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Abstract

This thesis is an attempt to understand and delve into the realm of atomistic simula-

tions, using it to understand a novel set of materials called Transition Metal Dichalco-

genides (TMDs). We use NEMO5 and MedeA-VASP to calibrate and characterize a

few selected TMDs and to validate our understanding of atomistic modeling we simu-

lated a tunnel field-effect transistor with monolayer TMD as a channel using NEMO5.

TFETs offer great advantages over MOSFET (metal oxide field effect devices) like,

sub-60 mV/dec sub-threshold swing, minimal leakage current, high switching speed,

and small power requirements. Low drive current has prevented TFETs from becom-

ing a mainstream device instead of MOSFETs. Two methods of improving TFETs

are being considered: one, making the device out of single-layered materials, and

two, using different kinds of materials, TMDs being one of them. This research uses

NEMO5 and MedeA-VASP atomistic modeling tools to understand both of the device

improvement approaches mentioned above. Variation in parameters that matter at

the atomic scale, like high symmetry k -point path, k -point meshing, and plane-wave

cut-off energy exhibit prominent effects on the band-structure of a material. NEMO5

E-k band structures were simulated for TMDs like MoS2 and WTe2 and the band-gap

structures obtained were compared with literature. Structure definition and atom-

istic device simulation were conducted in NEMO5. A TFET with a monolayer of

MoS2 as a channel was simulated to see the I-V characteristics obtained from the

NEMO5 tool. By performing electronic band-structure simulations with and without

spin-orbit coupling (SOC) and comparing it against electronic structures presented

in literature, it is shown that consideration of SOC is necessary for accurate results.

Atomistic simulations are computationally intensive and this work also explored the

effects of parametric and distributed computing settings on simulation times.
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Chapter 1

Introduction and Motivation

In order to improve our knowledge of materials and devices, it is common to start

with a theoretical model. Subsequently the model is validated for the robustness of

those equations for other materials and devices, alter variables to customize the model

parameters and once some understanding of the electrical behavior is acquired, start

optimization of the model parameters. ITRS (International Technology Roadmap for

Semiconductors)[21] has been used as a standard benchmark for measuring evolu-

tion in this industry and it has predicted a probable bottleneck in the growth of the

semiconductor industry once device scaling reaches a physical limit. FinFETs have

been able to solve for the lateral scaling needs of the device so far and show promis-

ing results for scaling down to 7nm devices. But beyond 7nm, devices have shown

additional thermal side effects, higher power dissipation, heat accumulation at the

fingers and self-heating [22]. With this work, we intend to focus on the scaling aspect

by using monolayers to increase gate control. In order to simulate a device with the

thickness of the order of single unit cell, we needed simulation tools and numerical

models that solve for electronic behavior at the atomistic level. This work was in-

spired by multiple research groups who have invested heavily in atomistic simulation

projects.

The center for Low Energy System’s Technology (LEAST) is a research group that

is currently funding 12 universities and working in collaboration with 6 major com-

1



CHAPTER 1. INTRODUCTION AND MOTIVATION

panies, including but not limited to Micron, Texas Instrument, IBM, and Raytheon.

IBM and D-wave have already established a market for commercial quantum comput-

ers and made themselves primary suppliers of those systems. Very recently, Silvaco

(whose TCAD tools we use at our University to train students in process simula-

tions) acquired the nano-electronics modeling software NEMO5 that came out of a

research group from Purdue headed by Dr. Gerhard Klimeck. This thesis is exten-

sively focused on the working and operation of NEMO5 tool used for atomic level

quantum simulation. Looking around, from powerful establishments like Google and

Tesla to startups budding in the semiconductor industry, all are aiming for smaller

and better devices. These activities establish the financial and innovative interest in

atomistic simulations. The need for low power, low leakage, smaller footprint, high

current drive, and a steep sub-threshold slope is evident. The purpose of initiating

research based on atomistic simulation at RIT is to have an understanding of TFET

devices, to enable atomistic simulations and to optimize them. The aim is to enter in

the professional world as better equipped engineers. The purpose of this study is to

characterize novel TMD materials using atomistic simulators (NEMO5 and VASP)

and further to simulate the operation of a monolayer TMD in a tunneling field-effect

device. High leakage current in small devices have called for the development of

tunneling devices. Through this study, we aimed at understanding the atomistic

simulation that can be used to optimally emulate high-end tunneling and quantum

devices. Dr. Salahuddin [23] in his very recent publication introduces this phase of

scaling devices as hyper-scaling.

This project also intends to increase the footprint of simulation and design-based

research in RIT’s Microelectronic department. Primarily for this thesis, we used

an outsourced server space from Purdue University, which hosts NEMO5, wherein

a reasonable amount of time was consumed in queuing of jobs. Owning to large

computational needs of heavy duty programs like NEMO5 and VASP, we acquired a

2



CHAPTER 1. INTRODUCTION AND MOTIVATION

new 36 core processor with high-end GPU that allowed us to cut down our run time

by a reasonable margin. But now, with our own systems in place, quick screen tests

can be performed before submitting the jobs to higher power servers for complex and

many point calculations.

1.1 Need for Atomistic Simulations

The main motivation for simulations is optimized process and device design. Processes

and devices have been modeled so far in a classical manner using TCAD modeling

methods. These methods have been tested and benchmarked against experimental

data for macro and micro-devices and having sustained years of experimentation,

TCAD modeling has been established as an economical and reliable tool for modeling

semiconductor devices for a wide range of materials. But the persistent scaling down

of devices has reached a point where the physical dimensions of the active device

have come down to a countable number of atoms [24]. The charge transport at the

atomistic level reaches the ballistic regime. Nano-electronic phenomena like tunneling,

scattering, atomistic disorder, and phonon emission have become dominant in such

devices and the numerical models used so far for TCAD modeling have proven to be

insufficient in modeling them accurately. This calls for the need of numerical models

that operate at the atomistic level. The moment scales reach atomistic levels, the

output obtained are in terms of probabilities instead of discrete values. A nano-

electronic atomistic solver like NEMO5 consists of numerical models that operate on

solving the Poisson equation and the Schrodinger equation self consistently starting

from an initial guess. The reproducibility of such calculations can prove to be reliable

only when the system is very accurately calibrated, which needs multiple iterations

and experiments. This study is therefore a call for more such experiments so that the

simulation tools can be appropriately calibrated and be efficiently used to explore the

unknown technology and materials.

3



CHAPTER 1. INTRODUCTION AND MOTIVATION

TFET device operation at the atomic scale has the benefits of small footprint,

high switching speed, and low power consumption. But it also faces issues like high

leakage current and small drive current. The main parameters characterizing the

operation of diffusion transport device are sub-threshold swing (SS) and the ION/

IOFF ratio. Sub-threshold swing is the value of gate voltage required to change the

drain current by a factor of 10 and is given by equation 1.1:

SS(real) =
κTn

q
ln(10) (1.1)

where n is a dimensionless quantity that factors in the non-ideal behavior and T is the

temperature. This shows that at room temperature one can have a minimum of 60

mV/dec SS. The only way to surpass this limit is to move from diffusive transport to

tunneling transport, leading to the requirement of tunneling devices like Esaki diodes

and tunneling field-effect devices (TFETs).

Transition metal dichalcogenides (TMDs) belong to a group of materials that

consists of transition metals like tungsten and molybdenum with chalcogens like sul-

fur and selenium. The research in using TMD materials as possible material for

electronic devices is only about a decade old, therefore studying them was interesting

and challenging. TMDs have an electronic configuration where d-orbitals are partially

filled and are non-bonding which sets them apart from other molecular systems. The

non-bonding d-orbital gives rise to van der-Waal forces between two consecutive lay-

ers which makes exfoliation of mono-layers from bulk materials easy. These unique

properties of TMD materials allows them to have tunable bandgap, surface free of

dangling-bonds, and easy extraction of thin layers for prototyping a device.

4



CHAPTER 1. INTRODUCTION AND MOTIVATION

1.2 Current state of research in TMD devices

With a certain section of research in semiconductors focused specifically on the scaling

of devices, a relentless search in finding 2-D semiconducting devices is going on.

Along with graphene layers and black phosphorus, TMDs have also been rigorously

researched. TMDs particularly stand out because of their strong in-plane bonds,

therefore, preventing any atomic diffusion into other layers like the substrate and

so provides a strong thickness control [25]. They have the ability to establish van

der-Waal bonds with other 2-D layers giving way to tunable band-gaps, an ability

to form hetero/homo-junctions and no dangling bonds. About 126 transition metal

dichalcogenides have been studied so far, but a small percentage of them have made it

to experimental studies[26]. A few compounds have been found to be unstable in air

and the rest are under consideration [26]. Tungsten and molybdenum are the most

studied elements, combined with chalcogens like sulfur, selenium, and tellurium.

Figure 1.1: A short list of various TMD materials in research[1]
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Figure 1.1 shows an example chart of different kinds of TMDs under research.

So far there has been not enough experimental data gathered to have a consensus

on the band gap of these materials. Molybdenum disulfide and tungsten ditelluride,

as Aron et. al very clearly mentions in his study of Ab initio simulations for 2-D

materials [27], even after being rigorously studied so far, have not reached a consensus

in terms of lattice constants and band gap. This thesis refers to his study as well

for band gap and simulation information. Study shows, by the year 2015, about

5000 research publications were published on 2D material [1] and market research

shows that atomistic computation market will grow over $2 billion by the year 2020

[28] (Figure 1.2). With the trends shown in Figure 1.2, it is evident that the scope

of atomistic modeling is growing at an exponential rate thus calling for the need for

more people equipped with the understanding of both the device physics at the atomic

scale as well as simulation of systems that can be used to make devices at the atomic

scale. This simulation-based study, therefore, becomes one of the stepping stones for

the future research.

There have been many studies that have discussed the electronic structure of

TMDs. Table 1.1 is a small collection of different simulation setups used by some

of the researchers, specifically for molybdenum disulfide and tungsten ditelluride.

The table consists of three parameters that have been shown to greatly affect the

simulation of the electronic properties a lot: k-space matrix, “a” lattice constant of

the unit cell and the numerical models used for obtaining the band-structure.

Material k-space matrix “a” lattice Model Used Eg (D/I) Ref

MoS2 12x12x1 0.319 nm (VASP) GGA-PBE 1.59 eV (D) [29]
MoS2 25x25x1 - (VASP) GGA-PBE 1.67 eV [27]
MoS2 20x4x1 - (ATK) GGA-PBE 1.805 ev (D) [5]
MoS2 31x31x1 0.3122 nm (EXC!TING) PBE 1.79 eV (D) [19]
WTe2 40x40x1 0.356 nm (VASP)GGA-PBE 0.74 eV(D) [29]
WTe2 - - ab initio 0.75 eV (D) [30]

Table 1.1: Experimental setup from various literature on TMD material characteristics(not
extensive)
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(a) Budget predicted for atomistic computing[28]

(b) Literature survey of 2-D material[1]

Figure 1.2: Literature survey of research in 2-D material as of 2015 and the predicted
market for quantum computing by 2020

In Table 1.1 k-space matrix or k-points can be defined as the number of points

in the k-space of the material’s Brillouin zone along which the band structure is cal-

culated. The importance of this parameter lies in the determining the accuracy of

the bandstructure and in estimation of the computational time. The other parameter

mentioned in Table 1.1 is lattice constant “a” and “c”. They correspond to the di-

mensions of the unit cell in x-direction and z-direction respectively (where z-direction
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is the height). The value of these lattice parameters is of prime importance in calcu-

lating the bandgap of a material as they decide the electrostatic interaction between

the atoms of the material. The “c” parameter in particular controls the distance be-

tween two consecutive monolayers layers of material. Therefore, in order to simulate

the band-structure and electronic behavior of a monolayer, the system should be set

up in a such a way that “c” is large enough to eliminate any electrostatic interaction

between the two layers of the material.

It is evident from Table 1.1 that with the same model used for band-structure

calculations for MoS2, two studies show two different values for band-gap: according

to one, a monolayer of MoS2 should have an Eg of 1.59 eV, and according to another, a

monolayer of MoS2 should have an Eg of 1.805 eV. There clearly seems to be a lack of

consensus. Therefore, in this work, we investigate these parameters and compare the

results obtained with additional publications. We also initiate the call for conducting

more atomistic simulation-based projects.

1.3 Thesis Outline

This thesis is primarily divided into three sections: Chapter 1 introduces the need

for simulation-based research, and serves to enlighten potential researchers. Chapter

2, Chapter 3 and Chapter 4 deal with the theory of devices, atomistic modeling and

transition metal dichalcogenide materials. Chapters 2 and 4 are foundations needed

for the final chapters, 5 and 6 dealing with results and discussion for the simulations

conducted in this project. Chapter 5 discusses only the material characterization of

the TMD materials. This section segues into Chapter 6 which is a discussion about

simulated tunnel diodes and a tunnel field-effect device consisting of III-Vs and a

monolayer channel of MoS2, respectively. Chapter 7 summarizes the project and

provides with the final conclusions. It also briefly discusses the future prospects of

this research.
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Chapter 2

Theory of Transition Metal Dichalcogenides: Novel Materials

2.1 Introduction

Transition metal dichalcogenides (TMDs) are known to date back to about 2.9 billion

years [3], yet studying TMDs as probable device material is only about a decade

old. There are over 88 TMDs known in bulk form [26] out of which a considerable

number could be exfoliated into 2D layers. Filip et al. presented an extensive study

of 51 TMD materials, comparing the band-structures and electronic properties via

simulations using local density approximation [26].

TMDs fall under the category of layered materials like graphene, which is graphite

in monolayer form. They are known to cover a wide range of electrical properties:

from insulating, to semiconducting, to metallic. With a general molecular formula

MX2, transition metal dichalcogenides consist of chalcogens (Group VI, e.g., S, Se,Te)

elements (X) sandwiching a transition metal (Group IV, e.g., Mo, W) (M). These

elements’ position in the periodic table can be seen in Figure 2.1.

The molecule is sp3 hybridized with a non-bonding d-orbital in a plane perpendic-

ular to other orbitals. This leads to weak van-der Waal forces between two layers. The

system consists of 6 anti-bonding orbitals which are partially occupied and therefore

it provides high mobility to the occupying electrons [3]. Due to this sp3 hybridization

the electronic properties of TMD materials range from metallic, NbS2 to insulating,
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Figure 2.1: Periodic table highlighting transition metal dichalcogenides [2]

HfS2. The more interesting ones lie in the semiconducting range, like MoS2, MoSe2,

WS2, to name a few.

Figure 2.2: Molecular orbital configuration of transition metals according to ligand-field
theory [3].

Figure 2.2 shows the electronic configuration of Co(NH3)6
−3, another TMD ion. It

is presented here to give a basic understanding of the electronic configuration of TMD

molecules. The electronic properties in TMDs are not only guided by the electronic

configuration of the system, but also by the stacking of molecular layers. Figure

2.3 shows a bilayer configuration of WTe2 with hybridized orbitals shown in pink.
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Figure 2.3: DFT relaxed structure of MoTe2 with charge density clusters (pink, cloud
like) demonstrating charge accumulation in the van-der Waal gap associated with sp3 hy-
bridization of chalcogen atoms [3].

The figure shows the presence of non-reactive lone-pair electrons in d-orbital of the

chalcogen (the pink lobes between the two layers). These electrons do not participate

in chemical bonding which prevents the two layers of MoTe2 from getting linked to

each other. They instead stay attracted towards each other only via weak van der

Waal’s forces. This is the case with TMDs; the materials that have an inert pair of

lone-pair electrons in their valence orbital.

The text by Alexander V. Kolobov and Junji Tominaga [3] provides many addi-

tional details of importance in various other transition metal dichalcogenides and their

structural characteristics. In order to progress with actual simulations, this work will

focus on a smaller subset of the possible materials. Following sections briefly discuss a

few well-known TMD materials, namely molybdenum disulfide, tungsten ditelluride,

and tungsten disulfide. The sections discuss the crystal properties and the band-

structure for bulk, bi-layer and monolayer systems of the mentioned materials.
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2.2 Molybdenum Disulfide (MoS2)

2.2.1 Crystal Structure

Molybdenum disulfide (MoS2) is one of the most researched TMD materials. It is a

layered transition metal dichalcogenide with an indirect band-gap of 1.23 eV in bulk

configuration. There exist two stable structural polytypes of MoS2. One is trigonal

prismatic (2H) which is semiconducting in nature and the other is octahedral symme-

try which is known to be metallic [31]; both are shown in Figure 2.4. In 2-H configu-

ration each molybdenum atom is sandwiched between two sulfur atoms via covalent

bonds forming a hexagonal structure and multiple layers are stacked against each

other via van der Waal’s forces thereby making the process of obtaining monolayer

easy. The surface of bulk molybdenum disulfide along the (0001) plane is chemically

inert due to a dearth of any dangling bonds [32], although a particular study cited

in [32] shows chemical reactivity at the edges of single-layer MoS2 nanocrystallites.

The edges, once strategically reconstructed showed an affinity towards reaction with

cobalt, nickel, and iron, which could be used as potential dopants. The surface de-

fects, bond strain and changing topography can be induced to change the electronic

behavior, but in its natural form, the surface of MoS2 lack defects.

Molybdenite in mineral form, MoS2 has crystal lattice constants equal to 0.316

nm for “a” which is equal to lattice constant “b” and 1.229 nm for lattice constant

“c”. The molecule is bound by bond lengths of 0.238 nm between Mo-S and 0.312

nm between S-S atoms [19]. The crystal belongs to space group p63/mmc in bulk

configuration and p62/mm in monolayer configuration. The hexagonal Bravais lattice

translates to a hexagonal Brillouin zone, as shown in figure 2.5.

The high symmetry points in Figure 2.5 are Γ-M-K when considered for a mono-

layer system and A-L-H that lie directly above and are taken into consideration when

a bulk system is considered.
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Figure 2.4: Typical MX2 bulk structure in 2 polytypes: triagonal prismatic and octahedral
[3]

Figure 2.5: Hexagonal Brillouin zone for MoS2 with high symmetry points [4]

Using the linear combination of atomic orbital theory (LCAO), molecular orbitals’

coupling for sp3d5 hybridization of MoS2 was analyzed. The valence orbital for molyb-

denum, 4d is coupled with the valance orbital for sulfur, 3p in sp3d5 hybridization

leading to pairing of unpaired d-orbital electrons thereby making the system un-

reactive and providing more “room” for charge movement (valence orbitals for TMDs
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have larger radii in comparison to other elements), leading to high charge mobility.

Due to the fact that in two-dimensional structures the molecular interaction along

the z-axis (height) is negligible, there is limited mobility in the z-direction. This

anisotropic mobility is a known property of other 2D materials as well and is taken

advantage of in designing device channels along the high mobility axis. Even though

2D MoS2 has the benefit of high charge mobility, there is a dearth of charge carriers

and the system has a small density of states at the high symmetry points. There-

fore, the current drive through devices that consists of MoS2 monolayer channels is

not known to be very high, unlike a semi-metallic TMD like WTe2, Figure 2.6. The

concept of increasing charge concentration by introducing surface defects like strain,

charged vacancies etc., is therefore considered a promising area of research for TMDs.

2.2.2 Band Structure

The effect of layering in MoS2 is observed when its band structure is analyzed. On

transitioning from bulk to monolayer, the system transitions from an indirect band-

gap between Γ-K (with value 1.232 eV) to a direct band-gap at K-K high symmetry

k-points (with value 1.8 eV). Gao et al. in his work [5] presented simulated results

showing this transition as shown in Figure 2.7. Eugene et al reaffirms this transition

and further points out how the lack of inversion symmetry in a 2D MoS2 leads to

band-splitting due to spin. This concept is not dealt with in detail in this work but

is of great importance for understanding the optical effects and valley effects in MoS2

[19].
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(a) Density of states in monolayer MoS2 [33]

(b) Density of states for monolayer Td-WTe2 [6]

Figure 2.6: Comparison of DOS for monolayer WTe2 and MoS2; WTe2 DOS is 8 times
higher than MoS2

2.3 Tungsten Di-telluride (WTe2)

2.3.1 Crystal Structure

Tungsten di-telluride, another layered transition metal dichalcogenide, comes under

the category of Weyl semi-metals which is a group of solid state crystals with Weyl

fermions as their low energy excitation charge carriers. These fermions carry an

electric charge even at room temperature leading to easy mobility of charge carriers

[6]. Furthermore, the mobility of Weyl fermions is independent of crystal symmetries
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Figure 2.7: MoS2 band-structure from monolayer to bulk system simulated using DFT-
metaGGA [5]: (a) bandstructure of monolayer MoS2 with direct bandgap of 1.805 eV
present at K k-point in the first BZ. (b) Bandstructure of bilayer MoS2 with an indirect
bandgap of 1.332 eV located between Γ point in valence band and K point in conduction
band (c)-(e) Bandstructure of 3-5 layers of MoS2 with indirect bandgaps located between
Γ point in valence band and K point in conduction band. (f) Bandstructure of bulk MoS2

with indirect bandgap reduced to 1.203 eV located between Γ point in valence band and K
point in conduction band

except translational symmetry leading to the high mobility of electric charge in Weyl

semi-metals. These metallic properties are observed in the bulk structure of WTe2.

Crystal structure of WTe2 resembles that of molybdenum disulfide but is distorted

along “a-axis”, i.e. tungsten (W) chain axis. Generally, TMDs exist in either 1T or

2H crystal configuration. Unlike other TMDs, WTe2 is found to be most stable

16



CHAPTER 2. THEORY OF TRANSITION METAL DICHALCOGENIDES:
NOVEL MATERIALS

in distorted 1T configuration (Td) where the distortion is caused by displacement

of tungsten atom from the center of telluride octahedral, where one metal atom is

surrounded by six chalcogens(tellurium) and two metal atoms (tungsten), as shown

in Figure 2.8 [6]. The reason for this distortion is still unclear and under research,

although it has been confirmed via Raman spectroscopy that Td-WTe2 has the lowest

energy among all the polytypes of WTe2 and therefore is the most stable configuration

for it. WTe2 has orthorhombic lattice structure (Brillouin zone) [7] and Pmn21(C7
2v)

space group.

Figure 2.8: (a)Structure of orthorhombic symmetry seen in stacked Td-WTe2

(b)Polyhedral representation of Td-WTe2 showing W atoms’ displacement leading to buck-
ling of W chain along “a” axis [6]

WTe2 crystal also shows large non-saturating magneto-resistance and unique ther-

moelectric properties, making itself stand out among other TMD materials. An in-

teresting review on WTe2 is provided by Tian et. al [7].
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2.3.2 Band Structure

Tungsten ditelluride belonging to the category of layered TMDs, as discussed above,

has a crystal structure which is stacked along c-axis via van der Waal forces. This

property, as for other TMDs, can be utilized for tuning electronic gap for the material.

The band structure for WTe2 can be seen in Figure 2.9b, for bulk and monolayer as

presented in [6]. Experiments have shown WTe2 transitions from metallic character-

istics to insulating characteristics when reduced from bulk structure to a few layers

[7], shown in Figure 2.9a but not enough literature has been found to validate this

information. Figure 2.9a shows Y1 axis with conductivity (≈ e2/h) for each layer and

Y2 with the corresponding resistivity (ρ) plotted against Temperature (K) on x-axis.

2.4 Tungsten di-sulfide (WS2)

2.4.1 Crystal Structure

Tungsten disulfide in bulk form has a trigonal prismatic crystal structure resembling

that of MoS2, with a hexagonal Brillouin zone as shown in Figure 2.10. The material

belongs to space group P63/mmc, where a unit cell has a threefold rotational axis

about the c-axis and a mirror plane about the position of tungsten atoms. The

system, similar to MoS2, is stacked mono-layers of S-W-S units via van der-Waal

forces. A single unit cell has a lattice constant of “a”=0.3153 nm and “c” = 1.2323

nm according to [8].

2.4.2 Band Structure

Up until the year 2001, not many experimental band structure for WS2 had been

procured [8], though, Klien et al. conducted both simulations and experiments to

characterize WS2. In bulk, the system shows an indirect band-gap of 1.34 eV (exper-

imental results, [34]) as shown in Figure 2.11a. For a single layer system, WS2 shows
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(a) Transition of WTe2 from metallic to insu-
lating.

(b) WTe2 EK plot for (a) bulk and (b) mono-
layer

Figure 2.9: Transition of WTe2 from metallic to insulating as presented by [7]
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Figure 2.10: Crystal structure and Brillouin zone for WS2 [8]

an indirect band-gap of 1.6eV, Figure 2.11b. Very scarce literature is available on ex-

perimental results of the characterization of single layer and therefore band structure

of WS2 monolayer is under research.For instance in [35], Gusakova et al did an elab-

orate study on electronic structures for four TMDs (MoS2, MoSe2, WS2, and WSe2).

It quotes monolayer of WS2 to behave like a semiconductor with a band-gap of 2.03

eV [35]. A difference of 0.5 eV in band-gap is a large value to disturb the consensus

and therefore calls for more research to be conducted for electrical properties of WS2.

There has been very limited literature simulations for WS2 and WTe2 band struc-

ture using the hybrid functional like HSE06. Such a study would be an interesting

extension to this project.

2.5 Chapter Summary

This chapter was intended to provide a description of electronic structure of transition

metal dichalcogenides (TMDs) using example of three specific TMDs; one very heavily

researched and the other two with enough empirical and experimental data to see their

potential as promising novel materials. MoS2 is discussed elaborately as it is studied

in detail in this project as well. MoS2, as various literature quotes, shows a transition
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(a) E-K plot for WS2 bulk

(b) E-K plot for WS2 bulk

Figure 2.11: Band-struture of WS2 as given by [8]

from indirect band-gap system to a direct band-gap seen at K k-point in Brillouin

zone. Unique magneto-resistive properties were seen in WTe2 and an interesting

transition from highly conducting to insulating is seen when the system transitions

from bulk to single layer respectively. The brief introduction presented shows, WTe2

is not yet found to be a suitable semiconductor for field-effect devices but shows the

great ability for tuning band-gap. This chapter introduces basic material properties

for molybdenum disulfide, tungsten di-telluride, and tungsten disulfide.
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Chapter 3

Device Physics: Tunnel Diode, TFET and Heterojunctions

3.1 Introduction

In a classical semiconductor device operation, the charge carriers gain energy to go

over the potential barrier created by the dopant concentration junction. Tunneling

devices on the other hand do not require the charge carriers to gain that much energy.

If the energy barrier is sufficiently thin/narrow, the charge carriers can tunnel through

the barrier. The potential energy and the momentum of the incoming wave dictates

the probability of wave transmission through the barrier. The potential energy (as

in classical physics) is dependent on the mass of the charge carriers (electron and

holes). Therefore, the heavier the effective mass (i.e., the mass of electron/hole when

under external forces like an electric field), the lower will be the tunneling probability,

as shown by equation 3.1. The equation presents the transmission probability of an

electron wave, obtained from the WKB approximation [36].

T =
exp(−2

∫ x2
x1
dx

√
2m
h̄2 (V (x)− E))

(1 + 1
4exp(−2

∫ x2
x1
dx

√
2m
h̄2 (V (x)− E)))2

(3.1)
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Here m is the effective mass and the denominator factor is squared, therefore

effective mass has a higher impact on the transmission coefficient. The transmission

probability, therefore, depends on the width of the tunneling window, i.e., in classical

terms, how much distance the wave will have to travel before it is on the other

side of the barrier. This factor is governed by the energy difference: (V (x)− E).

The equation 3.1 assumes that V(x) > E. The derivation of transmission coefficient

through the WKB approximation is technically dense and for the simplicity of this

document, it is not discussed in further detail.

Nonetheless, all the important details needed to understand the operation and

architecture of the tunnel diode and tunnel field-effect devices are discussed in the

following sections.

3.2 Tunnel Diode Theory

Tunnel diodes were discovered by Esaki in 1958 [37] when he saw an anomalous

current in a degenerately doped germanium p-n junction. A typical tunnel diode is

comprised of an abrupt p-n junction which is degenerately doped on both sides. The

heavy dopant concentration on both sides causes the Fermi levels for both sides to

reside inside the allowed bands. In these devices, the Fermi energy level of the n-side

lies at least a few kT/q above the conduction band edge and the Fermi energy level

on the p-side lies at least a few kT/q below the valence band edge. With extreme

levels of degenerate doping, the Fermi level can be significantly farther than kT/q

from the band edges. In the absence of external bias, an occupied state at a given

energy level on the n-side corresponds energetically to an occupied state on the p-

side; likewise, an unoccupied state at a given energy level on the n-side corresponds

precisely to an unoccupied state at the same energy level on the p-side. Due to high

dopant concentration, the energy barrier in the depletion region between the n-type

and the p-type regions is very narrow in comparison to the conventional p-n junction
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[38]. If this dimension is less than the deBroglie wavelength for the material (on the

order or less than 100 Å), tunneling may take place.

When the tunnel diode is reverse biased with the n+ side at a higher potential

in comparison to the p+ side, the relative energy position of the conduction band

edge of the n-type region (ECn) to the valence band edge of the p-type region (EV p)

decreases as the ECn lowers with respect to EV p. This allows increased probability of

tunneling of holes from p-side to n-side leading to a monotonic increase in current in

the reverse direction, as shown in Figure 3.1a (b). When the diode is slightly forward

biased, ECn moves up with respect to EV p. On the either side of the junction, there

are a few electrons (filled states) above the Fermi level and a few holes (empty states)

below the Fermi level. When the diode is further forward biased, the conduction band

of the n-doped side gets aligned to the unoccupied states present on the p-doped side,

thereby opening a tunneling window (Figure 3.1a (c)).

When the voltage reaches VP (Figure 3.2), the energy band overlap offers the

maximum number of occupied states on one side to be aligned to the maximum num-

ber of unoccupied states on the other side thereby providing the maximum tunneling

current. On further increasing the voltage in the forward bias beyond VP , the two

bands get misaligned. Now the conduction band edge on one side starts to surpass

the valence band edge on the other side. Therefore, the tunneling current starts to

decrease.

The phenomenon of decreasing current with an increase in voltage is known as

negative differential resistance (NDR) and it is the key characteristic of a tunneling

device. NDR indicates the voltage range in which the tunneling window exists. Once

the conduction band edge completely crosses over the valence band edge, we see an

increase in current again. This current is now diffusion current; the charge carriers

(here electrons) have enough energy to overcome the energy barrier to reach the other

side rather than by tunneling through the barrier.
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(a) Energy band explanation of tunnel diode operation [9]

(b) Ef [10]

Figure 3.1: (a)graphical depiction of band energy of tunnel diode at different biases [9]
(b)Effective band gap (Ef ) in InGaAs-GaAsSb heterojunction tunnel diode[10]
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Figure 3.2: Negative Differential Resistance shown in tunnel diodes vs diffusion current
in conventional diodes [11]

3.3 Tunnel Field-Effect Transistors

Conventional field-effect technology is limited by field-driven and diffusive charge

transport. It primarily relies on the modulation of thermal emission of charge from

source contact to drain contact via the channel region, controlled by gate voltage (Vg)

and supply/drain voltage (Vd). The subthreshold swing for a MOSFET is given by

equation 3.2

SS = (1 +
Cdep

Cox

)
kT

q
ln(10) (3.2)

Since the depletion capacitance and the oxide capacitance in a MOSFET will al-

ways be positive, the minimum value for the given SS will be limited to 60 mV/dec

at room temperature. Therefore, in order to obtain smaller subthreshold swing, the

device operation needs to be independent of ambient temperature. This requirement

is fulfilled by tunneling field-effect transistors (TFETs). TFETs are steep subthresh-

old swing transistors in which the charge transport is carried out via band-to-band

tunneling (BTBT) between source and channel. The device architecture consists of

degenerately doped source and drain regions that sandwich an intrinsic region. The
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source and channel regions are doped with contrasting dopant types, i.e., if the source

is n-type doped then drain would be p-type doped or vice versa.

Figure 3.3: (a) TFET device schematic (b) Band bending in a TFET when under bias
(c)Change in ID with changing gate voltage (VG) in comparison to MOSFETs [12]

Figure 3.3 is a schematic showing the principle of operation of a typical n-i-p TFET

[12]. In the off state (dashed line in the figure), the conduction band edge of the source

is below the valence band edge of the channel, therefore the probability of tunneling is

small. Furthermore, since the junction between the source and the channel is abrupt

and the potential barrier between them is high either due to degenerate doping or

difference in materials, there is negligible diffusion current. This ideally leads to

a small leakage current in off state (i.e. small Ioff ). On applying a gate voltage

(negative in the given case), the channel region bands are pulled up just enough to

bring the conduction band of the source in line with the valence band of the channel,

thereby opening a tunneling window for Zener tunneling. The opposite doping at the

drain end permits a seamless path for charge carriers to be driven out of drain region
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as the valence band of drain lies above the valence band of the intrinsic region (in the

presented case) leading to drive current.

Drive current in a TFET is critically dependent on the tunneling probability of

charge carriers through the inter-band tunneling barrier. The tunneling probability,

given by equation 3.3, is obtained by approximating the tunnel barrier to be a triangu-

lar boundary barrier and then using WKB approximation [12]. WKB approximation

is known to work appropriately for only direct band gap semiconductor devices, like

InAs, but for indirect semiconductor tunneling FETs like those made from silicon or

germanium, the WKB approximation shows limited accuracy [12]. Equation 3.3 gives

the expression for transmission probability without including phonon scattering.

TWKB ≈ exp(−
4λ
√

2m∗
√
E3

g

3qh̄(Eg + ∆Φ)
) (3.3)

where m∗ is the effective mass of the charge carrier, Eg is the bandgap, ∆Φ is the

energy gap between conduction band of source and valence band of channel (like an

energy window), and λ is the effective tunneling length. Here λ is described by the

spatial extent of tunneling region at the source-channel interface, as shown in Figure

3.3 (b). For a TFET at constant VD, λ depends significantly on the value of VG.

On increasing VG, value of λ reduces indicating an increase in the energy difference

between the conduction band of source and the valence band of channel. This shows

a significant influence of VG in the initial approximation of drain current [12].

This exponential dependency of drain current on VG shows that, unlike in MOS-

FET, in a TFET the subthreshold swing’s dependence on the gate voltage is nei-

ther linear nor a constant value. Thus in a TFET, scaling down the gate voltage

scales down the subthreshold swing without increasing the leakage current, therefore

maintaining the device’s performance. To obtain a significant drain current from a

tunneling device, the tunneling probability should be aimed at being close to unity.
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As equation 3.3 suggests, in order to bring TWKB closer to unity, the device system

should have a minimized value of m∗, EG and λ. Here, m∗ and EG can be minimized

by choosing the appropriate material systems. Lamba (λ) on the other hand can

be controlled by geometric factors of the device, doping profiles and improved gate

control. High gate control can be attained by high dielectric (high-κ) and thin gate

oxide. To minimize λ the body thickness should also be minimized.

Ideally a one-dimensional body will provide the minimum body thickness and

therefore a small value of λ. Thus, with lowering both off current and supply voltage

(VDD), a TFET device can reduce the operating power of the system significantly.

For a TFET to operate efficiently, the following two conditions are required:

• A thin enough barrier for charge carriers to tunnel through spread over large

area to produce substantial current.

• Enough density of states in both the reservoirs and channel to provide energy

sites for carriers.

The following chapter discusses atomistic modeling theory which provides infor-

mation about the numerical models that can be used to estimate the electronic char-

acteristics of a material from an atomistic stand point. The folowing chapters discuss

the means of calibrating materials that can be used as one-dimensional channel ma-

terial for TFETs and other tunneling devices.
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Chapter 4

Theory of Atomistic Modeling

This chapter is the basis for the undertaken project, i.e. atomistic simulation of

tunneling devices. Simulation of any device starts with a process of defining the

working environment, identifying the variables and constants, and then developing

modeling equations to simulate the system operation. The environment definition

consists of the modeling of the material, setting up the crystal structure and the

thickness of material along with other material properties. These parameters are then

used in calculating the energy-momentum relationships (in k space) for the system

in consideration, which defines the band structure of the material. Band structure

of a material provides the characteristic information about the system such as the

range of a device’s operating voltage, mobility of charge carriers, magnetic and optical

properties of the material and the density of states of the charge carriers in low energy

valleys.

Atomistic modeling of a device holistically consists of two processes: first, cali-

bration and characterization of the material, followed by characterization of carrier

transport for the device of concern. The material is studied for its electronic structure

and optical properties using numerical models that quantify the effect of inter-atomic

forces. Charge transport in an electric field is highly dependent on the length of

the device, i.e. distance to travel. The following sections provide an insight into

the explanation and algorithm flow (where applicable) for different models used in
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electronic characterization and charge transport in a device under bias.

4.1 Numerical Models for Material Characterization

To estimate the electronic properties of a material, one needs to obtain the complete

solution of Schrodinger’s equation. For any material, the electronic property is esti-

mated by the analysis of energy-momentum (E − k) plot which contains the location

of the least energy valley points where the majority of the electrons reside. The

Schrodinger equation (SE) provides the total energy of the system and for a single

electron system as shown in equation 4.1.

Ĥ(x)φ(x) =
−h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (4.1)

where Ĥ is the Hamiltonian operator, h̄ is the reduced Planck constant, φ(x) is the

state vector of the system, m is the effective mass of the charge carrier, ψ(x) is the

position space wave function, V (x) is the potential energy variation along the x-axis

of the electronic system and E is the energy level of the barrier.

Solving SE for a single electron body is doable, but for all practical purposes, SE

needs to be solved for a multi-electron system, which is extremely complicated to

solve. Thus the problem statement is simplified by using approximations and system

boundaries. Different methods to solve Schrodinger’s equation are categorized on the

basis of their accuracy versus the computational time to reach an acceptable solution.

The solution is primarily approached through Born-Oppenheimer approximation for

nuclei motion [13].

Born-Oppenheimer approximation initiates a reduction of degree of freedom to

solve Schrodinger’s equation. The approximation suggests neglecting the velocity of

nucleus and states that the wave function will depend on the position of the nucleus

but not the velocity [13]. One of the widely used methods is known as Density
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Figure 4.1: Hierarchy of computational methods arranged according to accuracy and
computation expense [13] (a )Left: High accuracy and high computational expenses (b)
Right: Low accuracy and low computation expenses

Functional Theory (DFT) and is discussed in the following section.

4.1.1 Density Functional Theory

What is Density Functional Theory?

Density Functional Theory is a simplification method of solving the Schrodinger

equation for a multi-body system, by solving a fewer-variable electron density function

to get total energy of the system. The interactions influencing the system’s operation

in a multi-body system are:

• electron-electron interaction

• electron-nucleus interaction

• nucleus-nucleus interaction

• kinetic energies of electron

• kinetic energy of nucleus

In order to obtain the total energy of a system such described, one has to solve the

SE accounting for each of these interactions for all the electrons present. This is more

than just tedious. A million-variable SE equation is impractical to solve explicitly.
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Therefore, among other approximated methods to solve for a multi-body system,

DFT (density functional theory) is one of the most exploited theories. Using Born-

Oppenheimer approximation, one neglects some of the smaller-impact interactions in

a system like that of one nucleus on another. It neglects the dependency of the nucleus

velocity and considers only its position as a valid variable in the equation. With this

approximation in place, the kinetic energy for nucleus and kinetic interaction between

electron and nucleus can be safely ignored. The only interaction now valid regarding

nucleus is the coulombic interaction between the electron and nucleus and the position

of the nucleus. This approximation seems computationally safe as the mass of the

nucleus in comparison to an electron is very high, therefore the velocity tends to be

very small in comparison to the electron. It is safe to say that they are stationary

relative to electrons [13]. Such an approximation leads to a large reduction in the

number of variables that need to be solved for.

Born-Oppenheimer relation is position-dependent and therefore largely depends

on what system is being solved, the molecular structure, the lattice orientation and

resulting electron affinity of the molecule under consideration. While solving DFT,

this factor is considered as an external potential, therefore can be included in the

equation as an additive expression.

Another approximation employed in solving DFT was presented by Kohn-Hohenburg

in 1964 [39] and converted to approximation methods by Kohn-Sham [40] in 1965.

It states that the total energy of the system in its ground state shares a one-to-one

relation with the electron density functional of the system. Therefore, if we know the

electron/particle density of the system at the ground state, we know the total energy

of the system at ground state as well. Kohn-Sham developed a set of self-consistent

equations where the exchange potential/energy and the correlation potential/energy

appeared as additive potentials [40].

With all the approximations decided, now it is important to understand how
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DFT is computationally solved in order to get the solution (approximate solution) to

Schrodinger’s equation for a multi-electron system.

Method of solving DFT

The solution to DFT was proposed by Hohenberg and Kohn in the form of two

theorems. The first theorem implies that the expectation value of any many-electron

system in the ground state is a function of its electron density (ρ), given by Eq. 4.2.

The second theorem extends the first theorem in saying that the ground state energy

(E0) of a system will be in correspondence to the ground state electron density ρ0,

given by Eq. 4.3. This suggests that if one knows the ground state electron density

of a many-electron system, one can directly obtain the energy states of the system,

without going through the tedious/impossible calculation of solving the Schrodinger

equations for many-electron wavefunctions. Now, one can use variational principal to

calculate the minimum of the total energy functional, E0 which will be correlated to

the ground state electron density.

ρ(r) =
∑
i

|φi(r)|2 (4.2)

[
−∆2

2
+ VKS]φi(r) = εiφi(r) (4.3)

A system consists of interacting and non-interacting particles. Equation 4.3 gives

the variational principle Kohn-Sham equation that is used to transform multi-electron

system to single-electron system.

Kohn-Sham described these equations for a hypothetical system (called the Kohn-

Sham system) consisting of non-interacting electrons, which had the same density as

that of a system with interacting electrons. The impact of the interaction with other

electrons in Kohn-Sham system was expressed as an external potential. This external

potential is known as the exchange-correlation potential Vex, shown in Eq. 4.4.
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VKS(r) = v(r) + vH(r) + vex(r) (4.4)

where vH(r) is the Hartree Potential and vex(r) is the exchange-correlation potential.

Identification of the exchange-correlation potential dictates the accuracy and also the

computational cost of solving the set of equations. Third party simulator systems

like VASP (Vienna ab initio Simulation Package) and ATK (Atomistic Tool kit) have

been programmed to solve these equations depending on what exchange-correlation

function is being chosen by the user. These correlation functions were studied and

arranged in the order of simplicity and accuracy by JP Perdew and K Schmidt in

their famous publication [14] Figure 4.2, known as Jacob’s Ladder.

Figure 4.2: Jacob’s ladder [14, 15]

The ladder shows different approximations that can be considered, depending

on the requirement of the system and the availability of resources. As it shows,

Generalized Gradient Approximation (GGA) and metaGGA utilize double gradient of

electronic density, therefore normalize error that might be observed when calculating

using only the density, like in Local Density Approximation (LDA). The computation

accuracy is acceptable for GGA and so is its computational time consumption. As we

will see below, majority of the studies carried forward for these simulations have used
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GGA with PBE. HSE06 is another option, which is a hybrid of GGA and Hartree-

Fock formalism. It shows much higher accuracy than any other (apart from quantum

Monte-Carlo [13]) approximation, but the computational time and power consumed

in a simulation using HSE06 is way too large.

4.1.1.1 Hybrid Functional

Hybrid functional is a combination of discrete and exact exchange function from

Hartree-Fock theory and an exchange-correlation function from ab-initio or empirical

study. This is aimed to maintain a mean between the two methods thereby minimizing

the extreme anomalies. Meta-GGA (Meta Generalized Gradient Approximation) and

HSE06 belong to the category of hybrid functional. The choice of functional to be

used primarily depends on the kind of system at hand and the computational power

at hand. With respect to TMDs, there is a dire need for bench-marking HSE06 like

hybrid functional using different TMD materials. As we will see later in results, even

though research and experiments have shown HSE06 to be very accurate when used

for III-V systems or other semiconducting systems [15], we see it overestimates the

band-gap when used for monolayer MoS2.

4.1.2 Van der Waals forces in DFT- vdW-DFT

For material systems that exist in the form of stacked layers held together by van

der Waal forces, DFT that incorporates the van der Waal forces is also developed.

The local and semi-local functionals like local density approximation and gradual

gradient approximation do not account for the weak van der Waal forces that arise

due to fluctuating charge distribution between two non-bonding layers. In order

to incorporate these forces in DFT calculations, a correction factor is added to the

Kohn-Sham DFT energy equation as shown in equation 4.5 [41].
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EDFT−disp = EKS−DFT + Edisp (4.5)

In equation 4.5, EKS−DFT refers to the Kohn-Sham energy approximation and

Edisp is the non-local dispersion energy functional that incorporates the van der Waal’s

forces’ effect. Edisp correction factor in equation 4.5 is computed by using different

approximation methods which are non-local functionals [41]. VASP module provides

the option to use about seven types of these non-local dispersion energy approxi-

mations. All the approximations add van der Waal correction to potential energy,

inter-atomic forces and stress tensor. Therefore simulations involving lattice relax-

ation, molecular-dynamics, and vibrational analysis can be performed keeping van

der Waal’s forces into consideration.

4.2 Charge Transport Model Theory

For an operational device, the system’s reaction to an electric field needs to be ana-

lyzed. Once the dimension of the device’s operational length becomes comparable to

the lattice constant of the material, a quantum level analysis needs to be performed

for electron distribution in a non-zero electric field. The process, at a high level, in-

volves the inclusion of a link between external potential and charge carriers This link

is enabled by the Poisson equation. Therefore all the transport mechanism solvers

follow an input of electronic structure from the material characterization and use that

input to solve for the Poisson equation to give potential in the device. This follows a

self-consistent iterative process between this potential and a charge density obtained

from one of the charge transport models (QTBM or NEGF). Once the error between

two consecutive iterations reaches an acceptable value (like 1x10−3 or 1x10−5 eV),

the system moves to next voltage point. Given below is a brief discussion on the two

charge transport models.
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4.2.1 Quantum Transmitting Boundary Method (QTBM)

What is QTBM?

Quantum transmitting boundary method was developed by Lent in 1990[42]. It

is a generalized numerical algorithm developed to calculate the complete solution

of Schrodinger equation in the device region using boundary conditions appropriate

for two-dimensional charge transmission, also known as “current carrying states”

or “scattering states” [42]. QTBM’s specific focus is in obtaining a solution to

Schrodinger’s equation for open boundary device region under non-equilibrium po-

tential. The algorithm when first conceived was solved for a system partitioned into

a device region and a contact or leads region, which extended to infinity [42]. The

boundary conditions are formulated such that the device is discretized using finite

element method, which is connected to leads on left and right, Figure 4.3.

The process of breaking the system into discrete mesh nodes makes the calculation

of wave equation less complex as we would see in brief below. Generally, in a contin-

uous system, meshing can be done according to some pre-defined symmetry points.

In an atomistic system, the mesh nodes are set according to the location of atoms,

which is why the information about the lattice structure of the material under study

is of prime importance. Otherwise, it becomes very counter-intuitive to perform a

numerical calculation for a nodal point in places which in reality are a void.

Figure 4.3: Graphical description of device discretization consisting of device, left contact
and right contact [16]
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Defined device does not have rigid boundary, i.e. ψ0(x0) 6= 0 and ψN(xN) 6= 0.

Such a system allows transmission through the boundaries where there is a constant

injection from one reservoir (Source) and a consistent pumping out into the sink

(Drain), which permits a constant charge movement through the device. QTBM

functional is used to calculate the wave function through such an open boundary

device structure connected to infinite or semi-infinite leads.

How is it solved?

The device region is meshed and solved for the non-equilibrium transport equa-

tions whereas the contacts are assumed to be at local equilibrium. QTBM involves

solving of the system of linear equation given by equation 4.6 ([42]).

(T + V + Ĉ)u = P̂ (4.6)

where T is the discretized shape function (mxm) matrix for the device with m nodal

points. T can be obtained from equation 4.7

Ti,j =
h̄2

2m∗

∫
Ω0

[dxφi(r)dxφj(r)− dyφi(r)dyφj(r)]d2r (4.7)

Each of the “m” nodal point’s shape function has its associated wave function

approximation given by equation 4.8:

Φ0(x) =
2∑

i=1

Φ(ri)φi(r) (4.8)

Similarly V̂ present in equation 4.6 is also a (mxm) matrix of discretized potentials

across all ’m’ shape basis functions as given by equation 4.9:

Vi,j =
∫

Ω0

[V (r)− E]φi(r)φj(r)d
2r (4.9)
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The LHS of QTBM equation (eq. 4.6) consists of the isolated device Hamiltonian

with self energy from the two contacts (here, i and j refer to the two reservoirs/con-

tacts). The self energies can be obtained from the transfer matrix method where a

generalized eigenvalue problem solves for contact modes and these contact modes get

translated into a surface Green’s function and self energy. NEMO5 optimized this

attaining of self energies by some simplifications like using only real-valued operations

(for nanowires) and conversion of generalized eigenvalue problem to the normal eigen-

value problem. These simplifications cut down the computational time dramatically

[43]. For instance, the right hand side of the QTBM equation (eq. 4.6, gives the in-

jection of charge carriers from the given reservoirs/contacts, and depends on surface

Green’s function, contact propagating modes and the propagation phase factor. As a

simplification, NEMO5’s algorithm has a rewritten version of RHS that does not rely

on surface Green’s function explicitly thereby speeding up the computation of RHS

of the QTBM equation by 35 times in comparison to the direct solution [43].

RHS ∼ −
R∑

ΦP e
−ikp∆ (4.10)

This led to a speed up of 35 times the original speed, which is extremely useful given

the complexity of the original algorithm given by Lent [42].

4.2.2 Non-Equilibrium Green’s Function (NEGF/RGF)

What is NEGF?

NEGF, like QTBM, is a methodology to solve for the charge density and current

in the conductor region of the device when it is under bias, like solving Schrodinger

equation for wave functions for an open boundary system operating in ballistic regime.

The main difference between QTBM and NEGF is the inclusion of scattering in NEGF

and not in QTBM, causing an added computational expense in solving NEGF. The
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complete solution to transport model is still solved self-consistently, but now it is

between NEGF (for charge density) and Poisson equation (for potential). In solving

for the charge transport between two reservoirs that are not in equilibrium, NEGF

forms an interconnect between the two using self-energy functions. Below a short

description of solving transport model using NEGF is presented.

How is it solved?

Figure 4.4: Schematic of computational system with reservoirs under non-equilibrium, [H]
has Hamiltonian of device, self energies associated with contacts([

∑
1],[

∑
2]) and scattering

self-energy ([
∑

S ]) [17]

Given the Hamiltonian matrix for an infinite device region [H], shown in Figure

4.4 and given energy E, the Green’s Function is given by [17, 44]:

(E −H)G(x, x‘) = δ(x− x‘) (4.11)

Here the Hamiltonian [H] is considered for an infinite system. But in reality, one

needn’t solve for an infinite system and instead convert it to an isolated system with

Hamiltonian [H0] which is linked to the reservoirs via self-energies of reservoir “j” [
∑

j],

as shown in Figure 4.4. This leads to the formation of a retarded Green’s function
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(RGF) which is given by:

[G(E)] = (E[S]− [H0]−
∑
j

[
∑
j

(E)])−1 (4.12)

where [S] gives the identity matrix for orthogonal basis function which is used to

discretize the system [17]. Next, the self-energy matrix [
∑

j], which is of the same

size as [H0], can be given by

[
∑
j

(E)] = [τj][gj][τ
+
j ] (4.13)

where [gj] is the surface Green’s function for reservoir “j” and τj is the coupling matrix

for the device and reservoir surface. The non-equilibrium density matrix can then be

given by

[ρ] =
∫ ∞
−∞

dE

2π

∑
j

fFD(E − µj)[Aj(E)] (4.14)

with,

[Aj(E)] = [G(E)][Γj(E)][G+(E)] (4.15)

and Γj, the broadening function as

[Γj] = i([
∑

(E)]− [
+∑

(E)]) (4.16)

But here in the charge density matrix, the diagonal comprises the electron density

n, which is a function of potential U in the device. Therefore, to reach the point of

getting the density matrix and charge distribution, equation 4.14 needs to be solved

self-consistently with the Poisson equation, until a point of convergence is reached.

Finally, the drive current between the two contacts in the given ballistic system can
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be obtained from

I =
2q

h

∫ ∞
−∞

dET (E)(fFD(E − µ1)− fFD(E − µ2)) (4.17)

T(E) is the transmission coefficient which is given by

T (E) = Trace[Γ1GΓ2G
+] (4.18)

Under the umbrella of this general set of equations to solve for charge transport,

some optimizations are further performed to reduce the computational expenses. One

of them mentioned above is using the retarded Green’s function which is the reduc-

tion of the full matrix Green’s function into a sparse matrix with three rows filled

diagonally leading to a large memory saving for each data point. Due to the inclusion

of scattering, the computational time for NEGF is substantially large in comparison

to QTBM.

4.3 Chapter Summary

In the presented chapter, a brief view of the numerical methods of transport models

was provided. The shell algorithm flow is a self-consistent iteration between one

of these models and Poisson equation. An initial guess is given using some semi-

classical approach solved with the Newton-Raphson method. The NEGF method can

also be discretized using Finite Element Method (FEM). The atomistic modeling tool

NEMO5 employees RGF and QTBM for their charge density calculations. QTBM is a

preferred model when dealing with monolayer and no scattering is observed when the

system is 2D. This project is focused on devices consisting only monolayer materials

systems therefore only QTBM was used for device simulations.

43



Chapter 5

Material Characterization using VASP and NEMO5

5.1 Introduction

Keeping the focus primarily on TMDs (transition metal dichalcogenides), simulations

were performed to characterize the TMD materials available in the database of the

tool, MedeA-VASP (called VASP henceforth) and NEMO5. NEMO5 allows one to

override the default material parameters using commands while writing the input

deck. VASP too provides with such capabilities via its graphic user interface. TMD

material studied here are with a molecular configuration of MX2, where “M” is to a

transition metal, like molybdenum, tungsten (W) and “X” is a chalcogen, like sulfur,

selenium, tellurium etc. Structurally a TMD molecule consists of a transition metal

sandwiched between two chalcogens. When such molecules combine to form a unit

cell, each unicell has a hexagonal surface as shown in Figure 5.1 [18].

The common sequence of steps followed in VASP simulations was to use their

“infomatica” material database and search for the required material. The database

gives out the available material systems within various space groups. To identify the

most reliable system, we filter out the median of all the structures given and use the

one with the highest value. This ensures, to an extent, that the material parame-

ters are reliable. The obtained material is generally in 2-3 layer format, as shown in

Figure 5.2a . We convert this structure to a monolayer by removing the extra layer
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Figure 5.1: Structure of mono-layer TMD: top view. “a” is the lattice constant for given
unit cell [18]

(literally deleting the atoms in VASP, a little strange idea, but the code behind it is

strong enough to understand this “deletion”, so does not give erroneous values). To

ensure that the repeated layers do not interact with each other, we increase the height

lattice parameter (“c”) to 20-30 Å (“c” generally is about 12Å). The transition from

bulk to monolayer does not explicitly change any bond-lengths or lattice parameters.

Once the structure is set up, before simulating the band-structure, a structural relax-

ation/optimization is performed. This structural optimization relaxes the structure

a bit to bring it to the lowest energy state. To validate that the resulting structure’s

lattice parameters are not altered during the structural optimization, we re-check

the values and then re-submit the job to calculate the band-structure and density of

states. We used plane-wave cut off of 500-600 eV and optimization limit between 1e−5

and 1e−3 eV. Optimization/convergence limit refers to the allowed difference between

consecutive iterations.

For NEMO5 simulations for E − k, a similar approach was taken. Although,

instead of mentioning the lattice constant “c” as 20-30 Å, we designed the geometry
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and domain of the sample such that negligible interaction is present between two

consecutive layers. Here too, we first define the structure of the material, mention

the tight binding parameter to be used for energy-band calculations and the value

of lattice’s atomic radii. Then the domain and geometry are decided, which, if the

domain is fixed at 1x1x1, a monolayer structure could be achieved. The following

section briefly describes the results obtained for each of the mentioned TMD materials,

tool-based tweaks performed, tight binding models used, the k-space matrix used, and

the band structure along the high symmetry points along with their respective energy

gaps obtained from both the tools.

5.2 Molybdenum Disulfide (MoS2)

Molybdenum disulfide’s most explored space-group configuration is p63/mmc (in 3D)

and P6mm in 2D. This configuration is the result of a hexagonal structure of the

primitive lattice in two-dimensional space with mirroring along two axes.

5.2.1 Crystal Structure and Band-Structure

The crystal structure of MoS2 is best visualized using the GUI provided by MedeA.

The structure shows sp2d5 hybridization, therefore allowing strong covalent bonding

between the molybdenum molecule and sulfur molecules. Using this structure, we

bring the symmetry down to P1 (primitive cell) to convert the bulk structure to a

monolayer using the steps mentioned above. Figure 5.2 shows the before and after

images of bulk to monolayer conversion. Before any calculations can be performed,

we re-raised the symmetry of the system to p6m bringing it closest to a monolayer

MoS2.
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(a) MoS2 VASP bulk

(b) MoS2 VASP monolayer

Figure 5.2: Structure of MoS2 (a) bulk, bilayer (b) monolayer, with lattice constant c =
20A

5.2.2 VASP simulation

MedeA-VASP was used to calculate E − k plots and density of states for MoS2.

The first step towards band-structure calculation was cell relaxation. This enabled a

stress-free structure for the crystal. The second step was to identify the path of high

symmetry points in the Brillouin zone of MoS2. MoS2 is known to have an indirect

bandgap in a bulk system, which translates to a direct band-gap when the system is

thinned down to a monolayer. It should be noted that in a monolayer system, direct

bandgap is observed at K k-point and not at Γ-K k-point. It is in the bulk system

that one observes the minimum bandgap at Γ-K k-point point. A few references

[19, 5] validate this observation. The k-point path, therefore, picked for this study

was Γ-M-K-Q-Γ. Study of Brillouin zone shows the lack of band splitting at the given

k-point path, therefore they are called points of high symmetry. The mentioned path
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is the most common calculation path used in studies and therefore, to calibrate VASP

and NEMO, this same high symmetry path was considered.

Another aspect of E−k calculation is the k-space matrix. k-space matrix provides

the simulator with the number of mesh points in the reciprocal space of the Brillouin

zone. The effect of a different k-space matrix is:

1. Convergence of numerical models: for a dense mesh, a few failures in conver-

gence points do not lead to incorrect results

2. On the negative side, a denser matrix leads to a higher computational time.

For simulations performed in this study, k-space matrices of 31x31x1, 7x7x1, and

20x4x1 were used. This matrix spacing is with respect to monolayer systems only. In

the case of simulating bilayer systems, similar k-space matrices of 31x31x2, 7x7x2, and

20x4x2 could be used, or 31x31x5 for a bulk system with five layers. We investigated

monolayers and bulk systems consisting of five layers. These matrices were used to

replicate the system presented in literature for better comparison. There seems to

be no consensus on the effect of the k-space matrix on the electronic structure of the

material. To understand the effect, we tested different k-space matrices keeping other

parameters identical. Figure (5.3) shows E − k plots obtained from the test.

The observation of matrix-size test revealed a minor effect (but an effect nonethe-

less) on the band gap of the material. A matrix of 25x25x1 matrix size (without

spin-orbit coupling) gave a band gap of 1.7 eV, which is closer to what a few refer-

ences quote. The experiment does not show any linear relation with the matrix, yet

the value is affected. Our best guess is that this is due to mesh convergence. But for

this project, it still was an open question.

A final aspect of electronic structure simulation of a material is the tight binding

models used to calculate the values. For this experiment, we primarily relied on

density functional theory with GGA-PBEsol. Previous experiments [15] using III-V

materials were performed to find out computationally accurate and optimal models for
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(a) band structure with k-space matrix of
31x31x1

(b) band structure with k-space matrix of
25x25x1

(c) band structure with k-space matrix of
7x7x1

Figure 5.3: Results of VASP k-space matrix experiment: band gap 31x31x1: Eg= 1.67
eV; 25x25x1: Eg= 1.71 eV; 7x7x1: Eg= 1.65 eV
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material characterization. It has been found that even though HSE06 with GGA-PBE

is more accurate, it is computationally expensive. Therefore, DFT with GGA-PBE is

used with spin-orbit coupling kept in consideration. Figure 5.4 shows a comparison of

E−k plots for a monolayer MoS2 system. The comparison is made between the work

conducted by Kadanstev and Hawrylak in [19] and the simulations performed in this

research using VASP tool. Kadanstev and Hawrylak used Kohn-Sham DFT functional

to perform their simulations using a programming tool known as EXC!TING APW+lo

program. The k-space matrix of 31x31x1 was used to sample the Brillouin zone of

the single-layered MoS2 system. The bulk unit cell of MoS2 used by Kadanstev and

Hawrylak belonged to the space group P63/mmc and had lattice constants “a” equal

to 3.122Å and “c” equal to 11.986Å. The same system setup was used for this the

VASP simulation performed in this research shown in Figure 5.4. The expected band

structure for a monolayer system of MoS2 is a direct bandgap at k-point K - K with

value 1.79 eV, as per the cited literature [19]. Simulated plots show a bandgap of

1.64 eV at K - K zone boundary when calculated without spin-orbit coupling and a

bandgap of approximately 1.9 eV when the simulation is performed including spin-

orbit coupling.

Another simulation of band structure for MoS2 was performed to compare results

with the works of Gao et al. [5]. Gao et al used GGA-PBE variant of DFT functional

and they included a correction factor for van der Waal forces (DFT-D2). Spin orbit

coupling was not taken into consideration. The simulation included a monolayer

system of MoS2 with k-point sampling of 20x4x1 for the Brillouin zone. The same

set up was used in VASP for this study in order to replicate the reference work

and calibrate the material in VASP in doing so. The bandgap obtained for VASP

simulations was found to be in agreement of the bandgap obtained by Gao et al.,

which is equal to 1.8 eV as shown in Figure 5.5. This simulation work also showed

the impact of including van der Waal correction factor (i.e., using vdW-DFT) when
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(a) E-K of single MoS2 monolayer [19] Eg

1.79 eV (b) MoS2 VASP without SOC; Eg 1.64 eV

(c) MoS2 VASP with spin coupling; Eg ≈ 2
eV

Figure 5.4: MoS2 E − k comparison between reference (work done by Kadanstev et al.
[19]) and simulations performed using VASP; with and without spin orbit coupling inclusion
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obtaining the band structure of a system like MoS2.

(a) MoS2 VASP From Gao et al. [5]

(b) MoS2 VASP monolayer

Figure 5.5: Band structure comparison: MoS2 VASP versus simulation conducted by Gao
et al. [5]

Finally, a study was done to compare the difference between inclusion of spin-orbit

coupling and without including spin-orbit coupling using a hybrid functional, HSE06

as shown in Figure 5.6.

The bandgap obtained from DFT-HSE06 with spin-orbit coupling is overestimated

by 0.4 eV. Experimentally and via other DFT functionals, the bandgap for monolayer

MoS2 comes out around 1.8 eV. But this simulation gave a value of 2.2 eV. The reason

for this discrepancy is unclear, even though HSE06 is known to be more accurate than
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Figure 5.6: VASP simulation of MoS2 bandstructure using DFT-HSE06

other functionals [15]. Further study in inquiring the cause of this result did not lead

to a conclusion and proved computationally very expensive.

The run time for simulating MoS2 with the spin-orbit coupling on a four-core

system with no parallel processing was approximately two weeks. A slight error

in the results was therefore obtained after two weeks of wait, which clearly is a

huge computational road block. Since the time consumption proved to be such an

important factor, a brief study was done to benchmark VASP for runtime using

silicon, as silicon is the most common semiconductor and structurally not as complex

as TMDs. Once VASP was bench-marked for silicon, similar values for KPAR and

NPAR ( two VASP parameters for parallel processing) were used for GaAs, InAs and

MoS2 to see the improvement.

Table 5.1 enumerates the obtained runtime for different materials after varying

KPAR, NPAR and number of cores. In VASP module, NPAR and KPAR dictate the

number of cores that will be used to run each band structure. By default, these values

are equal to the number of cores requested and perform on a one-band-to-one-core
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Material Model Cores KPAR NPAR Run Time

Si HSE06 with SOC 4 default default 40 min
Si HSE06 with SOC 6 default default 30 min
Si HSE06 with SOC 4 default 4 20 min 11 sec
Si HSE06 with SOC 16 default 4 6 min 57sec
Si HSE06 with SOC 25 default 5 18 min
Si HSE06 with SOC 36 9 default 6 min 40 sec

GaAs HSE06 with SOC + DOS 36 default 6 29 min
GaAs HSE06 with SOC + DOS 36 9 default 15 min 40 sec
InAs HSE06 with SOC 4 default default 120 min
InAs HSE06 with SOC 36 9 default 15 min 18 sec
MoS2 HSE06 with SOC 4 default default 2 weeks
MoS2 HSE06 with SOC 36 36 default 2 days

Table 5.1: Table enumerating run time for different materials varying KPAR and NPAR.
Bold numbers, lowest runtime for silicon.

basis. For MoS2, the values are not optimized and since this experiment shows the

drastic effect in cutting down run-time when the process is distributed across cores

in an optimal manner, considering such a DOE on a larger number of materials and

more number of experiments is suggested for a future experiment.

5.2.3 NEMO Simulations

NEMO simulation for material characterization gives a limited number of tight bind-

ing models to be explored. Most prominently used model is DFT with GGA. Figure

5.7 shows a comparison between the E − k band structure obtained from NEMO5

with an E − k plot obtained from VASP by Kadanstev and Hawrylak [19]. NEMO5

input deck allows one to set the k-point path. The output files obtained are data files

of energy points, k points, and k distances. These can be plotted using either Origin,

MATLAB or Python or any other plotter. For this research, MATLAB was used to

plot the E − k band structures of different material systems.

In NEMO5, MoS2 was simulated along the high symmetry path that followed Γ-

Q-K-M-Γ with 20 k-points (nodes) between two consecutive high symmetry points.

The obtained output was normalized against the k-space in order to identify the zone
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(a) NEMO simulation of monolayer MoS2 us-
ing DFT-GGA

(b) E-K of single MoS2 monolayer using
VASP [19]

Figure 5.7: Simulation comparison of NEMO5 simulation of MoS2 versus VASP [19]

boundaries. A direct band-gap of 1.76 eV was observed at K k-point in the band-

structure, which matches very closely with the band-gap of MoS2 quoted in literature

[19]. An indirect band-gap of 1.673 eV was also observed between Γ and K k-points.

Models provided in NEMO5’s database factor in spin-orbit coupling as well, but

not for all materials. It is a growing project at the time of working on this thesis.

The presented plot is calculated without spin orbit coupling.
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5.3 Tungsten Ditelluride (WTe2)

Ab-initio simulations were conducted for WTe2 crystal. With the space group pmn21,

both monolayer and bulk systems were simulated. Jana et al mentions in his work

[6] how the unique magnetic properties of this material make it stand out from the

other TMDs and so it is not wise to analyze this system without spin-orbit coupling.

To verify this idea, we simulated the system in both the conditions, with and without

spin-orbit coupling, just so it is explicitly visible how dramatic the magnetic effect is

in WTe2.

5.3.1 Crystal Structure and Band Structure

Td-WTe2 is the most stable crystal configuration for this system. Figure 5.8 shows a

visualization of WTe2 via MedeA-VASP tool.

(a) Crystal struc-
ture bulk WTe2,
red axis=“a” blue
axis=“b”

(b) Crystal structure
monolayer WTe2,
red axis=“a” blue
axis=“b”

Figure 5.8: Crystal structure of WTe2 as visualized by MedeA tool, as bulk and in
monolayer

For visualizing an accurate monolayer (as the system exists in bulk by default),
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following steps were taken:

• Without moving the atoms from their positions, “c”dimention (z-axis, inter-

layer gap) was increased to 2 nm from 1.4 nm in order to minimize the van der

Waal force of consecutive layers.

• The system’s space group was dropped to p1 (primitive cell) so that the atoms

could be edited independently.

• Finally, the atoms of the top and bottom layer were removed from the structure

(deleted) to get the structure shown in Figure 5.8b

Using these configurations, the band structure of both bulk and monolayer systems

were simulated. The Brillouin zone was sampled with 20x11x1 and 20x11x3 k-points

to form the k-space matrix for monolayer and bulk systems respectively. GGA-PBE

variant of the DFT functional was used to solve for the electronic properties of WTe2

and obtain its band structure. The self-consistent algorithm (SCF) was set to converge

when the difference between consecutive iterations dropped below 1e−5eV. A plane

wave cut off limit of 500 eV was used. The systems were simulated with spin-orbit

magnetism enabled as well as disabled.

Figure 5.9 shows E − k band structure along Γ-B-S-Γ high symmetry points for

both bulk and single layer. This simulation is performed without spin-orbit coupling.

The plot in Figure 5.9 shows a clear overlap of valance band maxima and conduction

band minima, indicating a semi-metal type characteristics. The E − k plot for a

single layer system, when calculated under no spin-orbit coupling, shows the same

E − k plot as that of the bulk system with the exception of lesser bands, i.e., this

system also shows a semi-metallic property, even though experimental results and

theory suggests it should be insulating [6]. Therefore, another set of simulations that

included SOC (spin-orbit coupling) were performed. The results came at the expense

of time and computational resources. Our simulations did not show any transition
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(a) Energy-k distance band structure simulated for
bulk WTe2

(b) Energy-k distance band structure simulated for
mono-layer WTe2

Figure 5.9: E-K band structure for WTe2 (a) bulk system (b) monolayer system. High
symmetry path = Γ-B-S-Γ. (a) semi-metal output. No band gap (b) semi-metal structure;
less energy bands

to insulating behavior in the monolayer configuration. Figure 5.10 shows an overlay

of band structure calculated with and without spin-orbit coupling along a different

high-symmetry path than previous simulations. This band-structure follows Γ-Q-K-

M high symmetry path and shows a direct band gap at K valley point. The plot
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shows a direct band gap of 0.792 eV when calculated with spin-orbit coupling and a

direct band gap of 1.2 eV when calculated without spin-orbit coupling. This shows

there is a significant impact of spin orbit coupling on the electronic properties of

WTe2.

Figure 5.10: Bans-structure of monolayer WTe2 calculated with spin orbit coupling (solid
black) and without spin orbit coupling (dashed blue) using DFT-HSE06 functional in VASP

Looking at Figure 5.10, a distinct band splitting of the valence band at K-valley

can be observed when the band-structure is obtained keeping spin-orbit coupling

into consideration. This band splitting clearly shows how that spin-orbit coupling in

calculating the electron structure for TE2 is very crucial. Such a large difference can

have a significant impact on electronic behavior like bandgap and charge mobility

when the material is used in a device.

Literature like [6] and [7] quote heavy dependency of magnetic moment on tung-

sten ditelluride and they mention that the material is insulating in monolayer. The

simulations performed in this research show that in bulk the system does show metal-
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lic behavior, but in monolayer, it is semiconducting in nature with an Eg of 0.792 eV.

Now that a valid electronic band structure has been established for these three

materials, they can be further used in simulating devices. In the next chapter, a tunnel

field-effect transistor is simulated using monolayer of MoS2 as a channel. NEMO5

was used to perform device simulations.
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Chapter 6

Device Simulations

Now that the tool has been calibrated using MoS2, GaAs and other III-V materials

and their stacks [15], this chapter discusses the simulation of an InAs Esaki diode

and TFETs consisting of a monolayer channel of three TMD materials. Molybdenum

disulfide, tungsten diselenide and tungsten ditelluride are used in this study as the

choice of material for TFET’s monolayer channel. The experiment was set up to

observe the variation in I-V characteristics for different TMDs.

The flow of the chapter is as follows: The first sections describes the simulation

of an InAs Esaki diode which had been fabricated and tested by David Pawlik in

his research [20]. The structure of the fabricated device and its translation into a

nanoTCAD equivalent structure using NEMO5 is presented to give an example of

device structuring in NEMO5 input deck.

The second section discusses a TFET example with monolayer channel, its input

deck structure and important parameters of the input deck. The TFET is simulated

with three different TMD materials, MoS2, WTe2, and WSe2. The I-V characteristics

are plotted and compared for the simulated materials. This device is not compared

against any literature or experimental data, as the purpose of this experiment was

to understand the operation of the tool for a TFET using a material that had been

previously calibrated for the tool in use, i.e., NEMO5.
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6.1 InAs Esaki Diode Study

David Pawlik et al [20] fabricated InAs Esaki PN junction diodes using MBE (molecu-

lar beam epitaxy). They used Jp (current density) as one of the benchmarking figures.

Therefore the same benchmark parameter was used in this research for the simulated

structures and the obtained values were compared against the experimental results.

This homojunction system was picked because of the availability of experimental re-

sults and the in-depth knowledge of its structure such that it could be confidently

reproduced for the simulations. Fabricated structure had P++-I-N++ configuration

with doping densities of 1xe19 cm−3, 1.6xe14 cm−3, and 1.8xe19 cm−3 respectively. The

material stack is shown in Figure 6.1.

Figure 6.1: Schematic structure of InAs homojunction Esaki diode [20]

6.1.1 NEMO5 Input Deck Structure

NEMO translation of the presented system is as follows: by syntax, NEMO input deck

is mainly divided into three blocks, Figure 6.2, enclosed within “curly brackets”. The

first block describes the “Structure” of the device. Within the structure block, there

are “Material blocks”, “Domain blocks” and “Geometry blocks”. These three

blocks together consist of information about the structure of the device. The correct

order of structure definition is to start with the material definition. If the system

contains more than one material, then different material blocks can be used with each

block comprising of the material properties, the region consisting of the particular

material, the priority of the material, and other necessary material characteristics.
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Figure 6.2: Distribution of NEMO input deck into 3 blocks

For instance, the InAs Esaki diode (PIN configuration) has three regions, P++, In-

trinsic and N++. Therefore, one defines three material sections and uses the “region”

tag to enumerate their region numbers, as shown in Figure 6.3.

Figure 6.3: Code snippet for material definition of InAs Esaki diode
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The necessary tags in the Material block are:

• Crystal structure =: defines the crystal/Brillouin zone of the material

• Doping-type and Doping-density =: N or P type doping and the doping density

in cm−3.

• Name =: name for that material for the code to fetch that material from their

database

• Region =: Gives the region number for the defined material.

• Tag =: Identification flag for that material to be referred later in the code

• DB Parameters =: To give the name of the tight-binding parameter variable

values as stored in their material database. Here it is param HSE06 mapping,

which consists of fit tight binding parameters obtained and used in HSE06

functional (Hybrid functional that we discussed in theory of material charac-

terization)

Next, one defines the domain which decides the collection of regions that make

up a domain, i.e., the sections on which a similar set of numerical equations are

to be solved. Device is one domain, source and drain are two others. In case of a

PN junction diode, there is mp gate, but one can have the gate as another domain

and so on. Each domain consists of all the regions that make up that domain: the

base material for the domain (which is referred to by using the “tag” name used

in material definition), overall dimensions of the domain, starting cell co-ordinates

(x,y,z), name of the domain (e.g., device), periodicity of the cells (in x,y,z direction)

and the leads that the domain is connected to on either end. Figure 6.4 shows a

code snippet consisting domain definitions for a device and drain contact. Since

QTBM and NEGF charge transport models were employed for the simulations, the

device under simulation was required to have non-vanishing boundaries (semi-infinite
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Figure 6.4: Code snippet of input deck showing domain definition for two domains

boundaries). To realize such a structure, the device contact leads were extended by

an additional three contacts, all 1x1 unit cells.

Once the domains are defined, along with FEM domains, i.e., domains that define

the aggregation of regions that need mesh refinement using FEM (finite element

method), the geometry is defined using the geometry block. The final block for

structure definition is the “Geometry Block”. Figure 6.5 shows the description of the

geometry section, which entails the geometric shape, coordinates for minimum and

maximum location (x,y,z coordinates) and priority, all to be defined for each region.

Generally, to avoid any band bending at the contacts, the two extreme ends of the

entire geometry are extended to the edges of the domain region. The domain is the

wrapper that encapsulates the geometry region. This concludes the definition of the

structure of the device.
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Figure 6.5: Code snippet for input deck geometry section, showing the geometric descrip-
tion for each region, here 1,2 and 3

The “Solver Block” consists of smaller “solver” subsections, in which each solver

dictates the type of simulation that needs to be performed on the given system. Each

sub-section also consists of parameters and options for the task.

It should be noted that the code processing is independent of the order of param-

eters given in the block. This holds true for all the blocks and all the parameters.

Although, the order of the blocks needs to be correct (i.e., the material block has

to be defined first, and so on). Following are some of the parameters that can be

included in a solver block.

• Type =: “MetaPoissonQTBM5”; name of the solver that needs to be employed

for simulation.

• Name =: tag name for the solver.

• Active regions =: The regions on which this particular solver will be solved.
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Figure 6.6: Code snippet for input deck to simulate I-V curve for InAs Esaki diode

• tb basis =: ” Tight-binding models

• ramper voltage =: list/array of voltages that sweeps the connected ramper

lead/contact.

• drain and source voltages =: initial source and drain voltages

• output =: all the outputs required from the simulations, like current density

(JE), drain current etc.

• residual criterion =: The convergence limit for iterations
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Lastly, the global section is defined that contains the address of the material

database file and the command for the list of solvers (amongst those that were defined

in the solver block) that would be computed during program execution. It should

be noted that one can define multiple solvers in the deck, yet command the program

to run/solve only a selective few (even one). This command is given in the global

block. By doing this, one can make the input deck for more than one operation and

during simulations, the whole deck need not be edited in order to perform a different

operation on the same device.

6.1.2 Results: InAs Esaki Diode

On simulating the similar structure in NEMO, the current density was obtained in the

ball-park of the experimental value. A deviation of 17% from the experimental results

was observed. The simulation failed to converge when the system entered diffusion

current; the reason for this is still unknown. The hypothesis is that the contact

regions were still too narrow to accommodate the equilibrium at high voltage values,

along with limited computational power. But since the experiment was focused on

obtaining only tunneling current, this experiment was not extended any further.

Device ND NA Experimental JP NEMO JP Error(Exp-NEMO)/Exp
InAs 1e19 1.8e19 37.6 kA 44 kA 17%

Table 6.1: Comparison from experimental [20] and NEMO-simulated results

The plot in Figure 6.7 shows two InAs Esaki diode’s I-V, both with different

doping densities. The blue plot has a 0.3:1.8 concentration ratio ND/NA. The peak

experimental current density was found to be about 2kA [20] and showed a very clear

NDR dip, but upon simulation of the same structure, peak current density of 0.575

kA per unit area was obtained, which is 71% deviated from the experimental results.

Reverse-biased diffusion current is spot on with the experimental, but for the quantum
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Figure 6.7: Overlay of experimental [20] and NEMO simulated I-V characteristics for InAs
Esaki diode

realm, the system shows an underestimation of the current density. We argue against

it on the basis of our benchmarking data, which were SIMS results obtained for the

InAs substrate. The SIMS data provided us with information about the total carrier

concentration, instead of the total “activated” carrier concentration. Therefore, the

simulation tool considered a different concentration for activated carriers than the

actual carrier densities, leading to a great difference in their output currents. The

black plot, Figure 6.7, shows a similar inaccuracy. Here the simulated data is slightly

overestimated in both diffusion and tunneling region. But the deviation in the tun-
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neling current is within 20% of the experimental data and our primary focus was to

simulate and understand the tunneling aspect of the device.

6.2 Tunnel Field-Effect Transistors: NEMO study

Another vehicle for experimenting with the characterized TMD material (MoS2) was

a tunnel field-effect transistor (TFET). This device was not studied to be compared

to anything in literature or experiment. Rather it was studied to understand the

operation of NEMO5 tool for a TFET using a novel material like MoS2. This chap-

ter deals with translating a TFET device structure into a NEMO5 input deck and

simulating the system to obtain I-V characteristics of the device. A VTK file for the

visualization of the obtained structure is also presented.

6.2.1 Device Structure in simulation

The same block flow as that of Esaki diode is followed for TFET device description.

The additional regions and more domains get defined for a TFET in comparison to

a tunnel diode. MoS2 TFET was simulated using QTBM numerical methods with

material fitted from the tight binding parameters obtained from DFT-GGA. MoS2

lattice constant “a” was set to be 0.316 nm. The conduction band edge was set to be

at 1.1 eV and the valence band edge was set to be at -0.58 eV. Doping densities of

source, intrinsic body and drain were set to be 1e20 cm−3 (P++ type), 1e14 cm−3 (N

type) and 1e20 cm−3 (N++ type), respectively. A layer of oxide was set up as the top

gate dielectric, with a dielectric constant of 24. After the material set up, the domain

for the device was set up. The total length and height of the device (gate+oxide

thickness) were set to be 64 unit cells in length, 1 unit cell in width and 5 unit cells

in height. The source contacts and its auxiliary source contacts were connected to

the left extending to 20 unit cells and drain contacts to the right extending up-to 70

unit cells to the right of the device. The structure is given in Figure 6.8.
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Figure 6.8: Visualization of MoS2 channel based TFET with 4 regions, source, drain,
intrinsic and gate, using NEMO5. Width of the device is in the y-axis direction; length of
the device is along x-axis

Figure 6.9: Visualization of the described device with a close-up image of its surface
using NEMO5. The surface image shows in a wireframe representation the atomic mesh
arrangement.

Figure 6.9 shows a wireframe representation of the structure, wherein the middle

cuboid is the device region, extending to 64 unit cells, and two thin (single unit cell

thick) source and drain extensions are a combination of all the auxiliary source and

drain connections, defined to give a semi-infinite boundary to the system.

While defining the solvers, QTBM was used as the charge transport solver, that

self-consistently iterates between the Poisson equation and Schrodinger’s equation
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MoS2 WTe2 WSe2

εa (dielectric) 4.2 5.7 4.5
εc (dielectric) 2.8 3.3 2.9

BandEdge Ev (eV) -0.58 1.9 0.4
BandEdge Ec (eV) 1.1 2.6 1.8
TB parameter set GGA (no SOC) GGA ( SOC) GGA (no SOC)

Table 6.2: Table containing material properties set up in MoS2, WTe2, and WSe2 TFETs

until the value converges. The limit for convergence is set to be 1e−3 with initial

value set at 2.5 V. This value was selected on heuristic basis factoring in the speed of

convergence. It was observed that few voltage points took more iterations and longer

duration to converge than others. Using the same device specifications as MoS2 TFET

two more TFETs were simulated; one with a monolayer channel of WSe2 and another

with a monolayer channel of WTe2. Table 6.2 presents the material parameters set

up for the three FET devices. In the table εa and εc refer to the dielectric constant

of the channel material in the given lattice direction. This parameter determines the

conductivity of the channel material in a particular direction. Therefore, by aligning

the material in such a way that offers high conductivity in the direction of current

and low conductivity in the direction perpendicular to the flow of current can help in

reduction of gate leakage current.

6.2.2 Device Characteristics: I-V Curve Analysis

On applying a potential to the gate, the energy bands of the channel bend such that

the conduction band edge of the channel region overlaps with the valence band edge

of the source region. The gate voltage at which such a band configuration is attained

and which leads to the onset of tunneling current is the threshold voltage for a TFET.

Figure 6.10 shows the band bending of the source, channel, and drain region for the

WSe2 TFET simulated using NEMO5. The system is operated at a drain voltage of

0.5 V.

The left figure shows the device band structure when the device is in off state, at a
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Figure 6.10: Source-channel-drain energy band bending for WSe2 TFET. VG = 0.1 V
(Left) showing off state of TFET and VG = 0.45 V (Right) showing ON state of the TFET.
VD is set at 0.5 V.

gate voltage of 0.1 V. The figure shows no overlap between the conduction band edge

of the channel and valence band edge of the source, therefore, no tunneling window

is present in the device, rendering the device operation off.

Due to the absence of an inverted channel at the surface in a TFET along with

completely depleted body/substrate, the off current in a TFET cannot be defined by

the carrier concentration at the surface, like in a MOSFET. Therefore, for a TFET a

reasonably small drain current is accepted as off current. The value of off current is

accepted to be 1nA/ µm.

Corresponding to VG of 0.1 V, Figure 6.11 shows the output current for the WSe2

system (black plot). Figure 6.11 shows the drain current to be less than 1 nA/µm (≈

10−9 nA/µm) for WSe2 at gate voltage of 0.1 V, therefore the device is considered off

at VG equal to 0.1 V.

At a gate voltage of 0.45 V, right side figure of Figure 6.10 shows a clear overlap-

ping of EC of the channel with EV of the source, therefore allowing electrons to tunnel

through from source to channel leading to significant drain current. A corresponding

drain current of 1 µA/µm for WSe2 TFET can be seen in Figure 6.11 (black plot).

Such high drain current clearly indicates the device to be in ON state.
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Figure 6.11: I-V curves for MoS2, WSe2, and WTe2 TFETs with VD = 0.5 V and gate
dielectric constant = 24.

Figure 6.11 also includes the I-V characteristics obtained for MoS2 TFET and

WTe2 TFET. WTe2 TFET gate voltage was swept from 0.05 V to 1 V and MoS2

TFET gate voltage was swept from 0.15 V to 0.89 V. Upon simulating the three

TFETs, device parameters shown in Table 6.3 were obtained. The results show that

WTe2 can produce the highest drain current but has the largest subthreshold swing

in comparison to WSe2 and MoS2. The Figure 6.11 and Table 6.3 shows that WSe2

as the channel material for a TFET can produce an optimal device operation with

small enough sub-threshold swing and good drive current of over 1 µA / µm.

Among the three materials simulated, WTe2 is known to show significant magnetic

properties due to strong spin-orbit coupling. The simulation of WTe2 TFET, when

operated under a high drain voltage of 0.5 V, showed a significant drain current flow
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MoS2 WSe2 WTe2

SS (mV/dec) 9.09 13.63 16.67
Vth (V) 0.3 0.25 0.25
Voff (V) 0.2 0.15 0.1

Ipeak (A/µm) 10−4 2x10−3 2x10−1

Ioff (A/µm) 10−19 10−16 10−12

Table 6.3: Tabulating device characteristics for three TFETs. VD = 0.5 V. Gate dielectric
constant = 24. Channel length = 20 nm. (The sub-threshold swing is calculated from the
curves. The values are not compared against practical devices)

as well as when the device was operated at a gate voltage of 0.35 V. Figure 6.13 shows

the I-V characteristics of WTe2 TFET simulated at two different drain voltages; 0.1 V

and 0.5 V. Band diagrams shown in Figure 6.12 shows the tunneling window opening

at both 0.35 V gate voltage (Fig 6.12 (c)) and at a gate voltage of -0.2 V ( Fig 6.12

(a) ). At VG of -0.2 V, the conduction band edge of the drain overlaps with the

valence band edge of the channel region, thereby allowing tunneling current to flow

from channel to drain. At VG of 0.35 V, the conduction band edge of the channel

overlaps the valence band edge of the source, thereby allowing tunneling current to

flow from source to channel.

At low drain voltage of 0.1 V, the device shows normal non-ambipolar behavior,

that is, turns off at low biasing of gate voltage. (Figure 6.13)
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Figure 6.12: Band diagram for WTe2 TFET at VD = 0.5 V and VG = -0.2 V, 0 V and
0.35 V. The band diagram shows off state at 0V and tunneling state at both -0.2 V and
0.35 V. Figure shows ambipolarity in WTe2 TFET.
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Figure 6.13: I-V characteristics for WTe2 TFET under two different drain voltages: 0.1
V and 0.5 V. Figure shows ambipolarity in WTe2 TFETs at higher drain voltage
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Chapter 7

Conclusion and future work

This project was meant to be an initiation in the realm of atomistic simulation.

Through this work, we intended to explore the operational mechanics of atomistic

tools like VASP and NEMO5. For the first time at RIT, an atomistic approach was

taken to understand and simulate material band gaps and tunneling devices. The

approach towards a simulation-based study was chosen to restrict the fabrication

tests to only those scenarios that cannot be successfully modeled and simulated as

of now. The project looked into the calibration process of NEMO5 and VASP, first

using a known material like GaAs and then novel materials like TMDs. It is clear that

there is a gap between experimental and simulated values but we were able to calibrate

the tool for MoS2 within an error margin of 10%. The validity of these results still

depends on further experiments that need to be conducted in order to get a consensus

on the information. We understood the effect of spin-orbit coupling in materials and

how the inclusion of SOC brings the results closer to reality, although at the expense

of time and computational power. The operation of an atomistic tool NEMO5 was

self-taught using the top-down approach which led to an increased understanding

of how the numerical models get interpreted by code. The highlight of this project

was a new point of view regarding device modeling and a method of learning was

developed which would in the future prove immensely helpful in interpreting and

understanding the dynamically changing technology. Using MoS2 as a pivot, the
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tool was benchmarked for bandgap and using silicon, the tool was benchmarked for

computational time. Finally, as an exercise to test our understanding of atomistic

devices, InAs tunnel diode and MoS2 monolayer-based TFET was simulated and I-V

characteristics were obtained. This study concluded with enough understanding of

atomistic modeling that further learning can be self-driven.

This work was instrumental in showing the need for a lot of work in atomistic

simulation region. There is a need for more experimental material data to be able

to generate effective models and then further research is needed understanding the

computational efficiency and power need of the numerical models used for quantum

computations. Further research in strain analysis and spin-orbit band splitting is

needed to push the simulations closer to realistic values. This would ensure better

tunneling and quantum device design and fabrication. More input is needed in un-

derstanding the magnetic properties of materials like WS2 and WTe2 to be able to

utilize their properties. Another immediate extension to this work can be in simu-

lating other materials like WS2 and WSe2 and validating the system’s calibrations

against the MoS2 calibration. There is a need to understand the NEMO parameters

and its material data file to speed up the simulation and obtain controlled results.

Very little work was done in this project regarding the scattering model, Recursive

Green’s Function (RGF) or NEGF and therefore this project was limited to materials

that did not show scattering effects. This was also because this study was based pri-

marily on mono-layers, wherein no scattering is observed. But in experiments with

materials like silicon, a better understanding of the scattering models is required.

Furthermore, tampering with the bowing parameters, strain parameters, band

edges and lattice constants in the material file can give great insight into the workings

of the material. A better understanding of the effect of Brillouin zone high symmetry

point paths is important to design the material stacks. Knowing how many materials

have different properties in different orientations, information about the high density
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of states in the direction of transport and low density in the transverse direction

can lead to effective device architecture even from material point of view. But, first

and foremost, there needs to be better and efficient awareness of the need for more

simulation-based studies.
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