
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2019

Investigation of the Benefits of Interlocked Synchronous Pipelines Investigation of the Benefits of Interlocked Synchronous Pipelines

Sabrina Rose Levitan
srl8049@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Levitan, Sabrina Rose, "Investigation of the Benefits of Interlocked Synchronous Pipelines" (2019). Thesis.
Rochester Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10068?utm_source=repository.rit.edu%2Ftheses%2F10068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

INVESTIGATION OF THE BENEFITS OF INTERLOCKED SYNCHRONOUS PIPELINES

by
Sabrina Rose Levitan

GRADUATE PAPER

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

MAY 2019

To my family for supporting me throughout my time at Rochester Institute of Technology.

Abstract

The majority of today’s digital circuits use synchronous pipelines. As the technology nodes

get smaller, these pipelines are facing problems with area, power, and timing. One of the

major sources of power consumption is the global clock and stall signals. These signals have

to be routed across large sections of the chip, and with regards to stalling the pipeline, often

face significant timing issues. One solution, developed by Hans M. Jacobson et al., is “Syn-

chronous Interlocked Pipelines”. This pipeline design combines synchronous pipelines with

the handshaking of asynchronous pipelines. Asynchronous pipelines are less power intensive

because they send acknowledge and request signals to neighboring stages that allow stages

to turn off when not being used. Jacobson et al. use this handshaking technique to create

local valid and stall signals instead of using global ones. To test the benefits of this design,

an asynchronous pipeline, synchronous pipeline, and interlocked synchronous pipeline were

built using a generic 45 nm library. Comparisons showed that while the asynchronous and

interlocked synchronous pipelines took up 4 times more area than the synchronous pipeline,

the asynchronous pipeline had the highest throughput of the three pipeline designs, followed

by the interlocked synchronous pipeline. The synchronous pipeline had the worst throughput.

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents

of this paper are original and have not been submitted in whole or in part for consideration for

any other degree or qualification in this, or any other University. This paper is the result of my

own work and includes nothing which is the outcome of work done in collaboration, except

where specifically indicated in the text.

Sabrina Rose Levitan

May 2019

Acknowledgements

I’d like to thank my advisor and professor Mark Indovina for helping me and supporting me

throughout my last two years at RIT.

I’d also like to thank my parents for always checking in on me and making sure I got to

work and started writing this paper.

Contents

Abstract ii

Declaration iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Literary Review 3

3 Pipelines 18
3.1 Asynchronous Pipelines . 19
3.2 Synchronous Pipelines . 20
3.3 Interlocked Synchronous Pipelines . 22

4 Pipeline Design 26
4.1 Gates . 28

5 Layout Design 31
5.1 Asynchronous Pipeline . 31

5.1.1 Layout . 32
5.2 Synchronous Pipeline . 36

5.2.1 Layout . 36
5.3 Interlocked Synchronous Pipeline . 39

5.3.1 Layout . 39

Contents vi

6 Results 41
6.1 Functionality & Timing . 41

6.1.1 Asynchronous Pipeline . 41
6.1.2 Synchronous Pipeline . 45
6.1.3 Interlocked Synchronous Pipeline 47

6.2 Area . 51
6.3 Latency & Throughput . 52

7 Discussion 54

8 Conclusion 57

References 59

I Schematics I-1

II Layouts II-1

List of Figures

2.1 Block diagram of an asynchronous pipeline [1] 3
2.2 4 phase protocol (left) and 2 phase protocol (right) [1] 5
2.3 CMOS C-Element [2] . 6
2.4 GasP Circuitry [3] . 7
2.5 Self-Controlled Pipeline [4] . 8
2.6 High Throughput High Capacity communication protocol [5] 10
2.7 Counterflow Pipeline Processor block diagram [6] 12
2.8 Architecture of the A8051 [7] . 13
2.9 A GALS module [8] . 14
2.10 Double Edge Triggered Flop made with regular flops [9] 15
2.11 Conversion from a synchronous pipeline (top) to an asynchronous pipeline

(bottom) [10] . 16

3.1 Simple Data Path . 18
3.2 Pipelined Data Path . 19
3.3 Latch with C-Element . 20
3.4 Alternate Clocking in a Synchronous Pipeline 21
3.5 Stall Buffer within a Synchronous Pipeline [11] 22
3.6 ISP Latch Stages for both edges of the clock[11] 23
3.7 Timeline of an ISP [11] . 25

4.1 Pipeline design . 27
4.2 Latch schematic . 29
4.3 C-Element schematic . 29

5.1 One row asynchronous layout . 33
5.2 Two row asynchronous layout (unbalanced) 33
5.3 Two row asynchronous layout (balanced) 34
5.4 Layout of the Asynchronous Pipeline . 35
5.5 One row synchronous layout . 37
5.6 Layout of the Synchronous Pipeline . 38
5.7 Layout of the Interlocked Synchronous Pipeline 40

List of Figures viii

6.1 Waveform for the asynchronous pipeline . 42
6.2 Close up of input/output transition for the asynchronous pipeline 43
6.3 Data moving through bit A in the asynchronous pipeline 44
6.4 Data moving through latches of bit A in the asynchronous pipeline 45
6.5 Waveform for the synchronous pipeline . 46
6.6 Data moving through bit A in the synchronous pipeline 48
6.7 Waveform for the interlocked synchronous pipeline 48
6.8 Data moving through bit A in the ISP . 49
6.9 Data, valid, and stall signals for bit A for the ISP 50

I.1 Schematic of the INV . I-2
I.2 Schematic of the NAND . I-3
I.3 Schematic of the NOR . I-4
I.4 Schematic of the AND . I-5
I.5 Schematic of the OR . I-5
I.6 Schematic of the C-Element . I-5
I.7 Schematic of the positive edge triggered LATCH I-6
I.8 Schematic of the negative edge triggered LATCH I-7
I.9 Schematic of the ISP Stage . I-7
I.10 Schematic of the Asynchronous Pipeline . I-8
I.11 Schematic of the Synchronous Pipeline . I-8
I.12 Schematic of the Interlocked Synchronous Pipeline I-9

II.1 Layout of the INV . II-2
II.2 Layout of the NAND . II-3
II.3 Layout of the NOR . II-4
II.4 Layout of the AND . II-5
II.5 Layout of the OR . II-6
II.6 Layout of the C-Element . II-7
II.7 Layout of the positive edge triggered LATCH II-7
II.8 Layout of the negative edge triggered LATCH II-8
II.9 Layout of the ISP Stage . II-8
II.10 Layout of the Asynchronous Pipeline . II-9
II.11 Layout of the Synchronous Pipeline . II-10
II.12 Layout of the Interlocked Synchronous Pipeline II-10

List of Tables

3.1 C-Element Truth Table . 20

4.1 Pipeline truth table . 28
4.2 Widths of gates . 30

6.1 Input sequence for all three pipelines . 42
6.2 Areas of the three pipelines . 51
6.3 Number and types of gates in each pipeline 52
6.4 Areas of the three pipelines in terms of gates only 52

Chapter 1

Introduction

Pipelines are an integral part to today’s circuits. By breaking up data paths into smaller stages,

they increase throughput and efficiency. Pipelines can be designed to operate asynchronously

or synchronously. Asynchronous pipelines have latches that are clocked by handshaking sig-

nals. The handshaking signals tell each individual stage when to start computing its data.

Synchronous pipelines clock every latch by using a global clock network. Depending on the

type of latch used (individual or a master-slave setup), the latches are either clocked on the

same clock edge or the stages alternate between the positive and negative edge.

Synchronous pipelines are used in the majority of circuits. However, as transistors have

gotten smaller, synchronous pipelines have been becoming more problematic. Global clock

networks have to stretch across the entire chips. Wire delays are increasing, so these clock

networks are slowing down the circuit and using up lots of power. In addition, signals used to

stall sections of the pipeline take too long to reach the latches they need clock, which results

in lost data.

To combat these problems, some designers have returned to looking at asynchronous pipelines.

Since latches in these pipelines are clocked only by the latches directly adjacent to them, long

2

stall signals don’t exist. There is also no global clock network to eat up power. Overall, asyn-

chronous pipelines consume less power than synchronous ones. Latches are only active when

there is data to compute, and therefore don’t waste power storing unnecessary data.

Since current technology is based around synchronous pipelines, switching to asynchronous

pipelines would be a long and difficult process. The biggest issue is that most of the tools used

for developing large digital circuits only produce synchronous pipelines, and would have to be

reworked to make the switch. This would take a lot of time and money.

Jacobson et al. [11] solved this problem by designing the interlocked synchronous pipeline.

This pipeline adds asynchronous elements to synchronous pipelines, thereby utilizing the ex-

isting development tools while reaping the benefits of asynchronous pipelines. The aim of

this paper is to explore the interlocked synchronous pipeline by comparing it directly to both

asynchronous and synchronous versions of the same pipeline.

The structure of the paper is as follows: Chapter 2 is a literary review of pipeline research.

Chapter 3 gives an in depth operation of each type of pipeline. Chapter 4 explains the pipeline

design chosen for the comparison and the gates developed for it. Chapter 5 shows the layouts

for each pipeline and explains the choices behind the layout structure. Chapter 6 goes over

the results from testing each pipeline. Chapter 7 discusses what these results mean in a larger

context. And finally, Chapter 8 concludes the paper.

Chapter 2

Literary Review

Asynchronous pipelines were first conceived of by David Muller in 1963 [12]. They can be

broken down into two categories: static and dynamic. Static pipelines use latches to store data

and handshaking logic to pass the data between the latches. The handshaking logic must be

designed to meet the timing of the data path between each latch. Dynamic pipelines use a

four-phase handshaking protocol to pass data between logic gates, skipping latches entirely.

The lack of latches causes the dynamic pipelines to be faster, but they require more design

work and are more susceptible to noise [12].

The general structure of a static asynchronous pipeline is shown in Figure 2.1.

Figure 2.1: Block diagram of an asynchronous pipeline [1]

4

Each stage of the pipeline is made up of a latch, control logic, and optionally combina-

tional logic. The control logic is used to process the two handshaking signals: request and

acknowledge. There are several different handshaking protocols.

The first protocol is single rail encoding. The “single rail” name is due to the fact that

the handshaking signals are only one bit, either low or high. One wire is used for the data

and another is used for the request signal. The request signal acts as a strobe to signal to the

receiving latch that data is coming. The timing between the data being sent and the request

signal going high must be carefully matched. When the receiver receives the data, it sends

back an acknowledge on the same wire that the request signal used [1, 12].

Single rail encoding is used with the two phase handshaking protocol, which operates by

using the rising edge of the request signal and the falling edge of the acknowledge signal to

communicate that data is ready to be sent.

The other common protocol is four phase handshaking. As the name implies, this protocol

has four phases:

1) The request signal is set high to tell the receiving latch that there is data to transmit. The

latch sends the data to the receiving latch.

2) The receiving latch accepts the data and sets the acknowledge signal high.

3) The request signal is set low.

4) The acknowledge signal is set low.

The four phase protocol is simpler to implement than the two phase protocol, but requires

extra power to set the request and acknowledge signals low after every data transmission [1, 2,

12].

This “return to zero” procedure can be hidden by implementing a Dual Control Path, which

uses two control paths for the control logic. While one path is in the “return to zero” phase,

the other one can continue to drive the request and acknowledge signals. Then, when that one

5

Figure 2.2: 4 phase protocol (left) and 2 phase protocol (right) [1]

moves to the “return to zero” phase, the first control path takes over [13]. While this method

increases the throughput and timing of the pipeline, it does add additional area and control

logic.

Figure 2.2 shows the waveforms for the 4 phase protocol and the 2 phase protocol.

To coordinate the handshaking signals, gates called Muller C-Elements are used. C-

Elements use the request and acknowledge signals to generate clock pulses for the latches.

If the two inputs to the C-Element are the same value, the output will be that value. If the

inputs are different, the C-Element retains its last value.

Figure 2.3 shows a CMOS implementation of the C-Element. The inputs are A and B and

the outputs are C and C bar. Transistors M1 and M2 act as an AND gate and transistors M3

and M4 act as an OR gate. M5 and M8 act as a latch to store the data [2].

While the Muller C-Element is common for asynchronous pipelines, other alternatives

exist. The GasP pipeline, which stands for Go Asynchronous Symmetric Pulse Protocol [14],

uses the circuitry shown in Figure 2.4. GasP is a high speed design but requires complicated

timing work to ensure that the data and control paths work properly together [15].

The circuitry consists of the handshaking control and the latch itself. In this figure, L is a

signal generated by circuitry to the left, R is generated by circuitry to the right, A is an internal

signal, and LE is the latch enable. The latch is the transistor and two inverters at the bottom of

the figure [3].

6

Figure 2.3: CMOS C-Element [2]

7

Figure 2.4: GasP Circuitry [3]

8

Figure 2.5: Self-Controlled Pipeline [4]

The main component is the self-resetting NAND. When L goes low, the NAND will trigger

the latch to store the incoming data. When R goes low, the NAND will disable the latch. It will

not re-enable the latch until R goes high to signal that the circuitry to the right is done with the

data [3].

Dynamic pipelines use their own handshaking logic circuits called completion detectors

(CD). Figure 2.5 shows an example of a dynamic pipeline called the Self-Controlled pipeline.

The pipeline is made up of logic blocks, the rectangles, and CDs, the pentagons. The logic

blocks take in a precharge signal from the CD. The CD uses an asymmetric C-Element. This

C-Element is similar to the Muller C-Element but it has three inputs. The inputs are called “+”,

“-“, or unmarked. If the unmarked and “+” signals are high, the output is high. If the unmarked

and “-“ signals go low, the output is low. For other combinations, the output stays the same,

as it did with the Muller C-Element. The output of the C-Element is the “done” signal, which

states if the logic block has finished computing. If it has, it can accept new data [4].

A similar pipeline, the Self-Precharging pipeline, is presented in [16]. The done signal

from the CD is used to precharge the dynamic logic in the logic block as well as the CD itself

[16].

9

Another dynamic asynchronous pipeline is the high capacity pipeline. The pipeline design

involves modifying dynamic logic gates so that they are able to store data. This is done by

decoupling the pull-up and pull-down transistors. The pull-down transistors are controlled by

the evaluate signal and the pull-up transistors are controlled by the precharge signal. Normal

dynamic logic has both transistors controlled by the precharge signal [17].

If neither the evaluate nor precharge signals are high, the dynamic logic is in a new state

called “isolate”. When in the isolate state, the logic gate cannot accept any new inputs. By

putting gates into this state, the pipeline is able to store data without using latches [17].

The High Throughput High Capacity pipeline proposed in [5] builds upon this idea using

the communication protocol shown in Figure 2.6.

Each stage goes through the evaluation phase, the isolate phase, and the precharge phase.

When stage N finishes its evaluation phase, the CD puts it into the isolate phase. When stage

N+1 finishes its evaluation stage, its CD puts it into the isolate phase and also sends a precharge

signal back to stage N [5]. This precharge signal is effectively the acknowledge signal, saying

that stage N+1 has received the data that stage N is currently storing, so stage N can move on

and accept new data.

Asynchronous pipelines can also be used in wave pipeline designs. Wave pipelines are

pipelines don’t use latches. Instead, the logic gates within the wave pipelined section are

designed so that logic can propagate through them in a “wave”. The timing of the gates is

carefully chosen so that data can move through it without getting overwritten by another wave

of data behind it.

For an asynchronous wave pipeline, the request and data signals are physically linked to-

gether to keep them in sync. The request signal is used to control dynamic latches built out of

transmission gate muxes, which use a similar principle of storing data in dynamic gates as the

previous examples. These latches are inserted between every logic gate. The designers of the

10

Figure 2.6: High Throughput High Capacity communication protocol [5]

11

pipeline argue that while latches are normally not allowed in wave pipeline, a pipeline with

only one gate between latches is inherently a wave pipeline because “the fine granularity keeps

the waves coherent” [18].

On a bigger scale, asynchronous pipelines can be used to build microprocessors. While

most of today’s processors are synchronous, several different types of asynchronous proces-

sors have been developed. One such processor is the Counterflow Pipeline Process (CFPP),

developed in 1994. The main feature of this processor is that information flows in two direc-

tions [6, 19, 20]. This can be seen in Figure 2.7.

Instructions start by the program counter at the bottom of the figure. Each instruction

consists of the opcode and the source and destination register information. The processor

reads the source information and the values from those registers are sent down the pipeline

from the register file. When the instruction and operands meet at a stage, the operation takes

place. The instruction, which now contains the resulting value, continues towards the register

file and eventually writes its value into the destination register. It also places the value into the

results pipeline so it flows down towards the program counter. This way, if a new instruction

needs that value, it will encounter it earlier in the pipeline than if it had to be fetched from the

register file [6].

Alongside the two pipelines are functional units used to perform the instruction operations.

These functional units, called “sidings”, are also pipelined. The first stage is a “launch” stage,

used to move the instruction from the instruction pipeline into the siding. The final stage is the

“return” stage, which returns the instruction to the pipeline. In between are stages used to do

the computation. While sidings are not required for the CFPP, as operations can be performed

by the main pipeline stages, they allow other instructions to be processed at the same time [19].

Another asynchronous processor is the A8051. This was developed to match the Intel 8051

synchronous processor. The A8051 is a five stage complex instruction set computer (CISC)

12

Figure 2.7: Counterflow Pipeline Processor block diagram [6]

13

Figure 2.8: Architecture of the A8051 [7]

processor. The five stages are instruction fetch, instruction decode, operation fetch, execution,

and writeback. The processor has the ability to loop the operation fetch and execution stages

for longer instructions. In comparison, the Intel processor has a longer pipeline to accommo-

date the longer instructions, which means there are often times when stages are sitting idle [7].

Figure 2.8 shows the architecture of the A8051.

A different approach to asynchronous processors is Globally Asynchronous, Locally Syn-

chronous (GALS). GALS circuits consist of synchronous blocks that communicate asynchronously

with each other. A GALS module is shown in Figure 2.9. The synchronous module is

“wrapped” in a controller, which generates a clock based on the request signal of the previous

block [4, 21].

One issue with merging asynchronous and synchronous blocks like this is “synchronization

failure”. This is when a clock edge from the synchronous module occurs at the same time that

data arrives from the asynchronous module. This may cause the circuit to enter a metastable

state for an unknown period of time. Since a metastable state is a value between 0 and 1, the

logic downstream could interpret it differently. This can lead to unwanted states occurring or

incorrect data [22].

One solution to the synchronization problem is to use an asynchronously triggered ring

14

Figure 2.9: A GALS module [8]

oscillator to control the clock. The asynchronous module uses a RUN signal to turn the syn-

chronous clock on and off. This allows the asynchronous module to disable the synchronous

module when a metastable event occurs. Once the event is over and the data reaches a known

state, the clock can be turned back on [22].

Modifying the clock is another way to merge asynchronous and synchronous pipelines.

One of the major benefits of asynchronous pipelines is that the delay is based off the average

delay of the data path, while synchronous pipeline delay is based off the worst path delay [22].

Asynchronous pipelines are more efficient because they compute the clock pulses for their

latches locally so that latches are enabled as soon as data is available.

The VariPipe [23] creates a clock with an adjustable frequency. The clock period changes

every cycle to accommodate the current worst case delay. This allows data to move quickly

through faster data pipes instead of being forced to wait because the clock is set slower for a

currently idle portion of the circuit. When that idle part becomes activate, the clock will return

to the slower frequency so the data path has time to complete its work [23].

Another option for dealing with the synchronous clock problem is to use double edge

15

Figure 2.10: Double Edge Triggered Flop made with regular flops [9]

triggered flip flops. The flip flops, which are pairs of latches, can store data at both the positive

and negative edge of the clock. This allows twice the throughput at the same clock frequency,

or allows the clock frequency to be scaled down 50% without loss of performance [9].

While this idea works, it is not practical because standard cell libraries and FPGAs do not

support double edge triggered flops. A workaround is to use two regular latches, one clocked

off the positive edge and the other off the negative edge of the clock, and then a multiplexer to

select which data to use [9]. Figure 2.10 shows this arrangement.

Instead of dealing with the clock or interfaces between asynchronous and synchronous

modules, some designers have attempted to convert synchronous circuits into asynchronous

ones. This would allow the designers to use the common synchronous pipeline development

tools while still gaining the benefits of asynchronous pipelines.

One option is to develop the synchronous pipeline and then completely convert it over to an

asynchronous design. This is done by replacing the synchronous registers with asynchronous

16

Figure 2.11: Conversion from a synchronous pipeline (top) to an asynchronous pipeline (bot-
tom) [10]

ones and adding in the handshaking signals, while leaving the combination logic untouched

[10]. The full replacement strategy can be read about in [10]. Presented here is an abbreviated

version.

The conversion process starts by replacing every flip flop with a latch and a handshake con-

troller. Then it creates a request network by connecting the request signals from the controllers

together. Delay elements are added to the paths as necessary. Additional gates are inserted to

deal with two paths that join together [10].

The second step is to create the acknowledge network. This is done by connecting the

acknowledge signals in the reverse direction, again adding logic to handle paths that join to-

gether. This completes the conversion process [10]. An example can be seen in Figure 2.11.

A second option is to convert a synchronous pipeline into an elastic synchronous pipeline.

An elastic pipeline adds handshaking signals to a synchronous pipeline. Instead of a request

17

signal, the elastic pipeline has a valid signal. This signal states if the data is valid or not. In the

other direction is a stop (or stall) signal. This works as the opposite to an acknowledge signal

and tells the previous stage to not send data [24].

One application of the elastic pipeline is in a self-timed bit serial control unit. Control units

are often implemented as finite state machines. Instead, the unit can be built with handshaking

signals. The control unit in this example acts as a shift register. Data is moved through the

register in accordance with the handshaking valid/stall signals [25].

The elastic pipeline, also called an interlocked pipeline, will be explored in depth in the

rest of this paper.

Chapter 3

Pipelines

Digital circuits are made up of data paths, where the input data travels through several logic

gates and then arrives at the output. A simple example is shown in Figure 3.1:

This type of circuit is functional but inefficient. After the data has passed through the first

gate, that gate sits idle until the next round of data can be entered. This is fixed by turning the

data path into a pipeline by adding registers. A register is a latch or combination of latches

that stores the data at the input whenever the latch is enabled. Once the input data has been

"clocked" into the first latch and saved, new data can be entered into the pipeline and use the

gates in the first stage while the original set of data uses the gates in the second stage. This

Figure 3.1: Simple Data Path

3.1 Asynchronous Pipelines 19

Figure 3.2: Pipelined Data Path

increases the throughput of the data path.

There are two main types of pipelines: synchronous and asynchronous. The type of the

pipeline indicates how the latches are clocked. In a synchronous pipeline, all latches are

clocked off the same signal and are thus synchronized with each other. In an asynchronous

pipeline, the latches are clocked off local signals and therefore can be enabled and disabled

out of sync with each other.

3.1 Asynchronous Pipelines

Asynchronous pipelines work by using handshaking signals. These signals connect each latch

to its neighbors. The first signal is the request signal. This signal is sent by the preceding latch

to say that it has data to send. The second signal is the acknowledge signal. This signal is sent

by the next latch in the pipeline and says that it is ready to accept new data. Only when the

request signal and acknowledge signal are both high - meaning that there is data to process and

the next stage is able to accept that data - does the current latch turn on. This strategy saves

power by only enabling latches when they are needed.

The handshaking signals are orchestrated by using a Muller C-element. The C-element has

the following truth table:

When the request and acknowledge signals are both low, the latch turns off. When they’re

3.2 Synchronous Pipelines 20

Figure 3.3: Latch with C-Element

X Y Z
0 0 0
0 1 Z-1
1 0 Z-1
1 1 1

Table 3.1: C-Element Truth Table

both high, the latch is enabled. When only one signal is high, the C-element remembers its last

state. This means that once the latch turns on, it will continue to process data until both of its

neighbors tell it to stop.

3.2 Synchronous Pipelines

Synchronous pipelines use a global clock signal to enable and disable their latches. When

using a master-slave latch setup, every stage is clocked on the same edge of the clock signal.

When using a single latch for each stage, the stages alternate between using the positive and

3.2 Synchronous Pipelines 21

Figure 3.4: Alternate Clocking in a Synchronous Pipeline

negative edges. This is done so that when the first latch is enabled and allows data to pass

through, the data gets stopped at the second latch and doesn’t continue through the entire

pipeline.

Since every stage is clocked off the same signal, the pipeline is forced to run at the fre-

quency of that clock signal. The logic in each stage must be fast enough so that data can

complete the path before the next clock edge. Otherwise the computation won’t finish and

risks getting overwritten by the new data that was just let into that stage. These timing require-

ments are some of the biggest problems to solve in synchronous design.

Another major issue is power consumption. In asynchronous pipelines, latches are only

active when they are needed for computation. In synchronous pipelines, latches are active at

every clock edge, regardless of if they are needed or not. This leads to a lot of wasted power.

A common solution is clock gating. Clock gating shuts down part of a circuit by disabling

the latches when they aren’t needed. The signals used for clock gating often require a lot of

computation, however, and have become some of the most timing critical signals in digital

circuits.

Additionally, the clock gating signals face propagation issues. As they travel back through

the pipeline to stall it, the signals must reach all the latches before the next clock edge arrives.

3.3 Interlocked Synchronous Pipelines 22

Figure 3.5: Stall Buffer within a Synchronous Pipeline [11]

Otherwise, data will get lost as one latch is stalled and keeps its data, but the preceding latch

clocks in new data. This creates a "stall boundary". To fix this, stall buffers have to be added

at the stall boundary. The stall buffer stores a copy of the data that might be overwritten, and

a mux selects this data if it recognizes that the stall boundary caused data to be overwritten.

While this solution works, it requires adding additional circuitry which increases area and

power [11]. The stall buffer is shown in Figure 3.5.

3.3 Interlocked Synchronous Pipelines

The Interlocked Synchronous Pipeline (ISP) combines asynchronous and synchronous pipelines.

It starts with a synchronous pipeline, where each stage is clocked on opposite edges of the

clock signal. Then it adds handshaking signals that can locally stall a stage [11].

The first handshaking signal is a valid signal. The valid signal, similar to the request signal

in an asynchronous pipeline, travels in the same direction as the data. It is a single bit that tells

if the data is valid or invalid. This bit must be synchronized with its data, so it is also latched

3.3 Interlocked Synchronous Pipelines 23

Figure 3.6: ISP Latch Stages for both edges of the clock[11]

with the data latch [11].

The second handshaking signal is the stall signal. The stall signal is similar to the request

signal in the asynchronous pipeline in that it tells an individual stage if it can send data or if

it has to wait. Unlike the asynchronous pipeline, however, this stall signal stays synchronized

with its data and is also latched with the data and valid latches [11].

Figure 3.6 shows the clock circuitry for the three latches. The global clock signal is used

to gate the stall latch. It is also combined with the output of the stall latch, and the new signal

is used to clock the valid latch. This stalls the valid latch if a stall has occurred. Finally, the

clk/stall signal is ANDed with the incoming valid signal to clock the data latch. The data latch

only stores new data if there is no stall and the data is valid [11].

The final piece of the circuitry is at the input to the stall latch. The stall signal is ANDed

3.3 Interlocked Synchronous Pipelines 24

with the valid signal, clearing the stall if the data is invalid. This is one of the advantages of

the ISP: if a latch contains invalid data, there is no need to stall it. Instead, valid data can

continue being fed through the pipeline until it hits the stall, thereby increasing efficiency and

throughput [11].

The operation of the ISP is shown in Figure 3.7. The pipeline is four stages long and

consists of latches L1, L2, L3, and L4. Each latch stage shows the data it’s storing (A-E) or

invalid data (#). The value below the data is the state of the valid bit, and the value below that

is the stall bit. The light gray areas show the invalid data. The dark gray shows the stall [11].

Data moves through the pipeline with every clock edge. When the stall starts, it travels

back through the pipeline one stage at a time. When it encounters invalid data, the stall signal

is cleared and the latch containing the invalid data is allowed to continue operating. This

removed the invalid data in the pipeline and allows the valid B to catch up to the valid A. When

B reaches the stall, its latch gets stalled and the stall continues down the pipeline. The next bit

of invalid data is removed in the same way, allowing C to move forward in the pipeline. At this

point the stall condition has been cleared through other means and the pipeline can continue

moving. All of the invalid data has been removed and data A through C reaches the end of the

pipeline. If the valid bits had not cleared the stall, the final output would have been A, #, and

B. The throughput has therefore been increased [11].

3.3 Interlocked Synchronous Pipelines 25

Figure 3.7: Timeline of an ISP [11]

Chapter 4

Pipeline Design

Figure 4.1 shows a simple 4 bit 4 stage pipeline. This pipeline design was created and sim-

ulated as an asynchronous pipeline, a synchronous pipeline, and an interlocked synchronous

pipeline. The three pipelines were made with a generic 45 nm library. By using the same

pipeline design for all three pipeline variations, their advantages and disadvantages could be

directly compared.

The pipeline was designed so that each stage has a logical depth of one logic gate. This

keeps timing simple, as there is no need to worry about one path being slower than another.

The stall signal is generated by the logic gate for the least significant bit of stage 3. The logic

gates were chosen so that a stall occurs around 30% of the time. With this probability, random

inputs are likely to pass through the pipeline unhindered, but enough stalls will occur so each

pipeline’s stalling method can be observed. To clear a stall, a STALL_CLR signal must be

asserted by the test bench.

Table 4.1 shows the truth table for the pipeline. Since the pipeline was designed to meet the

30% stall percentage, the final output values were not considered. This led to a small number

of outputs: for the 16 possible inputs, there are only five possible outputs. Of these outputs,

27

Figure 4.1: Pipeline design

bits 2 and 1 only go high for one output. This made the initial testing of the pipelines difficult.

Bits 3 and 0 could be easily checked to verify that their logic and latches were correct by

choosing inputs that toggled the output. Bits 2 and 1 could be checked the same way, but the

only combination that set them high also set the stall. The stall had to be constantly cleared so

it didn’t hinder the toggling.

The other issue with the pipeline design is that the logic serves no purpose. For a given

input, there is no easy way to predict the output, like there would be if the pipeline was an

adder or shifted bits. This problem only affected human readability of the waveforms. Instead

of knowing quickly what the expected output was, or if the observed output was correct, the

input/output table had to be used.

4.1 Gates 28

Input [hex] Output [hex] Stall
0 F 1
1 F 1
2 8 0
3 8 0
4 9 1
5 8 0
6 8 0
7 8 0
8 9 1
9 8 0
A 8 0
B 8 0
C 1 1
D 0 0
E 0 0
F 0 0

Table 4.1: Pipeline truth table

4.1 Gates

Given this pipeline design, the following logic gates had to be created: INV; NAND; NOR;

AND; OR; C-element; latch and latch_n. Two versions of the latch were created: one that was

triggered by the positive edge of the clock (latch) and one that was triggered by the negative

edge of the clock (latch_n). Designing both latches saves area; instead of using inverters to

negate the clock, the latch itself is built to use the negative edge.

The latches are built using pass transistors, as shown in Figure 4.2. The pass transistors

are triggered by the clock, so when the clock rises, data can pass through the latch. When

the clock falls, the data is stored. For the negative edge triggered latch, the inputs to the pass

transistors are switched.

The schematic for the Muller C-Element is shown in Figure 4.3. By feeding the output

back into the series of gates, the C-Element is able to remember its past state.

4.1 Gates 29

Figure 4.2: Latch schematic

Figure 4.3: C-Element schematic

4.1 Gates 30

Gate Width [um]
INV 0.6

NAND 0.8
NOR 1.2
AND 1.2
OR 1.6

C-Element 5.4
Latch 2.2

Latch_n 2.2
ISP Stage 10.6

Table 4.2: Widths of gates

Table 4.2 lists the width of all the gates. The height for every gate is 1.71 um.

Chapter 5

Layout Design

The following sections describe the modifications needed to turn the pipeline design into each

type of pipeline and how each pipeline was laid out.

5.1 Asynchronous Pipeline

For the asynchronous pipeline, handshaking logic was added to the pipeline. The handshaking

logic was shown in Figure 3.3.

The main component is the Muller C-Element. The C-Element uses the request signal from

the previous stage and the acknowledge signal from the next stage to generate the enable for

the latch, as well that stage’s request and acknowledge signals.

The stall is initially taken from the input to the last latch for bit D. This is NANDed with

the STALL_CLR signal and then ORed with the Reset signal to create the STALL_EN signal.

The STALL_EN signal is ANDed with the output of the C-Elements for stage 3. The resulting

signal is used to clock the stage 3 latches. This series of gates will disable the latch enable

signal when there is a stall. To clear the stall, the STALL_CLR signal is set low.

5.1 Asynchronous Pipeline 32

If the system is in reset, the latches will automatically be enabled. This is done because the

latch enable signal is also the request and acknowledge signals sent to the neighboring latches.

Those signals need to be set high at the beginning of the simulation in order for the pipeline to

run.

The asynchronous pipeline required additional logic for resetting the circuit. The request

and acknowledge signals needed to be set high at the beginning of the simulation to ensure

that data could move through the pipeline. Therefore, an OR gate was added to each of those

signals, aside from the ones that were inputs into the pipeline, to force the signals high during

reset. After reset, the data moving through the pipeline keeps them high as needed.

5.1.1 Layout

The layout for the asynchronous pipeline was designed with two goals in mind: keep the four

gates for each set of handshaking logic close to their respective latches and place the cells so

the data flows properly from one side to the other. To meet the latter goal, each stage of the

pipeline was given its own row, with the input side on the left and the final output on the right.

This would create four rows total, with each row following the format of latch-handshaking

logic-combinational logic, repeated four times, with the stall logic at the end of the row. One

row of this configuration is shown in Figure 5.1. However, having all the cells in one row

would create a row about 50 um long, which is twice as long as the layouts for the other two

pipelines. Additionally, there would be a high likelihood of congestion across the row because

the handshaking signals would have to cross over all the other cells.

In Figure 5.1, LG stands for logic gate. Two of the four logic gates in each group are for

ORing the acknowledge and valid signals with the reset signal. Another gate is the inverter for

the acknowledge. The final gate is the logic gate associated with that stage.

To decrease the length of the layout, each stage was split into two rows. The top row would

5.1 Asynchronous Pipeline 33

Figure 5.1: One row asynchronous layout

Figure 5.2: Two row asynchronous layout (unbalanced)

follow a latch-combinational pattern, while the bottom row would contain the handshaking

logic. This would keep the handshaking logic close to the latches, while allowing the data to

flow easily across the top row. While this layout plan meets both of the desired goals, the rows

ended up very unbalanced in terms of length, with the top row being 12.6 um long and the

bottom row being 36.8 um long.

To balance the two rows, a portion of the handshaking logic was moved into the top row.

This put both rows at around 27 um. The final layout is shown in Figure 5.3.

For clarity, every other stage is colored gray. The logic gate to the left of each latch is the

OR for the valid signal. The logic gate to the right of the latch is the logic gate for that stage.

The last logic gate in the group is the OR for the acknowledge signal. The logic gates were

placed in this way to minimize routing. The valid signal comes from the left, so it is placed on

the left. The acknowledge signal comes from the right, so it is placed on the right. The logic

gate for the data needs the output from the latch, so it is placed right next to it.

On the second row, the C-Elements are placed below their respective latches. The logic

5.1 Asynchronous Pipeline 34

Figure 5.3: Two row asynchronous layout (balanced)

gate to the right is the inverter for the acknowledge. This layout places the signals close to the

originating latches. The farthest required routing path is from the output of the data logic gate

to the latch in the next latch row, below the C-Element row. There is no easy way to minimize

that routing without compromising other paths.

Once the gates were laid out in this fashion, VDD and VSS rails were added to left and

right side of the layout, respectively. Ideally, the input pins to the pipeline would be on the left

and the output pins would be on the right, to match the data flow direction. Since the power

rails were in the way, the pins had to be placed on the top and bottom. To minimize routing

as much as possible, the pins for the first two stages were placed on the top and the pins for

the second two stages were placed on the bottom. With this layout, the maximum distance a

signal had to travel from latch to pin would be 3 rows. The final layout is shown in Figure 5.4.

The top row is a row with latches. The row below it has the C-Elements. This pattern

alternates for the next six rows. The extra space on the right side was due to incorrect cell

width measurements, which led to incorrect row width calculations. This does not affect the

routing, as only VSS has to travel to that right side.

5.1 Asynchronous Pipeline 35

Figure 5.4: Layout of the Asynchronous Pipeline

5.2 Synchronous Pipeline 36

5.2 Synchronous Pipeline

The synchronous pipeline is a 2-phase clocked pipeline. One clock signal is used to enable

and disable every latch, and each stage of latches is clocked on the opposite edge of the clock.

Instead of inverting the clock input for half the latches, the negative edge triggered latches are

built to become transparent when the clock is low. This saves area, as no inverters or routing

is needed to carry an inverted clock signal across the design.

To stall the pipeline, the stall signal is first NANDed with the STALL_CLR signal. This

creates the STALL_EN signal, which is then ANDed with the global clock. If there is a stall,

the clock is turned off and no latches will be triggered. To clear a stall, the STALL_CLR signal

is set low.

As mentioned in Chapter 3, synchronous pipelines waste a large amount of power by clock-

ing idle latches. The common solution is clock gating, which is used to shut down the idle parts

of the circuit. Another issue with synchronous pipelines is stall boundaries. Stall boundaries

are when the stall signal cannot travel to the preceding stages fast enough to stall them before

the clock cycle finishes. This ends up with some data being lost, as the latch the data wants to

move into is stalled, but the latch it is currently in clocks in new data [11].

Both of these problems contribute to the need for the interlocked synchronous pipeline.

Therefore, it would be useful to create a circuit where these issues occur, to allow for com-

parison with the ISP. However, these problems require large circuits, and it would have been

impractical to create such a circuit.

5.2.1 Layout

The synchronous pipeline was designed similarly to the asynchronous pipeline, with the goal

of placing the cells to help the data flow from one side to the other. Again, the cells were split

5.2 Synchronous Pipeline 37

Figure 5.5: One row synchronous layout

into rows, one for each stage. Without the handshaking logic, only 4 rows were needed. Each

row followed the pattern of latch-combinational logic. The stall logic was placed at the right

end of the rows, closest to where the stall signal is generated. This put each row at around 13

um. One row of the designed layout is shown in Figure 5.5, with the other three rows looking

similar.

Unlike the asynchronous pipeline, the cells for the synchronous pipeline were not manually

placed. Instead, the router tool was used, to see if the router would come up with a similar

design. While the designed layout makes sense from a human perspective, there was a chance

that the router would find a more optimal layout. Figure 5.6 shows the router’s layout.

The main difference between the designed layout and the router’s layout is the placement

of the latches. The design placed four latches in each row to spread them evenly across the

layout. The router placed three latches in the top row, four in the second row, five in the third

row, and four in the last row. The missing latch in the top row may have been moved because

the STALL_CLR and CLK pins were placed at the top of the design. The NAND/AND gates

for the stall logic with those signals may have taken the place of that fourth latch.

The pins were placed so that all of the input pins were placed at the top and all of the output

pins were placed at the bottom. The ideal data flow would then be from top to bottom. The

router did not follow this pattern. If it had, the top row would have three latches from the first

stage. Instead, the top row has two latches from the first stage, and placed the other two at the

5.2 Synchronous Pipeline 38

Figure 5.6: Layout of the Synchronous Pipeline

5.3 Interlocked Synchronous Pipeline 39

bottom of the design. This means that the input data has to travel from the top of the design

all the way to the bottom row to reach those two latches. Placements like this increased the

routing, so it would have been better to place the cells as they were in the designed layout.

5.3 Interlocked Synchronous Pipeline

The interlocked synchronous pipeline is based off the synchronous design with its global clock

network. Each latch is augmented by the addition of two other latches: one for the valid bit

and one for the stall bit. The stall latches are clocked on opposite edges of the global clock

signal, as with the synchronous pipeline. The output of the stall latch is then combined with

the clock signal to latch the valid latch. This results in the valid latch only getting clocked

when there isn’t a stall. The clock for the valid latch and the input to the valid latch are then

combined to clock the data latch. This setup is arranged so the data latch is clocked only when

the data is valid and there isn’t a stall. The last piece of logic in the latch circuitry is that the

input to the stall latch is ANDed with the output of the valid latch. This clears the stall if the

data is invalid, allowing the data latch to overwrite the invalid data with valid data while the

rest of the pipeline is stalled. The ISP latch circuitry was shown in Figure 3.6

For the ISP, the stall is ANDed with the STALL_CLR signal. It is then ORed with the stall

signal coming from the stage 4 latches so it can override the stall handshaking signals. To clear

the stall, STALL_CLR is set low.

5.3.1 Layout

The latch circuitry consists of three latches, two ANDs, and one NOR. In order to keep these

elements together, the six gates were routed together into a “latch stage”.

The pipeline was designed to flow from top to bottom to optimize the pin placements.

5.3 Interlocked Synchronous Pipeline 40

Figure 5.7: Layout of the Interlocked Synchronous Pipeline

Each row of the layout consists of the four latches from one stage along with the logic gate

that follows each latch. The logic gates are placed to the right of their respective latches,

similar to the original synchronous layout design. As all of the rows are ordered the same way,

all the latches of each bit are placed in a roughly vertical stack. This minimizes the routing.

The final layout has four rows, each around 47 um wide, and is a total of 12 um tall. The

height is the same as the synchronous pipeline, as the number of rows is the same, but the

width is longer. The extra width comes from the additional logic in the latch circuitry.

Chapter 6

Results

6.1 Functionality & Timing

The following sections show in detail the operation of each pipeline. All three pipelines use

the same series of inputs so that they can be fairly compared. The input sequence is shown in

Table 6.1.

6.1.1 Asynchronous Pipeline

Figure 6.1 shows the output waveform for the asynchronous pipeline. Signals Ain through Din

are the inputs for bits A through D. Signals Aout through Bout are the output signals from

bits A through D. Signal D4d is the stall signal taken from the pipeline logic. STALL_CLR

is the signal used to clear the stall. STALL_EN is the final stall signal after STALL_CLR has

been taken into account. When STALL_EN is low, the pipeline is stalled. The last signal is

the Reset signal. A period of reset is required to set all the handshaking signals high before

pipeline operation so that data can move through it.

The five black rectangles mark where each of the inputs are entered into the circuit. The

6.1 Functionality & Timing 42

Input
Number

Input
[hex]

Expected
Output
[hex]

Stall Notes

1 2 8 0 –
2 D 0 0 –
3 8 9 0 This input creates a stall for

the next cycle
4 F 9 1 The output should not

change due to the stall and
should continue to be 9.

5 F 0 0 The stall is cleared. The
output is allowed to change.

Table 6.1: Input sequence for all three pipelines

Figure 6.1: Waveform for the asynchronous pipeline

6.1 Functionality & Timing 43

Figure 6.2: Close up of input/output transition for the asynchronous pipeline

inputs are entered every 10 ns. This is done to match the asynchronous pipeline to the syn-

chronous and ISP pipelines, which run off a 200 MHz clock. A stall occurs in column 3. This

stall prevents data from traveling through the pipeline, which can be seen in column 4, where

the input changed to F but the output did not change to 0. STALL_CLR is deasserted in col-

umn 5, and STALL_EN returns high shortly after. This allows data to resume moving through

the pipeline, and the output switches to 0.

Data takes 500 us to move through the pipeline, as shown by Figure 6.2.

Figure 6.3 shows data moving through all four stages for bit A. The first four signals are

the values at each latch. The next two signals, R2a and A2a, are the request and acknowledge

signals for stage 2. R3a and A3a are the request and acknowledge signals for stage 3. L3a

is the latch enable for stage 3. STALL_EN, STALL_CLR, and Reset are the same as in the

6.1 Functionality & Timing 44

Figure 6.3: Data moving through bit A in the asynchronous pipeline

previous graphs.

The request and acknowledge signals start off as random values at the beginning of the

simulation because they are internal signals and therefore not set to any value. After reset,

they are set to their proper values: high for request and low for acknowledge. The acknowledge

signal is inverted before it reaches the C-Element, so a low value here means a high value for

the C-Element. The request and acknowledge signals stay at their respective values throughout

the simulation, allowing data to pass through the pipeline, until the stall occurs. The stall starts

at roughly 50.5 ns, when STALL_EN goes low. This causes L3a to go low, which in turn

causes R3a to go low and A3a to go high. Latch 3 is now disabled and has told its neighbors

that it is not accepting new data.

The value of Q2a goes low at the 60 ns mark. This is due to Bin changing value, which

was shown in Figure 6.1. This change does not propagate to latch 3 because latch 3 is stalled.

When the stall is cleared at 70 ns, the data can continue moving and latch 3 is allowed to update

its value.

The input data travels through the pipeline as expected, with each latch switching shortly

6.1 Functionality & Timing 45

Figure 6.4: Data moving through latches of bit A in the asynchronous pipeline

after the one before it. This can be seen in more detail in Figure 6.4.

Ain has the longest transition time because the change is generated from the test bench,

while the other signals are latches changing value. The latches take around 100 us to switch.

The latches begin to switch when the previous latch is at roughly 50% VDD, or 0.5 V.

6.1.2 Synchronous Pipeline

The waveform for the synchronous pipeline is shown in Figure 6.5. The first four signals, Ain

through Din, are the inputs. The next four signals, Aout through Dout, are the outputs. G_CLK

is the global clock. This clock is generated by the test bench. The next signal, CLK, is the

clock that is used to clock all the latches. This clock is a combination of G_CLK and the stall

condition. The last three signals are for the stall. D4_Stall is the stall signal generated by the

pipeline (called D4d in the asynchronous pipeline), STALL_CLR is the clear signal, and EN

is the STALL_EN signal. As there are no internal handshaking signals, the pipeline does not

need to be reset, and therefore there is no Reset signal.

The synchronous pipeline runs off the global clock signal, with new inputs introduced at

6.1 Functionality & Timing 46

Figure 6.5: Waveform for the synchronous pipeline

6.1 Functionality & Timing 47

each rising edge. The inputs follow the same pattern as described in Table 6.1. As mentioned

in Chapter 4, the pipeline design only gives five different outputs for the full range of 16

inputs, and of those five only one output sets Bout and Cout high. This leads to a problem in

the synchronous pipeline: since Bout and Cout never change, they stay at 0 V for the entire

simulation. The noisiness in their waveform is related to this. In simulations where Bout and

Cout can become high, there is no noisiness when they are low.

Aside from the noisiness, the pipeline operates correctly. The inputs are entered on the

rising edge of the clock and appear at the output 1.5 cycles later, at the falling edge of the

clock. When the stall occurs, data stops moving through the pipeline. The stall starts at 35

ns, in the fourth rectangle. The stall condition forces CLK low. Without the switching of the

clock, the latches can no longer activate. When STALL_CLR is deasserted at 45 ns, the stall is

cleared, and CLK resumes operation. Data moves through the pipeline again and then shows

up at the output at around 50 ns, half a clock cycle after the stall was cleared.

The transfer of data between latches is shown in Figure 6.6.

Data moves through the pipeline with every clock edge. Ain falls at 5 ns with the positive

clock edge. QA2, the signal from the second latch, rises at 10 ns with the negative edge. QA3

falls with the positive edge, and Aout rises with the negative edge. It therefore takes 1.5 clock

cycles for the change in Ain to propagate to Aout. The stall can be seen at the 40 ns mark. No

data changes with the negative edge.

6.1.3 Interlocked Synchronous Pipeline

The interlocked synchronous pipeline (ISP) operates very similarly to the synchronous pipeline.

Figure 6.7 shows the waveforms for the ISP. Ain through Din are the inputs, Aout through Dout

are the outputs, CLK is the global clock, and D4d, STALL_CLR, and STALL_EN are the stall

signals.

6.1 Functionality & Timing 48

Figure 6.6: Data moving through bit A in the synchronous pipeline

Figure 6.7: Waveform for the interlocked synchronous pipeline

6.1 Functionality & Timing 49

Figure 6.8: Data moving through bit A in the ISP

The inputs for the ISP are the same as for the asynchronous and synchronous pipelines. The

same problem with Bout and Cout being noisy occurs as it did in the synchronous pipeline.

The major difference between the ISP and the synchronous pipeline is how long it takes data

to move through the pipeline. The synchronous pipeline takes 1.5 clock cycles. The ISP takes

only 0.5 clock cycles. The reason for this can be seen in Figure 6.8.

Like the synchronous pipeline, the latches of the ISP are clocked on alternating clock

edges. However, while the synchronous pipeline uses latches built to use the negative edge of

the clock, the ISP uses an inverted clock signal for those latches. At 10 ns, the rising edge of

ClkBar triggers latch 3. The data travels through the logic and arrives at latch 4. The expected

operation is that the data then waits at latch 4 until latch 4 is clocked at the next negative

edge of the clock, at 20 ns. The latches are not triggered by the change in the clock signal,

though, but by the value of the clock being low. At 10 ns the CLK signal falls, making latch

4 transparent to new data for the next 5 ns. The new data from latch 3 arrives at latch 4 and

is then picked up immediately. The end result is that latch 3 and latch 4 are both transparent

from 10 ns to 15 ns. The same principal occurs with latches 1 and 2, which causes the latency

6.1 Functionality & Timing 50

Figure 6.9: Data, valid, and stall signals for bit A for the ISP

to be only 0.5 cycles.

Figure 6.9 shows the ISP operation with the valid and stall signals for bit A. The first four

signals are the four latches for bit A. VAin is the valid signal for the first latch, generated by

the test bench, and signals A2v through A4v are valid signals for the other stages. A1s through

A3s are the stall signals for stages 1 to 3. SAin is the stall for the last stage, which is generated

by the test bench. Finally there are the CLK and the STALL_CLR signals. SAin is always low

because the stall occurs before stage 4 and only affects stages 1 through 3. A4v is always high

because the inputs are set up so that the stall clears out all invalid data before it reaches stage

4.

The area of interest for this waveform is captured within the box. At 30 ns, the stall signal

(not shown) goes high. The stall for stage 3, A3s, immediately goes high because of this. At

the next positive edge of the clock, the stall for stage 2, A2s, is updated and goes high. The

stall for stage 1 does not go high until a cycle later. This is because of the invalid data in the

pipeline. At 35 ns, Ain is given the value of 0. This data is marked invalid by VAin. When the

stall reaches the invalid data at stage 1, they cancel each other out. The valid data entered at

6.2 Area 51

Pipeline Width [um] Height [um] Area [um2]
Asynchronous 27 23.14 624.78
Synchronous 12.75 11.94 152.235

ISP 47.15 11.94 562.971

Table 6.2: Areas of the three pipelines

45 ns can move into stage 1 because the stall is still low. This overwrites the invalid data. Now

that the data is valid, the stall goes high to prevent the valid data from being overwritten. This

can be seen at 50 ns, where A2v and A1s both go high.

This setup is analogous to Figure 3.7. Because of the invalid data, the length of the stall

is shortened for stage 1. Stage 3 has a stall of 35 ns (3.5 clock cycles) while stage 1 is only

stalled for 20 ns (2 clock cycles).

6.2 Area

The areas of the three pipelines are shown in Table 6.2.

The synchronous pipeline is the clear winner in terms of area. The asynchronous pipeline

is larger because of the extra handshaking logic, while the ISP is larger because it has two extra

latches per stage. These numbers show that despite the ISP having three times the number of

latches, it is still smaller than the asynchronous pipeline. However, the asynchronous pipeline

has eight rows of cells instead of four, like the synchronous pipeline and ISP do. The extra

space between the additional rows makes the asynchronous pipeline appear larger than it actu-

ally is. A more fair comparison can be done by looking at the gates making up each pipeline.

Table 6.3 shows the breakdown of each pipeline in terms of its gates. For this comparison, the

ISP stage (the three latches plus the latch circuitry) is broken down into its individual gates.

The asynchronous pipeline has extra inverters due to inverting the acknowledge signal. The

extra OR gates are for resetting the handshaking signals. The ISP’s extra gates comes from the

6.3 Latency & Throughput 52

Gate Asynchronous Synchronous ISP
INV 16 5 9

NAND 6 7 5
NOR 2 2 22
AND 4 0 33
OR 25 0 0

C-Element 16 0 0
Latches 16 16 48

Total 85 30 117

Table 6.3: Number and types of gates in each pipeline

Pipeline Total Area [um2] Gate Area [um2]
Asynchronous 624.78 313.272
Synchronous 152.235 79.002

ISP 562.971 309.51

Table 6.4: Areas of the three pipelines in terms of gates only

2 additional latches, 2 AND gates, and 1 NOR gate for each of the 16 latches. The synchronous

pipeline has only three extra gates: two NANDs and an inverter for the stall logic.

Using these gate counts and the gate dimensions from Table 4.2, the areas of the pipelines

are shown in Table 6.4.

The synchronous pipeline is still the smallest pipeline, at around 25% the size of the other

two. The asynchronous pipeline is still larger than the ISP but the difference between them is

now too small to be significant.

6.3 Latency & Throughput

The latency of each pipeline is how long it takes for the input data to affect the output signals.

Typically this is measured in clock cycles. Using this method, the synchronous pipeline has a

latency of 1.5 clock cycles and the ISP has a latency of 0.5 clock cycles. The asynchronous

6.3 Latency & Throughput 53

pipeline does not have a clock and cannot be measured this way. The other method of mea-

suring latency is to go by time units. The asynchronous pipeline has a latency of 500 us, as

shown earlier. The synchronous pipeline and ISP have a latency of 15,000 us and 5,000 us,

respectively. However, this is not a fair comparison. The data transfer for those two pipelines

is limited by the clock frequency. If the clock was faster, the synchronous pipeline and ISP

would operate closer to the speed of the asynchronous pipeline. They would still be hindered

by the clock though and thus remain slightly slower than the asynchronous pipeline.

The throughput of a pipeline is how much data can move through it in a given time. Since

the input data is entered every 10 ns, the maximum throughput possible is one output per clock

cycle. This equalizes the asynchronous pipeline and the ISP for this type of comparison. The

synchronous pipeline falls behind as it needs an extra half cycle to finish processing one input.

The ISP has the additional feature of valid bits, however, which has the potential to increase its

throughput. If invalid data goes through an asynchronous or synchronous pipeline, that data

will end up at the output. There is no way to remove it. If a stall occurs in an ISP pipeline, the

timing may work out so that the invalid data is canceled out by the stall and more valid data can

fill the pipeline. The end result could be, for example, that the asynchronous and synchronous

pipeline output 5 valid outputs and 2 invalid ones, while the ISP could output 7 valid ones. The

throughput in terms of valid vs invalid data is dependent on the timing of the stalls and cannot

be directly measured, but it must be noted as an occasional benefit of the ISP.

Chapter 7

Discussion

The goal of the interlocked synchronous pipeline (ISP) is to reduce power consumption by

adding handshaking signals to synchronous pipelines. Unfortunately, power could not be mea-

sured with the development tools used. Instead, other metrics have to be looked at to judge the

usefulness of the ISP.

The first metric is area. Area is directly related to power because the larger the area used,

the more gates are in the circuit, and more gates will use more power. Compared to the syn-

chronous pipeline, the ISP is 3.7 times larger. In terms of cell area only, the ISP is 3.9 times

larger. The increase is due to the extra latches. The ISP is closer in size to the asynchronous

pipeline, but this comparison is not important. Designers are highly unlikely to switch from

asynchronous pipelines to an ISP as there are no real benefits moving in this direction. While

there are benefits moving from the synchronous pipeline to the ISP, the large area increase will

put many designers off. Larger area not only leads to more power, but also requires a larger

die. A larger die size means that the cost of making the chip will increase, on top of the cost

for the extra design work needed.

In terms of timing, the asynchronous pipeline performed the best. This is to be expected.

55

One of the main advantages of the asynchronous pipeline is its speed, and this work proved that

this is true. Between the ISP and the synchronous pipeline, the ISP performed better. However,

this may be a flaw in the design. Since the latches are driven by the value of the clock and not

the edge itself, having a negative version of the clock led to two stages operating at once in the

ISP. The synchronous pipeline used latches built for the negative edge of the clock so only one

clock signal was needed, which avoided this problem. If the two pipelines had used the same

clock method, either both having a negative version of the clock or both using negative edge

latches and one clock, or if the latches had been designed to be properly edge triggered, they

likely would have had the same speed.

The main attraction of the ISP is its ability to deal with stalls and invalid data. Stalls

occur very frequently in digital circuits, especially in processors that have to deal with branch

instructions and memory operations. Local stall signals that don’t require long, timing critical

signals, would make the circuit design simpler. Removing invalid data instead of stalling is also

convenient as it allows more data to be processed. There is no way to do this with synchronous

pipelines without adding additional circuitry to flush the data path.

The final point to consider is the ability to use synchronous tools to generate the ISP. One

of the biggest hurdles in creating large asynchronous pipelines is that there exist very few de-

velopment tools that can handle them. The ISP aims to make an asynchronous-like design that

can be created with the common synchronous pipeline development tools. These development

tools were not used for this project, and therefore there is no concrete data that shows if the ISP

can or cannot be used with them. However, in theory it should work. From an RTL standpoint,

a designer only has to replace the latch or flop definition with an ISP stage. The valid and stall

signals can be wired the same way the rest of the design is. From a physical design standpoint,

the designer will need a standard ISP stage cell. Letting a synthesis tool place all the gates re-

quired for the ISP stage manually will likely result in poorly optimized placements. Creating

56

a standard cell that routes all the gates together will work more effectively, but requires that a

designer spends the time to build such a cell.

To summarize, the advantages of the ISP are that it has locally generated stalls, the ability

to remove invalid data during stalls to increase throughput, and a potentially faster cycle time.

The disadvantages are that it requires extra work to implement and the area is close to 4 times

the size of the synchronous pipeline. Compared to the asynchronous pipeline, the ISP has

around the same area and is easier to implement, but it operates slower.

Whether or not the ISP is a worthwhile alternative to synchronous pipelines is based on the

design. A digital circuit that only cares about throughput may like the ISP for its invalid data

removal and not care about the area. On the other hand, a microprocessor could not handle the

area increase. Power is also an important factor, and the expected power increase would likely

dissuade most designers.

Chapter 8

Conclusion

The paper “Synchronous Interlocked Pipelines” by Jacobson et al. introduces the concept of

an interlocked synchronous pipeline (ISP) as an alternative to synchronous pipelines. To test

the effectiveness of this new pipeline, an asynchronous pipeline, synchronous pipeline, and

ISP were built in a generic 45 nm library. All three pipelines were built off the same pipeline

logic design so that they could be readily compared. The waveforms for each pipeline were

analyzed to prove that the pipeline worked correctly and could handle stalls.

The pipelines were compared in terms of area, timing, and throughput. For area, the asyn-

chronous and ISP were nearly four times the size of the synchronous one. For timing, the

asynchronous pipeline processed data the fastest. This ended up being a poor metric because

the clock speed of the synchronous pipeline and ISP could have been increased to allow them

to match the asynchronous speed. In addition, the ISP’s clock was designed differently from

the synchronous pipeline’s clock, which allowed it to perform faster than it should have. Ignor-

ing timing differences, the ISP had the highest throughput. Due to its valid/stall handshaking

signals, it has the potential to remove invalid data and allow valid data to continue to be pro-

cessed during a stall. Under the right conditions, the ISP could remove all invalid data in

58

the pipeline and thus have a higher valid throughput than the asynchronous and synchronous

pipelines, which have no way to clear invalid data.

Other metrics that could not be compared are power and the ease of creating the ISP with

synchronous tools. The latter is theorized to be simple, though it would require extra design

work to setup. The former could not be measured with the tools used. As power is an important

metric to consider when designing a pipeline, the fact that it could not be measured severely

limits the ability to determine which of the three pipelines is the best choice.

The choice of pipeline ultimately depends on the type of digital circuit being designed. For

microprocessors, it would be better to stick to synchronous pipelines. The area increase, and

likely power increase due to the extra gates, would not be acceptable. However, there are likely

applications were the ISP’s ability to remove invalid data makes the area increase worthwhile.

More work could be done with the three pipelines to determine the advantages and disad-

vantages. Recreating the pipelines with a tool that could measure power consumption would

be the highest priority. Aside from that, the pipelines could also be modeled in RTL. The ease

at which they could be coded and synthesized would prove whether or not the ISP could be

used with synchronous design tools. Finally, larger circuits could be explored. With a four

stage pipeline, some of the problems with synchronous pipelines that the ISP tries to fix could

not occur. For example, the circuit is too small to experience stall boundaries, where the stall

cannot propagate fast enough to stop the clock from clocking in new data. There are also no

timing constraints on the data paths in the pipeline because of the small logic depth. Creating

a larger digital circuit that experiences these issues could provide evidence of the ISP being a

worthwhile choice.

References

[1] M. Kovac and M. Kubicek. Asynchronous Logical System Simulation in VHDL. In 2008

18th International Conference Radioelektronika, pages 1–4, April 2008. doi:10.1109/

RADIOELEK.2008.4542725.

[2] K. Gupta, N. Pandey, and M. Gupta. A novel active shunt-peaked MOS Current Mode

Logic C-element for asynchronous pipelines. In 2011 International Conference on Mul-

timedia, Signal Processing and Communication Technologies, pages 122–125, Dec 2011.

doi:10.1109/MSPCT.2011.6150453.

[3] Xiao Yong and Zhou Runde. Single-track asynchronous pipeline controller design. In

Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Confer-

ence, 2005., volume 2, pages 764–768 Vol. 2, Jan 2005. doi:10.1109/ASPDAC.2005.

1466453.

[4] L. Manuel, C. K. Midhun, and R. K. Kavitha. High speed dynamic asynchronous

pipeline: Self-Controlled approach. In 2012 Annual IEEE India Conference (INDICON),

pages 592–596, Dec 2012. doi:10.1109/INDCON.2012.6420687.

[5] K. Sravani and R. Rao. High throughput and high capacity asynchronous pipeline

using hybrid logic. In 2017 International Conference on Innovations in Electron-

http://dx.doi.org/10.1109/RADIOELEK.2008.4542725
http://dx.doi.org/10.1109/RADIOELEK.2008.4542725
http://dx.doi.org/10.1109/MSPCT.2011.6150453
http://dx.doi.org/10.1109/ASPDAC.2005.1466453
http://dx.doi.org/10.1109/ASPDAC.2005.1466453
http://dx.doi.org/10.1109/INDCON.2012.6420687

References 60

ics, Signal Processing and Communication (IESC), pages 11–15, April 2017. doi:

10.1109/IESPC.2017.8071856.

[6] T. Werner and V. Akella. Asynchronous processor survey. Computer, 30(11):67–76, Nov

1997. doi:10.1109/2.634866.

[7] Je-Hoon Lee, Won-Chul Lee, and Kyoung-Rok Cho. A novel asynchronous pipeline

architecture for CISC type embedded controller, A8051. In The 2002 45th Midwest

Symposium on Circuits and Systems, 2002. MWSCAS-2002., volume 2, pages II–II, Aug

2002. doi:10.1109/MWSCAS.2002.1186952.

[8] H. A. Farouk and M. T. El-Hadidi. Implementing Globally Asynchronous Locally

Synchronous processor pipeline on commercial synchronous FPGAs. In 2010 17th

International Conference on Telecommunications, pages 989–994, April 2010. doi:

10.1109/ICTEL.2010.5478856.

[9] D. L. Oliveira, T. Curtinhas, L. A. Faria, and L. Romano. Design of synchronous pipeline

digital systems operating in double-edge of the clock. In 2013 IEEE 4th Latin American

Symposium on Circuits and Systems (LASCAS), pages 1–4, Feb 2013. doi:10.1109/

LASCAS.2013.6519068.

[10] A. Branover, R. Kol, and R. Ginosar. Asynchronous design by conversion: converting

synchronous circuits into asynchronous ones. In Proceedings Design, Automation and

Test in Europe Conference and Exhibition, volume 2, pages 870–875 Vol.2, Feb 2004.

doi:10.1109/DATE.2004.1268996.

[11] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer, and

C. J. Myers. Synchronous interlocked pipelines. In Proceedings Eighth International

http://dx.doi.org/10.1109/IESPC.2017.8071856
http://dx.doi.org/10.1109/IESPC.2017.8071856
http://dx.doi.org/10.1109/2.634866
http://dx.doi.org/10.1109/MWSCAS.2002.1186952
http://dx.doi.org/10.1109/ICTEL.2010.5478856
http://dx.doi.org/10.1109/ICTEL.2010.5478856
http://dx.doi.org/10.1109/LASCAS.2013.6519068
http://dx.doi.org/10.1109/LASCAS.2013.6519068
http://dx.doi.org/10.1109/DATE.2004.1268996

References 61

Symposium on Asynchronous Circuits and Systems, pages 3–12, April 2002. doi:10.

1109/ASYNC.2002.1000291.

[12] N. Saxena, S. Dutta, N. Pandey, and K. Gupta. Implementation of asynchronous pipeline

using Transmission Gate logic. In 2016 International Conference on Computational

Techniques in Information and Communication Technologies (ICCTICT), pages 101–

106, March 2016. doi:10.1109/ICCTICT.2016.7514560.

[13] B. Su, L. Shen, L. Wang, Z. Wang, Y. Wang, L. Huang, and W. Shi. DCP: Improving

the Throughput of Asynchronous Pipeline by Dual Control Path. In 2013 IEEE 10th

International Conference on High Performance Computing and Communications 2013

IEEE International Conference on Embedded and Ubiquitous Computing, pages 230–

237, Nov 2013. doi:10.1109/HPCC.and.EUC.2013.42.

[14] M. Gholipour, K. Shojaee, A. Khademzadeh, A. Afzali-Kusha, and M. Nourani. Per-

formance and power analysis of asynchronous pipeline design methods. In Proceedings.

The 16th International Conference on Microelectronics, 2004. ICM 2004., pages 409–

412, Dec 2004. doi:10.1109/ICM.2004.1434600.

[15] P. A. Beerel. Asynchronous circuits: an increasingly practical design solution. In Pro-

ceedings International Symposium on Quality Electronic Design, pages 367–372, March

2002. doi:10.1109/ISQED.2002.996774.

[16] C. K. Midhun, J. Joy, and R. K. Kavitha. High-Speed Dynamic Asynchronous Pipeline:

Self-Precharging Style. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 22(10):2235–2239, Oct 2014. doi:10.1109/TVLSI.2013.2282834.

[17] M. Singh and S. M. Nowick. The Design of High-Performance Dynamic Asynchronous

http://dx.doi.org/10.1109/ASYNC.2002.1000291
http://dx.doi.org/10.1109/ASYNC.2002.1000291
http://dx.doi.org/10.1109/ICCTICT.2016.7514560
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.42
http://dx.doi.org/10.1109/ICM.2004.1434600
http://dx.doi.org/10.1109/ISQED.2002.996774
http://dx.doi.org/10.1109/TVLSI.2013.2282834

References 62

Pipelines: High-Capacity Style. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 15(11):1270–1283, Nov 2007. doi:10.1109/TVLSI.2007.902206.

[18] O. Hauck and S. A. Huss. Asynchronous wave pipelines for high throughput datapaths.

In 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the

Waves of Science and Technology (Cat. No.98EX196), volume 1, pages 283–286 vol.1,

Sep. 1998. doi:10.1109/ICECS.1998.813322.

[19] P. Balaji, W. Mahmoud, E. Ososanya, and K. Thangarajan. Survey of the counter-

flow pipeline processor architectures. In Proceedings of the Thirty-Fourth Southeast-

ern Symposium on System Theory (Cat. No.02EX540), pages 1–5, March 2002. doi:

10.1109/SSST.2002.1026993.

[20] P. G. Lucassen and J. T. Udding. A process-algebraic approach to the design of asyn-

chronous (counterflow) pipelines. In IEE Colloquium on Design and Test of Asyn-

chronous Systems, pages 7/1–7/6, Feb 1996. doi:10.1049/ic:19960252.

[21] J. Butas and J. Povazanec. A fine-grain asynchronous pipeline reaching the synchronous

speed. In ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat.

No.01TH8549), pages 547–550, Oct 2001. doi:10.1109/ICASIC.2001.982621.

[22] A. E. Sjogren and C. J. Myers. Interfacing synchronous and asynchronous modules

within a high-speed pipeline. In Proceedings Seventeenth Conference on Advanced Re-

search in VLSI, pages 47–61, Sep. 1997. doi:10.1109/ARVLSI.1997.634845.

[23] N. Toosizadeh, S. G. Zaky, and J. Zhu. VariPipe: Low-overhead variable-clock syn-

chronous pipelines. In 2009 IEEE International Conference on Computer Design, pages

117–124, Oct 2009. doi:10.1109/ICCD.2009.5413167.

http://dx.doi.org/10.1109/TVLSI.2007.902206
http://dx.doi.org/10.1109/ICECS.1998.813322
http://dx.doi.org/10.1109/SSST.2002.1026993
http://dx.doi.org/10.1109/SSST.2002.1026993
http://dx.doi.org/10.1049/ic:19960252
http://dx.doi.org/10.1109/ICASIC.2001.982621
http://dx.doi.org/10.1109/ARVLSI.1997.634845
http://dx.doi.org/10.1109/ICCD.2009.5413167

References 63

[24] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of synchronous elastic

architectures. In 2006 43rd ACM/IEEE Design Automation Conference, pages 657–662,

July 2006. doi:10.1145/1146909.1147077.

[25] A. Rettberg, M. Zanella, T. Lehmann, and C. Bobda. A new approach of a self-timed

bit-serial synchronous pipeline architecture. In 14th IEEE International Workshop on

Rapid Systems Prototyping, 2003. Proceedings., pages 71–77, June 2003. doi:10.1109/

IWRSP.2003.1207032.

http://dx.doi.org/10.1145/1146909.1147077
http://dx.doi.org/10.1109/IWRSP.2003.1207032
http://dx.doi.org/10.1109/IWRSP.2003.1207032

Appendix I

Schematics

This appendix contains the schematics for all of the gates and pipelines created for this project.

I-2

Figure I.1: Schematic of the INV

I-3

Figure I.2: Schematic of the NAND

I-4

Figure I.3: Schematic of the NOR

I-5

Figure I.4: Schematic of the AND

Figure I.5: Schematic of the OR

Figure I.6: Schematic of the C-Element

I-6

Figure I.7: Schematic of the positive edge triggered LATCH

I-7

Figure I.8: Schematic of the negative edge triggered LATCH

Figure I.9: Schematic of the ISP Stage

I-8

Figure I.10: Schematic of the Asynchronous Pipeline

Figure I.11: Schematic of the Synchronous Pipeline

I-9

Figure I.12: Schematic of the Interlocked Synchronous Pipeline

Appendix II

Layouts

This appendix contains the layouts for all of the gates and pipelines created for this project.

II-2

Figure II.1: Layout of the INV

II-3

Figure II.2: Layout of the NAND

II-4

Figure II.3: Layout of the NOR

II-5

Figure II.4: Layout of the AND

II-6

Figure II.5: Layout of the OR

II-7

Figure II.6: Layout of the C-Element

Figure II.7: Layout of the positive edge triggered LATCH

II-8

Figure II.8: Layout of the negative edge triggered LATCH

Figure II.9: Layout of the ISP Stage

II-9

Figure II.10: Layout of the Asynchronous Pipeline

II-10

Figure II.11: Layout of the Synchronous Pipeline

Figure II.12: Layout of the Interlocked Synchronous Pipeline

	Investigation of the Benefits of Interlocked Synchronous Pipelines
	Recommended Citation

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Literary Review
	3 Pipelines
	3.1 Asynchronous Pipelines
	3.2 Synchronous Pipelines
	3.3 Interlocked Synchronous Pipelines

	4 Pipeline Design
	4.1 Gates

	5 Layout Design
	5.1 Asynchronous Pipeline
	5.1.1 Layout

	5.2 Synchronous Pipeline
	5.2.1 Layout

	5.3 Interlocked Synchronous Pipeline
	5.3.1 Layout

	6 Results
	6.1 Functionality & Timing
	6.1.1 Asynchronous Pipeline
	6.1.2 Synchronous Pipeline
	6.1.3 Interlocked Synchronous Pipeline

	6.2 Area
	6.3 Latency & Throughput

	7 Discussion
	8 Conclusion
	References
	I Schematics
	II Layouts

