
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-2019 

A Low-Cost Search-and-Rescue Drone Platform A Low-Cost Search-and-Rescue Drone Platform 

Jonathan McClure 
jmm3848@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
McClure, Jonathan, "A Low-Cost Search-and-Rescue Drone Platform" (2019). Thesis. Rochester Institute 
of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10076?utm_source=repository.rit.edu%2Ftheses%2F10076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


A Low-Cost Search-and-Rescue Drone Platform

by

Jonathan McClure

A thesis submitted in partial fulfillment of the requirements for the
Degree of Master of Science in Electrical Engineering

Supervised by

Professor Dr. Ferat Sahin

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York

May 2019

Approved by:

Dr. Ferat Sahin, Thesis Advisor Date

Professor, Department of Electrical and Microelectronic Engineering

Dr. Raymond Ptucha, Committee Member Date

Assistant Professor, Department of Computer Engineering

Dr. Sohail Dianat, Committee Member Date

Department Head, Department of Electrical and Microelectronic Engineering

Dr. Sohail Dianat, Department Head Date

Department Head, Department of Electrical and Microelectronic Engineering

i



Acknowledgments

I would like to thank Dr. Ferat Sahin for serving as advisor. Without

his support and guidance, this project would never have gotten off the ground.

I would also like to thank the members of the Multi-Agent Biorobotics

Lab research group, especially Celal Savur, Shitij Kumar, and Anmol Modur,

for their helpful feedback and advice. I am also grateful to Caleb Guillaume,

Aaron Reckless, Chris Ugras, and Matthew Williams for their assistance with

the testing process.

Finally, I would like to thank my family and friends for their enduring

support and encouragement.

ii



Dedication

This thesis is dedicated to my parents. Thank you for all of your love and

support, and for teaching me the value of hard work and perseverance.

iii



Abstract

A Low-Cost Search-and-Rescue Drone Platform

Jonathan McClure

Supervising Professor: Dr. Ferat Sahin

In this work, an unmanned aerial system is implemented to search an

outdoor area for an injured or missing person (subject) without requiring

a connection to a ground operator or control station. The system detects

subjects using exclusively on-board hardware as it traverses a predefined search

path, with each implementation envisioned as a single element of a larger

swarm of identical search drones. To increase the affordability of such a swarm,

the system cost per drone serves as a primary constraint. Imagery is streamed

from a camera to an Odroid single-board computer, which prepares the data

for inference by a Neural Compute Stick vision accelerator. A single-class

TinyYolo network, trained on the Okutama-Action dataset and an original

Albatross dataset, is utilized to detect subjects in the prepared frames. The

final network achieves 7.6 FPS in the field (8.64 FPS on the bench) with an

800x480 input resolution. The detection apparatus is mounted on a drone and

field tests validate the system feasibility and efficacy.

iv



List of Contributions

• Assembly of a drone capable of autonomous flight and identification of

persons on the ground, at a total cost less than the market entry price

for conventional search-and-rescue drones.

• Implementation of entirely onboard, on-the-edge inferencing at data

rates and resolutions beyond those of comparable systems.

• Creation and labelling of a custom dataset for identification of subjects

in high-angle aerial photography.

• Successful field tests showing system capability of entirely autonomous

detection of missing persons.

• J. McClure, F. Sahin, ”A Low-Cost Search-and-Rescue Drone for Near

Real-Time Detection of Missing Persons,” System of Systems Engineer-

ing (SoSE), 14th International Conference on, 2019. Accepted for pub-

lication.

v



Contents

1 Introduction 1

2 Related Works 3

3 System Hardware 6
3.1 Drone Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Hardware for Onboard Detection of Subjects . . . . . . . . . . 17
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 System Software 24
4.1 SAR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 SAR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 SAR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results 33
5.1 Bench Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Off-the-shelf model performance . . . . . . . . . . . . . 33
5.1.2 Custom Model Performance . . . . . . . . . . . . . . . . 34

5.2 Field Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.1 SAR1 flight tests . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 SAR2 flight tests . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Final flight tests . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusions 46

7 Future Work 49

vi



List of Figures

3.1 Motor and ESC . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Power diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Onboard power circuitry . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Teensy wiring diagrams . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Teensy implementation . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Flight Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 3D Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Complete drone (side view) . . . . . . . . . . . . . . . . . . . . 17
3.10 Odroid and NCS . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11 GoPro mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Complete system (top view) . . . . . . . . . . . . . . . . . . . . 21
3.13 Complete system (side view) . . . . . . . . . . . . . . . . . . . 22

4.1 Initial SAR1 code FSM . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Non-threaded vs threaded architecture . . . . . . . . . . . . . . 26
4.3 SAR2 code FSM . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 SAR2 flashing window method . . . . . . . . . . . . . . . . . . 28
4.5 SAR3 code FSM . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Select images from training dataset . . . . . . . . . . . . . . . . 31

5.1 Mission waypoints assigned for field testing . . . . . . . . . . . 35
5.2 Results from Solo flight of SAR1 test flights . . . . . . . . . . . 37
5.3 Results from Flight 1 of SAR2 test flights . . . . . . . . . . . . 39
5.4 Select results from Flight 2 of SAR2 test flights . . . . . . . . . 40
5.5 Actors’ script for final flight test . . . . . . . . . . . . . . . . . 42
5.6 Select results from Flight 1 of Final test flights . . . . . . . . . 43
5.7 Select results from Flight 2 of Final test flights . . . . . . . . . 44

vii



List of Tables

3.1 Final system implementation . . . . . . . . . . . . . . . . . . . 23

4.1 Learning rates for training . . . . . . . . . . . . . . . . . . . . . 32

5.1 Comparison of throughput for off-the-shelf networks . . . . . . 33
5.2 Dijon throughput test results . . . . . . . . . . . . . . . . . . . 34

6.1 Proposed future implementation . . . . . . . . . . . . . . . . . 48

viii



Chapter 1

Introduction

Use of drones for search-and-rescue, surveillance, or related tasks typically

requires that imagery recorded by the drone be streamed to a ground control

station (GCS) for processing, with some associated latency. Alternatively, the

imagery may be saved onboard the drone and retrieved for offline processing

when the flight is complete [1]. The latter case introduces too much delay to be

of use in a search-and-rescue application. Streaming solutions work well for a

single drone [2]; however, when the number of drones is scaled up (such as in a

search swarm [3]), the GCS may struggle to perform simultaneous inferencing

on every stream. Depending on the hardware capabilities of the device, the

demands of multiple agents could overwhelm the GCS, introducing inference

latency issues or potentially even resulting in dropped frames. The data could

be relayed to a distant processing station with more computing resources, but

depending on the remoteness of the search area sufficient infrastructure may

not be in place to facilitate this.

Implementations of deep learning networks at-the-edge must balance ac-

curacy and throughput requirements against power consumption. In the same

manner, the use of drones for search-and-rescue in large outdoor areas carries

an intrinsic need for low power use, in order to maximize flight time and thus

cover more search area [4]. The use of a vision accelerator such as the Movid-

ius Neural Compute Stick (NCS) in conjunction with a single-board computer

1



CHAPTER 1. INTRODUCTION 2

has been shown to extend system capabilities while maintaining a low power

profile and low cost [5]. The NCS thus presents an ideal means by which to im-

plement onboard inferencing in a drone-based search-and-rescue application.

Its small size and 1W power envelope [6] mean it can be deployed onboard a

drone and used to perform inference on drone imagery, without significantly

taxing system resources. This greatly reduces the quantity of information to

be communicated to the GCS - rather than a continuous video feed, only the

inference results need be transmitted. This reduces the stress upon the ma-

chine, while also allowing its administrator, the Remote Pilot in Command

(RPIC), to focus on other tasks rather than providing individualized oversight

for each feed.

In this work, a NCS vision accelerator is used with a SBC aboard a low-

cost, purpose-built drone. An object detection network running on the ac-

celerator is used to detect subjects on the ground through imagery recorded

onboard. The system is shown through field testing to provide a viable plat-

form for the automated detection of missing persons in outdoor areas.

The remainder of this paper is structured as follows. Chapter 2 explores

related works. Chapters 3 and 4 explores the hardware and software elements

of the final system implementation. Chapter 5 presents both bench and field

test results for the system and its missing person detection network. Chapters

6 and 7 provide final conclusions and suggestions for future work.



Chapter 2

Related Works

In search-and-rescue scenarios, search teams are often forced to make use

of helicopters or other aircraft to scout terrain for missing persons [7]. The

operating costs for helicopters have been reported by various sources as ranging

from $1600 to $16,500 per hour USD [8] [9]. The use of unmanned search

aircraft such as drones may potentially result in a lower cost per search than

the use of helicopters or search planes, in addition to decreasing the time

required to find a subject [10].

The minimization of cost in drone design for search-and-rescue applications

has been touched upon in the literature [11]. Reference [12] propose a ”smart”

detection system to be mounted on a drone that utilizes passive infrared (PIR)

sensors to detect humans. However, the range and field-of-view limitations of

such sensors, as well as their inability to distinguish human triggers from

animals, make them ill-suited for an outdoor search over a large area. A

search-and-rescue drone was implemented by [13], but at a high unit cost and

with a focus on interiors and small sites.

The literature extensively covers the path-planning aspects of search-and-

rescue for drones [4], including multi-agent implementations [14]. In fact, [3]

suggest as future work that such collaborative systems could be implemented

onboard drones using SBCs. The findings of [15] suggest a Bluetooth Low-

3



CHAPTER 2. RELATED WORKS 4

Energy LoRa modem may be used to connect SBCs across significant distances

despite a low unit cost. To further extend the effective range of search drones,

[16] propose and verify through simulation a method by which a master drone

can relay messages to slave drones at great distances from the GCS. Means

of notifying operators when subjects have been found by the search drone or

drones are addressed by [17] and [2].

While the use of a thermal camera has been shown to improve subject de-

tection rates [2], low-cost thermal solutions lack sufficient resolution to present

enough detail for high-angle detection [18]. Additionally, no publicly acces-

sible dataset of high-angle thermal imagery is available for use, meaning the

functionality could not be trained into a detection network without requir-

ing an extensive custom dataset. Aerial images present a high-angle, often

oblique view of subjects on the ground [19]. Conversely, conventional pedes-

trian datasets such as [20] feature subjects at approximately the same elevation

as the camera. Further complications result from the small size (in pixels) of

subjects in aerial imagery, compared to most pedestrian datasets in which the

subjects appear much larger in proportion to the image size. A noteable excep-

tion is the Okutama-Action dataset [21], featuring high-angle video sequences

shot from drones and showing multiple actors in various poses.

The potential of the NCS vision accelerator has been explored in the litera-

ture, in applications ranging from embedded road condition monitoring [22] to

detection of defects in semiconductor laser chips [23]. Drone manufacturer DJI

utilizes the same chip used in the NCS in their DJI Spark miniature drone to

facilitate gesture sensing, obstacle avoidance, and facial recognition [24]. The



CHAPTER 2. RELATED WORKS 5

most common platform utilized in the literature consists of a single NCS or

several NCS devices for inference, plugged into a Raspberry Pi single-board

computer (SBC) [23] [25] [22] [26]. The performance of networks on parallel

NCS devices have been shown to scale (mostly) uniformly with the number

of devices used [6]. While other authors have noted the possibility that the

use of USB2 ports limits the rate at which the NCS can load and transmit

data [27], an empirical analysis of the effects of USB transfer rate on the plat-

form’s performance has not yet been reported. Additionally, the potential of

the second generation NCS (NCSv2) has yet to be explored.



Chapter 3

System Hardware

When selecting components with which to build the drone, cost had to

be balanced with quality to ensure the system was not only inexpensive but

also reliable and robust. Some components utilized here would not be recom-

mended for use in future implementations, should another unit be constructed.

Section 3.1 explores the components essential for flight of the drone itself, while

Section 3.2 explores the peripherals required to implement the onboard miss-

ing person detection system. Section 3.3 summarizes the hardware utilized

and associated cost.

3.1 Drone Hardware

The drone utilizes brushless DC motors that provide sufficient thrust to

support a total payload (components included) of at least 800g, with a recom-

mended upper bound of 1600g. This wide range depends on such factors as

battery voltage, atmospheric conditions, temperature, and other factors [28].

Four separate electronic speed controllers (ESCs) are utilized to provide com-

pletely individualized three-phase control of each motor. Fig. 3.1 shows the

mounting of these components on the frame arms. The ESC is not conven-

tionally secured; instead, its wiring is snaked through the gaps in the arm and

6



CHAPTER 3. SYSTEM HARDWARE 7

Figure 3.1: A motor and ESC viewed from below.

the resulting friction holds it in place.

Dual 3-cell (3s) 1800mAh-capacity LiPo batteries, with discharge rate of

75C each, provide power for the various onboard systems at 11.1V nominal

(11.4V actual when fully charged). The parallel combination of the batteries

facilitates a peak discharge current of 270A. Each motor is capable of up to

15.1A current draw under duress. The flight controller and connected periph-

erals require approximately 1.5A at boot and 1A in flight. The Odroid may

require up to 6A current when preforming intensive computation, not includ-

ing the approximately 500mA draw of the NCS. Therefore, the maximum total

current needs of the system may thus be approximated as 68A - well below

the maximum capacity supported.

As the ESCs support either 11.1V or 14.8V (4s) drive, 3s batteries were

chosen to save weight. While the drone has been tested and shown to be flight

capable using only a single battery, it may consume power rapidly when per-

forming inferences in flight due to the additional draw of the Odroid. There-



CHAPTER 3. SYSTEM HARDWARE 8

Figure 3.2: While the parallel combination of two LiPo batteries extends the
flight time of the system, a better solution for future implementations would
be a single battery with a higher capacity.

fore, to provide insurance against undervoltage conditions and to permit mul-

tiple consecutive flights without requiring the battery to be swapped, two

batteries are instead mounted in parallel to effectively double the flight time

of the system (Fig. 3.1). For future implementations, it is suggested that a

single battery with a larger capacity be utilized, extending the possible flight

time without the additional weight penalty associated with adding a second

battery.

A toggle switch implemented at the batteries’ connectors permits them



CHAPTER 3. SYSTEM HARDWARE 9

to be disconnected and the system powered down without requiring they be

physically unplugged. The switch output is connected, in parallel, to a power

distribution board (PDB), power module (PM), and universal battery elimi-

nator circuit (UBEC). These are shown in Fig. 3.4. The PDB is simply used

as the connection point for each of the ESCs, providing a direct connection to

the 11.1V rail to drive the motors. The PM provides a clean 5V rail to the FC

while supporting voltage and current monitoring of the batteries; the FC in

turn routes that rail to the Teensy, GPS, and onboard telemetry and control

radios. The UBEC provides another clean 5V rail for use by the Odroid and

in turn the NCS. The isolation of the two 5V rails prevents load spikes due to

the Odroid from adversely affecting the FC and other onboard components.

Fig. 3.3 shows the different voltage rails present in the system.

A PixHawk Mini fulfills the role of flight controller (FC), aggregating data

from the GPS, ESC feedback, and internal barometer and accelerometer to

facilitate autonomous flight between waypoints. The unit was selected for its

small footprint and low price point; its only limiting factor is the presence

of only one UART port, whereas its full-size counterpart (the Pixhawk) has

several available ports but a larger footprint and weight. The primary function

of the UART port is to facilitate communicate with a ground control station

(GCS) by sending MavLink messages via a telemetry radio.

With the Pixhawk Mini, in order for a device such as an onboard computer

to interface with the FC, the UART bus must be hijacked. A Teensy 3.1

microcontroller serves as a man-in-the-middle to relay messages between the

various system endpoints (Fig. 3.5a). The Teensy typically acts as a FIFO



CHAPTER 3. SYSTEM HARDWARE 10

Figure 3.3: System power flow and voltage rail diagram. Buses of the same
color are referenced to the same voltage source and share a return path.

Figure 3.4: The UBEC, PM are used to rectify the 11.1V battery rails down
to clean 5V lines, while the PDB passes the battery rail to the ESCs directly.



CHAPTER 3. SYSTEM HARDWARE 11

buffer for the MavLink messages between the FC and GCS. If an incoming

message from the Odroid were detected, then the next time the bus was quiet

this message would be sent to the FC; essentially, the onboard computer thus

mimics a GCS for the purpose of sending a command. The additional UART

ports of the full-size Pixhawk would easily permit connections to secondary

devices such as the onboard computer via an FTDI cable without requiring this

man-in-the-middle; therefore, it is recommended over the Pixhawk Mini for

future implementations in which the flight controller and onboard computer

must interface with each other.

For this implementation, computer-to-FC communication support is im-

plemented as proof of concept but not utilized in-flight. Instead, the UART

GPIO of the computer are repurposed to pass an alarm control signal to the

Teensy, which in turn utilizes it as the input for the drive circuitry of an opto-

coupler (Fig. 3.5b). This provides isolated control of an alarm buzzer mounted

below the frame, permitting the implementation of auditory feedback to indi-

cate error conditions or successful detection of subjects.

Although the FC ships with the PX4 autopilot system, this implemen-

tation instead utilizes ArduPilot as its autopilot environment. The latter

often exhibits better performance and stability when attempting to ”loiter”,

or hold a fixed position, in windy conditions. Of the flight modes supported

by ArduPilot, three are utilized in this application - Stabilize, AltHold, and

Auto. Stabilize is characterized by entirely manual control of the throttle,

roll, pitch, and yaw. In AltHold mode, the throttle is primarily controlled

by the autopilot; when the throttle stick is centered, the drone will hold its



CHAPTER 3. SYSTEM HARDWARE 12

(a) Serial man-in-the-middle (b) Alarm control

Figure 3.5: Teensy wiring diagrams

(a) A 3D-printed mount protects the
Teensy while providing easy access to
GPIO for prototyping.

(b) A 120dB alarm system (forward of
battery) provides auditory feedback to
the operator via the Teensy.

Figure 3.6: Teensy implementation



CHAPTER 3. SYSTEM HARDWARE 13

current altitude, while increasing or decreasing the throttle out of the 40-60%

”dead zone” will cause the drone to ascend or descend correspondingly. The

”Auto” mode is characterized by essentially fully autonomous operation; the

operator can control the yaw to rotate the drone if desired, but the roll, pitch,

and throttle are entirely controlled by the autopilot. Auto mode will execute

a series of commands stored as a ”mission”. Some pertinent commands em-

ployed in this application include takeoff and landing sequences, navigation to

waypoints, and timed loitering.

The Auto navigation mode is facilitated by the presence of an onboard

GPS unit. The mode may only be utilized when the GPS has a connection

to at least four satellites and the extended Kalman filter (EKF) utilized for

position estimation has sufficiently stabilized. For best results, the GPS is

mounted in a forward position such that nothing impedes its ”view” of the

sky. The UBEC, PM, and batteries are placed as far away from the GPS unit

as possible to reduce possible electromagnetic interference. A custom 3D-

printed case and mount are utilized to secure and protect the unit. As care

should be taken to avoid surrounding the unit with metal components that

might potentially block RF signals, nylon screws are employed for mounting

purposes (Fig. 3.7).

A 2.4GHz 9-channel transmitter and receiver facilitate manual control of

the drone for safety and accessibility reasons. One three-position switch is uti-

lized to switch between the flight modes of the FC. Another two-position switch

is mapped to the emergency motor stop function. The remaining switches on

the controller are unused; as such, in future implementations a simplified con-



CHAPTER 3. SYSTEM HARDWARE 14

Figure 3.7: The FC is mounted at the drone’s center of gravity atop foam
blocks, which isolate the internal accelerometer and gyroscope from vibrations
in the airframe. The GPS is mounted forward and as far away from the power
circuitry as possible.



CHAPTER 3. SYSTEM HARDWARE 15

troller with fewer channels may instead be utilized, in order to reduce costs.

If the antenna is allowed to dangle, it nearly touches the DC lines to the PM

- an undesirable source of interference that has been observed to cause a loss

of connection between the drone and controller. Thus, in order to reduce this

noise, a mast is utilized to secure the receiver antenna and direct it upwards.

To support monitoring of the drone flight systems, as well as uploading of

waypoint coordinates, Mission Planner is utilized as the system GCS, running

offboard on a laptop. It connects to the flight controller via the telemetry radio

(note that in this implementation, all traffic is routed through the Teensy). If

the drone loses the connection to the GCS, it will continue its flight regardless.

However, if the drone loses its connection to the operator’s controller, it will

return to its takeoff point and perform a landing there, in order to prevent

potential flyways. This behavior is configurable, meaning operation completely

independent of a ground station and ground operator connection is possible.

In its entirety, the system weighs in at 1.50kg, near the upper bound of the

suggested 800g-1600g payload range. Primary contributors include 150g from

each of two batteries, 230g from the motors, 280g from the frame, 170g from

the camera and mount, and 140g for the Odroid and NCS. Other than the

frame itself, all mounting components were custom-designed in SolidWorks.

A Monoprice Mini (Fig. 3.8) was utilized to 3D print the mounts out of PLA

plastic. Together, these components constitute a significant portion of the

remaining system weight. Additional improvements include the use of foam

blocks to extend the drone legs and cushion against ground impacts during

landing operations.



CHAPTER 3. SYSTEM HARDWARE 16

Figure 3.8: A Monoprice Mini was utilized to 3D print custom mounting
components out of PLA. Here, it is seen here printing the lower Odroid mount,
which requires a support structure due to its overhanging crossbar.



CHAPTER 3. SYSTEM HARDWARE 17

Figure 3.9: With both the main and secondary batteries and camera equipped,
the drone measures a considerable 1.5kg. In future implementations, care
should be taken to keep weight down in order to prolong flight time.

3.2 Hardware for Onboard Detection of Subjects

At the heart of the onboard processing system is the Odroid XU-4 single-

board computer (SBC). It features 2Gb of available RAM, both Cortex-A15

(2Ghz) and Cortex-A7 (1.2Ghz) quad-core CPUs, and dual USB3 ports in ad-

dition to a single USB2 port [29]. While the Odroid requires a minimum of 2A

to boot, for best performance a 6A-capable 5V power supply is recommended;

here, this role is fulfilled by the 6A UBEC. The unit used in this implemen-

tation runs a MATE graphical desktop environment over the Ubuntu 16.04

operating system. In the field, an Ethernet cable is employed to connect the

SBC to a laptop running an SSH client. Once the search-and-rescue program

code has been initialized, the cable may be removed.



CHAPTER 3. SYSTEM HARDWARE 18

Figure 3.10: Odroid and NCS

An Intel Neural Compute Stick (NCS) vision accelerator is utilized to

load the object detection network and perform inferences on images. Each

NCS makes use of an embedded vision processing unit (VPU) for network

calculations. The device is interfaced with through a USB port, with support

for USB3 data transfer rates.

The Neural Compute Stick (NCSv1) utilizes a Movidius Myriad v2 VPU

with 12 Streaming Hybrid Architecture Vector Engine (SHAVE) cores [30].

Networks are deployed via the Neural Compute Software Development Kit

(NCSDK) in the form of graph files. Alternatively, the OpenVINO toolkit

may be utilized for deployment of networks as Intermediate Representation

(IR) files. A recently released improved version, the Neural Compute Stick 2

(NCSv2), features a Myriad X VPU with 16 SHAVE cores. Unlike the NCSv1,



CHAPTER 3. SYSTEM HARDWARE 19

the device is only compatible with the OpenVINO toolkit. The NCSv2 is

advertised as capable of up to eight times the performance of the NCSv1 [31].

As both the NCSv1 and NCSv2 are fanless, if the device experiences sig-

nificant stress (such as high throughput or extended use), it is prone to over-

heating. This can result in the connection between the Odroid and the device

closing unexpectedly. While this issue has been observed extensively on the

bench, under flight conditions the airflow over the device helps to cool it and

reduce the risk of overheating. A similar problem manifests when the device

becomes too cold, such as when performing extensive field testing in tempera-

tures below freezing. Attaching air-activated hand warmers near the NCS has

been observed to reduce or eliminate temperature-related device shutdowns in

cold weather conditions.

A GoPro Hero 6 is utilized as the main onboard camera for the system,

chosen for its integrated stabilization (eliminating the need for a gimbal) and

durability. While the mount for the camera (Fig. 3.11) is rugged and reliable,

it prevents access to the camera’s HDMI and USB ports. Therefore, the

streaming capabilities of the camera over WiFi are exploited. A WiFi antenna

module plugged into the USB2 port of the Odroid provides a connection to

the wireless hotspot of the camera.

A cheaper, less-featured camera could easily be substituted to save costs

in future implementations. However, as the motors may induce vibrations

on the airframe under flight conditions, video stabilization techniques may be

required. These could be implemented via software, utilizing techniques such

as point feature matching with OpenCV, or in hardware through the use of



CHAPTER 3. SYSTEM HARDWARE 20

Figure 3.11: GoPro, mounted on the forward underside of the drone



CHAPTER 3. SYSTEM HARDWARE 21

Figure 3.12: The 3D-printed mount architecture was designed to have as small
a footprint as possible, in order to avoid interference with or risk of collision
between the propellers and the devices.

a gimbal. The gimbal carries its own drawbacks, such as increased system

weight and cost. If a wireless network is to be utilized for drone-to-drone

communication in future swarm implementations, a hardwired camera should

be implemented to free up the Odroid to network connections.



CHAPTER 3. SYSTEM HARDWARE 22

Figure 3.13: The design is modular and compact, yet still facilitates airflow
for cooling. In the event of a crash, the mounts are usually the first point of
failure, absorbing the blow and protecting the other components.

3.3 Summary

Table 3.1 shows the major hardware components associated with the final

implementation of the search-and-rescue system. Minor low-cost components

such as cables and the wireless network antenna are largely interchangeable

and thus not listed. Recommendations for future implementations are dis-

cussed in greater detail in Chapter 6.



CHAPTER 3. SYSTEM HARDWARE 23

Table 3.1: Final system implementation

Component Part Selection Cost
Frame DJI F450 kit $190
Motors DJI 2312e Inc.
ESCs DJI 430 Lite Inc.
Propellers DJI 9450 Inc.
Battery Tattu 1800mAh 3s 75c LiPo (x2) $48
Radio Radiolink AT9S $106
Flight Controller 3DR Pixhawk Mini $160
GPS 3DR Micro M8N Inc.
Telemetry Holybro Micro FPV Telemetry Inc.
Power Module Holybro APM 10s $22
UBEC HENGE 6V 6A $14
SBC Odroid XU-4 $60
VPU Intel NCS2 $88
Camera GoPro Hero 6 Refurbished $280
Man-in-the-middle Teensy 3.1 $20
Total $988



Chapter 4

System Software

Three main versions of the search-and-rescue (SAR) program were devel-

oped, each with different objectives in mind. Section 4.1 explores the initial

program, designed to implement off-the-shelf models with the NCSDK API.

Section 4.2 explores the second iteration of the program, which attempts to

compensate for weaknesses in these models through methods such as alternat-

ing detection windows. Section 4.3 explores the final program, which utilizes

a custom-trained model and the OpenVINO API and demonstrates superior

recall and performance.

4.1 SAR1

The NCSDK API was installed on the Odroid and utilized for deployment

of off-the-shelf pre-trained models from the Movidius Model Zoo [32]. Both

TinyYolo [33] and a Mobilenet SSD [34] were explored. Frames are read at

a constant, user-specified rate by the FFMPEG tool and logged locally. The

program pulls the latest frame off the top of the stack, performs inference, and

logs the results locally. The finite state machine (FSM) is shown in Fig. 4.1.

While this method is simple and effective, it results in unnecessary over-

head on the Odroid. For bench testing purposes, an alternate method was

24



CHAPTER 4. SYSTEM SOFTWARE 25

Figure 4.1: Initial SAR1 code FSM

written to feed pre-extracted frames from a test video to the SAR program

at a constant rate. The program was further improved through the imple-

mentation of a threaded architecture, as shown in Fig. 4.2. This allows the

Odroid to prepare the next frame while inference is still being executed on

the previous frame; because that inference occurs on the NCS rather than the

SBC, there is no performance penalty as the SBC would otherwise be waiting

in an idle state anyways.



CHAPTER 4. SYSTEM SOFTWARE 26

(a) Non-threaded architecture
(entirely linear process)

(b) Threaded architecture (thread sur-
rounded by dashed box)

Figure 4.2: Non-threaded vs threaded architecture



CHAPTER 4. SYSTEM SOFTWARE 27

4.2 SAR2

The primary goal of the SAR2 program was to stretch the off-the-shelf

models to their limits by optimizing the rest of the code as musch as possible.

Instead of the local logging and reading of frames, an OpenCV video stream

directly from the camera feed was employed. In addition, frames were prepro-

cessed in a ”flashing window” fashion that alternated between cropping off the

right or left sides of the frame on subsequent calls. At this point, Mobilenet

SSD support was dropped to focus on TinyYolo, as the latter exhibited better

recall on test videos. Fig. 4.3 shows the updated FSM for this process, while

Fig. 4.4 demonstrates how the flashing window selectively crops frames in

consecutive operations.



CHAPTER 4. SYSTEM SOFTWARE 28

Figure 4.3: SAR2 code FSM

Figure 4.4: SAR2 flashing window method - note the reversal of BGR and
RGB required before and after inference due to the image format of OpenCV



CHAPTER 4. SYSTEM SOFTWARE 29

4.3 SAR3

The SAR3 program represents a substantial step forward from the previ-

ous versions, introducing support for the OpenVINO API and thus allowing

networks to be deployed on the NCSv2 as well as the NCSv1. The original

streaming backend implementation through FFMPEG was modified to instead

utilize Gstreamer, in an attempt to rectify issues with the GoPro stream when

using the new OpenCV version required by this build.

Instead of an off-the-shelf network, this implementation makes use of a

custom-trained, single-class TinyYolo network dubbed ”Dijon”. Dijon resizes

the anchor boxes of a typical TinyYolo model [33] to achieve better convergence

at the task of subject identification. The network utilizes an 800x480x3 input

layer that reduces to a 25x15 grid, where each grid space proposes five anchor

boxes. The 848x480 feed of the GoPro therefore can be fed almost directly

into the network. While the 24 pixels at either edge of the frame are discarded,

because they are already prone to being occluded by the drone legs when in

flight, the information loss is negligible. Fig. 4.5 shows the FSM for the final

implementation.

4.3.1 Dataset

While several datasets focused on pedestrian detection are readily avail-

able, such as the Caltech Pedestrian dataset [20], most are shot from street

level and thus not well suited for training a network to classify from the air. A

notable exception is the Okutama-Action dataset, featuring over 60,000 frames



CHAPTER 4. SYSTEM SOFTWARE 30

Figure 4.5: SAR3 code FSM

of labelled action data filmed with a drone [21].

Albatross

The Okutama-Action dataset was augmented with labelled frames from

a video recorded onboard the drone (Section 5.2.1). The resulting dataset,

dubbed ”Albatross”, was further improved via the addition of negative (ground

truth zero) frames showing objects that commonly caused false positives with

Okutama-Action, such as automobiles in a parking lot. Altogether, the use

of the Albatross class adds about 7100 additional samples. Fig. 4.6 shows a

selection of sample images from the two datasets.



CHAPTER 4. SYSTEM SOFTWARE 31

(a) Samples from Okutama-Action

(b) Samples from Albatross

Figure 4.6: Select images from training dataset



CHAPTER 4. SYSTEM SOFTWARE 32

4.3.2 Training

The network was trained using the Darknet framework via dual Nvidia

Titan V GPUs. Firstly, a high-resolution 1280x720 network (”Cherry”) was

trained on the dataset for 120,000 batches, using the Tiny YOLOv2 VOG

weights for initialization. Next, the Cherry weights were used by a 800x480

network (”Mustard”) to perform transfer learning for 120,000 batches. Finally,

the Mustard weights were trained for another 150,000 batches, resulting in the

”Dijon” network. For Dijon, Darknet dataset augmentation parameters such

as saturation and hue variance were scaled to twice their typical values, thus

subjecting the network to a wider variety of input images. The learning rates

were updated in accordance with the schedule shown in Table 4.1.

Table 4.1: Learning rate hyperparameters for network training.

Iterations Learning Rate
Cherry Mustard Dijon

0 0.001 0.001 0.0001

50,000 0.0005 0.0005 0.00005

65,000 0.0001 0.0001 0.00001

80,000 0.00001 0.00001 0.000001

4.3.3 Deployment

For use with the NCS, the Darknet model was first converted to a Tensor-

flow model via Darkflow [35]. The result was then converted to the OpenVINO

Intermediate Representation format using the OpenVINO Model Optimizer

program, resulting in ”.bin” and ”.xml” files to be deployed for inference.



Chapter 5

Results

5.1 Bench Testing

5.1.1 Off-the-shelf model performance

A threaded architecture is utilized to test the throughput of both the

Mobilenet SSD and of TinyYolo on the NCSv1. The effects of using different

devices and ports are explored, as summarized in Table 5.1. The inference

time (Inf) is characteristic of the NCS itself, whereas the ”function” time

(Func) takes into account the delay associated with transferring data on and

off the device and is thus system-dependent. The data clearly demonstrate

the superiority of the Odroid over the Raspberry Pi 3B used by Szankin [22]

and Hochstetler et al. [27].

Table 5.1: Comparison of throughput for off-the-shelf networks

Task Pi 3B (USB2) Odroid (USB2) Odroid (USB3)
Time (ms) FPS Time FPS Time FPS

Mobilenet Inf 88.32 11.32 88.32 11.32 88.32 11.32

Mobilenet Func 140.84 7.100 130.95 7.637 112.58 8.883

TinyYolo Inf 124.02 8.063 124.02 8.063 124.02 8.063

TinyYolo Func 223.70 4.470 205.49 4.866 165.61 6.038

33



CHAPTER 5. RESULTS 34

5.1.2 Custom Model Performance

Table 5.2 shows the average bench performance of the Dijon network when

tested with both versions of the NCS and both types of USB ports. The

network is able to beat the best TinyYolo results from 5.1 despite having nearly

twice the parameter count due to its larger input size (800x480 vs 448x448).

Furthermore, it is shown in field tests to exhibit vastly improved recall and

precision as compared to the off-the-shelf TinyYolo model. The network was

also deployed using the NCSDK and NCSv1 and found to achieving 2.9637

FPS over USB3. This validates the advertised superior performance of the

OpenVINO API over the older NCSDK.

Table 5.2: Dijon throughput test results

Stick USB Port Latency (ms) FPS

NCSv1 2.0 368.4170 2.7143

NCSv1 3.0 281.7030 3.5498

NCSv2 2.0 217.2030 4.6040

NCSv2 3.0 115.6840 8.6442

5.2 Field Testing

The system design was verified to be effective at the task of detecting

missing persons through the performance of field tests at a public park. Actors

were recruited to pose around the edges of a field. The drone autonomously

executed a pre-programmed mission (shown in Fig. 5.1) to traverse the field,

a total flight distance of 0.587 km. An operator on the ground controlled the

yaw of the drone to keep it pointing towards the closer edge of the field. It



CHAPTER 5. RESULTS 35

Figure 5.1: Mission waypoints assigned for field testing

should be noted that ”ROI” mission commands can also be used to redirect

the drone to face a ”region of interest”, meaning this oversight role could be

eliminated through more complex mission design. Test flights were performed

to explore each of the different SAR program versions (Section 4).



CHAPTER 5. RESULTS 36

5.2.1 SAR1 flight tests

Field tests were performed on two separate occasions to explore the effec-

tiveness of the off-the-shelf TinyYolo model with the SAR1 architecture. A

fixed value of 5 FPS was utilized for the streaming rate.

Winter flight

A flight was attempted to explore the effects of a snowy backdrop on the

detector recall. While conditions were windless, the temperature was near

freezing, resulting in difficulties with the NCS becoming too cold and shutting

down. These were initially addressed by attaching hand warmers to the frame

near the device. The decision was made to fly regardless in order to accumulate

video samples for offline analysis on the bench later. Shortly after the drone

passed Waypoint 8 (Fig. 5.1), a complete power failure occurred and it fell

some 15-20 feet out of the sky, bringing the test flight to a rapid end.

Solo flight

Several weeks after the winter flight, another flight was attempted in more

hospitable conditions. Instead of utilizing actors along the search path, for

this test the operator ran ahead of the drone as the person to be detected.

The drone was able to fly between all of the assigned waypoints completely

autonomously and successfully land on its own afterwards. Detection was

performed offline due to connectivity issues between the Odroid and GoPro.

Even though the operator appeared in approximately two-thirds of the total



CHAPTER 5. RESULTS 37

Figure 5.2: Results from Solo flight of SAR1 test flights

frames, only a single successful detection was observed with the TinyYolo

network (Fig. 5.2, confidence 0.12356).

Outcome

The major crash of the winter flight shattered most of the mounts and two

propellers, but seemingly spared the other components. The cause of the crash

was traced back to a faulty switch used to isolate the batteries; the contacts

must have separated in-flight, resulting in a complete loss of power. In addi-

tion to the replacement of this switch, the crash prompted a nearly complete

systems teardown and extensive redesign of the mounting components. While

the previous mount iteration had focused on having minimizing complexity,

the new mounts (shown in Section 3.2) favored a modular design that allows



CHAPTER 5. RESULTS 38

components to be swapped out without requiring a full mount reprint. It is

suspected that some GPS and radio issues encountered later may be traced

back to damage unknowingly sustained during the crash. The flight did yield

video samples of subjects that later proved useful for bench testing.

Despite the underwhelming recall of the solo flight, the test was a major

success in two regards. Firstly, it demonstrated the feasibility of an entirely

autonomous search operation through the use of assigned waypoints as an

autopilot mission. Secondly, it yielded excellent video of a human subject at

altitude and angle desired for the final application. This footage would later

be labelled and used to create the Albatross dataset (Section 4.3.1).

5.2.2 SAR2 flight tests

A field test was performed to test the performance of off-the-shelf TinyYolo

with the SAR2 program. The same autopilot mission used for the SAR1 tests

constituted the intended flight path. Two flights were attempted back-to-back;

the first under cloudy but windless conditions, the second with occasional wind

gusts. The NCSv1 was utilized for inference, achieving an average of 5.732 FPS

on the 448x448 resolution network.

Flight 1

Almost immediately after takeoff, the drone lost radio contact with the

operator controller. In accordance with its safety settings (implemented to

prevent flyaways), it performed an automated landing and ended the mission.

A successful detection was recorded, as shown in Fig. 5.3 (confidence 0.07903).



CHAPTER 5. RESULTS 39

Figure 5.3: Results from Flight 1 of SAR2 test flights

Flight 2

The drone was rebooted and rearmed in anticipation of a second flight.

This flight began with a successful navigation of the first few waypoints and the

detection of an actor and the operator, as shown in Fig. 5.4. However, a low

battery warning soon triggered abruptly, resulting in an automated emergency

landing. Shortly afterwards, the weather shifted and a drizzle began; as such,

further attempts at testing were discontinued to protect the drone hardware

and Odroid from damage.



CHAPTER 5. RESULTS 40

(a) Actor 1, Confidence 0.08558 (b) Operator, Confidence 0.14020

Figure 5.4: Select results from Flight 2 of SAR2 test flights

Outcome

While the system was able to successfully detect actors, the network recall

was quite poor. For most of the frames in which an actor appeared, the de-

tection confidence was below the SAR2 threshold of 7%, as is clearly visible in

Fig. 5.3. The test served to reinforce the need for a higher-resolution subject

detector. It also marked the first appearance of what would be a recurring but

intermittent issue in which the controller and drone would lose communica-

tion, resulting in an emergency landing. While in an actual search-and-rescue

operation such a failsafe would be disabled, the system reliability did not yet

inspire enough confidence for it to be disabled in this implementation. The

battery-related issue was explored on the bench after the test and discovered

to be caused by an offset issue with the voltage monitor. It was addressed by

tweaking the battery failsafe threshold parameter. Finally, the test exposed



CHAPTER 5. RESULTS 41

the need for a more weather-proof enclosure for the Odroid and sensitive elec-

trical components in future implementations.

5.2.3 Final flight tests

A final field test was undertaken to test the field performance of the Dijon

network with the SAR3 program. The autopilot mission was assigned to the

same ”key” flight path utilized in earlier tests (Fig. 5.1). Four actors were

recruited to follow the paths and undertake the actions specified in Fig. 5.5.

Two flights, with a short break between them, were performed around 8AM

under clear and largely windless flight conditions. The NCSv2 was utilized

for inference, achieving an average of 7.601 FPS on the 800x480 resolution

network.

Flight 1

At the test site, the GPS was unable to achieve a satisfactory lock due

to EKF variance. Therefore, the auto mode was not utilized, and the drone

was instead flown under manual control by the operator, approximating the

intended flight path. The system was able to successfully identify all four

actors, as shown in Fig. 5.6, even with difficult background conditions such

as glare and shadows from the early-morning sun.

Unfortunately, due to a typo in a late revision to the SAR3 program, when

the bounding boxes for the detected persons were to be overlaid on the cropped

inference image for local logging the non-cropped image was inadvertently

utilized instead. Therefore, the bounding boxes were offset by 24 pixels to the



CHAPTER 5. RESULTS 42

Figure 5.5: Actors’ script for final flight test

left, and thus appear slightly erroneous despite the successful performance of

the network.

Flight 2

After the aforementioned bounding box offset bug was addressed, a second

test flight was initiated. Once again, the GPS failed to achieve a lock, so

the drone was flown along the specified path under manual operator control.

Shortly after takeoff, the low battery alarm was triggered and an automated

emergency landing performed. Measurement of the main battery voltage on

the bench would later show it had dropped to 10.58V, having already powered

the system for a full flight as well as for initialization tasks on the ground. As

the Odroid and NCS were still successfully performing inferences, the main



CHAPTER 5. RESULTS 43

(a) Actor 1, Confidence 0.43872 (b) Actor 2, Confidence 1.0

(c) Actor 3, Confidence 0.29419 (d) Actor 3, Confidence 0.48975

(e) Actor 3, Confidence 0.50195 (f) Actor 4, Confidence 0.28735

Figure 5.6: Select results from Flight 1 of Final test flights



CHAPTER 5. RESULTS 44

(a) Actors 1 and 2, Confidence 0.96875 (b) Actor 1, Confidence 0.26782

(c) Actor 2, Confidence 1.0 (d) Actor 2, Confidence 1.0

Figure 5.7: Select results from Flight 2 of Final test flights

battery was quickly swapped with a backup battery and the flight resumed.

Thereafter, the system was able to successfully identify Actors 1 and 2, as

shown in Fig. 5.7.

Near Waypoint 9 (Fig 5.1), the drone unexpectedly lost contact with the

radio controller. As such, an automated emergency landing was once again

triggered. Attempts to fix the issue by rebooting the flight controller and

associated subsystems proved fruitless, and the flight was ended before Actors

3 and 4 were reached. When the drone was later tested on the bench, the

controller and drone were able to communicate successfully, suggesting the

cause was the same intermittent problem observed in previous test flights.



CHAPTER 5. RESULTS 45

Outcome

The system struggled to identify actors at great distances from the camera,

as shown in Fig. 5.6c. However, it succeeded at its primary goal by identifying

each actor at their assigned location, in many cases with extremely high con-

fidence. This was accomplished despite the incredibly low stream quality of

the GoPro when used with OpenCV 4, as required by the SAR3 build. While

the test proves the efficacy of the Dijon network in the field, it also provides

a strong incentive for a different camera (preferably hardwired) to be utilized

in future applications. The test also demonstrated the increased unreliability

of the system after having endured many rough landings and crashes (includ-

ing several ”yard” tests not reported here), suggesting a ”fresh” drone might

exhibit more consistency.



Chapter 6

Conclusions

By the end of the testing process, the drone implemented here had suffered

a number of failures and crashes. Most of these could be traced to operator

error or to the use of faulty components that in future builds could easily be

avoided. It is possible that the root cause of other issues could also be traced

back to earlier crash events and mishaps. For example, the intermittent loss

of flight controller communication is likely due to an incident early in the

development process in which the last half inch of the antenna was chopped

off by the propellers (due to ill-advised mounting and an unexpectedly sensitive

throttle response). Therefore, while the system durability could theoretically

present an issue in future implementations, a freshly assembled drone with

new components would be unlikely to experience these issues.

If the specific unit implemented here were to be reused, several changes

are recommended. It is suggested the cabling between the flight controller

and radio be replaced, the radio antenna (or even the entire receiver and

transmitter) replaced, the GoPro replaced with a hardwired camera, and the

GPS mounted on a raised mast above the drone for improved signal quality.

A single battery supported about 8-10 minutes flight time, and two batteries

supported about 17 minutes; for increased flight time, the batteries should be

replaced with a single high-capacity battery.

46



CHAPTER 6. CONCLUSIONS 47

While the GoPro is not recommended for future implementations, it was

an appropriate component selection for this proof-of-concept implementation.

It is unlikely that many other cameras would have survived the abuse endured

by the unit across the multiple rough landings and crashes associated with

the development process. The main reason the GoPro is advised against is

going forward is its seeming incompatibility with OpenCV 3 and 4 (which are

required to make use of the OpenVINO API). This is despite the fact that the

camera worked nearly flawlessly with OpenCV 2. It is possible that building

the FFMPEG tool from the source might solve this problem, although the fact

that the similar Gstreamer tool also proved an unreliable means of loading the

stream suggests a deeper incompatibility.

The use of a full-size Pixhawk is recommended for future swarm-oriented

builds, as it better facilitates access to the FC via UART. This would allow

for simple MAVLink communication between the FC and onboard SBC via an

FTDI cable. The SBC could thus easily exert control over the FC, allowing the

adjustment of wavepoints ”on the fly”. For example, if a person were detected

with a medium degree of certainty, the SBC could instruct the autopilot to

deviate from its planned course to investigate the potential sighting up close.

Before the system is put into service and deployed in the field for high-

stakes search operations, it is suggested that an operator perform controlled

flights around the deployment area and record video under various lighting and

environmental conditions. Frames from these videos could be used to fine-tune

the missing person detection network for the expected terrain, reducing the

likelihood of false positives. Additional improvements such as support for



CHAPTER 6. CONCLUSIONS 48

Table 6.1: Proposed future implementation

Component Part Selection Cost
Frame F450 clone $19
Motors DJI 2312e $99
ESCs DJI 430 Lite Inc.
Propellers DJI 9450 Inc.
Battery Tattu 4200mAh 3s 35c LiPo $48
Radio DXe DSMX 2.4Ghz Sport $90
Flight Controller Holybro Pixhawk 2.4.6 $180
GPS Holybro M8N Inc.
Telemetry Holybro 100mW Telemetry Inc.
Power Module Holybro APM 10s Inc.
UBEC HENGE 6V 6A $14
SBC Odroid XU-4 $60
VPU Intel NCS2 $88
Camera Logitech C270 $40
Total $638

multiple classes could be implemented to permit the observation of wildlife or

tracking of trespassing vehicles, as in [36].

Table 6.1 provides a recommended components list for future builds. Two

such implementations could be assembled for less than the price of an entry-

level off-the-shelf system [37]. Alternatively, a single implementation could

provide a low-cost base upon which other, more expensive components such

as thermal cameras or a real-time kinematic (RTK) GPS could be added for

improved system efficacy.



Chapter 7

Future Work

The most immediate possible extension of this work is the construction of

a second drone and implementation of synchronized search of an area. Au-

tomatic segmentation and traversal of a search polygon, similar to [1], could

be implemented. Drone-to-drone communication should be considered. Once

two drones have been implemented as proof-of-concept, the system may be

scaled up to support a larger swarm.

The Dijon network recall, while impressive, could be further improved

augmenting the Albatross dataset with more samples at various distances and

angles, with actors in various clothing and positions. Additionally, negative

samples that include camera noise and dense woods should be used, as these

have been observed to trigger false positives. A secondary recurrent network

could be implemented to wrap the output of the Dijon detector and distin-

guish true positives from false positives. The use of multiple NCSv2 devices

through a powered USB hub could be explored, as could the use of alternative

accelerator solutions such as an Nvidia Jetson Nano.

49



Bibliography

[1] A. M. de Oca, L. Arreola, A. Flores, J. Sanchez, and G. Flores. Low-cost
multispectral imaging system for crop monitoring. International Confer-
ence on Unmanned Aircraft Systems (ICUAS), 2018.

[2] A. Rivera, A. Villalobos, J. Monje, J. Marinas, and C. Oppus. Post-
disaster rescue facility: Human detection and geolocation using aerial
drones. IEEE Region 10 Conference (TENCON), 2016.

[3] M. H. Dominguez, S. Nesmachnow, and J. Hernndez-Vega. Planning
a drone fleet using artificial intelligence for search and rescue missions.
In IEEE XXIV International Conference on Electronics, Electrical Engi-
neering and Computing (INTERCON), 2017.

[4] S. Bernardini, M. Fox, and D. Long. Planning the behaviour of low-cost
quadcopters for surveillance missions. In International Conference on
Automated Planning and Scheduling (ICAPS), 2014.

[5] M. Modasshir, A. Quattrini Li, and I. Rekleitis. Deep neural networks:
A comparison on different computing platforms. In 15th Conference on
Computer and Robot Vision (CRV), 2018.

[6] S. Rivas-Gomez, A. Pena, D. Moloney, E. Laure, and S. Markidis. Explor-
ing the vision processing unit as co-processor for inference. 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2018.

[7] T. Heggie and M. Amundson. Dead men walking: Search and rescue in
US National Parks. Wilderness and Environmental Medicine, 2009.

[8] T. Sharples. Get into trouble outdoors - who pays for the rescue? Time,
2009.

[9] David McKie. Search and rescue for false alarms costs millions. CBC
News, 2014.

[10] DJI, Black Channel, and EENA. Drone efficacy study - evaluating the
impact of drones for locating lost persons in search and rescue events.
European Emergency Number Association (EENA), 2018.

50



BIBLIOGRAPHY 51

[11] H. Saha, S. Basu, S. Auddy, R. Dey, A. Nandy, D. Pal, N. Roy, S. Jasu,
A. Saha, S. Chattopadhyay, and T. Maity. A low cost fully autonomous
gps (global positioning system) based quad copter for disaster manage-
ment. In IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC), 2018.

[12] R. Tariq, M. Rahim, N. Aslam, N. Bawany, and U. Faseeha. Dronaid: A
smart human detection drone for rescue. In 15th International Conference
on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-
ICT), 2018.

[13] S. Lee, D. Har, and D. Kum. Drone-assisted disaster management: Find-
ing victims via infrared camera and lidar sensor fusion. 3rd Asia-Pacific
World Congress on Computer Science and Engineering, 2016.

[14] G. Bevacqua, J. Cacace, A. Finzi, and V. Lippiello. Mixed-initiative plan-
ning and execution for multiple drones in search and rescue missions. In
25th International Conference on International Conference on Automated
Planning and Scheduling (ICAPS), 2015.

[15] L. Baumgrtner, A. Penning, P. Lampe, B. Richerzhagen, R. Steinmetz,
and B. Freisleben. Environmental monitoring using low-cost hardware
and infrastructureless wireless communication. In IEEE Global Humani-
tarian Technology Conference (GHTC), 2018.

[16] S.A. Celtek, A. Durdu, and E. Kurnaz. Design and simulation of the
hierarchical tree topology based wireless drone networks. In International
Conference on Artificial Intelligence and Data Processing (IDAP), 2018.

[17] Y. Ganesh, R. Raju, and R. Hegde. Surveillance drone for landmine
detection. International Conference on Advanced Computing and Com-
munications (ADCOM), 2015.

[18] H. Kayan, R. Eslampanah, F. Yeganli, and M. Askar. Heat leakage de-
tection and surveiallance using aerial thermography drone. 26th Signal
Processing and Communications Applications Conference (SIU), 2018.

[19] T. Giitsidis, E.G. Karakasis, A. Gasteratos, and G. Ch. Sirakoulis. Hu-
man and fire detection from high altitude uav images. In 23rd Euromi-
cro International Conference on Parallel, Distributed, and Network-Based
Processing, 2015.



BIBLIOGRAPHY 52

[20] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A
benchmark. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

[21] M. Barekatain, M. Mart, H. Shih, S. Murray, K. Nakayama, Y. Matsuo,
and H. Prendinger. Okutama-action: An aerial view video dataset for
concurrent human action detection. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, 2017.

[22] M. Szankin, A. Kwaniewska, J. Ruminski, and R. Nicolas. Road condition
evaluation using fusion of multiple deep models on always-on vision pro-
cessor. In IECON 2018 - 44th Annual Conference of the IEEE Industrial
Electronics Society, Oct 2018.

[23] D. Hou, T. Liu, Y. Pan, and J. Hou. AI on edge device for laser chip
defect detection. In IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), 2019.

[24] Intel. Intel movidius myriad 2 vpu enables advanced com-
puter vision and deep learning features in ultra-compact
dji spark drone. 2017. https://www.movidius.com/news/

intel-movidius-myriad-2-vpu-enables-advanced-computer-vision

-and-deep-learn.

[25] A. Boka and B. Morris. Person recognition for access logging. In IEEE
9th Annual Computing and Communication Workshop and Conference
(CCWC), 2019.

[26] I. Lobachev, R. Maleryk, S. Antoschuk, D. Filiahin, and M. Lobachev.
Integration of neural networks into smart sensor networks. In 2018 IEEE
9th International Conference on Dependable Systems, Services and Tech-
nologies (DESSERT), May 2018.

[27] J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu. Embedded deep
learning for vehicular edge computing. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC), Oct 2018.

[28] DJI. E305 user manual. http://dl.djicdn.com/downloads/e305/en/

E305_User_Manual_v1.00_en.pdf.

[29] Hardkernel. Odroid xu4. https://www.hardkernel.com/shop/

odroid-xu4.



BIBLIOGRAPHY 53

[30] Intel. Neural compute stick. https://software.intel.com/en-us/

movidius-ncs.

[31] Intel. Neural compute stick 2. https://software.intel.com/en-us/

neural-compute-stick.

[32] Movidius. Neural compute application zoo. https://github.com/

movidius/ncappzoo.

[33] J. Redmon and A. Farhad. Yolo9000: Better, faster, stronger. arXiv
preprint arXiv:1612.08242, 2016.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

[35] thtrieu. Darkflow. https://github.com/thtrieu/darkflow.

[36] Susan Gawlowicz. Cracking down on poachers with imaging. 2019. https:
//www.rit.edu/news/cracking-down-poachers-imaging.

[37] D. Wheeler. Search and rescue drones catalog. 2019. https://www.

dslrpros.com/sar-drones.html.


	A Low-Cost Search-and-Rescue Drone Platform
	Recommended Citation

	tmp.1558028319.pdf.uCjJw

