plots allow us to summarize

the correlation of an observation with lagged values, however, the latter does so with lagged

values that are not accounted for by prior lagged observations.

Estimation In order to estimate parameters for Box-Jenkins models, we must apply a solu-

tion that can numerically approximate nonlinear equations. Like the correlation plots, there

are many ways to do this whether it be a nonlinear least squares estimation or a maximum

likelihood estimation. However, the goal here is to minimize a loss or error term, therefore

allowing any predictions that are made to be as accurate as possible. With this reasoning,

our approach uses the preferred maximum likelihood estimate (MLE) method for estimating
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the models parameters.

Model Checking The final step in applying a full treatment of the Box-Jenkins approach

is to perform model checking. Since we have the ability to tweak orders in the ARIMA

model (p and q) it is important that we perform model checking in order to optimize these

parameters. In general, there are two things we want to examine when diagnosing our

model, I) If the model is overfit and II) Residual errors. The former is crucial because it

effects how generalizable our model is to other time series data. Therefore, if the model is

found to be overfit, it most likely means the model is more complex than it needs to be and

steps should be taken to re-fit it. The latter deals with residual errors, i.e., the differences

between experienced values and estimated values. In an ideal model, residuals would re-

semble what is known as “white noise” or more commonly, a Gaussian Distribution. This

means that the average of all the residuals is zero and that the distribution shape of the

variances is symmetrical. Diagnosing residual errors also happens to go hand-in-hand with

any overfitting issues described previously. This is because without the ability to generalize

to other datasets, your model will have large prediction errors. Therefore, if you re-fit the

model to be more generalizable, issues with residual errors will start to resolve themselves.

4.2 Multiple Regression Analysis

The second component of our TVA approach deals with runtime predictions of tactic la-

tency and cost. As discussed previously, current self-adaptive processes consider these

values to be static attributes. In real-world scenarios, this is a highly unlikely phenomena

because certain events have different outcomes depending on the surrounding environment.

For example, a self-driving car may be testing how many feet it takes to stop from 60 mph

when the road is wet and when the road is dry. Intuitively, this will lead to different results

nearly every time. Therefore, the self-driving car must have a way to model it’s surrounding

environment (the weather) so it can accurately plan for how long it will take to stop.

In our work we applied this same ideology to predicting tactic latency and cost. There
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are many different types of regression models, and even machine-learning models that

could be used to do this. Initially, we examined a machine-learning approach called Bayesian

Ridge Regression (BRR) which through a Bayesian process, allows the model to train it-

self over time as more data becomes available. However, for many of the same reasons

we did not move forward with the HMM approach for time series forecasting, we found

that the required feature space for BRR was too large and that the data we collected could

not support it. Therefore, our TVA approach uses Multiple Regression Analysis (MRA) to

support runtime predictions of tactic latency and cost. To explain, let’s consider a classic

regression model:

y(x,w) = w0 +
M−1∑
j=1

wjx
j = w′x (4.3)

where x = (x1, ..., xM)′ with x0 = 1 and xj being the j-th feature of the data point. Given a

set of N training data points (x1, ..., xN) along with the observed responses (t1, ..., tN), we

can solve for the best possible weights of this model through minimizing the error function:

E(w) =
1

2

N∑
n=1

{y(xn, w)− tn} (4.4)

E(w) is a quadratic function of w (the feature weight), which can be conveniently mini-

mized, leading to:

w∗ = (X ′X)−1X ′t (4.5)

where X is the design matrix whose rows correspond to the feature vectors of the data

points and t = (t1, ..., tN)
′ denotes the observed response values of N data points. After

minimizing Equation 4.4, we now have the estimated weights w∗ in Equation 4.5, which

can be used by our regression model to predict tactic latency and cost.

It is important to note that regression analysis estimates the conditional expectation of

the dependent variable, that is, the average value of the dependent variable when the predic-

tor variables are fixed. Other related methods like Necessary Condition Analysis (NCA)
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could be used that would estimate the maximum value of the dependent value based on

fixed independent variables. However, we chose to not use this approach since it would

estimate the maximum latency time based on the predictor variables. We decided that this

was out of scope for our approach since estimating the maximum latency time would be

considered as the worst-case scenario for the tactic, and that this could be more appropri-

ately addressed in future work.

4.3 TVA Workflow

TVA combines an ARIMA time series model with a Multiple Regression Analysis model

to improve the self-adaptive process. In doing this, the system is able to properly maintain

its defined requirements while also handling tactic volatility, leading to better adaptations

and better overall performance. As shown in the pseudo code in Algorithm 1, the workflow

of TVA is reasonably straightforward. The top level definitions under procedure represent

the requirements that are being monitored and any calculations that are made. For instance,

req represents the current requirement that we are analyzing, while resp represents the

response we obtain from performing the actual analysis. Furthermore, the loop of the

workflow represents the body, or core of TVA, where we actually perform our process on

the components defined in procedure.

Algorithm 1 TVA Workflow
1: procedure WORKFLOW

2: req← the requirement to analyze
3: resp← quantified response from ARIMA analysis
4: loop:
5: resp = analyzeRequirement(req)

6: if resp is potentiallyBroken then
7: makeLatencyEstimate()

8: makeCostEstimate()

9: goto loop

Now that we have examined the specifics of how our TVA implementation works with
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both ARIMA and MRA, let’s look at a concrete example that examines the two main steps

of our TVA process as shown in the pseudo code. For this, we will continue to use the

self-adaptive web service example mentioned previously in Section 3.1.

Figure 4.1: Self-Adaptive Web Service Recording Response Time Every 6 Seconds

Step 1: Monitoring Requirements

The first step in our TVA approach is to gather and monitor the requirements defined in

the SLA. For this, let’s consider a self-adaptive web service that has been configured to

record response time every X seconds, or six seconds as in our case shown in Figure 4.1.

If the system has an SLA requirement that states, “response time should remain below

a 0.7 second threshold” (denoted by the black horizontal line), we must have a way to

know when the threshold will be surpassed. Unfortunately, if we were using the majority

of current self-adaptive processes that act in a “reactive manner”, the system would not

adapt to a surpassed threshold until it is actually broken. This is not an appropriate way to

handle requirements, as the system is essentially configured to ignore problems until they

become problems. Therefore, we want to transition the system from a “reactive” state to a

“proactive” state by applying the time series ARIMA model discussed in this section.

Once we have analyzed a requirement with the ARIMA model approach, (Algorithm 1,
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Line 5), the anticipated future value for that requirement is returned. For example, in the

self-adaptive web service when the response time requirement is analyzed with ARIMA,

the “response” is the forecasted value for response time. Since we are dealing with predic-

tions and not explicitly known values, it is also possible that if the predicted value is within

a certain range of the requirement threshold, the system could still choose to adapt. Re-

gardless, by allowing the system to act in a proactive manner it is clear how requirements

can be more appropriately monitored and maintained. Therefore, if the analysis determines

that the requirement may be broken in the future or is close enough to being broken, we

continue with the rest of our TVA approach.

Step 2: Tactic Latency and Cost Prediction

When the system has found itself in a scenario where it needs to adapt, whether it be

because a requirement will or may be broken, our approach then uses regression analysis

to predict tactic latency and tactic cost to aid the decision-making process. For example,

if our ARIMA analysis from step 1 determines that the self-adaptive web service needs to

adapt, our TVA approach then predicts tactic latency and cost for all available adaptation

tactics. This could mean predicting how long and how much it would cost to activate some

other kind of additional computing resources so response time could be lowered (additional

servers etc.). We are able to make these predictions by implementing a Multiple Regression

Analysis (MRA) model. The benefit of strictly looking at predicting tactic latency and

tactic cost is that this can be easily adopted into many decision-making process that already

exist. For example, self-adaptive systems have many different ways of deciding what they

should do when it comes time to adapt. Some may simply select the tactic with the shortest

latency, or others might build out a decision tree based on multiple tactics. However, the

two driving forces of these decision-making processes are typically tactic latency and tactic

cost. Therefore, our approach allows for more informed input into the decision-making

process, thus leading to better decisions by the system.
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Chapter 5

VALET Tool

Further contributions of this work include the development of the VolAtiLity EmulaTor

(VALET) tool to generate real-world tactic volatility data to enable the evaluation of our

TVA process. While existing datasets such as ‘The Internet Traffic Archive’[1] are com-

monly used when evaluating self-adaptive processes [11, 6], these are limited as they do

not contain an adequate amount of tactic volatility necessary to evaluate our work. To cre-

ate a sufficient dataset to demonstrate the benefits of TVA, our VALET tool provides tactic

volatility data in the form of latency and cost.

To gather data for our current and future work, VALET is comprised of two compo-

nents: the Raspberry Pi 3 experiments and what we call the “grepping” experiments. In

both these components, we were able to obtain both tactic latency and cost data that ex-

perienced volatility. Specifically, tactic latency within VALET was recorded as the time it

took from when the initiating command was executed, until the operation was fully com-

pleted. To determine the cost (energy usage) of the experiments, we recorded the energy

units used in order to perform the necessary operation. We will first discuss in detail how

the Raspberry Pi experiments are conducted in VALET.

The first experimental component of VALET deals with two physical Raspberry Pi de-

vices, with one Pi acting as the operator and the other as the measurement instrument.

Within the operating device is how we gathered tactic latency data. For this, the Raspberry

Pi downloaded an identical 75 MB file at one minute intervals from three different down-

load mirrors across the world and recorded how long it took each time. This is what we

refer to as the ”operation” in these experiments. Although it recorded a substantial amount
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of tactic latency data for our evaluation process, it too provided tactic cost data; which was

it’s biggest contribution. Since the Raspberry Pi also required energy for normal system

operations in addition to the specific tactic operations being measured, we had to use a

multi-device configuration for our evaluations. Mainly, this was done because it enabled

us to limit any impact that concurrent processes might have on the defined processes, thus

supporting collected metrics to more accurately reflect those caused by the tactics. Fur-

thermore, this configuration enabled us to easily record the energy usage required for each

operation. To determine actual energy usage from performing the operation, we took the

average usage for the Raspberry Pi when it was performing the operation compared to when

the Raspberry Pi was idle. This was all done by the ”monitoring” device, as it collected

and monitored the operating device while it performed the operation.

The second kind of experiments we performed in VALET were the grepping experi-

ments, which obtained tactic latency data through a different kind of file download process

compared to the Raspberry Pi. With these experiments, we downloaded an identical zip

file from three different locations across the world. Those are: United States (Boston, MA

area), Canada (Toronto, ON area), and Germany (area unknown). We then performed a

search on the contents for specific keywords to simulate the idea of not only having to

gather more information, but to also search for the information that you need. Overall,

we performed this operation at one minute intervals over the course of an entire day. This

created over 1,500 records of tactic latency data. The specific details of this process are

detailed below:

1. Download/Unzipping File: The initial step is to repeatedly download and unzip an

identical file from several servers located around the world. Performing this action

on several locations introduces real-world volatility into our dataset, a necessity for

our evaluation of TVA. This volatility may be caused by numerous factors including

server availability, network congestion, and internet speeds.

2. File Contents Search: After the file is unzipped, a simple grep command searched

the extracted contents for a specific string. This task was performed since it emulates
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not only a system having to gather data, but also searching for the specific data it

needs.

3. Recording Latency: We considered latency to be the time it took to download the

file, unzip it, and search its contents.

Figure 5.1 represents a portion of the time series data gathered from our experiments,

and also visualizes the volatile latency values that we obtained. As shown, the latency times

gathered from Germany were quite volatile, with some spikes in volatility in Massachusetts

and Ontario download times. This was essential for our evaluation because it enabled us to

stress test our process and further evaluate the robustness of our TVA approach.

Figure 5.1: 9-Hour+ Snippet of Latency Data

Although the steps that VALET took to gather data seem rather intuitive, they were

vitally important for our evaluation process. This is because they emulate realistic, usable

adaption scenarios in real-world self-adaptive systems. For example, searching for specific

information could represent the the self-adaptive web service example querying for user
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account info, other types of content to show, and any other scenarios where it has to “look”

for something to aid the self-adaptive process. Furthermore, since these operations are

being performed using actual servers over the internet, this helped us to create unpredictable

real-world latency volatility, as the time it takes to download a file over the internet can

depend heavily on factors out of the systems control.
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Chapter 6

Evaluation

To systematically evaluate TVA, we conducted multiple experiments that emulated real-

world adaptation scenarios. In doing this, we were able to gather real-world data with

real-world volatility. Furthermore, this means our evaluation and conclusions/analysis are

not based on theoretical data, providing our work with a much more robust evaluation

process. In this evaluation of TVA, addressed the following research questions:

RQ 1. How does not accounting for tactic volatility affect the decision-making

process? Using the statistical tool R, we demonstrate the negative impact of not

accounting for tactic latency and tactic cost on the self-adaptive process. To accom-

plish this, we simulated a scenario where tactics did not behave consistently and the

system did not have the ability to predict how each tactic would behave.

RQ 2. How effective is ARIMA in allowing the system to monitor system require-

ments? In our experiments involving time series analysis, we demonstrate that us-

ing time series forecasting with ARIMA helps the system to become more proactive

in maintaining requirements defined in the SLA. To accomplish this, we examined

the time series data that was collected and ARIMA’s ability to predict future values.

RQ 3. How effective is MRA in predicting tactic latency and cost at run-time?

In evaluating our regression model, we demonstrate that strong predictive power

exists throughout our experiments when estimating tactic latency and tactic cost,

even when faced with varying amounts of volatility in the gathered data. We also

show that this predictive power remains when there exists little to no volatility.
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RQ 4. Does using TVA provide substantial improvement to the self-adaptive pro-

cess over simply using static values for latency and cost? In comparing our ap-

proach against existing self-adaptive approaches, such as those that consider tactics

to have static latency and cost values, we demonstrate the substantial improvement

to the decision-making process that our TVA process provides.

6.1 Experimental Design

To thoroughly evaluate TVA, we created an experimental process that enabled us to gather

real-world tactic latency and cost, while also experiencing real-world volatility. Further-

more, to automate and enhance these experiments, we created the previously discussed tool

VALET. This allowed us to modify and develop these experiments with relative ease and

make the data it collects available for future research. To reiterate, the data used for the

evaluation of TVA was collected through the following two experiments in VALET:

Raspberry Pi Experiments

The first way we gathered real-world data was through a two-day Raspberry Pi experiment.

In this experiment, we downloaded an identical file at one minute intervals from three

different download mirrors across the world and considered the latency of this action to

be how long it took the file to successfully download. Not only were we able to collect

tactic latency data in these experiments, but also equal amounts of tactic cost data. In self-

adaptive systems the cost of executing a tactic can be of significant concern to the decision-

making process, thus playing a crucial role in the adaptation process. Furthermore, just

like latency, it too can also experience volatility in real-world systems. Therefore, these

experiments were of equal value to our work as those performed for obtaining latency data.



25

Grepping Experiments

The second way we gathered data with VALET was through a one-day experiment that

created over 1,500 records of tactic latency data for our evaluation of TVA. In these exper-

iments, we again used three different download mirrors from across the world (Germany,

Ontario, United States). However, instead of downloading a single file, we downloaded a

ZIP. Furthermore, we also searched it’s contents for specific keywords to emulate a tactic

that gathers information from an outside source and then searches for the specific pieces of

information it needs.

6.2 Experimental Data Analysis

To analyze the results found from our experiments, we used the statistical tests of Root

Mean Square Error (RMSE) and Mean Absolute Error (MAE) to evaluate the systematic

benefits of our TVA approach. These tests allowed us to determine TVA’s ability to re-

duce uncertainty and increase the effectiveness of the decision-making process through

prediction accuracy of our time series and machine learning models. The methods used are

discussed in this section.

Root Mean Squared Error

To analyze and further quantify the results found from our experiments, we used the Root

Mean Squared Error (RMSE) statistic as a measure of predictive power. Specifically, we

used RMSE to quantify prediction error within our response variables, since RMSE puts

more weight on larger prediction errors, while also making smaller prediction errors even

smaller. RMSE also quantifies this error regardless of the error being in a positive or

negative direction.

RMSE = [
N∑
i=1

(yi − ti)
2/N ]1/2 (6.1)
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As shown in Equation 6.1, RMSE represents the quadratic mean of the differences

between the estimated values and observed values, or the residuals, across multiple testing

data points. It serves to aggregate the magnitudes of prediction errors, so the resulting

values can be used as a measure of predictive power. Possible values for RMSE range from

0−∞ due to the squared summing of residuals. Therefore, in our analysis, we use RMSE

to concretely tell us how our models perform in terms of predictive ability.

Mean Absolute Error (MAE)

The final analysis method we used in evaluating our approach is Mean Absolute Error

(MAE). Like RMSE, MAE can be used as another measure of predictive power. How-

ever, the main difference in these tests is that MAE examines the average absolute error,

suggested by its name.

MAE =

n∑
i=1

|yi − xi|

n
(6.2)

As shown in Equation 6.2, we can see the main difference between it and RMSE. Where

RMSE would take the squared sum of differences over a dataset to determine prediction

accuracy, MAE looks at the absolute value of these differences. Furthermore, MAE is

much more commonly used when looking at forecasting errors in time series analysis [15].

Therefore, we use MAE as our measure of prediction accuracy when examining forecasting

errors within our ARIMA model.
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Chapter 7

Results

The results from evaluating our proposed TVA approach are the following:

RQ 1: How does not accounting for tactic volatility effect the decision-making pro-

cess?

We first explored how not accounting for tactic volatility can negatively impact the self-

adaptive system. This was accomplished by performing a proof of concept evaluation using

the statistical tool R, in which we emulated the negative effects of poor decision-making by

a self-adaptive system. We began by defining two tactics that had arbitrary costs associated

with their latency times. Meaning, so long as the tactic took X amount of time to execute,

it cost the system C units of cost. For these simulations, the “cost” values can represent the

same resources mentioned throughout this work that a self-adaptive system may consume

during tactic execution. For example, the cost of executing a tactic may be the consumption

of a certain amount of RAM, which may end up slowing other processes running in the

system.

Table 7.1: Characteristics of Sample Tactics for Proof of Concept Simulation

Cost Distribution Average SD

Tactic A 5 Positively Skewed 3 0.5
Tactic B 7 Normal 3 0.5

We next generated a normal distribution and positively skewed distribution with the

same mean and standard deviation to represent latency times. We gave the tactic with the
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higher cost the normal distribution, while the tactic with the lower cost was given the pos-

itively skewed distribution. By using two divergent values, we are able to demonstrate

the impact of not accounting for tactic volatility in a near-perfect environment (the normal

distribution) and in a volatile environment (the positively skewed distribution). It is possi-

ble, however, that both tactic latency and cost do not follow either a normal distribution or

skewed distribution, but because these distributions are two extremes, it was sufficient for

our proof of concept simulations. Table 7.1 shows the characteristics of each tactic.
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Figure 7.1: Overall Costs of Executing a Tactic in R Simulations

After generating the characteristics of each tactic, we then performed 100 simulations

of random sampling from each tactic’s latency and multiplied the sampled latency value by

its associated cost. This enabled us to build a simulated distribution of “tactic executions”,

where the same tactic is executed every time, but the latency times differ. This also allowed

us to gather overall cost values that could be used to compare how varying data distributions

can effect the predictability of cost for executing a tactic without accounting for any form

of volatility.

In our analysis, we found that tactic B may not have had the lowest cost values in the

simulations, but it was significantly more consistent (Figure 7.1). However, tactic B’s data
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followed a normal distribution, which is highly unlikely occurrence for real-world systems.

Furthermore, even though tactic A had a lower cost of execution with a value of five, it

resulted in much more sporadic, and extremely high, overall costs to the system.

Outcome: Our proof of concept simulations in R were able to successfully demonstrate

that accounting for tactic volatility is essential in self-adaptive systems, especially when

the system is known to have unpredictable behavior.

RQ 2: How effective is ARIMA in allowing the system to monitor system require-

ments?

To evaluate our ARIMA model for time-series forecasting, we used the energy data

collected from the Raspberry Pi experiments. Although we had been using a self-adaptive

web service as an example in this paper, specifically one that monitored response time,

the energy usage data is of the same concept. For both, data is gathered over a period of

time at equal intervals, thus qualifying it as time-series data. However, the only difference

with this analysis is that we did not consider the energy usage when the Raspberry Pi was

downloading the file. Therefore, the data used in this research question is strictly the energy

usage fluctuations when the device was idle and not downloading the file.

To specifically address this research question, we had to loop through the data multiple

times to ensure that ARIMA could provide sustainable time-series forecasting predictions.

We did this by setting up 50 experiments using a randomly selected 90% portion of our data

as training data, and the other 10% as test data. This type of process can also be seen as a

form of k-cross validation, which ensures that each data point is included in the training set

atleast once. After performing this validation, we then calculated both RMSE and MAE

values to determine the predictive ability of the ARIMA model.

Shown in Figure 7.2 are the MAE results from our ARIMA model compared to our

initial Hidden Markov Model. As shown, using an ARIMA model on the time series data

that we gathered was not only successful by itself, but also better than that of the HMM

model. We believe this occurred since the data we collected does not allow for a full

treatment of a Hidden Markov Model to be properly implemented. Meaning, we did not
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Figure 7.2: MAE Values Over 50 Experiments Using ARIMA vs HMM for Time Series
Forecasting

have enough features in our model to obtain the full capabilities of HMM.

Since each experiment in our evaluation is independent from the others, no patterns

should be inferred nor concluded from the graph. For example, from roughly simulation

20 to 40 the MAE values for the HMM model form a near horizontal line. However, this

does not mean there are any underlying reasons for this. The same 50 experiments could

be run again and the shape of the graph could look entirely different. What we care about

most in the graph is how wide the “spread” of these MAE values are, as this tells us how

stable our predictions were. Over the course of the experiments in Figure 7.2 we saw

fairly stable MAE values, represented by the small range between the lowest MAE value

and the highest. Furthermore, not only were MAE values consistent but they were also

considerably low. Therefore, this tells us that the predictive ability of our model was both

strong and consistent across all the data we gathered.

As discussed previously, when using RMSE, larger prediction errors will become “larger”

and smaller prediction errors will become “smaller” – a result of the squared term. Due to

this, we would expect the RMSE graph to be a little more spread out compared to the MAE

graph. In examining the RMSE differences between HMM and ARIMA, our findings were
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Figure 7.3: RMSE Values Over 50 Experiments Using ARIMA vs HMM for Time Series
Forecasting

exactly this. As expected, ARIMA still had lower RMSE values than the HMM model.

Furthermore, looking at Figure 7.3 closely, we can see how the RMSE values have a wider

spread than the MAE values reported in Figure 7.2. However, this does not mean there was

less predictive power or that the model is less useful. The reason we report on both is to

show the differences in possible inferences. For example, in applying our TVA technique

the system’s engineers may care more about larger prediction errors. Therefore, they may

deem RMSE a more powerful statistic for determining predictive ability of the model. On

the other hand, if the system’s engineers want more of a “man-in-the-middle” statistic, they

may deem MAE more appropriate. For our experiments, using RMSE or MAE would lead

to the same conclusion – both statistics clearly favor the ARIMA model over the HMM

model for time series forecasting.

Outcome: Through an evaluation process that examined time series data, TVA demon-

strated it’s ability to allow for proactive adaptations. TVA accomplishes this by applying

an ARIMA time series model to predict future values for requirements, thus allowing the

system to start adapting before they may become broken.

RQ 3: How effective is MRA in predicting tactic latency and cost at run-time?
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Unpredictability is considered to be an undesirable trait of a self-adaptive system and

is frequently associated with much of the uncertainty that surrounds self-adaptive sys-

tems [33, 37, 23, 8]. To determine how well TVA can improve the predictability of a

self-adaptive system, we examined the prediction errors across our tactic latency data and

our tactic cost data. For space considerations and the belief that RMSE is more appropriate,

this research question does not report both RMSE and MAE values.

Unlike Research Question #2, where we only examined the energy usage for when the

Raspberry Pi was idle, this research question looked only at the energy usage when the

device was performing the file download. Had we used the energy usage data from when

the device was idle, our models would have been invalid. This is because the file download

represented a tactic of gathering more information, thus any energy data gathered while the

device was idle did not represent tactic latency.

0 10 20 30 40 50
−0.1

0

0.1

0.2

Simulation N

R
M

SE
Va

lu
e

BRR
MRA

Figure 7.4: RMSE Values for Tactic Cost Predictions of MRA vs BRR

As demonstrated in Figure 7.4, we can see why MRA was more appropriate for TVA.

Over the course of the 50 simulations, MRA reported lower RMSE values than BRR in

almost every case. In cases where BRR did outperform MRA, the differences were fairly

negligible. However, the plots are closer together than what we would have initially ex-

pected. We believe this was caused by only having a few cases of extreme volatility in the
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cost data, therefore not allowing the two models to really differentiate themselves.
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Figure 7.5: RMSE Values for Tactic Latency Predictions of MRA vs BRR

As demonstrated in Figure 7.5, we saw very similar results between the RMSE values

calculated for tactic latency predictions and those calculated for tactic cost predictions.

In most cases, prediction errors with MRA were much smaller than those of BRR and

in examining the figures closely, the differences in volatility that were experienced can

be seen. As mentioned, there were not as many extreme cases of volatility in the tactic

cost data. However, within the tactic latency data we saw many cases of volatility, with

some cases being extreme (Figure 5.1). This can partially be seen in Figure 7.5 since more

volatility will likely lead to larger prediction errors. Thus, it came at no surprise that the

RMSE values for tactic latency had a wider-spread than those associated with tactic cost.

In order to say that MRA may be generalizable to other types of data sets, seeing con-

sistent RMSE values regardless of the data it was modeling was imperative. Represented

in both Figure 7.4 and Figure 7.5, we can see that not only were RMSE values on the lower

side for both data sets, but the values were consistent. Therefore, MRA was able to handle

both the volatile latency data and cost data collected for these experiments.

Outcome: The RMSE results gathered from addressing this research question demon-

strate that MRA is able to handle tactic volatility when predicting tactic latency and cost.
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Throughout our experiments, MRA consistently provided stable predictive power, even in

the presence of volatile data.

RQ 4: Does using TVA provide substantial improvement to the self-adaptive process

over simply using static values for latency and cost?

We have thus far demonstrated both the benefits and predictive ability of using an

ARIMA time series model and a MRA model in a self-adaptive process. However, to

provide further confidence in our TVA approach, we also compared it to the current self-

adaptive processes in order to determine its concrete benefit. Since current processes con-

sider tactic latency and cost to be static values, there is no one specific work that TVA

can be compared to. Rather, for this research question, we compared the results from our

approach to what we consider the “baseline” model defined below:

Baseline Model: a model that uses a simple average of previous tactic latency and

cost values as it’s prediction process for estimating future tactic behavior

Although looking at the average for previous latency and cost values may seem like a

naive comparison, this provides us with a better comparison than using a static value like

current self-adaptive processes. This is because doing something as simple as taking the

average of a given set of latency values can provide more predictive ability and informa-

tion than considering latency to be a static value for every execution. This also takes out

any ambiguity or subjectivity in defining what the static value should be for comparison.

Therefore, comparing our TVA process to taking the average of previous values is appro-

priate for evaluation purposes. As with Research Question #2, we also report both MAE

and RMSE values for model comparison.

As shown in Figure 7.6, TVA was able to substantially outperform the baseline ap-

proach. In comparison, TVA had an average RMSE value of 0.0396 while the baseline

approach had an average RMSE value of 0.0694. Also represented in this diagram is the

ability of TVA to handle volatility. While the spread of RMSE values stayed fairly consis-

tent for TVA, the baseline approach saw a much wider spread; a direct result of only using
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Figure 7.6: Baseline Value Approach vs TVA - RMSE Differences

a static value for latency and cost. Although there were cases where the baseline approach

did outperform TVA (seven in total out of 50 experiments), the differences in these values

were fairly negligible.
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Figure 7.7: Baseline Value Approach vs TVA - MAE Differences

In examining the MAE values shown in Figure 7.7, we found that MAE was not as much

of a “man-in-the-middle” result as we would have expected. In Research Question #2, it is

fairly evident that RMSE made larger prediction errors larger, and smaller errors smaller.



36

However, in this research question, those kinds of results are not as evident. Looking at

the MAE values from TVA, we can see the plot is a bit more condensed than then RMSE

plot, but the MAE values for the baseline model did not follow the same trend as strongly.

We believe this happened because the baseline model’s prediction method mentioned pre-

viously was extremely poor, justified by both the RMSE and MAE plots. Regardless, TVA

was still superior in predictive ability compared to the baseline model.

Outcome: Not only do these findings show that TVA is beneficial for decision-making pro-

cesses in self-adaptive systems, but that it is significantly more useful than assuming tactic

latency and tactic cost to be static values. TVA accomplishes this through a combination of

time series forecasting with ARIMA and a MRA-based prediction model for tactic latency

and cost.
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Chapter 8

Discussion

Building off of the results discussed in Chapter 7, not only can our work be summarized

with the following two categories, but so can its benefit for future research and development

in self-adaptive systems.

Predictable Behavior

Being able to accurately estimate how tactics are going to behave is crucial for the decision-

making process. Without this ability, self-adaptive systems could behave erratically possi-

bly leading to the wrong tactics being executed. However, being able to accurately estimate

how a tactic is going to behave is much more than simply monitoring previous tactic la-

tency and cost values. For example, a self-adaptive web service could monitor ten response

time values and then make a prediction of what the next value is going to be. Yet, if the

prediction mechanism is something as simple as taking the average of the previous values,

it is likely that there will be significant error in the estimate. Thus, it is imperative that

we give self-adaptive systems the ability to model its surrounding environment. Not only

will this allow the system to more accurately estimate tactic latency and tactic cost, but it

also provides a “hands-free approach” since these kinds of models can train themselves.

This means that so long as a system records and stores data for the model to build from,

there is no human intervention required to update the model periodically. In our work, we

were able to demonstrate this through the use of Multiple Regression Analysis, a regression

model that proved it was capable of predicting tactic latency and cost values, but was also

able to handle volatility that existed within previously experienced data.
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Reliability

For self-adaptive systems that are driven by their requirements, the decision-making pro-

cess must be tailored to them. Otherwise, the system will continue to experience less than

optimal performance by infrequently addressing the most important requirements of the

system. For some systems, maintaining these requirements may be fairly intuitive because

some may depend on others. For example, in the self-adaptive web service there could be

the aforementioned requirement that states that response time is not allowed to go over a

certain threshold, along with one that states that 90% of available content must be shown

to the user at all times. In reality, if content levels were dropping below 90% due to re-

sponse time issues from the system’s servers, the service would address the response time

requirement first. Then, if there are still problems with the levels of content being shown

to the user, the system could perform further adaptions to maintain the required 90% level

of content. However, for systems where maintaining requirements is not as intuitive as this

example, being able to appropriately prioritize, monitor, and analyze them becomes that

much more imperative.

Fortunately, prioritizing requirements can be done through the system’s SLA, where

the system’s engineers can clearly define what requirements have priority over others. Fur-

thermore, monitoring and analyzing these requirements can be done through time series

forecasting, as monitoring certain values over a period of time results directly in the collec-

tion of valid time series data.

In our work, we demonstrated the need for tailoring decision-making processes to the

requirements defined in the SLA by including time-series forecasting (ARIMA model)

in our approach. By doing this, we were able to show that by accurately knowing the

potential future values for requirements defined in the system, the system is able to make

more informed adaptations. Furthermore, because this prediction is done with time series

forecasting, i.e., the predicted value is in some determined time interval T in the future,

it also allows the system to become more proactive, instead of reactive when monitoring

requirements. For example, a web service that is reactive would recognize that response



39

time is over a certain threshold as it happens and adapt accordingly. However, a web service

that acts more proactively through the use of an ARIMA model as done in this work, has

the ability to start adapting before response time actually becomes an issue/surpasses a

threshold. Thus, the gives the system even more of an ability to make more informed

decisions and perform more reliable adaptations.

From evaluating our work through different types of experiments and varying real-

world datasets, we have shown that TVA can significantly improve the decision-making

processes of a self-adaptive system. Additionally, these improvements are capable of re-

ducing any uncertainty that may exist, which has already been shown to be detrimental

[3, 29, 10]. Therefore, this has significant implications for both researchers and develop-

ers in the realm of self-adaptive systems. As improvements of predictable behaviour and

reliability become more necessary, we believe our work provides a solid foundation and

solution to the limitations that exist in current self-adaptive system processes.
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Chapter 9

Limitations and Future Work

Our evaluations have demonstrated TVA’s ability to enable systems to better account for

tactic volatility. However, there are limitations to this work. In the initial phases of in-

corporating our TVA approach, using machine learning models may not be of substantial

improvement over current processes. This is due to the fact that machine learning depends

heavily on the existence of data. Therefore, tactic attributes may still be predetermined

due to a lack of prior data to consider. Additionally, observing tactic volatility will not be

practical for addressing several types of infrequently utilized tactics. For example, tactics

that execute infrequently will not have adequate data available for machine learning pre-

diction models. This means that traditional processes will still be necessary due to a lack

of relevant available data.

In many systems, tactic cost may be an ambiguous and tough-to-define measure. This

inability to accurately measure cost could inhibit the adoption of our process by limiting

the quality and quantity of observed input values into our prediction process. Furthermore,

cost can also be a relative term, and in our TVA approach we consider it to be a quantifiable

value. For example, one could argue that the ‘cost’ for performing an action could be

the wear and tear on the physical in the device. Such a cost is hard to quantify in most

situations. Therefore, using TVA the notion of cost must be limited to a value that is

reasonably easy to quantify.

Although TVA provides a way of monitoring requirements defined in the SLA for self-

adaptive systems, not all requirements are necessarily measurable with time-series analysis.

For example, a system may have the requirement that it must be available 99.99% of the



41

time. This is not something that could be measured or predicted with time-series analysis,

rather it would have to be handled through fault detection techniques in the systems archi-

tecture. Therefore, adopting our TVA process would mean taking into consideration that

requirements monitoring with TVA must be of time-series form.

To be completely proactive, future work must be done to update our ARIMA method

to consider tactic latency. Currently, this process can alert the system of requirement that is

about to be broken, however the time between monitoring intervals may not leave enough

time to fully execute a tactic. Therefore, there may be occurrences where requirements are

slightly broken for a period of time. This future work will likely examine other time series

models as well that can be flexible to different systems and datasets. This in turn would

also help us to start addressing the problem of not having enough data to build other kinds

of models and would allow this work to develop into an entire decision-making framework.

Tactic-based decisions frequently do not occur independently from other tactics. Often,

tactics occur simultaneously with other tactics and this may impact other tactic-based de-

cisions [28, 30]. Future work should be done to examine how poor tactic-based decisions

due to tactic volatility can affect both subsequent and concurrent tactic-based decisions.

These results have the possibility of further demonstrating the importance of considering

tactic volatility in the decision-making process.

Although we have demonstrated the benefits of our TVA approach with real-world ex-

perimental data, we have yet to implement it into any physical devices. This is separate

from using physical devices to collect data, however. Future work will consist of including

our adaptation process into physical equipment such as IoT devices, small unmanned aerial

vehicles (UAV), and self-adaptive web services.

ARIMA demonstrated its ability to perform time series forecasting, however, no mech-

anisms are in place to quantify any uncertainty within these predictions. Future work could

be done to include confidence intervals around predictions made by ARIMA. For exam-

ple, instead of just predicting a single point value for a requirement, we could predict a

range that states something like the following, “we are 95% certain response time will be
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between 3.1 and 3.7 seconds”. This would allow the system to have a “buffer” zone around

it’s predictions, therefore providing the decision-making process with more information.

Now that we have shown the benefits of not using static values for tactic latency and

cost, future work must be done to compare TVA to more machine-learning and time-series

forecasting models. In this investigation some of the important factors to examine may

be: computing resources (as more complex machine-learning models will tend to require

more computational resources) and models that perform well regardless of the availability

of data. Furthermore, examining the use of time series models that have ”longer memory”

should also be examined to determine the concrete differences between the two and their

possible uses in self-adaptive systems.
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Chapter 10

Conclusion

In this work, we proposed a Tactic Volatility Aware (TVA) process that is able to account

for tactic volatility in multiple ways. TVA first uses time-series forecasting to monitor

system requirements, ensuring that the system can be proactive when adapting to its en-

vironment while maintaining it’s most important requirements defined in the SLA. Next,

TVA uses regression analysis to predict tactic latency and tactic cost at run-time helping to

improve the decision-making process of the system. As the world begins to use more and

more autonomous systems everyday, addressing tactic volatility must become a first-class

concern. Without this ability, systems will not be able to perform at their peaks, possibly

resulting in severe consequences.
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